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Abstract 

The process of land use change (LUC) results from human interactions with the natural 

environment to meet the needs from societal development. Growing population leads to 

the depletion of the land resource which entails environmental consequences from local 

to global scales. Advanced analytical methods can help with the understanding of the 

complexity of LUC process. They can further benefit sustainable land development. The 

main objective of this thesis research is to evaluate the deep learning (DL) methods 

such as convolutional neural networks (CNN) and recurrent neural networks (RNN) for 

classifying and forecasting LUC. The results demonstrated that the CNN-based LU 

classification models achieved the model accuracy of above 95%, while the RNN-based 

models for short-term LUC forecasting had 86% forecasting accuracy. This thesis 

contributes to advancing the methods for LUC analysis and improving the understanding 

of LUC process for sustainable land management.  

Keywords:  land use change; land use classification and forecasting; deep learning; 
convolution neural networks; recurrent neural networks; geographic 
information systems 



iv 

Acknowledgments 

I acknowledge the Natural Science and Engineering Research Council (NSERC) 

of Canada for support of this study under the Discovery Grant Program awarded to Dr. 

Suzana Dragicevic. And Department of Geography has kindly awarded me the Graduate 

Fellowship to encourage my research study.  

I am grateful for the countless guidance, advice, and feedback from my 

supportive committee. Dr. Suzana Dragicevic has given me timely motivation, support 

and professional guidance in the past two years, without whom I cannot finish this 

master thesis research. In addition, Dr. Songnian Li has provided me with critical opinion 

during my thesis research which helped me structure and improve my work.  

I also appreciate having met wonderful colleagues from the Department of 

Geography and the Spatial Analysis and Modeling Laboratory, who selflessly share their 

knowledge and provided me friendly support.  



v 

Table of Contents 

Approval ............................................................................................................................ ii 
Abstract ............................................................................................................................. iii 
Acknowledgments ............................................................................................................ iv 
Table of Contents .............................................................................................................. v 
List of Tables .................................................................................................................... vii 
List of Figures.................................................................................................................. viii 
List of Acronyms ................................................................................................................ x 

Chapter 1. Introduction ................................................................................................ 1 
1.1. Introduction ............................................................................................................. 1 
1.2. Research Problems ................................................................................................. 4 
1.3. Research Questions and Objectives ....................................................................... 5 
1.4. Study area and datasets ......................................................................................... 5 
1.5. Thesis overview ...................................................................................................... 7 
1.6. References .............................................................................................................. 8 

Chapter 2. Land use change detection using convolutional neural network 
methods ............................................................................................................... 14 

2.1. Abstract ................................................................................................................. 14 
2.2. Introduction ........................................................................................................... 14 
2.3. Overview of CNN methods .................................................................................... 17 

2.3.1. The structure of CNN .................................................................................... 17 
2.3.2. Training and testing of CNN .......................................................................... 20 

2.4. The land use classification method ....................................................................... 22 
2.4.1. Datasets for transfer learning ........................................................................ 22 
2.4.2. Transfer learning strategies .......................................................................... 23 

2.5. Methodology .......................................................................................................... 25 
2.5.1. Study area and primary data ......................................................................... 25 
2.5.2. Land use change analysis ............................................................................. 26 

2.6. Result and discussion ........................................................................................... 27 
2.7. Conclusions ........................................................................................................... 32 
2.8. References ............................................................................................................ 32 

Chapter 3. Short-term forecasting of land use change using Recurrent Neural 
Network models .................................................................................................. 38 

3.1. Abstract ................................................................................................................. 38 
3.2. Introduction ........................................................................................................... 38 

3.2.1. Land use change models .............................................................................. 40 
3.2.2. RNN and its variants ..................................................................................... 43 

3.3. Methodology .......................................................................................................... 47 
3.3.1. Study area ..................................................................................................... 47 
3.3.2. Data preparation ........................................................................................... 47 
3.3.3. Training and validation of RNNs ................................................................... 48 



vi 

3.3.4. LTSM implementation ................................................................................... 50 
3.3.5. Testing the forecasted results ....................................................................... 51 

3.4. Results .................................................................................................................. 52 
3.5. Discussion and conclusions .................................................................................. 54 
3.6. References ............................................................................................................ 59 

Chapter 4. Conclusion ............................................................................................... 68 
4.1. Overall conclusions ............................................................................................... 68 
4.2. Limitations and future work ................................................................................... 69 
4.3. Thesis contributions .............................................................................................. 71 
4.4. Reference .............................................................................................................. 72 
 



vii 

List of Tables 

Table 2-1  The obtained values for the model total accuracy of the eight transferred 
CNN-based models where training and testing datasets are kept the 
same for each model. .............................................................................. 28 

Table 2-2  Land use constitution of the study area from 2004, 2006, 2011, 2013, 
2015 and 2017. GA: Green area; In&Co: Industrial and Commercial 
areas; HR: High-density Residential areas; LR: Low-density Residential 
areas; PL: Parking lot; RN: Road network. .............................................. 30 

Table 3-1 Training and validation accuracy of different RNN models and scenarios
 ................................................................................................................. 54 

 



viii 

List of Figures 

Figure 1-1 The relationship of artificial intelligence, machine learning, and deep 
learning  (Wasicek A., 2018) ..................................................................... 3 

Figure 1-2 Study Area: The City of Surrey, Canada with the community of Cloverdale
 ................................................................................................................... 6 

Figure 1-3 Classified LU data for the years 1996, 2001, 2006 and 2011 ................... 7 
Figure 2-1  An example structure of CNN. ................................................................. 18 
Figure 2-2  CNN layer functions: (a) Convolutional layer; (b) Rectified linear unit 

layer; (c) Max pooling layer; (d) Fully connected layer. ........................... 19 
Figure 2-3  Example images used for training the models; the UC-Merced dataset 

(the first two rows), and the third row presents the manually extracted 
samples. .................................................................................................. 24 

Figure 2-4  Three different transfer learning scenarios: (a) Fine-tuning the whole 
network; (b) Fine-tuning higher layers of the network; (c) Convolutional 
base as feature extractor. ........................................................................ 24 

Figure 2-5  Study area: north-east section of Cloverdale, community of the City of 
Surrey, Canada (City of Surrey, 2017; COSMOS, n.d.) .......................... 25 

Figure 2-6  Flowchart of the process for land use change analysis based on the 
retrained CNN. ......................................................................................... 27 

Figure 2-7  Confusion matrix for the highest performing GoogLeNet -‘pool5-drop’- 
SVM. GA: Green area; In&Co: Industrial and Commercial areas; HR: 
High-density Residential areas; LR: Low-density Residential areas; PL: 
Parking lot; RN: Road network. ............................................................... 28 

Figure 2-8  (a) The orthophoto image of the study area with (b) The digital land use 
map based on classification results for the year 2017: (1) Green area 
(GA), green color; (2) Industrial and Commercial areas (In&Co), blue 
color; (3) High-density Residential areas (HR), red color; (4) Low-density 
Residential areas (LR), yellow color; (5) Parking lot (PL), black color; (6) 
Road network (RN), white color. (c) Detailed image of the zone with the 
field track filled with cars. ......................................................................... 29 

Figure 2-9  Land use classifications obtained for years 2004, 2006, 2011, 2013, 2015 
and 2017. GA: Green area; In&Co: Industrial and Commercial areas; HR: 
High-density Residential areas; LR: Low-density Residential areas; PL: 
Parking lot; RN: Road network. ............................................................... 30 

Figure 2-10  Comparison of the LU classifications for the year 2011: (a) resulting from 
the proposed CNN approach for the LU classification; (b) from Metro 
Vancouver Open Data Catalogue and (c) from DMTI Spatial Inc ............ 31 

Figure 3-1  A simple RNN structure allowing information to loop in the layer, it can be 
unfolded as a neural network indicated at the right side. 𝑿𝑿𝑿𝑿𝑿𝑿 is a temporal 
sequence input. 𝒉𝒉𝒉𝒉𝒉𝒉 is the hidden state. .................................................. 43 

Figure 3-2  Structure of the ConvLSTM (Shi et al., 2015) model with (a) transforming 
the 2D image into 3D tensor; and (b) its inner structure, and the structure 
of (c) the GRU (Jeblad, 2018) ; (d) BiLSTM (Cui, Ke, & Wang, 2018) 
models ..................................................................................................... 45 



ix 

Figure 3-3 The graphical representation of an LSTM layer ...................................... 46 
Figure 3-4 The City of Surrey located in the south of the Metro Vancouver Region. 47 
Figure 3-5 Flowchart of the proposed LSTM models for LUC forecast, where LU data 

were considered for years t-5=1996, t=2001, t+5=2006 and t+10=2011 for 
training and validation of the LSTM and then forecasted for t+15=2016. 50 

Figure 3-6 Forecasted LU for 2016 for the City of Surrey generated by LSTM 2 
model. ...................................................................................................... 55 

Figure 3-7 Changed LU raster cells in 2011 and 2016 as forecasted by LSTM with 
detailed subsections (a), (b), and (c) ....................................................... 57 

Figure 3-8 The Confusion Matrix based on the comparison of the forecasted LU and 
orthophotos for the year 2016. ................................................................ 58 

 

 



x 

List of Acronyms 

CNN Convolutional neural networks 
DL Deep learning  
GIS Geographic information system 
LC Land cover  
LU Land use  
LUC  Land use change  
LULCC Land use and land cover change 
RNN  Recurrent neural networks 
RS Remote sensing  
SDGs Sustainable Development Goals 
SVM Support vector machine 

 

 



1 

Chapter 1.  
 
Introduction 

1.1. Introduction 

Land cover (LC) is comprehended to be defined as the physical material covering 

the earth surface such as water bodies and forest. Land use (LU) refers to the function 

or use of land for agriculture, recreation, transportation, or residence (Mukherjee et al., 

2009). Both LU and LC are dynamic meaning they change over space and time. Land 

cover and land use changes (LULCC) arise from various human-environment 

interactions and have diverse impacts on the environment. LULCC is monitored through 

earth observation techniques (Loveland et al., 1999). Typically, LC types are classified 

based on properties measured with remote sensing (RS) techniques. LU are classified 

through field investigation or the interpretation of RS imageries. In recent time, 

modifications of the landscape for human use have led to significant land use change 

(LUC) (Foley et al., 2005). However, some of the LU practices have negative impacts on 

climate, biodiversity, and the ecosystem and have contributed to global warming, mass 

extinction, and environmental degradation (Fahrenkamp-Uppenbrink, 2013). In addition, 

the global population growth has created an unprecedented demand and pressure on 

the land and natural resources.  

LUC has attracted the attention of researchers from various disciplines due to its 

correlation with environmental issues. To meet the demand of a growing population, 

LUC is inevitable during rapid urbanization and land conversions. Therefore, to maintain 

optimal benefit to environmental, social, and economic sectors, sustainable land 

development strategies are the core consideration in policy-making and land 

management processes. Effective regulation of LU can potentially diminish conflict 

between human and environment. Correspondingly, LUC studies need global attention 

and effort to better facilitate urban planning, environmental management, and regional 

administration (Gustafsson et al., 2018).   

Studies of LUC have focused on the quantification and analysis of LUC from 

historical LU observations and the explanation and projection of land use evolution were 
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based on expert knowledge. In the literature, many LUC models have been proposed. 

Modeling methods are designed to simplify, transform and represent complex issues 

from the real world. (Epstein, 2008). LUC models can help land managers to gain an 

insight into the temporal and spatial dynamics of the landscape. The modification on the 

landscape by the human is one of the major causes of LUC. LUC is an indicator of the 

human footprint (Butt et al., 2015) and it demands to be monitored, analyzed and 

regulated, so that scientists and decision makers can conduct better land management.   

Canada is known for its vast territory, rich and well-protected ecosystems, and 

natural resources. The favorable immigration policy of Canada has attracted many 

immigrants in recent decades. According to statistic Canada, from 2001 to 2018, the 

Canadian population increased from 31.02 million to 37.06 million inhabitants, a growth 

rate of 19.5%, which has led to increased demand for built-up land and resources 

(Statistics Canada, 2019). In such circumstances, strategies for sustainable 

development are emphasized by policies. Sustainable development promotes the 

balance between meeting human development needs and maintaining the natural 

system so that the environment can provide resources and energy to human for longer 

time (Lélé, 1991). Proposed by the United Nations General Assembly, one of the 

objectives of the Sustainable Development Goals (SDGs) (Rosa, 2017) is to make cities 

and human settlements inclusive, safe, resilient and sustainable under the circumstance 

of rapid urbanization. Hence, promoting effective land management policies is one of the 

key aspects needed to reach the SDGs.     

Remote sensing (RS) and geographic information system (GIS) techniques are 

typically applied to geographic studies (Butt et al., 2015; Chen et al., 2018; Hegazy and 

Kaloop, 2015). In-situ measurements combined with ground surveys and satellite data 

are the most precise methodological options for LULC studies. Nowadays, GIS is the 

mainstream platform for analyzing, processing and sharing geospatial data to solve 

complex environmental problems (Weng, 2002). RS techniques provide massive earth 

information data with high resolution and easier access. RS data provide direct, real-

time, global earth information, and they are the primary sources for studying LULC (Fritz 

et al., 2017). Lately, GIS has started to incorporate artificial intelligence (AI) for the tasks 

of segmenting, classifying and predicting geographical data. 
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Artificial intelligence (AI) (Russell & Norvig, 1994) can be defined as the 

intelligence demonstrated by machines or computers that can resolve complex tasks 

instead of humans. Machine learning (ML) (Bishop, 2006) is encompassing the suite of 

methods commonly used in AI. The relatively new field, deep learning (DL) (LeCun, 

Bengio, & Hinton, 2015), has been created as subfield of ML due to the need to augment 

the capacity and the performance of the ML methods and AI in general. Their 

relationship can be presented as Figure 1-1. The popularity of DL models has increased 

due to the availability of larger data, more powerful GPUs, and the advancement of the 

fields of computer vision (CV) and natural language processing (NLP). DL models 

automatically and simultaneously complete feature extraction and classification, 

processes implemented separately with ML methods. LUC is a complicated 

phenomenon as it originates from complex human-environment interactions. Due to the 

limitation of expert knowledge and insufficient geospatial datasets, it is necessary to 

explore the DL models such as convolutional neural network (CNN) (Fukushima, 1980) 

and recurrent neural network (RNN) (Rumelhart et al., 1986) to classify and forecast 

LUC, which will help with better understanding and management of LUs. 

 

 

Figure 1-1 The relationship of artificial intelligence, machine learning, and deep 
learning  (Wasicek A., 2018) 
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1.2. Research Problems 

Many approaches have been used for modeling LUC processes in the literature, 

such as Markov chain (Kumar et al., 2014; Muller and Middleton, 1994), cellular 

automata (CA) (Batty and Xie, 1994; Charif et al., 2017; Clarke et al., 1997; Clarke and 

Gaydos, 1998; White and Engelen, 1997; Wu and Webster, 1998), and machine learning 

(ML) (Hernandez and Shi, 2018; Huang et al., 2009; Nemmour and Chibani, 2006; 

Otukei and Blaschke, 2010; Samardzic-Petrovic et al., 2016).  

 To help understand the potential consequences of current land development 

strategies and to plan for specific urban development needs, this thesis has been 

focused on study of the LUC using DL models and provided reliable results revealing 

LUC information. More specifically, the results of this thesis can provide guidance to land 

managers to avoid unsustainable LU development and choose the optimal location for 

using certain land types. 

In the literature DL based models, have been proposed for LULC classification 

(Cevikalp et al., 2017; Cheng et al., 2016; Han et al., 2017; Liu et al., 2018; Othman et 

al., 2016; Qayyum et al., 2017; Romero et al., 2016; Weng et al., 2017; Zhang et al., 

2016). Some studies have successfully used trained CNN models for the classification of 

urban LU with an accuracy of 88% through jointing multilayer perceptron (MLP) and 

CNN models (Zhang et al., 2019). Furthermore, Zhang et al. (2018) managed the 

challenges of partitioning LU objects from study sites through proposed object-based 

CNN (OCNN). Huang, Zhao, & Song (2018) proposed a skeleton-based decomposition 

method to decide the mapping unit and then performed CNN on each unit. Some studies 

have used RNNs to classify LC and modeling vegetation (Rußwurm & Körner, 2017, 

2018). Recently, RNNs models have been used to forecast weather (Qing & Niu, 2018) 

and traffic flow (Han et al., 2019), however they were not yet fully exploited for LUC 

forecasting.  

Based on the potential of application of the DL methods in various fields, further 

exploration of DL models, particularly CNN and RNN, to classify, analyze and forecast 

the LUC should be investigated. DL models can help improve the efficiency of 

classification methods for LU studies and based on availability of reliable LU data. 

Accordingly, two major research questions are raised in this thesis: 
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1. How do variants of CNN models perform when used on the LU 
classification tasks and what would be the optimal composition of the 
training datasets? 

2. How effective are the RNN models when implemented to forecast 
LUC? 

1.3. Research Questions and Objectives 

The following research objectives are set to answer the outlined research 

questions: 

1. To evaluate several CNN-based models for LUC classification using 
geospatial datasets and using different training datasets.  

2. To evaluate several RNN-based models for forecasting LUC in short 
term intervals using geospatial datasets. 

1.4. Study area and datasets 

The proposed methodology from this thesis is implemented using the datasets 

for several time intervals and case study of land-use change for City of Surrey, British 

Columbia, Canada know by its fast dynamics of urban growth. The City of Surrey is 

located in the southern region of (Figure 1-2) with he population that has increased by 

10.6% from 2011 to 2016 (Statistics Canada, 2017). The population is expected to 

continue to grow and even surpass the one in the City of Vancouver. Therefore, the 

number of residential areas has been developed to accommodate the increased influx of 

population and to create vibrant neighborhoods where people can live, work, and grow 

their families (City of Surrey, 2019b). Moreover, The Community of Cloverdale, located 

in the eastern region of the City of Surrey, has been also chosen to perform the analysis. 

Starting from the late 1800s, Cloverdale has attracted many young families and 

successfully transformed itself from a rural agricultural community to prosperous small 

community. 
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Figure 1-2 Study Area: The City of Surrey, Canada with the community of 

Cloverdale 

In chapter 2, datasets for the community of Cloverdale were chosen to implement 

the prosed methodology. In this chapter, labeled RS data was used to train CNN-based 

models and the trained models were applied on the RS data of study area to extract LU 

information. The training data was obtained from the well-known open source UC-

Merced dataset (Yang and Newsam, 2010). It includes high-resolution classified LU 

images composed of 21 LU types: agricultural, airplane, baseball diamond, beach, 

buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, 

medium residential, mobile home park, overpass, parking lot, river, runway, sparse 

residential, storage tanks, tennis court. The images in UC-Merced dataset were 

manually extracted from the USGS National Map Urban Area Imagery collection for 

various urban areas around the country. In this study, the orthophotos of the community 

of Cloverdale in the past few years were classified by CNNs to obtain LU information of 

Cloverdale, to provide timely information about local land development. The orthophotos 

used for classification were obtained from the City of Surrey Open Data Catalog (City of 

Surrey, 2017) with the resolution of 10cm and covering the size is 2 km × 3.6 km of the 

study area.  
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In chapter 3, datasets for the City of Surrey was chosen as larger study area to 

implement the methodology. To train the RNN models, LU data for the years 1996, 

2001, 2006 and 2011 (Figure 1-3) were obtained from Metro Vancouver Open Data 

Catalog (Metro Vancouver, 2011). The road network shapefiles of the year 1996 and 

2001 were obtained from CanMap database (Qing & Niu, 2018) and were used to 

supplement the missing road network information in LU data of the year 1996 and 2001. 

The LU data and road network shapefiles were transformed into raster files and the 

resolution of each raster cell was 10m. Then LUC for the year 2016 was predicted by the 

trained RNNs.   

 
Figure 1-3 Classified LU data for the years 1996, 2001, 2006 and 2011 

1.5. Thesis overview 

After the introductory chapter, the thesis contains three more chapters. Chapter 2 

presents the testing of eight CNN-based models using three pre-trained CNN models, 

AlexNet, GoogLeNet, and VGGNet and applies the best performing CNN-based model 

to LUC classification. The best-performed method was GoogLeNet model combined with 

support vector machine (SVM) as feature classifier (CNN-SVM). Two sources of 

datasets, UC-Merced dataset and manually sampled LU images from the City of Surrey 

were used to train the CNN–SVM model to solve a practical issue with the limited data 

availability. The overall accuracy of re-trained CNN based models was over 95-98%. 

The transferred CNN-SVM model was then applied to orthophotos of the northeastern 

Cloverdale as part of the City of Surrey, Canada from 2004 to 2017 to perform LU 

classification and LU change analysis. The orthophoto images were divided into patches 
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with size of 70m × 70m, the size was chosen to match the size of training images in  

UC-Merced dataset. Then the patches were classified by CNN-SVM to obtain the pattern 

of LUC. 

Chapter 3 examines variants of the RNN models to forecast LUC in short-term 

interval. Historical land use data for the City of Surrey, Canada was used to implement 

the several variants of the RNN models. The land use data for years 1996, 2001, 2006 

and 2011 were used for training the DL models to enable the short-term forecast for the 

year 2016.  Four variants of RNN, LSTM, BiLSTM, GRU, ConvLSTM were applied and 

evaluated. Two groups of datasets were used for training, where one group only 

contained data from areas that have changed, and the other group contained all the data 

from the study area. The variants of RNN models were trained by all raster cells in the 

study area had 87% model accuracy, higher than the models trained by only changed 

raster cells which is 62%. Then LSTM trained by all raster cells was used for forecasting 

the LU change of the City of Surrey for the year 2016. Then the forecasted land use has 

been compared with 2016 orthophoto image of the City of Surrey has been performed by 

taking 604 random sample points. 

Chapter 4 presents the conclusions of this thesis with the summary of the. It 

discusses the limitations of the used DL-based models, and it also provides reflections 

on the avenues for future work, and overall thesis contributions. 
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Chapter 2.  
 
Land use change detection using convolutional 
neural network methods1 

2.1. Abstract 

Convolutional neural networks (CNN) have been used increasingly in several 

land use classification tasks, but there is a need to further investigate its potential since 

there is limited discussions of the selection of training data and the application of CNNs 

on real study areas. This study aims to evaluate the performance of CNN models for 

land classification and to identify land use change (LUC). Eight transferred CNN-based 

models were trained and their testing accuracy was evaluated on remote sensing data 

for LU scene classification using three pre-trained CNN models AlexNet, GoogLeNet, 

and VGGNet. The testing accuracy of eight CNN-based models ranges from 95% to 

98%. A best-performed transferred CNN-SVM model was then applied to orthophotos of 

the northeastern Cloverdale as part of the City of Surrey, Canada from 2004 to 2017 to 

perform LU classification and LUC analysis. Two sources of datasets were used to train 

the CNN-SVM model to solve a practical issue with limited data. The obtained results 

indicate that residential areas were expanding by creating a higher density, while green 

areas and low-density residential areas were decreasing over the years, which 

accurately indicates the trend of LUC in the community of Cloverdale study area. 

2.2. Introduction  

Land use (LU) represents the human use of the natural environment for 

economic, urban, recreational, conservational, and governmental purposes. Land cover 

(LC) represents how a region of the earth surface is covered by physical features such 

as vegetation, water, forest or other (Zin and Lin, 2018). In modern history, the 

worldwide growth of population has brought significant challenges to society and the 

environment, such as the increasing demand for housing, food, natural resources, and 

                                                 
1 A version of this chapter has been published as Cao C., Dragicevic, S., and Li S., (2019). Land 
use change detection with convolutional neural networks methods. Environments. 6(2), 25 
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basic services (Progress towards the Sustainable Development Goals, 2017). These 

have resulted in land use and land cover (LULC) changes that have caused adverse 

effects on the natural environments (Foley et al., 2005). The need for efficient land use 

planning and management is increasing, not only to eliminate the negative effects of 

historical LU decisions but also to make future communities healthier and more 

sustainable (Etingoff, 2017). Therefore, there is a need for more advanced 

computational methods to analyse geospatial data from the Earth surface to quantify and 

better understand the complex dynamics of LULC change processes. 

Remote sensing (RS) datasets provide significant information documenting the 

land use and land cover processes (Ienco et al., 2017). RS datasets provide coverages 

from regional to global scales (Joseph, 2005). Interpretation of RS datasets is a major 

way to understand the status and changes in both the natural and built environments. In 

recent decades, RS sensors and techniques have become increasingly sophisticated. 

They can provide a large volume of datasets with high quality and fine spatial resolution.  

Due to easier access to data with higher volume and better quality as well as the 

development of advanced graphics processing units (GPU), deep learning (DL) has 

been widely promoted in many recent scientific literature. DL consists of a collection of 

algorithms as the subset of machine learning (ML), specializing in learning hierarchy of 

concepts from very big data. Application of DL models have achieved high accuracy 

especially in speech recognition, computer vision, video analysis, and natural language 

processing (Arel et al., 2010; W. Liu et al., 2017). Some of the well-known DL models 

include CNN (Krizhevsky et al., 2012a; LeCun et al., 1989), recurrent neural networks 

(RNN) (Hochreiter and Schmidhuber, 1997a), deep belief networks (DBN) (Hinton et al., 

2006), and stacked auto-encoders (SAE) (Vincent et al., 2010). This study will use CNN 

models to classify LU. 

CNN models have many well-known applications such as face recognition 

(Lawrence et al., 1997), modeling sentences (Kalchbrenner et al., 2014) and image 

classification (Krizhevsky et al., 2012a). CNN can identify the health state of rice crops 

(Lu et al., 2017), or evaluate the degree of building damage (Rashedi Nia, 2017). It can 

also identify land use from online geo-tagged photos (Xu et al., 2017). As for large-scale 

images, Isikdogan et al. (2017) used CNN to identify water features from multispectral 

Landsat imagery and to map water surfaces. These studies identify images with a minor 
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abnormality and deal with few categories. Identifying LU requires the recognition of 

several predefined categories thereby increasing the complexity of the classification. 

Some studies that have configured and evaluated CNN models to classify LUC by 

training with LU RS dataset (Luus et al., 2015; Scott et al., 2017). Luus et al. (2015) 

proposed a multiscale LU RS images and designed CNN structures that accept 

multiscale training images, and their multi-view CNN model achieved total accuracy of 

93.48%. Scott et al. ( 2017) achieved 98.5% total accuracy with retrained CNN structure, 

ResNet. All these studies used the well-known UC-Merced (Yang and Newsam, 2010) 

LU image dataset to train the CNN model to identify LU. While most of these studies 

elaborated the structure of classification models to reach the highest accuracy, their 

application and performance on real study area have started to be addressed in the 

scientific literature (Huang, Zhao, & Song, 2018; Zhang et al., 2019). 

The typical strategy for identifying land use is aerial scene classification (Cheng 

et al., 2015; Hu et al., 2015; Liu et al., 2018), which automatically labels an aerial image 

with predefined semantic categories (Nogueira et al., 2017a). A land use “scene” is a 

unit that contains several features and demonstrates a unique scenario such as harbor, 

residence, highway, agricultural land, and park. Several entities exist in the same scene 

with a complicated layout, making it difficult to identify the scene. Image representation 

is the key technique in the scene classification task (Hu et al., 2015), i.e., the extraction 

of core features that represent the original images. Features are divided into low-level 

and high-level according to the complexity. The low-level features contain minor details 

of the images such as line, dot, curve edges, gradients, and corners. High-level features 

are built upon low-level features forming larger shapes or objects. An often used method 

for scene classification, for example, is bag-of-visual-words (BoVW) (Yang and Newsam, 

2010), which utilizes the frequency of low-level features in a scene, but cannot describe 

the relative location of entities in a scene. Deep learning mode can study low and high-

level features and the relative location of features in an image (Hughes et al., 2018; 

Krizhevsky et al., 2012; Liu et al., 2016; Simonyan and Zisserman, 2014; Yao et al., 

2017; Zhu et al., 2017). Land use maps are created by identifying the characteristic 

scenes from RS imagery (Hu et al., 2015; Nogueira et al., 2017; Scott et al., 2017;  

Xia et al., 2017). 

CNN has become a prevalent model in land use scene classification (Nogueira  

et al., 2017b; Oquab et al., 2014; Romero et al., 2016). The importance of a dense and 
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diverse dataset was stressed as they are assumed to contribute to the quality of every 

task that is performed (Zhou et al., 2018) since the CNNs can learn better from a set of 

good-quality images. The CNN-based scene classification model was examined on the 

Places standard dataset (King et al., 2017), which consists of 10 million samples. This 

study stressed that the key challenge was to find sufficient data to train DL models. In 

many land use scene classification tasks, CNN, combined with ML classifiers (Razavian 

et al., 2014), was frequently used as a feature extractor. The CNN-ML based models 

require less time and training datasets but retain desired classification accuracy. For 

example, combining CNN based-layers with constrained extreme learning machine 

(CELM), the CNN-CELM classifier reduced the training time with good generalization 

capability (Weng et al., 2017). Most studies focus on gaining higher classification 

accuracy by improving the construction of CNN-based models. For example, Yao et al. 

used CNN to classify land use from multi-scale samples using the BoVW method to map 

out land use patterns at the land parcel level.  

Besides these efforts, there is a need to examine the performance of CNN on 

land use classification. Mainly because there are few studies that have used CNN for 

classifying and identifying the LUC and that achieved good performance (Huang et al., 

2018; Yao et al., 2017), as well as considering the customization of training dataset. 

Consequently, the main objective of this study is to evaluate CNN-based classification 

models and to detect past LUC based on the classified historical LU data. The selected 

study area is a part of the Cloverdale study area within the City of Surrey, Canada as it 

has experienced rapid urbanization in the past decades. 

2.3. Overview of CNN methods 

2.3.1. The structure of CNN 

The CNN models contain a sequence of processing layers where each layer 

have a group of algorithms (also called filters) that can learn the representation of data 

from low to high levels (LeCun et al., 2015). Such features provide information which can 

be merged in later stages to detect higher-level features allowing the CNNs to extract 

features automatically. Many modern approaches in the computer vision field use CNN 

to extract local features which rely only on small sub-regions of the image (Bishop, 

2016). A basic CNN may include four main types of layers: convolutional layer (Conv), 
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rectified linear unit (ReLU) layer, pooling layer (Pool), and fully-connected layer (FC). An 

example structure of CNN is illustrated in Figure 2-1. 

 
Figure 2-1  An example structure of CNN.  

An image is organized as a matrix of pixel values. Given a random input image, 

the CNN recognizes the class that belongs to and the values of probability that the input 

belongs to each class. There are four basic types of layers making up a basic CNN as 

presented in Figure 2-2 and their roles are: 

a. Convolutional layer performs the linear operation by doing element-
wise multiplications and summations on every sub-input, using a 
group of weight matrixes called feature filters (Figure 2-2a). Feature 
filters learn their weights from training data, then each filter can detect 
the existence of a specific feature. The outputs are called feature 
maps. A feature map records not only the operation values but also 
the relative spatial location of these values. On the feature map, a 
higher output value indicates the potential existence of the 
corresponding feature at its relative location.  

b. Rectified linear units (ReLU) layer performs a nonlinear function on 
the input (Figure 2-2b) to rescale the input values and output values 
that range from -1 to 1 (tanh) or from 0 to 1 (sigmoid). Introducing 
nonlinearity to the system can improve computational efficiency 
without losing much accuracy. When performing a threshold 
operation: f(x) = max (0, x), where f is a nonlinear function applied to 
all values x in the matrixes, the negative values of input matrixes are 
rectified as 0, and keeping the size of input volume unchanged. 

c. Pooling layer is a down-sampling layer (Figure 2-2c), aiming to 
decrease the size of the feature maps and to reduce the 
computational cost. A max pooling layer keeps only the maximal 
number of every sub-array (2x2) as the element of output array. 
Output omits unimportant features while keeps important features.   

d. The fully connected layer multiplies the input by a weight matrix and 
then adds a bias vector to the output, an N-dimensional vector (Figure 
2-2d). The output gives the probability of the input image belonging to 
each class, where N is the number of the category in a classification 
task.   
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Figure 2-2  CNN layer functions: (a) Convolutional layer; (b) Rectified linear unit 
layer; (c) Max pooling layer; (d) Fully connected layer. 
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2.3.2. Training and testing of CNN   

AlexNet, GoogLeNet, and VGGNet are typical CNN models that have been used 

in this study as the pre-trained models that have been trained by using millions of 

images. Moreover, the algorithms of CNN model can rely on millions of parameters. For 

instance, AlexNet (Krizhevsky et al., 2012c) model consists of 25 layers and has 62.3 

million parameters. GoogLeNet was developed by Szegedy et al. (2014) and it has 

greatly reduced the number of parameters used in the network to 4 million, compared 

with 60 million typically used in AlexNet. VGGNet (Simonyan and Zisserman, 2014) has 

more layers than AlexNet, it has 140 million parameters so it uses more computer 

memory and time to be fully trained. Initially, parameters are randomly generated and 

they are learnable through the training and testing process. The parameters of AlexNet, 

GoogLeNet, and VGGNet are adjusted once through learning from millions of images. 

Training of CNN can be performed by using supervised learning algorithms. Well-

trained CNN models must learn from sufficiently labeled datasets so that the parameters 

could be greatly adjusted. Each training process of CNN consists of forwarding pass, 

loss function, backpropagation, and parameter update, and can be presented in the 

following six steps: 

1. Model initialization: all the parameters are randomly generated;  

2. Forward propagation: the input passes through the network layers and 
calculates the estimated output from the model;  

3. Loss function calculation: loss function is used to evaluate the 
prediction ability of the method. The most common loss function uses 
the mean square error (E) between the model’s expected output 
𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and estimated output 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and can be formulated as: 

 
𝐸𝐸 =  

1
𝑛𝑛
�(𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2
𝑛𝑛

𝑖𝑖=1

 
(2-1) 

The value of E decreases during the training process until reaching a constant 

that is used as a threshold for the next step. The objective of the training process is to 

minimize the loss function by feeding the network many inputs and the desired output; 

4. Backpropagation: it is a process that backward propagates the 
derivative of errors;  
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5. Parameters update: In general, the weights (parameters) update by 
the delta rules (Russell, 2018) defined as: 

 New weight = Old weight - Derivative Rate * learning rate (2-2) 

      If the deviation is positive the parameter should be decreased; if the 
deviation is negative the parameter should be increased; if the 
deviation equals to 0, then the parameter is optimal. The learning rate 
is a constant and should be set based on experience; if too small, it 
will take a long time to get optimal weights; if too large, the weights 
will deviate from optimal;     

6. Iterating the process until convergence. Based on the previous step, 
the weights get updated very slowly, thus requesting many iterations 
to get the desired weights and minimize the loss function. In reality, 
the CNN model was trained by a batch of images simultaneously at 
one training epoch in order to increase efficiency. 

The labeled dataset from the same probability distribution as the training dataset 

(Ripley, 1996) is split in the ratio of 70:30, and 70% were training set and 30% were 

testing set, the idea of choosing this ratio is that more training data is better for model to 

fine tune the parameters whilst test data were used to estimate the error. The 70:30 is a 

one of the commonly used ratio to split the data (Gholami, Chau, Fadaie, Torkaman, & 

Ghaffari, 2015), since this research study focuses more on the selection of training 

datasets and the application of CNN on real study area. The other ratios such as 50:50, 

60:40 or 80:20 were not discussed, but the influence of different split ratio is factor that 

can impact the output results and need additional consideration in future work. 

The model is trained by the training set, after which the testing set is used for 

model evaluation. In a classification task, the following indicators (Equations 2-3~2-5) 

are used to assess the performance of the classifier model： 

 Total accuracy = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 (2-3) 

 Precision= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 (2-4) 

 Recall= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 (2-5) 
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where true positive (TN) = correctly identified, false positive (FP) = incorrectly identified, 

true negative (TN) = correctly rejected, false negative (FN) = incorrectly rejected pixels. 

2.4. The land use classification method  

2.4.1. Datasets for transfer learning 

The UC Merced Land Use Dataset contains 21-class high-resolution land use 

images of the size of 256×256 pixels with 30cm resolution. Examples of images are 

shown in Figure 2-4. Each category in the UC Merced dataset has 100 images. These 

images were manually extracted from the USGS National Map Urban Area Imagery 

collection for various urban areas around the USA (Yang and Newsam, 2010). But 

different countries and cities have different land use patterns entailed by different urban 

morphology. For example, most cities in China have very dense high-rise buildings, 

similar to downtown areas such as New York City, USA. By contrast, most residential 

areas in the Canada and USA are characterised by urban sprawl with low urban density 

where majority of housing consist of low-rise buildings. Therefore, if only the LU images 

from USA are used to train to CNN models, the CNN models can recognize the LU 

features from the USA but China. The LU features from the USA and Canadian cities 

also have some differences despite both belonging to North America. Currently, there is 

a lack of a comprehensive dataset that includes LU features sampled from different 

cities and countries. In the study area, i.e. Community of Cloverdale, the agriculture, 

building and road network LU types are not very similar with the LU images from the UC 

Merced dataset based on observation, so manually sampled images were used for these 

categories instead. 

In order to address these varieties of possible land use features and their 

classifications, this research used a mixture of the UC Merced dataset and the manually 

sampled images from orthophotos of the City of Surrey in Canada. The size of the 

manually sampled images is 700×700 pixels and the resolution is 10cm. The size of 

images from the UC Merced dataset is 256×256 and the resolution is 30.5cm. Therefore, 

the images from both sources cover almost the identical ground area. The manually 

sampled images were based on manual classification of images from LU types of 

agriculture, building and road networks, and each LU types contained 400 images.  
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The six main land-use classes used for classification and analysis were: (1) 

Green areas (GA); (2) Industrial and commercial areas (In&Co); (3) High-density 

residential (HR); (4) Low-density residential (LR); (5) Parking lot (PL); and (6) Road 

network (RN). For the purpose of model training and testing with 400 images for each 

LU class, the images were split randomly by the ratio of 70% (280 images) and 30% 

(120 images) with a total of 2520 and 1080 images for training and testing for each land 

use, respectively.  

2.4.2. Transfer learning strategies 

Transfer learning is a procedure that reuses the exiting ML or DL models that 

have been developed for other tasks and then re-applied to a new task without re-

development. Pre-trained CNN models mentioned in section 2.3.2 were already 

developed. Therefore, using pre-trained CNN models in the LU classification task is 

transfer learning method. These pre-trained networks have been trained by millions of 

images. In reality, it is difficult to have datasets with sufficient size to train a complete 

network. In order to complete the training of an entire network, the training process can 

even take 2-3 weeks on multiple GPUs. Due to time restrictions or computational 

constraints in many pieces of research, transfer learning becomes the first choice to start 

a new task by adopting pre-trained CNN models.  

There are three main options to apply transfer learning (Goodfellow, Bengio, & 

Courville, 2016; Yosinski, Clune, Bengio, & Lipson, 2014). As shown in Figure 2-4, each 

option has different computational effort and accuracy. These options are:  

a. Fine-tuning the whole network (Figure 2-4a): Loading the pre-trained 
network, replacing the fully-connected layer of the network, retraining 
the network using new dataset, and fine-tuning the weights of all 
layers through backpropagation. 

b. Fine-tuning the higher layers of the network (Figure 2-4b): Loading the 
pre-trained network, and freezing the parameters in the earlier layers 
of the network, so when retraining with new dataset, only the weights 
of last several layers will be updated.  
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c. Convolutional base as a feature extractor and link a support vector 
machine (SVM) to form a CNN-SVM based model (Figure 2-4c): 
Loading the pre-trained network and feeding the data through the 
convolutional base; the output as the feature representations are then 
classified by SVM. This solution also requires less computational 
effort.   

 
Figure 2-3  Example images used for training the models; the UC-Merced 

dataset (the first two rows), and the third row presents the manually 
extracted samples. 

 

Figure 2-4  Three different transfer learning scenarios: (a) Fine-tuning the whole 
network; (b) Fine-tuning higher layers of the network; (c) 
Convolutional base as feature extractor. 
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2.5. Methodology  

2.5.1. Study area and primary data 

The study area is a section of the community of Cloverdale, at the north-eastern 

part of the City of Surrey, Canada (Figure 2-5). The community of Cloverdale has been 

transformed over the years from a rural agricultural community to a prosperous small city 

attractive for young families, and it is known by its fast developing residential areas (City 

of Surrey, 2018a), therefore, it was chosen as the suitable area to detect LU change 

through DL models. The City of Surrey database provide orthophotos from 2004 to 2017, 

from which the LU classification was implemented. Since each orthophoto was large and 

took average 4 hours to classify, only the selected images of good quality were 

processed for simplicity reasons. Particularly, the orthophotos for years 2004, 2006, 

2011, 2013, 2015 and 2017 were considered in order to document the LU change for the 

past 12 years. The digital orthophotos cover a section of the community of Cloverdale 

(City of Surrey, 2017) with size 2.0km × 3.6km and with 10cm spatial resolution. The 

2011 land use data from the Metro Vancouver Open Data Catalogue (Metro Vancouver, 

2011) and from DMTI Spatial Inc were also used as references.  

 
Figure 2-5  Study area: north-east section of Cloverdale, community of the City 

of Surrey, Canada (City of Surrey, 2017; COSMOS, n.d.) 
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2.5.2. Land use change analysis      

Figure 2-6 shows the process used to perform the land use classification to 

identify the changes.  

1. Using the enriched UC-Merced dataset to fine-tune ‘GoogLeNet-
‘pool5-drop’-SVM’ models.  

2. The image of the study area is covering 20 000×36 000 pixels at a 
spatial resolution of 10cm. The window with a pixel size of 700×700 
shifts over and crops the image in a specific order (from top to bottom 
and from left to right), with a stride of 100 pixels, therefore, there are 
{(20000-700)/100+1}×{(36000-700)/100+1} sub-patches, i.e., 
194×354. The moving window covers all the image after 194×354 
iterations with the same number of sequentially generated patches. 
These patches are sent to the classifier and land use labels were 
returned. The numbers from 1 to 6 represent the six land-use labels. 
To extract the road network and green area land use classes, the 
second process was repeated, while the size of moving window was 
set to 300×300 pixel, the matrix was only updated when the return 
label is 1 or 6. This process is done due to green area and road 
network can exit in a small ground area independently. They can also 
become background of another feature if the moving window size is 
larger. For example, in a 700×700 pixel image, a small house can 
exist as agriculture land simultaneously, but the model will still think 
the image is sparse residential. Therefore, the smaller window size, 
i.e. 300×300 pixel, was used again to separate out individual features 
from potentially misclassified 700×700 pixel images.  

3. A 194×354 void matrix was created, the cells in the matrix with index i 
correspond to the ith image patches. The ith cell values were updated 
as the label number of the ith patch. Each cell represents a land use 
category of a 10m spatial resolution for ground truth.    

4. The same classification model was applied to orthophotos for different 
years 2004, 2006, 2011, 2013, 2015, and 2017. Six matrixes 
represent the digital LU maps from different year, where each cell of 
the matrix store the index of classified LU type, so that each LU types 
can be quantified and analyzed. 



27 

 

Figure 2-6  Flowchart of the process for land use change analysis based on the 
retrained CNN. 

2.6. Result and discussion  

The obtained values of total accuracy are given in Table 2-1 based on the eight 

transferred CNN-based models. The total accuracy was calculated based on equation 

(2-3). Models (a) and (b) were respectively structured by fine-tuning the whole AlexNet 

and GoogLeNet. Models (c) and (d) used ‘fc7’ or ‘fc6’ layers from AlexNet as feature 

extractors combined with SVM. Models (e) and (f) were respectively based on the ‘loss 

classifier’ or ‘pool5-drop’ from GoogLeNet as feature extractors combined with SVM. 

Models (g) and (h) used respectively ‘fc7’ or ‘fc6’ from VGGNet as feature extractors and 

were combined with SVM. Models (c) to model (h) were set to test the effect of using 

different layers from CNN as feature extractors, the results show the difference in testing 

accuracy which is not significant. Models (a) and (b) had slightly lower accuracy after 

training, compared with other models, which indicated that models that using CNN 

combined with SVM can be more efficient than fine-tuning the CNNs.  

Table 2-1 shows that the obtained values for model total accuracy from each 

transferred model ranges from 95.1% to 98.1%. The transferred CNN models perform 

well on the land use classification, with more than 95.0% accuracy. The accuracy 

difference is not large, however the GoogLeNet -‘pool5-drop’- SVM classifier was 

chosen for further classification in the next step given its best performance on our 

training dataset. As an example, Figure 2-7 depicts the confusion matrix for the highest 

performing GoogLeNet -‘pool5-drop’- SVM. All the transferred models were trained on a 

single GPU 'Quadro P2000'. The average computing time of models (a) and (b) were 45 

min with single GPU, and models (c) to (h) took less than 5 minutes to generate 

classifier, which proved the time efficiency of using the transferred models, especially 

the CNN-SVM models.   
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Table 2-1  The obtained values for the model total accuracy of the eight 
transferred CNN-based models where training and testing datasets 
are kept the same for each model.  

New models Total accuracy 
a. AlexNet, full-trained  95.80% 
b. GoogLeNet, full-trained  95.06% 
c. AlexNet-‘fc7’-SVM 95.68% 
d. AlexNet-‘fc6’-SVM 97.11% 
e. GoogLeNet-‘loss classifier’-SVM 97.47% 
f. GoogLeNet-‘pool5-drop’-SVM 98.14% 
g. VGGNet-‘fc6’-SVM 95.93% 
h. VGGNet-‘fc7’-SVM 96.99% 

 
Figure 2-7  Confusion matrix for the highest performing GoogLeNet -‘pool5-

drop’- SVM. GA: Green area; In&Co: Industrial and Commercial 
areas; HR: High-density Residential areas; LR: Low-density 
Residential areas; PL: Parking lot; RN: Road network. 

Figure 2-8 depicts the comparison of the obtained land use classification map 

with the digital orthophoto of the study area in 2017. The boundary between different 

land use classes is clearly defined in the resulting land use map. Except for the north-

western part of the study area, it can be seen that most of the remaining areas are 

classified as denser residential land-use. The middle of the study area was classified as 

industrial or commercial buildings land-use. The outline of major roads is distinct. Figure 
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2-8c presents the orthophoto image and the classified image of the track field at the 

north of the study area, indicating that the track field was fully occupied by cars. At the 

same location on the classified image, there is a black elliptical area at the south of the 

study area which was labeled as a parking lot. Even though this elliptical area was 

misclassified, the model still demonstrated the sensitivity to capture the features of cars 

and the shape of the track field.  

 
Figure 2-8  (a) The orthophoto image of the study area with (b) The digital land 

use map based on classification results for the year 2017: (1) Green 
area (GA), green color; (2) Industrial and Commercial areas (In&Co), 
blue color; (3) High-density Residential areas (HR), red color; (4) 
Low-density Residential areas (LR), yellow color; (5) Parking lot 
(PL), black color; (6) Road network (RN), white color. (c) Detailed 
image of the zone with the field track filled with cars. 

Based on the transferred “GoogLeNet-‘pool5-drop’-SVM” model with higher 

accuracy trained by the enriched UC-Merced dataset, the land use classification was 

performed for years 2004, 2006, 2011, 2013, 2015 and 2017 as shown in Figure 2-9. 

The composition result of land use classes is given in Table 2-2, which shows that from 

2004 to 2017 the green area decreased during urban development. Dense residential 

areas were increasing over the years and low-density residential areas were decreasing, 

as can be expected from the growing population (City of Surrey, 2018) in this area. From 

2006 to 2011, it can be seen that a new residential community appear at the north of the 

study area. The percentage of road network was decreasing, because the density of 

building and residential areas increased, which have occupied the road area. In 2017, 
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the old track field at the north of the study area was used for parking. The parking lots 

were usually located at nearby shopping malls and industrial buildings. These features 

can imply the location and number of Industrial and Commercial (In&Co) land use class, 

which also increased, while the change was not significant. The overall results indicate 

that the community of Cloverdale tends to develop itself as a predominantly residential 

area and not as an industrial or agricultural area.  

 
Figure 2-9  Land use classifications obtained for years 2004, 2006, 2011, 2013, 

2015 and 2017. GA: Green area; In&Co: Industrial and Commercial 
areas; HR: High-density Residential areas; LR: Low-density 
Residential areas; PL: Parking lot; RN: Road network. 

Table 2-2  Land use constitution of the study area from 2004, 2006, 2011, 2013, 
2015 and 2017. GA: Green area; In&Co: Industrial and Commercial 
areas; HR: High-density Residential areas; LR: Low-density 
Residential areas; PL: Parking lot; RN: Road network. 

 GA In&Co HR LR PL RN 
2004 44.13% 5.45% 26.61% 5.52% 0.37% 15.25% 
2006 40.77% 5.69% 30.39% 7.51% 0.37% 12.35% 
2011 36.79% 8.44% 35.46% 6.37% 0.45% 9.19% 
2013 39.30% 5.85% 34.77% 6.43% 0.44% 10.00% 
2015 38.91% 7.55% 35.93% 4.91% 0.52% 8.87% 
2017 37.61% 6.60% 40.89% 3.83% 1.01% 6.62% 
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Figure 2-10 presents the comparison of the obtained land use classification with 

the reference land use data for year 2011 (DMTI Spatial Inc., 2011; Metro Vancouver, 

2011). 2011 land use map is the newest map the municipality has provided to the public. 

Typically, public LU data for multiple years are difficult to obtain. They also contain 

different classifications standards that make their use challenging in computationally 

intensive data processing necessary for studies of LUC process evolved over time. The 

2011 land use data (Figure 2-10b), from the Metro Vancouver Open Data Catalogue, 

contains more land use types such as townhouse, high-rise building, and institutional 

buildings, while land use data for more recent years are not yet available. The land use 

data from DMTI Spatial Inc. for the same year (Figure 2-10c) has lower thematic 

resolution and contains only the residential, open area, parks, and government 

institutional land use classes. Due to the lack of high-quality land use data and the 

orthophoto images, the proposed classification approach provides an economical 

solution for the LUC analysis. 

 

Figure 2-10  Comparison of the LU classifications for the year 2011: (a) resulting 
from the proposed CNN approach for the LU classification; (b) from 
Metro Vancouver Open Data Catalogue and (c) from DMTI Spatial Inc 
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2.7. Conclusions  

This research has focused on the (1) evaluation of eight transferred CNN-based 

models on land use classification tasks, and (2) application of the best performing 

transferred CNN-based model as a classifier to classify and map the land use from 

orthophotos of the study area. The results showed that successful land use classification 

performance from all transferred models with at least 95.0% accuracy was obtained, 

compared with other studies such as 98.67% achieved by Othman et al. (2016) using 

CNN combined with neural networks (NN). The accuracy from the CNN models in this 

study is comparably high. The training dataset combined the off-the-shelf UC-Merced 

dataset with the manually classified images from the study area in order to enrich the 

data and teach the model the local land use features. Using the digital maps, the land 

use change of the study area over the years was interpreted.  

The study has indicated the effectiveness of CNN-SVM models for land-use 

classification, especially with the “GoogLeNet-‘pool5-drop’-SVM” model. The training 

data that was obtained from a real study area, including the manual image interpretation, 

can improve the overall classification results with significant time efficiency. 

Incorporating manual image interpretation makes the experiment less automatic, and it 

increases time for project completion. The proposed methodology requires selection and 

augmentation in every specific study area to reach better LU classification accuracy, 

which needs a little priori knowledge of the study area. Augmenting the amount of 

training datasets to cover wide variety of world regions will be helpful to improve 

classification and achieve higher accuracy using CNN models. Overall, the proposed 

land use classification method can be transferred to analyse real-time digital orthophotos 

datasets from other urban-rural fringe areas, providing a fast and low-cost solution to aid 

land use change analysis and to assist municipal land management. 
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Chapter 3.  
 
Short-term forecasting of land use change using 
Recurrent Neural Network models2  

3.1. Abstract 

Land use change (LUC) is a dynamic process that significantly impacts the 

environment and various approaches have been proposed to analyze and model the 

LUC process for sustainable land use management and decision making. Recurrent 

neural network (RNN) models are part of deep learning (DL) approaches that has the 

capability to capture spatial and temporal information from sequential data. The main 

objective of this study was to examine variants of the RNN models by applying and 

comparing them when forecasting LUC in short time periods. Historical land use data for 

the City of Surrey, British Columbia, Canada were used to implement the several 

variants of the RNN models. The land use data for years 1996, 2001, 2006 and 2011 

were used for training the DL models to enable the short-term forecast for the year 2016. 

For the 2011 to 2016 period, only 4.5% of the land use in the study area changed. The 

results indicate that an overall accuracy of 86.9% was achieved while actual changes in 

each LU type were forecasted with a relatively lower accuracy. This research study 

demonstrates that RNN models provide a suite of valuable tools for short-term LUC 

forecast that can inform and complement the traditional long-term planning process. 

3.2. Introduction 

Land use change (LUC) arises from human-environmental interactions 

(Kleemann, Baysal, Bulley, & Fürst, 2017) and so far only about 39% of the earth’s land 

has never been exploited or used for the benefits of humans (De Palma et al., 2018). 

Land use change (LUC) with urban intensification result in pressures to the natural 

environment that can produce irreversible damages if not adequately addressed. Better 

knowledge and understanding of the LUC process can help policymakers to make 

                                                 
2 A version of this chapter coauthored with Dragicevic, S., and Li S has been submitted to 
Sustainability journal for peer review.  
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informed decisions for sustainable land management. Sustainable land management 

practices promote activities that increase the benefit of utilization and development of 

land resources for individual, social, and economic purposes. LUC analysis and 

modeling methods can assist with the projection of future LU patterns, thus helping and 

guiding the management of land towards sustainable urban development.  

The LUC phenomenon is typically studied through earth observations (EO), 

remote sensing (RS) and field measurements (Green, Kempka, & Lackey, 1994) all of 

which provide the opportunity for monitoring and quantifying change of LU patterns at 

local, regional and global levels. LUC is a complex phenomenon occurring locally and 

with implications for global geographic scales. Decades ago, RS sensors provided data 

with lower resolution and the availability of this data to the public was very limited. 

Besides EO and RS techniques that require advanced satellite equipment and expert 

knowledge for data interpretation, researchers have been using LUC modeling 

approaches for decades. LUC models provide representations and strategies that can 

help analyze, understand and assist the planning and management of land and natural 

resources. Many LUC models are based on inductive approaches which start with 

studying the observations and then developing explanations (Anderson, Hardy, Roach, 

& Witmer, 1976; National Research Council, 2014). LUC models are often based on a 

suite of explanatory variables that potentially drive the change process. But the main 

factors of LUC are directly related to human interactions and decision-making processes 

that are often difficult to accurately model and predict. 

Deep learning (DL) are a subset of machine learning (ML) approaches and can 

be considered as deep machine learning. ML and DL both work by reducing the 

dimensionality and extracting features of large datasets. Compared with traditional ML 

methods, DL models can simultaneously extract and classify features with faster 

computation. Recent access to larger volumes of data from open sources coupled with 

superior computational abilities have made DL models as a great potential to be 

valuable tools capable of exploring and analyzing LUC phenomena. DL models include 

both the convolutional neural network (CNN) (Fukushima, 1980) and the recurrent neural 

network (RNN) (Rumelhart, Hinton, & Williams, 1986). CNNs have been used for image 

classification (Schmidhuber, 2017) and LUC classification and mapping (Huang, Zhao, & 

Song, 2018) while RNNs have been used for natural language processing (NLP) tasks 

(Graves, Mohamed, & Hinton, 2013; Mahoney, 2017). Deep learning (DL) has been 
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identified as intelligent models for advancing the field of LU modeling (Yao, Li, et al., 

2017; Yao, Liang, Li, Zhang, & He, 2017).  

The RNNs have the capability to capture information within sequential datasets 

such as in spatial and temporal sequences (J. Liu, Shahroudy, Xu, Kot, & Wang, 2018). 

Due to the spatio-temporal nature of LUC processes, the main objective of this research 

study is to examine the capabilities of RNN-based models to model LUC from an 

integrated space-time perspective and to perform a short-term forecast of LU. Historical 

land use data for the City of Surrey, British Columbia, Canada were used to implement 

the RNN models and generate the forecasted LUC. 

3.2.1. Land use change models  

The usual approaches for monitoring urban growth and LUC detection are based 

on geographic information systems (GIS) and RS (Hegazy & Kaloop, 2015) techniques 

and available geospatial datasets, which may require intensive pre-processing and 

interpretation. Efforts have been made to model LUC with the projection of possible 

future scenarios for spatial patterns of change to provide solutions and assist to land 

management. In the published research literature various LUC modeling methods have 

been reported such as Markov chains (Kumar, Radhakrishnan, & Mathew, 2014; Muller 

& Middleton, 1994); cellular automata (Batty & Xie, 1994; K C Clarke, Hoppen, & 

Gaydos, 1997; Keith C. Clarke & Gaydos, 1998; White & Engelen, 1997; Wu & Webster, 

1998); neural networks (X. Li & Yeh, 2002; Lin, Lu, Espey, & Allen, 2005; Pijanowski, 

Brown, Shellito, & Manik, 2002); logistic regression (Cheng & Masser, 2003); multi-agent 

systems (Brown, Page, Riolo, Zellner, & Rand, 2005; Sanders, Pumain, Mathian, 

Guérin-Pace, & Bura, 1997); and machine learning (Huang, Xie, Tay, & Wu, 2009; 

Nemmour & Chibani, 2006; Otukei & Blaschke, 2010; Samardzic-Petrovic, Dragicevic, 

Kovacevic, & Bajat, 2016). 

Markov chains is a stochastic model that can capture time dependency among 

sequential data, and usually used to describe a sequence of possible events or states 

whose probabilities only depend on previous events or states. Markov chains cannot 

preserve the information from the event that is not within the neighborhood of a current 

event. There are some Markov chain-based models for representing the dynamics of LU 

systems (Muller & Middleton, 1994), which project the future LU by applying transition 
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probability matrix on the primary matrix recording LU information. Markov chains model 

assume that the transition probability between each pair of states is stationary over time; 

hence, these models can forecast LUC from short to long-term. However, Markov chains 

models cannot consider socioeconomic and human related factors that can potentially 

lead to changes in LU patterns.  

Cellular automata (CA) is a discrete modeling approach that has been used for 

representing LUC given their capability to capture both spatial and temporal dynamics of 

the phenomenon and considering the changes at a very local scale (Batty, Xie, & Sun, 

1999; Chaudhuri & Clarke, 2013; White, Engelen, & Uljee, 1997). The CA consists of a 

regular grid of cells, where each cell has one of many finite states, and the states of a 

cell change in the next time iteration according to the function of transition rules based 

on the state of the cell and in its spatial neighborhood. The structure of CA models has a 

close affinity with raster-based GIS and RS datasets. However, Stevens and Dragićević 

(2007) proposed a LUC model using irregular CA cells although this requires longer 

computation time. The integration of Markov and CA allows the simulation of spatial and 

temporal LUC processes (Guan et al., 2011). Even though the fixed rules enable the 

various possibilities of transition, the forecast of LUC is more precise when the system is 

stable over years and under the assumptions that the land always changes with the 

same transition rules. The assumption of an ideal and stable environment is not realistic 

as the LU changes are governed by human decisions changing over time that are 

difficult to predict. However, these types of models are more sensitive to spatial than 

temporal factors. 

The machine learning (ML) methods depend on strong statistical learning theory 

where the size and quality of the training datasets significantly influence the performance 

of the ML methods. ML-based LUC models can extract and learn from earlier LU 

observations the driving forces of LUC and their impact. Otukei and Blaschke (2010) 

evaluated several ML methods, such as artificial neural networks (ANN), support vector 

machine (SVM), maximum likelihood, and decision trees to investigate LUC detection, 

and their study demonstrated better classification performance of SVM and ANN 

algorithms. Samardzic-Petrovic et al. (2017) compared the performance of the common 

ML methods for LUC short-term forecasting. Urban LUC was also modeled using 

decision trees (Samardžić-Petrović, Dragićević, Bajat, & Kovačević, 2015) and SVM 

(Samardzic-Petrovic et al., 2016). However, traditional ML methods have limited 
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performance while the data is high-dimensional and the number of observations are 

large (Arel, Rose, & Karnowski, 2010).  

Post-classification comparison is the strategy of some ML-based LUC detection 

methods. The change analysis of the multi-temporal images generally employs two basic 

methods: raster-to-raster comparison and post-classification comparison (Mukherjee, 

Shashtri, Singh, Srivastava, & Gupta, 2009). As other ML methods assume the 

independence of data (Lipton, 2015), however, spatial data are often known for their 

dependency and spatial autocorrelations. Therefore, using DL models compared to ML, 

brings the advantage of automating the extraction of representations (abstractions) from 

a larger amount of data. The success of DL models has started to attract attention for 

studies of LUC classification using RS datasets with CNNs.  

Recently, some studies have shown the effectiveness of RNN for analyzing LUC. 

Byeon et al. (2015) conducted LU scene classification with LSTM instead of CNN 

without pre-processing, whose result was comparable to that of CNNs. This study 

indicates that the LSTM model can learn the spatial neighboring context information for 

every raster and capture the global dataset dependency through the recurrent 

connections. Using sequence-to-sequence processing of LSTM models, Rußwurm & 

Körner (2017a) classified land cover through learning from multi-temporal land cover RS 

datasets. The CNN, RNN and LSTM models were used to model vegetation from 

temporal RS data, LSTM outperformed CNN as temporal information was used in 

training (Rußwurm & Körner, 2017b). Due to the realistic dynamics of fast-developing 

urban areas, it is necessary to propose more efficient models to capture the change and 

study the LUC from a spatio-temporal perspective. Bengio (2009) used CNN and RNN 

for learning long-term dependencies and functions from complex phenomenon. The 

RNN models can consider larger numbers of data layers and thus be more effective than 

traditional ML methods such as SVM or decision tree (DT) to name a few. So far, RNN 

has recently been used for land cover classification (Ienco, Gaetano, Dupaquier, & 

Maurel, 2017; Rußwurm & Körner, 2018; Sharma, Liu, & Yang, 2018), land cover 

change detection (Lyu, Lu, & Mou, 2016; Mou & Zhu, 2018). Du et al. (2018) has used 

RNNs for spatio-temporal modeling of LUC and the overall accuracy results were close 

to 50%. Therefore, there is a need to further explore the potential of RNNs to forecast 

LUC. In this research study, previous geospatial LU datasets with 5-year intervals for the 
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City of Surrey, British Columbia, Canada were used to implement the concepts for RNN-

based short-term forecasting of LUC.  

3.2.2. RNN and its variants  

Artificial Neural Networks (ANN) are the collections of connected neurons (also 

called layers) inspired by the human brain (McCulloch & Pitts, 1943). CNN and RNN are 

types of ANN. Unlike CNN, which contains different types of layers that perform different 

functions (e.g. convolutional, pooling and nonlinear layers), the basic RNN consists only 

of recurrent layers. Each layer in an RNN shares the same group of functions and 

parameters, while the parameters are updated in each layer. As shown in Figure 3-1, the 

connections between recurrent layers are cyclical when presented compactly (Graves, 

2012), for the convenience of visualization, it can be unfolded like a chain-like structure.  

 

Figure 3-1  A simple RNN structure allowing information to loop in the layer, it 
can be unfolded as a neural network indicated at the right side. 𝑿𝑿𝒕𝒕𝒊𝒊 is 
a temporal sequence input. 𝒉𝒉𝒕𝒕𝒊𝒊  is the hidden state. 

CNNs are often used for image classification tasks. The inputs and outputs of 

CNNs have fixed sizes and are processed independently among each other. By 

contrast, RNNs can deal with sequential inputs and have sequential outputs, while the 

inputs are considered dependent so that RNNs can capture their dependence. In reality, 

many datasets such as text, speech, audio, video, weather and stock price are 

sequential and internally dependent. Some applications areas of RNNs and its variants 

include for example music composition (Eck & Schmidhuber, 2002); handwriting 

recognition (Graves & Schmidhuber, 2009), speech synthesis (Zen & Sak, 2015), and 

video captioning (Yang et al., 2018), to name a few. The LSTMs are often used for time-

series problems such as predicting stock market price movement (Nelson, Pereira, & 

Oliveira, 2017), weather (Qing & Niu, 2018), and traffic flow (Fernandes et al., 2019), 

passenger flow (Han et al., 2019). 
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The traditional RNN has the limitation of short-term memory caused by a 

vanishing gradient problem (Y. Bengio, Simard, & Frasconi, 1994). Gradients are used 

to update the weights of networks, which shrink through time during the backpropagation 

process and may become too small to contribute new significant weights based on 

equation (3-1): 

 New weights = old weights – (learning rate × gradients) (3-3) 

The problem of short-term memory of traditional RNN can be solved by Long-

Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997). The LSTM is one of the 

variants of RNN, which has unique internal mechanisms called gates that can regulate 

the flow of information compared with traditional RNN. The function of gates is to decide 

if the data in a sequence is important or not, then to keep or discard the information from 

that data. Through gates, the essential information can be preserved even if the 

sequential data is long. Gated Recurrent Unit (GRU), another variant of RNN, was first 

introduced by Cho (2014). GRUs have fewer gates and relatively shorter memory but 

have faster training processes than LSTMs. GRU has comparable performance to LSTM 

for music and speech modeling tasks (Chung, Gulcehre, Cho, & Bengio, 2014). 

Bidirectional LSTM (BiLSTM) (Schuster & Paliwal, 1997) processes two sequential 

inputs with the opposite direction so that current BiLSTM layer has two hidden states 

which accept past information and future information. Besides, the algorithms within 

BiLSTM layers are the same as that of unidirectional LSTM. BiLSTM adapted with more 

complicated situations such as speech recognition (Graves, Jaitly, & Mohamed, 2013), 

phoneme recognition (Graves, Fernández, & Schmidhuber, 2005), where the current 

inputs are influenced by previous and future inputs. 

The inputs to RNNs like LSTM and GRU are one-dimensional (1D) vectors, while 

a Convolutional LSTM (ConvLSTM) network receives inputs as 3D vectors which can 

encode both spatial and temporal information. ConvLSTM is an effective model for 

nowcasting short-term precipitation within a study area (Shi et al., 2015). There also are 

ConvLSTM based models for short-term forecast of traffic accidents (Yuan, Zhou, & 

Yang, 2018), video anomaly detection (Luo, Liu, & Gao, 2017) and short-term forecast of 

traffic flow (Y. Liu, Zheng, Feng, & Chen, 2017), and these phenomena have spatial 

patterns that can be captured by convolutional layers. When using LSTM, it is assumed 
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that each cell is independent. Figure 3-2a presents the structure of a ConvLSTM as a 

group of cells that are located in the same neighborhood. ConvLSTM can 

simultaneously incorporate the spatial neighborhood for each raster cells and the 

temporal LU information. The GRU model is very similar to LSTM, however, the 

differences of GRU is in the update gate and reset gate where the update gate learns 

and decides how much of the past information to pass to the future, reset gate decides 

how much of the past information to forget (Figure 3-2c). BiLSTM (Figure 3-2d) can be 

considered to have the inputs with the original order and reversed order respectively to 

feed into the LSTM. RNNs and LSTMs can receive complex sequential inputs or form as 

a hybrid model with other layers or networks (Fan, Wang, Soong, & Xie, 2015; S. Li, Li, 

Cook, Zhu, & Gao, 2018; Lv et al., n.d.).  

 

Figure 3-2  Structure of the ConvLSTM (Shi et al., 2015) model with (a) 
transforming the 2D image into 3D tensor; and (b) its inner structure, 
and the structure of (c) the GRU (Jeblad, 2018) ; (d) BiLSTM (Cui, Ke, 
& Wang, 2018) models 

LSTM is more frequently used than traditional RNN due to its longer memory 

capabilities. The key elements of LSTMs are the cell state, sigmoid activation, forget 

gate, input gate, and output gate and tanh activation (Figure 3-3) which control the 

relevant information through the network. At each processing step, the gates regulate 

the addition and removal of information to the cell state. Gates have sigmoid activation, 

which multiply values between 0 and 1 to derive the percentage of data that will be kept 

or removed. If the input multiplies with 0, the information is forgotten; if the input 
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multiplies with “1”, the information is remembered. Tanh activation delivers values 

between -1 and 1. Hochreiter and Schmidhuber (1997) provide the formulae (3-2~3-7) to 

describe the algorithms of a typical LSTM layer as follows:  

 𝑖𝑖𝑡𝑡 =  𝜎𝜎 (𝑤𝑤𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (3-4) 

 𝑓𝑓𝑡𝑡 = σ (𝑤𝑤𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (3-5) 

 𝑜𝑜𝑡𝑡 = σ (𝑤𝑤𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜]) (3-6) 

 𝑔𝑔𝑡𝑡 = tanh (𝑤𝑤𝑔𝑔[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑔𝑔]]) (3-7) 

 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡*𝑐𝑐𝑡𝑡−1+𝑖𝑖𝑡𝑡* 𝑔𝑔𝑡𝑡 (3-8) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡*tanh(𝑐𝑐𝑡𝑡) (3-9) 

 

where 𝑥𝑥𝑡𝑡, 𝑐𝑐𝑡𝑡, ℎ𝑡𝑡 represents the input, cell state, output at time step t. 𝑓𝑓𝑡𝑡 is forget gate,  𝑖𝑖𝑡𝑡 

is input gate, 𝑜𝑜𝑡𝑡 is output gate, σ is sigmoid function, w and b are weight and bias 

respectively. 𝑔𝑔𝑡𝑡 is a vector of new candidate value called cell activation, which adds with 

current cell state. 𝑓𝑓𝑡𝑡 is a value between 0 and 1, which means the ratio of old information 

that will be passed to new cell state, 𝑖𝑖𝑡𝑡 decides the ratio of each value in a sequence 

from 𝑔𝑔𝑡𝑡 that will be preserved. 

 

Figure 3-3 The graphical representation of an LSTM layer  
(The idea of image is based upon Colah, 2015, the image was self-created) 
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3.3. Methodology 

3.3.1. Study area  

The City of Surrey, British Columbia, Canada is one of the fast-growing 

municipalities in the Metro Vancouver Region. Significant population growth occurred 

between 2007 and 2017, and the population is estimated to increase by over 262,000 

inhabitants from 2018 to 2046 (City of Surrey, 2018). The increased population will mean 

considerable challenges related to urban residential development, the management of 

the lands and the natural environment. The study area of the City of Surrey covers 316.4 

km² (City of Surrey, 2019) (Figure 3-4).  

 
Figure 3-4 The City of Surrey located in the south of the Metro Vancouver 

Region.  

3.3.2. Data preparation 

The generalized LU data was obtained from the Metro Vancouver Open Data 

Catalogue (Metro Vancouver, 2011) for years 1996, 2001, 2006 and 2011. The road 

network data was obtained from the CanMap streetfiles (DMTI Spatial Inc., 2011). The 



48 

LU classes and road networks were rasterized at 10m spatial resolution and data 

processing was done within the ArcGIS desktop software (Esri, 2018). 

The RNN models examined spatial and temporal features from 1996, 2001, 2006 

and 2011 LU datasets and forecasted the 2016 LU pattern. Due to the different 

classification schemes, the LU data of each year has a different total number of LU 

classes. For example, the year 1996, 2001, 2006, and 2011 LU data have respectively 

13, 12, 15, 22 LU classes, and specifically, 2011 have more varieties of LU classes. In 

order to create uniform datasets with the same group of LU classes, the LU data from 

1996, 2006, 2011 were reclassified and merged based on the LU classes in 2001 LU 

data, and then similar types of residential classes (eg. rural, single, townhouse, high-

rise) are merged into one LU class as residential. A total of 9 LU classes were 

considered and these are: transportation, communication and utilities; recreation and 

protected natural areas; industrial; open and undeveloped land; residential; lakes and 

water bodies; institutional; commercial; and agricultural. The 1996 and 2001 LU data 

contained no major road information and they were combined with rasterized road 

networks for the same year obtained from DMTI Spatial Inc.  

RNNs usually process sequential inputs and can have multiple outputs. It has 

been proven that even if the data is not in the form of sequences, it can be formatted as 

sequences and be used to train RNN models (Karpathy, 2015). Consider a study area V 

consists of m×n raster cells (m=2437, n=1952), V={𝑐𝑐1,1, 𝑐𝑐1,2, 𝑐𝑐1,3, … 𝑐𝑐𝑖𝑖,𝑗𝑗 , … 𝑐𝑐𝑚𝑚,𝑛𝑛,}, with 

associated LU label L ={𝑙𝑙1,1, 𝑙𝑙1,2, 𝑙𝑙1,3, … 𝑙𝑙𝑖𝑖,𝑗𝑗 , … , 𝑙𝑙𝑚𝑚,𝑛𝑛,}, (i, j) indicates the raster cell at row i 

and column j. Since the LU class of each cell is influenced by its surrounding cell state, 

another two raster layers with the size of m×n were created. Each raster cell in one layer 

stores the most frequently occurring LU class in its adjacent 7×7 cells as Moore 

neighborhood, and each raster cell in another layer stores the second most frequently 

occurring LU class in its adjacent 7×7 cells as Moore neighborhood, represented as 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚= {𝑙𝑙1,1
1 , 𝑙𝑙1,2

1 , 𝑙𝑙1,3
1 , … , 𝑙𝑙𝑖𝑖,𝑗𝑗1 , … , 𝑙𝑙𝑚𝑚,𝑛𝑛

1 } and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2= {𝑙𝑙1,1
2 , 𝑙𝑙1,2

2 , 𝑙𝑙1,3
2 , … , 𝑙𝑙𝑖𝑖,𝑗𝑗2 , … , 𝑙𝑙𝑚𝑚,𝑛𝑛

2 } respectively.  

3.3.3. Training and validation of RNNs 

The training and validation of RNNs are similar to other neural networks. Through 

repeated forward-propagation and back-propagation, parameters are updated until the 

cost function is minimized. The validation process is part of training the model and 
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updating the parameters, which uses a small part of datasets to validate and update the 

model parameters after each training epoch. When performing a classification task, 

categorical cross entropy loss is usually used as a cost function. The key approach to 

ensure the model learning from data correctly is minimizing a cost function during the 

training and validation process. Supposing K categories are expected from the model. 

There is a certain sample x and its true label is represented as vector [ӯ1, ӯ2, … , ӯ𝑖𝑖 , … , ӯ𝑘𝑘], 

where ӯ𝑖𝑖 can be represented as equation (3-8):  

 
ӯ𝑖𝑖=�

1,           𝑖𝑖𝑖𝑖 𝑥𝑥 belongs to the 𝑖𝑖𝑡𝑡ℎ category  
0,        𝑖𝑖𝑖𝑖 𝑥𝑥 not belongs to the 𝑖𝑖𝑡𝑡ℎ category 

 
(3-8) 

The output from the model y is a vector [𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑖𝑖 , … ,𝑦𝑦𝐾𝐾], where 𝑦𝑦𝑖𝑖 is the forecasted 
probability of sample x being the ith category. Cross Entropy Loss is defined in equation 
(3-9) (Rubinstein & Kroese, 2004): 

 
𝐶𝐶(𝑦𝑦, ӯ)  =  −�ӯ𝑖𝑖

𝐾𝐾

𝑖𝑖=1

𝑙𝑙𝑙𝑙𝑙𝑙 (𝑦𝑦𝑖𝑖) 
(3-9) 

The softmax layer (equation 3-10) is used to transform the outputs (i.e. K dimensional 
vector) from last layer to vector ӯ with each value ranging between 0 and 1, which shows 
the probability distribution of K categories (Bishop, 2016; Bridle, 1990).  

 
𝜎𝜎(𝑍𝑍)𝑗𝑗 =

𝑒𝑒𝑧𝑧𝑗𝑗
∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

   
(3-10) 

The original set of raster cells from the study area were split by the ratio of 8:2 

according to Pareto principle (Box & Meyer, 1986). This is a common starting point for 

splitting training data sets, as there are no strictly defined rules for dataset splitting. 

Further investigation of split ratio were conducted by Guyon (1997). Usually, when the 

total number of training dataset is more than 100000, split ratio such as 7:3 (Gholami, 

Chau, Fadaie, Torkaman, & Ghaffari, 2015; Gholami et al., 2015) or 9:1 will have small 

impact on model accuracy. The ratio of 5:5 was not considered because it will be more 

suitable when cross validation method was used. While in this study, 80% of the raster 

cells were used for training of the model so the parameters of the model were updated 

during each training epoch to minimize Cross Entropy Loss. At the same time, the 

remaining 20% of the raster cells were used to evaluate the models after each training 

epoch by measuring the validation accuracy. The validation accuracy is the percentage 

of raster cells in the validation dataset that fit the model after each training epoch, it is 

also calculated based on Cross Entropy (equation 3-9). If the validation accuracy is low, 



50 

the Cross Entropy will be fed back to the model in the next training epoch and adjust the 

configuration of the model parameters.  

3.3.4. LTSM implementation 

Figure 3-5 outlines the flowchart of the proposed LUC model for short-term 

forecast based on the LSTM model and spatio-temporal data available for the study 

area.  

 

Figure 3-5 Flowchart of the proposed LSTM models for LUC forecast, where LU 
data were considered for years t-5=1996, t=2001, t+5=2006 and 
t+10=2011 for training and validation of the LSTM and then 
forecasted for t+15=2016.  

In this study, four variants of RNN models were tested; specifically the LSTM, 

GRU, BiLSTM, and ConvLSTM models. The LSTM, GRU, and BiLSTM models have 

similar training methods where all raster cells are considered independent. The inputs to 

the models were encoded as 3D vectors with the shape of [samples, time steps, 

features], where samples are equal to the number of raster cells for training and 

validation; time steps refers to years of 1996, 2001 and 2006; features refer to 

L, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2 of different Moore neighborhoods. Only a small part of all raster 

cells has changed their LU classes in the period from 1996 to 2011. In order to 

incorporate information regarding changed raster cells while training the RNN, two 

groups of datasets were used for every model for training and for validation. Group one 
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sample set consisted of only raster cells that have changed from 1996 to 2011, and 

group two sample set contained all the raster cells. The inputs to the ConvLSTM layer 

had the shape of [samples, timesteps, rows, cols, features], where rows and columns 

represented the sample size for ConvLSTM. This means every rows x columns of raster 

cells are grouped as one sample for training and validation so that LU information of 

nearby raster cells were considered.  

3.3.5. Testing the forecasted results 

In order to check the accuracy of the forecasted LUC for the City of Surrey, 2016 

orthophoto images with 10cm resolution obtained from Surrey Open Data catalog (City 

of Surrey, 2017) were used for reference. There are about three million raster cells 

whose LU classes have been forecasted, however, checking the correctness of every 

raster cell was time-consuming and complicated. A total of 604 sample points were 

randomly chosen on the orthophotos from the datatsets to reduce the computational 

workload but still achieve a high confidence level. The necessary sample size was 

decided based on Z-score from equation (3-11) (Isreal, 1992):  

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=  (𝑍𝑍 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2  ∗  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ (1

− 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) / (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2 (Isreal, 1992) 

(3-11) 

where margin of error is 4%, StdDev is 0.5, Z-score is 1.96, and confidence level is 95%. 

Each point i (i∈[1,2,3,…,604]) has corresponding location 𝑆𝑆𝑖𝑖 on the orthophoto and the 

ones forecasted LUC  for the  year 2016, Ytrue(𝑆𝑆𝑖𝑖) represented the manually classified 

LU class of sample point i on the orthophoto, and Ypred(𝑆𝑆𝑖𝑖) represented the forecasted 

LU class by LSTM of location 𝑆𝑆𝑖𝑖. Therefore the LU forecast for the year 2016 was tested 

by comparing Ytrue(𝑆𝑆𝑖𝑖) and Ypred(𝑆𝑆𝑖𝑖) of 604 sample points, and if Ytrue(𝑆𝑆𝑖𝑖)=Ypred(𝑆𝑆𝑖𝑖) 

the forecast accuracy is considered 1, otherwise is 0.  

The total accuracy indicator is used for the evaluation of the performance of the 

LU forecast model and calculated based on Cohen’s Kappa coefficient (Cohen, 1960):  

 
Total accuracy = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
 (3-12) 
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where true positive (TN) = correctly forecasted, false positive (FP) = incorrectly 

forecasted, true negative (TN) = correctly rejected, false negative (FN) = incorrectly 

rejected raster cells. The total number of samples used for calculating the kappa 

coefficient is 604. A confusion matrix (Stehman, 1997) is typically used for describing the 

performance measurement for classification models and from which kappa coefficient 

can be calculated. 

The implementation of the proposed methodology and RNN models was done in 

the MATLAB software (The MathWorks Inc., 2018) for data preprocessing. The Python 

programming language (Python Software Foundation, 2016) was used for implementing 

and training RNNs, and the Keras API (Fran, 2015) was used for constructing the RNN 

models. ArcGIS (Esri, 2018) was used to create LU output maps. 

3.4. Results  

Table 3-1 provides the obtained values for model accuracy for six different 

scenarios. Most of the scenarios of RNN models provided accuracies above 0.86 except 

for LSTM1 where the accuracy was only 0.62. The total number of raster cells were split 

into a training set and validation set in an 8:2 proportion. As indicated in Table 3-1, 

scenario 1 and 2 both used the LSTM model with the same configuration. Scenario 1 

(LSTM 1) used only raster cells whose LU classes have changed during 1996 and 2011 

for training and validation while scenario 2 (LSTM 2) used all raster cells from the study 

area for training and validation. Scenario 3 used the GRU model and scenario 4 used 

the BiLSTM model. Scenario 4 and 5 used ConvLSTM where ConvLSTM 1 received 

input data with shape of 10x10 raster cells, ConvLSTM 2 received input data with a 

shape of 5x5 raster cells. Scenarios (2-6) used all raster cells from the study area for 

training and validation. When only the changed raster cells were used for LSTM training 

(scenarios 1), the overall accuracy is lower than the LSTM trained by all raster cells both 

changed and unchanged (scenarios 2). Scenarios 2-4 used the LSTM, GRU, and 

BiLSTM models respectively and have obtained comparative accuracy when using the 

training data containing all the raster cells from the study area. In the cases of the 

ConvLSTM models from scenarios 5 and 6, there is no obvious difference in accuracy 

when the sample size is different. Training accuracy represents the percentage of total 

training set that forecasted LU label equal the actual LU label. Validation accuracy 



53 

represents the percentage of total validation set that forecasted LU label equal the actual 

LU label. 

Figure 3-6 shows the obtained LU for the City of Surrey for the year 2016, 

generated by short-term forecast using LSTM 2 which was trained by using all raster 

cells from the study area. The percentages of each LU class as forecasted are: 10.71% 

transportation, communication and utilities, 9.25% recreation and protected natural 

areas, 2.87% industrial, 2.13% open and undeveloped, 22.99% residential, 0.02% lakes 

and water bodies, 0.92% institutional, 0.99% commercial, and 16.01% agricultural. As 

forecasted, only 4.5% of raster cells have changed their LU classes compared with the 

2011 LU. Figure 3-7 shows the changed raster cells in 2011 and 2016, it can be seen 

that some industrial in northwest part of the study area became transportation, and some 

open area become industrial (figure 3-7a). Some of the natural and protected areas were 

predicted as transportation LU class (figure 3-7b). While some of the agricultural areas 

were forecasted as residential (figure 3-7c). Based on the prediction, the increased LU 

classes during 2011 and 2016 were transportation and residential while the other LUs 

were decreasing. Specifically, 28.1% of changed raster cells changed from recreational 

and protected natural LUs to transportation LUs; 11.9% of changed cells with agricultural 

LUs turned into residential LUs. 18.6% undeveloped and open LUs became residential 

LUs. 6.1% of commercial LUs became industrial LUs.          

Figure 3-8 presents the Confusion Matrix calculated based on Ytrue(𝑆𝑆𝑖𝑖) and 

Ypred(𝑆𝑆𝑖𝑖). The rows indicated the target LU classes Ytrue(𝑆𝑆𝑖𝑖) that are manually classified 

from sample location (𝑆𝑆𝑖𝑖) on 2016 orthophoto. The columns indicated the predicted LU 

classes Ypred(𝑆𝑆𝑖𝑖) at corresponding sample locations (𝑆𝑆𝑖𝑖) (i=1,2,3…604) from the 

forecasted model outputs. Moreover, in the confusion matrix value of cell (i,j) 

(i,j=1,2,3…9), where 1-9 indicate number of LU classes, represents the percentage of 

LU class j that was forecasted as class i. The total accuracy of LU forecast is 87%, while 

the TN, TP, FN, FP of LU forecast in each LU class differs. Especially the true negative 

from LU classes such as “open and undeveloped land” and “lakes and water bodies”, 

“commercial” are low, close to 50%. Percentage of “water bodies” decreased while 

percentage of “residential” and “agricultural” increased as indicated in confusion matrix. 

Some misrepresentation of forecasted LU classes within the sample set are: 1.7% for 

“transportation” were forecasted as “residential”; 1.2 % of “residential” were forecasted 

as “open and undeveloped land”, this means the growth of urban residential areas were 
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likely overestimated. The rate of urbanization is driven by various factors related to 

human interactions and decision making.    

Table 3-1 Training and validation accuracy of different RNN models and 
scenarios  

Scenarios RNN variants  The ratio of changed raster 
cells in training set 

Training 
accuracy 

Validation 
accuracy 

(1)  LSTM 1 100%  0.62 0.62 
(2)   LSTM 2 47%  0.87 0.87 
(3) GRU 47% 0.86 0.87 
(4)  BiLSTM 47% 0.87 0.87 
(5)  ConvLSTM 1, 10×10 47% 0.88 0.88 
(6)   ConvLSTM 2, 5×5 47% 0.88 0.88 

3.5. Discussion and conclusions 

LUC is a spatiotemporal phenomenon and it can be correlated with various 

factors. Consequently, forecasting LUC is a challenging topic and extensive efforts have 

been dedicated to modeling LUC while only a few studies have explored the potential of 

DL models on this topic. While RNN has been shown to efficient to solve time-series 

data, the objective of this study was to test the feasibility of RNN based models for short-

term LUC forecasting.  

This study successfully tested several RNN based models to examine the LUC of 

the City pf Surrey. The LSTM, GRU, BiLSTM and ConvLSTM were trained by changed 

raster cells and persistent raster cells. Then the LU for the year 2016 was forecasted 

using LSTM, which was trained first by LU data for years 1996, 2001, 2006, and 2011 at 

10-meter spatial and 5-year temporal resolutions. Due to the limitation of availability of 

classified LU data, the forecasted LU of the year 2016 was not fully validated in this 

study. Instead, it was compared with the actual 2011 LU data and changes of each LU 

class were analyzed. The LSTM can estimate how each LU will change based on 

“transition rules” which were learned from the 1996 to 2011 LU data. 
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Figure 3-6 Forecasted LU for 2016 for the City of Surrey generated by LSTM 2 
model. 

The RNNs were successfully trained by LU data as well as being able to forecast 

the 2016 LU. The model accuracy turns out to be similar at about 86% while trained by 

both changed and persistent raster cells. Model accuracy was lower at about 62% while 

been trained by only changed cells which indicates the variants of RNN did not differ 

much when using the same LU datasets. The forecasted results indicated only 4.5% of 

the land in Surrey City have changed. The forecasted changes mainly occurred among 

industrial, recreational, transportation, open, agricultural and residential LUs. The results 

indicate the land was not overdeveloped between 2011 and 2016, while the City of 

Surrey experienced an increase in population and in transportation network.  

Kappa statistic (Congalton, 1991) is often used as an assessment indicator to 

compare the similarity between observed and predicted results (Monserud & Leemans, 

1992; Rußwurm & Körner, 2017). In this study, simple random sampling (SRS) was used 
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to select samples for evaluation from the study area. However, due to the fact that the 

majority of the raster cells remain unchanged, SRS is not sufficient to evaluate the 

overall predication performance of the RNN models. Instead, cluster sampling (CS), 

stratified random sampling (STRAT), mean of surface with non-homogeneity (MSN) 

method (Hashemian, Abkar, & Fatemi, 2004; Mu et al., 2015) are potential sampling 

methods to properly evaluate the results and models. If the appropriate data were 

available for year 2016 the evaluation of the accuracy of the obtained short-term 

forecasted LU could be performed with a variety of exiting methods for map comparisons 

(Stehman, 1997). 
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Figure 3-7 Changed LU raster cells in 2011 and 2016 as forecasted by LSTM 
with detailed subsections (a), (b), and (c)    
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RNNs are an efficient method capable to perform feature extraction and 

classification separately. So far, few studies have exploited RNN for LUC forecasting. 

This study has demonstrated that RNNs have this potential although the performance of 

LU forecasting still needs strict validation and further study. In summary, in this study 

RNNs facilitated the full automation of the prediction process from available geospatial 

datasets due to the learning abilities of temporal correlations of RNN. Expert knowledge 

is not required to initialize the models and interpret the results. Overall, RNNs have the 

potential to capture the spatio-temporal patterns of LUC and provide consistent short-

term forecast. 

 

Figure 3-8 The Confusion Matrix based on the comparison of the forecasted LU 
and orthophotos for the year 2016.  

This study has provided an effective way to generate informative LU data. Due to 

the fact that RNN is a data-driven model, the quality and quantity of the training data are 

important factors of the forecast accuracy. Thus, training data is also a challenge in this 

research. Incorporating proximate physical, local, demographic, socioeconomic and 

climatic factors into the training process, the RNNs can better learn the transition rules. 

However, not every type of data is available and open to the public. The 2016 LU data 
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from an official source is currently unavailable. If the RNNs are proven efficient at LUC 

modeling, they can be a useful tool for geographers to study LUC, which can further 

benefit scientists and decision-makers in land use decision making and management. 
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Chapter 4.  
 
Conclusion  

4.1. Overall conclusions 

LUC is a complex and dynamic phenomenon which is in tight relation with the 

environment, climate, and society. Typically, the methodological approaches and tools 

used for studying LU are from the field of RS and GIS given the fact that recently LU 

data is vastly available. The focus of this thesis is to explore the potential of the DL 

models on LUC classification and short-term forecasting. The Community of Cloverdale 

and the City of Surrey have been chosen as the study areas for the implementation of 

various CNN and RNN models. The obtained results have demonstrated high accuracy 

from CNN-based models for LUC classification and RNN-based models of LUC short-

term forecasting. The research in this thesis contribute to the incorporation of DL models 

into LUC studies for its better understanding. 

The objectives of this thesis research were achieved through the development of 

two DL based models trained by historical GIS and RS data. Chapter 2 developed CNN-

based LU classification models to identify LUC from historical orthophotos. The pre-

trained CNN frameworks which have been developed by experts, can be used as off-

the-shelf tools with simple retraining. Eight transferred CNN models were tested, and all 

have achieved more than 95% accuracy. The study area has some unique LU features 

that were not. Therefore, some images were manually sampled and labeled from the 

study area to augment the UC-Merced dataset. The purpose of combining the UC-

Merced dataset and manually sampled images from the study area was to increase the 

suitability of the CNN models in the chosen study area.   

Chapter 3 was based on RNN models for short-term LUC forecasting. Despite 

being spatially diverse, the LU also change over time under the influence of various 

drivers. Knowing the possible changes of LU in near future is beneficial for better land 

management practices. RNNs have been used mostly for time-sequence modeling. 

They are proven to be effective for processing sequential inputs that have inner 

correlations. By identifying the rules of how LUC happens in time-space, LUC can be 

forecasted based on the rules and ancillary data. Therefore, the second objective of this 
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thesis was to explore the possibility of RNN models for short-term forecasting of LUC 

basing on historical LU datasets. RNNs are DL models that are expected to 

automatically study and apply the “rules” of the LUC.  

The applications for CNNs were conducted using MATLAB software (The 

MathWorks Inc., 2018), and applications for RNNs were developed using Python 

software (Python Software Foundation, 2016) and Keras API (Fran, 2015). DL-based 

models have advanced the methods of classification and forecasting basing on RS and 

GIS datasets. They have also automated the process of LUC analysis. The developed 

and trained DL models can effectively learn the features from GIS and RS datasets. In 

addition, they can be transferred to some of the other study areas without complicated 

re-developing processes.  

4.2. Limitations and future work      

Due to the transferability of CNN and RNN models, the trained classification and 

forecasting DL based models in this thesis can be applied to other study areas and for 

different years in Canada where considerable urbanization is taking place. However, the 

proposed DL-based models still need additional consideration of composition, quality, 

and quantity of the training datasets to ensure the optimal performance. This thesis 

research can be improved in the several ways. 

In Chapter 2, segmenting each LU scene apart has been a great challenge. From 

the observations of satellite images of the urban areas, it is noted that individual LU 

scene has irregular size and boundary. The CNN models were trained with an identical 

size of LU images. The orthophoto was divided uniformly into patches to be classified. 

However, this was not precise enough to distinguish each category. Features from 

different LU categories can overlap in a patch to be classified, while the CNN LU 

classifier can only assign one LU label to one patch. Similar to the study by Zhang et al 

(2019) future work should investigate the classification of LU on land parcels instead of 

raster cells as this would be closer to the real-world subdivisions of land. The parcel is a 

better representation of property boundaries with their range in size from a small lot to a 

large area. However, the random size of the parcel can be challenging. Therefore, a 

proper LU segmentation method needs to be developed before applying CNNs. Also, to 

identify the land features with different sizes, using multiscale LU images to train the 
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CNN models will be a potential solution for improvement in future studies. Finally, the 

kappa metrics of the obtained LU change classification results were not performed due 

to the lack of reference data. Kappa statistics (Congalton, 1991) or other metrics should 

be conducted in the future study once the sufficient data are collected. 

In Chapter 3, only available LU data were used to train the RNNs due to the 

limited availability of data. Given that there are many factors that drive the LUC process, 

future work should consider more geographic, social or economic factors into training 

process. The improved design of training datasets would increase the reliability of the 

forecasted LUC. Moreover, finding appropriate datasets covering wider number of years 

and that contain information about different factors that drive the LUC would insure 

building a more comprehensive RNN models.  Another limitation of is related to the 

sampling method used to evaluate the predicted results. Due to the fact that LU data 

were not available for 2016, the comparison of forecasted map output with reference 

data was performed in a specific manner. The 604 samples points were randomly used 

from the study area, which may not be an optimal method of taking samples over 

heterogeneous areas. A wide variety of sampling methods has been reported in RS 

literature such as simple random sampling (SRS), cluster sampling (CS), stratified 

random sampling (STRAT), mean of surface with non-homogeneity (MSN) method 

(Hashemian, Abkar, & Fatemi, 2004; Mu et al., 2015). They could potentially be applied 

in this study and a systematic approach on how different sampling design would affect 

the overall accuracy of obtained forecasted results should be conducted. According to 

Samardzic-Petrovic, Dragicevic, Kovacevic, & Bajat (2016), the Kappa value for random 

sampling is not a realistic estimate since the majority of raster cells stay unchanged. For 

example sample points could be chosen only from changed raster cells (Samardzic-

Petrovic, Kovačević, Bajat, & Dragićević, 2017) to calculate the Kappa value separated 

from overall evaluation. Finally, if the appropriate data were available for year 2016 the 

evaluation of the accuracy of the obtained short-term forecasted land use could be 

performed with variety of exiting methods for map comparisons (Ahmed, Ahmed, & Zhu, 

2013). 

The issues surrounding data leakage and model overfitting problems, typical for 

ML and DL studies, were not considered in this thesis research. Data leakage 

(Gutierrez, 2014) is a problem that happens during the development of predictive models 

and when using cross-validation (Brownlee, 2016). It occurs when the training data 
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contain the information that are going to be predicted or is not from the real world. To 

avoid leakage, two stages are suggested by Kaufman, Rosset, & Perlich (2011): firstly, 

tagging every observation with legitimacy tags during collection; secondly, observing 

learn-predict separation. Data leakage may further result in model overfitting. Model 

overfitting (Hawkins, 2004) is a modeling error when a model learns the function that is 

too closely fit to a limited set of data points, so that cannot fit well with other data. 

Dropout is one of the simple way to prevent overfitting (Srivastava, Hinton, Krizhevsky, 

Sutskever, & Salakhutdinov, 2014), which means ignoring some random layers or 

neurons in ML models. Cross-validation (Schaffer, 1993), regularization (Leibbrandt, 

1975), early stopping and feature reduction are some of the other possible solutions to 

alleviate the model overfitting problem.  

4.3. Thesis contributions 

The major contribution of this thesis is in bridging the gap between existing 

methods of classification and forecasting land use change and DL models that have the 

ability to extract features automatically from high-dimensional datasets. Another 

contribution is the convenience of quantifying and analyzing the LUC based on the 

outputs of DL-based models since the study areas were pre-processed and presented in 

regular patches or raster cells.  

The DL-based models were capable of extracting features and transition rules 

automatically from historical data and then performing classification and short-term 

forecasting. DL models have greatly reduced the time and effort spent on performing the 

task without sacrificing efficiency and accuracy. This thesis also contributes to the fields 

of RS and GIS by providing advanced approaches based on DL models to understand, 

analyze and forecast LUC, and potentially benefit LU management practices and 

sustainable development. 
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