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Abstract: This study presents a custom guide vane design to substantially reduce the waste energy in axial fans. Ideally, there 
is no velocity component in the radial direction in axial fans, but in practice, the air leaving the axial fan has a large tangential 
component of velocity which produces a large amount of swirl kinetic energy. In order to solve this problem, a guide vane is 
designed to remove the rotational component of the air. The methodology described in this project is based on the fundamental 
governing continuity, momentum, and energy equations using the Finite Volume Method (FVM). In this project, the standard 
k-ω model is used for turbulent modeling. Two dimensional (2D) geometry of blades and airflow cross-section are designed 
using AutoCAD and CATIA while GAMBIT is employed to generate a suitable mesh for the three dimensional (3D) model. 
The mesh independence test is done to analyze the performance. The axial fan is simulated using FLUENT software to prove 
an increase in airflow rate after using the guide vane. Considering the final results, it can be observed that the airflow is 
increased up to 6.3%. 
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1. INTRODUCTION 
Ideally, there is no velocity component in the radial direction in axial fans, but in practice, the air leaving the axial fan has a 
large tangential component of velocity which produces a large amount of swirl kinetic energy. When a fluid passes through a 
fan the fluid is deflected generating a flow velocity with a rotational component after passage through the impeller. This 
rotational component forms swirl kinetic energy which is lost in the fan and reduces its efficiency. In order to solve this 
problem, a guide vane is designed to remove the rotational component of the air. The objective of this study is to model the 
axial fan and guide vane in Computational Fluid Dynamics (CFD) platform and to investigate the effect of the guide vane on 
the flow rate in the axial fan. 

Fans are widely used in commercial and industrial applications, and consume more than 787 million kWh of energy every 
year in the USA, generally in space conditioning and commercial applications [1]. There are two main categories of fans 
classified by the path of the airflow relative to the fan: axial and centrifugal. Axial fans guide airflow into the axial direction 
of the fan. The pressure of air is increased by the aerodynamic lift produced in the blades, similar to the system used in an 
airplane wing. Axial fans are usually employed in “clean air,” high volume and low-pressure applications. Axial fans are 
smaller and have less rotating mass compared to the centrifugal fans. Moreover, axial fans have high speed and are noisier 
than inline centrifugal fans of the same capacity.  

Compactness, low cost and lightweight are the key benefits of axial airflow. Axial fans are commonly used in exhaust 
fans such as smoke, steam, and dust streams. They are suitable for ventilation applications when the reverse airflow is needed 
to exhaust the polluted air. Axial fans are unsuitable for systems with varying operating conditions since they have severe stall 
regions. Airflow is not enough in the stall region to supply the air requirement of the blades. The unstable operating condition 
of axial fans exhibits inefficient performance, annoying noise patterns, and accelerated drivetrain wear. This problem could be 
solved with an anti-stall device in many axial fans which change the airflow around the fan blades. 

Tube axial fans are a type of complex propeller fan located inside a cylinder. They have better-operating efficiencies and 
higher pressures compared to the propeller fans since the airflow characteristics in the tube axial fans are improved. They are 
very useful for high airflow rate and medium-pressure applications, and because of their low rotating mass, are very suitable 
for HVAC systems [2].  

A vane axial fan is a type of tube axial fan with outlet vanes that improve the airflow pattern. The vanes can reform the 
profile of airflow so that they improve the aerodynamic characteristic of the fan [3]. Vane axial fans have a low rotating mass; 
so, they can achieve operating speeds quite quickly as used in the boiler exhaust system and emergency ventilation. FLUENT 
is a cutting-edge computer program for modeling fluid flow in complex geometries. This software uses the FVM for solving 
the flow problems. The program provides complete mesh flexibility, solving the flow problems with unstructured meshes that 
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can be generated for complex geometries with relative ease. The user can create the geometry and grid by GAMBIT. Once a 
grid has been read into FLUENT, all remaining operations are performed within the solver. These include setting boundary 
conditions, defining fluid properties, executing the solution, refining the grid, and viewing and post-processing the results. 

In order to achieve a successful design, parameters such as efficiency, noise, flow rate, etc. have to be considered for an 
axial fan as demonstrated in [4] and [5]. The designing of fans, done in the conventional design algorithms, depends intensely 
on the designer’s experiences and skill. Therefore, this process needs trial and error to develop the best design of the fan blades 
shown in [6] and [7]. 

Several researchers work towards getting the optimum design of fan blades. Lee et al. [8] used an inverse method to design 
the axial fan. They used TURBOdesign-1 to design the axial fan for cooling condensers. Design of experiments applied to the 
parameters of the inverse design. By using the Response Surface Method (RSM), they carried out the axial fan with the 
optimum performance verified by the Air Movement and Control Association (AMCA) standards. Lee et al., in [9], presented 
a polynomial Response Surface Approximation (RSA) model in order to achieve the optimized axial fan. To find the best 
optimal design, the gradient-based search algorithm has been employed. Cho et al. in [10] developed a new technique by using 
an optimization method based on the gradient method to design the axial flow fan with efficiency and pressure selected as 
target objectives. They adopted 13 design variables to modify the target values, and proved their study by comparison with the 
experimental results which proved increased efficiency of the fans by 2.9%.  

Ferro et al. in [11] investigated fast design methods for the Inlet Guide Vanes (IGVs) of low-cost mini-hydraulic bulb 
turbines. They used the classical quasi-three-dimensional analysis method for the inviscid flow through a turbomachine. This 
method was developed by Wu [12]. In [13], Huang and Gau studied blade designs of an axial fan using experimental and 
numerical methods. They employed the Levenberg-Marquardt method with a powerful algorithm in inverse design 
calculations. This inverse design method was used to design the shape of a gas channel for a proton exchange membrane fuel 
cell by Chen et al. [14] and Huang et al. [15].  

Multi-objective optimizations of an axial fan blade were achieved by Kim et al. [16]. They selected two objectives for 
optimization: total efficiency and torque. They used RSA to solve the problem. This method was done by Jang and Kim in 
[17] and other researchers to optimize the turbo machines with specific emphasis on camber lines [18], [19], thickness location 
[20], Trailing Edge (TE) radius [21], and airfoil thickness [22]. For flow analysis, [10] and [16] employed CFX software. 
RANS equations were solved using the shear stress transport turbulence model. The simulation was validated by experimental 
results, [14], which was conducted with the optimized blade on the basis of the ISO 5801 standard.  

In [23], Christophel et al. used an unstructured grid which was generated by GAMBIT and solved the Navier-Stokes (NS) 
equations along with the energy equation. The Re-Normalization Group (RNG) k-ε turbulence model was applied in their 
solution. Uniform inlet velocity was set for the inlet boundary conditions. Lee et al. [9] also employed the RANS equation for 
solving the problem. They used SST turbulence method and finite volume approximations for discretization and hexahedral 
grids.  

In [11], Ferro et al. generated mesh by GAMBIT software, and used FLUENT for simulating the flow through the guide 
vane. They applied the standard k-ε equation for turbulent models. Also, they employed standard wall functions. Boundary 
conditions set by the same condition for the inlet and outlet, which were pressure inlet and pressure outlet. Radial equilibrium 
was used on the outlet side. In [13], the authors simulated the problem by CFD-ACE+, the commercial software introduced by 
ESI-CFD Inc. to solve the numerical problem. For boundary conditions, they used velocity inlet for the inlet side and pressure 
outlet for the outlet side. Results showed an increase in the flow rate of the designed fan blade. The original fan had better 
performance compared to the optimized one in higher pressures. 

Aeromechanical optimization of a structural fan outlet guide vane was presented in [24]. To achieve optimization, the 
authors designed the guide vane to fulfill aerodynamic requirements and to satisfy a large working range and low-pressure 
losses. The structural analysis was performed with the software ABAQUS. CFD computation employed for calculating the 
aerodynamical behavior of the new guide vane design. O and H mesh topologies were used to generate the grid using Rolls-
Royce grid generator PADRAM in [25]. For turbulence, the Spalart-Allmaras turbulence model was employed. The result 
showed that a major reduction in pressure loss will take place (approximately 20%) compared to the normal outlet guide vane.  

Thakker and Hourigan [26] compared the 3D CFD analysis with the empirical performance data in a turbine with fixed 
guide vanes. FLUENT and GAMBIT were used to construct the model and execute the numerical simulation. Jingyin et al., 
[27], studied variations in fan performance using the inlet box. Because of the symmetrical shape of the inlet box, only 50% 
of the model was meshed. The total grid number reached 2.4 million. They analyzed the flow field at peak efficiency, which 
was 600 kg/s. The Spalart-Allmaras method was chosen for the turbulence calculation. Comparing the result of the CFD with 
experimental results showed that the efficiency decreased by about 1%-4% and the overall efficiency of the fan decreased 
around 7% when using the inlet box. 

In [28], the influence of the profile load distribution and the solidity of the outlet guide vane on outlet flow field was 
studied using numerical simulation. The results showed that increasing the solidity can reduce the outlet flow angle and 
improve the guide vane’s capability of turning the flow. For the same solidity and bending angle, using the fore-load profile 
reduced the outlet flow angle and made the outlet flow direction closer to the axial direction. In [29], the authors described the 
numerical optimization of an axial fan focused on the blade and guide vane using 3D steady-state Reynolds Averaged Navier-
Stokes (RANS) equations with the Shear Stress Transport (SST) turbulence model discretized by FVM. As a result of 
optimization, the total pressure and efficiency increased by +5.2% and +2.0%, respectively, while achieving the target total 
pressure. 

In [30], the axial guide vane type gas liquid separator with different blade outlet angle and different number of vanes were 
simulated, and the pressure drop characteristics, velocity distribution as well as separation efficiency at different droplet sizes 
were analyzed. In [31], the authors studied the effect of inlet angle of guide vane in the Recess Vaned Casing Treatment 
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(RVCT). The results showed that the application of RVCT brings about noticeable improvements in the fan’s stall margin and 
the modification of guide vane inlet angle leads to various effects.  

The numerical models were developed in [32] to illustrate the effects of diffusion type guide vane cascade on Air-Cooled 
Steam Condenser (ACSC) performance. The simulation results showed that vane cascade can cause an increase in coolant 
flows across almost all fans due to its diffusion function and lower flow resistance. Meanwhile, the guide vane cascade also 
decreased the fan inlet temperatures because of the uniform flow field around the condenser cells. In [33], the authors provided 
guidance for the variable angle operation of axial-flow fans, and lays a theoretical foundation for the further studies of the 
evolution rules of aerodynamic noise under different blade angles. In [34], the authors studied the blade tip grooving effect on 
the performance of a ducted axial fan at different tip clearances in the absence and presence of IGVs. Numerical findings 
showed that the influence of grooving the blade on the fan parameters in the presence of guide vanes is lower than that without 
guide vanes. 

In [35], IGVs were used as a stall control method in order to enhance the performance of a wind tunnel power fan by 
enlarging its surge margin. This work showed the improved surge margin of an axial flow fan used as a power fan in a wind 
tunnel by implementing an additional row of IGVs upstream of the rotor blades in order to redirect the entering flow to the 
suitable incidence angle for the rotor blades. 

Widmann et al. [36] compared the flow through a vane-cascade swirl generator using both numerical and experimental 
methods. FLUENT was used for the numerical analysis. k-ε and RNG k-ε were applied to the turbulence models. The PISO 
algorithm was used for pressure and velocity prediction. Danczyk [37] analyzed the flow field inside an axial flow fan both 
experimentally and numerically. The flow field inside the axial fan was simulated by CFX-TASC flow. The simulation 
modeled the first stage of the fan using three stator blades and two rotor blades. Mid-span values were compared with Laser 
Doppler Anemometer measurements and a full three-dimensional flow field was calculated. Son et al. [38] studied flow 
characteristics and noise of axial flow fans. They designed geometry for the analysis of fan noise according to the Korean 
standard (KS B 6361). Two types of different axial fans were analyzed. Angular velocity is set as 204 rpm. They used the 
Williams and Hawking equation, presented in [39], to predict moving noise sources based on the flow similarity methods.  

The direction of flow through a vane axial fan is predominantly axial. Ideally, there will be no velocity component in the 
radial direction. The energy transfer from the impeller to the air comes from an increase in the tangential velocity component 
as explained in [40]. A vane axial fan includes a set of swirl stator vanes located downstream of the impeller. These guide 
vanes remove the rotational component of the air, slowing it down and converting some of the excess velocity pressure into 
useful static pressure as shown in [41]. In [42], the authors studied the effects of inlet swirl on pressure side film cooling of 
neighboring vane surface. It was found out that the thermal loading on Nozzle Guide Vanes (NGVs) is highly influenced by 
the inlet temperature. The experimental results indicated the inlet rotating flow cannot be ignored in the real gas turbine NGVs 
design and the GVs are useful for periodicity quality control.  

The performances of an axial pump with and without IGVs were investigated experimentally and numerically in [43]. The 
experimental data showed that IGVs can change the performance of axial pumps and remove the positive slope due to the 
backflow vortex in front of the impeller. In [44], the authors described the numerical optimization of an axial fan focused on 
the blade and GV using 3D steady-state RANS equations with the SST turbulence model discretized by the FVM. In addition, 
RSM based on the central composite design was applied to carry out the optimization. As a result of optimization, the total 
efficiency was improved while achieving the target total pressure. 

In [45], the authors focused on the effect of IGVs on the aerodynamic performance of Multi-blade Centrifugal Fan (MCF) 
using RANS equations with the RNG k-ε turbulence model discretized and solved by FLUENT. The results suggested that in 
the MCF with IGVs, the exhaust airflow rate increases while the IGVs reduce flow loss near volute tongue areas. In [46], 
numerical simulation was performed for the internal 3D turbulent flow field in the two-stage axial fan using steady three-
dimensional incompressible NS equations coupled with the realizable turbulent model.  

In [47], the authors examined the transition process in a boundary layer on a rotor blade under the impingement of an IGV 
wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed 
axial compressor were investigated using particle image velocimetry. Impingement of an IGV wake on the suction surface of 
a rotor blade increases the boundary layer thickness due to the negative jet effect, forcing the wake fluid away from the suction 
surface. In [48], based on a comparison of a fast transient of a reversible pump turbine from pump mode to generating mode 
with two different GV angles, it was shown how the angle affects pressure fluctuations and flow, and if the GVs are closed 
before the transient, fluctuations are significantly reduced. The axial flow velocity entering and leaving the fan is constant. 
The difference between the fluid and blade angles at the rotor entrance is known as incidence. The same difference at the 
trailing edge is known as a deviation. The leading edge blade angles are usually designed to match the fluid angles at the rotor 
inlet. A slightly positive incidence will increase the pressure rise. However, some designs incorporate a slightly negative 
incidence to reduce the risk of a stall condition. 

The air leaving the impeller has a large tangential component which produces a large amount of swirl kinetic energy. The 
relative velocity vector exiting the impeller is directed at the leading edge of the stator vanes. The stator vanes, with the same 
geometry definitions as the impeller, transform most of velocity and kinetic swirl energy of the fluid back into static pressure. 
Most high-performance fans incorporate a tail cone downstream of the stator to recover some additional velocity pressure as 
the air expands from the annual flow area to the downstream duct area. Circular arc blading is particularly suitable for high-
pressure rise units. Flat under the surface building is more appropriate for low-pressure rise units as shown in [49]. Constant 
thickness blades, used commonly for mixed flow fans and blowers, are not often used for high-performance vane axial fans in 
aircraft applications. 

This study applies CFD method to analyze the improvement of the flow rate of the axial fans by using the guide vane. The 
two-dimensional fan blades and vane are designed in AutoCAD software and exported to CATIA in order to extend 2D sketch 
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to 3D. GAMBIT and FLUENT are employed to generate the grid and simulate the problem. In this study, the k-ω model was 
selected as the turbulence model to show the turbulent viscosity. The mesh independence test is done to analyze the 
performance. The axial fan is simulated using FLUENT software to prove an increase in airflow rate after using the guide 
vane. We fully described all of the advantages after using the guide vane compared to situations without a guide vane. Changes 
in velocity and pressure contours, the path line before and after using guide vanes, and the correction of velocity vectors are 
fully illustrated. 

2. METHODOLOGY 

2.1 Introduction 
Figure 1 shows the work flowchart of this study. CFD are based on fundamental governing equations named continuity, 
momentum, and energy. The sets of these equations are chosen for the target application (incompressible, in viscid, turbulent, 
two or three-dimensional) i.e. the continuity equations and NS equations are required to obtain the velocity and pressure around 
the flow field. One of the most commonly-used discretization techniques used in CFD, the FVM, is chosen to solve these 
equations. 

2.2 NS Equation 
In physics, the motion of fluid substances is described by the NS equations. By applying Newton's second law to fluid motion, 
the NS equations are generated by assuming that fluid stress is a sum of pressure and viscous terms. These equations are very 
powerful in modeling different cases such as weather, water flow, and airflow around the wing.  
Conservation of momentum (NS Equations) for incompressible flow is [50]: 
 
 

ρ
∂ui
∂t

+
∂(ujui)
∂uj

= −
∂p
∂xi

+
∂
∂xi

�2μsij� + ρgi + Fi (1) 

 
where 𝐹𝐹𝑖𝑖 is the external body force and 𝑠𝑠𝑖𝑖𝑖𝑖  is the stress tensor which is given by [51]: 

𝑠𝑠𝑖𝑖𝑖𝑖 =
1
2
�
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� (2) 

2.3 Turbulence Modeling 
The purpose of the paper is to analyze the aerodynamic features of the vane axial fans. By definition, “Turbulent fluid motion 
is an irregular condition of flow in which the various quantities show a random variation with time and space coordinates so 
that statistically distinct average values can be discerned” [52]. Statistical approaches are used to express mean and fluctuating 
parts since the turbulence involves random fluctuations of several properties [53]. Modeling the averaged turbulence amounts 
is the most common engineering method to describe the turbulent flow. In this condition, the additional term known as the 
Reynolds stress (uı′uȷ′�����) appears in the averaged NS equations. The Reynolds stresses should be modeled to solve the problem, 
and differential equations related to turbulence characteristics may have to be introduced [54]. 
 

 

 
 

Figure 1. Procedure flowchart 
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where 𝑈𝑈 is the mean velocity component, µ is the dynamic viscosity, 𝑢𝑢′ is the fluctuating velocity component, which refers to 
instantaneous velocity 𝑢𝑢𝑖𝑖, and 𝑆𝑆𝑖𝑖𝑖𝑖  is the strain rate tensor. The necessity for additional stress components comes from taking 
moments of NS equations multiplied with fluctuating property and time average. Therefore, the Reynolds stresses equation for 
incompressible flow become [39]: 
 

∂τij
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∂τij
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+ εik +
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where: 

ρCijk = ρuı′uȷ′uk′�������� + P′uı′δȷk��������� + P′uȷ′δık��������� (7) 

and 𝑃𝑃′ is the fluctuating component of pressure. 

εij = 2ν
∂uı′

∂xk

����� ∂uȷ′

∂xk

�����
 (8) 

Because of the non-linearity of the NS equation, new unknowns are created at each level. This makes the balance between 
the equations and number of unknowns impossible, but some turbulence modeling is assumed for proper approximations, so a 
sufficient number of equations exist. The turbulence models can be categorized in four different cases according to the number 
of partial differential equations [53]. In this paper, two-equation models are implemented for this study: 

2.3.1 Two-Equation Models 
When we don’t have any prior knowledge of the turbulent structure the two-equation models can be used to calculate properties 
of a given turbulent flow [55]. Most popular forms of these models are k-ε and k-ω models which model turbulence specific 
dissipation rate (ω) and dissipation rate (ε). They can be more applicable to some flows of various complexities. In this work, 
the Standard k-ω model will be used [56]. 

2.3.2 Standard k-ω Model 
The standard k-ω model in ANSYS-FLUENT is based on the Wilcox k-ω model, which incorporates modifications for low 
Reynolds number effects, compressibility, and shear flow spreading. The Wilcox model predicts free shear flow spreading 
rates that are in close agreement with measurement for far wakes, mixing layers, plans and rotational cases. It is applicable to 
wall-bounded and free shear flows. The standard k-ω model is an empirical model based on model transport equations for the 
turbulence kinetic energy (k) and the specific dissipation rate (𝜔𝜔) which can also be thought of as the ratio of ε to k. 

2.4 Design  

2.4.1 Basic Airfoil Design Parameters 
The simplest form of airfoil design involves starting with an assumed airfoil shape such as a National Advisory Committee for 
Aeronautics (NACA) airfoil. Top and Front views of airfoil parameters and geometry to explain an airfoil are demonstrated in 
Figures 2(a) and 2(b). Chord length is the distance between the leading and trailing edge. The chord line divides the airfoil into 
lower and upper surfaces. By plotting points to construct an airfoil, the points that lie between the lower and upper faces are 
known as the “mean camber line”. “Camber” is the maximum distance between the mean camber and the central axis. 
“Thickness” is known as the maximum distance between the lower and upper surfaces. “Blade span” is the distance between 
blade tips.  

2.4.2 Selection of Airfoil for Fan Blade 
It is very hard to select an accurate airfoil for blade design due to the unknown relationship between maximum airflow and 
maximum efficiency in terms of power consumption. Each airfoil is sited on various inlet and outlet blade angles at a specific 
blade length, which makes the airfoil twist in shape. In this study, we selected an airfoil based on NACA standards. 

Using the following equations, for a given value of 𝑥𝑥, it is possible to calculate the camber line position, 𝑦𝑦𝑐𝑐, the gradient 
of the camber line, and the thickness distribution, 𝑦𝑦𝑡𝑡 . The position of the upper and lower surface (𝑥𝑥𝑢𝑢, 𝑦𝑦𝑢𝑢 and 𝑥𝑥𝑙𝑙 , 𝑦𝑦𝑙𝑙) can then 
be calculated perpendicular to the camber line. In NACA four-digit airfoil profile, the first digit shows the maximum camber 
divided by 100. Second digit is the position of the maximum camber divided by 10. Last two digits are the thickness divided 
by 100. NACA 5514 which is the non-symmetrical airfoil is chosen so the maximum camber (𝑀𝑀) thickness of the airfoil is 5% 
of the chord length. The distance of maximum camber (𝑝𝑝) from the leading edge is 50% of the chord length while the maximum 
thickness of the airfoil is 14% of the chord length. The describing equations are given as: 
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Figure 2. (a) Front view of airfoil geometry, (b) Top view of fan blade geometry 

 
 

 
Figure 3. (a) Profile of a 2D NACA 5514 airfoil in AutoCAD, (b) 3D Blade sketch in CATIA 

 
 

0 ≤ 𝑥𝑥 < 𝑝𝑝 𝑝𝑝 ≤ 𝑥𝑥 < 1  

𝑦𝑦𝑐𝑐 =
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(14) 
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𝑀𝑀

(1 − 𝑝𝑝)2 (𝑝𝑝 − 𝑥𝑥) 
(15) 

𝑦𝑦𝑡𝑡 =
𝑇𝑇

0.2
(𝑎𝑎0𝑥𝑥0.5 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3 + 𝑎𝑎4𝑥𝑥4) 

(16) 

where 𝑎𝑎0 = 0.2969, 𝑎𝑎1 = −0.126, 𝑎𝑎2 = −0.3516, 𝑎𝑎3 = 0.2843, and 𝑎𝑎4 = −0.1015.  

𝜃𝜃 = tan �
𝑑𝑑𝑑𝑑𝑐𝑐
𝑑𝑑𝑑𝑑

� (17) 

𝑥𝑥𝑢𝑢 = 𝑥𝑥𝑐𝑐 − 𝑦𝑦𝑡𝑡 sin(𝜃𝜃) and 𝑦𝑦𝑢𝑢 = 𝑦𝑦𝑐𝑐 + 𝑦𝑦𝑡𝑡cos (𝜃𝜃) (18) 

𝑥𝑥𝑙𝑙 = 𝑥𝑥𝑐𝑐 + 𝑦𝑦𝑡𝑡 sin(𝜃𝜃) and 𝑦𝑦𝑙𝑙 = 𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑡𝑡cos (𝜃𝜃) (19) 
 
The airfoil two-dimension profile is generated according to the above equation, which is constructed on the x and y axes 

with coordinates described in Table 1. 
 

Table 1. x and y geometry of blade profile 
x 1.000288 0.97654 0.907101 0.797557 0.657453 0.5 0.341204 
y 0.001441 0.010095 0.0333 0.0639 0.092871 0.111764 0.114597 
x 0.198246 0.08691 0.018827 0 0.030117 0.104073 0.213969 
y 0.099598 0.070309 0.034451 0 -0.024902 -0.035759 -0.034147 
x 0.349779 0.5 0.651564 0.790228 0.901916 0.974516 0.999712 
y -0.024146 -0.011764 -0.002421 0.001551 0.00125 -0.000546 -0.0001441 

 

2.4.3 Construction of the 3D Models 
CATIA is used as the primary software to draw a 3D model of an axial flow fan. The rotor is comprised of 12 blades and guide 
vane is made of 15 blades of standard NACA 5514 series blade sections. To generate a 3D fan and vane model, we first need 
to construct a 2D sketch of a NACA 5514 airfoil. This sketch is done in AutoCAD by importing the generated points for the 
NACA series. AutoCAD is one of the world’s leading 2D CAD design software tools. Figure 3(a) shows the profile of a NACA 
5514 airfoil in a 2D sketch in AutoCAD. Figure 3(b) shows the model of blade.  

 
(a)              (b) 

 

 
(a)                (b) 
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Figure 4. (a) Guide vane in GAMBIT (top view), (b) Assembled fan and vane in GAMBIT 

 
 

 
Figure 5. (a) Fan mesh in blades, (b) Mesh quality around blades 

 
The minimum length is 106 mm which is located at the tip and the maximum length of the chord is 130 mm on the hub 

side. The hub diameter is 350 mm and the blade length is 448 mm. The 5° twist of the blade is created by copy and rotation of 
the two-dimension profiles. The angle of attack on blades is 30°. Finally, a pattern command is used to generate the blades. 
The same steps are done for generating the guide vane but in guide vane, the cord length is 350 mm. The angle of attack is 30° 
without twisting. Created 3D models are exported to GAMBIT. In GAMBIT models are assembled and meshed. Figure 4(a) 
shows the developed 3D model of guide vane in GAMBIT.  

2.5 Computational Mesh 
The computational mesh of the solution domain consists of triangular prisms and tetrahedral elements. Figure 4(b) shows the 
axial fan assembled with guide vane in GAMBIT. After the grid independence test, the best result for the mesh is constructed 
by using the size function method. The starting size in size function is 10 mm and the maximum size is 25 mm. The growth 
rate is 1.2 to get high accuracy near the blades. Figure 5(a) and (b) show the quality of mesh using size function around the 
blades. To explain the variation of aerodynamic performance and getting high accuracy and reliable results, the tunnel is 
designed according to [38]. Vane and axial fan are located at 6250 mm from the inlet side and 12500 mm from the outlet. The 
number of cell elements in the whole tunnel and vane and fan domain are 3019510. 

2.6 Computational Parameters 
2.6.1 Fluid Model 
Incompressible air is the chosen fluid in this study. For the incompressible fluid type, the density can either be constant or a 
predefined function of the pressure. Using air as an incompressible gas in the default FLUENT setting, the density law is 
defined by the Boussinesq law in which the density is kept strictly constant. With no terms in the mass and momentum 
equations, dependent on the temperature, the conservation equations are decoupled from the energy conservation equation. 

2.6.2 Flow Model 
The results are obtained with the solution of the continuity NS equations along with the equations for the selected turbulence 
model. In this study, the k-ω model is selected as the turbulence model which is modeled on the turbulent viscosity with two 
equations.  
 
 

 
(a)                (b) 

  
(a)            (b) 
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2.6.3 Boundary Conditions 
As mentioned in the previous part, pressure inlet and pressure outlet are set for boundary condition. For finding the fan 
performance curve, five different operating conditions are assumed which are 0, 120, 224, 320, and 374 Pa for the outlet side. 
Inlet boundary is defined as 0 Pa for all operating conditions.  

2.6.4 Numerical Scheme 
For the numerical solution of momentum, turbulence kinetic energy, and turbulence dissipation rate equations and second-
order upwind discretization scheme is selected. Since the flow across the fan has high rates of swirl and turbulence, and 
unstructured mesh is constructed in the solution domain, the flow is not aligned with the grid, thus second-order discretization 
is preferred for higher accuracy. The linear option is selected for the pressure interpolation scheme that simply averages the 
pressures in adjacent cells to obtain face pressure values. To obtain the pressure field, SIMPLE algorithm is used under the 
pressure-velocity coupling drop-down list. This algorithm uses a relationship between pressure and velocity corrections to 
enforce mass conservation and obtain a pressure field [56]. 

2.7 Grid Independence Test  
For finding a valid solution, the grid independence test should be done to ensure that the solution not be affected by the size 
of the grid. Grid independence is completed to ensure that the solution is independent of the grid size. This test is done by 
trying to solve the same problem with a fine grid and see the variations in results. 

One of the important parts of using CFD for studies concerning the technique of meshing arrangements is to ensure the 
results of the CFD as accurately as possible [57]. Five different mesh types are generated by GAMBIT software to ensure the 
high accrue independency test. Increasing the time of simulation by the number of elements is illustrated in Figure 6. Table 2 
shows the variation of the mass flow rate with different sizes of mesh. As can be seen in the first three types of meshes, the 
results depend on the size of the mesh. Numbers 4 and 5 in Table 2 have the same result for flow with the error rate of 2%. 
Considering the time of simulation, Number 5 needs 900 minutes to simulate and solve the domain but this is reduced to 500 
minutes in Number 4. Considering the results of Number 4 and 5, Number 4 with 1676892 elements is selected as a suitable 
mesh to get acceptable results for simulation with the most optimum simulation time.  

 

 
Figure 6. Variation of flow rate and computation time with numbers of elements in fan 

 
Table 2. Grid independence test 

No. 

Size function 
Element 
Numbers 

Airflow Rate 
(m3/s) Mesh Start Size Ratio Mesh Size 

(mm) 

1 40 1.2 80 385008 5.68 
2 30 1.2 60 617635 13.53 
3 20 1.2 50 1049428 19.64 
4 10 1.2 25 1676892 23.948 
5 5 1.2 10 2395542 24.506 
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3. RESULTS 
In this section, according to the verified model, the guide vane is assembled to the axial fan. Figure 7(a) displays the final 
result comparisons between, after and before using guide vanes in the axial fan. After using the guide vane, the numerical 
simulation shows an enhancement in the air flow rate of the axial fan in all operating conditions. Figure 7(b) shows the trend 
of improvement in the flow rate when using the guide vane. The guide vane best performs in the highest static pressure of 
6.3%. By increasing the airflow rate, the performance of the guide vane can be reduced, in the worst case, to 3.2%. Table 3 
illustrates the final results of the simulation after and before using a guide vane. 

Figures 8(a) and 8(b) show the different sections of the fan blade and guide vane. Plane A is the inlet of the axial fan. 
Plane B is the center of the blade, plane C is the middle of the vane, and finally, plane D is the outlet of the guide vane. Line 
x = 600 mm also is shown in Figure 8. 

3.1 Velocity and Pressure  
Figure 9(a) shows velocity contour on the inlet of the axial fan. This figure shows the enhancement of the velocity from center 
to the tip of the blades. Figure 9(b) shows the velocity contour of the blade section. The cut plane is exactly in the middle of 
the blades. Highest velocity is at the top of the blades in the tip section with 72 m/s. Figure 9(c) shows the velocity contour in 
the center cut plane in guide vane. The highest velocity in guide vanes happened on the side of 51(m/s). Figure 9(d) shows 
velocity contour on the outlet of the guide vane (just showing air motion). Figures 10(a) and 10(b) display that the variation 
domain of the axial velocity after using the guide vane becomes much less than without the guide vane. Pressure contor in the 
center plane of the axial fan and guide vane are shown in Figures 9(e) and 9(f). 
 

 

 
Figure 7. Static pressure vs. volume airflow rate in different simulations (Mesh 4) and percentage of improvement in airflow 

by using the guide vane for different static pressures in axial fan 
 
 

Table 3. Final results of the air flow with guide vane 

Static pressure (Pa) Air flow without vane 
(m3/s) 

Airflow with vane 
(m3/s) 

Improvement of 
airflow (%) 

0 27.168 28.037 3.2 

120 23.948 24.9198 4 

224 22.128 23.2178 4.9 

320 17.808 18.8462 5.8 

374 13.978 14.845 6.3 
 

0 50 100 150 200 250 300 350 400

Static Pressure (Pa)

10

12

14

16

18

20

22

24

26

28

30

A
irf

lo
w

 R
at

e 
(m

3
/s

)

CFD without GV

CFD with GV

0 50 100 150 200 250 300 350 400

Static Pressure (Pa)

3

3.5

4

4.5

5

5.5

6

6.5

Im
pr

ov
em

en
t i

n 
A

irf
lo

w
 R

at
e 

w
ith

 G
V 

(%
)



 A. SAEIDI AND P. TAHERI, APPLICATIONS OF MODELLING AND SIMULATION, 4, 2020, 258-271  
 

267 
 

 
Figure 8. (a) Cutting planes, (b) Locations of the cutting planes 

 

 
Figure 9. Velocity contour on the plane A (m/s), (b) Velocity contours on the center of the blade, plane B (m/s), (c) Velocity 
contour on guide vane, plane C (m/s), (d) Velocity contour on the plane D (m/s), (e) Pressure contour on guide vane, plane B 

(Pa), (f) Pressure contour on the plane C (Pa) 

 
(a) 

 
(b) 

 
(a)                  (b) 

 
(c)                  (d) 

 
(e)                  (f) 
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(a) 

 
(b) 

Figure 10. Axial velocity at x = 600 mm (a) Without guide vane (m/s), (b) with guide vane (m/s)  
 
 

 
(a) 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

 
 

 
(e) 

 
 

 
(f) 

 
Figure 11. (a) Path line of domain without guide vane, (b) Path line of domain with guide vane, (c) Correction of airflow 

direction by using guide vane, (d) Velocity contour in domain without guide vane (m/s), (e) Velocity contour of domain with 
guide vane (m/s), (f) Direction of vectors after designing guide vane 

 

3.2 Path Line  
Figures 11(a) and 11(b) represent the direction of airflow after fan impeller in the downstream region. There is a substantial 
amount of swirl kinetic energy in the axial fan without a guide vane. By using the guide vane as it can be seen in Figure 11(c) 
the direction of airflow becomes straight after passing through the guide vane. Figures 11(d) and 11(e) show the velocity 
contours before and after using the guide vane. The minimum velocity is in front of the hub. Figure 11(f) displays the correction 
of the direction of the velocity vectors in the outlet of the guide vane.  
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4. DISCUSSION 
We can conclude that after designing a guide vane, the volume airflow rate increases in all of the static pressures. Also, with 
increasing static pressures, the improvement in airflow rate can be observed. The highest improvement of airflow can be 
obtained in the highest static pressure (374 Pa) with 6.3%. By increasing the amount of airflow, the performance of the guide 
vane is reduced. The lowest performance of the guide vane as well as the lowest improvement of airflow is 3.2% at the lowest 
static pressure (0 Pa) and the highest airflow rate (28.037 m3/s). According to Figures 9 and 11, as the outlet airflow angle 
decreases, the outlet airflow direction approaches the axial direction. The guide vane makes use of the swirl kinetic energy and 
raises the pressure increase of the fan as well as its efficiency. 

Considering velocity, in plane A (inlet of the axial fan) and plane B (center of the blade) the changes in the velocity is 
increasing radially from the core to the edges. Highest velocity is at the top of the blades in the tip section with 72 (m/s). In 
plane C (middle of the vane), the highest velocities can be observed on the surface of the blades, because the blades have no 
motion in the guide vane. A velocity contour on plane D (outlet of the guide vane) just shows the air motion. 

Comparing Figures 10(a) and 10(b), we can conclude that the fluctuation domain of the axial velocity after using the guide 
vane reduced significantly compared to the case without using the guide vane. According to pressure contours on plane B 
(blades) and plane C (middle of the vane), we can see that in both cases the pressures on the blades are lower in the front than 
the back. The improvement in the static pressure reduces the power consumption of the fan.   

According to the path line, we can see that when using a guide vane, airflow direction becomes straight compared to a 
situation without a guide vane in use. We can also interpret that after using a guide vane, we do not have much difference in 
the magnitude of velocities and, clearly, the velocity is distributed uniformly in this situation. The direction of the velocity 
vectors is corrected after using a guide vane so that we do not have many swirling vectors; instead, we have laminar velocity.  

5. CONCLUSION 
Due to the swirl kinetic energy in the downstream of axial fans, huge energy losses happen in turbo machines. To solve this 
problem, the guide vane is designed to reduce the effect of the swirling and transform the swirl kinetic energy into increased 
static pressure. In addition, by using the guide vane, the airflow in axial fans is increased. A three-dimensional model was 
produced using the NACA airfoil in the CATIA software and simulated with FLUENT software. Improving the airflow rate 
was achieved by using the guide vane for all operation conditions.  

In terms of boundary conditions, we selected the pressure for the inlet as well as pressure for the outlet, since the objective 
of this study is to achieve volumetric airflow rate improvements. In terms of the fluid model, incompressible air is chosen as 
the fluid with a strictly constant density. In this study, the k-ω model was selected as the turbulence model to show the turbulent 
viscosity. After the grid independence test, we can find that among five different types of meshes, just numbers 4 and 5 are 
independent of mesh sizes. Since the time of simulation is very crucial, we selected number 4. We fully described all the 
advantages after using the guide vane compared to situations without a guide vane. Changes in velocity and pressure contours, 
the path line before and after using guide vanes, and the correction of velocity vectors are fully illustrated. The guide vane 
directs the fluid into the same direction of rotation as the fan impeller, which reduces the swirl kinetic energy. It can be observed 
that the airflow is increased up to 6.3%. The improvement in the static pressure and reduction of swirl energy increase the total 
fan efficiency.  The results of this project’s model setup can be used for future investigations of an axial flow fan using different 
CFD software packages such as NUMECA and Open Foam. 
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APPENDIX 
Table 4 provides the list of abbreviations used in this paper. 
 

Table 4. List of Abbreviations 
Abbreviation Description 

2D Two Dimensional 
3D Three Dimensional 
ACSC Air-Cooled Steam Condenser 
AMCA Air Movement and Control Association 
CFD Computational Fluid Dynamic 
FVM Finite Volume Method 
GV Guide Vane 
IGV Inlet Guide Vane 
KS Korean Standard 
MCF Multi-blade Centrifugal Fan 
NACA National Advisory Committee for Aeronautics 
NGV Nozzle Guide Vane 
NS Navier-Stokes 
RANS Reynolds Averaged Navier-Stokes 
RNG Re-Normalization Group 
RSA Response Surface Approximation 
RSM Response Surface Method 
RVCT Recess Vaned Casing Treatment 
SST Shear Stress Transport 
TE Trailing Edge 
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