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Abstract 

A complex systems approach conceptualizes spatial systems from the bottom-up to 

better understand how local spatial interactions generate emergent system-level 

behavior and spatial patterns at large spatial extents. This approach can be applied to 

examine ecological, urban, and social systems within contexts of geographic space and 

time. Geographic automata systems (GAS) including cellular automata (CA) and agent-

based models (ABM) are spatio-temporal modelling frameworks that are rooted in 

complex systems theory. In a similar manner, network theory uses a complex systems 

approach to represent and analyze spatial systems as sets of georeferenced nodes and 

links that form measurable spatial networks. Separately, GAS and network-based 

approaches offer unique advantages in exploring and analyzing complex systems, 

however the two approaches are rarely integrated. Therefore, the purpose of this 

dissertation is to explore the intersection of complex systems theory, geographic 

information science, and network theory to leverage the advantages of each field for 

better understanding a variety of complex spatial systems. The main objective is to 

develop a suite of novel network-based automata modelling approaches that simulate 

complex dynamic spatial systems as measurable, evolving, spatial networks. Three 

novel modelling approaches are developed including: a geographic network automata 

(GNA) model that uses spatial networks, network-based transition rules, and network 

analysis for the representation of complex spatial systems; a network-based ABM (N-

ABM) that integrates networks not as inputs for the ABM, but as a novel way to 

conceptualize, analyze, and communicate the model and model results; and a network 

based validation approach for the testing of ABMs. Obtained results demonstrate that 

the integration of complex systems theory, geographic information science, and network 

theory offers new means for the representation, analysis, communication, and testing of 

GAS and the complex systems they represent, thus helping to thus helping to "open the 

black box". Furthermore, the presentation of modelling results in application to insect 

infestation and disease transmission contribute to the enhancement of decision-making 

processes by providing tools that can be used in forecasting and scenario testing. This 

dissertation contributes new methodological frameworks to the fields of geographic 

information science, GAS, and network theory.  
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Chapter 1.  
 
Introduction  

Real world geographic phenomena from ecological to social are increasingly 

conceptualized from the bottom-up and analyzed using a complex systems approach 

(Thrift, 1999). A complex systems approach aims to explore how small-scale interactions 

between individual system components across space and time generate system-level 

behavior and spatial patterns at much larger scales, referred to as emergence (Cilliers, 

1992). For example, small scale interactions between insect pests and their hosts 

generate large scale spatial patterns of infestation. In another example, social 

interactions between individuals infected with influenza form large scale patterns of virus 

propagation. A complex systems approach acknowledges that real systems are typically 

non-linear and thus cannot only be understood by the sum of their parts (Manson, 2001; 

Rietsma, 2002). The non-linearity in real systems is a function of the behavior of the 

system components, shaped by their unique characteristics and objectives as well as 

feedback from other components within the system, their environment, or the system in 

its entirety. Variations in behavior and dynamics at the local level is often amplified at the 

system level, making these systems challenging to understand (Manson, 2001). 

Researchers model real-world systems in order to better understand them 

(Cilliers, 1999). Conventionally under the scientific framework of reductionism, real-world 

systems have been simplified and distilled down to their individual components in order 

to better understand their behavior. This traditional bottom-up view influenced the design 

of models that represent real-world systems as closed, balanced, and homogenous 

(Batty & Torrens, 2005). Complex systems theory offers an alternative to reductionism 

by focusing on interaction between system components, spurring the development of 

new types of models to better understand real phenomena by addressing that 

complexity emerges from system openness, non-linearity, and heterogeneity (Thrift, 

1999; Wilson 1994; Batty & Longley, 1995).  

More recently, complex geographic systems are represented using geographic 

automata systems (Torrens & Benenson, 2005). In the same way that complex systems 

theory conceptualizes geographic phenomena from the bottom-up, geographic automata 
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provide an explicitly spatial framework to represent and analyze systems from the 

bottom-up by discretely representing the driving mechanisms observed at the local level 

in the system from which system-level behavior emerges. The modelling approach 

cellular automata (CA) represents local dynamics between system components (White & 

Engelen, 2000) while another approach, agent-based modelling (ABM), represents 

interactions between individuals or "agents" (Torrens, 2010). Geographic automata offer 

an alternative to top-down statistical or mathematical models that use equations and 

mathematical functions to capture system level processes and as such cannot capture 

the complexity resulting from individual-level heterogeneity and adaptation, local spatial 

and temporal variations, and subsequent non-linearity inherent to real-world complex 

systems (Parunak, 1998; Railsback, 2001; Torrens, 2010). These modelling approaches 

are coupled with geographic information systems (GIS) and geospatial data sets and 

have been used in application to a variety of real geographic phenomena with early 

studies in urban (White & Engelen, 1993), social, and ecological systems (DeAngelis & 

Mooij, 2005). Flexible in their model design, geographic automata can allow for easy 

manipulation of parameters and scenario building and provide useful contributions to 

decision-making processes. 

Network theory also seeks to represent and analyze systems using a bottom-up 

complex systems approach. In these network representations, nodes represent system 

components and links represent the discrete spatial interactions between them. Network 

representations are particularly advantageous because networks can be measured 

using graph theory, a branch of mathematics, that mathematically formalises network 

conceptualizations of the real world to graphs (G), which are made up of a collection of 

nodes (N) connected links (L) and defined as G = {N, L} (Borner et al., 2008). Graphs 

have a structure that can be solved mathematically to aid in the understanding of the 

system it represents (Barabasi, 2014).  Graphs are traditionally arranged based on their 

topological relationships. For example, in a graph representing a social network, each 

node represents an individual and each link represents a friendship between two nodes. 

Nodes in an aspatial representation of this social network will be arranged topologically 

based on the strength of their relationships. However, more recently, there is interest in 

arranging graphs based on the spatial location of their nodes. For example, by 

embedding that same social network in geographic space, nodes represent the spatial 

location of individuals and the links represent the friendship between the two individuals. 



3 

Graph theory can then be used to characterize the spatial structure of the social 

network. 

The characterization of the spatial structures of urban, social, ecological, or 

geophysical networks is vital as this information can be used to understand the 

dynamics and processes occurring on or within that network. Based on this idea, 

networks are used as inputs in geographic automata where simulated system dynamics 

operate as a function of an underlying network structure. For example, airline networks, 

street networks, and origin-destination networks are incorporated as inputs in ABMs to 

better simulate dynamics of human mobility which consequently has implications for the 

spread of disease, flow of information, and traffic and congestion (Torrens, 2010; Dibble 

and Feldman, 2004; Balcan et al. 2009; Burger et al., 2017, Pires & Crooks, 2017).  

The relationship between the spatial network structure and the spatial dynamics 

and processes occurring on or within that network is tightly coupled and can be 

considered non-linear. More specifically, in the same way that the spatial structure of a 

system influences the system's dynamics and processes, these dynamics and 

processes over time change the system's spatial structure. For example, the spatial 

structure of a transportation network plays a significant role in the patterns of human 

mobility and in turn, patterns of human mobility may alter the structure of the 

transportation network over time. The change in a system's spatial structure over time as 

a function of its network dynamics is typically referred to as network evolution or as 

Barthelemy (2018) recently termed “network morphogenesis”. Network evolution has 

been operationalized using an aspatial modelling approach referred to as network 

automata (Sayama and Laramee, 2009; Smith et al., 2011); however studies exploring 

this modelling approach do not account for the spatial properties of networks, do not 

examine real-world networks, nor do they use geospatial data. 

The fields of geographic information science (GISc) and geographic automata 

systems as well as network science have a common interest in both exploring and better 

understanding the linkage between the spatial structures of geographic systems and 

their tightly coupled dynamics and processes. Batty (2005, pg. 3) summarizes this from 

a GISc perspective, stating:  

 “Traditional GIS is largely a-temporal, representing locational 
structures at a single point in time. In so far as time has been involved, 
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such systems simply represent a series of cross-sections in comparative 
static manner, with little functionality or science being developed to deal 
with processes that link these cross-sections through their temporal 
evolution”. 

Furthermore, he suggests that part of the problem may be that GISc models are 

challenged with the task of embracing spatial relations, interactions, and connectivity 

and this poses a significant barrier to its continued development. Although network 

science inherently represents interactions and connectivity between system components 

within larger complex spatial systems and offers the theoretical basis and tools for other 

fields like GISc to follow suit, the field of network science also struggles with linking static 

network structures observed at various points in time with the spatial processes that 

drive their changes.  

Exploring the tight-coupling between network structures and the processes 

occurring on and within such structures requires a disaggregated approach that 

acknowledges the complexity inherent to these systems. Specifically, the local dynamics 

and processes that operate as a function of the underlying spatial structures 

subsequently spurring the evolution of these structures would need to be recorded and 

measured. In most cases, field surveys are not extensive enough, nor is data at a fine 

enough resolution to capture and explore this tight-coupling between spatial structure 

and dynamics. Instead, computational modelling can be leveraged. Barthelemy (2018) 

calls for a new modelling framework for studying and testing the interplay between the 

evolution of network structures as a function of their dynamics and processes and vice 

versa. However, the development of an entirely new modelling framework is not 

necessary since the integration of networks with well-developed complex systems 

modelling approaches would inherently meet those modelling needs, providing the 

potential to analysis of complex geographical systems while leveraging tools offered by 

the fields of complex systems theory, GISc, and network science.  

This integration of networks and geographic automata also has the potential to 

overcome traditional challenges faced in complex systems modelling. Geographic 

automata models are typically heavily parameterized, contain large numbers of 

heterogeneous and adaptive agents, and incorporate stochastic elements and 

processes. As a result, it can be challenging to fully understand the link between local 

processes and emergent behaviour, even in well-developed geographic automata 

(Topping et al., 2010). Approaches such as sensitivity analysis and robustness analysis 
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aim to shed light on this link by exploring how changes in model input correspond to 

changes in model output; however, the complexity of geographic automata limits the 

ability to obtain a complete understanding of the model (Broeke et al., 2016). As such 

geographic automata models are referred to as ‘black boxes' and thus modellers face 

challenges in model analysis, testing, replicability, and communication.  Networks and 

geographic automata can be integrated to form a new framework to characterize and 

better understand geographic model internal behavior and emergent simulated patterns. 

In this case, networks are not implemented as a model input for which to inform system 

dynamics in the model, but rather, the complex system dynamics simulated by the 

geographic automata are abstracted as a network representation that can then be 

measured and quantified. This information can provide an opportunity to open the ‘black 

box' and form additional means for understanding, analyzing, and communicating 

geographic automata models and the complex spatial systems they represent.   

1.1. Research Problems and Questions 

This dissertation examines the integration of complex systems theory, 

geographic information science (GISc), and network theory and seeks to leverage the 

advantages of all three scientific fields of research for the conceptualization, 

representation, and analysis of both geographic automata and the complex spatial 

systems they represent. Specifically, this dissertation addresses the following research 

questions: 

1. To what extent can the integration of network theory and geographic 
automata systems be leveraged for the development of theoretical 
frameworks for network-based automata modelling approaches?  

2. How can the theoretical frameworks for network-based automata 
models be implemented for the representation and analysis of real 
spatial-temporal complex phenomena at a variety of spatial scales? 

3. To what extent can network theory be used to enhance the testing of 
geographic automata models? 

1.2. Research Objectives 

In order to answer the proposed questions, this dissertation integrates concepts 

of GISc and complex systems approaches with network theory for the development of 
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novel network-based automata modelling approaches that can be used to represent and 

understand a variety of complex dynamic spatial systems. The main objectives of this 

dissertation are:  

1. Development of a theoretical framework for a novel network-based 
automata modelling approach called Geographic Network Automata 
(GNA) for the representation and analysis of complex spatial systems 
as evolving networks. 

2. Implementation of the proposed GNA modeling approach to simulate 
and analyze ecological phenomena at a large spatial scale using the 
case study of the emerald ash borer (EAB) forest insect infestation. 

3. Development and implementation of a network-based ABM (N-ABM) 
modeling approach applied to the case study of the EAB forest insect 
infestation at a fine spatial scale. 

4. Leverage spatial network analysis for the development of a robust 
NEtworks for Agent-based model Testing (NEAT) approach and 
implement the NEAT approach on an epidemiological network-based 
ABM (Epi-N-ABM) as a case study. 

This dissertation meets these objectives using a variety of contexts, ranging from 

ecological to social.  

1.3. Dissertation Overview 

The five chapters following the Introduction address the objectives of this 

dissertation. Chapter 2 offers a comprehensive review of the literature, exploring in detail 

the intersection of GISc and network science. This synergy between the two fields paves 

the way for the use of spatially explicit networks to represent and understand complex 

spatial systems. This chapter also offers an introduction to graph theory, the 

mathematical foundation for the development of the programming functions implemented 

in all subsequent chapters that are used to measure and characterize spatial network 

structures. 

Geographic network automata (GNA), a novel modelling approach developed for 

the simulation of complex systems as evolving spatial networks is presented in Chapter 

3. In the same way that CA simulates dynamics between neighbouring cells and ABMs 

simulate interactions between discrete autonomous agents, GNA simulates local spatial 

interactions between georeferenced nodes using links from which a spatial network 
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structure emerges and evolves. In this modelling approach, the tight coupling between 

spatial network structure and the dynamics and processes occurring on and within these 

networks can be examined. The GNA modelling approach is well situated under the 

broader modelling framework of geographic automata systems by using a network 

automata modelling approach that is explicitly geospatial. The framework is implemented 

using a spatial network representation of Conway's Game of Life (Conway, 1970), where 

the implemented transition rules simulate dynamics between nodes at the very local 

level, altering the structure of the spatial network, which in turn influences the dynamics 

between nodes. Graph theory measures are used to characterize the structure and 

behavior of simulated networks.  

Chapter 4 presents a study of the application of the GNA modelling framework to 

the real-world case study of the emerald ash borer (EAB) forest insect infestation at a 

large spatial extent. The GNA implements real geospatial datasets representing forest 

stands that have been surveyed to contain ash trees in the state of Michigan, US. These 

forest stands serve as habitat patches that sustain EAB populations. In the GNA model, 

these forest stands are represented as nodes and dispersal between nodes are 

represented using links, forming an evolving network of EAB spread across Michigan 

from 1997 to 2011. As the infestation worsens, the network structure evolves as new 

forest stand nodes are added to the network and as long infested forest stands die and 

are removed from the network. The evolving network's spatial structure can be 

measured using graph theory to better understand how in combination with landscape 

connectivity influences the dynamics of the spread of EAB at a large regional scale. 

Given that the work so far simulates and analyses patterns of EAB infestation at 

a coarse spatial resolution (Chapter 4), there is a need to examine network structures 

representing EAB dynamics at finer spatial scales.  Chapter 5 focuses on the integration 

of networks and ABM modelling approaches, providing new means to analyze ABMs 

and the complex phenomena they represent. Specifically, Chapter 5 uses a network-

based ABM (N-ABM) to examine EAB behavior and the resulting patterns of spread as 

represented by spatial networks at very fine spatial and temporal scales in the Town of 

Oakville, Canada from 2008 to 2009. The proposed N-ABM modelling approach differs 

from the GNA modelling approach in that dynamics governing the emergent patterns of 

spread are a function of programming complex behaviors and decision making of 

individual EAB agents. The network component of the N-ABM abstracts the dynamics, 
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processes, and emergent spatial patterns simulated by the ABM as networks, allowing 

for the application of graph theory to measure this behavior. This N-ABM differs from the 

traditional use of networks as inputs in ABMs from which agent behavior and dynamics 

are influenced. Selected graph theory measures have been used to analyze the 

simulation outcomes. 

The inclusion of networks in geographic automata modelling approaches both 

requires and offers potential new means for model testing. Chapter 6 presents a 

NEtworks for ABM testing (NEAT) that focuses on the testing of internal model 

processes and simulated spatial networks patterns. The approach is applied to an 

epidemiological network-based ABM (Epi-N-ABM) that simulates the transmission of the 

influenza virus through a population in Vancouver, Canada. Dynamics simulated in the 

ABM are abstracted as both spatio-temporal contact and infection networks that can be 

measured using graph theory and compared with observed properties of real contact 

and infection networks.  

All of the models as mentioned above were developed and implemented using 

the Java programming language in the Eclipse integrated development environment with 

a free and open source simulation platform called Repast Simphony (Repast Simphony, 

2016, 2017, 2018), capable of working with geospatial data. The ABMs were executed 

on a Compute Canada, West Grid facility for parallel computing. Visualization of the 

model outputs was facilitated by a variety of proprietary and open source software 

including ArcGIS, Idrisi, and Gephi. The concluding chapter of this dissertation 

summarizes the general findings, offers insight into potential future research, and 

discusses the contributions to the intended fields of study. 
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Chapter 2.  
 
Overview of Network Theory and its Geospatial 
Applications  

2.1. Abstract 

Geographic phenomena can be conceptualized and modelled as a complex system 

where spatial patterns and processes emerge from local interactions between individual 

components of the system. Complex systems from ecological, urban, social, to 

geophysical typically endure as non-linear processes that make these systems difficult to 

model, analyze, and understand, particularly using top-down traditional statistical 

methods. Both geographic information science (GISc) and network science acknowledge 

the value in using a decentralized approach to not only represent, but also characterize 

and analyze complex spatial systems. Despite their complementary nature, approaches 

that integrate GISc and network science are relatively limited, especially in the 

representation and analysis of spatial systems in contexts that include both geographic 

space and time. The objective of this study is to provide a comprehensive review of the 

intersection of GISc and network science application to geographic phenomena. This 

study argues that their intersection naturally pushes both fields forward in their combined 

interest to better represent and understand spatio-temporal phenomena and the link 

between spatial process and structure.  

2.2. Introduction  

Geographic Information Science (GISc) is concerned with the fundamental 

issues surrounding the use of digital technology to collect, store, manage, represent, 

model, and analyze geographic information (Wright, 2010). Network science is defined 

as the application of graph theory to problems in a variety of fields (Barabasi, 2016). 

Although strikingly different by definition, these two fields of science share largely 

unrevealed commonalities in the way in which they conceptualize and represent the real 

world. For one, both fields acknowledge the value in organizing real systems under the 

lens of complex systems and thus, often conceptualize real world phenomena from the 

bottom-up, in contrast to the top-down way such systems are traditionally conceptualized 
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(Holland, 1996). This complex systems approach seeks to understand how 

heterogeneous components i.e. people, institutions, animal species, or financial 

transactions “interact” or “connect” and self-organize to form emergent systems including 

societies, cities, ecosystems, and economies. Second, GISc and network science have 

an aligned interest in shifting from describing the static structure of systems as a whole 

to understanding and representing the process of change occurring on and within such 

structures (Batty, 2005). This requires the inclusion of time, not as a set of snapshots of 

the static system from several time periods, but more specifically to link the changes 

observed in the system over time with the system’s underlying processes. Finally, and 

potentially most unifying, is the common interest in the explicit representation of 

geographic space as a driver of these structures and the tightly-coupled processes that 

shape them over time.  

Early studies that sought to characterize the structure of networks were not 

necessarily concerned with their geographic properties and thus studies that leveraged 

both GISc and network science were limited (Barthélemy, 2011). It was not until the 

1970s when quantitative geographers began using spatial networks to characterize the 

spatial structure and evolution of transportation networks that the interest in spatial 

properties of networks moved to the forefront (Barthélemy, 2018). Researchers 

observed that rooting networks in geographic space provides additional and important 

information that may help to explain the behavior of spatial systems. For example, in a 

topological social network, individuals are represented as nodes and the strength of 

relationships between two nodes are represented by their length. In this aspatial 

representation, close relationships will have shorter links than acquaintances. Since this 

type of network does not capture physical interactions between individuals in geographic 

space, this representation is not useful for understanding the spread of disease. Instead, 

a spatial representation of a social network, where links represent physical contact 

between individuals can be used (Rahmandad and Sterman, 2008). The use of spatial 

network analysis in regional geography in the 1960-70s ultimately paved the way for first 

formal intersection of GISc and network science, sparking research in spatial networks 

that would later make contributions to transportation geography, landscape ecology, 

epidemiology, biology, and the development of methods for complex spatial systems 

modelling.  
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The objective of this study is to critically analyze the way in which GISc and 

network science thread together as the underpinnings for the use of spatial networks to 

represent and understand complex spatial systems. This study argues that the 

development of approaches that integrate GISc and network science meets the common 

interests of both fields and in turn allows for the quantification of complex spatial 

structures, provides evidence that spatial networks structures have implications for 

system processes, seeks to better understand dynamic system properties, facilitates 

new methods for spatial analysis, and most challenging of all, explores the evolution of 

network structure as a function of network dynamics (Phillips et al. 2015). The latter has 

been facilitated by increased data availability, computational power, and sophisticated 

spatially explicit modelling. This research study first provides an overview of traditional 

network science theory, next, comprehensively reviews a selection of literature regarding 

network science in a spatial context, and lastly, finishes by proposing future directions 

for network science in GISc. 

2.3. Theory behind Network Science 

Although the first formal intersection of the spatial sciences and network science 

is marked by the use of spatial networks by quantitative geographers in the 1960-70s, 

the first known application of graph theory (Euler, 1741), 200 years earlier, can also be 

considered as an inherently spatial problem. Famously referred to as the “Seven Bridges 

of Konisberg”, mathematician Leonard Euler represents the islands of Konisberg as 

nodes and the bridges between them as links, forming a network. Using graph theory, he 

proves that it is impossible to walk across all seven bridges connecting the islands and 

never cross the same one twice, what was later more commonly referred to in network 

science and GISc as a routing problem. He concludes that finding (or not finding) the 

path is not a matter of intelligence; it is simply an inherent property of the graph. Euler’s 

findings formed the foundation of network science and gave way to the notion that 

graphs have properties and structure and graph theory can be used to discover and 

catalogue these properties. Following in the footsteps of Euler’s findings, early spatial 

network analysis of real complex spatial systems focused on describing and cataloguing 

the properties of spatial networks using graph theory. 
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2.3.1. Descriptive Graph Theory Measures 

Spatial networks SN are mathematically represented as graphs G composed of 

spatially embedded nodes N that are connected by links L, meaning the node’s location 

can be identified by a pair of coordinates. The structure of a graph can be described and 

cataloged using a variety of developed graph theory measures. These measures can be 

found in varying degrees of detail in just about every network science review paper 

(Newman, 2003, Barthélemy, 2011, Lewis, 2011, Barabasi et al, 2016). Based on the 

scope of this review, this section briefly defines a few important graph measures that are 

useful for characterizing networks. A simple spatial graph G (Figure 2.1) is used to 

illustrate these measures. 

 

Figure 2.1. A simple spatial graph G to illustrate graph notations and 
definitions. 

Graphs are defined as G = {N, L} where N are the set of nodes and L are the set 

of links that make up the graph. A node v is referred to by its order i in the set N. A link e 

joins nodes 𝑣𝑖 and 𝑣𝑗. In Figure 2.1, for graph G, the number of nodes n = 14 and the 

number of links m = 16. Graphs can be undirected G or directed G’, unweighted or 

weighted. Social networks are most often abstracted as undirected graphs since each 

relationship between two people is typically reciprocated. In contrast, flows in a power 

line network may be unidirectional. In a weighted graph, weight w typically represents 
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the volume of people, objects, or information that “flows” between nodes (Barrat et al., 

2004). Graphs can also be bipartite, meaning nodes can be divided into two classes U 

and V where each link connects a U-node to a V-node and vice versa (Barabasi, 2016).   

The topology of a graph can be represented using an adjacency matrix (Figure 

2.2). This is an N x N matrix A where Aij = 1 if nodes 𝑣𝑖 and 𝑣𝑗  connect, and 0 otherwise. 

If the graph is directed, the adjacency matrix will be asymmetrical. If the graph is 

undirected, the adjacency matrix will be symmetrical. For example, for the undirected 

graph in Figure 2.1, the adjacency matrix would appear as follows: 

 

 

Figure 2.2. Adjacency matrix A for an undirected graph G. 

Common graph measures were developed to characterize the topological 

structure of a graph and thus are a function of the information stored in the adjacency 

matrix. Common graph measures (Barthélemy, 2011) include the following: 

Degree 

The degree of a node k is a local measure specific to an individual node and is 

defined as the sum of links ej connected to node 𝑣𝑖:  
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𝑘 =  ∑ 𝐴𝑖𝑗𝑗  (1) 

where the higher the degree, the more connected a node is. For example, for the simple 

spatial graph G (Figure 2.1), the degree k of node v1 = 1 and the degree k of node 

v10 = 3.  

Average Degree 

The average degree <k> is a global measure that calculates the average number 

of links of nodes across a non-directed graph, defined as:  

< 𝑘 > =
1

𝑁 ∑ 𝑘𝑖𝑖
= 2𝐸/𝑁 (2) 

where twice the number of links (directed both ways) is divided by the number of nodes. 

In the example of spatial graph G (Figure 2.1), the average degree <k> is two, meaning 

that on average, each node is connected to two other nodes. The degree distribution is 

useful for providing an overall snapshot of the structure of the network. 

Degree Distribution 

The degree distribution P(k) is the fraction of nodes in a graph with degree k. For 

example using the example graph G in Figure 2.1, the fraction of nodes in a graph with 

degree k can be calculated by the number of the nodes with the same degree, divided 

by the total number of nodes in the graph G. The degree distribution P(k) can be plotted 

on a histogram to present the degree distribution of the graph (Figure 2.3). The degree 

distribution is useful for understanding whether all nodes in the graph have the same 

number of connections, or whether some have many connections and some only have a 

few connections. 
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Figure 2.3. The resulting degree distribution for graph G, illustrated in Figure 
2.1.  

Clustering Coefficient 

The clustering coefficient C measures “cliquishness” of an individual node 𝑣𝑖, 

commonly described as the probability that “friends” of i (i.e. nodes connected to 𝑣𝑖) are 

also friends of each other (Watts & Strogatz, 1998). When C = 1, the node 𝑣𝑖  and the 

nodes connected to node 𝑣𝑖, also known as neighbouring nodes, are perfectly 

connected. In contrast, when C = 0, the node’s neighbours are not connected at all.  For 

node 𝑣𝑖 of degree ki, the clustering coefficient C(i) is defined as:  

𝐶(𝑖) =  
2𝐸𝑖

𝑘𝑖(𝑘𝑖−1)
  (3) 

where Ei is the number of links among the neighbors of 𝑣𝑖. The clustering coefficient 

C(12) from the example graph G (Figure 2.1), is calculated by counting the number of 

neighboring nodes of v12, that are connected to each other. In this example, node v12 has 

3 neighboring nodes or k12 = 3, and the number of connections between those 

neighboring nodes E12 = 1. Therefore, the clustering coefficient of C(12) is 0.166. 

Average Clustering Coefficient 

The average clustering coefficient <C> is a global measure that determines the 

cliquishness of all nodes across a graph and is calculated as the average C over all 

individual nodes. When <C>= 1, the graph is perfectly connected and thus maintains a 

lattice like structure. In contrast, when <C> = 0, the graph is not connected at all and 
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thus maintains a star like structure. The average clustering coefficient <C> for graph G is 

0.26 (Figure 2.1). 

Path 

A path 𝑃𝑖𝑖,𝑖𝑛
is the collection of nodes and/or links between two nodes 𝑣𝑖  and 𝑣𝑗.  

The collection of nodes and links in a path is defined as: 

𝐿𝑃 = {𝑣0, 𝑣1, 𝑣2, … 𝑣𝑛}  (4) 

𝑁𝑃 = {𝑒0, 𝑒1, 𝑒2, … 𝑒𝑚}  (5) 

Shortest Path Length 

There may be many paths of varying lengths 𝑙 between two nodes. The shortest 

path length is calculated by finding all paths between two nodes and finding the shortest 

path. The shortest path length is calculated by counting the total number of intermediate 

nodes or links along the shortest path between two nodes and is denoted by 𝑙𝑠. The 𝑙𝑠 

measure is defined as: 

𝑙𝑠(𝑖, 𝑗) =  
𝑚𝑖𝑛

𝑝𝑎𝑡ℎ𝑠 (𝑖 → 𝑗)
    (6) 

Average Path Length 

The size < 𝑙 > of a graph is the average length between all possible pairs of 

nodes in the network. 

Diameter 

The diameter of a graph 𝑑𝐺 is the maximum shortest path length 𝑙𝑠.  

Assortativity 

Assortativity ρD measures whether the extent to which nodes that are connected 

are similar with respect to their graph measures (Newman, 2002). This measure most 

commonly determines the similarity of degree k between nodes. A pair of nodes are 

considered assortative if they have similar degrees. For example, in graph G, connected 

nodes v6 and v11 both have a degree of 2 and thus are considered to be assortative. A 

pair of nodes are considered disassortative if the degrees are dissimilar. For example, in 
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graph G, node v7 has a degree of 7 and v5 has a degree of 1 and thus this connected 

pair is considered disassortative. This idea can also be applied to other characteristics 

such as node weight (i.e. high weight nodes connect to other high weight nodes).  This 

measure can be calculated by looking at the correlation between all possible pairs of 

nodes in a graph with degrees’ k and comparing this to the correlation between all 

possible pairs of nodes in a random network with degrees’ k.  

Betweenness Centrality 

The importance of a node in a graph is measured by its centrality. Although there 

are many centrality measures, one of the most common measures is betweenness 

centrality 𝑔 that calculates the total number of shortest paths between any two nodes in 

the graph that pass through node 𝑣𝑖 and is defined as (Freeman, 1977): 

𝑔(𝑖) =  ∑
𝜎𝑠𝑡  (𝑖)

𝜎𝑠𝑡
𝑠≠𝑡  (7) 

where  𝜎𝑠𝑡 is the number of shortest paths going from node 𝑣𝑠 to node 𝑣𝑡 and 𝜎𝑠𝑡(𝑖) is 

the number of shortest paths going from node 𝑣𝑠 to node 𝑣𝑡 through node 𝑣𝑖.  

Similarly, the importance of a link ej is measured by betweenness centrality 𝑔 

that calculates the total number of shortest paths between any two nodes in a graph that 

include link j and is defined as (Newman, 2003): 

𝑔(𝑗) =  ∑
𝜎𝑠𝑡 (𝑗)

𝜎𝑠𝑡
𝑠≠𝑡  (8) 

where 𝜎𝑠𝑡 is the number of shortest paths going from node 𝑣𝑠 to node 𝑣𝑡  and 𝜎𝑠𝑡(𝑗) is 

the number of shortest paths going from node 𝑣𝑠 to node 𝑣𝑡 through link j. Betweenness 

centrality and degree of a node often correlate, where the most central node has a high 

number of links.  

Weight 

The consideration of weight of each node in a graph is important. For example, in 

a street network, vehicles may more frequently traverse some links which are thus 
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weighted more heavily. The weight 𝑤𝑖  of node 𝑣𝑖 is calculated by summing the link 

weights between two nodes (Barrat et al., 2004):  

𝑤𝑖 = ∑ 𝑤𝑖𝑗𝑗∈Г(𝑖)  (9) 

Community 

A community is defined as a set of nodes that have more connections among 

themselves than other nodes in the graph.  

Transportation indices and Variants 

Although geographic space may play a role in the topologies characterized by 

the above graph theory measures, these traditional measures were not designed 

specifically to measure spatial structure of real networks. As a result, spatial indices 

such as the gamma index γ and the alpha index α and their variants were defined by 

quantitative geographers in the 1960s initially for the characterization of the structure of 

spatial planar transportation networks (Garrison, 1960; Kansky, 1969). Some of these 

important indices are presented in Table 2.1. 

Table 2.1. Transportation indices and variants  

Gamma index 𝛾𝑝 measures the density of a graph and can be defined by:  

𝛾𝑝 =  
𝐸

3𝑁 − 6
 

where E is the number of edges and N is the number of nodes. 
 

Alpha index 𝛼 a measure of meshedness (Buhl et al., 2006) as an index from 0 to 1 
where 0 is a tree-like graph and 1 is a maximal planar graph (no 
“loose” nodes jutting out) and can be defined as: 

𝛼 =  
𝐸 − 𝑁 + 1

2𝑁 − 5
 

 

Completeness ϒN variant  an index from 0 to 1 where 0 indicates a high number of dead ends or 
“unfinished” crossings and 1 indicates a more organized and 
complete city and can be defined as (Barthelemy, 2011):  

ϒ𝑁 =  
𝑁(1) + 𝑁(3)

∑ 𝑁(𝑘)𝑘≠2
 

where 𝑁(𝑘) is the number of nodes of degree 𝑘. For example, an 
unfinished road or dead end will typically have a node degree of 3 or 
1, where a finished crossing will have a node degree of 4. 
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Compactness ѱ variant measures the degree to which a city is filled with roads from 0 to 1 
where 0 represents the extreme in a square city with one road 
encircling it and 1 represents a tight grid and can be defined as 
(Courtat et al., 2010):  

ѱ = 1 − 
4𝐴

(𝑙𝑇 − 2√𝐴)2
 

where 𝐴 is the area of the city and 𝑙𝑇 is the total length of roads. 

 

Distance Based Metrics 

The distance between linked node pairs is an important measure for real 

networks embedded in geographic space. Distance can be measured in a variety of 

ways, the most common being Euclidean distance 𝑑𝐸(𝑖, 𝑗) or “as the crow flies” distance. 

In contrast, the route distance  𝑑𝑅(𝑖, 𝑗) is computed by summing the length of links which 

make up the shortest path between node 𝑣𝑖 and 𝑣𝑗. There are several distance related 

functions which are summarized in Table 2.2 as defined in Barthelemy (2011). 

Table 2.2. Distance based metrics 

Route factor 𝑄(𝑖, 𝑗) measures the “directness” between two linked node pairs can be 
computed. The route factor is defined as the ratio between route 
distance and Euclidean distance and the closer to 1, the more 
efficient the graph: 

𝑄(𝑖, 𝑗) =  
𝑑𝑅  (𝑖, 𝑗)

𝑑𝐸  (𝑖, 𝑗)
 

 

Accessibility < 𝑄(𝑖) > measures the accessibility for a node 𝑣𝑖 where the smaller the value, 
the more accessible the node and can be defined as:  

< 𝑄(𝑖) > =  
1

𝑁 − 1
∑ 𝑄(𝑖, 𝑗) 

where 𝑄(𝑖, 𝑗) is the sum of route factors. 
 

Straightness centrality 𝐶𝑠(𝑖) measures the ease of communication between two nodes when two 
points are connected through a straight path, defined as (Crucitti et 
al., 2006): 

𝐶𝑠(𝑖) =  
1

𝑁 − 1
∑

𝑑𝐸 (𝑖, 𝑗)

𝑑𝑅(𝑖, 𝑗)
𝑗≠𝑖

 

 

Length total 𝑙𝑇 calculated by summing the total lengths of all links in the graph and is 
defined as: 

𝑙𝑇 =  ∑ 𝑑𝐸

𝑒∈𝐸

(𝑒) 

where 𝑑𝐸(𝑒) is the length of link e. 
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Cost C important in some contexts, particularly in better understanding 
transportation networks. For example, adding links and nodes to a 
network an improve transport performance P and fault tolerance, but 
increase cost. Cost C can be defined as: 

𝐶 =  
𝑙𝑇

𝑙𝑇
𝑀𝑆𝑇  

where 𝑙𝑇
𝑀𝑆𝑇 is the length of a minimum spanning tree with the same 

number of edges (not efficient).  

Transport performance P measured as the minimum distance between all pairs of nodes, 
normalized to the same quantity, but computed for the minimum 
spanning tree and is defined as: 

𝑃 =  
< 𝑙 >

< 𝑙𝑀𝑆𝑇 >
 

 

Efficiency E measures how efficiently a real network can exchange information 
(Latora & Marchiori, 2001). The quantity is zero when there are no 
paths between the nodes and is equal to one for a complete graph 
and can be defined as: 

𝐸 =  
1

𝑁(𝑁 − 1)
∑

1

𝑙(𝑖, 𝑗)
𝑖≠𝑗

 

Efficiency can be used to measure the fault tolerance of a graph, for 
example, how the E changes when a node is removed. 

 

2.3.2. Theoretical Network Structures 

Real world spatial phenomena exhibit properties pertaining to one or more 

mathematical graph types: regular, random, small world, and scale free. Each graph 

type differs in structure, thus yielding a distinctly different combination of graph 

properties as measured by graph theory measures. In a regular graph, every node is 

connected to the exact same number of their most adjacent nodes. Since it is likely that 

the neighbouring nodes of node 𝑣𝑖 are also neighbours, this graph type is characterized 

by a high clustering coefficient (Watts & Strogatz, 1998). Because of their uniform and 

highly connected structure, regular graphs have a long average shortest path length, 

meaning that the minimum number of links separating any two nodes in the graph is 

long. Real world spatial systems rarely take on the structure of a regular graph, although 

they offer a useful baseline for comparison to other types of graphs (Lewis, 2011).  

Some spatial phenomena may instead exhibit properties of random graphs 

(Erdos & Renyi, 1959; 1960). Random graphs are formed by taking a set of nodes and 

randomly generating links between them based on the same probability p, resulting in a 
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Poisson degree distribution characterized by a peak and rapidly diminishing sides 

(Boccaletti et al., 2006). Some nodes may have more connections than others, but the 

difference is marginal. In contrast to regular graphs, random graphs have a very short 

average path length <l> and a low average clustering coefficient <C>. 

Most real-world spatial networks, however, tend to produce properties that fall 

between regular and random graph structure, referred to as small world graphs. Small 

world graphs are modelled by randomly re-wiring regular graphs i.e. removing a 

connection between two neighboring nodes and forming connections between non-

neighboring nodes or long-range connections (Watts & Strogatz, 1998). A regular graph 

with just a few long-range connections reduces the average path length of the graph 

dramatically, but maintains a high clustering coefficient (Watts & Strogatz, 1998). Small 

world graphs contain nodes with varying probabilities of forming connections to other 

nodes (Sole & Valverde, 2004). For example, a few nodes may characteristically have a 

denser connectivity than the rest of the nodes, forming the center of local clusters and 

maintaining connection to distant nodes and generating a very low average path length. 

Social networks exhibit properties of small world graphs, consisting of several tightly knit 

clusters, representing close ties such as family and friends, loosely connected to one 

another by a few weak ties such as acquaintances (Granovetter, 1973). The short 

average path length of social networks was depicted in Stanley Milgram’s work in the 

late 1960s when he discovered that any two people are separated by just less than six 

intermediaries, commonly referred to today as the six degrees of separation 

phenomenon (Milgram, 1967).  

In fact, six degrees is probably an overestimate, since Milgram’s subjects cannot 

possibly know the shortest path between the starter and the target. If anything, social 

networks are even smaller. The internet, social media, and globalization removes 

physical distance as a barrier to social networking, potentially challenging Tobler’s First 

Law of Geography, where “everything is related to everything else, but near things are 

more related than distant things” (Tobler, 1970). In addition to social networks, networks 

of food webs (Williams et al., 2002), molecules in a cell (Fell & Wagner, 2000), scientist 

co-authorships (Barabasi et al., 2002), and the neurons in the brain of a monkey and cat 

(Bassett & Bullmore, 2006) have been found to exhibit properties of small world graphs. 

The graph structure with it short path length allows for a faster propagation of 

information, disease, and power (Watts & Strogatz, 1998).  
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In the analysis of the graph structure of the web, Albert et al. (1999) used a bot, a 

computer program that automatically navigates through the web and collects 

information, to explore the web’s connectivity. This led to the discovery that only a few 

websites had a very large number of links while the majority of websites had only a few. 

These highly connected nodes, in this case websites, are called connectors or hubs 

(Decruet & Beauguitte, 2013). A network with a large fraction of nodes with a small 

number of links and a small fraction of nodes with a large number of links generate a 

distribution that follows a mathematical expression called power law (Barabasi & Albert, 

1999). A power law is expressed as: 

𝑝(𝑘)~𝑘−𝑎 (10) 

where the probability p of observing a node with k connections is the number of 

connections k to the negative exponent α, representing the ratio of highly-connected 

nodes exist to nodes that are less connected. This exponent is unique to each 

phenomenon and is usually a number between 2 or 3. Networks with these properties 

are referred to as a scale free network. 

2.4. Graph Theory to Measure the Structure of Complex 
Spatial Systems 

Graph theory is used to describe observed static spatial network structures 

including transportation, social, ecological, and geophysical networks either at one point 

in time or across several consecutive points in time as the network structures evolve. 

Characterizing real spatial network structures is useful because the network structure 

can help to inform about the processes that take place on the networks. Specifically, 

network structure provides insight into the flow of people, materials, vehicles, and 

information between nodes. In all of the areas of application discussed below, a shift is 

made from traditional topological network representation and analysis to spatial network 

representation and analysis. This ties together geography, GISc and network science 

and in the end contributes to each field. This coupling between the fields is sometimes 

difficult to pull apart. GISc and geography provide the context, in many cases the 

technology and the data, and methods for spatial analysis while network science 

provides the representation and additional analysis. 
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2.4.1. Spatial Transportation Networks 

The traditional space syntax for transportation networks varies, however in the 

interest of understanding their spatial properties, it is important that the topological and 

Euclidean space are identical (Batty, 2004). As a result, transportation networks like 

street networks are typically constructed in planar space where the network links 

represent the physical course of routes and the nodes represent the location of their 

associated stations, intersections, or end points. In the case of transportation networks 

that are not planar such as airlines, links do not represent the physical course of routes, 

but rather simply indicate a connection between end points exists. 

The use of graph theory to mathematically characterize transportation networks 

is extensive ranging from street networks (Garrison, 1960; Kansky, 1969; Crucitti et al., 

2006; Cardillo et al., 2008; Jiang, 2007, 2009; Lammer et al., 2006; Strano et al., 2013; 

Buhl et al., 2006), rail networks (Kurant and Thiran, 2006; Latora and Marchiori, 2002; 

Han and Lui, 2009; Xu et al., 2007), cargo ship networks (Kaluza et al., 2010; Ducruet 

and Notteboom, 2012) and airline networks (Guimera & Amaral, 2004; Guimera et al., 

2005; Li and Cai, 2004; Barrat et al., 2005; Jia and Jiang, 2012; Han et al., 2009; Liu et 

al., 2010; Zhang et al., 2010) to name a few. The structure of these transportation 

networks is constrained by geographic space, often limiting the degree of each node. As 

a result, planar transportation networks have a very low average node degree <k> 

ranging from 2 or 3 for rail-based transportation networks and 4 or 5 for street networks 

(Han & Liu, 2009). Non-planar transportation networks are also constrained by 

geographic space, although to a lesser degree, since an airport, particularly domestic 

airports, or cargo ship bay can only physically handle a limited number of connections 

(Amaral et al., 2000). Although node degree is heterogeneous, the development of hubs 

for any transportation is both challenging as a function of geographic space and thus 

costly. In addition to node degree, the structures of transportation networks are limited 

by the cost of connecting distant nodes. Building new roads, railways, or scheduling 

flights to distant cities cost money and time. This limits the number of long-distance links 

and results in local clustering between nodes that are in closer proximity. Thus, many 

types of transportation networks rely on other transportation networks to increase 

efficiency in the movement of people, objects, and vehicles from point A to B. 
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The structural properties of transportation networks is used to evaluate the 

efficiency of such networks (Jiang, 2009), understand the relationship between network 

structure and socio-economic characteristics (Jia & Jiang, 2012), assess overall 

vulnerability or resiliency of the network structure to node failure (Latora and Marchiori, 

2002; Wilkenson et al., 2012), and identify the most optimal route for travel based on the 

shortest-path problem (Dijkstra, 1959), the maximum flow problem (Ford & Fulkerson, 

1962), or the minimum-cost problem  (Hillier & Lieberman, 1990) to name a few. In the 

above-mentioned applications, the concept of the “flow” is important, where the structure 

and subsequent changes to network structure over time has implications for the 

movement of people and transportation along the network. In the late 1990s, network 

science and GISc were integrated to develop spatial algorithms for proprietary GIS 

software that facilitated automated processes of transportation network analysis to solve 

these types of problems often referred to as GIS-T (Miller, 1999; Dunn & Newton, 1992). 

Today, algorithms for transportation network analysis are based on route optimization 

and are part of every day geospatial applications from delivery services, to general 

wayfinding, to emergency services and evacuation. 

In the case that data is available, work in spatial transportation network analysis 

has included the study of the evolution of transportation networks over space and time. 

For example, the airline (worldwide and domestic) network structure varies over space 

and time due to geographic, economic, political, and historical factors and thus is 

constantly changing as links between airports appear, disappear, expand, or contract 

(Zhang et al., 2010; Rocha, 2009; Jia et al., 2014). Similar studies on the evolution of 

road and street networks have been published, however, this evolution can be very hard 

to trace because parts of their geometry become erased, making them difficult to trace 

and quantify (Gundmundsson & Mahajeri, 2013; Masucci et al., 2013). 

2.4.2. Spatial Social Networks 

Social networks represent the relationships or interactions between individuals 

where a link might signify a friendship, colleague, romantic, familial relationship or 

physical contact. The spatial context of social networks is not typically addressed in 

traditional social network research, however, as popularity of location-based services 

such as Facebook, Instagram, and Twitter increase and people are willing to share their 

geographic position with their friends and consequently their service providers, data 
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about the geographic position of users in combination with their social connections is 

now available (Scellato et al., 2011). In a spatial social network, individuals in the social 

network are embedded in geographic space. Typically, spatial social networks are 

undirected, since most relationships are reciprocated, and may model either a single or 

set of relationship types.  

The use of graph theory to mathematically characterize spatial social networks is 

well documented and extensive (Yook et al., 2002; Scellato et al. 2011; Lambiotte et al., 

2008, Backstrom et al., 2010, Cairncross, 2001, Alizadeh et al., 2017). As demonstrated 

in the previous section, the spatial structure of transportation networks is largely 

influenced by the cost of linking nodes that are distant from one another, often 

generating regional clusters and minimizing long-distance links. This finding applies to 

spatial social networks as well. Specifically, as the geographic distance between two 

people increases, the relationship requires more energy to maintain. As a result, most 

individuals connect instead with their spatial neighbours whereby 40% of social links are 

between people within 100 km (Scellato et al., 2011; Yook et al., 2002). Since only a few 

connections are maintained over long distances and the majority of connections are 

maintained over short distances, the frequency distribution of distances between all 

nodes in a social network produces a power law (Lambiotte et al., 2008). In fact, 

Backstrom et al. (2010) identified a power law that was so significant that they 

developed an algorithm capable of inferring the location of a user based on the location 

of their friends. It is anticipated that geographic space as a constraint has lessoned and 

will continue to do so as new technology and affordable long-distance travel reduces the 

cost of long-distance connections (Cairncross, 2001). In contrast to transportation 

networks, the number of connections that an individual may have is not constrained by 

physical space.  

Traditional studies in social networks relied on aggregated statistical datasets in 

one or more static points in time and selective small-scale surveys (Hawelka et al., 

2014). Today, GIScientists have the potential to harness an unprecedented access to 

records of user location and their interactions over time. Vehicles are equipped with 

sensors, people carry GPS enabled cellphones, and users are willing to report their 

location through social media, producing spatial social network data at a finer spatial and 

temporal resolutions at a large volume. Understanding and identifying key properties of 

real spatial social networks can be further used in the development of geospatial models 
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that apply this knowledge to better understand several complex spatial systems that 

operate as a function of underlying spatial social networks including trade (Bush, 2004; 

Doreian and Conti, 2012), crime (Liu, 2008; Schaefer, 2012), friendship (Mcdonald-

Wallis et al. 2011), and epidemiology (Bian & Liebner, 2007; Kuperman & Abramson, 

2001; Moore & Newman, 2000; Pastor-Satorras & Vespignani, 2002). 

2.4.3. Spatial Ecological Networks 

Ecological systems have long been analyzed based on their topological network 

structure where ecological entities such as individuals, species, or communities are 

represented as aspatial nodes and a variety of interactions between ecological entities 

are represented using links. Graph theory provides a mathematical tool to represent and 

analyze sets of ecological interactions that form food networks (Cohen 1978; Hall and 

Raffaelli 1993), host-parasitoid networks (Muller et al. 1999; Morris et al. 2004) and 

mutualistic networks (Jordano 1987; Stang et al. 2006) to name a few. Geographic 

space plays a large role in ecological interactions, and as a result, the inclusion of 

geographic space into these representations can be informative. In these 

representations, nodes are spatially embedded, and link together based on a variety of 

spatial interactions such as dispersal, proximity, or similarity between landscape features 

or species (Dale & Fortin, 2010). Campbell et al. (2007) argues that the spatial structure 

of ecological networks regulates and modifies ecological processes. Based on this idea, 

spatial graphs in ecology emerged in application to the movement of species between 

habitat patches, species evolution, the study of landscape genetics, and spatial 

epidemiology.  

Landscape connectivity graphs represent landscape features using nodes 

embedded in geographic space and the functional relationship between nodes such as 

dispersal or movement using links (Urban & Kiett, 2001). Typically, landscape features 

are connected based on the maximum dispersal distance of a species of interest. The 

abstraction of the landscape into a network structure can help to inform the spatial 

dynamics of several ecological species as the “flow” between nodes and has been 

developed for several different species (Fortuna et al., 2006; O’Brien et al., 2006; Urban 

& Kiett, 2007; Campbell et al., 2007; Fortuna et al., 2009; Zetterberg et al., 2010; Pereira 

et al., 2011). Landscape connectivity graphs have been modified to supplement link 

properties such as Euclidean distance between two habitat patch nodes with cost 
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values, determining the paths that offer the least resistance to movement (Chardon et 

al., 2003; O’Brien et al., 2006, Scotti et al., 2007, Spear et al., 2010). Spatial ecological 

graphs in application to landscape genetics and spatial epidemiology also modify the link 

representation itself, where in the case of landscape genetics a link represents positive 

spatio-autocorrelation of landscape features that are genetically similar (Dale & Fortuna, 

2010) or in the case of spatial ecological epidemiology, a link represents the spread of 

disease (Brooks et al., 2008, Fortuna et al., 2009).  

Traditional graph theory measures such as betweenness centrality 𝑔, average 

clustering coefficient <C>, modularity G, and nestedness are of interest in spatial 

ecological networks, however, several graph theory measures were developed 

specifically for this area of ecological applications. Pascual-Hortal and Saura (2006) 

proposed a large set of measures including the integral index of connectivity, least cost 

path, route path diameter, dispersal likelihood, route redundancy, route vulnerability, and 

area connected. Other measures of note include expected cluster size (O’Brien et al., 

2006), the F metric (Ferrari et al., 2007), and the clumpiness coefficient (Estrada and 

Boden, 2008). In addition to spatial network characterisation, scenario testing can be 

performed in order to better understand the resilience of the network in the case of node 

removal, useful as a tool for decision making in environmental management and 

conservation. For example, Fortuna et al. (2006) uses drought scenarios to predict the 

resilience of an amphibian population based on landscape connectivity. The 

representation and analysis of spatial ecological networks using graph theory is 

increasingly facilitated by the availability of geospatial data and geographic information 

systems (GIS) with built in tools for this type of analysis. 

2.4.4. Geophysical Networks 

Geophysical systems or Earth systems can be represented using spatial 

networks where nodes might represent the location of landforms, soil types, geologic 

formations, sources or sinks, storms, earthquakes, or fires and links might represent 

transport pathways, mass and energy exchange, feedback relationships, spatial 

adjacency, or temporal sequences (Phillips et al. 2015). Graph theory measures are 

often applied to characterize spatial and topological properties of the network structures 

and to understand the flow (Gascuel-Odoux et al., 2011; Santiago et al., 2008, Zaliapin 
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et al., 2010), complexity (Philips, 2013), or synchronization (Tsonis & Swanson, 2012) 

properties as a function of these structures.  

2.5. Linking Structure and Dynamics of Complex Spatial 
Systems using Networks 

Traditional spatial network studies in application to transportation, social, 

ecological, and geophysical systems focus on describing the static spatial network 

structure of these systems that shape related spatial dynamics and processes. Networks 

have therefore been integrated as inputs into complex process-based geospatial 

modelling approaches like geographic automata systems (GAS) (Torrens & Benenson, 

2005) including cellular automata (CA) and agent-based modelling (ABM). GAS focus on 

representing local dynamics and processes of such systems over geographic space and 

time from which the system as a whole emerges and thus the inclusion of the network 

structures that shape these processes is valuable.  

Human mobility networks are often represented by transportation networks such 

as street networks or airline networks (Yang et al., 2011), but can also be represented 

as the direct movement of people between landscape features or buildings (Dibble and 

Feldman, 2004). The inclusion of mobility networks into GAS can be useful for better 

representing dynamics of emergency evacuation, the spread of disease, flow of 

information, and traffic and congestion (Torrens, 2004; Dibble and Feldman, 2004; 

Balcan et al. 2009). Brachman & Dragicevic (2014) develop a Network Science 

Emergency Evacuation Model (NetSEEM), a geospatial application that facilitates the 

representation of the physical, biological, and social complexities involved in mobility 

during evacuation. In another example, Balcan et al. (2009) tests how variations in the 

structure of mobility networks including commuting networks and long-range airline 

traffic shape the spatio-temporal dynamics of global epidemics. Frias-Martinez et al. 

(2011) integrate human mobility networks into an ABM to simulate the spread of H1N1 in 

Mexico.   

The representation and analysis of social networks and the processes occurring 

on or within them also lend naturally to both network and GAS modelling approaches. 

Burger et al. (2017) acknowledges that the observed characteristics of social networks 

used to inform and influence human interactions are typically absent from the ABMs that 
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seek to model these types of systems, prompting the integration of the two approaches 

for the study of social networks. Pires & Crooks (2017) integrate social networks and 

agent-based modelling to model the flow of information through a population to inform 

rioting behavior. In a similar vein, human contact networks, a network of individuals that 

come into contact in the same location and at the same time is the underlying structure 

for which processes and dynamics of disease operate. Perez & Dragicevic (2009) 

develop a spatially explicit model that simulates the transmission of infectious disease 

over a transportation network and with human contacts.  

2.6. Conclusion and Future Directions 

Spatial network science research leverages tools for representation and analysis 

of complex spatial systems from the fields of geography, GISc, and network science. 

These studies tend to focus on characterising static spatial network structures at one or 

several points in time to better understand processes and spatial dynamics of 

information, people, ecological species, and other objects. However, the relationship 

between spatial structure and spatial dynamics is non-linear where over time, the spatial 

dynamics and processes of these systems influence the system spatial structure. In all 

of the aforementioned approaches that integrate network theory and GAS, network 

structure is introduced to improve the representation of network dynamics and 

processes, but the subsequent evolution of the network structure as a function of 

network dynamics and processes has not been explored. Simulating the complete 

exchange between network dynamics and an evolving network structure can be 

particularly valuable to better understand and forecast real-world complex systems. This 

exposes the gap that calls for a new modelling framework for studying and testing the 

relationship between the evolution of spatial structures as a function of spatial dynamics 

and processes and vice versa that may be facilitated by further exploring the integration 

of network and GAS modelling approaches.  

Increased data availability and computational efficiency may also aid in this to 

help understand the evolution of transportation networks, mobility networks, social 

networks, ecological networks, and geophysical networks across a variety of scales 

through the use of complex systems modelling approaches that have been postulated to 

operate on different spatial tessellations including networks (Torrens & Benenson, 

2005). The implementation of complex systems modelling approaches and network 
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theory for the representation and analysis of complex spatial systems to explore and 

better understand the link between spatial structure and spatial processes and dynamics 

is not yet fully explored. These data-driven modelling approaches show even more 

potential in the era of big data. However, even with the promise of increased data 

availability, larger computer capacities, and improved knowledge about the structure and 

behavior of networks, developed models still face challenges with respect to all three, 

limiting the potential for model development and furthermore for model validation via 

agreement with real data so that they are suitable for use in decision-making processes. 

Harnessing the power of big data for both model development and validation is slowed 

by challenges presented by the volume (size), variety (various types of geospatial data), 

variability (inconsistency between data provided by different users), and veracity 

(attempting to combine data of different quality) and pose problems in storing, managing, 

processing, visualizing, and verifying the data (Laney et al., 2011). Furthermore, as data 

availability increases, there are a number of challenges associated with ethics, privacy, 

personal security, ownership, and frameworks for determining the quality of data that will 

need to be addressed in order for spatial network-based modelling to make use of this 

data. 

In addition to technical challenges, there is a demand for new methods for both 

network integrated model development and validation as well as methods for network 

analysis of model outputs. Spatially explicit complex systems modelling have always 

faced unique challenges in model validation. This challenge is only further complicated 

in terms of validating the network structures and dynamics represented by these models. 

Furthermore, there is a demand for new network measures that are specifically geared 

for spatio-temporal analysis. Barthelemy (2018) has many times shared his concern that 

despite the large number of studies on planar networks, there is still a lack of metrics 

that facilitate the characterization of the spatio-temporal structure of networks.  

In summary, there remain many rich avenues to be explored with respect to the 

integration of GISc and network science for representing and understanding of 

geospatial, dynamic, and complex systems. The application of graph theory provides 

value for future studies that apply spatial network analysis to urban, ecological, social, 

and geophysical systems to better understand the complex tightly coupled relationship 

between spatial structure and space-time dynamics.  



33 

2.7. References 

Alizadeh, M., Cioffi-Revilla, C., & Crooks, A. (2017). Generating and analyzing spatial 
social networks. Computational and Mathematical Organization Theory, 23(3), 

362-390. 

Amaral, L. A. N., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-
world networks. Proceedings of the National Academy of Sciences, 97(21), 

11149-11152. 

Backstrom, L., Sun, E., & Marlow, C. (2010). Find me if you can: improving geographical 
prediction with social and spatial proximity. In Proceedings of the 19th 
International Conference on World Wide Web. Raleigh, NC: ACM. 

Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J. J., & Vespignani, A. (2009). 
Multiscale mobility networks and the spatial spreading of infectious 
diseases. Proceedings of the National Academy of Sciences, 106(51), 21484-

21489. 

Barabási, A. L. (2016). Network Science. Glasgow, UK: Cambridge University Press. 

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. 
Science, 286(5439), 509-512. 

Barabâsi, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). 
Evolution of the social network of scientific collaborations. Physica A: Statistical 
Mechanics and its Applications, 311(3-4), 590-614. 

Barrat, A., Barthélemy, M., & Vespignani, A. (2005). The effects of spatial constraints on 
the evolution of weighted complex networks. Journal of Statistical Mechanics: 
Theory and Experiment, 05, P05003. 

Barrat, A., Barthelemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The 
architecture of complex weighted networks. In Proceedings of the National 
Academy of Sciences of the United States of America, 101(11), 3747-3752. 

Barreira-González, P., Gómez-Delgado, M., & Aguilera-Benavente, F. (2015). From 
raster to vector cellular automata models: A new approach to simulate urban 
growth with the help of graph theory. Computers, Environment and Urban 
Systems, 54, 119-131. 

Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1), 1-101. 

Barthélemy, M. (2018). Morphogenesis of Spatial Networks. Cham, Switzerland: 

Springer International Publishing. 

Bassett, D. S., & Bullmore, E. D. (2006). Small-world brain networks. The 
Neuroscientist, 12(6), 512-523. 



34 

Batty, M. (2005). Network geography: Relations, interactions, scaling and spatial 
processes in GIS. Re-presenting GIS, 149-170. 

Bian, L. (2004). A conceptual framework for an individual-based spatially explicit 
epidemiological model. Environment and Planning B: Planning and Design. 31, 

381-395. 

Bian, L., & Liebner, D. (2007). A network model for dispersion of communicable 
diseases. Transactions in GIS, 11(2), 155-173. 

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. (2006). Complex 
networks: Structure and dynamics. Physics Reports, 424(4-5), 175–308.  

Buhl, J., Gautrais, J., Reeves, N., Solé, R. V., Valverde, S., Kuntz, P., & Theraulaz, G. 
(2006). Topological patterns in street networks of self-organized urban 
settlements. The European Physical Journal B-Condensed Matter and Complex 
Systems, 49(4), 513-522. 

Burger, A., Oz, T., Crooks, A.T. and Kennedy, W.G. (2017), Generation of Realistic 
Mega-City Populations and Social Networks for Agent-Based Modeling. The 
Computational Social Science Society of Americas Conference, Santa Fe, NM: 

ACM.  

Bush, S. R. (2004). Scales and sales: changing social and spatial fish trading networks 
in the Siiphandone fishery, Lao PDR. Singapore Journal of Tropical 
Geography, 25(1), 32-50. 

Cairncross, F. (2001). The death of distance: How the communications revolution is 
changing our lives. Brighton, MA: Harvard Business Press. 

Campbell Grant, E. H., Lowe, W. H., and Fagan, W. F. (2007). Living in the branches: 
Population dynamics and ecological processes in dendritic networks. Ecology 
Letters, 10(2), 165–175.  

Cardillo, A., Scellato, S., Latora, V., & Porta, S. (2009). Structural properties of planar 
graphs of urban street patterns. Physical Review E, 73(6), 066107. 

Chardon, J. P., Adriaensen, F., & Matthysen, E. (2003). Incorporating landscape 
elements into a connectivity measure: a case study for the Speckled wood 
butterfly (Pararge aegeria L.). Landscape Ecology, 18(6), 561-573. 

Cohen, J. E. (1978). Food Webs and Niche Space. New Jersey, NJ: Princeton University 

Press. 

Cova, T. J., & Johnson, J. P. (2003). A network flow model for lane-based evacuation 
routing. Transportation Research Part A – Policy and Practice, 37(7), 579–604. 



35 

Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of 
urban streets. Physical Review E, 73(3), 036125. 

da Rocha, L. E. (2009). Structural evolution of the Brazilian airport network. Journal of 

Statistical Mechanics: Theory and Experiment, 2009(04), P04020. 

Dale, M. R. T., & Fortin, M. J. (2010). From graphs to spatial graphs. Annual Review of 

Ecology, Evolution, and Systematics, 41, 21-38. 

Dibble, C., & Feldman, P. G. (2004). The GeoGraph 3D computational laboratory: 
Network and terrain landscapes for RePast. Journal of Artificial Societies and 
Social Simulation, 7(1).  

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische 
Mathematik, 1(1), 269-271. 

Doreian, P., & Conti, N. (2012). Social context, spatial structure and social network 
structure. Social Networks, 34(1), 32-46. 

Ducruet, C., & Beauguitte, L. (2014). Spatial science and network science: Review and 
outcomes of a complex relationship. Networks and Spatial Economics, 14(3-4), 

297-316. 

Ducruet, C., & Notteboom, T. (2012). The worldwide maritime network of container 
shipping: spatial structure and regional dynamics. Global Networks, 12(3), 395-

423. 

Dunn, C. E., & Newton, D. (1992). Optimal routes in GIS and emergency planning 
applications. Area, 259-267. 

Erdos, P., & Renyi, A. (1959). On Random Graphs I. Selected Papers of Alfred Renyi, 
2(1), 308–315. 

Erdos, P., & Renyi, A. (1960). On the Evolution of Random Graphs. Bulletin of the 
International Statistical Institute, 34(4), 343–347. 

Estrada, E., & Bodin, Ö. (2008). Using network centrality measures to manage 
landscape connectivity. Ecological Applications, 18(7), 1810-1825. 

Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis (The solution to a 
problem relating to the geometry position). Commentarii Academie Scientiarum 
Imperialis Petropolitanae, 8, 128–140. 

Fell, D. A., & Wagner, A. (2000). The small world of metabolism. Nature 
Biotechnology, 18(11), 1121-1122. 



36 

Ferrari, J. R., Lookingbill, T. R., & Neel, M. C. (2007). Two measures of landscape-graph 
connectivity: assessment across gradients in area and configuration. Landscape 
Ecology, 22(9), 1315-1323. 

Ford, L. R., & Fulkerson, D. R. (1961). An out-of-kilter method for minimal cost flow 
problems. Journal of the Society for the Industrial Application of Mathematics, 

9(1), 19–27. 

Fortuna, M. A., and Bascompte, J. (2007). The network approach in ecology. In F. 
Valladares, A. Camacho, A. Elosegi, C. Gracia, M. Estrada, J. C. Senar, and J. 
M. Gili (Eds.), Unity in diversity: Ecological reflections as a tribute to Margalef 

(pp. 371–392). Bilbao: Fundación BBVA. 

Fortuna, M. A., Gomez-Rodriguez, C., and Bascompte, J. (2006). Spatial network 
structure and amphibian persistence in stochastic environments. Proceedings of 
the Royal Society B: Biological Sciences, 273(1592), 1429–1434.  

Frias-Martinez, E., Williamson, G., & Frias-Martinez, V. (2011). An agent-based model of 
epidemic spread using human mobility and social network information. 
In Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third International 
Conference on Social Computing (SocialCom). Boston, MA: IEEE. 

Garrison, W. L. (1960). Connectivity of the interstate highway system. Papers in 
Regional Science, 6(1), 121-137. 

Gascuel-Odoux, C., Aurousseau, P., Doray, T., Squividant, H., Macary, F., Uny, D., & 

Grimaldi, C. (2011). Incorporating landscape features to obtain an object-oriented 
landscape drainage network representing the connectivity of surface flow 
pathways over rural catchments. Hydrological Processes, 25(23), 3625-3636. 

González, P. B., Gómez-Delgado, M., & Benavente, F. A. (2015). Vector-based cellular 
automata: exploring new methods of urban growth simulation with cadastral 
parcels and graph theory. In Proceedings of CUPUM 2015. Cambridge, MA. 

Granovetter, M. (1973). Strength of Weak Ties. American Journal of Sociology, 78(6), 

1360–1380. 

Gudmundsson, A., & Mohajeri, N. (2013). Entropy and order in urban street 
networks. Scientific Reports, 3, 3324. 

Guimera, R., & Amaral, L. A. N. (2004). Modeling the world-wide airport network. The 
European Physical Journal B-Condensed Matter and Complex Systems, 38(2), 

381-385. 

Guimera, R., Mossa, S., Turtschi, A., & Amaral, L. N. (2005). The worldwide air 
transportation network: Anomalous centrality, community structure, and cities' 
global roles. Proceedings of the National Academy of Sciences, 102(22), 7794-

7799. 



37 

Hall, S. J., and Raffaelli, D. G. (1993). Food webs: Theory and reality. Advances in 
Ecological Research, 24, 187–239. 

Han, C., & Liu, L. (2009). Topological vulnerability of subway networks in China. In 2009 
International Conference on Management and Service Science. Wuhan, China: 
IEEE.  

Han, D. D., Qian, J. H., & Liu, J. G. (2009). Network topology and correlation features 
affiliated with European airline companies. Physica A: Statistical Mechanics and 
its Applications, 388(1), 71-81. 

Hillier, F. S., & Lieberman, G. J. (1990). Introduction to Operations Research. New York, 

NY: McGraw-Hill Inc. 

Holland, J. H. (1996). Hidden Order: How Adaptation Builds Complexity. Cambridge, 

MA: Perseus Books. 

Jia, T., & Jiang, B. (2012). Building and analyzing the US airport network based on en-
route location information. Physica A: Statistical Mechanics and its 
Applications, 391(15), 4031-4042. 

Jia, T., Qin, K., & Shan, J. (2014). An exploratory analysis on the evolution of the US 
airport network. Physica A: Statistical Mechanics and its Applications, 413, 266-

279. 

Jiang, B. (2007). A topological pattern of urban street networks: universality and 
peculiarity. Physica A: Statistical Mechanics and its Applications, 384(2), 647-

655. 

Jiang, B. (2009). Street hierarchies: a minority of streets account for a majority of traffic 
flow. International Journal of Geographical Information Science, 23(8), 1033-

1048. 

Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: 
connectance, dependence asymmetries, and coevolution. The American 
Naturalist, 129(5), 657–677. 

Kaluza, P., Kölzsch, A., Gastner, M. T., & Blasius, B. (2010). The complex network of 
global cargo ship movements. Journal of the Royal Society Interface, 7(48), 

1093-1103. 

Kansky, K. (1969) Structure of transportation networks: relationships between network 
geometry and regional characteristics. Chicago, IL: University of Chicago Press. 

Kuperman, M., & Abramson, G. (2001). Small world effect in an epidemiological 
model. Physical Review Letters, 86(13), 2909. 



38 

Kurant, M., & Thiran, P. (2006). Extraction and analysis of traffic and topologies of 
transportation networks. Physical Review E, 74(3), 036114. 

Lambiotte, R., Blondel, V. D., De Kerchove, C., Huens, E., Prieur, C., Smoreda, Z., & 
Van Dooren, P. (2008). Geographical dispersal of mobile communication 
networks. Physica A: Statistical Mechanics and its Applications, 387(21), 5317-

5325. 

Lämmer, S., Gehlsen, B., & Helbing, D. (2006). Scaling laws in the spatial structure of 
urban road networks. Physica A: Statistical Mechanics and its 
Applications, 363(1), 89-95. 

Laney, D. (2001). 3D data management: Controlling data volume, velocity and 
variety. META Group Research Note, 6, 70. 

Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical 
Review Letters, 87(19), 198701. 

Latora, V., & Marchiori, M. (2002). Is the Boston subway a small-world network? Physica 
A: Statistical Mechanics and its Applications, 314(1), 109-113. 

Latora, V., & Marchiori, M. (2003). Economic small-world behavior in weighted 
networks. The European Physical Journal B-Condensed Matter and Complex 
Systems, 32(2), 249-263. 

Latora, V., & Marchiori, M. (2007). A measure of centrality based on network 
efficiency. New Journal of Physics, 9(6), 188. 

Levinson, D. (2007). Density and dispersion: the co-development of land use and rail in 
London. Journal of Economic Geography, 8(1), 55-77. 

Lewis, T. G. (2011). Network Science: Theory and Applications. Hoboken, NJ: John 

Wiley & Sons.  

Li, W., & Cai, X. (2004). Statistical analysis of airport network of China. Physical Review 

E, 69(4), 046106. 

Liu, H. K., Zhang, X. L., & Zhou, T. (2010). Structure and external factors of Chinese city 
airline network. Physics Procedia, 3(5), 1781-1789. 

Liu, L. (2008). Artificial crime analysis systems: using computer simulations and 
geographic information systems: using computer simulations and geographic 
information systems. Hershey, NY: IGI Global. 

Macdonald-Wallis, K., Jago, R., Page, A. S., Brockman, R., & Thompson, J. L. (2011). 
School-based friendship networks and children’s physical activity: A spatial 
analytical approach. Social science & medicine, 73(1), 6-12. 



39 

Masucci, A. P., Smith, D., Crooks, A., & Batty, M. (2009). Random planar graphs and the 
London street network. The European Physical Journal B, 71(2), 259-271. 

Masucci, A. P., Stanilov, K., & Batty, M. (2013). Limited urban growth: London's street 
network dynamics since the 18th century. PLoS One, 8(8), e69469. 

Milgram, S. (1967). The Small World Problem. Psychology Today, 32(4), 425–443. 

Miller, H. J. (1999). Potential contributions of spatial analysis to geographic information 
systems for transportation (GIS-T). Geographical Analysis, 31(4), 373-399. 

Minor, E. S., & Urban, D. L. (2007). Graph theory as a proxy for spatially explicit 
population models in conservation planning. Ecological Applications, 17(6), 1771-

1782. 

Moore, C., & Newman, M. E. (2000). Epidemics and percolation in small-world 
networks. Physical Review E, 61(5), 5678. 

Morris, R. J., Lewis, O. T., and Godfray, H. C. J. (2004). Experimental evidence for 
apparent competition in a tropical forest food web. Nature, 428(6980), 310–313.  

Muller, C. B., Adriaanse, I. C. T., Belshaw, R., and Godfray, H. C. J. (1999). The 
structure of an aphid–parasitoid community. British Ecological Society, 68(1), 

346–370. 

Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 

45(2), 167-256. 

Newman, M. E. (2005). Power Laws: Pareto distributions and Zipf's law. Contemporary 

Physics, 46(5), 323-351. 

O’Brien, D., Manseau, M., Fall, A., & Fortin, M. J. (2006). Testing the importance of 
spatial configuration of winter habitat for woodland caribou: an application of 
graph theory. Biological Conservation, 130(1), 70-83. 

O'Sullivan, D. (2002). Toward micro-scale spatial modeling of gentrification. Journal of 
Geographical Systems, 4(3), 251-274. 

Pascual-Hortal, L., & Saura, S. (2006). Comparison and development of new graph-
based landscape connectivity indices: towards the priorization of habitat patches 
and corridors for conservation. Landscape Ecology, 21(7), 959-967. 

Pastor-Satorras, R., & Vespignani, A. (2002). Immunization of complex 
networks. Physical Review E, 65(3), 036104. 

Pereira, M., Segurado, P., & Neves, N. (2011). Using spatial network structure in 
landscape management and planning: a case study with pond turtles. Landscape 
and Urban Planning, 100(1-2), 67-76. 



40 

Perez, L., & Dragicevic, S. (2009). An agent-based approach for modeling dynamics of 
contagious disease spread. International Journal of Health Geographics, 8(1), 

50. 

Phillips, J. D. (2013). Sources of spatial complexity in two coastal plain soil 
landscapes. Catena, 111, 98-103. 

Phillips, J. D., Schwanghart, W., & Heckmann, T. (2015). Graph theory in the 
geosciences. Earth-Science Reviews, 143, 147-160. 

Pires, B., & Crooks, A. T. (2017). Modeling the emergence of riots: A geosimulation 
approach. Computers, Environment and Urban Systems, 61, 66-80. 

Rahmandad, H., & Sterman, J. (2008). Heterogeneity and network structure in the 
dynamics of diffusion: Comparing agent-based and differential equation models. 
Management Science, 54(5), 998-1014. 

Santiago, A., Cárdenas, J. P., Losada, J. C., Benito, R. M., Tarquis, A. M., & Borondo, F. 
(2008). Multiscaling of porous soils as heterogeneous complex 
networks. Nonlinear Processes in Geophysics, 15(6), 893-902. 

Scellato, S., Noulas, A., Lambiotte, R., & Mascolo, C. (2011). Socio-spatial properties of 
online location-based social networks. ICWSM, 11, 329-336. 

Schaefer, D. R. (2012). Youth co-offending networks: An investigation of social and 
spatial effects. Social Networks, 34(1), 141-149. 

Scotti, M., Podani, J., & Jordán, F. (2007). Weighting, scale dependence and indirect 
effects in ecological networks: a comparative study. Ecological Complexity, 4(3), 

148-159. 

Sole, R., & Valverde, S. (2004). Information Theory of Complex Networks: On Evolution 

and Architectural Constraints. Heidelberg, Berlin: Springer. 

Spear, S. F., Balkenhol, N., FORTIN, M. J., McRae, B. H., & Scribner, K. I. M. (2010). 
Use of resistance surfaces for landscape genetic studies: considerations for 
parameterization and analysis. Molecular Ecology, 19(17), 3576-3591. 

Stang, M., Klinkhamer, P. G. L., and Meijden, E. Van Der. (2006). Size constraints and 
flower abundance determine the number of interactions in a plant–flower visitor 
web. Oikos, 112(1), 111–121. 

Strano, E., Viana, M., da Fontoura Costa, L., Cardillo, A., Porta, S., & Latora, V. (2013). 
Urban street networks, a comparative analysis of ten European 
cities. Environment and Planning B: Planning and Design, 40(6), 1071-1086. 

Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. 
Economic Geography, 46, 234-40.  



41 

Topping, C. J., Høye, T. T., & Olesen, C. R. (2010). Opening the black box—
Development, testing and documentation of a mechanistically rich agent-based 
model. Ecological Modelling, 221(2), 245-255. 

Torrens, P. M. (2004). Geosimulation, automata, and traffic modeling. Handbooks in 
Transport, 5, 549-565. 

Torrens, P. M., & Benenson, I. (2005). Geographic automata systems. International 
Journal of Geographical Information Science, 19(4), 385-412. 

Tsonis, A. A., & Swanson, K. L. (2012). Review article" On the origins of decadal climate 
variability: a network perspective". Nonlinear Processes in Geophysics, 19(5), 

559-568. 

Urban, D., and Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. 
Ecology, 82(5), 1205–1218. 

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. 
Nature, 393(6684), 440. 

Williams, R. J., Berlow, E. L., Dunne, J. A., Barabási, A. L., & Martinez, N. D. (2002). 
Two degrees of separation in complex food webs. Proceedings of the National 
Academy of Sciences, 99(20), 12913-12916.  

Wright, D. (2010). GISc, in Warf, B., Jankowski, P., Solomon, B.D., & Welford, M. 
Encyclopedia of Geography, Thousand Oaks, CA: SAGE Publications. 

Xu, X., Hu, J., Liu, F., & Liu, L. (2007). Scaling and correlations in three bus-transport 
networks of China. Physica A: Statistical Mechanics and its Applications, 374(1), 

441-448. 

Yang, Y., Roux, A. V. D., Auchincloss, A. H., Rodriguez, D. A., & Brown, D. G. (2011). A 
spatial agent-based model for the simulation of adults' daily walking within a 
city. American Journal of Preventive Medicine, 40(3), 353-361. 

Yook, S. H., Jeong, H., & Barabási, A. L. (2002). Modeling the Internet's large-scale 
topology. Proceedings of the National Academy of Sciences, 99(21), 13382-

13386. 

Yule, G. U. (1925). Mathematical theory of evolution based on the conclusion of Dr. J.C. 
Willis. Philosophical Transactions of the Royal Society of London. Series B, 
Containing Papers of a Biological Character, 213(1), 21–87. 

Zaliapin, I., Foufoula-Georgiou, E., & Ghil, M. (2010). Transport on river networks: A 
dynamic tree approach. Journal of Geophysical Research: Earth 
Surface, 115(F2). 



42 

Zetterberg, A., Mörtberg, U. M., & Balfors, B. (2010). Making graph theory operational for 
landscape ecological assessments, planning, and design. Landscape and Urban 
Planning, 95(4), 181-191. 

Zhang, J., Cao, X. B., Du, W. B., & Cai, K. Q. (2010). Evolution of Chinese airport 
network. Physica A: Statistical Mechanics and its Applications, 389(18), 3922-

3931. 

 



43 

Chapter 3.  
 
Representing Spatial Systems as Evolving Networks: 
A Geographic Network Automata Model 1 

3.1. Abstract 

Almost all real-world spatial systems can be conceptualized from the bottom-up as 

spatial networks where nodes representing system components are embedded in 

geographic space and links represent some form of relationship or interaction. Typically, 

spatial network analysis focuses on generating descriptive network measures obtained 

from static network datasets, however, more recent interest lies in the representation 

and analysis of evolving spatial networks that can facilitate the examination of the close 

coupling between spatial network structure and spatial network dynamics. Therefore, the 

objective of this study is to propose and implement a novel modelling framework, 

Geographic Network Automata (GNA), for representing and analysing complex spatial 

systems as evolving networks. The GNA framework is implemented and tested on a 

spatial network adaptation of Conway’s Game of Life model and explores the structure 

and behavior of evolving spatial networks using three scenarios. The simulated evolving 

spatial network structures are quantified using graph theory measures. Results indicate 

that graph theory measures are dependent on spatial network size as the network grows 

or shrinks. The presented GNA modelling framework is both general and flexible, useful 

for modelling a variety of real geospatial phenomena and characterizing and exploring 

network structure, dynamics, and evolution of real spatial systems. The GNA modelling 

framework is situated within the larger framework of geographic automata systems 

alongside cellular automata and agent-based modelling. 

3.2. Introduction 

As geospatial data becomes increasingly available, networks are used as a 

powerful conceptual framework to represent and analyze a wide array of complex spatial 

                                                

1 A version of this chapter is submitted for publication: Anderson, T. & Dragicevic, S. (Submitted). 
Representing spatial systems as evolving networks: A Geographic Network Automata model. 
Journal of Geographical Systems. 
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systems from social, urban, and ecological (Scellato et al., 2011; Zhong et al., 2014; 

Fortuna et al., 2006). The conceptualization of complex spatial systems as networks 

begins from the bottom-up, where system components are represented as 

georeferenced nodes and interactions between components are represented as links. 

Sets of local interactions form the global network structure, for which the system as a 

whole is represented. The representation of complex spatial systems as networks offers 

a well-developed toolkit for analysis. Specifically, graph theory can be applied to 

describe the spatial structures of real phenomena and explore the tightly coupled 

relationship between spatial structure and spatial dynamics.  

Network representations of spatial dynamics can be distinguished between 

dynamics on a network or the dynamics of networks (Gross and Sayama, 2009). In the 

former, the flow of information or materials dynamically propagate through a set of 

spatially arranged nodes and links. For example, in ecology, the spatio-temporal 

dynamics of species dispersal is highly dependent on the spatial structure of habitat 

features across the landscape (Fortuna et al., 2006). In an epidemiological context, the 

spatio-temporal dynamics of disease spread is predicted using the spatial structure of 

human contact networks (Bansal et al., 2010). The underlying network structure on 

which network dynamics propagate can either be static as in the ecological example, or 

dynamic as in the case of a human contact network which changes over geographic 

space and time. Dynamics of networks may operate independently of an underlying 

network structure. Specifically, as a function of the tight coupling and feedback between 

network structure and network dynamics, the structure of the network itself dynamically 

changes over time. For example, street network structure influences vehicle traffic, but in 

turn spatio-temporal patterns of traffic may damage streets, forcing their closure, or 

require the construction of new streets to reduce congestion.  

Changes in networks over geographic space and time as function of dynamics on 

a network or the dynamics of networks is referred to as network evolution. In this 

process, nodes and links are added, removed, rewired, or undergo changes with respect 

to their properties over time (Smith et al., 2011). Network evolution is not well 

understood since detailed spatio-temporal datasets representing real phenomena that 

can be conceptualized as networks have been historically limited. Thus conventional 

spatial network analysis tends to focus on describing static spatial network structures or 

exploring the effect of static spatial network structures on spatial dynamics including for 
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example the process of gentrification on a static network of properties (O’Sullivan, 2002), 

ecological dispersal dynamics on landscape connectivity networks (Fortuna et al., 2006; 

Urban and Kiett, 2001), transportation dynamics on road networks (Decruet and 

Notteboom, 2012; Jiang, 2009), and epidemics on contact networks (Bansal et al., 2010; 

Bian and Liebner, 2007) and on airline networks (Colizza et al., 2006).  

Models representing phenomena such as predator prey dynamics (Boccara et 

al., 1993) and human epidemics (Boccara, 1994) as evolving networks were developed 

by applying sub-rules representing network dynamics to network structures that alter the 

network structure itself over time. This methodology was later formalized as network 

automata (Sayama and Laramee, 2009; Smith et al., 2011), however these studies are 

not implemented on real world phenomena nor do they use geospatial data. Despite the 

demand for a shift from descriptive measures of spatial network structures to the study 

of evolving complex spatial networks that would facilitate the long-standing interest in the 

investigation into the link between spatial network structure and dynamics, network 

automata have not yet been explored in application to geospatial phenomena. 

Therefore, the objectives of this study are to integrate concepts of GISc, complex 

systems, and network theory to 1) propose a theoretical framework of a novel modelling 

approach called Geographic Network Automata for the representation and analysis of 

complex spatial systems as evolving networks 2) demonstrate the GNA framework using 

a spatially explicit network version of Conway’s Game of Life (Conway, 1970) and 3) 

develop several scenarios using the GNA framework that simulate different forms of 

evolving network behavior so that the structure and behavior of evolving networks can 

be analyzed.  The Game of Life is selected as a case study to present the GNA 

framework because it is a well-known theoretical system that is inherently simple and 

operates in space and time. The original Game of Life is an automata developed by 

John Conway in 1970 that was designed to simulate dynamics of reproduction, death, 

and survival. Therefore, the Game of Life as a network representation permits the 

exploration of these dynamics resulting in network evolution including node addition, 

removal, rewiring, and changing of node properties, facilitating broader learning from its 

use. Furthermore, this case study facilitates a clear and simple explanation of the GNA 

framework that sets the stage for which the reader can envision the GNA framework in 

application to a real phenomenon.  
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Firstly, theoretical background for both the GNA modelling approach as well as 

the graph theory used for GNA analysis has been provided. Next, the GNA modelling 

framework is presented in application to the spatially explicit network version of the 

Game of Life using several scenarios that facilitate the exploration of changes in network 

structure and dynamics as they evolve over space and time. Lastly, the use of the GNA 

framework in application to a broad range of geospatial phenomena is discussed. 

3.3. Geographic Network Automata (GNA) 

This section first presents the general GNA modelling framework for network 

representation of real-world spatial phenomena and secondly introduces the theoretical 

background for how graph theory can be applied to analyze the GNA spatial network SN 

outputs.  

3.3.1. GNA Modelling Framework 

A geographic network automaton (GNA) is a mathematical representation of a 

complex system as an evolving spatial network SN. The major components of a GNA 

include the following: 1) a spatial network SN composed of a set of node automata N 

and a set of links L that represent a spatially-embedded complex system; 2) transition 

rules R that simulate system dynamics; 3) connection costs C that measure the 

resistance of the geographic space to network evolution; 4) time, where the topology of 

the spatial network SN at time t+1 is a function of the applied transition rules R and 

connection costs C at time t. 

In the conceptualization of a real-world system as an evolving spatial network 

SN, system dynamics can be represented as dynamics on a network or dynamics of a 

network. In either case, there exists a set of node automata with properties that are of 

most interest to the modeller. For example, in the network representation and analysis of 

spatio-temporal patterns of forest insect infestation, forest stands can be represented as 

nodes with one of two states, infested or not infested, and nodes with the infested state 

may of be more interest to the modeller. We refer to these node automata as nodes of 

primary interest. The nodes of primary interest form an evolving spatial network of 

primary interest SN. 
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In the case of representing dynamics on a network, a spatial network of primary 

interest SN is formed based on an underlying network UN (Figure 3.1a). Therefore, the 

GNA formulation includes the underlying network UN as an additional component and 

can therefore be formulated as:  

𝐺𝑁𝐴 = [𝑈𝑁, 𝑆𝑁, 𝑅, 𝐶, ∆𝑡] (1) 

where UN is the underlying network, SN is the spatial network, R are the transition rules, 

C is the connection cost, and ∆t is the temporal resolution of the GNA.  

In the case of representing dynamics of a network (Figure 3.1b), a spatial 

network of interest SN is formed independent of an underlying network. Therefore, the 

GNA can be formulated as: 

𝐺𝑁𝐴 = [𝑆𝑁, 𝑅, 𝐶, ∆𝑡] (2) 

 

Figure 3.1. Different spatial network SN dynamics: (a) dynamics of a primary 
network of interest SN that evolves over time and (b) dynamics on a 
network SN where the network of interest evolves over time as a 
function of an underlying network UN. 

Both the evolving spatial network SN generated by the GNA and the underlying 

network UN from which in some cases the spatial network SN might emerge is 

composed of a set of nodes N representing components of a system. Pairs of nodes are 

connected by links L, representing interactions or relationships between system 

components. The spatial network SN can be formulated as: 

𝑆𝑁 = [𝑁, 𝐿] (3) 
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In the case of representing dynamics on a network, the underlying network UN 

can also be formulated as:  

𝑈𝑁 = [𝑁, 𝐿] (4) 

 The dispersal of amphibians across the landscape from pond to pond is an 

example of dynamics on an underlying network UN. The species can only move from 

one pond node i to another pond node j if pond node i and j are within the maximum 

dispersal distance of the amphibian. The dispersal of the species is constrained by its 

dispersal processes which are constrained by distance and the spatial location of the 

ponds across the landscape. In this case, the network evolution of the spatial network 

SN is a function of the underlying network UN, the spatial network itself SN, and the 

matrix. The dispersal of a bark beetle across the landscape form from forest stand to 

forest stand is an example of a spatial network SN that operates independently of an 

underlying network UN. The beetle can only naturally move from forest stand i to forest 

stand j if it is within the maximum dispersal distance of the beetle, however, because of 

its ability to undergo long distance dispersal where the beetle is transported far 

distances through the interaction with humans, it is not limited by the spatial structure of 

the landscape. The beetle can therefore hop to forest stand nodes beyond its maximum 

dispersal distance, thus by-passing expected links that would be required to be 

traversed along the underlying landscape connectivity network. In this case, the spatial 

network evolution SN is a function of the dynamics of the network itself SN and the 

matrix. 

 It is important to note that the corresponding nodes and links in the UN and the 

SN are one and the same. For example, node 𝑣𝑖 in the UN is exactly the same as the 

corresponding node 𝑣𝑖 in the SN, it is only conceptualized as belonging to a different 

network based on what the modeller is interested in measuring. The sets of node 

automata N and links L in the spatial network SN or underlying network UN are further 

expressed as:  

𝑁 = [𝑣1, 𝑣2, … , 𝑣𝑛] (5) 

where 𝑣𝑖 is a node in the set of nodes N; 𝑛 is the number of nodes in N. 

𝐿 = [𝑒1, 𝑒2, … , 𝑒𝑚] (6) 
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where  𝑒𝑗 is a link in the set of links L; 𝑚 is the number of links in L. 

Each node 𝑣𝑖  and link 𝑒𝑗 in the set of nodes N and links L are defined by several 

spatial, non-spatial, and network properties (Table 3.1). Nodes N are defined by their 

spatial properties, most importantly geographic location g which in turn facilitates the 

measurement of geographic distance dij between any two nodes vi and vj. Depending on 

the type of phenomenon that the set of nodes represent, other geometric properties such 

as area and perimeter may be of interest. Nodes N are also defined by network 

properties such as the number and list of connections a node 𝑣𝑖 has to other nodes in 

the network or node weight. Node weight w is a particularly useful network property that 

ranks the nodes importance, suitability, or preference within the set of nodes N.  

Table 3.1. Examples of spatial, non-spatial, and network properties for both 
nodes v and links e 

Property 
Type 

Description Examples of Node Properties  Examples of Link 
Properties  

Spatial  Geometric properties 
pertaining to the node v or link 
e 

location (x, y coordinates), 
area, distance from, 
perimeter 

length, coordinates of 
end points, direction 

Non-Spatial Qualitative and quantitative 
non-spatial attributes 
pertaining to the node v or link 
e 

name, ID, colour, value, type, 
state 

name, ID, colour, 
value, type, state 

Network Measurements derived from 
network theory pertaining to 
the node v or link e 

degree, betweenness, 
weight, clustering coefficient, 
list of neighbours 

weight, list of end 
nodes 

 

Links L are also defined by their spatial properties, which differ slightly from the 

spatial properties of nodes. Whereas nodes N are always embedded in geographic 

space, in most cases, links L are not. The exception is a planar network such as a road 

network, in which case the link length is of interest. Links also contain the important 

network property of link weight w, which can be used to quantify the magnitude of flow of 

individuals, materials, or information between nodes. Links are either unidirectional or 

bidirectional, meaning that flow occurs in one or both directions respectively. Both nodes 

N and links L have non-spatial properties which are qualitative or quantitative attributes 

used to describe the network node or link.  

Transition rules R are designed to represent the real-world dynamics between 

system elements and determine the evolution of the spatial network SN. The 
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development of transition rules R is ultimately a function of whether spatial dynamics are 

represented on a network or of a network.  In the case of representing dynamics on a 

network, transition rules R may be defined where the spatial network SN interacts with 

the underlying network UN. An example transition rule R demonstrating this interaction is 

as follows: at time step t, node 𝑣𝑖  in the SN forms a link to node 𝑣𝑗 in the UN if node 𝑣𝑗  

has some weight  𝑤𝑗. In the case of representing dynamics of a network, an example 

transition rule R demonstrating this type of evolving network is as follows: at time step t, 

if there are less than three nodes within the neighbourhood of node 𝑣𝑖, a new node 𝑣𝑗 is 

spawned within this neighbourhood and a link forms between node 𝑣𝑖  and node 𝑣𝑗. 

Connection cost C evaluates the resistance of the geographic space between nodes to 

both the formation of links between nodes or to the generation of new nodes. This space 

between nodes is referred to as the cost matrix. Resistance in this context may be a 

function of distance d between nodes or the low suitability of the matrix for connecting 

nodes or the spawning of new nodes. 

The spatial and topological organization of the spatial network SN and in some 

cases the UN, specifically what nodes are connected to what nodes using which links, 

are recorded in an N x N adjacency table ASN and AUN, respectively. In these tables, the 

existence of a link between two nodes Aij in a network is recorded using a value of 1, 

with the alternative recorded using a value of 0.  

In the case of simulating dynamics on a network, applied transition rules R and 

connection costs C influence the underlying network UN, which in turn influences the 

spatial network SN and thus alter the information recorded within the adjacency matrices 

at each time step. Therefore, spatial network SN evolution with each time step is defined 

where the adjacency matrix at the subsequent time step t + 1 is a function of the 

underlying network UN, the transition rules R, the connection cost C, and the adjacency 

matrix at the previous time t. In the case of simulating dynamics of a network, applied 

transition rules R and connection costs C alter the spatial network SN and thus alter the 

information recorded within the adjacency matrix at each time step. Therefore, the 

spatial network SN evolution is defined where the adjacency matrix at the subsequent 

time step t + 1 is a function of the transition rules R, the connection cost C, and the 

adjacency matrix at the previous time t.  
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3.3.2. GNA Spatial Network Analysis using Graph Theory 

The output of a GNA is a sequence of evolving spatial networks of primary 

interest SN representing a real-world phenomenon over space and time. This 

representation is useful because the structure of spatial networks can be described and 

compared and the link between spatial network structure and spatial dynamics can be 

explored using graph theory measures (Newman, 2003, Barthelemy, 2011, Lewis, 2011, 

Barabasi et al, 2016). 

The observed structural and dynamical properties of real-world networks often 

exhibit some or many of the same properties of four well-defined theoretical graph types: 

regular, random, small-world, and scale-free. These types of graphs can be 

distinguished from one another using a few simple global graph theory measures that 

are able to characterize the structure of the graph as a whole including degree 

distribution P(k), average clustering coefficient <C>, and average path length <l> (Table 

3.2). 

Table 3.2. Some graph theory measures for network analysis. 

Graph Theory Measure Definition 

Degree distribution P(k) The number of connections a node has to other nodes in the 
network is a localized measure, specific to each node, and is 
referred to as node degree k. Therefore, the fraction of nodes in the 
network with degree k, calculated for the entire distribution of k is 
referred to as degree distribution P(k). 

Average clustering coefficient <C> Clustering coefficient C measures the likelihood of nodes that are 
connected to node i are also connected to each other. This is a 
localized measure specific to each node. Average clustering 
coefficient <C> measures the average C across all nodes in the 
network. 

Average path length <l> The average number of intermediate nodes and links in the shortest 
path between all pairs of nodes in the network is referred to as 
average path length <l>. 

 

Networks that exhibit properties of regular graphs are composed of a set of 

nodes and links, where each node has the exact same number of links or degree k, and 

are often referred to as a lattice (Boccaletti et al., 2006). Alternatively, the underlying 

spatial structure of the original version of the Game of Life can be represented as a 

lattice, where all cells representing system components interact with the exact same 

number of their most adjacent neighbours. Since all nodes are tightly connected to their 
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nearest neighbours, networks with properties corresponding to regular graphs have a 

high clustering coefficient. The localized connections result in a long average path length 

between pairs of nodes in the network.  

Networks that exhibit the properties of random graphs are composed of nodes 

that are connected to other nodes at random (Erdos and Renyi, 1959; 1960). Unlike a 

regular graph, nodes connect to both adjacent and distant nodes. Random graphs are 

defined by a degree distribution where all nodes have a similar degree. This well-defined 

average degree produces a Poisson degree distribution, characterized a peak with 

rapidly diminishing sides when graphed as a histogram. Since nodes are connected at 

random to both adjacent and distant nodes, the average clustering coefficient is very 

small and the average path length is very small. 

Networks that exhibit properties of small-world graphs fall between regular 

graphs that have no randomness at all and random graphs that entirely random (Watts 

and Strogatz, 1998). Like a regular graph, the majority of nodes in small world graphs 

are connected to their nearest neighbours, however a few nodes are connected to 

distant nodes. This type of graph also produces a Poisson distribution when graphing 

the degree distribution as a histogram. However, small-world graphs are different than 

their regular or random counterparts because the few distant connections between 

nodes produces a high clustering coefficient <C>, but dramatically reduces the average 

path length <l>. Social networks typically exhibit properties of small-world graphs, where 

there exist only a few intermediate acquaintances between any two people in the world. 

Dynamics on a small world network, such as the spreading of information, is highly 

efficient. 

Networks that exhibit properties of scale-free graphs are characterized by a 

degree distribution where a few nodes have a disproportionately large degree and the 

majority of nodes have a very small degree (Albert et al., 1999). This produces a scale 

free degree distribution with a low average clustering coefficient and a small average 

path length. Barabasi & Albert (1999) refer to networks with power law distributions as 

“scale free” networks because the same power law distribution remains across all scales 

in the network. This network structure is explained by growth and preferential 

attachment, meaning that as the network forms, the probability that a new link will be 

added to node 𝑣𝑖 is proportional to the degree of that node and can result in the 
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formation of hubs with an anomalous number of links. These types of network are robust 

to random attack, however, the loss of a hub in a targeted attack would cause system 

failure (Cohen et al., 2000). Node degree is not the only factor contributing to preferential 

attachment (Yule, 1925) and several modifications have been proposed such as node 

age (Jeong et al., 2003; D’souza et al, 2007).  

3.4. Game of Life GNA Model (GNAGOL) 

In the following sections, the application of the proposed GNA framework to the 

spatially explicit network version of the Game of Life GNAGOL is presented. The GNAGOL 

is developed using the Java programming language in the Eclipse integrated 

development environment using the REcursive Porous Agent Simulation Toolkit 

(Repast) (Repast, 2016). Furthermore, based on the objective to explore the structure 

and behavior of evolving spatial networks, the GNAGOL implements three scenarios to 

simulate typical spatial processes as represented by network fluctuation, growth, and 

shrinkage.   

3.4.1. GNAGOL Model Framework 

The GNAGOL model simulates system dynamics on an underlying random spatial 

network UN. Random spatial networks also known as random geometric graphs are 

created by randomly placing nodes in geographic space. Nodes are connected to other 

nodes if the distance between the two nodes falls within a selected distance threshold 

(Dall and Christensen, 2008). The distance threshold does not always need to be 

Euclidean as in some studies the street network distance has been used (Antonioni and 

Tomassini, 2012). Random geometric graphs differ from traditional random graphs 

because the distance threshold produces localized clustering between adjacent nodes 

and a lack of long-distance connections, characteristic of many spatially embedded 

graphs, which produces network structures with a much higher average clustering 

coefficient than traditional random graphs (Barthelemy, 2011). The choice to simulate 

dynamics on a network rather than as a network was based on the original Game of Life 

model that was composed of a lattice of cells that are either dead or alive, where the 

total number of system components do not change, but rather the state of the system 
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components changes. This facilitates the adaption of original Game of Life transition 

rules to the GNAGOL.  

Based on formulation (1), the GNAGOL can therefore be formulated as:  

𝐺𝑁𝐴𝐺𝑂𝐿  = [𝑈𝑁𝐺𝑂𝐿 , 𝑆𝑁𝐺𝑂𝐿 , 𝑅, 𝐶, ∆𝑡] (7) 

where the GNAGOL is a function of the underlying network 𝑈𝑁𝐺𝑂𝐿, the spatial network of 

interest 𝑆𝑁𝐺𝑂𝐿, the transition rules 𝑅, the connection cost 𝐶, and time ∆𝑡.   

The underlying random spatial network UNGOL is constructed using a set of 2000 

randomly georeferenced nodes N. Node 𝑣𝑖 and node 𝑣𝑗 in the set of nodes N are 

connected by a link and thus interact if the distance dij is smaller than a given range, in 

this case dij <= 1 km. The given range, the 1km radius around node 𝑣𝑖 is referred to as 

the neighbourhood. It can be said that the nodes 𝑣𝑗 that are connected to node 𝑣𝑖 as a 

function of this range are neighbouring nodes in the UNGOL. Because the spatial 

distribution of all nodes is random rather than a regular tessellation, nodes in the UNGOL 

do not have the same number of neighbouring nodes. This differs from the traditional 

formulism of the CA version of the Game of Life which essentially operates on a lattice 

or regular network where all cells have the exact same number of neighbours. Each 

node and link in the set of nodes N and links L can be defined by the properties in Table 

3.3.  

Table 3.3. The spatial, non-spatial, and network properties of the nodes and 
links in the GNAGOL. 

Property 
Type 

Description Examples of Node 
Properties  

Examples of Link 
Properties  

Spatial  Geometric properties pertaining to 
the node v or link e 

location (x, y 
coordinates), distance d 

coordinates of end 
points, direction 

Non-Spatial Qualitative and quantitative non-
spatial attributes pertaining to the 
node v or link e 

state (dead or alive)  

Network Measurements derived from 
network theory pertaining to the 
node v or link e 

degree, clustering 
coefficient  

list of end nodes 

 

The spatial network SNGOL is composed of an evolving set of nodes that are of 

the state “alive”. Node 𝑣𝑖 and node 𝑣𝑗 are connected by a link if node 𝑣𝑗 also is of the 
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state “alive” and node 𝑣𝑗 is within the neighbourhood of node 𝑣𝑖. In the case that a node 

has the state “dead”, the node is considered disconnected from the spatial network 

SNGOL. The SNGOL is the network of primary interest because it provides a working 

example of an evolving network that can be analyzed where nodes are added, removed, 

and rewired over time.  

The spatial network SNGOL emerges from dynamics that are implemented on the 

underlying network UNGOL. In the underlying network UNGOL, the state of nodes 𝑣𝑗 in the 

neighbourhood of node 𝑣𝑖 at time t influence the state of node 𝑣𝑖 at time t+1. These local 

dynamics are implemented in the GNAGOL using transition rules R. There are four 

transition rules R, which are applied to the UNGOL at time t and determine the UNGOL and 

the SNGOL at time t+1, as follows:  

R1. To simulate the dynamics of under population, any live node 𝑣𝑖 with some number or 

fewer of alive neighbors 𝑣𝑗 dies and is removed from the spatial network SNGOL 

R2. To simulate the dynamics of survival of the fittest, any alive node 𝑣𝑖 with exactly 

some number of alive neighbors maintains their alive state and thus their place in the 

spatial network SNGOL 

R3. To simulate the dynamics of over population, any alive node 𝑣𝑖 with some number or 

more of alive neighbors 𝑣𝑗 dies and is removed from the spatial SNGOL 

R4. To simulate the dynamics of reproduction, any dead node 𝑣𝑖  with exactly some 

number of alive neighbors 𝑣𝑗 becomes an alive node and is added to the spatial network 

SNGOL 

Although the influence of the cost matrix on system dynamics is not formally 

explored in the traditional Game of Life, a barrier is introduced into the GNAGOL to 

demonstrate the use of the connection cost C in the GNA framework. The connection 

cost C is as follows: 

C1. A link cannot form between node 𝑣𝑖 and node 𝑣𝑗 if it intersects the barrier 

For any model run, the underlying network structure UNGOL is always the same, 

although the states of the nodes change. The UNGOL and subsequently the SNGOL are 
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initialized at time t0 where 50% of the 2000 nodes are randomly selected as “alive”. The 

underlying network UNGOL in the GNAGOL implements a synchronized node update 

process. First, the number of alive neighbouring nodes is calculated for each node in the 

underlying network UNGOL. Second, the transition rules R are applied and the state of 

each node changes based on its number of live neighbours. Finally, the new number of 

alive nodes is calculated. If the node is alive, the node stays or becomes part of the 

spatial network of interest SNGOL and connects to its live neighbours. The GNAGOL is run 

for 20 iterations to allow enough time to observe the evolving spatial network SNGOL 

behavior. 

3.4.2. GNAGOL Scenarios 

Three scenarios where developed by adjusting the transition rules R1-R4 of the 

GNAGOL model to represent different spatial system behaviours as simulated evolving 

spatial network SNGOL. Scenario 1 uses the transition rules R presented in Table 3.4 and 

Figure 3.2a to generate a spatial network that fluctuates in a cyclic pattern with constant 

motion close to system equilibrium. To better understand how different geographical 

landscapes may influence network structure, scenario 1 is implemented twice using two 

different geographical landscapes including one with a water barrier and the other with 

street network as barriers. Scenario 2 uses transition rules R presented in Table 3.4 and 

Figure 3.2b to generate a spatial network that grows and expands. Scenario 3 uses the 

transition rules R presented in Table 3.4 and Figure 3.2c to generate a spatial network 

that shrinks and declines in size over space and time. Scenario 2 and scenario 3 are 

only implemented on a landscape with a water barrier. In all three scenarios, the 

connection cost C1 remains the same, where a link cannot form between node 𝑣𝑖 and 

node 𝑣𝑗 if it intersects the barrier.  

There are several real-world examples of systems as networks that may exhibit 

these types of behaviors over space and time. In a fluctuating network, the network 

grows and shrinks over time as dynamics cause nodes to become disconnected, newly 

added, and rewired. Despite these changes to network structure, the number of nodes 

remains relatively the same over time.  One real world system that may exhibit a 

fluctuating network behavior is a human contact network as spatial social network 

structures evolve over time generating sets of repeating structures as nodes 

representing people move from home to work to recreational spaces. A growing network, 
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where the number of nodes and links increases consistently over time, may be 

representative of any type of spreading phenomena like insect infestation or spread of a 

computer virus. A shrinking network, where nodes are continuously removed from the 

network may be representative of the disconnection of a landscape connectivity network 

composed of a set of habitat patches that are connected based on the maximum 

dispersal distance of a species of interest as deforestation causes the removal of forest 

stand nodes or drought causes the loss of pond nodes.  

 

Figure 3.2. Parameterization of R1-R4 for (a) Scenario 1, (b) Scenario 2, and (c) 
Scenario 3, where orange values indicate the number of neighbours 
that results in node death, yellow values indicate the number of 
neighbours that result in node survival, and blue values indicate the 
number of neighbours that result in node reproduction 

Table 3.4. Transition rules and their parameterization specific to each 
scenario. 

R1. To simulate the 
dynamics of under 
population, any live node 𝑣𝑖 
with… 

Scenario 1 6 or fewer … live neighbours 𝑣𝑖 dies and 
is removed from the spatial 
network SN. 
 
 

Scenario 2 2 or fewer 

Scenario 3 11 or fewer 

R2. To simulate the 
dynamics of survival of the 

fittest, any live node 𝑣𝑖 
with… 

Scenario 1 exactly 7, 8, 13, or 14 … live neighbours 𝑣𝑖 maintains 
their alive state and thus their 
place in the spatial network SN. 
 

Scenario 2 =>3 and <=9 or =>21 
and <=34 

Scenario 3 N/A 

R3. To simulate the 
dynamics of over 

population, any live node 𝑣𝑖 
with… 

Scenario 1 15 or more … live neighbors 𝑣𝑖 dies and is 
removed from the spatial SN. 
 
 
 

Scenario 2 35 or more 

Scenario 3 20 or more 

R4. To simulate the 
dynamics of reproduction, 
any dead node… 

Scenario 1 more than 8 or less 
than 13 

… live neighbors 𝑣𝑖 becomes a 
live node and is added to the 
spatial network SN. Scenario 2 more than 9 or less 

than 21 

Scenario 3 more than 11 or less 
than 20 
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3.4.3. GNAGOL Model Testing 

The process of developing spatial models for representing complex systems 

includes several stages of model testing, typically comprised of model calibration, 

sensitivity analysis, and validation. The GNAGOL model calibration was accomplished by 

using different parameter values for each rule R1, R2, R3, and R4 and by verifying 

whether the model outputs produced meaningful behavior that corresponds to real-world 

spatial processes such as fluctuation, growth, or shrinkage. The GNAGOL was tested for 

sensitivity to the structure of the underlying network UN as a function of the distance 

threshold dij that determines the neighbourhood of the nodes, in this case dij <= 1 km. 

Therefore, we characterize the underlying network UN in the case that the distance 

threshold to connect neighbouring nodes is half that of dij where dhalf <= 0.5 km and twice 

that of dij where ddouble <= 2 km (Table 3.5). Most interesting is that doubling the distance 

threshold means that all nodes are connected to one third of all other nodes in the 

network. It is at this threshold that the clustering coefficient is impacted, meaning that the 

majority of nodes connected to node 𝑣𝑖 are also connected to each other. This high 

clustering corresponds to a much lower average path length between any two pairs of 

nodes in the network.  

Table 3.5. Sensitivity of the underlying network UN to the distance  
threshold dij. 

Network Measure Connectivity of Underlying Network 

Sparse Regular High 

Number of Nodes 2000 2000 2000 

Number of Links 20554 64754 1374840 

Average Clustering Coefficient  0.57 0.59 0.73 

Average Degree (of all nodes) 10.85 32.44 687.42 

Average Path Length 34.83 20.72 4.63 

 

The transition rules R applied to the underlying network using these two 

alternative distance functions generate an immediate death at the first iteration to all 

nodes where node degree k is too high or too low to survive. This clearly demonstrates 

the tight coupling of network structure and network dynamics. Model validation was not 

performed as model outputs can not be compared to real spatial patterns as geospatial 

data was not used for this study. 
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3.5. Results 

The output of the GNAGOL are a series of spatial networks SNGOL that evolve as a 

function of transition rules R that are applied to the underlying network UNGOL. The 

choice to represent dynamics on a network is unique because of the interplay between 

the underlying network UNGOL and the spatial network of interest SNGOL.  Specifically, the 

measured evolving network SNGOL structure is limited by the underlying random 

geometric network structure UNGOL and thus the GNAGOL in all three scenarios produce 

an evolving spatial network SNGOL that is also random. Since the degree of a node in the 

spatial network of interest SNGOL cannot exceed the degree of the corresponding node in 

the underlying network UNGOL and the links between nodes only exist in the case that the 

distance between two nodes are within the distance threshold, the underlying network 

UNGOL does not allow for the emergence of a spatial network of interest SNGOL that has 

properties of other graph types such as scale free or small world. Based on the random 

evolving spatial network structure SNGOL produced by the GNAGOL, the network 

structures observed and measured here characterize random geometric networks as 

they respond to dynamics that cause growth and shrinking responses. In this section, 

the obtained GNAGOL simulation results are presented and the evolving spatial network 

SNGOL is analyzed using graph theory measures. 

3.5.1. GNAGOL Simulation Results 

The obtained simulation results from all three scenarios are presented in Figure 

3.3. In all scenarios, following initialization, 50% of nodes are selected randomly as 

“alive” (Figure 3.3a).  

Scenario 1 

The application of the transition rules R designed to produce a fluctuating 

network initially results in several clusters that are loosely connected by thin chains of 

nodes (Figure 3.3b) in the water barrier landscape. At time t, live nodes with an ideal 

number of live neighbouring nodes survive onto the next iteration at time t+1 (R2). In 

addition, dead nodes with the ideal number of neighbouring live nodes at time t come to 

life at time t+1 (R4). Live nodes without an ideal number of neighbouring live nodes at 

time t die from over population and under population at time t+1. The reproduction and 



60 

death of nodes at time t+1 means that live nodes that have lost and gained live 

neighbouring nodes are at risk of dying in the following iterations. Subsequently dead 

nodes that have gained live neighboring nodes may have the potential of coming alive at 

the following iterations. These dynamics result in a delicate balance of node state, 

producing a spatial network SN composed of live nodes that evolves over time where 

clusters grow, shrink, merge, and re-organize over time. The network ultimately self-

organizes into sets of repeating relatively stable loop-like clusters connected in a variety 

of ways (Figure 3.3 c, d, e). Specifically, chain and loop-like structures form as the 

interior of each cluster dies from overpopulation and the exterior of the cluster dies from 

under population, leaving the rest of the nodes in the cluster with the correct number of 

links survive until the next time step. In this particular landscape, the water barrier due to 

its location, does little to break up the overall network structure.  

Comparison of Two different Landscapes. Figure 3.4 compares the evolving 

network structures that form based on the same transition rules for the fluctuating 

process, but for two different landscapes, one with a water barrier (Figure 3.4 a, b) and 

the other with dense street network (Figure 3.4 c, d) and for time t5 (a, c) and t10 (b, d), 

respectively. In contrast to the landscape with the water barrier only, the landscape with 

more barriers, like streets in this case, have a major impact on the evolving network 

structure. Because the spatial interactions cannot take place with nodes that are 

separated by street features, the network becomes segregated into several small spatial 

clusters that are contained within a street block. It is more challenging for these clusters 

to survive, because they are limited to connect only with the nodes within their block, 

and as such, most clusters die or shrink over time.  

Scenario 2 

The application of the transition rules R developed specifically to simulate spatial 

network growth initially forms a configuration that is composed of thick clusters of nodes 

(Figure 3.3f). Since the transition rules R create an imbalance in favour of node 

reproduction (R4) and survival (R2), the clusters expand over time as “dead” nodes 

close to the edge of clusters eventually have enough “live” neighbours that are required 

for them to reproduce and join the spatial network SN (Figure 3.3g, h, i). As such, the 

network as a whole grows over time as if “spreading”. In this scenario, the same loop-

like configurations form where nodes internal to the cluster die from overpopulation.  
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Scenario 3 

The application of the transition rules R developed specifically to simulate spatial 

network shrinkage initially forms a sparse set of clusters, where some clusters are 

connected to the larger spatial network and others are not (Figure 3.3j). This is a result 

of the transition rules R that are designed to reduce node reproduction and eliminate 

node survival. As a result, the network quickly shrinks until the network is reduced to a 

repeating sequence of relatively stable loop-like configurations. As soon as a 

configuration is produced that is unstable, resulting in the loss or gain of nodes, the 

network collapses and all nodes die from under population. The stable loop like 

configurations and the repeating patterns are similar to that of the patterns that are 

produced in the original version of the Game of Life.  
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Figure 3.3. Based on (a) the initial state, the evolving spatial networks SNGOL 
generated from the GNAGOL are presented for scenario 1 (b) t5, (c) t10, 
(d) t15, (e) t20, scenario 2 (f) t5, (g) t10, (h) t15, (i) t20, and scenario 3 (j) t5, 
(k) t10, (l) t15, (m) t20. 
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Figure 3.4. Simulation outcomes for scenario 1 fluctuating networks with (a, b) 
water barrier (blue) and (c, d) street barrier (orange) landscapes for 
time (a, c) t5 and (b, d) t10 with (e) the values for the calculated 
number of nodes, number of links, average clustering coefficient, 
average degree, and average path length for each landscape and all 
model iterations. 

3.5.2. GNAGOL Spatial Network Analysis Results 

The GNAGOL produces a sequence of spatial networks SNGOL as a function of the 

variations of the transition rules imposed on the UNGOL in each scenario. The evolving 

network SNGOL generated from the GNAGOL can be characterized and quantified using 

graph theory measures to help explore the relationship between network structure and 

network dynamics. There are several important graph theory measures that are selected 

and applied based on their ability to mathematically characterize overall network 

structure and behavior including number of nodes n, number of links m, average degree 

<k>, degree distribution P(k), average clustering coefficient <C>, and the average 

shortest path length <l>. These are global measures that provide a complete snapshot of 
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network structure and can be used to clearly understand how the structure of a network 

evolves over time as a function of network dynamics. 

Characterizing the Underlying Network UN 

The underlying random spatial network UNGOL has a node size of 2000, link size 

of 64754, an average clustering coefficient <C> of 0.588, an average degree <k> 

including all nodes that are both dead and alive of 32.44 that produces a Poisson degree 

distribution P(k), and a path length of 20.72. Apart from node state, the underlying 

spatial network UNGOL is static and does not change over time. The spatial network 

SNGOL emerges from the applied transition rules R to the underlying network UNGOL and 

evolves over time.  

General Trends 

The evolving spatial network SNGOL is characterized by number of nodes, number 

of links, average clustering coefficient, average degree of alive nodes, and average path 

length calculated for each iteration for scenario 1 (Figure 3.5a), scenario 2 (Figure 3.5b), 

and scenario 3 (Figure 3.5c). In general, in scenario 1, the fluctuating network, all 

measures fluctuate over time as the network switches between a series of repeating 

stable configurations and thus the size of the network grows and shrinks over time. In 

scenario 2, the network growth scenario, the network grows steadily in size over time. 

The rate of growth is faster in early iterations and slows in later iterations as the network 

finds a stable configuration and less dead nodes are available to reproduce and join the 

network as live nodes. In scenario 3, the network shrinkage scenario, the network 

decreases in size over time. In this scenario, there are a few iterations where the 

number of nodes increases slightly before then decreasing. 
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Figure 3.5. Calculated number of nodes, number of links, average clustering 
coefficient, average degree, and average path length for the 
obtained spatial network SN as it evolves over space and time 
generated from (a) scenario 1: fluctuating network, (b) scenario 2: 
network growth, and (c) scenario 3: network shrinkage. 

Comparison of Two Different Landscapes 

Figure 3.4e presents the comparison of the obtained network measures (number 

of nodes n, number of links m, average clustering coefficient <C>, average degree of 

alive nodes <k>, and average path length <l>) calculated for each iteration for scenario 1 

with the water barrier landscape (in blue) and with the street barrier landscape (in 

orange). Because the street barriers segregate the spatial network into small spatial 

clusters where the number of possible connections are limited, the street barrier 

landscape network has fewer nodes and links, a smaller average degree <k> and a 

smaller average path length <l>.  
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Correlation between Graph Theory Measures 

Table 3.6 presents the correlation between graph theory measures obtained from 

the generated spatial networks in scenario 1 (Table 3.6A), scenario 2 (Table 3.6B), and 

scenario 3 (Table 3.6C). In all three scenarios, as each of the spatial networks SNGOL 

evolve, a strong positive correlation is maintained between the number of nodes and the 

number of links, the number of nodes and average degree, and the number of links and 

average degree.  

Scenario 1. As the fluctuating network evolves, a moderate negative correlation 

between average clustering coefficient and the number of nodes, number of links, and 

average degree is maintained. This indicates that as the size of the network increases, 

the clustering coefficient decreases, explained by the decreased ratio between the 

number of links between nodes 𝑣𝑗 that are connected to node 𝑣𝑖 and the number of links 

that could exist between them. In the fluctuating network, there appears to be a weak 

relationship between average path length and the rest of the graph theory measures, 

demonstrated by the weak positive correlation between average path length and the 

number of nodes, number of links, and average degree. Additionally, there is a weak 

negative correlation between average path length and average clustering coefficient. 

Scenario 2. Like the spatial network SNGOL produced in scenario 1, the growing 

spatial network SNGOL structure exhibits a strong negative correlation between average 

clustering coefficient and the number of nodes, number of links, and average degree. 

This indicates that are the size of the network increases, the clustering coefficient 

decreases. This relationship is stronger in the growing spatial network than in the 

fluctuating network. Unlike the stead state network structure, there is a strong negative 

correlation between average clustering coefficient and average path length, where as 

clustering coefficient increases, path length decreases. This is a logical relationship, 

since as nodes become increasingly and more tightly connected, the path length 

between any two nodes in the network would naturally decrease. Strong positive 

correlations are also found to exist between average path length and number of links, 

number of nodes, and average degree, where as when the network size increases, the 

path length increases.  

Scenario 3. The shrinking network structure SNGOL also exhibits strong positive 

correlations between average path length and number of links, number of nodes, and 
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average degree. There is a moderate negative correlation between average clustering 

coefficient and number of nodes and average degree. Therefore, as the network shrinks, 

the average degree decreases and the average clustering coefficient increases. There is 

a weaker negative correlation however between average clustering coefficient and 

number of links and an even weaker negative correlation between average clustering 

coefficient and average path length. 

In the scenarios of network growth and shrinkage there is also a positive 

correlation between number of nodes and path length. This is not the case in the 

fluctuating network, meaning that there may be more complex relationships between 

graph theory measures than observed here. For example, a long average path length 

may emerge from a network structure that has a unique combination of a high number of 

nodes and a higher than expected clustering coefficient. 

Table 3.6. Correlation table presenting the correlation between each of the 
graph theory measures numbered (1) to (5) obtained from the 
evolving spatial network generated by (a) scenario 1: fluctuating 
network, (b) scenario 2: network growth, and (c) scenario 3: network 
shrinkage.  

Scenario 1: Spatial Fluctuating Network   
(1) (2) (3) (4) (5) 

(1) Number of Nodes 
     

(2) Number of Links 0.89 
    

(3) Average Clustering Coefficient  -0.7 -0.59 
   

(4) Average Path Length 0.24 0.14 -0.17 
  

(5) Average Degree 0.98 0.9 -0.71 0.2 
 

Scenario 2: Spatial Network Growth  
(1) (2) (3) (4) (5) 

(1) Number of Nodes 
     

(2) Number of Links 0.99 
    

(3) Average Clustering Coefficient  -0.97 -0.98 
   

(4) Average Path Length 0.79 0.79 -0.82 
  

(5) Average Degree 0.99 0.99 -0.98 0.8 
 

Scenario 3: Spatial Network Shrinkage  
(1) (2) (3) (4) (5) 

(1) Number of Nodes 
     

(2) Number of Links 0.94 
    

(3) Average Clustering Coefficient  -0.73 -0.67 
   

(4) Average Path Length 0.74 0.94 -0.58 
  

(5) Average Degree 0.99 0.95 -0.72 0.74 
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Figure 3.6. Calculated degree distribution for each evolving spatial network SN 
as it evolves over time generated from (a) scenario 1: fluctuating 
network, (b) scenario 2: network growth, and (c) scenario 3: network 
shrinkage. 

Degree Distribution 

When an evolving network undergoes growth (scenario 2) and network size 

increases, node degree increases, which produces a degree distribution with a left 

negative skew (Figure 3.6b). When an evolving network undergoes shrinkage (scenario 

3), nodes are removed, leaving remaining nodes with a smaller degree, producing a 

degree distribution with a right positive skew (Figure 3.6c). Scenario 1 produces less of a 

consistent degree distribution, as the network undergoes both growth and shrinkage in 

tandem. In most cases, the network shrinks, but at some iterations, there is a shift to 

increased frequencies of nodes with a higher degree (Figure 3.6a).   
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3.6. Discussion and Conclusions 

This study introduces the novel modelling framework of Geographic Network 

Automata (GNA) that can be used for the representation and analysis of complex spatio-

temporal systems as evolving and dynamic networks. The GNA modelling framework is 

implemented using a spatially explicit network variant of the classic Game of Life model 

(Conway, 1970). Three scenarios have been implemented to represent different spatial 

processes as well as the influence of different geographic landscape environments. 

Using graph theory, the simulated evolving networks are characterized and quantified, 

and in this case, facilitate the exploration between evolving random spatial networks and 

their space-time dynamics. In general, for the evolving spatial networks SNGOL simulated 

in all scenarios, as the number of nodes increases, the number of links and the average 

degree increases and the clustering coefficient decreases, supporting conclusions that 

graph theory measures are dependent on network size (Wijk et al., 2010). These 

correlations are particularly interesting because the relationship between network size 

and other graph measures are not well understood and rarely explored in the literature, 

especially in the case of spatially embedded networks. Wijk et al. (2010) mathematically 

calculates correlations between network size and different graph theory measures for a 

traditional non-spatial random network and find that increasing the number of nodes 

results in an increase in average path length and a decrease in clustering coefficient. 

This relationship appears to hold true in the case of random spatial networks as 

demonstrated by the GNAGOL simulated spatial networks SNGOL. Future work may involve 

further exploring these relationships between network structure and dynamics.  

The Game of Life is a hypothetical spatial system, selected as a case study in 

order to clearly demonstrate the GNA modelling framework. Therefore, the GNAGOL 

model does not use geospatial datasets, and thus full model validation was not 

performed. Model validation is seen as the degree of agreement between simulated 

spatial network structures and observed real-world spatial patterns, which should be 

evaluated using datasets that are independent of model development and calibration. 

Future work would require the exploration of model validation approaches suitable for 

comparing evolving networks with real datasets even in the face of data scarcity.  

The GNA is a relatively novel and unexplored modelling approach, its framework 

is both general and flexible so that many types of spatio-temporal phenomena can be 
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simulated. In the case of the application of the GNA modelling framework to real world 

phenomena, the elements of the GNA including the initial network state, the underlying 

network, the transition rules, the connection cost, and the spatial and temporal resolution 

would need to be designed to properly reflect the real system and include real geospatial 

data for GNA development, calibration, and validation. One might consider many 

applications that can be conceptualized as a network where its evolution is driven by 

simple dynamics that occur on the network or of the network or even both. This modeling 

framework might be useful include urban, social, and ecological applications. For 

example, dynamics of social contact might be simulated as an evolving underlying 

network UN from which dynamics of the spread of influenza might emerge as a spatial 

network of interest SN. The proposed GNA modelling approach presented in this study 

is an entirely novel class of geographic automata (Torrens and Benenson, 2005) and 

represents a strong departure from the classic cell-based geographic automata models. 
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Chapter 4.  
 
A Geographic Network Automata Approach for 
Modelling Dynamic Ecological Systems2  

4.1. Abstract 

Landscape connectivity networks are composed of nodes representing georeferenced 

habitat patches that link together based on a species’ maximum dispersal distance. 

These static representations cannot capture the complexity in species dispersal where 

the network of habitat patch nodes changes structure over time as a function of local 

dispersal dynamics. Therefore, the objective of this study is to integrate geographic 

information, complexity, and network science to propose a novel Geographic Network 

Automata (GNA) modelling approach for the simulation of dynamic spatial ecological 

networks. The proposed GNA modelling approach is applied to the emerald ash borer 

(EAB) forest insect infestation using geospatial datasets from Michigan, USA and 

simulates the evolution of the EAB spatio-temporal dispersal network structures across a 

large regional scale. The GNA model calibration and sensitivity analysis are performed. 

The simulated spatial network structures are quantified using graph theory measures. 

Results indicate that the spatial distribution of habitat patch nodes across the landscape 

in combination with EAB dispersal processes generate a highly connected small-world 

dispersal network that is robust to node removal. The presented GNA model framework 

is general and flexible so that different types of geospatial phenomena can be modelled, 

providing valuable insights for management and decision-making. 

4.2. Introduction 

Interactions between ecological entities are commonly represented using aspatial 

networks such as food webs (Cohen 1978; Hall and Raffaelli 1993), host-parasitoid 

webs (Muller et al. 1999; Morris et al. 2004), and mutualistic webs (Jordano 1987; Stang 

et al. 2006). Using these representations, graph theory can be applied to mathematically 

                                                

2 A version of this chapter is accepted and in press for publication: Anderson, T. & Dragicevic, S. 
(In Press). A Geographic Network Automata approach for modelling dynamic ecological systems. 
Geographical Analysis. 
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characterize ecological network topology, cross-compare between network structures to 

find common and unique patterns, and better understand the close coupling between 

network structure and network dynamics (Ings et al. 2009). Although useful, these 

aspatial representations are unable to address complexity of the spatial structure of 

ecological networks (Campbell Grant et al. 2007).  

Consequently, several studies apply graph theory to landscape connectivity 

networks to represent and analyze the connection between landscape spatial structure 

and species dispersal (Urban and Keitt 2001; Minor and Urban 2007; Fortuna et al. 

2006; Bunn et al. 2000). In these representations, network nodes represent 

georeferenced habitat patches and network links represent the potential dispersal 

between habitat patches based on the maximum dispersal distance of the species of 

interest (Fortuna et al. 2006). These studies are typically motivated by species 

conservation and focus on better characterizing patterns of dispersal across the 

landscape, identifying important habitat patches and dispersal pathways, and 

determining the effect the removal of habitat patches by way of external factors such as 

deforestation or forest fires has on landscape connectivity.  

Despite their potential, landscape connectivity networks represent dispersal as 

the movement between a fixed set of habitat patch nodes that are organized in a static 

spatial topology (Sayama and Laramee 2009). This representation assumes that 

dispersal over time takes place between the same set of habitat patch nodes and is 

limited to representing dispersal as a process driven only by maximum dispersal 

distance. However, in the real-world, dispersal processes in ecological systems are 

considered complex and dynamic as there are instances where the network of habitat 

patch nodes expands, shrinks, or changes structure as a function of species 

competition, adaptation, population dynamics, invasion, extinction, or seasonal migration 

of ecological species. These processes are of interest to ecological conservation and 

management, making it beneficial for representing dispersal using a dynamic network 

that can evolve over space and time. 

Network evolution is a property of complex networks and is defined as the 

change in network topology as a function of the dynamics of the phenomena itself as 

nodes are added, rewired, or removed (Smith et al. 2011). The theory of network 

automata (Sayama and Laramee 2009), used for the representation of evolving network 
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structures, can be integrated with geospatial data and geospatial models to provide a 

modelling framework that can represent species dispersal as dynamic spatial networks. 

In dynamic spatial networks, changes in network topologies are a function of the 

dynamics of the network itself, rather than from external influences (Smith et al. 2011).  

Therefore, the main objectives of this study are to (1) propose the theoretical 

framework of a novel modeling approach termed Geographic Network Automata (GNA) 

that integrates geographic information systems (GIS), theories of complex systems, and 

network automata, and (2) apply the GNA approach to model spatio-temporal dispersal 

patterns of ecological phenomena at the regional scale. The proposed GNA is a bottom-

up approach that extends the theoretical and applied framework of geographic automata 

(Torrens and Benenson 2005). Specifically, the GNA generates a spatial network 

structure that evolves as a function of rules that are applied repetitively at each time step 

and govern the spatial dynamics, transformation, and emergence of network topologies.  

The proposed GNA modelling approach is demonstrated by simulating the evolving 

dispersal network of an invasive bark beetle, the emerald ash borer (EAB), using 

geospatial datasets covering a large-scale region in Michigan, USA (Siegert et al. 2014). 

The simulated dispersal network structures are quantified and analysed using graph 

theory measures to represent and understand the spatial dynamics of the networks of 

EAB dispersal processes at the regional scale. 

4.3. Theoretical Framework of the Geographic Network 
Automata  

A geographic network automaton (GNA) is a mathematical representation of a 

complex dynamic spatial network SN. Network dynamics over time are imposed through 

the application of transition rules R that establish connections between nodes and 

connection costs C that restrict connections between nodes (Figure 4.1). Transition rules 

R and connection costs C are applied at each model time step (t+1) as transition rules 

governing the evolution and dynamics of the spatial network SN. 

Therefore, the GNA can be expressed as: 

𝐺𝑁𝐴 = [𝑆𝑁, 𝑅, 𝐶, ∆𝑡] (1) 
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where SN is the spatial network, R are the transition rules, C is the connection cost, and 

∆t is the temporal increment of the GNA.  

The spatial network SN generated by the GNA is composed of a set of nodes N 

representing system components and a set of links L representing an interaction or 

relationship between nodes and is expressed as: 

𝑆𝑁 = [𝑁𝑡 , 𝐿𝑡 , 𝐴𝑡] (2) 

where the spatial network SN at initial time t consists of a set of nodes N, a set of links L, 

and an adjacency matrix A of dimension 𝑁 × 𝑁 storing network topology as records of 

connections between pairs of nodes. 

 

Figure 4.1. Overview of GNA model structure. 
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The transition rules R and the connection cost C influence the information 

recorded within the adjacency matrix at each time step, updating the nodes and 

recording changes in their connections to each other. These act as transition rules 

governing the evolution of the network. Therefore, network evolution with each time step 

is defined where the adjacency matrix at the subsequent time step t + 1 is a function of 

the transition rules R, the connection cost C, and the adjacency matrix at the previous 

time t, as follows:  

𝐴𝑡+1 = 𝑅, 𝐶(𝐴𝑡) (3) 

The sets of nodes N and links L in the spatial network SN are further expressed 

as:  

𝑁 = [𝑣1, 𝑣2, … , 𝑣𝑛] (4) 

𝐿 = [𝑒1, 𝑒2, … , 𝑒𝑚] (5) 

where 𝑣1, 𝑣2, … , 𝑣𝑛 denote the individual nodes that make up the larger set of nodes N 

and 𝑒1, 𝑒2, … , 𝑒𝑚 denote the individual links that make up the larger set of links L.  

Figure 4.2 presents an example of two simple spatial networks to demonstrate 

this notation, where Figure 4.2a is an undirected network, Figure 4.2c is its associated 

adjacency matrix, Figure 4.2b is a directed network, and Figure 4.2d is its associated 

adjacency matrix. Both networks in Figure 4.2 have the same number of nodes and links 

and can be expressed as: 

𝑁 = [𝑣1, 𝑣2, 𝑣3]; 𝑛 = 3 (6) 

𝐿 = [𝑒1, 𝑒2]; 𝑚 = 2 (7) 

The adjacency matrix for the example of the simple spatial networks is presented in 

Figure 4.2d and 4.2d, where a value of 1 denotes the presence of a link between two 

nodes. 

In the undirected network (Figure 4.2a and 4.2c), the connection between v1 and 

v2 via link e1  and the connection between v2  and v3  via link e2 is recorded using a value 

of 1 in this matrix. As an undirected network, these connections are bidirectional and 

thus the connection is also recorded as existing between v2 to v1 and v3  and v2. The 
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absence of a connection between any two nodes is recorded using a value of 0. In the 

directed network (Figure 4.2b and 4.2d), a directed link only exists from v2 to v1 and is 

recorded in the matrix using a value of 1. Since this connection is unidirectional, no link 

is recorded from v1 to v2. 

 

Figure 4.2. Example of simple spatial networks: (a) undirected (b) directed and 
the corresponding adjacency matrices (c) undirected and (d) 
directed. 

Nodes N in a spatial network SN are embedded in geographic space and thus 

always contain the property of geographic location 𝑔 = [𝑥, 𝑦], therefore, the distance d 

between them can be measured. Individual nodes 𝑣𝑖  also contain the property of node 

weight w, network characteristics such as the number of connections to other nodes or 

degree k, and in addition, can contain several non-spatial attributes associated with the 

real-world system component the node 𝑣𝑖 represents. Node weight w is a value assigned 

to each node ranking the nodes importance, suitability, or preference within the set of 

nodes N in the network. In most cases, the higher the node weight w, the more likely that 

the node will be connected to.  
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The links L in a spatial network SN only contain the property of geographic 

location g in the case that the network is embedded in planar space such as 

transportation networks. In this case, links L embedded in planar geographic space also 

contain the property of length. Additionally, links L may contain the property of link 

weight w, representing the magnitude of flow between nodes, for example, flow of 

individuals, material and information. Links L may be unidirectional or bidirectional, 

where flow occurs in one or both directions. As time t passes, the dynamic spatial 

network evolves where the number of nodes n and the number of links m change. In this 

process, already connected nodes make connections to new nodes (Figure 3.3a), 

become disconnected from the network (Figure 4.3b), or are rewired to connect to other 

already connected nodes (Figure 4.3c).  
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Figure 4.3. Spatial network evolution via (a) new connections, (b) node 
disconnection, and (c) node rewiring. 

Transition rules R and connection cost C govern the formation of connections 

between nodes as the transition rules of the network automata and are designed to 

represent the real-world interactions between system elements. The transition rules R 

and connection cost C are part of the GNA theoretical modelling framework and 

ultimately determine the dynamics and evolution of the spatial network SN. Transition 

rules R define the likelihood of a link forming between nodes as a function of node and 

link properties such as directionality, weight, location, and attributes. For example, a 

transition rule R may be defined where the formation of a link from node 𝑣𝑖 to node 𝑣𝑗 is 
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more likely if node 𝑣𝑗 is weighted heavily, is defined by a certain attribute, or is in a 

desirable location.  

Connection cost C determines the resistance of the geographic space between 

two nodes to the formation of links. The space between two nodes is referred to as the 

cost matrix. Resistance in this context is a function of distance between nodes and the 

existence of barrier objects between nodes that impede connection. In many real-world 

systems, long distance connections cost time, energy, and money (Barthélemy 2011). 

Because the network is embedded in geographic space, making a connection between 

long-distance nodes or nodes with a barrier between them may be less likely or 

impossible. 

The novel GNA modelling framework presented here is general and flexible in a 

manner that can be easily applied to represent complex dynamic spatio-temporal 

phenomena, but specifically here it is applied to dispersal networks of complex 

ecological systems. Particularly, this approach is useful for representing cases of 

dynamic spatial ecological systems where new habitat patch nodes are dispersed to, old 

habitat patch nodes are abandoned, or well-established dispersal paths change. The 

GNA framework is applied to the case study of the forest insect infestation, the emerald 

ash borer (EAB), for the development of the GNAEAB. 

4.4. GNAEAB Modelling Methodology  

The proposed GNA modelling framework is implemented on the case study of 

the invasive bark beetle, the emerald ash borer (EAB), primarily to model dynamic 

spatial networks generated by EAB interactions with landscape features at regional 

scales. The EAB spreads across its non-native landscape in search of forest stands 

containing ash trees to sustain larvae and after several years of infestation, the forest 

stands die. As such, this is a clear example of an ecological system where the number of 

habitat patch nodes expand, shrink, and rewire over time, making it a useful case study.  

The following sections provide a brief biological background of EAB, the datasets 

used, the detailed description of GNAEAB model development, and an overview of 

GNAEAB model testing. The GNAEAB is developed in REcursive Porous Agent Simulation 

Toolkit (Repast) and programmed using the Java programming language (Repast 2016). 
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4.4.1. Characteristics of Emerald Ash Borer Insect Infestation 

The emerald ash borer (EAB), Agrilus planipennis, is an invasive bark beetle 

native to Asia (Muirhead et al. 2006). The EAB infestation was first discovered in 

Michigan, USA in 2002, however extensive dendrochronological surveying reveals that 

the EAB population may have become established in the region as early as 1997, before 

being discovered (Siegert et al. 2014). The EAB target and kill ash trees and have 

caused significant ecological, economic, and social impacts across the United States 

and Canada, motivating a research agenda to better understand EAB biology, life cycle, 

behavior, future economic impacts, climate impacts, and patterns of dispersal. 

Processes of EAB dispersal at the landscape scale drives EAB spatial dynamics at the 

greater regional scale and form the basis for the transition rules R and connection costs 

C implemented in the GNAEAB model. 

Adult EAB, with an average lifespan of 28 days, emerge in mid-June and search 

for food, mates, and suitable hosts to sustain larval galleries (Herms and McCullough 

2014). The EAB infestation is governed via two dispersal mechanisms including: 1) local 

or short-distance dispersal and 2) long-distance dispersal where satellite populations 

become established far from the main invasion front. Eventually, local and long-distance 

dispersal populations grow and coalesce, increasing the overall rate of spread, a 

process referred to as stratified dispersal. Long-distance dispersal is not a function of the 

local dispersal of the EAB, but instead, is a function of human intervention, typically 

through the transportation of infested wood products, primarily firewood, or the 

inadvertent hitchhiking of mated females on travelling vehicles (Muirhead et al. 2006). 

Adult EAB cease activity every year in August, but larvae live under the bark of the ash 

trees for one to two years before emerging as adults (Herms and McCullough 2014).  

Observed rates of EAB spread including local and long-distance dispersal vary 

widely within the literature from 12.87 km/year (Siegert et al. 2014) to 40 km/year (Straw 

et al. 2013), as rates of spread are study site dependent. Specifically, the observed rates 

of spread are a function of the spatial arrangement of the hosts at each study site, the 

scale at which observations are collected, and the success of infestation detection. 

Taylor et al. (2010) reports an observed flight distance by mated females of >3 km with 

20% flying >10 km and 1% flying >20 km using flight mill tethering.  
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4.4.2. Study Site and Data Sets 

The developed GNAEAB model is implemented on datasets for the state of 

Michigan, USA, considered the original epicenter of EAB infestation in North America. 

The datasets used for the implementation of the GNAEAB simulation model include the 

following: 

1. Location of forest stands containing ash: GIS point data 

representing surveying plots (8 km2) containing ash trees (accurate to 

0.8-1.6 km) and type (white, black, and green ash) were obtained 

from the U.S. Forest Service (USFS). The dataset was developed 

during a surveying period from 2001-2005 and was funded for a 3x 

plot intensification providing a higher than average surveying density. 

For the purpose of this study, the term forest stand is defined as a 

group of trees within the plot boundaries. There are 3319 forest 

stands containing ash tree species. Each forest stand point identifies 

the presence or absence of white, black or green ash within the stand. 

Across the study area, white ash trees are identified in 1065 stands, 

black ash are identified within 1310 stands, and green ash are 

identified within 1340 forest stands. The dataset serves as the basis 

for habitat patch nodes N in the developed SN representing forest 

stands containing ash trees at the landscape scale. The forest stands 

that contain ash trees are distributed in a clustered pattern. 

2. Location of EAB epicenter: A GIS data layer containing the original 

1997 epicenter of EAB spread in Michigan, USA, identified using 

dendrochronological reconstruction, was developed by georeferencing 

and digitizing Siegert et al. (2014)’s findings. 

3. EAB year of discovery for each Michigan county: A GIS data layer 

that was obtained from the Emerald Ash Borer Information Network, a 

collaborative effort of the USDA Forest Service and Michigan State 

University to provide comprehensive, accurate and timely information 

on the emerald ash borer.  
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4. Extent of Michigan urban areas: GIS raster files of 30m resolution 

containing the extent of urban areas in Michigan were obtained from 

the US Geological Survey (GUSGS) EarthExplorer Global Land Cover 

Characterization (GLCC). 

5. Other Michigan data: GIS data layers containing the location and 

extent of lakes and rivers (Lake Polygons 2018), the location of 

campgrounds (Michigan State Park Campgrounds 2018), all major 

roads and highways (All Roads v17a 2018), and census tract data 

(Census Tracts- Population, Income 2018) for Michigan were obtained 

from the Michigan open data catalog. 

4.4.3. GNAEAB Model Overview 

The GNAEAB model represents spatio-temporal patterns of EAB insect infestation 

as a dynamic network and consists of a spatial network 𝑆𝑁𝐸𝐴𝐵 that evolves as a function 

of transition rules R and connection cost C applied at each time step. Here, the GNA 

framework is described in application to the EAB phenomenon. Figure 4.4 presents the 

workflow of the model as a useful guideline.  
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Figure 4.4. Workflow of the GNAEAB model of forest insect infestation. 

Spatial Network Structure SNEAB 

The spatial network for representing insect infestation 𝑆𝑁𝐸𝐴𝐵 is defined as: 

𝑆𝑁𝐸𝐴𝐵  = [𝑁𝑡 , 𝐿𝑡 , 𝐴𝑡 ] (8) 

consisting of a set of spatial network nodes N at time t, a set of spatial network links L at 

time t. An adjacency matrix stores the network topology at time t. The following sections 

define the spatial network with respect to representing EAB forest insect infestation 

dispersal. 

Spatial Network Nodes N 

In ecological networks, specifically for terrestrial ecological systems, it is largely 

agreed that the appropriate scale for representation is the landscape scale, where nodes 

represent habitat patches that are suitable for the species of interest (Baguette et al. 

2013). Therefore, in the spatial network 𝑆𝑁𝐸𝐴𝐵 for representing EAB dispersal, a node 𝑣𝑖 

in a set of nodes N represents a forest stand that contains ash tree species. Nodes in 

the  𝑆𝑁𝐸𝐴𝐵 contain non-spatial attributes including type of ash tree species existing in the 

forest stand. Each habitat patch node is embedded in geographic space and thus 
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contains the property of location. As a function of this property, the distance between 

habitat patch nodes can be calculated. Nodes in the 𝑆𝑁𝐸𝐴𝐵 also contain the properties of 

node weight w, representing the combined susceptibility of the forest stand to EAB long-

distance dispersal as a function of forest stand attributes. A node 𝑣𝑖 is added to the set 

of nodes N at time t when the degree k of the node is >=1.  

Spatial Network Links 

A link 𝑒𝑖  in a set of links L represents the dispersal of one or more EAB from 

node 𝑣𝑖 to node 𝑣𝑗. In the 𝑆𝑁𝐸𝐴𝐵 , links are not embedded in planar geographic space 

since EAB are airborne and will likely not disperse in a straight line from one habitat 

node to another. Therefore, a link does not represent the explicit path of dispersal 

between two nodes, but rather simply marks a dispersal event between two nodes. 

Regardless, the length of links is a representation of the distance between two habitat 

patch nodes. Links in the 𝑆𝑁𝐸𝐴𝐵also contain the property of direction where each link 

records dispersal from and to a habitat patch node.  

Spatial Network Cost Matrix 

The cost matrix in the 𝑆𝑁𝐸𝐴𝐵 is composed of landscape features that range from 

minor impediments to finite barriers in dispersal (Baguette et al.2013; Verbeylen et al. 

2003). Since EAB individuals are airborne, urban structures are minor impediments that 

do not have a major impact on the dispersal of the EAB population as they can serve as 

intermediate landing points between habitat patches. Water however, provides no relief 

in dispersal between habitat patches and thus lakes and rivers are considered barriers in 

the 𝑆𝑁𝐸𝐴𝐵 cost matrix.   

Evaluating Habitat Patch Susceptibility  

The GNAEAB model represents local and long-distance dispersal as two separate 

processes. To represent long-distance dispersal processes, habitat patch node 𝑣𝑗 

becomes connected to habitat node 𝑣𝑖  as a function of its overall susceptibility to long-

distance dispersal associated with human movement of infested sapling, contaminated 

firewood, and insect hitchhiking on vehicles.  

Therefore, each habitat patch node is evaluated for its long-distance dispersal 

susceptibility (LDS). Specifically, each forest stand or habitat patch node is assigned an 
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LDS value as a function of the nodes (1) distance from major roads and highways, (2) 

distance from campgrounds, (3) distance from urban areas, and (4) proximity to high 

human population density. The choice of the following attributes in the evaluation of the 

nodes susceptibility to long-distance dispersal is justified as follows: 

Distance from major roads and highways (F1): The correlation between 

transportation networks and satellite populations is a direct result of the transportation of 

infested ash materials such as nursery stock, saw timber, and wood packaging material 

(Prasad et al. 2010). Therefore, forest stands near roads or highways are most 

susceptible.  

Distance from campgrounds (F2): Firewood is transported through informal 

pathways over long distances. As a result, firewood that is infested with EAB is nearly 

impossible to identify, track, and regulate (Robertson and Andow 2009).  Therefore, 

forest stands near campgrounds are most susceptible.  

Distance from urban areas (F3):  It has been demonstrated that ash trees in 

urban areas are significantly more susceptible to EAB infestation than in any other 

landscape (Kovacs et al. 2010; MacFarlane and Meyer, 2005). Therefore, forest stands 

near urban areas are most susceptible.  

Human population density (F4): The correlation between population density and 

the establishment of satellite populations has been demonstrated (Muirhead et al. 2006). 

Therefore, the probability of forest stand infestation increases as human population 

density increases.  

The proximity of each habitat patch node to the landscape features (F1-F4) is 

evaluated and used to calculate overall LDS. For example, habitat patch nodes near all 

landscape features are more susceptible to long-distance dispersal than habitat patch 

nodes near a campground, but far from all other features. The LDS value is represented 

on a scale from 0 to 1 where an LDS value of 0 indicates that the forest stand node is 

not susceptible to long-distance dispersal and an LDS value of 1 indicates that the forest 

stand node is highly susceptible to long-distance dispersal.  
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The LDS value for each habitat patch node is used as a representation of the 

habitat patch node’s v weight wv, as follows: 

𝑤𝑣  = 𝐿𝐷𝑆(𝐹1, 𝐹2, 𝐹3, 𝐹4) (9) 

Habitat patch nodes with a higher LDS value obtain a higher node weight, and thus have 

a greater likelihood of being connected to via long-distance dispersal.  

Implementing GNAEAB Dynamics 

Transition rules R and connection cost C implemented at each model time step 

are designed to simulate real-world interactions between system elements and ultimately 

determine the dynamics and evolution of the spatial network 𝑆𝑁𝐸𝐴𝐵. The model begins 

at 𝑡0, corresponding to the initial introduction of the EAB in North America in year 1997. 

The GNAEAB model represents one year of EAB infestation as three consecutive time 

steps. This set of time steps represents the months of June, July, and August that the 

EAB are active in Michigan (Herms & McCullough, 2014). The model does not represent 

the months that the EAB are not active and thus not spreading. 

Three transition rules (R1, R2, and R3) as well as one connection cost C1 are 

implemented to simulate EAB local dispersal, long-distance dispersal, and forest stand 

death in the evolution of the spatial network 𝑆𝑁𝐸𝐴𝐵. The influence of the transition rules 

and connection cost on the adjacency matrix and thus the evolution of the network is 

expressed as follows in formulation (10), derived from formulation (3) from the GNA 

theoretical framework: 

𝐴𝑡+1 = 𝑅1, 𝑅2, 𝑅3, 𝐶1(𝐴𝑡) (10) 

where the adjacency matrix A for the 𝑆𝑁𝐸𝐴𝐵 at the next time step, time t+1, is a function 

of the transition rules R1, R2, R3, the connection cost C1, and the adjacency matrix A at 

time t in the model. 

Transition rule R1 and connection cost C1 are applied to represent the EAB local 

dispersal process, transition rule R2 is applied to represent EAB long-distance dispersal, 

and R3 is applied to represent forest stand death. Figure 4.5 illustrates the logic of the 

transition rules R and the cost connection C for network evolution. 
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Local Dispersal Process 

In local dispersal, mated female EAB disperse up to a maximum distance of 20 

km within its lifetime (Taylor et al. 2010; Kovacs et al. 2011). As such, the likelihood that 

dispersal will take place between two forest stands at each time step is a function of the 

distance between them. The process of local dispersal is represented in the GNAEAB 

where a habitat patch node 𝑣𝑗 becomes connected to k = k+1 habitat patch node 𝑣𝑖 as a 

function of distance between them. The transition rule R for representing the local 

dispersal process is as follows: 

R1: At time t, if dij <= 20 km and 𝑘𝑖>0, then a directional link e is established from 

node 𝑣𝑖 to 𝑣𝑗 at time t+1 (Figure 4.5a and b). It should be noted that this link e can be 

established between node 𝑣𝑖 and node 𝑣𝑗 where node 𝑣𝑗 is not connected 𝑘𝑗 = 0 (Figure 

4.5a) or is already connected 𝑘𝑗>=1 (Figure 4.5b) to the network. 

For local dispersal, connection cost C between habitat patch node 𝑣𝑖 and habitat 

node 𝑣𝑗 is a function of physical barriers including lakes and rivers. The connection cost 

C1 is as follows: 

C1: A time t+1, if the link e established in R1 intersects a river or lake landscape 

element, link e between habitat patch node 𝑣𝑖 and habitat patch node 𝑣𝑗 is resisted and 

removed (Figure 4.5c).  

Long-distance Dispersal Process 

It is reported that the establishment of EAB satellite populations is a result of 

anthropogenic factors (Robertson and Andow 2009). These satellite populations are 

more likely to develop in forest stands that are near roads, campgrounds, urban areas, 

and high human population densities. As such, in the GNAEAB, long-distance dispersal 

between habitat patch node 𝑣𝑖  and habitat patch node 𝑣𝑗 is a function of 1) the likelihood 

that dispersal will occur from node 𝑣𝑖 to node 𝑣𝑗 and 2) habitat patch node weight 𝑤𝑣, 

representing the overall LDS of node 𝑣𝑗, see formulation (9). The value of the likelihood 

of long-distance dispersal is 0.2% and is determined using sensitivity analysis. The 

transition rule for representing the long-distance dispersal process is as follows: 
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Figure 4.5. Network evolution as a result of the application of the transition rule 
R1 in the case where (a) node j has a degree k=0, (b) node j has a 
degree k>=1, and (c) the cost connection C1 with barriers of lakes 
and rivers. 
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R2: At time t+1, given the 0.2% likelihood threshold of long-distance dispersal 

being successful, a link e forms between habitat patch node 𝑣𝑖 and the habitat patch 

node 𝑣𝑗 with the highest weight 𝑤𝑣 as a representation of LDS.  

Death of Forest Stand Process 

Until the last tree in the stand dies, EAB can continue to disperse and infest new 

forest stands through long-distance dispersal. Tree death typically occurs between 3 and 

5 years. Forest stand death in the model is represented where habitat patch nodes and 

their links to other forest stands that have been infested for 5 years are removed from 

the network.  Therefore, the transition rule for representing forest stand death is as 

follows: 

R3: At time t, if the age of habitat patch node 𝑣𝑖 is greater than 15 time-steps, 

habitat patch node 𝑣𝑖 at time t+1 and all links L connected to habitat patch node 𝑣𝑖  are 

removed.  

The model is initialized at 𝑡0 representing the initial introduction of the EAB in 

North America in 1997 using the epicenter identified in Siegert et al. (2014)’s findings. At 

each time step, each of the transition rules R and connection cost C are applied. 

GNAEAB Model Output Analysis 

The outputs of the GNAEAB are a sequence of spatial networks SNEAB 

representing EAB dispersal patterns at the regional scale over space and time. Although 

there is a random component in the model related to the likelihood that long-distance 

dispersal will occur at time step t, this generates very minor temporal variations across 

model runs. Specifically, if a forest stand with the highest LDS does not become infested 

at time step t as it was in a different model run, it will become infested within the next few 

time steps at t+1, t+2 or t+n.  Since the variation across time is small, an example SNEAB 

is selected for the purpose of the presentation of the obtained results. 

The SNEAB generated by the GNAEAB is useful because it can be directly 

measured using graph theory to quantitatively characterize dispersal patterns and link 

the spatial structure of the landscape to dispersal dynamics, presenting implications for 

ecological management. One of the primary objectives in network measurement is to 

determine the type of spatial network, specifically whether the resulting network is 
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random, scale-free, or small-world, each characterized by a unique networks structure. 

The network type can be determined by comparing the observed graph theory measures 

degree distribution P(k), average clustering coefficient <C>, and average path length <l> 

(Table 4.1) to the expected measures if a network with the same number of nodes was 

random.   

Table 4.1. Graph theory measures for network analysis. 

Graph Theory Measure Definition 

Node degree k A count of the number of connections node 𝑣𝑖  has to other nodes 

Degree distribution P(k) A fraction of nodes in the network with degree k, calculated for the 
entire distribution of k. This is typically presented as a histogram.  

Average clustering coefficient 
<C> 

Clustering coefficient C measures the likelihood that nodes 

connected to node 𝑣𝑖 are also connected to each other. When C = 

1, all nodes connected to node 𝑣𝑖 are also connected to each other 
and when C = 0, none are connected to each other. Average 
clustering coefficient <C> measures the average C across all nodes 
in the network. 

Average path length <l> The average number of intermediate nodes and links in the shortest 
path between all pairs of nodes in the network 

 

Therefore, graph theory is applied to quantify the spatial network SNEAB simulated 

by the GNAEAB model using the above measures. A random network model is developed, 

where links are randomly formed between the forest stand nodes at each time step, and 

the same graph theory measures are obtained from the simulated random spatial 

network SNRAND and compared to the SNEAB. 

GNAEAB Model Sensitivity Analysis and Calibration 

Prior to the full implementation of the GNAEAB model, sensitivity analysis and 

calibration have been performed. Specifically, sensitivity analysis is conducted to 

determine the effect that the changes in parameters have on GNAEAB model outputs. 

Next, in the calibration stage, parameter values are selected based on their ability to 

achieve a simulated rate of spread that is closest to the real-world rate of spread. The 

real-world rate of spread is estimated by comparing the distance between the original 

1997 epicenter and maximum distance of forest stands in each county found to be 

infested each year (Table 4.2). There are several years where the rate of spread is 0. In 

these cases, the counties between the satellite populations and the main invasion front 

become infested before the satellite populations spread to new and subsequently further 
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counties. As a result, the observed distance between the epicenter and the furthest 

forest stand does not increase.   

Table 4.2. Observed real-world rate of spread from 1997 to 2011. 

Year Max Distance of Spread (km) km/year 

1997-2002 81.64 16.328 

2003 232.822 151.182 

2004 393.995 161.173 

2005 487.978 93.983 

2006 487.978 0 

2007 487.978 0 

2008 678.477 190.499 

2009 678.477 0 

2010 678.477 0 

2011 763.03 84.553 

 

Given the simplicity of the GNA modelling framework, there are few, but 

nonetheless important parameters tested using sensitivity analysis. Sensitivity analysis 

was conducted using the one-at-a-time (OAT) technique, where one parameter is 

adjusted within the parameter space and the other parameters remain fixed for the 

duration of a model run. This facilitates a better understanding of how changes in 

individual model parameters influence model behavior. Model parameters for which 

sensitivity analysis is conducted include Parameter 1: likelihood threshold θ used to 

determine the likelihood of the occurrence of long-distance dispersal, and Parameter 2: 

level of importance of each forest stand attribute used in the calculation of the overall 

LDS. Sensitivity of the model to the parameter values was evaluated using the simulated 

rate of EAB spread (km/year). 

Parameter 1: Likelihood threshold θ. The likelihood threshold θ determines the 

likelihood of long-distance dispersal occurring from node 𝑣𝑖 to node 𝑣𝑗 at time t. At every 

time step, a random number generator assigns a random number between 0.00 and 

100.00 to each infested forest stand node 𝑣𝑖 where ki > 0. If the generated random 

number is below the likelihood threshold θ, long-distance dispersal occurs from the 

forest stand node 𝑣𝑖 to node 𝑣𝑗. The sensitivity of the long-distance dispersal process to 

the threshold values are tested using a parameter space from 0.09 to 1.1. This 

parameter space is selected because a likelihood threshold θ higher than 1.1 generates 
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far too many satellite populations and a likelihood threshold θ lower than 0.09 does not 

generate nearly enough satellite populations to match the real world rate of spread. 

Model sensitivity to variations in likelihood threshold θ is presented in Figure 

4.6a. Threshold values less than 0.2 produced a simulated rate of spread that was 

slower than observed in the real-world. In addition, the simulated maximum dispersal 

distance for 2011 was significantly less than the observed maximum dispersal distance 

for 2011. Threshold values greater than 0.2 produced a simulated rate of spread that 

was much faster than observed in the real-world. Furthermore, the simulated maximum 

dispersal distance of EAB spread for the region of Michigan was reached several years 

faster than in the real-world.  

Parameter 2: Weighted combination of forest stand attributes. Susceptibility 

weights determine the influence of the proximity of the node to landscape features (F1, 

F2, F3, F4) in calculating its LDS. For example, in calculating LDS, a higher 

susceptibility weight placed on the attribute proximity to campgrounds will result in a 

significantly greater LDS value for nodes near campgrounds and thus a higher likelihood 

of becoming infested via long-distance dispersal. The GNAEAB model is tested for 

sensitivity to variations in the weighted combination of attributes presented in Table 4.3. 

Specifically, each landscape feature is given a significantly greater weight (0.7) in each 

LDS calculation and the remaining weight is allocated to remaining landscape features 

(0.1).   

Table 4.3. Variation of susceptibility weights. 

Attribute Susceptibility Weights 

Equal F1 Priority F2 Priority F3 Priority F4 Priority 

Proximity to Roads 0.25 0.7 0.1 0.1 0.1 

Proximity to Campgrounds 0.25 0.1 0.7 0.1 0.1 

Proximity to Urban Areas 0.25 0.1 0.1 0.7 0.1 

Population Density 0.25 0.1 0.1 0.1 0.7 
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Figure 4.6. Sensitivity of GNAEAB simulated rate of spread to (a) variations in 
likelihood threshold and (b) weighted combinations for calculating 
LDS. The observed real-world rate of spread (distance per year) is 
presented in orange and the simulated rate of spread using 
parameters that best match the observed rate of spread is presented 
in green. 

GNAEAB model sensitivity to variations in weighted combinations of forest stand 

node attributes used to calculate LDS is presented in Figure 4.6b. Although all 

combinations produced a relatively similar simulated rate of spread in comparison to the 
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rate of spread observed in the real-world, using an equal weight in the combination of all 

attributes in calculating the LDS of forest stands produced the most realistic rate of 

spread. Specifically, the simulated maximum dispersal distance in 2011 was more like 

the observed maximum dispersal distance, where all other weighted combinations 

simulated spread further than observed in the real-world. 

Based on the outcome of the sensitivity analysis, the GNAEAB model is calibrated 

by adjusting the two parameter values explored in sensitivity analysis, to best match the 

real-world rate of spread. Specifically, Parameter 1: the likelihood threshold is set to the 

value of 0.2 and Parameter 2: the weight of attributes is set to be equally weighted in the 

calculation of node LDS.  

4.5. Results 

Based on the outcomes of the sensitivity analysis and calibration, the GNAEAB 

model parameters have been adjusted prior to generating simulation results. The 

obtained GNAEAB simulation results are presented and the spatial networks SNEAB have 

been analyzed using graph theory measures. 

4.5.1. GNAEAB Simulation Results 

Figure 4.7 presents one full GNAEAB model run representing the spatial network 

of the spread of EAB infestation across Michigan, USA from 1997 to 2011. Specifically, 

Figure 4.7 depicts the evolution of the generated spatial network SNEAB structures from 

1997-2003 (Figure 4.7a), 1997-2005 (Figure 4.7b), 1997-2009 (Figure 4.7c), and 1997-

2011(Figure 4.7d). Forest stands that have died from EAB infestation by 2011 are also 

presented (Figure 4.7e). 

Figure 4.8a presents the spatial network SNEAB structure generated by the 

GNAEAB without forest stand death for better visualization of the evolution of the network. 

The comparison between the GNAEAB simulated spatio-temporal patterns of EAB 

dispersal represented as a dynamic network and the spatio-temporal patterns of EAB 

dispersal observed in the real-world are presented in Figures 4.8b and 4.8c. One of the 

most obvious spatio-temporal patterns that emerge from the GNAEAB simulations is a 

stratified dispersal pattern, a pattern observed in real-world where the main EAB 
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infestation front and the satellite populations merge over time (Muirhead et al. 2006). 

Additionally, the GNAEAB correctly simulates the establishment of several real-world 

satellite populations where EAB connect or “jump” to non-adjacent nodes; most notable 

are those infested nodes that emerge near Cheboygan and Manistee Counties in 2004, 

in Chippewa County in 2005, and in Houghton in 2008. Interestingly, the GNAEAB model 

is also able to represent the lack or delay of infestation in Luce County and in the region 

of Marquette and Iron County as observed in the real-world. This can be explained by 

the low LDS and spatial distribution of host stands not conducive to both local and long-

distance dispersal in these regions.  
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Figure 4.7. The GNAEAB model outcomes: the simulated spatial network SNEAB of 
EAB dispersal as it evolves from year (a) 1997-2003, (b) 1997-2005, 
(c) 1997-2009 and (d) 1997-2011 without dead trees, and (e) the 
simulated forest stands with dead trees from 1997-2011. 
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Figure 4.8. Comparison of the GNAEAB simulated spatial networks of the (a) EAB 
dispersal SNEAB from year 1997 to 2011 without forest stand death 
and (b) presented per each county, with (c) the observed real-world 
spatio-temporal patterns of EAB dispersal. 

 

The GNAEAB model simulates a satellite population in Menominee County in 

2007, where in the real-world, infestation was not discovered until after 2011. The 

GNAEAB model outputs indicate that this satellite population is established as result of a 

high LDS value generated by several campgrounds in the region. Furthermore, the 

GNAEAB model was unable to capture the satellite populations in Manistee, Berrien, or 
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Oscada region in 2004. It is important to note that these inconsistencies are a function of 

the calculation of LDS and thus node weight. The model does not simulate infestation of 

Keweenaw County Isle Royale as a function of the LDS value. Lastly, the model 

outcomes indicate that the lag of infestation in Newaygo County was not captured, 

where in the real-world, EAB infestation is not recorded until 2010. Considering 

Newaygo County is bordered by two counties that were infested in 2004, the lag of 

infestation in this county may actually be a lag in discovery by county resources. 

4.5.2. Analysis of GNAEAB Model Outputs 

One of the primary objectives is to characterize the structure of the generated 

SNEAB. Networks are characterized by their structure based on measured degree 

distribution P(k), average clustering coefficient <C>, and average path length <l> as the 

discriminating features in determining network type (Table 4.4).  

Table 4.4. Defining measures for each network type. 

Network Type Degree Distribution P(k) Clustering Coefficient <C> Average Path Length <l> 

Random Poisson Low Low 

Small-World Poisson  Higher than random Low 

Scale-Free Power law Low Low 
 

Therefore, graph theory measures including degree distribution P(k), average 

clustering coefficient <C>, and average path length <l> are obtained for every third 

model time step to characterize the SNEAB structure as it evolves for each year. 

At t9 (2004), as nodes are increasingly added and re-wired to the spatial network, 

the SNEAB degree distribution P(k) begins to form a normal curve, or a Poisson degree 

distribution. The Poisson distribution is maintained consistantly as the network evolves 

over time, indicating that the majority of nodes in the network have a similar degree of 

connectedness to other nodes (Figure 4.9). The simulated SNEAB structure at its last time 

step t30 (2011) indicate that the average degree <k> across all nodes in the network is 

26, meaning that the spatial distribution of forest stand nodes faciliates the dispersal 

from forest stand node 𝑣𝑖 to an average of 26 other forest stand nodes. This suggests 

that the spatial distribution of forest stand nodes across the entire region is dense and 

well-connected, facilitating the spread of the EAB population.  
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The average clustering coefficient <C> of the SNEAB increases consistantly each 

year as older nodes that are already part of the network connect to other older nodes 

(Figure 4.10a). Most connections form between local neighbouring nodes, a function of 

the transition rule R1 that simulates local dispersal based on distance between nodes. 

This is common for many types of spatial networks as geographic space is a physical 

constraint where long-distance connections between two nodes are limited by energy 

and time. Specifically, it is more efficicient for the EAB to infest adjacent forest stands.  

High clustering between local neighbouring nodes often results in a long average 

path length <l>, where several intermediate nodes exist between any two nodes in the 

network.  However, even as the SNEAB grows, the transition rule R2 that simulates long-

distance dispersal connects distant nodes and maintains a short average path length 

<l>(Figure 4.10b). The short average path length <l> is particuarly interesting as it 

indicates that EAB can move from any forest stand in the network to any other forest 

stand in the network in an average of 15 steps (which is equivalent to 5 years). This 

indicates that the landscape is well connected and that EAB can propagate quickly 

across the landscape.  

Graph measures obtained for the SNEAB  at its last time step t30 (2011) are 

summarized in Table 4.5 and are compared to corresponding measures obtained from 

the random model SNRAND to characterize SNEAB network type. Both spatial networks, 

SNEAB and SNRAND generate a degree distribution that forms a Poisson curve. The 

average clustering coefficient <C>EAB obtained from the SNEAB is much higher than that 

of the average clustering coefficient <C>RAND obtained from the random spatial network 

SNRAND. Furthermore, the average path length <l>EAB and <l>RAND are short with an 

average length of 15 for the SNEAB  and 10 for the SNRAND.  

The generated spatial network SNEAB is a small-world if <l>EAB ≥ <l>RAND and if 

<C>EAB ≫ <C>RAND. Humphries and Gurney (2008) provide a set of equations that use 

<l>EAB, <l>RAND, <C>EAB, and <C>RAND to mathematically characterize the small-world-

ness of a network using the small-world coefficient 𝑆∆ where if 𝑆∆>1, the network can be 

quantitatively characterized as a small world network. The theoretical maximum small-

worldness value is 560.01, calculated using 𝑆∆ = 0.181𝑛 where n is the number of nodes 

in the network.  The obtained value of the small-world coefficient 𝑆∆ of 131.29 indicate 

that the simulated SNEAB is a small world network.  
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Table 4.5. Resulting graph theory measures from the spatial network SNEAB  
generated by the GNAEAB  and the random spatial network SNRAND. 

Measure SNEAB SNRAND 

Degree distribution P(k) Poisson, positive skew Poisson 

Average clustering coefficient <C> 0.67 0.0034 

Average path length <l> 15 10 

Small world coefficient 𝑆∆ 131.2953 N/A 

 

 

Figure 4.9. Degree distribution P(k) as measured for the SNEAB structure for 
each year. 
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Figure 4.10. The change in (a) the average clustering coefficient <C> and (b) 
average path length <l> from 1997-2011. 

 

In ecology, network robustness can give insight into the reaction to disturbances 

or attacks via external forces. Particularly, the results characterizing the SNEAB network 

type can be used to understand whether eradication measures such as the removal or 

vaccination of forest stands will impact the connectivity of the landscape and effectively 

slow or stop EAB propagation. A small world network structure indicates that the spatial 

distribution of forest stand nodes across the landscape is highly robust to unorganized 

disruptions or node removals. As indicated by the high average clustering coefficient 
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<C>, the majority of forest stand nodes in the landscape are in close proximity to several 

other forest stand nodes, facilitating sucessful local dispersal and continued propagation, 

even in the event that several nodes become unsuitable hosts. This means that local 

eradication of EAB in a few cities or towns would have little impact on slowing the 

propagation of EAB across the state and a national, strategized approach would be 

more effective.  

4.6. Discussion and Conclusion 

This study introduces the novel modelling framework of Geographic Network 

Automata (GNA) and demonstrates that the proposed approach is a useful methodology 

for the representation and analysis of complex ecological networks that evolve across 

space and time. The spatial network approach in ecology dates to Urban and Kiett 

(2001), however the few studies that adopt this approach focus mainly on static 

landscape connectivity networks and how these static networks are impacted by node 

removal via external forces. The GNA approach aims to fill this methodological gap by 

developing a modelling framework capable of simulating spatial ecological networks 

where network evolution is a function of the complex systems dynamics itself. The 

approach uses the iterative application of transition rules to represent the addition, loss, 

and rewiring of nodes over space and time as a function of the phenomena’s dynamics. 

The network can then be characterized and quantified to better understand dispersal 

patterns.  

In some traditional network modelling approaches used for representing 

spreading processes such as dispersal patterns, linkages between nodes are only 

considered based on their adjacency. For example, cellular automata, the complex 

systems modelling approach under the umbrella of geographic automata systems, is 

well suited to modelling spreading processes, however is also typically limited to 

localized spreading and thus is unable to represent long-distance dispersal processes in 

ecological systems (Anderson and Dragicevic 2016). The flexibility of the transition rules 

in the GNA approach facilitates the representation of long-distance connections or 

“hopping” over adjacent suitable nodes, useful for representing ecological species that 

exhibit this particular dispersal pattern. 
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The proposed GNAEAB simulates patterns of EAB dispersal at a relatively coarse 

resolution. Theoretically, the GNA framework could be applied to represent EAB 

dispersal at much finer spatial and temporal scales where nodes represent individual 

trees, links represent movement of individual EAB, and each time step represents one 

day. In this case, it may be necessary to include a less abstract representation of EAB, 

as the life cycle of the individual EAB and population dynamics may play a role in the 

spatio-temporal evolution of the network at this scale. This could entail the development 

of a spatial network agent-based model. 

The GNAEAB simulated patterns should reflect patterns observed in the real-

world. However, it can be very difficult to collect or obtain datasets that would facilitate 

quantitative testing of GNAEAB simulated spatial networks. Therefore, this study looks at 

how well the model reproduces patterns observed in the real-world to increase 

confidence in GNAEAB parameters, processes, and generated dynamic spatial networks. 

As is common in modelling ecological systems, the application of the GNA methodology 

to other types of ecological phenomena may be subject to the same data limitations for 

model testing. As a relatively unexplored modelling approach, there remain limited 

efforts in proposing methodologies for the testing of spatial network models. This is 

something that would require consideration in future exploration of representing 

ecological phenomena as dynamic spatial networks.  

The GNA framework can be further operationalized in other case studies where 

the dispersal network of an ecological species is not static and thus expands, shrinks, or 

changes structure as a function of dynamics of the species themselves (eg. invasion, 

competition, adaptation, evolution, seasonal migration). For example, in the case of 

representing changes in dispersal patterns as a function of species competition, 

population dynamics of the species captured by node weight and flow between nodes 

may play an important role in network structure and dynamics. However, the proposed 

GNA framework is highly general and flexible as to facilitate the representation and 

simulation of many complex geospatial dynamic systems that evolve over time as spatial 

networks. This framework can be suitable for representing many other complex spatio-

temporal phenomena spreading as networks of epidemics, information, computer 

viruses, or cities to name a few. This proposed approach is also relevant for GISc, 

specifically as an extension of the framework of geographic automata systems.  



106 

4.7. References 

Anderson, T., & Dragicevic, S. (2016). A geosimulation approach for data scarce 
environments: modeling dynamics of forest insect infestation across different 
landscapes. ISPRS International Journal of Geo-Information, 5(2), 9. 

All Roads [Shapefile]. Michigan, US: State of Michigan Admin, March 10, 2018. 
Available: http://gis-michigan.opendata.arcgis.com/datasets/all-roads-v17 and 
(accessed May 22, 2018). 

Augusiak, J., Van den Brink, P. J., and Grimm, V. (2014). Merging validation and 
evaluation of ecological models to ‘evaludation’: a review of terminology and a 
practical approach. Ecological Modelling, 280, 117-128. 

Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M., and Turlure, C. (2013). 
Individual dispersal, landscape connectivity and ecological networks. Biological 
Reviews, 88(2), 310–326.  

Barabási, A. L. (2016). Network Science. Cambridge, UK: Cambridge University Press. 

Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1-3), 1-101. 

Bunn, A. G., Urban, D. L., and Keitt, T. H. (2000). Landscape connectivity: A 
conservation application of graph theory. Journal of Environmental Management, 

59(4), 265–278.  

Campbell Grant, E. H., Lowe, W. H., and Fagan, W. F. (2007). Living in the branches: 
Population dynamics and ecological processes in dendritic networks. Ecology 
Letters, 10(2), 165–175.  

Census 2010 Tracts- Population, Income [Shapefile]. Michigan, US: Michigan DNR, April 
19, 2018. Available: http://gis-
michigan.opendata.arcgis.com/datasets/midnr::census-2010-tracts-population-
income and (accessed May 22, 2018). 

Cohen, J. E. (1978). Food Webs and Niche Space. New Jersey, NJ: Princeton University 
Press. 

Fortuna, M. A., and Bascompte, J. (2007). The network approach in ecology. In F. 
Valladares, A. Camacho, A. Elosegi, C. Gracia, M. Estrada, J. C. Senar, and J. 
M. Gili (Eds.), Unity in diversity: Ecological reflections as a tribute to Margalef 
(pp. 371–392). Bilbao: Fundación BBVA. 

Fortuna, M. A., Gomez-Rodriguez, C., and Bascompte, J. (2006). Spatial network 
structure and amphibian persistence in stochastic environments. Proceedings of 
the Royal Society B: Biological Sciences, 273(1592), 1429–1434.  



107 

Hall, S. J., and Raffaelli, D. G. (1993). Food webs: Theory and reality. Advances in 
Ecological Research, 24, 187–239. 

Herms, D. A., & McCullough, D. G. (2014). Emerald ash borer invasion of North 
America: history, biology, ecology, impacts, and management. Annual Review of 
Entomology, 59, 13-30. 

Humphries, M. D., and Gurney, K. (2008). Network “small-world-ness”: A quantitative 
method for determining canonical network equivalence. PLoS ONE, 3(4).  

Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., 
Woodward, G. (2009). Ecological networks - Beyond food webs. Journal of 
Animal Ecology, 78(1), 253–269.  

Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: 
connectance, dependence asymmetries, and coevolution. The American 
Naturalist, 129(5), 657–677. 

Kovacs, K. F.; Haight, R. G.; McCullough, D. G.; Mercader, R. J.; Siegert, N. W.; 
Liebhold, A. M. Cost of potential emerald ash borer damage in US communities, 
2009–2019. Ecological Economics, 69, 569-578. 

Lake Polygons [Shapefile]. Michigan, US: State of Michigan Admin, March 30, 2018. 
Available: http://gis-michigan.opendata.arcgis.com/datasets/lake-polygons and 
(accessed May 22, 2018). 

Lewis, T. G. (2011). Network Science: Theory and Applications. Hoboken, NJ: John 

Wiley & Sons.  

MacFarlane, D. W., & Meyer, S. P. (2005). Characteristics and distribution of potential 
ash tree hosts for emerald ash borer. Forest Ecology and Management, 213(1-

3), 15-24.  

Michigan State Park Campgrounds [Shapefile]. Michigan, US: Michigan DNR, April 19, 
2018. Available: http://gis-
michigan.opendata.arcgis.com/datasets/midnr::michigan-state-park-
campgrounds and (accessed May 22, 2018). 

Minor, E. S., and Urban, D. L. (2007). Graph theory as a proxy for spatially explicit 
population models in conservation planning. Ecological Applications, 17(6), 

1771–1782. 

Morris, R. J., Lewis, O. T., & Godfray, H. C. J. (2004). Experimental evidence for 
apparent competition in a tropical forest food web. Nature, 428(6980), 310–313.  



108 

Muirhead, J. R., Leung, B., Overdijk, C., Kelly, D. W., Nandakumar, K., Marchant, K. R., 
and MacIsaac, H. J. (2006). Modelling local and long-distance dispersal of 
invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. 
Diversity and Distributions, 12(1), 71–79.  

Muller, C. B., Adriaanse, I. C. T., Belshaw, R., and Godfray, H. C. J. (1999). The 
structure of an aphid–parasitoid community. British Ecological Society, 68(1), 

346–370. 

Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 

45(2), 167-256. 

Prasad, A. M., Iverson, L. R., Peters, M. P., Bossenbroek, J. M., Matthews, S. N., 
Sydnor, T. D., & Schwartz, M. W. (2010). Modeling the invasive emerald ash 
borer risk of spread using a spatially explicit cellular model. Landscape 
Ecology, 25(3), 353-369. 

Repast Simphony. 2016. Version 2.4. [Computer Software]. Chicago, IL: University of 
Chicago.   

Robertson and Andow. Human-mediated dispersal of emerald ash borer: significance of 
the 
firewoodpathway.http://www.entomology.umn.edu/prod/groups/cfans/@pub/@cfa
ns/@ento/documents/asset/cfans_asset_139871.pdf (accessed May 04, 2018). 

Sayama, H., and Laramee, C. (2009). Generative network automata: A generalized 
framework for modeling adaptive network dynamics using graph rewritings. 
Adaptive Networks, 311–332.  

Siegert, N. W., Mccullough, D. G., Liebhold, A. M., and Telewski, F. W. (2014). 
Dendrochronological reconstruction of the epicentre and early spread of emerald 
ash borer in North America. Diversity and Distributions, 20, 847–858.  

Smith, D. M., Onnela, J. P., Lee, C. F., Fricker, M. D., & Johnson, N. F. (2011). Network 
automata: Coupling structure and function in dynamic networks. Advances in 
Complex Systems, 14(03), 317-339. 

Stang, M., Klinkhamer, P. G. L., and Meijden, E. Van Der. (2006). Size constraints and 
flower abundance determine the number of interactions in a plant–flower visitor 
web. Oikos, 112(1), 111–121. 

Straw, N. A., Williams, D. T., Kulinich, O., and Gninenko, Y. I. (2013). Distribution, 
impact and rate of spread of emerald ash borer Agrilus planipennis (Coleoptera: 
Buprestidae) in the Moscow region of Russia. Forestry, 86(5), 515–522.  

Taylor, R. A. J., Bauer, L. S., Poland, T. M., and Windell, K. N. (2010). Flight 
performance of agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and 
in free flight. Journal of Insect Behavior, 23(2), 128–148.  



109 

Torrens, P. M., and Benenson, I. (2005). Geographic automata systems. International 
Journal of Geographical Information Science, 19(4), 385-412. 

Urban, D., and Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. 
Ecology, 82(5), 1205–1218. 

Verbeylen, G., De Bruyn, L., Adriaensen, F., and Matthysen, E. (2003). Does matrix 
resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an 
urban landscape? Landscape Ecology, 18(8), 791–805.  

 



110 

Chapter 5.  
 
Network-Agent Based Model for Simulating the 
Dynamic Spatial Network Structure of Complex 
Ecological Systems3 

5.1. Abstract 

Non-spatial ecological networks provide insight into the organization and interaction 

between biological entities. More recently, biological dispersal is modelled using spatial 

networks, static sets of georeferenced habitat patches that connect based on a species’ 

maximum dispersal distance. However, dispersal is complex, where spatial patterns at 

the landscape scale emerge from interactions between ecological entities and landscape 

features at much finer individual scales. Agent-based modelling (ABM) is a 

computational representation of complex systems capable of capturing this complexity. 

Therefore, this study develops a network-ABM (N-ABM) that combines network and 

complex systems theory to simulate complex evolving spatial networks. The developed 

N-ABM approach is implemented on the case study of the emerald ash borer (EAB) bark 

beetle using geospatial datasets in Ontario, Canada. The N-ABM generates dynamic 

spatial network structures that emerge from interactions between the EAB and tree 

agents at the individual scale. The resulting networks are analyzed using graph theory 

measures. Analysis of the results indicates a relationship between preferential 

attachment in insect host selection and the emergent scale-free network structure. The 

N-ABM approach can be used to represent dynamic ecological networks and provides 

insight into how network structure emerges from EAB dispersal dynamics, useful for 

forest management. 

5.2. Introduction 

Ecologists are largely concerned with the scientific analysis of interactions 

among species and their environment (Agrawal et al., 2007). To study these interactions, 

                                                

3 A version of this chapter is published: Anderson, T. & Dragicevic, S. (2018). Network-agent based 
model for simulating the dynamic spatial network structure of complex ecological systems. 
Ecological Modelling. 389, 19-32. 
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ecological systems are often presented as networks, where the network’s nodes 

represent biological entities and the network’s links represent some form of ecological 

interaction. Sets of ecological interactions are traditionally represented as non-spatial 

networks and are most commonly grouped into three ecological network types including 

food webs (Cohen, 1978; Hall & Raffaelli, 1993), host-parasitoid webs (Muller et al., 

1999; Morris et al., 2004), and mutualistic webs (Jordano et al., 2003; Stang et al., 

2006). Graph theory, a mathematical characterization of networks, can then be used as 

a tool to characterize ecological network topology, cross-compare between network 

structures to find common ground and uniqueness, and understand how network 

structures affect network dynamics and vice versa (Ings et al., 2009).  

Because ecological interactions take place in geographic space and time, it is 

argued that the framework of ecological networks must also account for these contexts 

(Fortuna & Bascompte, 2007). Landscape connectivity graphs were one of the first 

efforts to represent ecological phenomena as networks in an explicitly geospatial context 

(Urban & Kiett, 2001). Using orthophotos or classified maps, habitat patches are 

abstracted as nodes that are embedded in geographic space. The formation of links 

between nodes signifies the potential dispersal from one habitat patch to another. Since 

long dispersal distances come at a greater cost (i.e. energy, time), the connectivity 

between two nodes is typically a function of proximity or adjacency, meaning nodes that 

are closer to one another have a higher probability of connecting. In these network 

representations, there are minimal data requirements, needing only the geographic 

location of habitat patches and maximum dispersal distance of the species of interest 

(Minor & Urban, 2007). The structure of the landscape connectivity graphs can inform 

species dispersal patterns, identify keystone patches that are critical to landscape 

connectivity, and furthermore, assess how dispersal patterns would change in response 

to disruptions in the network. For example, Fortuna et al. (2006) develop a network of 

ponds to identify the spatial structure of amphibian dispersal and the species persistence 

in drought. In another study, Bunn et al. (2000) compare landscape connectivity between 

two species that share the same habitat and find that the landscape is connected for one 

and disconnected for the other, presenting implications for conservation biology.  

Despite the potential, network approaches that leverage graph theory for the 

study of ecological systems in a geospatial context mostly represent ecological systems 

at the landscape species-scale as a fixed network structure on which dispersal takes 
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place (Fortuna et al., 2006). Although useful, spatial ecological networks at this scale are 

limited in their ability to account for the complexity in emergent dispersal patterns, which 

often develop from local spatio-temporal dynamics between individuals and their 

environment. With a few exceptions, spatial ecological networks are rarely scaled down 

to the individual species-scale and as such, it is challenging to make this link between 

network structure and network dynamics (Dupont et al., 2011). Additionally, data 

capturing spatio-temporal dynamics at the individual-scale, between large sets of 

heterogeneous individuals, and across large spatial extents is not typically available for 

many types of ecological phenomena. Furthermore, field studies to acquire this data is 

expensive and time-consuming (Minor and Urban, 2007). As such, the development of 

an experimental setting to better understand the connections between network structure 

and network dynamics is needed (Stouffer et al., 2010).   

Agent-based models (ABM) are computational representations of complex 

systems that explicitly represent interactions between individual entities or “agents” from 

which system-level behavior emerges, thus simulating ecological phenomena at a 

resolution that facilitates the construction of fine-scale networks (Grimm & Railsback, 

2013). Developed ABMs are virtual laboratories, permitting exploration of the simulated 

phenomena and its associated network structure as it responds to local dynamics. ABMs 

have been developed to represent complex ecological systems over space and time for 

many ecological phenomena such as fish (Letcher et al., 1996), birds (Travis & Dytham, 

1998), caribou (Semeniuk et al., 2012), and forest insect infestation such as the 

mountain pine beetle (Perez & Dragićević, 2010; 2011, Bone & Altaweel, 2014) and the 

emerald ash borer (Anderson & Dragićević, 2015; 2016), to name a few. Networks have 

been integrated with agent-based models (Berryman & Angus, 2010; Kirer & Çirpici, 

2016); however, these studies typically focus on the topological network structure of 

systems rather than spatial network structures and thus do not incorporate geospatial 

datasets. 

Therefore, this study proposes the integration of complex systems theory with 

network theory and geospatial datasets to represent complex spatio-temporal ecological 

systems using dynamic spatial networks. The main objective of this study is to develop 

and implement an integrated geospatial modeling approach, a network-ABM (N-ABM), to 

represent and analyze the dynamic spatial structure of ecological networks. Specifically, 

the agents’ behavior and interactions form and modify the network over space and time. 
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Graph theory measures are used to measure and characterize the simulated spatial 

network structures to better understand how network structure evolves over space and 

time from interactions between biological individuals. The developed N-ABM approach is 

applied using the case study of a real forest insect infestation, the emerald ash borer 

(EAB) in Southern Ontario, Canada. 

5.3. Networks and their Representation through Graph 
Theory 

This section provides important network and graph theory definitions from which 

dynamic spatial network representations and measurement tools are derived. 

Foundations of graph theory are reviewed comprehensively (Barabási et al., 2016; 

Newman, 2003; Lewis, 2011) and for spatial graphs specifically (Barthélemy, 2011). A 

graph G is a mathematical representation of an observed spatial network SN reduced to 

a set of nodes N that are connected by directed or undirected links L. Nodes represent 

entities that make up the observed network and links represent the interactions between 

them.  

Many empirically-observed spatial networks SN have properties corresponding to 

random, small-world, or scale-free graph types. Each graph type is unique in the way 

that it is formed and its resulting properties. Some common properties are defined in 

Table 5.1. The properties defined in Table 5.1 can be calculated as a local measure for 

each individual node or averaged across the network as a global measure.  

Table 5.1. Definitions of important graph theory measures. 

Graph Theory Measure Definition 

Node degree k A local network measure that counts of the number of connections 
node i has to other nodes 

Average node degree <k> A global network measure describing the average node degree 
across all nodes in the network 

Degree distribution P(k) A fraction of nodes in the network with degree k  

Clustering coefficient C A local network measure that calculates the likelihood that nodes 
connected to node i are also connected to each other  

Average clustering coefficient 
<C> 

A global network measures that summarizes the average clustering 
coefficient across all nodes in the network 

Path length ls A local network measure calculating the shortest path consisting of 
a number of nodes or links connecting two pairs of nodes in the 
network 
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Graph Theory Measure Definition 

Average path length <ls> A global network measure calculating the average number of 
intermediate nodes or links in the shortest path between all pairs of 
nodes in the network 

 

Random graphs are modelled by linking nodes randomly based on probability p 

(Erdos & Renyi, 1959; 1960). As a result, one property of a random graph is a well-

defined average node degree <k>, producing a Poisson degree distribution P(k). The 

random connections that form between the set of nodes generate a low average 

clustering coefficient <C>, meaning that on average, it is unlikely that nodes connected 

to node i are also connected to each other. This lack of clustering produces a short 

average path length <l> (Boccaletti et al., 2006). Networks observed in the real world 

rarely exhibit properties of random graphs. However, random graphs provide a baseline 

for which to compare properties observed in real networks. 

Some empirically-observed networks such as social networks have been found 

to have a much higher average clustering coefficient <C> and a similar average path 

length <l> than their random counterparts with the same number of nodes and the same 

average degree <k>. These networks exhibit properties of small-world graphs (Watts & 

Strogatz, 1998). Small world graphs are modelled as a lattice, where each node is 

connected to the exact same number of adjacent nodes, and a few nodes are rewired to 

a randomly chosen node. The establishment of just a few random connections 

dramatically reduces the average path length between any two nodes in the network, 

making the movement of material such as information, individuals, and power between 

nodes highly efficient.  

A degree distribution unlike that of a random or small-world graph has been 

observed in several real networks such as the World Wide Web (Albert et al., 1999), 

characterized by a small fraction of nodes that have a very large number of links and a 

large fraction of nodes that have only a few. This degree distribution forms a power law, 

expressed as:   

𝑝(𝑘)~𝑘−𝛼 (1) 

where the probability p of observing a node with k connections is the number of 

connections to some negative exponent called a degree exponent α. These observed 
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network structures exhibit the properties of scale-free graphs (Barabasi & Albert, 1999). 

A scale-free graph is modelled through the process of preferential attachment of new 

node 𝑣𝑗 to node 𝑣𝑖 based on node 𝑣𝑖’s degree k. Specifically, new nodes prefer to link to 

existing nodes that have a higher degree, and thus “the rich get richer”. In addition to a 

power law degree distribution, empirically-observed networks exhibiting properties of 

scale-free networks are characterized as having a shorter average path length and a 

similar average clustering coefficient in comparison to its random network counterpart.   

In many cases, real networks can be modelled using a topological or spatial 

structure. The spatial structure of networks provides valuable information explaining 

network structure and behaviour. As geospatial data availability increases, geospatial 

network representations and analysis become more feasible. In a geospatial network, 

nodes are embedded in geographic space, defined explicitly using geographic 

coordinates. Geospatial networks are unique from their non-spatial, topological 

counterparts because any node’s degree k is limited by physical space and thus distant 

connections are costly in terms of energy, money, and time. The structure and dynamics 

of real spatial networks have been characterized for transportation and infrastructure 

(Guimera & Amaral, 2004; Jiang, 2007; Watts & Strogatz, 1998) and less commonly for 

social (Stoneham 1977; Andris, 2016) and ecological (Fortuna et al., 2006, Pereira et al., 

2011) phenomena. Graph theory-based network approaches have been proposed as 

useful tools in landscape ecology (Ferrari et al., 2007, Minor and Urban, 2008, Urban 

and Keitt, 2001), however few studies actually operationalize these approaches on real 

case studies using geospatial data (Andersson and Bodin, 2009, Fortuna et al., 

2006, Pascual-Hortal and Saura, 2008, Zetterberg et al., 2010). Furthermore, graph 

theoretic approaches in landscape ecology are typically limited to static networks at the 

landscape scale and thus are unable to explore the spatio-temporal complexity inherent 

to ecological processes. Therefore, this study seeks to develop an integrated modelling 

approach that can facilitate the exploration of the complex dynamic spatial structure and 

behaviour of real ecological networks such as insect infestation. Specifically, network 

theory and agent-based modelling (ABM) are integrated to develop an N-ABM. 

https://www.sciencedirect.com/science/article/pii/S0169204610002926#bib0115
https://www.sciencedirect.com/science/article/pii/S0169204610002926#bib0205
https://www.sciencedirect.com/science/article/pii/S0169204610002926#bib0365
https://www.sciencedirect.com/science/article/pii/S0169204610002926#bib0365
https://www.sciencedirect.com/science/article/pii/S0169204610002926#bib0015
https://www.sciencedirect.com/science/article/pii/S0169204610002926#bib0135
https://www.sciencedirect.com/science/article/pii/S0169204610002926#bib0135
https://www.sciencedirect.com/science/article/pii/S0169204610002926#bib0255
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5.4. Methods 

The developed N-ABM simulates a dynamic spatial network structure that 

emerges over space and time from interactions between agents at the individual scale 

(Figure 5.1). Graph theory is used to characterize and measure the obtained simulated 

spatio-temporal network patterns. The proposed approach is implemented and tested on 

the case study of the emerald ash borer (EAB) bark beetle in the Town of Oakville, 

Canada (Figure 5.2), first discovered in this area in 2008. The N-ABM approach is 

developed using the Java object-oriented programming language and Repast Simphony 

2.5. (2017), a free and open source Recursive Porous Agent Simulation Toolkit 

(Repast). Repast Simphony is used for modelling complex adaptive systems through the 

development of ABMs and has a large and growing community developing a wide range 

of applications for social, evolutionary, industrial, and ecological simulations (North et al., 

2013).  

The following sections first provide an overview of the case study, including the 

EAB’s biological background, followed by a detailed description of the development of 

the N-ABM and the graph measures used to characterize and analyze the N-ABM 

simulation outputs.  

 

Figure 5.1. Network-agent based model (N-ABM) approach applied for emerald 
ash borer infestation case study. 
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Figure 5.2. Overview of the geospatial N-ABM agents’ interactions, processes, 
and scheduling for the simulation of dynamic spatial networks with 
the map of the study area in Oakville, Canada. 

 

5.4.1. Emerald Ash Borer (EAB) Biological Background 

The emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: 

Buprestidae) is an invasive phloem-feeding beetle native to countries in Asia. The EAB 

was first introduced into North America in the late 1990s (Siegert et al., 2014) and was 

discovered in 2002 in Detroit, Michigan, US and Windsor, Ontario, Canada (Straw et al., 

2013). The EAB is the cause of the decline of the North American ash tree population, 

creating devastating ecological and economic impacts.  
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EAB larvae feed on ash tree phloem for one to two years before emerging as 

adults from under the bark of ash trees to reproduce in early June through August 

(Cappaert et al., 2005). Mated female EAB locally disperse in search of host trees 

suitable for offspring. Local dispersal is constrained by the natural flight ability of the 

EAB, where mated female EAB travel on average 2.8 km in 24 hours (Taylor et al., 

2007). Dispersal to distances beyond the EABs’ natural abilities is referred to as long-

distance dispersal. This type of dispersal is facilitated by human transportation of 

infested wood products and firewood resulting in the establishment of satellite 

populations beyond the main front of infestation. As a result, ash trees that are near 

major roads and campgrounds are at high risk (Muirhead et al., 2006).  

Mated female EAB use olfactory, tactile, and possibly auditory cues to determine 

the most suitable hosts for oviposition. It is believed that EAB have specific preferences 

for ash tree hosts of a certain type, size, location, and level of host tree stress. It has 

been found that ash tree types with a naturally lower resistance to insect infestations 

such as the green, black, and white ash, versus their blue ash counterparts, are targeted 

more frequently (Rebek et al., 2008; Anulewicz et al., 2008). It is also suggested that in 

order to sustain larval galleries, mated females prefer ash trees that are larger in size 

(Mercader et al., 2011) and ash trees that are closer in distance to their point of 

emergence (Mercader et al., 2009).  

It is hypothesized that EAB host selection is influenced by volatiles emitted by 

stressed ash trees. Tree stress is caused by drought, woodpecker damage, wounding, 

and of course, insect feeding caused by larval galleries such as those produced by EAB. 

McCullough et al. (2009) and Tluczek et al. (2011) tested this hypothesis by girdling ash 

trees, a process where a 20 cm wide band of outer bark and phloem is removed, cutting 

off the flow of water and nutrients within the tree. They found that girdled trees captured 

significantly more adult EAB and had higher larval densities.  

5.4.2. N-ABM 

The purpose of the N-ABM is to represent the dynamic spatial network that 

emerges from simulated infestation dynamics. Specifically, agent interactions between 

EAB and ash tree agents, implemented by the ABM component of the N-ABM form the 

basis of the network structure that dynamically evolves over geographic space and time.  
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The N-ABM is implemented on datasets for the study site, the Town of Oakville, 

Canada, to represent the EAB infestation from June 1st, 2008 to August 31st, 2009. To 

account for variation in model outputs as a function of randomness incorporated into 

ABM processes, the model was run 50 times. The Town of Oakville (study area 

spanning across 138.5 km²) acquired and developed geospatial data that can in turn be 

used for model creation, calibration, and validation of EAB infestation dynamics. The 

geospatial data used in this study include the following:  

1. GIS data layers of the tree inventory for the Town of Oakville with 
location and attribute data for all tree species (Trees, 2018); 

2. GIS data layers containing (a) the location of recreational parks and 
campgrounds (Parks Recreation and Culture Guide, 2018) and (b) 
major streets for the Town of Oakville (Road Network, 2018); 

3. GIS data layers representing the delimitation of actual EAB infestation 
according to levels of severity observed in the Town of Oakville in 
2009 obtained through Forestry Services, Parks and Open Space, 
Town of Oakville. 

Simulating Infestation Dynamics using Agents 

The description of the ABM component of the N-ABM here includes some 

important elements from the Overview, Design concepts, and Details (ODD) protocol 

(Grimm et al. 2006). For a detailed description of the ABM component that includes all 

elements, see Anderson & Dragicevic (2016). The purpose of the ABM component of the 

N-ABM is to simulate interactions between EAB agents and ash tree agents. These 

interactions are the basis for which the tightly coupled dynamic spatial network forms 

and evolves over space and time. The ABM component of the N-ABM is based on an 

existing and validated ABM developed by Anderson & Dragićević (2016) and was 

previously applied to simulate the biological control of EAB in the Town of Oakville, 

Canada. The following sections describe how the infestation dynamics are implemented 

in the N-ABM as a function of agent interactions. Figure 5.2 depicts the detailed 

processes and scheduling pertaining to the interactions between the EAB and the ash 

tree agents that in turn generate the dynamic spatial networks.  

Agents and State Variables 

The N-ABM simulates adult EAB, EAB larvae, and ash tree hosts agents. Using 

biological information obtained from the literature (Table 5.2), agent individuals are 
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programmed with state variables and agent parameters. The state variables (Table 5.2a) 

are associated with the state of the agent at a particular model time step. The agent 

parameters (Table 5.2b) are virtual components that define the agents and shape their 

behavior.   

 Table 5.2. A description of (a) agent state variables and (b) agent parameters 
with references. 

A. Agent State 
Variables 

Variable Description 

All agents Age Agent age in days 

 Location Decimal degrees 

Adult EAB  Number of offspring 
produced 

Number of offspring that have been produced by 
the agent  

 Fertility  Whether the agent is fertile or not 

Larvae Sex Sex of the larvae 

Ash Tree Stress Stress level associated with larval feeding as a 
result of infestation 

 Number of larvae Number of larvae existing within the tree  

B. Agent Parameters Parameter Description Reference 

Adult EAB Maximum flight/day 2.8 km/day  Taylor et al. (2007) 

 Chance of successful 
fertility  

82% Rutledge & Keena 
(2012) 

 Maximum number of 
offspring 

Randomly selected 
between 60 and 90 

Jennings et al. (2014) 

 Survival rate of eggs Randomly selected 
between 53% and 65% 

Jennings et al. (2014) 

Larvae Sex ratio 1:1, 50% Lyons & Jones (2005) 

 Survival rate of larvae Host tree defense: max 
21%, disease: 3%, 
woodpecker: max 17% 

Duan et al. (2010) 

Ash Tree Carrying capacity 44 EAB/ per m2 of bark Jennings et al. (2014) 
 

Agent Process Overview and Scheduling 

As depicted in Figure 5.2, the developed N-ABM simulates EAB behavior for two 

seasons of infestation from June 1st, 2008 (𝑡1), when the EAB was first introduced into 

the Town of Oakville, to the end of August 2009 (𝑡457). Each model time step (𝑡i) 

represents one day in the real world. The main processes and schedules of each agent 

are defined and presented in Table 5.3. Upon model initialization, the first population of 

female adult EAB agents emerge from an ash tree and move through their life cycle as a 

collection of subroutines to simulate real EAB behavior (Figure 5.2). Life cycle stages 

include emergence, dispersal in search of food, maturing and mating, host selection and 
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oviposition of EAB larvae agents, and once they have oviposited all their offspring, they 

die. These stages are executed as a function of the agent’s age and parameters. The 

EAB larvae agents grow over time and if they do not die from external factors, a new 

generation of EAB emerge and begin their life cycles.  

Host selection is a process integrated into EAB adult agent decision-making 

through a host selection algorithm developed by Anderson & Dragićević (2016). The 

host selection algorithm allows EAB agents to compare between trees within their daily 

flight radius and optimize their decision of which tree to infest based on their preferences 

at each time step. Specifically, EAB agents compare ash trees based on the tree’s 

location, type, size, and tree stress. Ash trees are more attractive to the EAB agent in 

the case that they are the following: 1) a type of ash that are naturally less resistant to 

EAB infestation, 2) are closer to the EAB agent’s location, 3) are larger, and 4) are of 

greater stress levels. 

On average, 1% of the EAB population is transported by mechanisms of long-

distance dispersal (Taylor et al 2007). In the model, long-distance dispersal is a random 

process where each year, 1% of the EAB population has a 30% chance of establishing 

successfully via long-distance dispersal. The success rate of 30% was determined 

through model calibration (Anderson & Dragicevic, 2015). Trees that are near major 

transportation networks or near recreational parks and campgrounds are susceptible to 

the mechanism of long-distance dispersal. Once a satellite population is established, the 

adult EAB agent disperses locally and the life cycle continues. 

Ash tree agents are represented using tree inventory geospatial data of the Town 

of Oakville (Figure 5.2), containing the location, type, and size of trees. Each ash tree 

agent represents an ash tree. Ash tree agents record whether it is infested and the 

number of larvae feeding on it.  
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Table 5.3. Main processes and schedules of each agent. 

 

Adult EAB Agents Processes 

Processes Description Scheduling 

Ageing The age of the agent is stored as a state 
variable.  

At the initialization of an agent, agent age is 
equal to 0 days. With each model time step 
representing one day, age is increased by 1.   

Emergence EAB larvae agents emerge as adult EAB 
agents. 

When EAB larvae agents reach the age of 
340 days and if the larvae is female, they 
emerge as adults EAB agents.  

Dispersal Dispersal is the process whereby agents 
change location. Dispersal is a function of 
the host selection algorithm where a 
distance of 2.8 km/day bounds the EAB’s 
information regarding host tree availability.  

EAB agents locally disperse immediately 
after emergence.  

Mating EAB agent fertility is a function of the 
chance of fertility parameter. Mated 
females who are fertile are randomly 
assigned a maximum number of offspring.  

EAB agents mate 7 days after emergence.  

Oviposition Mated fertile EAB are able to compare 
trees that fall within their daily flight 
distance radius. The comparison between 
trees by EAB agents is controlled by the 
host selection algorithm. Once selected, 
EAB will oviposit a random number of 
offspring within its maximum number of 
offspring onto the selected host.  

If fertile, adult EAB begin oviposition 10 days 
after emergence. 

Death Adult EAB agents die once they have 
produced their maximum number of 
offspring.  

Triggered when parameter maximum 
number of offspring is equal to offspring 
produced. 

EAB Larvae Agents 

Processes Description Scheduling 

Ageing The age of the agent is stored as a state 
variable.  

At the initialization of an agent, agent age is 
equal to 0 days. With each model time step 
representing one day, age is increased by 1.   

Death Larvae agents die via external factors.  External factors are applied once in the 
lifetime of the EAB larvae. 

Tree Agents 

Ageing The age of the agent is stored as a state 
variable.  

At the initialization of an agent, agent age is 
equal to 0 days. With each model time step 
representing one day, age is increased by 1.   

Become 
Infested 

Ash trees become infested once an adult 
EAB has chosen it as a host and 
successfully oviposited their eggs in the 
tree. The number of larvae feeding on the 
tree proportionally increases the stress of 
the tree agent.  

Triggered when number of larvae is greater 
than 1. 
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Agent Initialization 

The model is initialized for the time 𝑡1 on June 1st, 2008. Upon initialization, a 

population of EAB emerge from the North Iroquois Ridge Community (43.47 decimal 

degrees North and 79.69 decimal degrees West) where the beetle is thought to have 

first become established in the Town of Oakville (BioForest Technologies Incorporated, 

2011). Although the initial number of beetle agents to emerge is random, the number 

falls within a threshold proportional to the carrying capacity of ash trees in the region 

where a maximum of 44 female adult beetles emerge per m2 of the ash trees surface 

area (McCullough & Siegert, 2007). The average size of the tree in the initial location of 

infestation is 13 m2, estimated by using the height and DBH recorded in the geospatial 

tree inventory dataset. As such, the model is initialized in 2008 with a maximum of 572 

emerging female EAB agents and, with up to 41% of larval death via host tree defense, 

woodpecker predation, and environmental factors and disease (Duan et al., 2010), a 

minimum of 234 emerging female EAB agents. There are 6153 ash tree agents in the 

simulation. 

5.4.3. Infestation Dynamics as Networks 

In the developed N-ABM approach, agent interactions drive the structure of a 

dynamic spatial network. The programming logic and pseudocode are presented in 

Figure 5.3, where nodes and links in the generated spatial network correspond to EAB 

agents and their interactions with the forest environment. This code tightly couples the 

agent interactions to the generation of spatial networks. If for example, Agent A, 

represented by node 𝑣𝑖, interacts with Agent B, a new node 𝑣𝑗 is added as a proxy for 

Agent B and a link e is created from node 𝑣𝑖 to node 𝑣𝑗 to represent the interaction. In 

addition, the link e stores the direction of the link (node 𝑣𝑖 is assigned as the Start Node 

and node 𝑣𝑗 is assigned as the End Node). 

Using the case study of the EAB infestation as an example, the N-ABM 

generates a series of spatial networks SN, composed of a growing set of nodes N that in 

this case represent infested trees at x, y location. Directed links L represent the 

movement of a mated female EAB agent and form as it moves from infested tree node 𝑣𝑖 

to a new tree node 𝑣𝑗, infesting tree node 𝑣𝑗. Connections are made to both trees that 
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are not already infested and to trees that are infested and thus are already included in 

the infestation network.  

 

Figure 5.3. Programming logic and pseudocode developed for the N-ABM 
approach that couple agent interactions and the generation of the 
dynamic spatial network structures. 

5.4.4. N-ABM Testing 

The spatial networks SN form as a direct result of the interactions between EAB 

and ash tree agents over geographic space and time and as such, testing the validity of 

the ABM component of the N-ABM is important. The N-ABM uses the same agent 

reasoning and programming code from the validated ABM developed by Anderson & 

Dragićević (2016). To account for variation in model outputs as a function of 

randomness incorporated into ABM processes, the model is run 50 times. The simulated 
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state of each tree was determined as a function of the state of each ash tree (infested 

vs. not infested) in the majority of model runs. The model was validated using a binary 

confusion matrix that measures the agreement between the simulated state of each ash 

tree and the state of the corresponding ash tree as observed in the real-world for the 

same time-period with an overall accuracy of 72%. Additionally, a confusion matrix was 

used to measure the agreement between the simulated level of severity of each ash tree 

(low, medium, high) and the level of severity observed in the real world for the 

corresponding tree with an overall accuracy of 64%. The sensitivity of the model outputs 

to changes in parameters, most notably to changes in EAB preferences in the host-

selection process, were tested using sensitivity analysis and reported in Anderson & 

Dragicevic, 2018.  

5.4.5. Analysis of Generated Spatial Networks  

Graph theory (Newman, 2003) provides the theoretical and mathematical 

foundation for the representation and analysis of network structures. A primary objective 

in network analysis using graph theory is to determine the type of network, specifically 

whether the observed network structure exhibits random, scale-free, or small-world 

properties. This can be determined using a few global network measures that 

characterize the network at the network-level: average node degree <k>, degree 

distribution P(k), average clustering coefficient <C>, and average path length <l>. As 

such, to determine network type, the above measures are calculated for the networks 

generated by the N-ABM and the obtained values are compared to the expected values 

if a network with the same number of nodes was random. Therefore, an equivalent 

random network model N-ABMRAND is developed where EAB agent host selection is 

programmed as a random process. The average node degree <k>, degree distribution 

P(k), average clustering coefficient <C>, and average path length <l> is calculated for 

the N-ABM and the N-ABMRAND and compared. 

A detailed description of the selected graph theory measures programmed for the 

spatial analysis of the generated spatial network SN structures are as follows:  

Average Node Degree 

The number of nodes 𝑣𝑗 that node 𝑣𝑖  is connected to is referred to as the node 

degree k of 𝑣𝑖. In an undirected network, the average node degree <k> is defined as:  
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< 𝑘 > =  
2𝐿

𝑁
 (2) 

where m represents the number of links in the network and n represents the number of 

nodes in the network. However, not all graphs are undirected. Movement, for example, a 

common dynamic modelled in spatial ABMs, is directional, where EAB agents move 

from a location to a location. Thus, it is important to differentiate between the ingoing 

links kin with outgoing links kout. Node total degree k in a directed network is defined as: 

𝑘 =  𝑘𝑖𝑛 + 𝑘𝑜𝑢𝑡  (3) 

The average node degree <k> in a directed network is defined as:  

< 𝑘 > =  
𝐿

𝑁
 (4) 

Degree Distribution 

The degree distribution P(k) calculates the fraction of nodes in a network with 

degree k, kin, or kout. Using the example of degree k, the fraction of nodes in a network 

with degree k can be calculated by the number of the nodes with the same degree, 

divided by the total number of nodes in the network N. For example, if there are four 

nodes in the network where k = 1, and there are a total of 10 nodes, P(k) = 0.4. P(k) can 

be plotted on a histogram to present the degree distribution of the network. The degree 

distribution is tested for goodness of fit using powerlaw, a Python package for analysis of 

heavy-tailed distributions (Alstott et al., 2014). 

Average Path Length 

A path 𝑃𝑖0,𝑖𝑛 that connects the nodes 𝑖0 and 𝑖𝑛 in a graph 𝐺 = (𝑁, 𝐿) is defined as 

an ordered collection of 𝑛 + 1 nodes 𝑁𝑃 = {𝑖0, 𝑖1, 𝑖2, … 𝑖𝑛} and 𝑛 edges 𝐿𝑃 =

{(𝑖0, 𝑖1), (𝑖1, 𝑖2) … (𝑖𝑛−1, 𝑖𝑚)}. The shortest path length between any two nodes in the 

network model 𝑙𝑠 is calculated by implementing Dijkstra’s shortest path algorithm into the 

N-ABM (Dijkstra, 1959), an algorithm developed to find the shortest number of links 

connecting any two pairs of nodes in the network. Average path length <l> is defined as 

the average value of 𝑙𝑖𝑗. 
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Average Clustering Coefficient  

The clustering coefficient C measures the probability that nodes 𝑣𝑗 connected to 

node 𝑣𝑖 are also connected to each other (Watts and Strogatz, 1998).  The clustering 

coefficient of node 𝑣𝑖 is formulated as:  

𝐶(𝑖) =  
𝐸𝑖∗2

𝑘𝑖(𝑘𝑖−1)
  (5) 

where for node 𝑣𝑖 of degree 𝑘𝑖, 𝐸𝑖  is the number of edges among the neighbours of 𝑣𝑖. 

The average clustering coefficient is formulated as: 

< 𝐶 >  ~ 
1

𝑁
 (6) 

where the brackets denote the average clustering coefficient over the network. 

5.5. Results 

This section presents the N-ABM simulation outcomes and the analysis of the 

generated spatial network structures. To account for stochasticity in generated network 

structures, the N-ABM is executed 50 times to ensure statistical significance, thus 

generating 50 different simulation outcomes. The average values and the standard error 

across all 50 model runs for average node degree <k>, degree distribution P(k), average 

clustering coefficient <C>, and average path length <l> are calculated and presented in 

Table 5.4. The obtained standard error for each network measure is very small, 

indicating that the N-ABM generates very similar network structures across all runs.  

Table 5.4. Summary of network measure results derived from (a) the single N-
ABM infestation network chosen for visual presentation of results, 
and (b) the average value across all 50 generated infestation 
networks for all network measures with the associated standard 
error. 

 A. Single Network  B. 50 Networks 

Value Average Value Standard 
Error 

Degree and Degree Distribution (kout) 

<kout> 4.40 neighboring nodes  4.48 neighboring nodes 0.0146 

kmax 64 neighboring nodes 61.22 neighboring nodes 0.4755 

kmin 1 neighboring node 1 neighboring node 0 

Degree distribution Power law Power law  
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𝑝(𝑘)~𝑘−𝛼 𝛼 = 1.58 𝛼 = 1.59 0.0019 

Degree and Degree Distribution (kin) 

<kin> 4.48 neighboring nodes 4.33 neighboring nodes 0.0191 

kmax 52 neighboring nodes 56.46 neighboring nodes 0.5140 

kmin 1 neighboring node 1 neighboring node  0 

Degree distribution Power law Power law  

𝑝(𝑘)~𝑘−𝛼 𝛼 = 1.59 𝛼 = 1.59 0.0020 

Clustering Coefficient 

<C> 0.030 0.034 0.0002 

Path Length 

<𝑙𝑠> 11.27 nodes 11.26 0.0021 
 

This is supported by visibly similar power law degree distributions P(k) across all 

50 simulated network structures as presented in Figure 5.4 accompanied by minor 

differences in the calculated alpha exponent (Table 5.4). Large amounts of variation 

across several ABM outputs typically points to stochastic uncertainty (Brown et al., 

2005), however the minor variation observed in network structure across 50 model runs 

suggests that the emergent network structure is a function of the generative 

mechanisms that are implemented in the model, rather than randomness. Therefore, 

using one network as example to present the results is a viable option as the other 49 

networks have similar network structure, indicated by the similar obtained network 

measures for each. Based on this analysis and for the purpose of clarity and visual 

presentation of the generated maps with network structures, one example network is 

selected and presented in the following sections. 
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Figure 5.4. Variation of the degree distribution P(k) generated across all 50 
model runs. The degree distribution presents the number of trees 
with degree k. 

 

5.5.1. Simulation Results 

Figure 5.5 presents one full model run of the N-ABM representing the spread of 

EAB infestation across the Town of Oakville, Ontario from 2008 to 2009. Specifically, 

Figure 5.5 shows both the infestation extent as a function of the EAB and tree agents’ 

interactions and the generated spatial network structures for time ti. Particularly, 

simulation outputs for July 2008 at 𝑡61 (Figure 5.5 a and b), August 2008 at 𝑡92 (Figure 

5.5 c and d), July 2009 at 𝑡426 (Figure 5.5 e and f), August 2009 at 𝑡457 (Figure 5.5 g and 

h) are presented. The EAB are most active during the month of July and August, and 

therefore, the most notable changes in network structure are visible. The infestation 

extent as a function of the agent interactions (Figure 5.5 a, c, e, and g) and the network 

structures (Figure 5.5 b, d, f, and h) are extracted as separate geospatial layers for 

better visualization; however, both are derived from the same model run. Following 

model initialization in 2008, EAB spreads locally outward from the epicenter in the north-

eastern half of the city. From the epicenter, clusters of infestation develop to the south-

east and the west of the epicenter. A satellite population develops in the southern end of 

the city and in 2009, the second year of EAB infestation, the satellite population, and the 
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main infestation front merge. This is referred to as a stratified dispersal pattern, 

commonly observed in real-world EAB spread (Muirhead et al., 2006). 

 

Figure 5.5. The N-ABM simulation results depicting spatial EAB infestation 
extent as a function of EAB and ash tree agents’ interactions in the 
Town of Oakville between 2008 and 2009 for: (a and b) July 2008 at 

𝒕𝟔𝟏; (c an d) August 2008 at 𝒕𝟗𝟐; (e and f), July 2009 at 𝒕𝟒𝟐𝟔; and (g 

and h) August 2009 at 𝒕𝟒𝟓𝟕. 
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5.5.2. Analysis of the Spatial Network Structure Results 

Using the topology of the example simulated EAB infestation network in August 

2009 derived from the N-ABM at the final time step 𝑡457, the resulting graph theory 

measures are summarized in Table 5.4.  

Graph Size 

The EAB infestation network in August 2009 is composed of 2540 nodes, 

meaning that there are just over 2500 infested trees in the network. The number of links 

or dispersal pathways connecting these nodes or infested trees is 27,560. 

Average Node Degree and Degree Distribution 

The kout and kin measures mathematically characterize different dynamics in the 

infestation network. A <kout> value of 4.48 indicates that on average, EAB agents move 

from infested tree node 𝑣𝑖 to 4.48 other tree nodes 𝑣𝑗. Therefore, kout characterizes the 

local connectivity of each tree node 𝑣𝑖 to other desirable trees 𝑣𝑗 in its proximity. A <kin> 

value of 4.40 indicates that on average, EAB agents move from 4.40 other tree nodes 𝑣𝑗 

to tree node 𝑣𝑖. Therefore, kin characterize the desirability of tree node 𝑣𝑖.  

The max degree kmax for kout is 64 and the min degree kmin for kout is 1. The max 

degree kmax for kin is 52 and the min degree kmin for kin is 1. The values of degree do not 

indicate the volume of beetles that move across these links, but rather, that several 

beetles move along each path from node 𝑣𝑖 to node 𝑣𝑗. The volume of beetles can be 

represented by node or link weights; however, node and link weights are not included in 

this network representation to maintain simplicity. The degree distribution P(kout) and 

P(kin) can provide information regarding the type of network that emerges from dynamics 

at the local scale. The P(kout) and P(kin) are plotted as histograms in Figure 5.6a and 6b 

respectively and as a log-log plot in Figure 5.6 c and 6d. The histograms in Figure 5.6a 

and 6b indicate that there are a large fraction of nodes in the network with a very small 

degree and a small fraction of nodes in the network with a very large degree. In the log-

log plot (Figure 5.6c and Figure 5.6d), this distribution can be described as linear 

distributions with heavy tails. 
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Figure 5.6. Degree distribution P(k) for (a) kout and (b) kin and degree distribution 
P(k) plotted on a log-log scale for (c) kout and (d) kin. 
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Figure 5.7. Spatial distribution of tree node degree for (a) kout and (b) kin 

demonstrating highly connected trees and less connected trees for 
EAB insect infestation. The simulated high degree trees correspond 
to the (c) regions of real-world high severity infestation. 

 

The degree distribution for P(kout) and P(kin) can be described as a power law 

distribution. The distributions produce an alpha exponent −𝛼 of 1.58 and 1.59 for P(kout) 

and P(kin) respectively and a standard error sigma σ of 0.01 for both. The Kolmogorov-

Smirnov distance D is also small with a value of 0.16 for both. The goodness of fit of the 

degree distribution between a power law and an exponential distribution is first 

compared, producing a log likelihood ratio R between the two candidate distributions that 

indicates a power law is a better fit than an exponential with a p-value of 0.0072 and 

0.04 for P(kout) and P(kin) respectively.  
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The directed degrees are also presented spatially (Figure 5.7a and 5.7b). For 

both kout and kin, there is a distinguishable core region composed of ash trees that have 

a high node degree k, surrounded by a large perimeter composed of ash trees that have 

a low node degree k.   

Node degree k appears to coincide with real-world EAB infestation severity 

(Figure 5.7c; Table 5.5). This is determined by classifying all tree nodes into high, 

medium, low, and zero degree classes based on their simulated degree. The degree of a 

tree is classified as high degree if it falls > 1.5 standard deviation, medium degree if from 

0.5 to 1.5 of the standard deviation, and as low degree if it falls  <0.5 of the standard 

deviation. All trees with a simulated node degree of zero are classified as zero degree. 

Using a confusion matrix approach (Congalton, 1991), the simulated degree class of 

each tree node is compared to high, medium, low infestation severity in addition to no 

infestation observed in the real world for 2009 for the same tree. The overall spatial 

similarity is 67% where trees with a simulated high degree and medium degree 

corresponds moderately well with high (18% omission and 36% commission) and with 

medium (33% omission and 18% commission) infestation severity in the real world 

respectively. This is not a model validation metric because since the network is not 

weighted, the tree node degree does not necessarily correlate with tree population EAB 

density and thus cannot be compared to infestation severity. However, it does indicate 

that trees that have a high degree in the infestation network are highly spatially 

accessible and may influence infestation severity.  

Table 5.5. Confusion matrix detailing the spatial agreement of the levels of 
severity of infestation observed in the real world and simulated node 
degree. 

 Real world tree infestation severity Commission  

Not Infested Low 
Infested 

Medium 
Infested 

Highly 
Infested 

Simulated 
Tree 
Degree 

Zero 
Degree 

2435 1556 10 0 39.15% 

Low Degree 95 1209 186 0 18.86% 

Medium 
Degree 

0 88 478 17 18.02% 

High 
Degree 

0 0 42 73 36.53% 

Omission  3.76% 57.63% 33.25% 18.89% 67.77% 

 



135 

Degree Distribution across Time 

Using the developed N-ABM approach, all graph theory measures can be 

calculated at any point in time to better understand the change in network structure as it 

grows and evolves. The degree distribution P(kout) is used here as an example. In each 

model time step the P(kout) of the infestation network maintains a power law. The power 

law in the early stages of the infestation has an exponent of 3.3. Over time, the exponent 

decreases before settling at 1.6 (Table 5.6). The generated power laws indicate that at 

the beginning of each season of EAB infestation there is a burst of new EAB dispersal 

where the network is expanded over geographic space and infested tree nodes with a 

low degree are added to the network. The season of EAB infestation continues and links 

form between trees that already exist in the infestation network as EAB dynamics such 

as attraction to trees of ash species, attraction to stressed trees, and carrying capacity 

begin to play a role in the network structure. This process is quantified by the changes in 

the power law degree distributions over time, where the power law in early months of 

infestation has a much higher fraction of tree nodes with a low degree than in the 

following months.   

Table 5.6. Power law exponent −𝜶 over time. 

Date Model Time Step Exponent −𝛼 

June 2008 T30 3.3 

July 2008 T61 2.7 

August 2008 T92 2.7 

June 2009 T395 2.1 

July 2009 T426 1.6 

August 2009 T457 1.6 
 

Average Clustering Coefficient  

The average clustering coefficient <C> is 0.03 meaning that node linkages form a 

"star-like" pattern. Most of the core region of infested trees is composed of trees with a 

very low clustering coefficient, meaning that only a few of the nodes that are connected 

to node 𝑣𝑖  are also connected to each other. In total, there are only three trees with a 

clustering coefficient C of 1, where all nodes that are connected to node 𝑣𝑖 are also 

connected to each other.  We can present this spatially to highlight where clusters exist 

(Figure 5.8). The majority of the nodes with high clustering are near the perimeter. This 

is potentially a model edge effect, where EAB agents can ‘no longer’ spread due to the 
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spatial data’s administrative town boundary and thus continue to infest trees in close 

proximity resulting in a higher clustering coefficient near the town administrative 

boundary. 

 

Figure 5.8. Spatial distribution of varying clustering coefficients of tree nodes. 
The inset map corresponds with the red dot on the main map and 
presents a node exhibiting the star like pattern commonly generated 
during the EAB host selection process. 

 

Average Path Length 

The average path length is short, with an average of 11 intermediate nodes that 

make up the path between any two nodes in the network. This indicates that as a 

function of the spatial distribution of ash tree hosts and the flight dynamics of EAB, the 

EAB are able to spread across long distances in a short period of time. 

Using the topology of the simulated EAB infestation network in August 2009 

derived from the N-ABMRAND at the final time step 𝑡457, the resulting graph theory 

measures for an equivalent random network are summarized in Table 5.7.  
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Table 5.7. Summary of network measure results derived from the N-ABMRAND 
infestation network. 

Graph Size 

 <N> 2,540 nodes 

 <L> 3,788 links 

Degree and Degree Distribution (kout) 

 <kout> 6.4 neighboring nodes  

 kmax 38 neighboring nodes 

 kmin 1 neighboring node 

 Degree distribution Poisson 

Degree and Degree Distribution (kin) 

 <kin> 6.4 neighboring nodes 

 kmax 17 neighboring nodes 

 kmin 1 neighboring node 

 Degree distribution Poisson 

Clustering Coefficient 

 <C> 0.007 

Path Length 

 <𝑙𝑠> 22.86 nodes 
 

Comparing the obtained N-ABM analysis results for the case study of the EAB 

with the N-ABMRAND indicates that the N-ABM spatial infestation network structure is 

scale-free with hub and spoke architecture, formed by a power law degree distribution 

for both P(kout) and P(kin) with an exponent 𝛼 of 1.58 and 1.59, respectively. Specifically, 

the short average path length <l> of the N-ABM at 11.27 nodes in comparison to the 

average path length <l> of the N-ABMRAND at 22.86 nodes. In addition to a power law 

degree distribution P(k), an average path length in a network that is less than the 

average path length of its equivalent random network is a defining feature of a scale-free 

network (Barabási, 2016). 

Characterization of emergent spatial network structure can provide insight into 

network dynamics. For example, if instead of a scale-free network, a random network 

structure was formed, this would indicate that the underlying processes driving the 

emergence of the spatial network structure are random. At the most basic level, scale-

free networks form as the result of two simple generative mechanisms: growth and 

preferential attachment, also known as the "rich get richer" phenomenon. In preferential 

attachment, the probability that a new node becomes connected to an existing node is a 

function of the existing node's degree. The higher the degree, the more likely the node 

will form a connection.   
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To understand why the scale-free network structure emerges, the generative 

mechanisms included in the N-ABM can be examined. A correlation between degree 

and tree stress at r2 = 0.87 indicates that the EAB host selection process, specifically the 

EAB attraction to stressed trees, is responsible for the generation of dynamics of 

preferential attachment and thus the emergent scale-free network structure. In the real 

world, trees that are preferable for oviposition are infested, resulting in the release of 

stress volatiles. This creates a positive feedback whereas ash trees suitable for host 

selection become increasingly infested, stress volatiles are released, and thus the trees 

are increasingly targeted for attack. Networks generated by preferential attachment tend 

to have high degree nodes or hubs near the center of the network with node degrees 

that gradually declines toward the perimeter and outer edges of the network. This 

emerging pattern is produced in the developed N-ABM.  

Further analysis of the network structure does not indicate a significant 

relationship between node degree and tree size or node degree and tree type. Non-

spatial scale-free models are not constrained by space, and thus commonly contain 

long-distance linkages to non-adjacent nodes, however, in the spatial N-ABM, long-

distance links come at a cost and thus are limited to the natural dispersal distance of the 

EAB (Taylor et al., 2007). The lack of relationship between node degree and tree size or 

tree type may be a result of the heterogeneous nature of host trees in the environment 

and the limitation of generating long-distance links. Trees of the most attractive type in 

the study area may not be available within the flight distance radius allotted to the EAB 

agent per day, leaving agents to choose the largest or best type available to them at a 

closer proximity. 

Based on the obtained simulation, results suggest that the emergent spatial 

pattern of EAB spread are primarily a function of the generative mechanisms of 

preferential attachment based on tree stress, tree distance, and growth or continuing 

spread of infestation over time. In this study, it is empirically demonstrated that in the 

same way scale-free networks emerge from growth and preferential attachment, 

patterns of EAB insect infestation emerge from host selection dynamics over time. 

Furthermore, the characterization of network structure can provide additional insights 

useful for pest management. For example, scale-free networks are particularly robust to 

the removal of nodes at random, meaning that to be successful in eradication, the 

removal of trees would need to be highly strategized. 
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5.6. Discussion and Conclusion 

Exploring the influence of the spatial structure of the landscape on ecological 

processes is critical. Landscape connectivity graphs are more recently implemented for 

this purpose, but are typically static network representations at a single scale. As a 

result, landscape connectivity graphs are unable to capture the complexity in dispersal 

processes whereby interactions at the local scale generate spatio-temporal dispersal 

patterns at the larger scale. For example, in the case of insect infestation, it is important 

to explore how interactions between EAB and varying spatial distributions of ash tree 

hosts generate large-scale spatio-temporal patterns of infestation.  

The inclusion of complexity in spatial ecological network approaches can 

characterize and quantify spatio-temporal patterns in ecological systems that might 

otherwise be described in a more qualitative manner, identify the underlying interactions 

and generative mechanisms that drive the emergence of these spatio-temporal patterns, 

and quantitatively link dynamics at local scales to emergent patterns at larger scales. 

Therefore, this study proposes the integration of the complex systems modelling 

approach ABM with spatial networks for the development of a network-based ABM. The 

approach is demonstrated in application to the case study of the forest insect infestation, 

EAB. The N-ABM approach facilitates the exploration between network dynamics and 

network structure, and in this case, links the EAB attraction to stressed trees at the 

individual scale to dispersal patterns at larger scales. This effectively supports findings in 

the literature that point to tree stress as the primary factor in host selection (McCullough 

et al., 2009; Tluczek et al., 2011). The approach facilitates the shift from the 

characterization of network structure to explaining and identifying the underlying 

interactions that drive the emergence of a dynamic and evolving spatial network 

structure.  

Across all 50 model runs, stochastic processes within the N-ABM produce a 

distribution of unique spatial networks, however results show that each of the simulated 

spatial networks have a highly similar structure. This conclusion is supported by the fact 

that all spatial network measures for all 50 networks deviate only slightly from the mean 

and thus have a small standard error. As such, any selected model run would be fairly, 

although not perfectly, representative of the complete distribution of networks. Therefore, 

only one randomly selected network from one model run is presented in detail. This 
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serves the purpose of clarity, since it would be overwhelming to visually present all 50 

network structures. In future work, it may be useful to develop an approach to 

summarize a distribution of spatial networks that emerge from the same local processes. 

Averaging the degree of each node across all 50 model runs is insufficient because it 

would result in a smoothing effect that would ultimately negate network degree 

heterogeneity, which is of great interest in network studies. In summary, as a function of 

the randomness of the N-ABM, the spatial pattern of EAB spread varies from model run 

to model run, but the network structure does not, presenting a clear link between 

network dynamics and network structure. Detailed analysis of the variation of the spatial 

patterns of EAB spread across model runs resulting from the ABM component used in 

the N-ABM can be found in Anderson & Dragicevic (2016; 2018). 

Spatial ecological networks can be represented and analyzed at a variety of 

scales. Nodes can represent ecological entities from the individual level to various 

aggregations of individuals (community level, population level, landscape level). The 

modifiable aerial unit problem (MAUP) is a phenomenon where statistical outputs vary 

as a function of the level of aggregation in the model. This suggests that the emergent 

network structure may be a function of the scale at which the phenomenon is 

represented. However, the aim of the study is to integrate complexity into spatial 

ecological networks using an agent-based modelling approach, justifying the use of 

individual-scale representation. It would be desirable to validate the spatial networks 

themselves generated by the N-ABM. Unfortunately, the nature of the ecological data 

and current data collection tools and methods cannot provide network datasets and 

therefore a model of this kind cannot be validated in this context. However, the validation 

of the ABM agent processes and interactions integrated in the N-ABM that generate the 

spatial networks gives confidence that the spatial networks are being represented 

correctly.  

In conclusion, the novel N-ABM modelling approach presented here is unique 

and particularly relevant for modelling complex ecological systems, as there is a demand 

for the exploration of dynamic ecological networks in a spatial and temporal context. The 

application of graph theory to the networks generated by the N-ABM helps to better 

understand, measure, and analyze the influence of geographic space and network 

structure on network dynamics as well as characterize dispersal patterns, particularly 

useful from an ecological management perspective. The N-ABM framework is also 
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highly general and flexible as to facilitate the representation and simulation of many 

ecological systems as dynamic evolving networks. Graph theory provides a large toolset 

of additional measures that can also be applied for further understanding interactions 

between other ecological species and the landscape, useful for ecological management 

or conservation. For example, graph theory measures such as betweenness centrality 

and link weights can help important habitat features and dispersal pathways that are 

essential to the connectivity of the landscape for an endangered species and thus be 

targeted for protection by ecological conservationists and decision makers.  

5.7. References 

Agrawal, A. A., Ackerly, D. D., Adler, F., Arnold, A. E., Cáceres, C., Doak, D. F., Post, 
E., Hudson, P.J., Maron, J., Mooney, K.A., & Power, M., Schemske, D., 
Stachowicz, J., Strauss, S., Turner, M.G. & Werner, E. (2007). Filling key gaps in 
population and community ecology. Frontiers in Ecology and the 
Environment, 5(3), 145-152. 

Albert, R., Jeong, H., & Barabási, A. L. (1999). Internet: diameter of the world-wide web. 
Nature, 401(6749), 130-131. 

Alstott, J., Bullmore, E. & Plenz, D. (2014). powerlaw: a Python package for analysis of 
heavy-tailed distributions. PloS One, 9.1, e85777. 

Anderson, T. & Dragićević, S. (2015). An agent-based modeling approach to represent 
infestation dynamics of the emerald ash borer beetle. Ecological Informatics, 30, 

97-109. 

Anderson, T. & Dragićević, S. (2016) Geospatial pest-parasitoid agent-based model for 
optimizing biological control of forest insect infestation. Ecological Modelling, 

337, 310-329. 

Anderson, T., Dragicevic, S. (2018). Deconstructing geospatial agent-based model: 
Sensitivity analysis of forest insect infestation model. In Perez, L., Eun-Kyeong, 
K., Sengupta, R. (eds) Agent Based Models and Complexity Science in the Age 
of Geospatial Big Data (Springer), 31-44. 

Andersson, E., & Bodin, Ö. (2009). Practical tool for landscape planning? An empirical 
investigation of network based models of habitat 
fragmentation. Ecography, 32(1), 123-132. 

Andris, C. (2016). Integrating social network data into GISystems. International Journal 
of Geographical Information Science, 30(10), 2009-2031. 



142 

Anulewicz, A. C., McCullough, D. G., Cappaert, D. L., & Poland, T. M. (2008). Host 
range of the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: 
Buprestidae) in North America: Results of multiple-choice field experiments. 
Environmental Entomology, 37(1), 230–241. 

Barabási, A. L. (2016). Network Science. Cambridge, UK: Cambridge University Press. 

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 

286(5439), 509-512. 

Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1), 1-101. 

Berryman, M. J., & Angus, S. D. (2010). Tutorials on agent-based modelling with 
NetLogo and network analysis with Pajek. In Complex physical, biophysical and 
econophysical systems (pp. 351-375). 

BioForest Technologies Inc. (2011). TreeAzin Systemic Insecticide: Evidence for 
biennial Emerald Ash Borer treatments (Agrilus plannipennis Fairmaire). Sault 
Ste. Marie: Bioforest Technologies Inc. Retrieved on December 21, 2017 from 
http://www.bioforest.ca/documents/assets/uploads/files/en/bioforest_2011_-
_treeazin_2yr_efficacy.pdf. 

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. (2006). Complex 
networks: structure and dynamics. Physics Reports, 424(4-5), 175–308.  

Bone, C., & Altaweel, M. (2014). Modeling micro-scale ecological processes and 
emergent patterns of mountain pine beetle epidemics. Ecological Modelling, 289, 

45–58.  

Brown, D. G., Page, S., Riolo, R., Zellner, M., & Rand, W. (2005). Path dependence and 
the validation of agent-based spatial models of land use. International journal of 
Geographical Information Science, 19(2), 153-174. 

Bunn, A. G., Urban, D. L., & Keitt, T. H. (2000). Landscape connectivity: a conservation 
application of graph theory. Journal of Environmental Management, 59(4), 265-

278. 

Cappaert, D., McCullough, D. G., Poland, T. M., & Siegert, N. W. (2005). Emerald ash 
borer in North America: A research and regulatory challenge. American 
Entomologist, 51(3), 152-165. 

Cohen, J. E. (1978). Food Webs and Niche Space. New Jersey, NJ: Princeton University 

Press. 

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of 
remotely sensed data. Remote sensing of environment,37(1), 35-46. 



143 

Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische 
Mathematik, 1(1), 269–271. 

Duan, J. J., Ulyshen, M. D., Bauer, L. S., Gould, J., & Van Driesche, R. (2010). 
Measuring the impact of biotic factors on populations of immature emerald ash 
borers (Coleoptera: Buprestidae). Environmental Entomology, 39 (5), 1513-1522. 

Dupont, Y. L., Trøjelsgaard, K., & Olesen, J. M. (2011). Scaling down from species to 
individuals: a flower–visitation network between individual honeybees and thistle 
plants. Oikos, 120(2), 170-177. 

Erdos, P., & Renyi, A. (1959). On random graphs. Selected Papers of Alfred Renyi, 2(1), 

308–315. 

Erdos, P., & Renyi, A. (1960). On the evolution of random graphs. Bulletin of the 
International Statistical Institute, 34(4), 343–347. 

Ferrari, J. R., Lookingbill, T. R., & Neel, M. C. (2007). Two measures of landscape-graph 
connectivity: assessment across gradients in area and configuration. Landscape 
ecology, 22(9), 1315-1323. 

Fortuna, M. A., & Bascompte, J. (2007). The network approach in ecology. In 
Valladares, F., Camacho, A., Elosegi, A., Gracia, C., Estrada, M., Senar, J.C. & 
Gili, J.M. (Eds.), Unity in diversity: Ecological reflections as a tribute to Margalef. 

(371-392). Bilbao: Fundación BBVA.  

Fortuna, M. A., Gómez-Rodríguez, C., & Bascompte, J. (2006). Spatial network structure 
and amphibian persistence in stochastic environments. Proceedings of the Royal 
Society of London B: Biological Sciences, 273(1592), 1429-1434.  

Grimm, V. & Railsback, S.F. (2013). Individual-based Modeling and Ecology. New 

Jersey, NJ: Princeton University Press. 

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, 
J., Grand, T., Heinz, S.K., Huth, A., Jepsen, J.U., Jorgensen, C., Mooij, W.M., 
Buller, B., Pe’er, G., Piou, C., Railsback, S.F., Robbins, A.M., Rossmanith, E., 
Ruger, N., Strand, E., Souissi, S., Stillman, R.A. Vabo, R., Visser, U. & 
DeAngelis, D.L. (2006). A standard protocol for describing individual-based and 
agent-based models. Ecological modelling, 198(1-2), 115-126. 

Guimera, R., & Amaral, L. A. N. 2004. Modeling the world-wide airport network. The 
European Physical Journal B-Condensed Matter and Complex Systems, 38(2), 

381-385. 

Hall, S. J., & Raffaelli, D. G. (1993). Food webs: theory and reality. Advances in 
Ecological Research, 24, 187-239. 



144 

Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., ... & 
Lauridsen, R. B. (2009). Ecological networks–beyond food webs. Journal of 
Animal Ecology, 78(1), 253-269. 

Jennings, D. E., Taylor, P. B., & Duan, J. J. (2014). The mating and oviposition behavior 
of the invasive emerald ash borer (Agrilus planipennis), with reference to the 
influence of host tree condition. Journal of Pest Science, 87(1), 71-78. 

Jiang, B. 2007. A topological pattern of urban street networks: universality and 
peculiarity. Physica A: Statistical Mechanics and its Applications, 384(2), 647-

655. 

Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: 
connectance, dependence asymmetries, and coevolution. The American 
Naturalist, 129(5), 657-677. 

Kirer, H., & Çirpici, Y. A. (2016). A Survey of Agent-Based Approach of Complex 
Networks. Ekonomik Yaklasim, 27(98), 1-28. 

Letcher, B. H., Rice, J. A., Crowder, L. B., & Rose, K. A. (1996). Variability in survival of 
larval fish: disentangling components with a generalized agent-based model. 
Canadian Journal of Fisheries and Aquatic Sciences, 53(4), 787-801. 

Lewis, T. G. (2011). Network Science: Theory and Applications. New Jersey, NJ: John 

Wiley & Sons.  

Lyons, D. B., & Jones, G. C. (2005). The biology and phenology of the emerald ash 
borer. In Proceedings, 16th US Department of Agriculture interagency research 
forum on gypsy moth and other invasive species (pp. 62-63). 

McCullough, D. G., & Siegert, N. W. (2007). Estimating potential emerald ash borer 
(Coleoptera: Buprestidae) populations using ash inventory data. Journal of 
Economic Entomology, 100(5), 1577–1586.  

McCullough, D. G., Poland, T. M., Anulewicz, A. C., & Cullough, D. G. M. C. (2009). 
Emerald ash borer (Coleoptera: Buprestidae) attraction to stressed or baited ash 
trees. Environmental Entomology, 38(6), 1668–1679. 

Mercader, R. J., Siegert, N. W., Liebhold, A. M., & McCullough, D. G. (2011). Influence 
of foraging behavior and host spatial distribution on the localized spread of the 
emerald ash borer, Agrilus planipennis. Population Ecology, 53(2), 271-285. 

Mercader, R. J., Siegert, N. W., Liebhold, A. M., & McCullough, D. G. (2009). Dispersal 

of the emerald ash borer, Agrilus planipennis, in newly-colonized sites. 
Agricultural and Forest Entomology, 11(4), 421-424. 



145 

Minor, E. S., & Urban, D. L. (2007). Graph theory as a proxy for spatially explicit 
population models in conservation planning. Ecological Applications, 17(6), 1771-

1782. 

Morris, R. J., Lewis, O. T., & Godfray, H. C. J. (2004). Experimental evidence for 
apparent competition in a tropical forest food web. Nature, 428(6980), 310-313. 

Muirhead, J. R., Leung, B., Overdijk, C., Kelly, D. W., Nandakumar, K., Marchant, K. R., 

& MacIsaac, H. J. (2006). Modelling local and long-distance dispersal of invasive 
emerald ash borer Agrilus planipennis (Coleoptera) in North America. Diversity 
and Distributions, 12(1), 71-79. 

Muller, C. B., Adriaanse, I. C. T., Belshaw, R., & Godfray, H. C. J. (1999). The structure 
of an aphid–parasitoid community. Journal of Animal Ecology, 68(2), 346-370. 

Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 

45(2), 167-256. 

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., & Sydelko, 
P. (2013). Complex adaptive systems modeling with Repast Simphony. Complex 
Adaptive Systems Modeling, 1(1), 1-26. 

Parks Recreation and Culture Guide [Tabular Data]. Oakville Open Data, July 10, 2018. 
Available: https://portal-
exploreoakville.opendata.arcgis.com/datasets/toak::parks-recreation-and-culture-
guide and (accessed July 16, 2018). 

Parunak, H. V. D., Savit, R., & Riolo, R. L. (1998). Agent-based modeling vs equation-
based modeling : a case study and users’ guide. Multi-Agent Systems and Agent-
Based Simulation, Berlin, Heidelberg: Springer. 

Pascual-Hortal, L., & Saura, S. (2008). Integrating landscape connectivity in broad-scale 
forest planning through a new graph-based habitat availability methodology: 
application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). European 
Journal of Forest Research, 127(1), 23-31. 

Pereira, M., Segurado, P., & Neves, N. 2011. Using spatial network structure in 
landscape management and planning: a case study with pond turtles. Landscape 
and Urban Planning, 100(1), 67-76. 

Perez, L., & Dragićević, S. (2010). Modeling mountain pine beetle infestation with an 
agent-based approach at two spatial scales. Environmental Modelling & 
Software, 25(2), 223-236. 

Rebek, E. J., Herms, D. a, & Smitley, D. R. (2008). Interspecific variation in resistance to 
emerald ash borer (Coleoptera: Buprestidae) among North American and Asian 
ash (Fraxinus spp.). Environmental Entomology, 37(1), 242–246.  



146 

Repast Simphony. (2017). Version 2.5. [Computer Software]. Chicago, IL: University of 
Chicago.   

Road Network [Shapefile]. Oakville Open Data, June 27, 2018. Available: https://portal-
exploreoakville.opendata.arcgis.com/datasets/8b09936309264feeb57cb45f8018
ab14_26 and (accessed July 16, 2018). 

Rutledge, C. E., & Keena, M. A. (2012). Mating frequency and fecundity in the emerald 
ash borer Agrilus planipennis (Coleoptera: Buprestidae). Annals of the 
Entomological Society of America, 105(1), 66-72. 

Schintler, L. A., Kulkarni, R., Gorman, S. & Stough, R. (2007). Using raster-based GIS 
and graph theory to analyze complex networks. Networks and Spatial 
Economics, 7(4), 301-313. 

Semeniuk, C. A. D., Musiani, M., Hebblewhite, M., Grindal, S., & Marceau, D. J. (2012). 
Incorporating behavioral–ecological strategies in pattern-oriented modeling of 
caribou habitat use in a highly industrialized landscape. Ecological Modelling, 

243, 18-32. 

Siegert, N. W., McCullough, D. G., Liebhold, A. M., & Telewski, F. W. (2014). 
Dendrochronological reconstruction of the epicentre and early spread of emerald 
ash borer in North America. Diversity and Distributions, 20(7), 847-858. 

Stang, M., Klinkhamer, P. G., & Van Der Meijden, E. (2006). Size constraints and flower 
abundance determine the number of interactions in a plant–flower visitor 
web. Oikos, 112(1), 111-121. 

Stoneham, A. K. M. 1977. The small-world problem in a spatial context. Environment 
and Planning A, 9(2), 185-195. 

Stouffer, D. B., Fortuna, M. A., & Bascompte, J. (2010). Ideas for moving beyond 
structure to dynamics of ecological networks. In Boccaletti, S. (Ed), Handbook 
On Biological Networks (307-328). Singapore: World Scientific Publishing. 

Straw, N. A., Williams, D. T., Kulinich, O., & Gninenko, Y. I. (2013). Distribution, impact 
and rate of spread of emerald ash borer Agrilus planipennis (Coleoptera: 
Buprestidae) in the Moscow region of Russia. Forestry, 86(5), 515-522. 

Taylor, R. A., Poland, T. M., Bauer, L. S., Windell, K. N., & Kautz, J. L. (2007). Emerald 
ash borer flight estimates revised. Proceedings of the emerald ash borer/Asian 
longhorned beetle research and technology. FHTET-2007-04. US Department of 
Agriculture Forest Service, Forest Health Technology Enterprise Team, 
Morgantown, West Virginia. 

Tluczek, A. R., McCullough, D. G., & Poland, T. M. (2011). Influence of host stress on 
emerald ash borer (Coleoptera: Buprestidae) adult density, development, and 
distribution in Fraxinus pennsylvanica trees. Environmental Entomology, 40(2), 

357-366. 



147 

Travis, J. M., & Dytham, C. (1998). The evolution of dispersal in a metapopulation: a 
spatially explicit, agent-based model. Proceedings of the Royal Society of 
London B: Biological Sciences, 265(1390), 17-23. 

Trees [Shapefile]. Oakville Open Data, May 11, 2018. Available: https://portal-
exploreoakville.opendata.arcgis.com/datasets/18baba686f6c445f8b942c1c9830c
f0d_0 and (accessed July 16, 2018). 

Urban, D., & Keitt, T. (2001). Landscape connectivity: a graph-theoretic 
perspective. Ecology, 82(5), 1205-1218.  

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. 
Nature, 393(6684), 440–442. 

Zetterberg, A., Mörtberg, U. M., & Balfors, B. (2010). Making graph theory operational for 
landscape ecological assessments, planning, and design. Landscape and Urban 
Planning, 95(4), 181-191. 

 



148 

Chapter 6.  
 
A Validation Approach for Spatially Explicit Agent-
Based Models using Networks  

6.1. Abstract 

Agent-based models (ABM) are used for the representation and analysis of a 

variety of complex systems. These bottom-up modelling approaches aim to represent 

local spatial dynamics from which observable spatial patterns at the system level 

emerge. In order to be useful, the validity of ABMs must be demonstrated. However, the 

ability of ABMs to incorporate complexity makes the process of validation challenging. 

Traditional validation methods that evaluate simulated patterns at the system-level are 

limited in their ability to reveal whether the ABM internal processes driving these 

emergent patterns are represented realistically. However, developed validation 

approaches that focus on internal model processes rely mostly on qualitative evidence. 

Therefore, the main objective of this study is to develop and implement a novel 

validation approach that integrates ABM and networks for the representation of complex 

systems as measureable and dynamic networks. These network representations can 

then be measured and compared against empirical regularities of observed real 

networks. This approach, called the NEtworks for ABM Testing (NEAT) is proposed and 

implemented to validate a theoretical ABM representing the spread of influenza in the 

City of Vancouver, Canada. Results demonstrate that the NEAT approach is capable to 

mathematically characterize the ABM processes and emergent patterns to increase 

confidence that the generative mechanisms included in the model are realistic. The 

proposed NEAT approach empowers the overall ABM development process by 

strengthening their validity and supporting the generation of structurally realistic ABMs. 

6.2. Introduction 

Complex system modelling approaches such as agent-based models (ABMs) are 

used to simulate a variety of complex spatio-temporal phenomena by explicitly 

representing small-scale interactions and processes that drive the emergence of system-

level behaviour (Castle & Crooks, 2006). This bottom-up modelling approach is 
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alternative to top-down equation-based models that use mathematical functions to 

represent system-level processes and cannot easily capture the complexity resulting 

from individual-level heterogeneity, adaptation, local spatial and temporal variations, and 

subsequent non-linearity inherent to real-world complex systems (Parunak, 1998; 

Railsback, 2001; Torrens, 2010). More recently, ABMs are integrated with real 

geospatial data and geographic information systems (GIS) for the explicit representation 

of spatial systems (Bousquet & LePage, 2004).  

ABMs can be used as an investigative tool to understand how spatial systems 

respond to perturbations which is useful for decision-makers (McLane et al., 2011).  

Naturally, decision-makers including stakeholders or policy makers will demand validity 

of these models in order to reduce the possibility of making unsuitable decisions and risk 

time and money (Augusiak et al., 2014). However, because of the complexity of ABMs, 

unique challenges arise with respect to model validation, stemming from confusion over 

to what degree model validation is even feasible, and perhaps more importantly, the use 

of appropriate measures to evaluate these models. Traditional ABM validation 

approaches compare model outputs with independent empirical data, usually at the 

system level (Goodall, 1972). For example, to validate an ABM simulating the spatial 

spread of a forest insect species over time, the degree of agreement is measured 

between spatial patterns of spread simulated by the model and a geospatial dataset 

containing observed real-world spatial patterns of spread of the forest insect for the 

same time period. However, ABM approaches are concerned with the discrete 

representation of local processes, dynamics, and generative mechanisms from which 

complex, system level behaviour emerges and as such evaluating patterns at the system 

level does little to indicate the validity of the model’s structural realism i.e. the degree to 

which a model is capable of correctly representing the processes and dynamics driving 

the emergence of these patterns (Grimm & Berger, 2016). Furthermore, many ABMs 

incorporate stochastic processes, feedbacks, adaptation, and bifurcation into the model 

design, and thus will likely produce several different, yet plausible representations of the 

system. An ABM that closely matches real-world data may instead indicate over-fitting 

and is not sufficient in evaluating how well the system processes are represented 

(Brown et al., 2005).  

In addition to approaches that test the validity of the ABMs emergent system 

level patterns, the development of ABM validation approaches for the evaluation of 
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internal model mechanisms are needed. This will ensure that processes represented in 

the model that generate emergent behaviour are represented correctly (Brown et al. 

2005). However, this can be challenging since many ABMs are complex and heavily 

parameterized with a large numbers of heterogeneous autonomous agents and 

stochastic processes, making internal model processes difficult to understand and 

identify (Manson, 2007; Topping et al. 2010; Grimm and Railsback, 2012; Broeke et al. 

2016). As such, the development of a framework to generate measures that describe, 

characterize, and help understand and identify the internal model processes that give 

rise to emergent system-level behaviour in ABMs may be useful.  

In the same way that real world systems can be conceptualized using complex 

systems theory and represented using ABMs, they can also be conceptualized using 

network science and represented as networks (O’Sullivan, 2014). Network science is a 

field of science rooted in mathematics and physics that seeks to represent real world 

systems as a set of nodes and links and uses statistic-based network measures to both 

mathematically characterize the system’s structure and link the system’s structure and 

processes (Barthelemy, 2018). Network measures can also be used quantify the ABMs 

that aim to represent these systems by abstracting an ABM into a set of nodes 

representing agents and the interactions between agents as a discrete and visible set of 

links (Anderson & Dragicevic, 2018). Using network science measures to mathematically 

characterize ABM behaviour can help to identify and link internal model processes to 

system-level patterns. The identification and mathematical characterization of internal 

model processes may serve as quantitative evidence that the model is capable of 

reproducing the real-world system’s important generative mechanisms realistically. 

Therefore, the main objective of this study is to leverage spatial network analysis 

for the development of a robust NEtworks for Agent-based model Testing (NEAT) 

approach. The NEAT approach is implemented on an epidemiological network-based 

ABM (Epi-N-ABM) as a case study. Specifically, the simulated structure and dynamics of 

spatial social networks from which influenza propagates are measured using graph 

theory and compared against observed empirical regularities of real spatial social 

networks.  
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6.3. Overview of Approaches for Model Validation 

The term “validation” is criticized as ambiguous and inconsistent (Crooks et al., 

2008). Dubbed a “catch-all” term, “validation” has many meanings, and only adding to 

the confusion, has a number of variations. Therefore, it is important to clarify the 

definitions.  In this study, the term validation refers to a variety of model evaluation 

procedures used to determine whether the model mimics the real world (Rykel, 1996; 

Perez et al. 2013; Liu, 2011). Traditionally, model validation can be measured using the 

confusion matrix approach (Congalton, 1991), kappa statistics (Cohen, 1960), fuzzy 

kappa statistics (Hagen 2003), a measure of relative operating characteristic (ROC) 

(Pontius, 2000; Fawcett, 2006), pattern based (White, 2006), and other map 

comparisons methods (Visser & de Nijs, 2006; Pontius et al., 2011). These approaches 

seek a statistically quantified agreement, often on a raster cell-by-cell basis, between 

independent datasets and the output of the model. Kocabas & Dragicevic (2009) use 

Bayesian Networks for a validation approach to compare agent-based modeling 

outcomes for vector-based map features. These types of model validation methods are 

important and used for their ability to evaluate emergent large-scale patterns.  

However, using validation approaches such as these typically provides validation 

at a single scale and at a single point in time and this is not sufficient for evaluation of 

the internal parameters and processes that are driving the behaviour of the model. The 

correct output of system-level patterns generated by an ABM could be a result of a 

combination of processes and input parameters that may not be represented correctly 

(Augusiak et al., 2014). Furthermore, real-world phenomena and the complex systems 

models such as ABMs that represent them incorporate randomness, bifurcation, system 

feedbacks, and non-linearity. Thus, as a result of the inclusion of these factions, many 

ABMs produce multiple realizations or “paths”. Brown et al. (2005) demonstrates this 

problem by using a random output from a developed model as reference data, meaning 

a perfect model, but finds that when comparing future outputs with the “reference data”, 

the accuracies are very low. Thus, the level of agreement between system-level patterns 

generated by the model and those found in reality may be not be the best measure to 

determine the validity of complex systems models such as ABMs, and may instead 

promote model over fit and models that are overly specific for a certain study area. 
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A more recent validation approach, pattern oriented modelling (POM), compares 

model outcomes with independent data and patterns at multiple scales that were not 

used or not even known during the model design and development process (Augusiak et 

al., 2014; Grimm et al., 1996; Grimm & Railsback, 2012). In POM, a pattern is defined as 

a non-random structure found in nature and can be characterized as being strong or 

weak. As the number of simulated patterns emerge that match patterns observed in the 

real world increase, confidence in the model structure and generation of emergent 

properties also increases. Strong patterns are model outputs that match statistics or 

datasets and are quantitative in nature and are desirable. However, it may be difficult to 

validate with strong patterns since they may be too restrictive to account for stochasticity 

and uncertainty in complex systems models (Grimm & Berger, 2016). Weak patterns are 

qualitative and in isolation say little about the underlying structure of the model since 

they can be reproduced by various combinations of right and wrong generative 

mechanisms. However, the more weak patterns that can be reproduced in the model, 

the more indication there is that the underlying structure in the model is correct. Each 

pattern in POM can be used as a filter for which to base the grounds of rejection or 

acceptance of the model (Grimm & Railsback, 2012). To make matters difficult, the large 

number of parameters and the inclusion of stochastic processes means that ABMs are 

often perceived as black box models as it can be difficult to identify and understand 

internal processes that are generating model outputs from which to identify spatial 

patterns.  

Additional theoretical and practical validation methods are needed that can 

quantitatively evaluate whether the model has correctly represented internal model 

processes. The integration of network theory and ABM has the potential to meet this 

need by discretely representing internal model processes and emergent patterns as 

dynamic spatial networks that are measurable using graph theory. Therefore, the NEAT 

approach has been developed as a way to identify discrete quantifiable patterns and 

processes simulated by the ABM for which to compare against empirical observations.  

6.4. NEtworks for Agent-based Model Testing (NEAT) 
Approach 

The NEAT approach is composed of three stages: 1) the integration of network 

theory and ABM to form a network-based ABM (N-ABM) to represent a spatial system’s 
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structure and dynamics as simulated by the ABM as dynamic networks, based on this N-

ABM representation 2) the characterization of the simulated spatio-temporal structure of 

the simulated networks, and 3) the comparison of the network measures obtained from 

the simulated network structures to network measures observed in the real-world for the 

same phenomena. Each network measure operates as a mathematical filter, for which to 

base the grounds of acceptance or rejection of the developed model. Therefore, the 

NEAT approach is well-situated under the larger pattern-oriented model (POM) 

evaluation framework. 

An N-ABM is a computational representation of a complex spatio-temporal 

system as an evolving and dynamic spatial network SN (Anderson & Dragicevic, 2018). 

An N-ABM is composed of an ABM component to simulate spatio-temporal dynamics of 

a phenomena (eg. land use, mobility, or ecological dynamics) and a spatial network 

component, which abstracts the ABM as an evolving spatial network SN. Specifically, 

the spatial network SN mirrors the simulated dynamics of the developed ABM and stores 

both topological and spatial information that can be used for visualization and network 

analysis of ABM internal processes and emergent structure.  

The spatial network SN consists of an evolving set of nodes N and links L and 

can be formulated as: 

𝑆𝑁 = [𝑁, 𝐿] (1) 

where SN is the spatial network, N is the set of nodes and L is the set of links. The 

spatial network SN evolves as a function of the system dynamics simulated by the ABM 

resulting in the addition, removal, and rewiring or reconnection of nodes and links. 

Therefore, the evolving spatial network SN at each time step of the simulation can be 

formulated as SNt0, SNt2, SNt3… SNtn.  

The abstraction of agents and their interactions as nodes N and links L is based 

on the purpose of the ABM. For example, an N-ABM representing the mobility of people 

in a city may abstract the simulated dynamics as a spatial network model composed of a 

set of nodes N that represent various locations in the city (i.e. stores, schools, or 

homes). Location nodes are connected by a set of links L representing the movement of 

individuals as agents as they move from location node 𝑣𝑖 to new location node 𝑣𝑗 . As the 

agents move to new location nodes, the new node is added to the spatial network 
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model. However, ABM processes may be abstracted to form several different spatial 

networks SN representations of different model dynamics. Using the same mobility 

example, a different set of nodes N may be generated to represent the agents 

themselves where the set of links L represent relationships between the nodes, forming 

a social network. The decision of what measures to include is a function of both the 

purpose of the model and the phenomena being represented. 

The evolving spatial network SN generated by the N-ABM is measureable. 

Nodes N and links L are programmed to calculate and store their local network 

properties specific to the individual node or link as the network evolves over time. Each 

node 𝑣𝑖  in the spatial network SN keeps a record of its connections with other nodes 𝑣𝑗  

and thus facilitate the calculation of their local network properties from which global 

network properties can be calculated. Each link e in the network also have several 

network properties including direction and weight. Link direction may be unidirectional, 

where flow or individuals, materials, information, or relationships takes place only from 

link 𝑒𝑖  to link 𝑒𝑗 or bidirectional, where the connection goes both ways. The volume of 

individuals, materials, information etc. is often referred to as the link weight and this 

information is stored in the links. Obtained network measures from the N-ABM can be 

compared against empirical regularities observed in the real world in order to validate 

that the internal model processes are being represented correctly.  

6.5. Applying the NEAT Approach to an Epidemiological 
Agent-Based Model (Epi-N-ABM) 

The proposed NEAT approach is demonstrated using a spatially-explicit 

epidemiological network-based ABM (Epi-N-ABM). The following section provides an 

overview of epidemiological modelling, the development of the Epi-N-ABM, and finally 

the model testing of the Epi-N-ABM model using the NEAT approach. It was not the 

objective that the Epi-N-ABM be a perfect representation of the real spatio-temporal 

patterns of disease transmission in part of the City of Vancouver, but rather to use the 

NEAT approach to critically evaluate the underlying processes in the Epi-N-ABM. 
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6.5.1. Modelling Epidemics 

Traditional population-based epidemiological models such as the Susceptible-

Infected (SI), Susceptible-Infected-Susceptible (SIS), and the Susceptible-Infected-

Recovered (SIR) approaches operate under four basic simplistic assumptions that treat 

individuals as homogeneous, interactions as global, the spatial distribution of individuals 

as uniform, and interactions between individuals as equal, also known as homogeneous 

mixing (Bian et al., 2004). These traditional epidemiological models face criticism over 

their limited ability to represent the spread of infectious disease realistically, which would 

require the representation of interactions between heterogeneous individuals within the 

larger population and the inclusion of how these interactions change over time and 

geographic space. Therefore, in order to improve epidemiological modelling and 

overcome the limitations of traditional epidemiological models, ABM approaches have 

been used (Perez & Dragicevic, 2009; Rakowski et al., 2010; Frias-Martinez et al., 2011; 

Tian et al., 2013; Crooks & Hailegiorgis, 2014). ABM approaches are able to capture the 

spatio-temporal complexity in disease transmission to better represent the propagation 

of infectious diseases in populations realistically and in addition can easily be used to 

generate scenarios to answer questions such as how the size of an initial infected 

population impacts transmission dynamics, evaluate the effectiveness of prevention 

methods, and to project the number of cases for which to assign medical resources. 

However, for several reasons some of which are based on privacy concerns, data 

required for ABM creation and model testing is not typically available, especially at fine 

spatial and temporal resolutions. As a result, epidemiological ABMS are typically tested 

only using parameters collected at the system level such as the length of time of the 

infection and the number of cases or deaths and thus are unable to validate internal 

model processes (Skvortsov et al., 2011; Rakowski et al., 2010; Carpender & 

Sattenspiel, 2009) or alternatively, are unable to be tested at all (Frias-Martinez et al., 

2011; Bian & Liebner, 2007). 

6.5.2. Epi-N-ABM Simulating Influenza Dynamics using Agents 

Both the Epi-N-ABM and the NEAT approach were designed and programmed 

using a Java based programming language and were executed using Repast Simphony 

2.6 (2018). This section provides a detailed overview of the Epi-N-ABM using the 
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overview, design, and details (ODD) protocol (Grimm et al., 2006; 2010) and the 

application of the NEAT approach.  

Model Overview 

Purpose  

The purpose of the Epi-N-ABM is twofold: (1) to develop a theoretical N-ABM 

representing the transmission of the influenza virus across a spatio-temporal social 

network in a part of the City of Vancouver, Canada and 2) to evaluate the Epi-N-ABM 

using the proposed NEAT approach.  

Entities and State Variables 

The Epi-N-ABM is composed of (1) adult agents, (2) child agents, and (3) place 

agents including homes, schools, and businesses. Each business plays the role as both 

a workplace that some agents travel to daily for work and as a location that agents visit 

randomly such as a grocery store, public transportation, or a restaurant. For example, 

one agent may treat a grocery store business as a workplace, while another treats the 

same grocery store as a random location. Both adult agents and child agents have the 

sub-class of being either a healthy agent or an infected agent. The description of the 

associated variables of the adult, child, and place agents are described in detail in  

Table 6.1.  

Table 6.1. The Epi-N-ABM agent classes, sub-classes, and associated 
variables. 

Adult and Child Agent Variables Variable Description 

ID ID number of the agent 

Location Agent location in geographic space 

List of physical interactions A list of all the agents y that an agent 𝑣𝑖 has interacted with 

List of successful transmissions of 
infection 

A list of all the agents z that agent 𝑣𝑖 has infected 

Local spatial social network 
measures 

Network measures specific to agent 𝑣𝑖’s spatial social network 

Local infected network measures Network measures specific to agent 𝑣𝑖’s infection network 

Influenza vaccination Whether the agent has been vaccinated  

Connection probability The probability of making a connection based on the agents 
location 

Infection probability  The probability of transmission from agent 𝑣𝑖 to agent 𝑣𝑗 based 

on the agents location 

If infected, number of hours infected The number of hours infected determines whether the infection is 
latent, infectious, or recovered 
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Period of latency A random value selected between 1 day and 4 days 

Period of contagiousness A random value selected between the time of infection latency + 1 
and 8 days 

Place Agent Variables Variable Description 

ID  ID number of the place 

Location The location of the place in geographic space 

Number of agents visiting The number of agents currently at the place  

 
Process Overview 

The developed Epi-N-ABM simulation represents the transmission of a seasonal 

influenza virus across a spatial social network in a part of the City of Vancouver, Canada 

at a very fine spatial and temporal scale. The behavior of the adult and child agents are 

represented using a collection of subroutines that include the following: 1) travelling from 

home to work or school, 2) travelling to a random location, and 3) returning home. The 

execution of the agent subroutines is a function of the time of day in the model where 

each day consists of 24 hours. Each hour is represented by one model time step. One 

completed simulation run is composed of 270 days for a total of 6480 time steps from 

the initial state of hour 0 (t0) to hour 6480 (t6480).  

In each of the agent subroutines, agents interact with other agents. Interactions 

between two agents takes place in both geographic space and time. Since influenza is 

airborne and thus can be transmitted over moderate distances, an interaction between 

two individuals, capable of transmitting influenza, does not require direct physical 

contact (World Health Organization, 2018). During the time of interaction in the model, if 

one of the agents is infected with influenza, the transmission of influenza from one 

infected agent to a non-infected agent may occur.  

The Epi-N-ABM model structure is presented in Figure 6.1. The Epi-N-ABM is 

initialized at t0. Upon model initialization, families are assigned to the home agents. 

Family sizes are random, where each family consists of one to two healthy adult agents 

and zero to two healthy child agents for an average family size of 2.5.  This is consistent 

with the average family size in the City of Vancouver as reported by Statistics Canada 

(2016).  
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Figure 6.1. The Epi-N-ABM model structure. 

 

Based on whether the agent is a child or an adult, each member of the family are 

assigned to a workplace or a school. During this process, there is a 17.2% likelihood that 

adult agents will find a workplace in a random location throughout the entire study area, 
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where distance is not a factor (Statistics Canada, 2016). Moreover, there is an 82.8% 

likelihood that adult agents will find a workplace in a random location that is within 21 km 

of their home. In this process, agents have a higher likelihood of finding a workplace that 

is close in distance to their home. Child agents attend the school that is the closest in 

distance to their homes. Once child agents have been assigned a school, they are 

assigned at random to a class within their school. Child agents only interact with other 

child agents that are in the same classroom. During initialization, 35% of the population 

are immunized with a vaccine to protect them against infection (Public Health Agency of 

Canada, 2018).  

In addition, thirty healthy agents are selected at random and become infected 

agents. Infected agents begin with a period of latency, where their infection can not be 

transmitted to another agent. The number of days that an agent’s infection is latent is 

randomly selected between one and four days (World Health Organization 2018). 

Following the latency period, the agent’s infection becomes contagious and infected 

agents begin to infect other agents. The number of days that an agent’s infection is 

contagious is randomly selected from the end of the latency period up to seven days 

(World Health Organization, 2018). Following the contagious period, the infected agent 

recovers and becomes a healthy agent that is no longer susceptible to the infection. 

Each agent keeps a record of their contacts over a period of 24 hours. Within that 

24 hour period, there is a 100% likelihood that each family member interacts with each 

member of their family. At t1, all agents travel to work or to school. Agents remain at 

work or school for 8 hours, until t8. For each hour that the agents are at work or school, 

each agent at the same workplace or classroom has a 5% likelihood of coming into 

direct contact. These interaction likelihood values were selected as a result of sensitivity 

analysis. At t9, all agents travel to a random location that is also a business. This random 

location is intended to account for random direct interactions between agents at 

locations that are not the home or the workplace. Agents remain at the random location 

for 2 hours until t10. For each hour that the agents are in a random location, each agent 

at the same random location have a 1% likelihood of coming into direct contact. At t11, all 

agents travel to their respective homes.  

At t23, infected agents who are contagious access the record of agents that they 

have interacted with each other the past 24 hours. If the agent in the record of contacts 
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is not already recovered from the influenza or is not already infected, the agent is sorted 

into a new list. Next, based on the number of times an agent has come into contact with 

an infected agent, the infected agent’s infection attacks the immune system of an agent. 

There is a 2.5% likelihood that infected agents will successfully infect another agent, 

determined during sensitivity testing. Healthy adult agents have the ability to perceive 

that people are ill in their environment and can increase their defense against infection 

by 10%. In addition, healthy agents with a vaccination have an increased defence 

against infection by 40% (Center for Disease Control and Prevention, 2018). 

Successful transmission of the infection results in healthy agents becoming 

newly infected agents. Agents move through various stages where the infection is latent, 

contagious, and recovered. The record of contacts is cleared and all agents execute 

their subroutines for the next 24 hours continue as described. At t6480, all agents are 

recovered and the simulation is complete. The Epi-N-ABM is simple, however, there are 

many model parameters including family size, average commute distance, percent that 

commute within the commute distance, the length of period of infection latency, the 

length of period of infection contagiousness, likelihood of direct contact βC, and 

likelihood of transmission βT. Based on the notion that several of these parameters are 

random, the model is executed 30 times from t0 to t6480 to determine the way in which the 

simulation patterns converge. Since the agents exist in geographic space, the location of 

infected agents over time can be mapped.  

Design Concepts 

The Epi-N-ABM design concepts as outlined in the ODD protocol include 

interaction, emergence, fitness, adaptation, sensing, stochasticity, and observation.  

These are described in detail in Table 6.2. 

Table 6.2. Epi-N-ABM design concepts as adapted from the ODD protocol. 

Design Concept Description 

Interaction Two types of interactions are incorporated into the model. These interactions take 
place between two healthy agents or between a healthy agent and an infected 
agent. These interactions can be further classified by familial interactions, 
interactions between coworkers and classmates, and random interactions 
between pairs of agents. Interactions occur in space and time and have the 
potential for transmission of infection. Since influenza can be transmitted over 
moderate distances (World Health Organization, 2018), interaction does not need 
to be physical. 
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Design Concept Description 

Emergence From local interactions between healthy-healthy agents and healthy-infected 
agents, both the spatio-temporal dynamics of a spatio-temporal social network 
and the spatio-temporal dynamics of the spread of infection emerge.  

Fitness Adult agents have the goal to stay healthy. 

Adaptation Healthy adult agents adapt their ability to fight infection based on the perceived 
risk of infection in their immediate environment. 

Sensing Agent knowledge is limited to their local environment. They know where they are, 
what time it is, and they have the ability to sense that people around them are 
infected with influenza.  

Prediction Adult agents use their knowledge in order to adapt in order to meet their goal to 
stay healthy. 

Stochasticity There are several stochastic elements incorporated into the model. These 
elements include family size, the selection of work, school, and random places to 
visit, the selection of initial infected agents, the length of period of latency, the 
length of period of contagiousness, the interaction likelihood for each location, and 
the infection likelihood. Most stochastic elements are parameterized using a 
random value obtained from a threshold based on real thresholds identified within 
the literature. 

Observation The data that is collected from the model for analysis includes the number and ID 
of the contacts for each agent, the number and ID of agents that each agent 
infects, the location throughout time of healthy and infected agents, and the total 
number of agents infected over time.  

 

Details 

Initialization 

The number of agents that are generated upon model initialization is random, 

however on average there are 5681.8 agents. Each agent is assigned an ID, their home 

and work or school agent, their location, and the parametrization for period of latency 

and period of contagiousness in the case that the agent becomes infected. Thirty of the 

spawned agents are selected at random to become infected. Since the number of 

agents that spawn and the selection of agents to become infected are random, each 

initialization is slightly different. Moreover, a total of 35% of the population is randomly 

selected as being vaccinated as estimated by the Public Health Agency of Canada 

(2018). 

Input Data 

The location of homes and businesses are created at random from a land use 

geospatial dataset representing a neighbourhood in downtown Vancouver. Homes are 

created at random within the zoning boundaries for residential land use and businesses 
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are created at random within the zoning boundaries for commercial and industrial land 

use in downtown Vancouver. 

Subroutines 

The Epi-N-ABM operates using a collection of subroutines including tracking the 

time of day, moving between place agents, making contacts, assessing risk, tracking 

number of days infected, becoming infected and the stages of infection, infecting 

contacts, and recovering. These subroutines are described in detail in Table 6.3. 

Table 6.3. The Epi-N-ABM subroutines and their description. 

Subroutine Description 

Tracking Time of Day The time of day begins with hour 1. With each time step the time 
of day increases by 1. When the time of day at time t is equal to 
hour 24, the time of day at time t+1 is reset back to hour 1. 

Moving Between Place Agents At hour 1, all agents move from their home agent to their work or 
school agent. At hour 9, all agents move from their work or school 
agent to a random business agent. At hour 11, all agents move 
from the random business agent back to their home agent. 

Making Contacts At each location, agent 𝑣𝑖 records a list of the agents 𝑣𝑗 that are 

in the same location. For each iteration, a contact likelihood βC is 

applied that determines whether agent 𝑣𝑖 interacts with each 

agent 𝑣𝑗 in the list.  The likelihood value is specific to the location 

of the agent and differs based on whether the agent is at home, 
work, school, or in a random location. The agents that are within 

the likelihood range are added to agent 𝑣𝑖’s list of contacts. 

Interaction is bi-directional, meaning that once agent 𝑣𝑗 is added 

to agent 𝑣𝑖’s list of contacts, agent 𝑣𝑖 is immediately added to 

agent 𝑣𝑗 ’s contacts.  

Assessing Risk At hour 24, healthy adult agents assess the risk of their contacts. 
If more than 50% of their contacts are infected, the healthy agent 
can increase their immunity by 5%. 

Becoming Infected At hour 24, healthy agents are defended by their immunity or a 
likelihood of transmission βT. This likelihood is based on whether 
the agents have been vaccinated.  

Infecting Contacts At hour 24, infected agents attack the healthy agents that are not 
already infected and have not recovered from a previous 
infection.  

Recovering  Once the length of period of contagiousness specific to agent 𝑣𝑖 
has been exceeded, the infected agent recovers and becomes a 
healthy agent that is no longer susceptible to infection. 
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6.5.3. Epi-N-ABM: Simulating Influenza Dynamics as Networks 

In the developed Epi-N-ABM, agent interactions drive the structure of two 

dynamic spatial networks including the following: an underlying spatio-temporal social 

network SNsocial that evolves over a period of 24 simulated hours and a second network, 

a spatio-temporal infection network SNinfected that evolves over 270 days. Both SNsocial 

and SNinfected are composed of a set of nodes N and a set of links L.  In the network 

SNsocial, the underlying spatio-temporal social network, both healthy and infected agents 

make up the set of nodes N in the network. A link e forms between agent node 𝑣𝑖  and 

agent node 𝑣𝑗 if they interact with each other. All links L are undirected, meaning 

interactions are always recorded by both agents. In SNinfected, the spatio-temporal 

infection network, only infected agents form the network nodes N. A link forms between 

agent node 𝑣𝑖  and agent node 𝑣𝑗  as agent 𝑣𝑖  infects agent 𝑣𝑗. This link is directed to 

account for the notion that the transmission of influzena is directional whereby infection 

occurs from agent 𝑣𝑖 to agent 𝑣𝑗 , but not vice versa.  

6.5.4. Epi-N-ABM Testing Using Networks 

Sensitivity Analysis and Calibration 

The sensitivity analysis and calibration of Epi-N-ABM were performed using 

network measures that were not used in the validation process. Sensitivity analysis was 

performed in order to understand the sensitivity of the social network SNsocial to the 

interaction likelihood values βI and the sensitivity of the infection network SNinfected to the 

transmission likelihood values βT. Sensitivity analysis in this study examines how a 

range of interaction likelihoods βI and transmission likelihoods βT affect the emergence 

of average degree <k>, as measured using graph theory. Degree k is the number of 

connections a single node has to other nodes. Average degree <k> is a global network 

measure that calculates the average degree for all nodes in the network. 

Social Network 

The sensitivity of the social network SNsocial to the interaction likelihood βI is 

evaluated using the average degree of contact <kcontact> across all individuals in the 

network. Degree of contact kcontact for an agent in the social network SNsocial is defined as 

the number of interactions the agent acquires over a period of 24 hours. Based on the 
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literature, the expected and observed average degree of contact for an individual is 13.4 

interactions per day (Mossorey et al. 2008). It is expected that the average number of 

interactions will be lower than the average number of interactions for children (Leung et 

al. 2017).  

Infection Network  

The sensitivity of the infection network to the transmission likelihood βT is initially 

evaluated using the average degree of infection <kinfect> of the infection network. Degree 

of infection kinfect in the infection network SNinfected measures the number of agents an 

infected agent transmits the infection to. The transmission of an infectious disease from 

an infected individual to other individuals is referred to as the reproduction number R0. 

The R0 of influenza is both uncertain and dynamic as it changes as the infection runs its 

course in a population (Biggerstaff et al. 2014). Specifically, a value greater than 1 

indicates that the infection will persist and a value less than 1 indicates that the infection 

will decline in the population (Biggerstaff et al. 2014). Coburn et al. (2009) estimates that 

the R0 for seasonal influenza ranges between 0.9 and 2.1. The sensitivity of the 

infection network size SNinfected to the transmission likelihood βT is also tested. It is 

observed that 5 to 20% of the population will become infected (Biggerstaff et al. 2014). 

Sensitivity Analysis and Calibration Results 

Social Network 

The interaction likelihood βI values differ based on location and are a driving 

factor as to whether an agent interacts with other agents that are in the same location as 

them i.e. the same household, the same workplace or school, and the same random 

location (Table 6.4). It is assumed that agents will interact with all of their family 

members. Therefore, the likelihood βI of interacting with family members is 100%. 

Interactions between individuals at work or at school implement the same interaction 

likelihood βI since the two locations are similar in their nature. Agents travel to the same 

workplace or school each day and thus consistently interact with the same set of agents. 

The interaction likelihood βI at random location is slightly lower for random locations as 

random interaction tends to be fleeting (Mossorey et al. 2008). 
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Table 6.4. The average degree of contact  <kcontact> for the social network 

obtained using different combinations of interaction likelihoods βI 
for each location. 

Home βI Workplace βI School βI Random βI Average Degree of Contact <kcontact> 

100% 4% 4% 1% 11.93 

100% 5% 5% 1% 13.493 

100% 6% 6% 1% 14.68 

100% 4% 4% 2% 12.55 

100% 5% 5% 2% 14.00  

100% 6% 6% 2% 15.87 
 

The interaction likelihood βI that generated the closest fit to the expected average 

degree of contact <kcontact> of 13.4 individuals in 24 hours is a 100% likelihood of 

interacting with family members in the household, a 5% likelihood of interacting with 

coworkers each hour that an agent is at work, a 5% likelihood of interacting with 

classmates each hour that the agent is at school, and a 1% likelihood of interacting with 

a random agent each hour that the agent is in a random location. 

Infection Network 

Once all agents recover, the average degree of infection <kinfect>, also known as 

the R0, is calculated. This calculation includes the agents that became infected, but did 

not pass on the infection to another agent, meaning kinfect = 0. Table 6.5 shows the 

average degree of infection <kinfect> obtained as a function of a variety of transmission 

likelihoods βT. Notably, all model runs fail to propagate using a transmission likelihood 

value βT of <=1%.  

Table 6.5. The average degree of infection, average degree of infection if k>0, 
and the average number of agent’s that are infected for the infection 
network obtained using different combinations of transmission 

likelihoods βT. 

% Average degree of infection 
<kinfect> 

Average degree of infection 
<kinfect> where kinfect >0  

Average number of agents 
infected 

1 NA NA NA 

2 0.57 1.36 71.85 

2.5 0.965 1.68 669.13 

3 0.98 1.73 1585.5 
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Parameterizing the infection network SNinfected with a transmission likelihood value 

βT > 2% produces an average degree of infection <kinfect> of 0.9 and thus the infection 

network does not appear to be sensitive to variations in the transmission value βT. 

However, it should be noted that the average degree of infection <kinfect> is not static and 

changes with each iteration as influenza spreads. As the proportion of agents that are 

infecting new agents is no longer great enough to maintain a continued spread of 

infection, the average degree of infection <kinfect> falls below 1, the infection declines, 

and all the agents begin to recover. As such the average degree of infection <kinfect> may 

not be a reliable parameter to test and calibrate the model. Therefore, to determine 

whether the R0 falls within the expected range as identified in the literature, the average 

degree of infection is calculated to include only agents who successfully transmitted the 

infection to another agent and thus have a degree kinfect greater than 0, formalized as 

<kinfect>k>0. It was found that all transmission likelihoods produce an acceptable average 

degree <kinfect>k>0 and an average R0R>0 that falls within 0.9 and 2.1.  

Because of the challenges faced in using the average degree of infection <kinfect> 

as a measure for model sensitivity and calibration, a second emergent property, 

specifically the total number of influenza cases, is used to determine the appropriate 

transmission likelihood value βT. It was found that a transmission likelihood value βT of 

2% produced far too few cases and a transmission likelihood value βT of 3% produced 

far too many cases of influenza, where the percent of the agent population simulated as 

infected fell outside of the expected range of 5-20% (Biggerstaff et al., 2014).  

Based on the sensitivity analysis results, the model is calibrated using the 

interaction likelihoods βI and transmission likelihoods βT that generated the best fit for 

expected average degree of contact <kcontact> and the average degree of infection 

<kinfect> for both the social network and the infection network respectively. Specifically, 

the interaction likelihood βI that generated the closest fit to the expected average degree 

of contact <kcontact> is a 100% likelihood of interacting with family members in the 

household, a 5% likelihood of interacting with coworkers each hour that an agent is at 

work, a 5% likelihood of interacting with classmates each hour that the agent is at 

school, and a 1% likelihood of interacting with a random agent each hour that the agent 

is in a random location. Likewise, the transmission likelihood βT that was selected was 

2.5%. This aligns with the idea that infection networks are able to persist even with a 
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very small transmission likelihood βT, also known as the vanishing epidemic threshold 

(Barabasi 2016). 

Validation  

The objective of this study is to compare simulated network properties with 

observable empirical regularities in real world networks. Therefore, graph theory is 

applied to collect several network measures that characterize the simulated spatial 

social network SNsocial and the simulated spatial infection network SNinfected.  

Social Network 

According to the literature, real-world large social networks exhibit a set of 

observable empirical regularities with respect to their network structure and behavior and 

these regularities hold, if not are enhanced, in spatial social networks (Alizadeh et al., 

2017). These regularities summarized by Alizadeh et al. (2017) are outlined in Table 6a. 

Table 6a also lists the corresponding graph theory measures that are used to measure 

these regularities and that can be used as a filter to reject or accept that the simulated 

network contains the internal processes that are realistic enough to maintain these 

regularities. Therefore, to validate the social network SNsocial the following network 

properties are calculated: 

Table 6.6. Observed empirical regularities of (a) social networks and (b) 
infection networks. 

a) Characteristic of Social Network Network Property 

Low network density (Wong et al., 2006) Density D 

The number of connections each individual has should not 
exceed a reasonable limit (Gilbert, 2006; Barthelemy, 2003) 

Maximum degree of contact 
<kcontact>max 

The number of connections each individual has should be 
heterogeneous (Fisher, 1982) 

Standard deviation of degree of 
contact <kcontact> σ 

The majority of individuals in the network have relatively small 
degrees and a small number of actors may have very large 
degrees (Wong et al., 2006; Fischer, 1982) 

Degree distribution P(k) 

Individuals with a high number of connections tend to be 
connected with other individuals with many connections 
(Bruggeman, 2008; Newman, 2002) 

Assortativity A 

A fraction of each individual’s contacts should also interact with 
each other (Bruggeman, 2008) 

Average clustering coefficient <C>  

Presence of communities where there should be some groups in 
which members are highly connected with their in-group and 
loosely connected between groups (Newman, 2004) 

Modularity M 
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a) Characteristic of Social Network Network Property 

Individuals in the network should be able to reach other via a 
small number of connections (Milgram, 1967) 

Average shortest path length <l> 

b) Characteristic of Infection Network Network Property 

The degree distribution should be heavily skewed, potentially 
exhibiting a power-law (Liljeros et al., 2001) 

Degree distribution P(k) 

 

Real world networks that exhibit these properties are referred to as small world 

networks (Watts and Strogatz, 1998). Whether the simulated social network SNsocial is 

indeed a small world network is tested by statistically comparing the graph theory 

measures obtained from the simulated social network SNsocial with the same graph theory 

measures from a simulated random network SNrandom with the same number of nodes N 

and links L. Specifically, the graph theory measures used for this test include the degree 

distribution P(k), the average clustering coefficient <C>, and the average shortest path 

length <l>. Both a small-world and random network will form a degree distribution P(k) 

with a Poisson curve, however in the case that the SNsocial is indeed a small world 

network, <l>SNsocial ≥ <l>SNrandom and <C>SNsocial ≫ <C>SNrandom (Humphries and Gurney 

2008). 

Infection Network  

Infection networks are a product of the social networks that they propagate on, 

therefore, validation of the social network SNsocial is of the main focus. However, real 

infection networks on their own also exhibit observable network characteristics (Figure 

6.6b). In real infection networks, the network’s degree distribution P(k) is often heavily 

skewed, and occasionally follows a power law (Liljeros et al., 2001). Specifically, many 

individuals in the network will have a small number of transmissions and a few 

individuals referred to as super spreaders in the network will have a large number of 

transmissions (Small et al., 2007; Barabasi, 2016). It can be tested whether the 

simulated infection network SNinfected exhibits these characteristics by looking at the 

simulated degree distribution P(k). The simulated degree distribution for the infection 

network is tested for goodness of fit using powerlaw, a Python package for analysis of 

heavy-tailed distributions (Alstott et al., 2014). 
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6.6. Results 

6.6.1. Simulation Results 

Social Network  

Figure 6.2 presents an example of one full simulation representing the spatial 

social network SNsocial as it evolves over 24 hours. Figure 6.2a presents the location of 

the homes, businesses, and the schools. Figure 6.2b presents the social network 

structure for the first hour of work and school at t1. At this point, agents have only 

interacted with their family members. Figure 6.2c presents the social network structure at 

mid-day when the agents are at work and at school at t5. Figure 6.2d presents the social 

network structure at the end of the day at t8. Figure 6.2e and 6.2f present the social 

network structure as they visit random locations at t9 and t10 respectively. Finally, Figure 

6.2g presents the social network structure when the agents return home at t11.  
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Figure 6.2. Map of (a) locations of homes, businesses, and schools that agents 
travel between and the simulated social spatial network SNsocial as it 
evolves over time for time steps (b)t1, (c)t5 , (d)t8, (e)t9, (f)  t10, and (g) 
t11. 
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Figure 6.3. The social network SNsocial in a non-spatial representation for time 
steps t1 (a), t5 (b), t8 (c), t9 (d), t10 (e), and t11 (f). 
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Large networks are particularly challenging to visualize and are typically 

described as “hairballs”. This term is appropriate for the characterization of large 

networks with a highly complex structure from which it is challenging to obtain any visual 

information. This problem is further challenged by representing densely connected 

networks in geographic space. For the purpose of improved visualization, the same 

example spatial social network SNsocial in Figure 6.2 is presented in Figure 6.3 as its 

evolving non-spatial counterpart using the same time steps t1 (Figure 6.3a), t5 (Figure 

6.3b), t8 (Figure 6.3c), t9 (Figure 6.3d), t10 (Figure 6.3e), and t11 (Figure 6.3b). The 

different shades of blue mark different communities or groups in which members are 

highly connected with their in-group and loosely connected between groups as defined 

in Table 6.6. These communities are a function of classrooms, workplaces, and family 

members. The different sizes of the nodes represent the number of contacts a node has, 

where larger sized nodes have more contacts and smaller sized nodes have less 

contacts. The non-spatial representation provides a clearer idea as to the internal 

processes within the model from which the network structure emerges. Table 6.7 

presents the network measures obtained from this example spatio-temporal social 

network as it evolves over time for t1, t5, t8, t9, t10, t11. 

Table 6.7. Spatio-temporal network measures obtained from SNsocial 

t N L <C> <kcontact> <kcontact> max <kcontact> min 

1 5714 10679 1 1.94 4 0 

5 5714 47789 0.24 8.37 25 0 

8 5714 67149 0.37 11.75 33 0 

9 5714 72455 0.41 12.67 33 0 

10 5714 74984 0.38 13.11 34 0 

11 5714 77453 0.36 13.34 34 1 

t <kcontact> σ M  C A D <l> 

1 0.879 0.999 1919 0.9987 0.0003 1 

5 3.871 0.789 73 0.2631 0.001 5.59 

8 5.29 0.844 87 0.4383 0.002 5.121 

9 5.66 0.855 94 0.4781 0.002 5.026 

10 5.69 0.827 93 0.4382 0.002 4.6 

11 5.73 0.801 94 0.4022 0.002 4.452 
 

At t1, agents have come into contact with family members only. The network 

structure is presented in Figure 6.3a, where each family is represented by a small cluster 

within a set of disconnected clusters. Each family member is directly connected to each 

family member, producing an average clustering coefficient <C> of 1, a low average 
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degree <k>, a high modularity M made up of many tight knit communities C, and a very 

short average path length <l>. This also produces a high assortativity A, where each 

agent has the same degree k as the agents that they are currently connected to. In 

Figure 6.3a, larger families where <kcontact>max = 4 are located near the center of the set of 

clusters and smaller families and individuals with no family members where <kcontact>min = 0 

are located in the surrounding area. In summary, family units form perfect network 

clusters. 

At t5, all agents travel to work or school and thus begin to interact with their 

coworkers and classmates. From this process emerges a giant network component, 

meaning that all agents become part of the larger network structure (Figure 6.3b). At this 

point, one agent remains disconnected from the giant component, where <kcontact>min, 

meaning the agent has no family or coworkers. The heterogeneity in the network as a 

function of the different family sizes becomes apparent, where the <kcontact>σ and 

assortativity A decreases significantly. Since it is still early in the day and classmates 

and coworkers have not yet had many opportunities to interact with one another and 

form their own workplace and classroom communities, the average clustering coefficient 

<C>, modularity M, and number of communities C remains on the lower side. The lack of 

community structure is evident visually (Figure 6.3b).  

Agents continue to make connections at their workplace and school until t9. At t10 

and t11 agents interact with random agents at random locations at t10 and t11. This results 

in a decrease in the average clustering coefficient <C> since agent 𝑣𝑖’s existing contacts 

consisting of family members and coworkers or classmates may never interact with the 

agent 𝑣𝑖’s random connections. These random interactions are important for the overall 

connectivity of the social network as they act as gateways that connect different 

communities and reduce the overall path length of the network. As time passes, the 

number, size, and strength of the communities increase over time, coded with different 

colours in Figure 6.3 c, d, e, and f. Heterogeneity within the network increases as 

supported by the increase in <kcontact>σ and the slight decrease in assortativity. The overall 

degree distribution P(k) is a positively skewed degree distribution that is highly peaked 

and is slightly bi-modal. The bi-modal nature of the degree distribution is a function of 

adult agents having less interactions than child agents, which corresponds with the 

behavior or pattern documented in the literature.  



174 

Infection Network  

The infection network is technically composed only of infected agents. Links 

represent the transmission of influenza from one infected agent to a newly infected 

agent. Once an infected agent recovers, the infected agent and its associated link are 

removed from the infection network. This makes it challenging to both visualize and 

measure the network as it evolves over a long period of time, since the infected agents 

are only infected for a few days and then are removed from the network. Therefore, in 

order to present the simulation results for the infection network SNinfection, the model has 

been modified so that the links are not removed from the network, making it possible to 

keep track of the history of infection. Figure 6.4 presents one full model run representing 

the infection network as it grows over 270 days. The network structure is presented once 

the agents are returned back home and shows the link between which families infect 

which families over time. The infection network is denser in the highly populated location 

of the neighbourhood.  
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Figure 6.4. Map of (a) spatial location of homes, businesses, and schools that 
the agents travel between and the simulated infection network 
SNinfected as it evolves over time for time steps (b) t168, (c) t1176, and (d) 
t6216. 
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Figure 6.5. The infection network SNinfected in a non-spatial representation for 
time steps (a) t168, (b) t1176, and (c) t6216. 
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For the purpose of visualization, the infection network is also presented as a non-

spatial representation in Figure 6.5. Table 6.8 presents the network measures obtained 

from this example spatio-temporal social network as it evolves over time after 7 days at 

t168, 49 days at t1176, and 259 days at t6216. The model is initialized with 30 infected 

agents, which generate a set of disconnected infection networks. As the infection 

spreads, the infection networks increase in size as does the average degree of infection 

<kinfect>. The clustering coefficient in the infection network is always 0. This is because the 

agents are unable to become infected with influenza a second time. As a result, the 

agents 𝑣𝑗 who are infected by agent 𝑣𝑖  cannot infected each other. The network 

maintains modularity as it evolves and the powerlaw degree distribution P(k) becomes 

stronger. 

Table 6.8. Spatio-temporal network measures obtained from SNinfected. 

Network measure Time t 

168 1176 6216 

N 54 354 582 

L 34 333 561 

<C> 0 0 0 

<kinfect> 1.259 0.941 0.964 

<kinfect>max 4 7 7 

<kinfect>min 1 1 1 

<kinfect>σ 0.79 1.14 1.04 

M 0.938 0.913 0.927 

 C 20 32 38 

D 0.024 0.003 0.002 

<l> 1.358 4.109 7.12 

Apha 8.281914 3.384646 3.47124 

Sigma 2.574545 0.179749 0.136037 

Distance 0.124665 0.280099 0.2772 

p value 0.000325 0.00017 6.36E-08 

 

6.6.2. Validation Results 

In section 5.1., the simulation results and network measures of the social network 

SNsocial and the infection network SNinfected generated by the Epi-N-ABM been presented 

for one model run as an example. However, due to randomness incorporated into the 

Epi-N-ABM, each model run is slightly different. Therefore, the model is run 30 times and 
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the network measures from the social network SNsocial and infection network structure 

SNinfected have been obtained and the average, standard deviation and standard error 

across all 30 simulated networks have been calculated. Based on the calculated 

standard error for each network measure, it can be concluded that each model run 

produces a network structure that varies with respect to size, but the network structure 

itself remains the same. 

Social Network  

Network measures have been obtained from the social network structures SNsocial 

simulated in each of the 30 model runs. Table 6.9a presents the average value for each 

network measure, the standard deviation, and the standard error. 

Table 6.9. Table 9. Network measures obtained and averaged over 30 runs for 
a) the spatial social network and b) its random equivalent  

Network 
Measure 

a) Network Measures for SNsocial  
obtained over 30 model runs 

b) Network Measures for SNrandom obtained 
over 30 model runs 

Average Standard 
Deviation 

Standard 
Error 

Average Standard 
Deviation 

Standard 
Error 

Number of 
Nodes 

5681.800 47.498385 8.671979 5681.80 47.49838473 8.6719789 

Number of 
Links 

76686.233 1725.235530 314.9835 76686.2 1725.23553 314.98347 

Average 
Clustering 
Coefficient 

0.356 0.002187 0.000399 0.002 1.32328E-18 2.41598E-19 

Average 
Degree 

13.493 0.199093 0.036349 13.979 0.003342516 0.000610257 

Average 
Degree Max 

34.333 2.411658 0.440306 24.900 1.322223832 0.24140394 

Average 
Degree Min 

1.200 0.664364 0.121296 7.000 0 0 

Average 
Degree St. 
Deviation 

5.643 0.188211 0.034362 2.633 0.018675819 0.003409722 

Modularity 0.801 0.002212 0.000404 0.186 0.000498273 0.000009 

Number of 
communities 

93.300 3.007462 0.549085 24.400 1.379655129 0.251889412 

Assortativity  0.397 0.021963 0.004010 0.001 0.000378153 0.000007 

Network 
Density 

0.002 0.000020 0.000004 0.002 0.00002 0.000004 

Path length 4.458 0.021091 0.003851 3.590 0.002034191 0.000371391 

Degree 
distribution 

Poisson NA NA Poisson NA NA 
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It can be concluded that the non-imposed network characteristics as quantified 

by the network measures that emerge from the processes implemented in the Epi-N-

ABM correspond well with observed network characteristics in real spatial social 

networks (Table 6.6). The simulated spatial social network SNsocial is characterized as 

heterogeneous and assortative with a positively skewed degree distribution P(k) 

characteristic of a real spatial social network. The simulated spatial social network also 

SNsocial exhibits a moderate clustering coefficient, meaning that agents 𝑣𝑗 that come into 

contact with agent 𝑣𝑖 also come into contact with each other. Furthermore, the simulated 

spatial social network SNsocial exhibits a strong measure of modularity, which strengthens 

over time, indicating the presence of community structure. Finally, the average path 

length is short, meaning that individuals in the network are able to reach each other 

through a small number of connections. In order to confirm that SNsocial is indeed a small 

world network, the obtained measures characterizing the SNsocial are compared with its 

corresponding SNrandom network structure (Table 6.9b). It is clear that based on the 

obtained network measures from both SNsocial  and SNrandom <l>SNsocial ≥ <l>SNrandom and 

<C>SNsocial ≫ <C>SNrandom, meaning that the SNsocial is a small world network (Humphries 

and Gurney 2008).  

Infection Network  

Network measures have been obtained from the infection network structures SNinfected 

simulated in each of the 30 model runs. Table 6.10 presents the average value for each 

network measure, the standard deviation, and the standard error. 

As per observed properties of real transmission networks, the degree distribution P(k) of 

the simulated SNsocial can be described as a power law distribution with an average alpha 

exponent -α of 3.53 and a standard error sigma σ of 0.1. The Kolmogorov-Smirnov 

distance D is small with a value of 0.2 for both. The goodness of fit of the simulated P(k) 

is compared with both a power law and an exponential distribution.  The log likelihood 

ratio R between the two distributions that indicates a power law is a better fit than an 

exponential with a p-value of 0.0000000174. 
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Table 6.10. Network measures obtained and averaged for the infected network 

Network Measure Average Standard Deviation Standard Error 

Number of Nodes 669.13 287.93 52.57 

Number of Links 650.73 288.03 52.59 

Average Clustering Coefficient 0.00 0.00 0.00 

Average Degree 0.965 0.023 0.004 

Average Degree Max 7.50 1.25 0.23 

Average Degree Min 1.00 0.00 0.00 

Average Degree St. Deviation 1.11 0.05 0.01 

Modularity 0.930 0.013 0.002 

Number of communities 35.23 6.25 1.14 

Network Density 0.0018 0.0009 0.0002 

Path length 8.32 3.00 0.55 

Alpha 3.528 0.139 0.025 

Sigma 0.1098 0.0213 0.0039 

Distance 0.2631 0.0080 0.0015 

p value 0.0000000174 0.0000000697 0.0000000127 

 

6.7. Discussion and Conclusions 

Although useful, traditional validation approaches for ABMs are unable to fully 

evaluate the model’s internal generative mechanisms from which system level patterns 

emerge. Quantitative evidence that ABMs are capable to capture generative 

mechanisms are desirable, however internal processes are often difficult to identify and 

statistical methods are not flexible enough to account for complexity inherent to real-

world systems (Grimm and Berger 2016). Network science, however, operates on the 

foundation of complexity and thus is capable of characterizing complex systems and the 

models that aim to represent them using a set of statistic-based network measures. 

Therefore, the NEAT approach was developed, capable to quantify important generative 

mechanisms represented by the model, reducing the black box effect common to many 

ABMs.  

The non-imposed simulated network characteristics that emerge from the 

processes implemented in the Epi-N-ABM correspond with observed network 

characteristics in real spatial social networks and transmission networks. Interestingly, 

the spatial social network structure differs from the infection network structure even 

though the two are tightly coupled. The spatial social network structure is that of a small-
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world network that can be characterized with a degree distribution P(k) that is normally 

curved with a skew to the right. The spatial infection network structure is that of a scale-

free network that can be characterized by a degree distribution P(k) that follows a power 

law. This is a function of the heterogeneity across the network where some agents 

known as super spreaders infect an anomalously large number of agents, while the 

majority of agents infect only a few. 

The proposed NEAT approach is subject to the same limitations with respect to 

the computational efficiency as the ABM it is testing. As the networks derived from the 

ABM increases in size and complexity, the time required to calculate the network 

measures increases. Furthermore, network science provides many measures for 

quantifying the network structure and behaviour across several scales. Apart from the 

measures that are included in this study in detail, there are additional spatial network 

measures that can be useful to characterize another geospatial ABM representing a 

different phenomenon.  

The proposed network validation approach would be particularly useful for testing 

other ABM applications such as urban (transportation networks), epidemiology, and 

mobility modelling. The ability of developed ABMs to reproduce statistical patterns 

observed in the real world by network scientists would provide confidence that the 

internal processes represented in the model are realistic and theoretically grounded. For 

example, Rand et al. (2003) use a similar non-network based approach where they 

demonstrate the ability of their ABM to generate statistical patterns that are also 

observed in the real world including Zipf’s law and Clark’s law in their model of urban 

development.  

The Epi-N-ABM is a theoretical model, one that is not grounded in real geospatial 

datasets representing the real socio-demographics of the City of Vancouver, Canada. As 

future research work, it would be interesting to initialize the model with agents with data 

that represent the real population structures in Metropolitan Vancouver Region using 

census data for the region. This would mean that real social and epidemiological 

network data could be used in the model validation using the NEAT approach. The 

proposed spatial network validation approach can be used for the validation of internal 

processes and emergent structures of complex systems. This approach would be most 

useful in combination with other ABM validation approaches, ones that validate the 
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spatial patterns that emerge from the internal model processes. Currently, Repast 

Simphony software with the Geography package for spatial ABM development contains 

some network functionality but does not include network measures. Therefore additional 

work in exploring the integration of networks and ABM may find value in the 

development of methods and tools that are able to automatically generate network 

measures, both the ones included in this paper and additional, more advanced or 

application specific measures, for a variety of ABMs representing spatial phenomena 

that can be used to give transparency and confidence to internal model processes. In 

summary, this study contributes to discussions and approaches that seek to advance 

and strengthen ABM validation methodologies and proposes thoughtful consideration for 

ways in which internal model processes can be evaluated and encourage the 

development of models that not only reproduce system level patterns, but that are also 

theoretically sound.  
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Chapter 7.  
 
Conclusions 

7.1. General Conclusions 

Complex systems theory provides the conceptual framework for analysis and 

understanding of dynamic geographic phenomena. Geographic and network modelling 

approaches offer new means for the representation and analysis of geographic 

phenomena; however, the two approaches are rarely incorporated. This dissertation 

argues for the integration of networks with geographic automata and for the 

development of a suite of network-based geographic automata modelling approaches, 

providing the opportunity for improved representation, analysis, testing, and 

communication of complex spatial systems and the models that aim to represent them.  

The results can be summarized as follows: 1) the theoretical and practical 

foundation of integrated network-based geographic automata;  2) the application of the 

network-based geographic automata approaches to a variety of phenomena and the 

analysis of model results using network measures to describe, characterize, and better 

understand the structure, dynamics, and evolution of network representations; and 3) the 

software routines for the GNA, N-ABM, and NEAT approaches and a variety of 

developed functions programmed for the measurement of model results can be used for 

different case studies and relevant geospatial datasets. 

7.2. Summary of Findings 

The dissertation addresses the presented research questions by implementing a 

succession of novel network-based automata modelling and model testing approaches 

that leverage complex systems theory, GISc, and GAS, and network science for the 

conceptualization, representation, and analysis of complex spatial systems. The purpose 

of Chapter 2 is to explore research possibilities that lie at the intersection of GISc and 

network science. Based on this opportunity, this thesis research employs spatial 

networks to represent and analyze complex geographic phenomena and face challenges 

in 1) fully exploring the link between spatial dynamics and processes and emergent 
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spatial structures and 2) understanding how and why these structures evolve over space 

and time. This dissertation proposes that the integration of network theory and 

geographic automata offers the potential to fill those gaps by providing new means for 

representation and analysis of complex spatio-temporal systems as evolving spatial 

networks. At the same time, this integration offers the potential for new means to 

improve the robustness of the geographic automata models themselves. 

The research study presented in Chapter 3 integrates networks theory, complex 

systems theory, and geographic automata systems theory to develop a network-based 

automata modelling approach called Geographic Network Automata (GNA). The GNA 

modelling approach can be applied to any spatial-temporal phenomena and can be 

operationalized by taking the following steps: 

1. Conceptualize the system of interest as a spatial network. Based on the system 

of interest, determine the components that make up the system of interest that 

are to be represented as nodes. Determine the interactions, flows, and 

relationships between systems components that are to be represented as links. 

Define the node and link’s spatial, non-spatial, and topological attributes. 

Determine whether the network is weighted or directional. Consider the scale at 

which the system(s) of interest should be represented. Identify whether the 

system is constrained to operating on an underlying spatial network UN.  

2. Identify important graph theory measures. Determine which global or local graph 

theory measures are the most valuable to measure and understand the system 

of interest. The distribution of measures across the entire network such as 

degree distribution is particularly useful as it gives an overall snapshot of network 

structure.  

3. Define the neighbourhood. Determine the way in which other nodes j might 

interact with node i. Define this interaction based on distance, weight, behavior, 

or probability to best capture this interaction.  

4. Development of the transition rules. The transition rules govern interactions 

between a node’s neighbours and results in the evolution of the network 

structure. The state or location of each node or the connections between two 

nodes may change as a result of the transition rules. Based on these transition 
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rules, new nodes may be added to the network, some nodes may be removed, 

and the connections between existing nodes may be rewired.  

5. Identify potential connection costs. The influence of the matrix on the spatial 

network evolution must be identified. For example, the connection between two 

nodes may be limited in the case that there is a geographic barrier between the 

two, if the distance exceeds a certain threshold, or as a function of a cost surface 

analysis. 

6. Implement of the GNA. The implementation of the GNA is developed as a 

programmed application containing node automata and link objects. Initial node 

location and attributes are often determined by input data. Links are defined as a 

function of the neighbourhood, transition rules, and the connection cost. Node 

and link automata objects store spatial, non-spatial, and topological attributes 

which update at each iteration. Link objects store additional information including 

the pairs of nodes they connect and their location as well as any flows that take 

place between nodes.   

7. Perform GNA calibration and sensitivity testing using an independent dataset. 

The NEAT approach can be used to perform these tests. 

8. Perform GNA validation by comparing model with independent data. The NEAT 

approach can be used to validate the GNA. 

9. Execute model and model scenarios. 

10. Apply graph theory to characterize network structures (underlying or spatial). 

Graph theory measures can be used to enhance the understanding of the 

phenomena being simulated as networks, to compare network structures as the 

network evolves, or to compare network structures between scenarios.  

The GNA framework requires spatial data as an input to initialize node location, 

parameterize nodes, and to implement the network matrix and any potential geographic 

barriers. Data, spatial data or data from the literature, is also required to parameterize 

transition rules and connection cost. Datasets independent of model development are 

required for model testing. This can include network datasets in the case that the NEAT 

approach should be implemented or can include non-network based spatial datasets for 

more traditional methods of validation. 
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Chapter 3 both presents the modelling framework and applies it to a theoretical 

complex system, the Game of Life (Conway, 1970). Based on the network measures 

collected, the Game of Life system can be described as having properties of a random 

geometric graph. The GNA modelling approach facilitates the examination of the close 

coupling between spatial network structure and spatial network dynamics. Results 

suggest that as random network structures evolve through the process of growing and 

shrinking in response to local dynamics, the spatial structure of the network is altered, 

which has further implications for local dynamics. The GNA modelling approach 

facilitates the examination of the close coupling between spatial network structure and 

spatial network dynamics and allows for better understanding how real systems that 

operate on a random geometric graph structure such as social dynamics may be 

impacted by changes to the structure of the system. The developed approach is both 

general and flexible so that it can be applied to represent and analyze many real 

systems including urban, social, and ecological. Based on the specific use of the 

network data model and the development of transition rules R that are designed to 

simulate dynamics between nodes, the GNA modelling methodology is a substantial 

departure from the cellular automata and agent-based modelling approaches. 

Chapter 4 extends the work presented in Chapter 3 by applying the GNA 

modelling framework to represent an important ecological system as an evolving spatial 

network that can be analyzed using graph theory. Specifically, Chapter 4 applies the 

GNA modelling framework to the case study of the emerald ash borer (EAB), an invasive 

bark beetle species that infests and kills ash trees. The GNA simulates the propagation 

of the EAB species at a coarser spatial scale across a landscape of forest stands 

containing ash trees. Network rules representing local dispersal processes are applied to 

the network of infested forest stands, forming an evolving spatial network that grows as 

new forest stands become infested and shrinks as old infested stands die. The approach 

facilitates the examination of the non-linearity and close coupling between spatial 

structure and spatial dynamics. The spatial organization of forest stands across the 

landscape influences the spread of EAB, forming the SNEAB. In turn, the spread of EAB 

influences the structure of the SNEAB as forest stand nodes are infested and die limiting 

dynamics of dispersal in future iterations. Results suggest that the small world spatial 

network structure produced by the spatial structure of the landscape and the EAB spatial 

dynamics has implications for EAB management. Specifically, the emergent network 
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structure indicates that local eradication efforts will have little impact on slowing the 

propagation of the EAB across the state. This study reinforces the potential use and 

usefulness of the GNA modelling approach for the representation and analysis of 

complex spatial systems. 

The evolving spatial network structures of EAB forest insect infestation at finer 

spatial scales are explored in Chapter 5. The purpose of Chapter 5 is to integrate 

networks and existing geographic automata approaches such as ABM to form an N-

ABM, not as inputs for the ABM, but to conceptualize the ABM differently, providing new 

means for understanding, analyzing, and communicating the model results. In general, 

the N-ABM can be operationalized to simulate a range of geospatial phenomena by 

implementing the following steps: 

1. Design, develop, and test an ABM. Identify potential scenarios for knowledge 

discovery and decision-making. 

2. Conceptualize the system(s) of interest as represented in the ABM as a spatial 

network(s). Determine the interactions, flows, and relationships between systems 

components that are to be represented as links. Define the node and link’s 

spatial, non-spatial, and topological attributes. Determine whether the network is 

weighted or directional. Consider the scale at which the system(s) of interest 

should be represented as networks.  

3. Implement the N-ABM. Implement a network model where flows, interactions, 

and relationships between system components in the ABM are represented as a 

set of links and nodes. Couple the ABM component to the network component. 

The programming logic and pseudocode developed for the coupling of the ABM 

component and the network component of the ABM is presented in Figure 5.3. 

4. Identify important graph theory measures. The selection of network measures 

are dependent on the phenomena being represented. Global graph theory 

measures are useful for characterizing the structure of the network as a whole, 

particularly looking at the distribution of network measures i.e. degree 

distribution. 

5. Apply graph theory to measure the system(s) as spatial networks. These 

measures may be calculated at one point in time, as the network evolves over 

time, or as the network structure responds to various scenarios. 
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In order to develop an N-ABM, spatial data is needed as an input to initialize agent 

locations and to parameterize the agents. Data, spatial data, or data from the literature, 

is also required to parameterize agents and agent behavior. Datasets independent of 

model development are required for model testing. This can include network datasets in 

the case that the NEAT approach should be implemented for model validation or can 

include non-network based spatial datasets for more traditional methods of validation. 

 Once again, the development of network-based automata facilities the 

exploration of the link between spatial structure and spatial processes, specifically by 

identifying the underlying interactions and generative mechanisms that drive the 

emergence of spatio-temporal patterns. Based on the network measures collected, 

patterns of EAB forest insect infestation at fine spatial scales can be described as scale-

free networks. Specifically, the scale-free network structure emerges because of the 

preferential attachment that individual EAB has for specific types of trees. The difference 

between the network structure of EAB infestation at the regional scale (GNA) and the 

fine scale (N-ABM) can be explained by the different processes that are relevant at each 

scale. At the small scale, processes and dynamics including biological interactions 

between individual EAB and tree, lifecycle, and finer temporal scales are key drivers for 

patterns of spread. At a coarser spatial scale, processes such as dispersal mechanisms 

and the structure of the landscape as a whole are more relevant. This suggests that 

spatial networks are subject to the modifiable areal unit problem (MAUP) where graph 

theory measures calculated for the networks vary as a function of the scale at which the 

phenomena are represented.  

 The differences in network structures as a function of scale suggests that 

management recommendations would differ between the GNA which simulates EAB 

propagation at the landscape scale and the N-ABM which simulates EAB propagation 

and behavior at an individual scale. At a landscape scale, eradication strategies would 

be required to focus on the spatial structure of the landscape and how it either 

exacerbates or slows EAB spread based on their dispersal processes. This may involve 

using the GNA to test the removal of key forest stands that connect the landscape and 

allow for the natural propagation of the species. At the individual scale where the 

simulation falls within the administrative boundaries of an individual town or county, the 

N-ABM may better be used to strategize for biological control by testing the interactions 
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between a biological control agent and the EAB or for predicting financial and ecological 

impacts to the region. 

Like all geographic automata models, the proposed network-based automata 

modelling approaches presented in this dissertation are challenging to test. Model 

testing often relies on traditional methods which compare emergent simulated spatial 

patterns with patterns found in reality. The integration of networks into geographic 

automata, not as inputs for the model, but to provide additional ways to describe, 

analyze, and communicate model results also has the potential for new means at model 

testing. Chapter 6 explores the development of a NEtworks for Agent-based model 

Testing (NEAT) approach. In general, the NEAT approach can be operationalized to test 

a variety of ABMs by taking the following steps: 

1. Design, develop, and test an ABM. Identify potential scenarios for knowledge 

discovery and decision-making. 

2. Conceptualize the system(s) of interest as represented in the ABM as a spatial 

network(s). Determine the interactions, flows, and relationships between systems 

components that are to be represented as links. Define the node and link’s 

spatial, non-spatial, and topological attributes. Determine whether the network is 

weighted or directional. Consider the scale at which the system(s) of interest 

should be represented as networks.  

3. Implement the N-ABM. Implement a network model where flows, interactions, 

and relationships between system components in the ABM are represented as a 

set of links and nodes. Couple the ABM component to the network component. 

The programming logic and pseudocode developed for the coupling of the ABM 

component and the network component of the ABM is presented in Figure 5.3. 

4. Identify useful network measures to characterize the system(s) of interest. The 

selection of network measures are dependent on the phenomena being 

represented. Global graph theory measures are useful for characterizing the 

structure of the network as a whole, particularly looking at the distribution of 

network measures i.e. degree distribution. 

5. Obtain real world network measures from empirical data. Real-world network 

measures should be obtained for the system of interest either from a dataset that 

was used independent of model development or from the literature. 
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6. Obtain simulated network measures from N-ABM outputs. The same network 

measures should be obtained from the simulation outputs either at one point in 

time or as the network evolves over time. 

7. Compare real-world network measures with corresponding simulated network 

measures. Compare and critically evaluate how well the simulated network 

measures compare to the corresponding real-world network measures. Each 

network measure operates as a mathematical filter, for which to base the 

grounds of acceptance or rejection of the developed ABM 

The NEAT approach requires real network datasets that can be characterized using a 

set of graph theory measures or network analysis from real datasets and observations 

obtained from the literature. Other non-network based spatial datasets may be used to 

combine the NEAT approach with more traditional validation approaches. 

The NEAT approach is applied it to test an epidemiological N-ABM (Epi-N-ABM) 

representing the spatio-temporal transmission of influenza among a human population. 

The N-ABM is abstracted into both an evolving social network and an involving 

transmission network. The network structure that emerges from the social dynamics 

simulated in the Epi-N-ABM is that of a small world network. The network structure that 

emerges from the transmission dynamics that operate based on social dynamics is that 

of a scale-free network. Based on network measures that characterize the simulated 

social network and transmission network, the non imposed network characteristics that 

emerge from the processes implemented in the Epi-N-ABM correspond with observed 

characteristics of observed spatial social and transmission networks. The findings 

indicate that the NEAT approach can validate internal dynamics and spatial structures of 

modelled phenomena by comparing simulated network structures with empirical 

regularities of observed real networks. The proposed validation approach would be 

useful for testing other ABMs by comparing simulated network structures with observed 

networks. The network representation of ABM spatial processes and structures offers 

new means for analysis, testing, and language for which to communicate and them. 

 All developed modelling frameworks including the GNA, N-ABM, and the NEAT 

approach were implemented in Repast Simphony 2.4 (2016), 2.5 (2017), and 2.6 (2018). 

Repast Simphony is an open source modelling platform that operates within the 

integrated development environment Eclipse and allows for the import of shapefiles to 
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be used as model inputs. Each modelling framework was implemented using the Java 

programming language and utilized Repast Symphony, Apache Commons, Geotools, 

and Vivid Solutions open source toolkits and Java libraries. Each graph theory measure 

used to characterize the simulated spatial networks was programmed directly into the 

application as different functions that can be executed independently or in combination 

with other graph theory measures. These functions access the topology of the simulated 

network at each iteration and calculate graph theory values specific to that iteration. 

Repast Simphony in Eclipse offers a customizable visual interface that allows for the 

visualization of the spatial simulation as it runs in real time and the ability to export the 

simulation results including network nodes and links as georeferenced shapefiles. The 

exported shapefiles for nodes and links also contain an attribute table that include all 

attributes. For example, the attribute table for the links include a reference to the start 

node and the end node for each link in the dataset. 

 Using the exported shapefiles from the simulations that run in Repast and 

Eclipse, maps presented in each Chapter were designed using ArcMap 10.5 (ESRI, 

2011). Node and link attribute tables can be exported and uploaded into Gephi for the 

aspatial visualization of networks. In Chapter 5 and Chapter 6, the scale free degree 

distribution of the networks obtained from the EAB N-ABM and the Epi-N-ABM is tested 

for goodness of fit using powerlaw, a Python package for analysis of heavy-tailed 

distributions (Alstott et al., 2014). This package uses the raw degree k for each node 

obtained from the simulations, for example in the Epi-N-ABM the number of contacts 

each individual has, and produces a value for the alpha exponent describing the 

powerlaw, the standard error, and the Kolmogorov-Smirnov distance D between the 

calculated powerlaw and the expected powerlaw. The package also includes a measure 

of the goodness off fit between the calculated powerlaw and other distributions like an 

exponential distribution or a lognormal distribution. The goodness of fit includes a p-

value.  

7.3. Future Directions 

“Networks are everywhere”, a phrase found in many network review papers ultimately 

speaks to the interdisciplinary nature of the usefulness abstracting real-world 

phenomena to a connected network-based representation. Thus, the proposed suite of 

network-based automata modelling approaches has the potential to be implemented on 
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other geospatial applications for the representation, characterization, and analysis of a 

variety of complex systems. Networks are a natural fit for representing and analyzing 

relationships and interactions and as such, network-based automata modelling 

frameworks are an ideal approach for applications when interaction, relationships, 

dynamics, and flows between sets of components are of interest. The application 

potential is vast and include movement and flows of information, people, resources, 

money, ecological species, energy, disease, and transportation vehicles over time and 

across points in geographic space. Naturally, the study of spatial and non-spatial 

relationships between individuals is also an ideal application for these modelling 

approaches. In addition, the network-based automata modelling approach would be 

ideal to better understand interactions between two or more tightly coupled systems over 

space and time such interactions between as policy, social, and environmental systems. 

 There are, however, some technical limitations to the developed approaches. 

The GNA, N-ABM, and NEAT approach can be used to build and evaluate both 

theoretical or empirical GAS models. However, empirical models tend to require more 

data than theoretical GAS models data. At the moment, in a social context, network data 

is abundant, however remains challenging to obtain in the ecological context. Future 

work would focus on advancing geospatial modelling approaches to represent and 

understand complex spatial systems while shifting these modelling approaches into 

directions that are big spatial data driven. 

Big spatial data, the massive amount of location-aware data that is collected 

every day as a result of ubiquitous computing, can be used to in complex systems 

modelling for both knowledge discovery and as a tool in decision-making processes 

(Miller & Goodchild, 2015). Big spatial data including GPS data in phones, sensor data 

embedded in infrastructure, remote sensors carried by airborne and satellite platforms, 

radiofrequency identification (RDIF) tags attached to objects, and georeferenced social 

network data can be incorporated into the process of model design, development, and 

testing from sources (Miller & Goodchild, 2015). The benefits of data-driven modelling 

are becoming recognized as a result of the ease of collecting, storing, processing digital 

data, leading to what some may call the fourth paradigm of science. Anderson (2008) 

refers to the fourth paradigm, or the “big data deluge”, as “the end of theory” all together, 

stating that the theories and models that seek to explain phenomena may be obsolete 

since data is now available in such fine spatial and temporal scale that explanation is not 
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really needed at all. This has been refuted by those who believe several challenges 

prevent big data from being useful. As a result, the theory and models to explain 

phenomena will still be necessary (Liu et al., 2016; Batty, 2013).  

Big spatial data is of increased availability in urban locations, providing the 

opportunity to model and analyze urban phenomena. Commonly used big spatial urban 

data includes sensors in urban infrastructure and user-generated content; however, 

there exists a wide range of big urban data that is less widely leveraged including 

transactional data, administrative and planning data, and data that links traditional 

survey data with sensors. This data in combination with network-based modelling 

approaches is particularly relevant in application to analyzing social networks and 

mobility networks, but also to better understand the tight coupling between urban, social, 

and environmental systems. Despite the promise of big data-driven modelling, the 

volume, velocity, and variety of geographic data exceed capabilities of existing 

computational techniques, thus presenting new challenges in big spatial data 

management, analysis, assimilation into complex systems models, processing, 

scalability, and theoretical considerations. As a result, there is a need to explore further 

the development of new network-based modelling approaches that can overcome these 

limitations thus making data-driven models useful to provide the means for knowledge 

discovery and the effective and timely decision-making support for stakeholders, policy-

makers, and planners. 

 Apart from technical limitations, future work may focus on overcoming some 

more theoretical limitations. The GNA and N-ABM modelling approaches are able to 

incorporate key elements inherent to complex systems including heterogeneity, 

interactions, adaptation, and multiple scale phenomena. However, because of their 

ability to capture complexity, the modelling approaches have the potential to be affected 

by error and uncertainties that propagate from data used as inputs and through model 

structure (Yeh & Li, 2006). Future work could expand sensitivity analysis to better 

understand how changes to inputs such as transition rules, neighbourhood configuration, 

simulation time, and stochastic variables amplify or reduce error propagation and 

uncertainty in the model. Chapter 3 to 6 use one-at-a-time (OAT) sensitivity analysis 

(Cariboni et al., 2007) which is a good starting point, however is limited in that it does not 

account for interaction effects among the inputs nor does it provide an objective 

measure of sensitivity (Broeke et al., 2016). Future work would benefit from further 
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exploring the sensitivity of the model using a sensitivity analysis method such as global 

sensitivity analysis (GSA) that can better account for interaction between inputs and 

parameters (Saltelli et al., 2008). Furthermore, it would be valuable to understand where 

some network structure and behavior is a function of a particular series of events or path 

dependence. Employing the variant-invariant method developed by Brown et al. (2005) 

on the developed network-based automata modelling approaches would be particularly 

interesting endeavors in future work.  

7.4. Research Contributions 

This dissertation research contributes to the scientific research domains that aim 

to better represent, analyze, and understand complex spatio-temporal phenomena. In 

general, the integration of networks into traditional GAS approaches allows for graph 

theory to be used for the analysis and evaluation of the models and the phenomena they 

aim to represent, not commonly leveraged in traditional GAS approaches. The 

dissertation finds that network-based geographic automata, which can be measured with 

graph theory, enables new ways to represent, analyze, and communicate the models 

and the model outputs. This facilitates the direct investigation into the relationship 

between spatial structure and spatial dynamics and vice versa, something that is 

demanded in both GIScience and network science literature. 

First, this dissertation contributes to existing methodological research in 

Geographic Information Science (GISc), geographic automata systems (GAS), and 

network theory by proposing and implementing a suite of novel spatial network-based 

automata modelling approaches including the GNA, N-ABM, and NEAT approach. The 

developed GNA approach, the first of its kind, is designed to explicitly leverage network 

representations, network-based transition rules, and network analysis for the simulation 

of complex, spatio-temporal phenomena. The GNA modelling framework differs from 

traditional GAS including CA and ABM as a function of its uniquely explicit view of the 

network-based relationships and interactions between the spatial features that is 

represented by network links and the NxN adjacency matrix A. The GNA modelling 

framework places emphasis on the representation, analysis, and visualization of 

relational data, interactions, and flows. In a CA and ABM, rules are implemented that 

govern relations, interactions, and flows, but they are not represented nor measured 

discretely. Instead, the way in which the system responds to sets of interactions is 
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typically measured. The GNA offers a more flexible modelling framework than CA where 

nodes may be mobile with varying neighbourhood types and non-deterministic system-

level behavior. In addition, the GNA offers explicit representation of interactions and thus 

provides “x-ray” vision for large sets of interactions between components of the system 

in a way that ABMs traditionally do not.  

In the developed N-ABM, networks are integrated into an ABM, not as inputs for 

the ABM, but rather as a novel way to conceptualize the processes within ABM with the 

purpose of making simulation models both transparent and measurable. Specifically, the 

developed N-ABM approach does not seek to leverage networks as inputs, but rather 

finds value in networks extracted as the model output. The extraction of networks that 

represent ABM dynamics at one or several points in time ultimately generates a wealth 

of data for which can be used to analyze the model and the phenomena that the N-ABM 

seeks to represent. Extracted networks can then be measured using graph theory to 

provided additional information about the model and the phenomena it aims to 

represent.  

The NEAT approach contributes to longstanding efforts to develop new 

frameworks for the testing and evaluation of GAS. The NEAT approach builds upon 

pattern-oriented modelling (POM) where measured graph theory measures can be 

compared with real graph theory measures for the same system and be used to accept 

or reject the validity of the ABM. The use of network measures as means for GAS model 

validation is novel and unique because it offers a statistical approach that is oriented 

towards measuring complex systems. Because of the rigidity of most extensions of 

statistical methods that are applied to GAS, many GAS models remain unevaluated 

(Manson, 2007). 

The GNA, ABM, and CA modelling frameworks are presented in Figure 7.1 as 

approaches that are united under the larger framework of GAS (Torrens & Benenson, 

2005). All three approaches aim to represent and explore phenomena using a bottom-up 

complex systems approach within a geographical context that places the phenomena in 

x, y coordinate space, and that can potentially be expanded to the z coordinate as a third 

spatial dimension. The development, exploration, and implementation of an approach 

that is explicitly network-based, geographic network automata, as presented in this 

dissertation helps to better place where existing integrated approaches such as graph-
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CA and N-ABMs fit in this broader context. This dissertation research further contributes 

to existing methodological research in Geographic Information Science (GISc) and 

geographic automata systems (GAS) by presenting the first use of networks and graph 

theory for the validation of ABMs. This research contributes to the field of network theory 

by furthering research in the spatial properties of networks and meeting the existing 

demands for the development of novel modelling frameworks for studying and testing 

the evolution of spatial network structures as a function of their dynamics and processes 

and vice versa.  

 

 

Figure 7.1. Geographic network automata in relation to other geographic 
automata systems models. This situates N-ABM and other 
integrated approaches into the larger context.  

 
Secondly, this dissertation research contributes to the application areas of ecological 

and epidemiological modelling. In general, integrating network analysis into these 

approaches allows for the use of local or global graph theory measures to finding 

general rules, laws, or statistical patterns and regularities of complex phenomena. 

Global measures such as degree distribution can be used to statistically characterize 

network structure as a whole. These measurements can be used to compare between 
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different systems or to compare between the same system over time. The ability to 

statistically compare between the same system over time is crucial in order to meet the 

demand to understand evolving networks. Local network measures such as the degree 

of a node characterize individual nodes in the network and can be used to find 

components within the system that that are key actors in the connectivity of the network 

and thus facilitate the spread of information, resources, or disease and so on. This 

information can be used for knowledge discovery, lead to big picture understanding, 

understand the evolution, prediction, useful when experiments cannot be done in the 

real world, or decision-making purposes as investigative tools.  

More specifically, the application of the network integrated automata modelling 

approaches to the EAB phenomenon offers both a GNA model and an N-ABM model 

that leverage the advantage of both complex systems modelling approaches and 

network modelling approaches to better understand EAB forest insect infestation. These 

modelling approaches can be used to represent and analyze the tight-coupling and non-

linearity between landscape spatial network structure and species dispersal dynamics 

while also capturing the complexity inherent to forest insect infestation phenomena. This 

is particularly useful in decision-making for forest insect infestation eradication because 

the spatio-temporal patterns of the EAB species can be quantified and forecasting and 

the robustness of the species to eradication measures or other disruptions in the 

landscape at a variety of scales can be explored. This dissertation contributes to 

research in epidemiological modelling by further advancing and supporting the 

development of robust complex systems modelling approaches that represent disease 

transmission dynamics as a function of heterogeneities over space and time. 

Epidemiological modelling approaches that are flexible and offer the opportunity to be 

parameterized for specific case studies can be useful for to the enhancement of 

decision-making processes by providing a tool that can be used in forecasting and for 

the testing of ‘what if’ scenarios. The proposed GNA, N-ABM, and NEAT approaches are 

general, flexible, and widely applicable. Besides the applications explored in this 

dissertation, these approaches can be applied to represent complex spatial systems in 

the application areas of human mobility and transportation, sociology, urban planning, 

and environmental science. 
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