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Abstract

Compressed sensing (CS) provides effective techniques for the recovery of a sparse vector
from a small number of measurements by finding a solution to an underdetermined linear
system. In recent years, CS has attracted substantial attention in applied mathematics,
computer science and electrical engineering, and it has the potential to improve many ap-
plications, such as medical imaging and function approximation. One standard technique
for solving the CS problem is `1 minimization; however, the performance of `1 minimization
might be limited for many practical applications. Hence, in the past few years, there are
many investigations into how to modify the `1 minimization approach so that better perfor-
mance can be achieved. One such approach is weighted `1 minimization. In this thesis, we
extend the weighted `1 minimization technique, traditionally used to solve the standard CS
problem, to other applications. First, we develop a variance-based joint sparse (VBJS) algo-
rithm based on weighted `1 minimization to solve the multiple measurement vector (MMV)
problem. Unlike the standard `2,1 minimization method for this problem, the VBJS method
is easily parallelizable. Moreover, we observe through various numerical experiments that
the VBJS method often uses fewer measurements to reach the same accuracy as the `2,1

minimization method. Second, we apply weighted `1 minimization to the high-dimensional
function approximation problem, focusing on the case of gradient-augmented measurements.
The high-dimensional function approximation problem has many applications, including un-
certainty quantification (UQ), where it arises in the task of approximating a quantity of
interest (QoI) of a parametric differential equation (DE). For a fixed amount of computa-
tional cost, we see in various examples that, with additional gradient information, better
approximation results are often achieved compared to non-gradient augmented sampling.
Theoretically, we prove that, with the same sample complexity as the case of function sam-
ples only, the gradient-augmented problem gives a better error bound in a stronger Sobolev
norm as opposed to an L2 norm. Finally, we use the adjoint sensitivity analysis method to
compute the gradient information. As we show, this method computes the gradient samples
of the QoI of a parametric DE with around the same computational cost as computing
the samples of the QoI itself. We apply this approach to several parametric DE problems,
and numerically demonstrate the benefits of incorporating gradient information into the
approximation procedure.
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• ȳ – sample point of the d-dimensional parameter
• x – one-dimensional physical variable for the parametric DEs
• x = (x1, . . . , xn) – n-dimensional physical variable for the parametric DEs
• D – the d-dimensional parameter space
• Ω – the n-dimensional physical domain for the parametric DEs
• ∂Ω – the boundary for the physical domain Ω
• ΓD – the boundary satisfies non-homogenous Dirichlet condition
• ΓN – the boundary satisfies homogenous Newmann condition
• u – solution for the parametric DEs
• uh – finite-dimensional approximated solution of u
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Chapter 1

Introduction

The task of reconstructing a signal from a given number of measurements appears in signal
processing problems. Mathematically, such a reconstruction problem can be understood as
recovering a vector x ∈ CN from measurements y ∈ Cm through a linear system

y = Ax,

where A ∈ Cm×N is the sampling matrix. Often, we allow the measurements to contain
noise. Then, the linear system becomes

y = Ax+ e,

where e ∈ Cm is the noise vector. Basic linear algebra suggests that, in order to recover
x, at least N measurements are needed. In fact, if m < N , the linear system to solve is
underdetermined and has infinitely many solutions. Thus, we will not be able to recover x
for the case m < N without any additional information. About fifteen years ago, Candès,
Romberg and Tao [32] and Donoho [53] published two separate works showing that, given
that the vector x is sparse, it is possible to recover the vector with far fewer samples than
this linear algebra intuition suggests. These two works introduced a new area of research
called compressed sensing (CS), which provides efficient techniques for recovering sparse
signals from a small number of measurements. CS techniques have many applications in
various fields, such as medical image processing, sparse approximation, error correction,
etc. For more information, see [59, §1.2].

1.1 The standard compressed sensing problem

Before introducing the standard compressed sensing (CS) problem, some notation and def-
initions are required. We use [N ] to denote the set {1, 2, . . . , N}. We write ∆̄ for the com-
plement [N ]\∆ of a set ∆ ⊆ [N ]. Let x = (xn)Nn=1 ∈ CN . For ∆ ⊆ [N ], we define x∆ ∈ CN

1



by

(x∆)n =

xn, n ∈ ∆

0, otherwise
.

For a matrix A ∈ Cm×N and a subset ∆ ⊆ [N ], we use A∆ to denote an m × N matrix
having nth column equal to the nth column of matrixA whenever n ∈ ∆ and zero otherwise.
|∆| denotes the cardinality of a set ∆. The support of x is defined as

supp(x) = {n : xn 6= 0} ⊆ {1, . . . , N}.

Definition 1.1.1. A vector x ∈ CN is s-sparse for some 1 ≤ s ≤ N if

||x||0 := |supp(x)| ≤ s.

In practice, it is rare that the vector to recover is exactly sparse. This motivates the
following definition.

Definition 1.1.2. Let x ∈ CN and 0 < p ≤ ∞. The `p norm of the best s-term approxi-
mation error is

σs(x)p := inf{‖x− z‖p, z ∈ CN is s-sparse}.

Informally, we say the vector x ∈ CN is compressible if σs(x)p decreases quickly in s.
For simplicity, now we consider the case of noiseless measurements and set up the stan-

dard CS problem. A standard CS problem consists in reconstructing an s-sparse vector
x ∈ CN with a small number of measurements y = Ax ∈ Cm by solving a linear equation

Az = y. (1.1.1)

Some common choices of the sampling matrix A used in CS are a Bernoulli or Gaussian
random matrix, subsampled discrete Fourier Transform (DFT) matrix, etc. Since x is sparse,
it is natural for us to seek a solution of (1.1.1) by solving an `0 minimization problem

min
z∈CN

||z||0 subject to Az = y, (1.1.2)

where ‖z‖0 = |{n : zn 6= 0}|. In fact, as shown in [59, §2.2], for a matrix A ∈ Cm×N and an
s-sparse vector x ∈ CN , the following two properties are equivalent:

(i) The vector x is the unique s-sparse solution of (1.1.1), that is, {z ∈ CN : Az =
Ax, ‖z‖0 ≤ s} = {x}.

(ii) The vector x can be reconstructed as the unique solution of (1.1.2).
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This ensures that the vector x can be recovered by solving the `0 minimization problem
(1.1.2). However, the optimization problem (1.1.2) is non-convex and NP-hard. For more
information on NP-hardness of `0 minimization, see [59, §2.3]. So, in practice, instead of
(1.1.2), one often solves its convex relaxation: an `1 minimization problem. The `1 mini-
mization problem is defined by

min
z∈CN

||z||1 subject to Az = y, (1.1.3)

where ||z||1 =
∑N
n=1 |zn|. The problem (1.1.3) is also called basis pursuit (BP), which is

first introduced by Chen, Donoho, and Saunders in [38]. A more general version of (1.1.3),
which allows noisy measurements y = Ax+ e, is defined by

min
z∈CN

||z||1 subject to ||Az − y||2 ≤ η, (1.1.4)

for some η ≥ 0. Note that we assume that the noise bound ‖e‖2 ≤ η holds. This `1

minimization problem (1.1.4) is called quadratically constrained basis pursuit (QCBP).
It is expected that, by seeking a solution of the BP problem, we can recover the sparse

vector x. Figure 1.1 gives a simple illustration of the fact that the `1 norm promotes sparsity.
However, it is not the case for the solution of the `2 minimization problem

min
z∈CN

||z||2 subject to Az = y,

as shown on the right of Figure 1.1.

`1 norm `2 norm

Figure 1.1: Illustration of the sparsity promoting of `1 norm. The line is the feasible set {z : Az = y}.
The diamond (left) is the `1 ball and the circle (right) is the `2 ball. The intersection point x̂ is the
minimal `1 norm solution (left) or `2 norm solution (right). The `1 norm solution is 1-sparse and
the `2 norm solution is not sparse.

Note that the BP problem is closely related to the least absolute shrinkage and selection
operator (LASSO) problem [113], which is often seen in the statistics literature [59, §3.1].
Beyond `1 minimization, various greedy algorithms can also be used to solve a standard
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CS problem. Among them, two of the most common algorithms are: orthogonal matching
pursuit (OMP) [116] and compressive sampling matching pursuit (CoSaMP) [100]. For
references on other algorithms, see [59, §3].

1.2 The compressed sensing theory

After introducing the standard compressed sensing (CS) problem, now we switch our at-
tention to CS theory, which provides recovery guarantees to ensure a stable and robust
recovery of vector x. In CS, stable recovery means that we can recover a vector x with an
error controlled by the distance from x to the set of s-sparse vectors and robust recovery
means that the distance from the recovered x̂ to the original x is controlled by the mea-
surement error η [59, §4.2 & §4.3]. There are two types of recovery guarantees considered in
CS, known as uniform and nonuniform recovery guarantees. Uniform recovery guarantees
provide a condition on matrix A which ensures recovery for all vectors x. On the other
hand, nonuniform recovery guarantees provide conditions on matrix A and vector x which
ensure recovery for a fixed vector x. Thus, we can see that uniform guarantees are stronger
than nonuniform guarantees, and uniform recovery guarantees imply nonuniform recovery
guarantees [59, §9.2].

Before stating an example of a uniform recovery guarantee, we first need to define the
robust null space property.

Definition 1.2.1. The matrix A ∈ Cm×N is said to satisfy the robust null space property
(rNSP) of order s with constants 0 < ρ < 1 and τ > 0 if

‖x∆‖2 ≤
ρ√
s

∥∥x∆̄
∥∥

1 + τ‖Ax‖2

for all x ∈ CN and ∆ ⊆ [N ] with |∆| ≤ s.

The following theorem shows that the rNSP implies stable and robust recovery.

Theorem 1.2.2. [7, Thm 5.14] Suppose the matrix A ∈ Cm×N satisfies the rNSP of order
s with constants 0 < ρ < 1 and τ > 0. For all x ∈ CN and y = Ax + e ∈ Cm, where
‖e‖2 ≤ η for some η ≥ 0, any minimizer x̂ ∈ CN of (1.1.4) satisfies

‖x̂− x‖1 ≤ C1σs(x)1 + C2
√
sη,

‖x̂− x‖2 ≤ C3
σs(x)1√

s
+ C4η,

where the constants C1, C2, C3, C4 are given by

C1 = 2
(1 + ρ

1− ρ

)
, C2 = 4τ

1− ρ, C3 = (3ρ+ 1)(ρ+ 1)
(1− ρ) , C4 = (3ρ+ 5)τ

(1− ρ) .
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It is typically hard to obtain the rNSP of the matrix A directly. Instead, we show that
the matrix A satisfies the property called restricted isometry property (RIP), which gives
a sufficient condition for the rNSP to hold, and then leads to stable and robust recovery of
x. For details on how the RIP implies the rNSP, see [59, Thm. 6.13].

Definition 1.2.3. Let 1 ≤ s ≤ N . The sth restricted isometry constant (RIC) δs of a
matrix A ∈ Cm×N is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ||Ax||
2
2 ≤ (1 + δ)‖x‖22,

for all s-sparse vectors x ∈ CN . If 0 < δs < 1, then the matrix A is said to have the
restricted isometry property (RIP) of order s.

Then, the following theorem gives a uniform guarantee for stable and robust recovery
of x.

Theorem 1.2.4. [29, Thm 1.3] Suppose that A ∈ Cm×N satisfies the RIP of order 2s with
constant

δ2s <
√

2− 1.

Let x ∈ CN and y = Ax+ e, where ‖e‖ ≤ η for some η ≥ 0. Then, a solution x̂ ∈ CN of
(1.1.4) satisfies

‖x̂− x‖1 ≤ C1σs(x)1 + C2
√
sη,

‖x̂− x‖2 ≤ C3
σs(x)1√

s
+ C4η,

where the constants C1, C2, C3, C4 depend on δ2s only.

The concept of RIP is closely related to the uniform uncertainty principle (UUP), which
is introduced by Candès and Tao in [34]. Later, they refined the UUP to be the RIP in [33],
and proved that if the sampling matrix A satisfies δs+ δ2s+ δ3s ≤ 1, then by solving (1.1.3)
we can recover any s-sparse signal x exactly. When there are noisy measurements, Candès,
Romberg and Tao showed in [31] that, with δ3s + 3δ4s < 2, stable and robust recovery of
any x can be achieved by solving (1.1.4). An improved condition of δ2s <

√
2− 1 (shown in

the above theorem) was first obtained by Candès in [29].
As mentioned earlier, there are various ways to set the sampling matrix A. We now

present a uniform recovery guarantee for Gaussian or Bernoulli random matrix as an ex-
ample.

Definition 1.2.5. Let A ∈ Rm×N be a matrix.

• A is a Gaussian random matrix if its entries are independent standard Gaussian
random variables.
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• A is a Bernoulli random matrix if its entries are independent Rademacher random
variables, i.e. taking values ±1 with equal probability.

Theorem 1.2.6. [7, Thm 5.19] Let 0 < ε < 1, 1 ≤ s ≤ N and

m & s · log(eN/s) + log(2ε−1). (1.2.1)

Suppose that A = 1√
m
Ã, where Ã ∈ Cm×N is a Gaussian or Bernoulli random matrix. Then

the following holds with probability at least 1− ε. For any x ∈ CN and y = Ax+ e ∈ Cm,
where ‖e‖2 ≤ η for some η ≥ 0, all minimizers x̂ ∈ CN of (1.1.4) satisfy

‖x̂− x‖1 . σs(x)1 +
√
sη,

‖x̂− x‖2 .
σs(x)1√

s
+ η,

where σs(x)1 is as in Definition 1.1.2.

Note that, here and throughout this thesis, the notation A & B or A . B is used to
mean there exists a constant c > 0 independent of all parameters such that A ≥ cB or
A ≤ cB.

Theorem 1.2.6 should be understood as follows. With a high probability, stable and
robust recovery of any x ∈ CN can be achieved via the QCBP problem, when the sample
complexity (1.2.1) holds. Note that the sample complexity (1.2.1) depends linearly on s, up
to log factors in N/s and the failure probability. Moreover, if x is exactly s-sparse, with
noiseless measurements, exact recovery is obtained through BP problem.

Unlike uniform recovery guarantees, which are proved by showing that the matrix A
satisfies the RIP, nonuniform recovery guarantees are proved by showing the existence of a
dual vector (also called dual certificate). Note, for a complex number z ∈ C, we define the
sign of z by

sign(z) = z

|z|
, z ∈ C\{0}, sign(0) = 0.

If z = (zn)Nn=1 ∈ CN is a vector, then sign(z) = (sign(zn))Nn=1 ∈ CN is the vector of
component-wise signs.

The following theorem gives an example of a nonuniform recovery guarantee.

Theorem 1.2.7. [59, Thm. 4.33] Let a1, . . . ,aN be the columns of A ∈ Cm×N , let x ∈ CN

with s largest absolute entries supported on ∆, and let y = Ax + e with ‖e‖2 ≤ η. For
δ, β, γ, θ, τ ≥ 0 with δ < 1, assume that

‖A∗∆A∆ − I‖2 ≤ δ, max
l∈∆̄
‖A∗∆al‖2 ≤ β,

6



and there exists a vector u = A∗h ∈ CN with h ∈ Cm such that,

‖u∆ − sign(x∆)‖2 ≤ γ,
∥∥u∆̄

∥∥
∞ ≤ θ, and ‖h‖2 ≤ τ

√
s.

If ρ = θ + βγ/(1− δ) < 1, then any minimizer x̂ of (1.1.4) satisfies

‖x̂− x‖2 ≤ C1σs(x)1 + (C2 + C3
√
s)η,

for some constants C1, C2, C3 > 0 depending only on δ, β, γ, θ, τ .

Note that the vector u constructed here is the so-called inexact dual vector. We see that
there is an extra factor of

√
s in the error bound of Theorem 1.2.7 compared to the error

bound from Theorem 1.2.4. This is a common difference between a nonuniform recovery
guarantee and a uniform recovery guarantee, which happens because weaker conditions
than the RIP are imposed on the matrix A [7, §5.4] [59, §4.4].

1.3 Weighted `1 minimization

As mentioned in §1.1, `1 minimization is the standard technique for solving the classical
compressed sensing (CS) problem. However, it has been seen in many practical applications
the performance of the `1 minimization technique could be poor. Thus, in recent years, there
are many works on investigating how to modify the `1 minimization method so that a better
performance could be achieved. One simple way to do this is to replace the `1 norm with
the weighted `1 norm, where the weights are chosen to incorporate some prior knowledge of
the problem being solved. This weighted `1 minimization technique has gained increasing
attention in CS in the past few years. Recovering sparse signals via weighted `1 minimization
with prior known support information has been widely studied. See [23, 35, 60, 78, 97, 121],
for instance. Similar to the `1 minimization, the weighted `1 minimization problem has the
form

min
z∈CN

||z||1,w subject to Az = y,

where ||z||1,w =
∑N
n=1wn|zn| and w is a positive weight vector. With noisy measurements,

the problem becomes

min
z∈CN

||z||1,w subject to ||Az − y||2 ≤ η.

The idea of using weighted `1 minimization in CS was first introduced by Candès, Wakin
and Boyd in [35]. In [35], the authors pointed out that, if the sparse structure of the signal is
known, one should use small weights to encourage the nonzero entries and large weights to
penalize the zero entries, so that a better recovery result can be obtained. Demonstrations
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of the benefits of including weights were presented in [35] through a series of numerical
experiments. A theoretical analysis of sparse recovery with weighted `1 minimization was
shown in [60]. As proved in [60], with at least 50% of the accurate estimate of the partial
support, a weaker RIP, compared to the one shown in [31], is sufficient for stable and
robust recovery of x via weighted `1 minimization. A generalization of [60], which considers
arbitrarily many distinct weights, was studied by Needell, Saab and Woolf in [99]. An
example of random Gaussian recovery with weighted `1 minimization was studied in [90].
As shown in Theorem 5 of [90], compared to the standard `1 minimization, significantly
fewer measurements than m & s log(N/s) (as shown in Theorem 1.2.6) are sufficient for
obtaining stable and robust recovery of x with Gaussian random matrix via weighted `1

minimization, especially when an accurate support estimate is known.

1.4 Contributions and outline

In this thesis, we extend the weighted `1 minimization technique, which is traditionally used
to reconstruct a sparse vector in compressed sensing (CS), to other applications.

The main contributions of this thesis are:

• We develop a variance-based joint sparse (VBJS) method for solving the multiple
measurements vector (MMV) problem, which is easily parallelizable and more effective
compared to other standard methods.

• We apply weighted `1 minimization to the approximation of high-dimensional func-
tions, with a focus on the case of gradient-augmented measurements. As we show
numerically and theoretically, this leads to better approximations over the standard,
non-gradient augmented case.

• We apply this approach to approximate quantities of interest (QoIs) of parametric
differential equations (DEs). As we show, the gradient samples of these QoIs can
be computed cheaply via the adjoint sensitivity analysis method. Numerically, this
gradient-augmented approach gives better approximations than those obtained from
sampling only the QoI itself.

The outline of this thesis is as follows:

• Chapter 2: In this chapter, we introduced a variance-based joint sparse algorithm for
the multiple measurement vector problem, based on weighted `1 minimization. We
illustrate the effectiveness of this new algorithm with a set of synthetic experiments
and with applications to one-dimensional signal recovery and parallel Magnetic Res-
onance Imaging. The work presented in Chapter 2 is based on [6], co-authored with
Ben Adcock, Ann Gelb and Guohui Song. Rodrigo Platte helped us run the numerical
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experiments shown as Figure 2.3, Table 2.1 and Table 2.2 on a cluster at Arizona
State University.

• Chapter 3: In Chapter 3, we apply the weighted `1 minimization technique to the
high-dimensional function approximation problem. In particular, we work on the high-
dimensional function approximation problem with gradient-augmented sampling. A
set of nonuniform recovery guarantees for this gradient-augmented weighted `1 mini-
mization problem, along with numerical demonstrations on the benefits of additional
gradient sampling, are also presented in Chapter 3. The work presented in Chapter 3
is based on [8], co-authored with Ben Adcock.

• Chapter 4: In Chapter 4, we introduce the adjoint sensitivity analysis method for
generating gradient samples. Various examples for approximating quantities of interest
of parametric differential equations with gradient-augmented samples via weighted `1

minimization are also presented in Chapter 4.

• Chapter 5: Conclusions for this thesis and some topics for future work are presented
in Chapter 5.
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Chapter 2

The multiple measurement vector
problem

The multiple measurement vector (MMV) problem arises in many applications such as
Magnetoencephalography (MEG) [50], magnetic resonance imaging (MRI) [84, 87], video
based face recognition [86], and synthetic aperture radar (SAR) imaging [22,39]. Unlike the
standard compressed sensing (CS) problem, which aims to recover one sparse signal, the
MMV problem in CS considers the recovery of a set of signals x1, . . . ,xC ∈ CN with joint
sparsity, which is a term introduced by Baron et al. in [15].

Definition 2.0.1. A collection of vectors {x1, . . . ,xC} is s-joint sparse if each vector is
s-sparse and the support sets of those vectors overlap, i.e.

|supp(x1) ∪ . . . ∪ supp(xC)| ≤ s,

where, for a vector x = (xi)Ni=1, supp(x) = {i : xi 6= 0}.

From Definition 2.0.1, we can see that signals with joint sparsity have similar supports.
Although these signals can be recovered separately with classical CS procedure, e.g.

`1 minimization, we seek to develop an algorithm which can achieve the same level of
accuracy as individual recovery with fewer measurements by exploiting the joint sparsity
information. Within the past one and a half decades, there have been many works on de-
veloping algorithms for the MMV problem with joint sparsity exploitation. Typically, these
algorithms are modifications of the algorithms for the standard CS problem. For instance,
MMV basic matching pursuit (M-BMP) [50, §IV.A ], MMV orthogonal matching pursuit
(M-OMP) [50, §IV.B ], MMV order recursive matching pursuit (M-ORMP) [50, §IV.C ], si-
multaneous orthogonal matching pursuit (S-OMP) [116] and block MMV (BMMV) [61, §3]
are extended versions of the matching pursuit (MP) algorithms for the standard compressed
sensing problem. Simultaneous hard thresholding pursuit (SHTP) [58] and simultaneous it-
erative hard thresholding (S-IHT) [88] for the MMV problem are modified versions of the
thresholding-based algorithms. For other algorithms, see [21, 131] and references therein.
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Among all these algorithms, the most common approach is to solve an `2,1 minimization
problem:

min
Z∈CN×C

||Z||2,1 subject to ||AZ − Y ||F ≤ η. (2.0.1)

Here, if X = (xic)N,Ci,c=1 ∈ CN×C is a matrix, we define the `2,1 norm by

||X||2,1 =
N∑
i=1

(
C∑
c=1
|xic|2

)1/2

.

The Frobenious nom of X is defined by

‖X‖F = ‖X‖2,2 =
(

N∑
i=1

C∑
c=1
|xic|2

)1/2

.

The measurement matrix Y is defined the same way as shown in §2.1.1.
This `2,1 minimization approach for the MMV problem can be seen as an analogue for the

popular `1 minimization procedure for single sparse vector recovery. For references on `2,1

minimization and its generalization for the MMV problem, see [50,54,55,115,120,123,130].
Particularly, in [54], the authors provided a sufficient condition on robust and efficient
recovery for a set of signals with block-sparse structure, which can be considered as a
generalization of the MMV problem.

Although the `2,1 minimization approach provides an effective way to solve the MMV
problem, we should not ignore a drawback for this method is that it is difficult to parallelize,
since the recovery of those signals is inherently coupled. For instance, one `2,1 minimization
problem requires solving an optimization problem of size N ×C, where C is the number of
signals and N is the signal length. When the number of signals is large, the time used to
solve the `2,1 minimization problem becomes increasingly long. With this in mind, we aim
to develop a new recovery algorithm which is easily parallelizable and can reach the same
accuracy as `2,1 minimization with fewer measurements. In this chapter, we will introduce
a variance-based joint sparse algorithm, which is based on the weighted `1 minimization
method for the standard CS problem, to solve the MMV problem. We will demonstrate
through various numerical experiments that this variance-based joint sparse algorithm is
favourable in terms of both computational time and accuracy compared to the `2,1 mini-
mization approach.

2.1 The variance-based joint sparse (VBJS) recovery

In this section, we will set up the multiple measurement vector (MMV) problem and intro-
duce the variance-based joint sparse (VBJS) recovery algorithm.
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2.1.1 The set-up of the MMV problem

In this chapter, we consider the recovery of a set of C ≥ 1 signals with joint sparsity, which
are denoted as x1, . . . ,xC ∈ CN . Note that, in practice, these signals often are not sparse
in nature themselves, but under some orthogonal sparsifying transform, e.g. discrete cosine
transform (DCT) or wavelet transform [83]. Whenever necessary, we write

X = [x1| · · · |xC ] ∈ CN×C ,

for the corresponding matrix to be recovered. Moreover, we consider measurements of the
form

yc = Acxc + nc, c = 1, . . . , C, (2.1.1)

where n1, . . . ,nC ∈ Cm are noise vectors andA1, . . . ,AC ∈ Cm×N are taken as the standard
sampling matrices in compressed sensing (CS), e.g. subsampled discrete Fourier transform
(DFT) matrix. In this chapter, we shall assume that there is a known priori noise bound
for each signal, i.e.

‖nc‖2 ≤ ηc, c = 1, . . . , C.

Moreover, often it will be the case that

A = A1 = · · · = AC ,

although this condition is not necessary for the developments that follow. In this chapter,
we only consider this latter case. Thus, now we may rewrite (2.1.1) as

Y = AX +N ,

where
Y = [y1| · · · |yC ] ∈ Cm×C , N = [n1| · · · |nC ] ∈ Cm×C .

With this in hand, the objective for us is to recover x1, . . . ,xC (or equivalently X) from
the measurements y1, . . . ,yC (or Y ). Here, we consider the undetermined setting where m
(the number of measurements) is much smaller than N (the signal dimension).

2.1.2 The variance-based joint sparse (VBJS) recovery algorithm

Before introducing the variance-based joint sparse (VBJS) recovery algorithm for solving
(2.1.1), we will make two more assumptions:

1. The supports of the vectors are similar, i.e. supp(x1) ≈ supp(x2) ≈ · · · ≈ supp(xC).
Equivalently, the joint sparsity of x1, . . . ,xC does not greatly exceed the sparsity of
each of the individual vectors.
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2. The coefficients of the vectors are reasonably distinct. Specifically, the vector v =
(vi)Ni=1 of element-wise variances

vi = 1
C

C∑
c=1

(xic)2 −
(

1
C

C∑
c=1

xic

)2

, i = 1, . . . , N,

is nonzero, and we have supp(v) ≈
⋃C
c=1 supp(xc).

Both assumptions are reasonable in practice. The first assumption is taken from the defini-
tion for joint sparsity. As mentioned earlier, in this chapter, we work on recovering a set of
signals with joint sparsity. In other words, this first assumption is the starting assumption
for the problems to be considered in this chapter. The second assumption gives a necessary
requirement to see the benefits of joint sparsity. If all vectors xc, c = 1, . . . , C, are identical,
with the same sampling matrix A, we expect to get exactly the same measurements vectors
yc. There is no additional joint sparsity information conveyed to the MMV problem. We
should emphasize that, when either of these assumptions does not hold, the VBJS recovery
algorithm will still succeed. However, none of the joint sparsity recovery algorithms expect
to achieve the same level of accuracy with fewer measurements than the individual recovery
of the signals xc.

The VBJS recovery algorithm is described as follows:

1. Recover the vectors xc, c = 1, . . . , C separately using the standard `1 minimization:

min
z∈CN

‖z‖1 subject to ‖Az − yc‖2 ≤ ηc, c = 1, . . . , C,

where η1, · · · , ηc are the noise bounds for each signal. The recovered results are denoted
by x̌1, . . . , x̌C .

2. Compute the element-wise variance of the vectors x̌c = (x̌ic)Ni=1, c = 1, . . . , C. That
is, compute v = (v̌i)Ni=1, where

v̌i = 1
C

C∑
c=1

(x̌ic)2 −
(

1
C

C∑
c=1

x̌ic

)2

, i = 1, . . . , N.

3. The two assumptions made above suggest that v should carry information about the
shared support of the xc. Specifically, v̌i should be large when the index i belongs to
this support, and v̌i ≈ 0 otherwise. Hence we compute a vector of nonnegative weights
w = (wi)Ni=1 based on this information, where wi ≥ 0. In particular, we choose small
wi when v̌i is large and large wi when v̌i ≈ 0.

4. Solve C weighted `1 minimization problems to get the final reconstruction of each
vector xc:
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min
z∈CN

‖z‖1,w subject to ‖Az − yc‖2 ≤ ηc, c = 1, . . . , C,

where the weighted `1,w norm is defined by

‖z‖1,w =
N∑
i=1

wi|zi|.

We denote the final reconstructions as x̂1, . . . , x̂c.

We observe that, comparing with the `2,1 minimization approach, the VBJS algorithm is
easily parallelizable, since the computationally intensive steps (steps 1 and 4) each require
to solve C separate (weighted) `1 minimization problems. Steps 2 and 3 require communi-
cations between cores, but are extremely cheap in comparison. Thus, for the problem with
a large number of C, we expect to see a significant reduction in computational time when
using the VBJS method, compared to using `2,1 minimization.

In step 2, we compute the element-wise variance vector v = (v̌i)Ni=1 so that we can get
an estimate of the joint support information of the xc based on v. To be more specific, if
v̌i is large, then the index i belongs to the shared support. If v̌i is small, then the index i is
not in the support. Then, in step 4, we put large weights at the indices which are not in the
support to enforce small entries. Conversely, we put small weights at the indices which are
in the support to encourage nonzero entries. The idea of using weighted `1 minimization
with weights chosen based on shared support information in step 4 is inspired by [60].

2.1.3 Different weighting strategies

The key in step 3 of the VBJS algorithm is to compute a vector of weights w ∈ RN , which
can capture the shared support information of the vectors xc reasonably well, so that a
better recovery of xc in step 4 than in step 1 can be achieved. Now, in this subsection, we
shall describe two different strategies for picking w, which will be examined numerically in
§2.2.1.

• Cutoff weights:

We get an estimation of the shared support set Γ by setting i ∈ Γ when

v̌i ≥ γ, for a fixed parameter γ > 0. (2.1.2)

Then, we define the weights vector w by

wi =

1, i /∈ Γ

σ, i ∈ Γ
,

where σ is a fixed small positive number.
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Note that since the parameters γ, σ are fixed here, the cutoff weights may not be the best
idea when there are various scales in the variance v. Thus, we should seek for a different
strategy, which defines weights wi directly based on the variance vector v.

• Reciprocal weights:

We fix a tolerance ε > 0, and set the weights

wi = 1
v̌i + ε

. (2.1.3)

By setting weights this way, we see that if v̌i is small, which suggests that the index i
is not in the support set, then wi is large. Conversely, if v̌i is large, then wi is small.
This reciprocal weighting strategy is inspired by [35].

2.2 Numerical results

We now present several synthetic experiments to illustrate the effectiveness of the VBJS
algorithm. For comparative purposes, we also consider (i) separate recovery of the C signals
via `1 minimization (equivalent to step 1 of the VBJS algorithm); (ii) recovery of individual
signals via two-step reweighted `1 minimization (details in §2.2.2); and (iii) joint sparse
recovery via `2,1 minimization (as in (2.0.1)). Our comparison is accomplished by analyzing
the performance of each method on randomly generated sets of sparse vectors of a given size
N . Specifically, for each fixed m (number of measurements) and s (sparsity), we proceed as
follows:

1. Fix a number of trials T . For each trial t = 1, . . . , T :

(i) Generate a support set S ⊆ {1, . . . , N} uniformly at random with size |S| = s.

(ii) Define vectors x1, . . . ,xC such that supp(x1) = . . . = supp(xC) = S. The
nonzero entries xic, c = 1, . . . , C, i ∈ S, are drawn independently from the
standard normal distribution.

(iii) Generate a sampling matrix A and compute measurements yc = Axc, c =
1, . . . , C.

(iv) Compute the reconstructions x̂1, . . . , x̂C using the desired method (`1 minimiza-
tion, two-step reweighted `1 minimization, VBJS or `2,1 minimization).

(v) Compute the normalized error Et =
√∑C

c=1 ‖xc − x̂c‖
2
2
/∑C

c=1 ‖xc‖
2
2 for each

method.

Finally, average the recovery error Et over the trials, E = 1
T (E1 + . . .+ ET ).

2. Repeat step 1 for different values of s and m as required.
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Note that it is possible to compute other quantities of interest, such as the computational
time, in a similar manner. We may also compute the empirical success probability p, defined
as the fraction of trials which successfully recover the vectors x1, . . . ,xC within a given
tolerance, i.e. Et < tol for some fixed tolerance tol.

There are various options for generating the sampling matrix in step (iii). Since it
frequently arises in applications, we choose A to be a subsampled DFT matrix. That is, we
construct a set Ω ⊆ {1, . . . , N} of size m uniformly at random and let

A = 1√
m
PΩF ,

where F ∈ CN×N is the DFT matrix and PΩ ∈ Cm×N is the matrix that selects rows of F
corresponding to the indices in Ω. The factor 1√

m
is a normalization constant, and ensures

that E(A∗A) = I. The above procedure also requires a number of parameters. Throughout,
we shall choose them as N = 256, T = 20 and tol = 10−3, which is consistent with similar
experiments performed in, for example, [98].

We also require a numerical solver for all four of the optimization problems considered:
`1 minimization, two-step reweighted `1 minimization, weighted `1 minimization and `2,1

minimization. Unless otherwise specified, we use the SPGL1 package [118,119] with its de-
fault parameter values, except for the maximum number of iterations which is set to 10,000.
Since the data in this experiment is noiseless, we solve equality-constrained minimization
problems (i.e. η = 0 or ηc = 0 respectively). All numerical experiments are performed on a
MacBook Pro with 2 cores, a 2.9GHz Intel Core i7 processor, and 8BG DDR3 RAM, unless
specified.

2.2.1 Comparison with different weighting strategies

Figure 2.1 plots the recovery error and success probability versus the number of measure-
ments m for a fixed sparsity s using the VBJS algorithm with different values of cutoff
parameter γ (defined as (2.1.2)). For simplicity, we set the corresponding weights w with
σ = γ. In all the plots, the usual transition behavior in success probability is observed as the
number of measurements increases. However, the recovery result is sensitive to the value of
γ. For all experiments, we see improvements of the phase transitions when γ decreases from
1 to 10−1. But, the phase transitions get worse as the value of γ decreases beyond 10−1.
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Figure 2.1: Recovery error (top row) and success probability (bottom row) against m for VBJS on
randomly-generated sparse vectors with sparsity s = 64. The cutoff weights were used with various
values of γ.

Figure 2.2 plots the recovery error and success probability versus m for a fixed sparsity
s using VBJS with various different values of the weighting parameter ε in (2.1.3). As seen
from the results with cutoff weights, the usual phase transition behavior is observed as the
number of measurements passes through a certain threshold. As expected, larger values
of ε yield worse phase transitions, since the prior information obtained from the variance
vector is less heavily exploited. However, we observe that decreasing ε beyond 10−2 does
not improve the recovery results. This suggests that, in practice, the reciprocal weights is
more reliable than the cutoff weights. With this in mind, for remaining experiments in this
section, we will use the reciprocal weights with ε = 10−2.

2.2.2 Comparison with other methods and solvers

In this subsection, we compare the VBJS method with three other methods:

1. separate recovery of the individual signals via `1 minimization (i.e. step 1 of the VBJS
algorithm),

2. two-step reweighted `1 minimization of the individual signals (see below),

3. joint sparse recovery via `2,1 minimization (as in (2.0.1)).

Note that method 2 is similar to the VBJS method, except that the weights do not use
any joint information. Instead, following the reweighted `1 minimization procedure [35], for
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Figure 2.2: Recovery error (top row) and success probability (bottom row) against m for VBJS
on randomly-generated sparse vectors with sparsity s = 64. The reciprocal weights were used with
various values of ε.

each signal, the weights w = wc = (wic)Ni=1 are chosen according to

wic = 1
|x̌ic|+ ε

.

For accurate approximations of |x̌ic|, reweighted `1 minimization achieves better perfor-
mance over `1 minimization for recovery of a single vector. Note that we limit ourselves to
two steps for consistency with the VBJS method.

Figure 2.3 reports the recovery error, success probability and average computational time
versus m for a fixed sparsity s for each of the four methods. Unsurprisingly, `1 minimization
has the lowest computational time, since it requires only C `1 minimization solves of size
N which are done in parallel, followed by the VBJS (2C solves of size N done in parallel)
and then `2,1 minimization (one solve of size NC). As expected, the two-step reweighted
(rw) `1 minimization uses similar computational time as the VBJS since both methods
involve 2C solves of size N done in parallel. The VBJS method also achieves the best
performance. For instance, with C = 24 signals, successful recovery requires only around
80 measurements per signal, in comparison to around 128 for `2,1 minimization. In other
words, the `2,1 minimization requires over 50% additional measurements to recover the same
signals accurately.
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Figure 2.3: Comparison of `1 minimization, two-step reweighted (rw) `1 minimization, VBJS and
`2,1 minimization for sparsity s = 64. The rows show the error (top), success probability (middle)
and average time (bottom) versus m for each method. For this and the results shown in Tables 2.1
and 2.2 computations were performed on a cluster with 48 physical cores (96 logical cores), Intel
Xeon E5-4657L v2 processors, 2.90GHz, and 512GB of RAM memory.

The full phase transition plots, which show the success probability v.s. s/N and m/N ,
and the phase transition curves, which are the curves showing the phase transition from
successful recovery to unsuccessful recovery, for each method are shown in Figures 2.4 and
2.5, which give a further illustration of the benefit of the VBJS method. It is worth pointing
out that, as shown in both figures, the VBJS method exhibits a phase transition curve which
is close to the optimal m = s line. For more information on phase transition, see [52].
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Figure 2.4: Phase transition diagrams for `1 minimization, rw `1 minimization, VBJS and `2,1 min-
imization for C = 12 signals using T = 10 trials. The diagrams show the success probability for
values 1 ≤ s ≤ N and 1 ≤ m ≤ N .
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Figure 2.5: Phase transition curves for `1 minimization, rw `1 minimization, VBJS and `2,1 mini-
mization using T = 10 trials. The curves show the phase transition from successful recovery (below
the line) to unsuccessful recovery (above the line). The criterion for successful recovery used was an
empirical success probability p > 0.75.

Up to this point, we have used the SPGL1 package to solve all the optimization problems.
For completeness, in Figure 2.6, we repeat the experiments of Figure 2.3 using the YALL1
[129] and CVX [65] packages. Similar results are produced by these packages, with VBJS
giving a consistently better phase transition than `1 minimization, rw `1 minimization and
`2,1 minimization in all cases.
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Figure 2.6: Comparison of `1 minimization, rw `1 minimization, VBJS and `2,1 minimization for
sparsity s = 64 using CVX (top row), YALL1 (middle row) and SPGL1 (bottom row). The plots
show the success probability versus m for each method and package.

2.2.3 Signals with partially overlapping supports

Up to now, in all numerical experiments, the signals xc are assumed to be s-sparse and have
a common support S with |S| = s. In practice, it may be more realistic to assume that only
a fraction of the support is shared. We next present several experiments of this scenario.

To model this set-up, we introduce a parameter 0 < τ ≤ 1 corresponding to the fraction
of shared supports. We then replace steps (i) and (ii) used in the previous experiments with
the following:

(i′) Generate a support set S ⊆ {1, . . . , N} uniformly at random with size |S| = bτsc.
Generate supports sets S1, . . . , SC ⊆ {1, . . . , N}\S uniformly and independently at
random with size |Sc| = s− bτsc for c = 1, . . . , C.

(ii′) Define vectors x1, . . . ,xC such that supp(xc) = S ∪ Sc, c = 1, . . . , C. The nonzero
entries xic, c = 1, . . . , C, i ∈ S, are drawn from the standard normal distribution.
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In other words, each signal has roughly τs elements in the common support S, and (1− τ)s
elements in a unique support Sc. Note that τ = 1 corresponds to the set-up for the previous
experiments.

The top row of Figure 2.7 show the success probability for the VBJS method with various
different values of τ using weights as in (2.1.3). As is evident, the performance of the VBJS
method quickly declines as τ decreases. However, this is due to the choice of weights, which,
while well suited to the τ = 1 case, produce incorrectly scaled weights to effectively handle
the partially shared support case. Fortunately, a different weighting strategy can overcome
this issue (shown as the bottom row of Figure 2.7). The new weighting strategy, called
energy weights, consists of five steps shown as follows:

1. Choose δ ∈ (0, 1) and σ ∈ (0, 1).

2. Sort the variance vector v into decreasing order to form a new vector v∗. Let I be the
index set of sorted indices, i.e. v∗i = vI(i).

3. Determine the smallest K ≤ N such that

K∑
k=1

v∗k ≥ (1− δ)
N∑
n=1

vn.

4. Define the set T := {I(1), · · · , I(K)}.

5. Choose weights wi = σ if i ∈ T and wi = 1 if i /∈ T .

Unlike the previous weights, the energy weights strategy constructs a candidate support
set T that capture all but δ of the variance information, and then uses a binary weighting
strategy based on whether an index i is inside or outside T . Note that a similar approach
has been used in [60]. This new weighting strategy requires choosing two parameters δ and
σ. However, as shown in Figure 2.7, the performance is fairly insensitive to the choice of the
parameter σ. Meanwhile, in Figure 2.8, a similar behavior is seen with respect to the other
parameter δ. Henceforth, we use the values δ = 0.05 and σ = 10−2. Finally, we note that
it is still possible for T to be non-unique, for example if vi = vj for some i, j ∈ [1, . . . , N ].
This is generally unlikely to happen, and most often should only affect the case where there
is very small overlap of support (i.e., τ is small).
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Figure 2.7: Comparison of the success probability for two weighting strategies with various τ . Results
for weights as in (2.1.3) are shown in the top, and the energy weights with δ = 0.05 are shown in
the bottom.
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Figure 2.8: Comparison of the success probability with varying δ and σ = 10−2 for various τ .

Figure 2.9 compares this weighting strategy with the other three methods (defined in
§2.2.2) for various different τ . For larger τ , we see the VBJS method offers the best perfor-
mance. On the other hand, as τ decreases its performance in comparison to `1 minimization
and the two-step reweighted `1 minimization declines. This is to be expected: as the frac-
tion of shared support decreases, there is less benefit to promoting joint sparsity structure.
Interestingly, `2,1 minimization offers very poor performance, even when τ is close to one.
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Figure 2.9: Phase transition curves for `1 minimization, rw `1 minimization, VBJS and `2,1 mini-
mization with δ = 0.05 and σ = 10−2 for various τ . The criterion for successful recovery is defined
the same ways as in Figure 2.5.

2.3 Application to one-dimensional signal recovery

In this section, we consider using the VBJS method to recover a sequence of one-dimensional
signals, and we are interested in comparing the recovery results of the VBJS method to `2,1

minimization. The sequence of one-dimensional signals to recover is defined by

f(i, c) =


2 cos

(
ic
CN

)
, 0 ≤ i < N√

8 ,

sin
(
ic
CN

)
, N√

8 ≤ i <
N√

2 ,

− c
C ,

N√
2 ≤ i ≤ N.

for i = 1, . . . , N and c = 1, . . . , C. Thus, the (i, c)th position of the signal matrix X is
defined by xic = f(i, c).

Recall, signals are often not sparse in nature, but under some orthogonal sparsifying
transform [83]. For this experiment, we sparsify this set of signals with the Haar wavelet
transform [89, §7.2.2] by using the Rice wavelet toolbox [14]. This toolbox is also used for
those experiments shown in §2.4 and §2.5. Now the `1 minimization problems to solve in
step 1 of the VBJS method become

min
z∈CN

||Φz||1 subject to Az = yc, c = 1, . . . , C,

where Φ ∈ CN×N is the Haar wavelet transform basis. The same modifications apply to the
weighted `1 minimization problems to solve in step 4 and the `2,1 minimization problems.
In step 4 of the VBJS method, we use reciprocal weights with ε = 10−2. We construct a
subsampled DFT matrix A ∈ Cm×N by keeping the frequencies

Ω = Ω1 ∪ Ω2,
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where Ω1 = {−m/4, . . . ,m/4−1} contains all the lowestm/2 frequencies of the DFT matrix
and Ω2 ⊆ {−N/2, . . . , N/2− 1}\Ω1 contains m/2 frequencies chosen uniformly at random.

Figure 2.10 shows the error versus m and the signal-to-error ratio (SER) versus m for
C = 20 and N = 256 , when either the VBJS method or `2,1 minimization is applied. Here,
the SER is computed as

SER = −20 log10

(∥∥∥X − X̂∥∥∥
F

/
‖X‖F

)
.

The experiment is repeated for 10 times and the recovery error is computed the same way
as in §2.2. We see that, with small number of measurements, the VBJS method has a clear
improvement compared to the standard `2,1 minimization. The improvement is maximized
when m = 32. However, as the number of measurements increases, the improvement lessens.
For m ≥ 48, both methods have about the same performance.
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Figure 2.10: Recovery error (left) and SER = −20 log10

(∥∥∥X − X̂∥∥∥
F

/
‖X‖F

)
in dB (right), where

X̂ is the recovered signal matrix, with VBJS and `2,1 minimization under Haar wavelet transform.

Snapshots of recovered signals when either the VBJS method or `2,1 minimization is
applied with m = 32 are shown in Figure 2.11. It can be clearly seen from those plots that
the recovered results with the VBJS method are more accurate than `2,1 minimization. This
result matches with what we have found in Figure 2.10.
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Figure 2.11: Comparison of the recovered results with VBJS and `2,1 minimization for c = 4, 8, 16.

2.4 Application to parallel Magnetic Resonance Imaging

In this section, we consider applying the VBJS method for parallel Magnetic Resonance
Imaging (MRI) recovery. Unlike the standard MRI machine, a parallel MRI machine has
multiple sensors to acquire data simultaneously which can provide more overall measure-
ments for image recovery. Parallel MRI can be considered as an application of the parallel
acquisition model [44]. Note that the gradient-augmented high-dimensional function ap-
proximation problem, which will be studied in Chapter 3, can be reformulated as a parallel
acquisition model. For details, see §3.8.1. Here, we apply the standard discrete parallel MRI
model, which has also been considered in [45,68]. Assume x ∈ CN is the vectorized image to
recover. If the parallel MRI machine has in total C coils, then the measurements acquired
in cth coil are given by

yc = AGcx+ nc ∈ Cm,

where matrix A = 1√
m
PΩF is a normalized subsampled DFT with size m × N and nc is

the noise vector. The matrix Gc = diag(gc) ∈ CN×N is a diagonal matrix intrinsic to the
particular coil, where the vector gc ∈ CN is known as the sensitivity profile. The sensitivity
profile is a complex function that usually attenuates the image away from the physical
location of the coil. We define the coil images as

xc = Gcx,
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i.e. the overall image x multiplied by the sensitivity profile matrix Gc. Then, the mea-
surements acquired in cth coil can also be written as yc = Axc + nc. Figure 2.12 gives an
example of sensitivity profiles and coil images for C = 4. The complex sensitivity profiles are
computed using the Biot–Savart law, as described in [68]. Here, we use the MRI Phantom
package [62,68] to generate coil images of the GLPU phantom and the complex sensitivity
profiles. Those images are color coded using the domain coloring method for visualizing
complex numbers [125, §2.5].

Coil c = 1 Coil c = 2 Coil c = 3 Coil c = 4

Coil Image c = 1 Coil Image c = 2 Coil Image c = 3 Coil Image c = 4

Figure 2.12: Complex sensitivity profiles (top) and coil images (bottom).

There are many methods available for reconstructing parallel MRI images, which can
be simply divided into two categories [45]:

(i) Coil-by-coil image reconstruction methods, such as GeneRalized Auto-calibrating Par-
tially Parallel Acquisitions (GRAPPA) [67] and iTerative Self-consistent Parallel Imag-
ing Reconstruction (SPIRiT) [82].

(ii) Single image reconstruction methods, such as SENSitivity Encoding SENSE method
[103].

Here, we focus primarily on coil-by-coil methods. There are two stages involved in those
methods: One first computes approximate coil images x̂1, . . . , x̂C , and then combines them
to get an approximation x̂ to the overall image x. The first stage can be performed using `2,1

minimization. The `2,1 minimization technique is first introduced to the parallel MRI context
in [85] and known as the calibration-less multi-coil (CaLM) MR reconstruction method. In
this numerical experiment, we compare `2,1 minimization with the VBJS method.
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An advantage of coil-by-coil recovery methods is that they can avoid calibration of
the sensitivity profiles Gc. Typically, this calibration step requires an additional pre-scan,
which can be time-consuming [45]. Moreover, if the sensitivity profiles are not well estimated
during the pre-scan, then a poor recovery result of the overall image can be expected [7].
To avoid this, the second stage (recovery of x from the recovered coil images) is performed
using a sum-of-squares procedure:

x̂i =

√√√√ C∑
c=1
|x̂ic|2, i = 1, . . . , N. (2.4.1)

Unfortunately, this procedure can introduce additional inhomogeneity artifacts to the re-
construction caused by the geometry of the coil. For more details on this, see [45, §VII.B].
Since our main objective in this section is to compare methods for recovering the coil images,
we shall avoid the sum-of-squares procedure, and instead use the least-squares fit

x̂ = argmin
z∈CN

C∑
c=1
‖Gcz − x̂c‖22. (2.4.2)

Note that since matrices Gc are diagonal, the solution of (2.4.2) can be conveniently ex-
pressed as

x̂i =
∑C
c=1 x̂icgic∑C
c=1 |gic|2

, i = 1, . . . , N,

where gc = (gic)Ni=1. This procedure avoids the inhomogeneity artifacts introduced into the
sum-of-squares, at the expense of having to know (or pre-compute) the sensitivity profiles.

In the following experiment, we compare the recovery of the analytical phantom image
shown in Figure 2.13 (from [68]) using `2,1 minimization and the VBJS method, followed
by the least-squares fit (2.4.2) in both cases. We use the same measurements for each
method, taken as radial line sampling in Fourier space (see Figure 2.13). This is a typical
sampling procedure for parallel MRI reconstruction. We assume there is Gaussian random
noise with variance 10−3 added into these measurements. We vary the number of radial lines
to taken and the number of coils to see how they change the recovery results. To be more
specific, in this experiment, the number of lines is varied from 37 (corresponding to 29.7%
sampling of whole Fourier space) to 93 (corresponding to 64.6% sampling), and the number
of coils are C = 8, 16, 32. As is standard in sparse MRI reconstruction, in both cases, we
use the db4 wavelets [89, §7.2.3] as the sparsifying transform. For the VBJS method, we
use the reciprocal weights shown as (2.1.3), which we have found to give slightly better
reconstruction error than the energy weights introduced in §2.2.3.
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Figure 2.13: 256× 256 phantom image (left) and radial sampling map (right).

Tables 2.1 and 2.2 show the signal-to-error ratio (SER) and computational time for both
methods. Here, the SER is defines as

SER = −20 log10 (‖x− x̂‖2/‖x‖2) .

In the same manner as the experiments shown in §2.2, the VBJS method both requires less
time to compute the reconstruction and achieves a consistently higher SER. In particular,
for large numbers of coils and radial lines, the time saving is by a factor of between 2 and
4.

C = 8

no. of lines 37 45 53 61 69 77 85 93
VBJS SER 21.32 23.54 25.95 28.48 30.93 33.70 36.58 39.32
`2,1 min SER 20.77 22.93 25.08 27.43 29.66 32.32 35.08 37.73

C = 16

no. of lines 37 45 53 61 69 77 85 93
VBJS SER 21.20 23.41 25.73 28.19 30.59 33.31 36.14 38.81
`2,1 min SER 20.76 22.94 25.08 27.40 29.69 32.38 35.09 37.55

C = 32

no. of lines 37 45 53 61 69 77 85 93
VBJS SER 21.20 23.41 25.73 28.19 30.58 33.29 36.16 38.81
`2,1 min SER 20.75 22.87 25.06 27.45 29.67 32.32 35.09 37.60

Table 2.1: Signal-to-error ratio (SER) = −20 log10 (‖x− x̂‖2/‖x‖2) in dB for each method, where
x̂ is the recovered image and C is the number of coils.
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C = 8

no. of lines 37 45 53 61 69 77 85 93
VBJS time 113.10 55.96 48.20 42.44 39.87 28.95 32.92 25.64
`2,1 min time 70.81 83.03 71.38 81.20 34.91 49.47 42.25 39.17

C = 16

no. of lines 37 45 53 61 69 77 85 93
VBJS time 56.59 40.79 34.98 35.19 30.53 27.57 27.86 21.38
`2,1 min time 67.87 142.70 81.64 68.70 82.22 78.63 51.58 60.94

C = 32

no. of lines 37 45 53 61 69 77 85 93
VBJS time 67.35 65.32 49.67 46.80 36.21 27.58 29.95 25.92
`2,1 min time 101.89 103.95 103.99 154.28 83.43 100.08 110.93 77.32

Table 2.2: Computational time (in seconds) for each method, where C is the number of coils.

2.5 Application to color image

Finally, in this section, we apply the VBJS method to color image recovery. Color images
have three channels - Red (R), Green (G) and Blue (B), which are highly correlated. It means
that, at position i, if there is a large coefficient in the R channel, then it is likely to have a
large coefficient at the same location in G and B channels [83]. Thus, we can reformulate a
color image recovery problem as a multiple measurement vector (MMV) problem.

In this experiment, we compare the recovery of the colored Shepp-Logan phantom image
shown in Figure 2.14 by using the VBJS method, `2,1 minimization and `1 minimization
(step 1 of the VBJS method). We use the same noiseless measurements for each method
with the sampling matrix taken to be a subsampled DFT matrix A ∈ Cm×N . To form this
matrix A, we keep the frequencies Ω = Ω1 ∪Ω2, where Ω1 contains m/2 samples as a circle
centered at the zero frequency of the DFT matrix and Ω2 contains m/2 samples uniformly
random sampled outside of the circle. An example of the sampling pattern shown in Figure
2.14. Here, we apply the same sparsifying transform and weighting strategy as in §2.3.
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Figure 2.14: 128× 128 Shepp-Logan phantom image (left) and sampling pattern (right).

Table 2.3 shows the signal-to-error ratio (SER), defined the same way as in §2.3, for all
methods with varying percentages of sampling. As we expected, both the VBJS method and
`2,1 minimization give better recovery results than `1 minimization. However, surprisingly,
the VBJS method always gives less accurate recovery results compared to `2,1 minimization.

sampling percentage 15% 20% 25% 30% 35%
`1 min SER 19.71 23.78 27.07 34.42 39.84

VBJS method SER 19.88 24.25 27.78 35.62 41.42
`2,1 min SER 20.39 24.77 28.52 37.34 43.06

Table 2.3: Signal-to-error ratio (SER) in dB for all methods with various percentages of sampling.
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Chapter 3

The high-dimensional function
approximation problem

In many science and engineering problems, approximating an analytic and high-dimensional
function f from a limited number of measurements is often required. Recall that a function f
is analytic if it can be locally expressed as a convergent Taylor series [114, Chpt. 8]. Analytic
functions are infinitely differentiable; therefore, extremely smooth. This high-dimensional
function approximation problem has gained a lot attention in recent years, driven by the fact
that it has various applications including uncertainty quantification (UQ), risk assessment,
optimization and control. In UQ, a high-dimensional function approximation problem often
arises when computing a quantity of interest (QoI) for a parametric partial differential
equation (PDE). In this case, we have a high-dimensional parametric PDE:

Lu(y;x) = 0,

where L is a differential operator, x is a set of physical variables, and y ∈ Rd for d � 1,
is a high-dimensional parameter vector defined on the domain D. Here, the task is to
approximate the QoI, q(y) = Q(u(y, ·)), from a small number of discrete samples. Note
that we often have a limited number of samples available due to the fact that each sampling
requires a solve of the parametric PDE, which can be very expensive computationally. The
operator Q is defined as a linear functional acting on the solution u of the parametric PDE.
For example, a typical QoI to compute is the solution u of the parametric PDE at a given
point in the physical domain. It can often be shown that the QoI is an analytic and high-
dimensional function in the parameter domain [16, 43]. Thus, such a QoI approximation
problem can be considered as an analytic and high-dimensional function approximation
problem.
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As a typical set-up, we assume this analytic, high-dimensional function f to approximate
can be expressed as an expansion in an orthogonal multivariate polynomial basis, that is

f =
∑
n∈Nd0

cnφn.

This set-up is often referred to as polynomial chaos expansion, which is first introduced by
Wiener in [126] and has been used in many subsequent works. See [1,2,41], for instance. In
order to approximate f , we first draw m samples f(y1), . . . , f(ym) randomly and indepen-
dently with respect to some probability measure. The goal is to obtain an approximation of
f by recovering its s-term expansion coefficients in a finite index set accurately from those
samples of f . This approximation problem is often solved by applying the least-square
method [40, 47, 48, 71, 94–96, 109]. However, in recent years, there is an increasing focus
on applying compressed sensing (CS) techniques, e.g. the `1 minimization or weighted `1

minimization technique, to solve this problem [1, 2, 70, 101, 106–108, 112, 128], given that
an analytic, high-dimensional function often has a nearly sparse representation in certain
orthogonal polynomial basis, e.g. tensor Legendre or Chebyshev polynomials [2, 43]. For
more details and discussions related to the convergence rate on function approximation
with orthogonal polynomials, see [5] [110, Chpt. 8] [114, Chpt. 8].

In this chapter, we will apply the weighted `1 minimization technique in compressed
sensing to the high-dimensional function approximation problem. In particular, we will work
on the gradient-augmented high-dimensional function approximation problem, where both
function value f and its gradient value ∇f are sampled. Note that this gradient-augmented
high-dimensional approximation problem can be viewed as a multivariate extension of the
Hermite interpolation problem from numerical analysis. This gradient-augmented problem
comes across in many UQ applications (See [102], for example, and references therein), since
it is often the case in practice that gradient samples can be computed with about the same
amount of cost as computing the function samples using the adjoint sensitivity analysis
method [110, §10.2] [28, §IV]. Thus, for high-dimensional problems, with a fixed amount
of computational cost, we expect to obtain substantially more information by considering
a gradient-augmented problem compared to the unaugmented problem. The objective for
this chapter is to demonstrate that, with additional gradient information, a better recovery
result can be obtained. Moreover, we will provide a theoretical justification on how extra
gradient information improves the recovery. As a further note, in Chapter 4, we will show
in detail how to compute the gradient samples with the adjoint sensitivity analysis method
and several examples on recovering quantities of interest of parametric differential equations
will also be presented.
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3.1 Previous work

Recovery of sparse polynomial chaos expansions with compressed sensing (CS) has been
widely studied in recent years. Theoretical guarantees for sparse univariate Legendre poly-
nomial expansions recovery via unweighted `1 minimization were first presented in [107]. The
first work concerned the problem of recovering sparse multivariate trigonometric polyno-
mial expansions through unweighted `1 minimization was presented in [106]. As an extension
of [106] and [107], theoretical results for approximating sparse multivariate trigonometric
and Legendre polynomials expansions via weighted `1 minimization were presented in [108].
For uniform recovery guarantees for high-dimensional function approximation with lower
sets assumption via weighted `1 minimization, see [43]. A related work on nonuniform re-
covery guarantee for high-dimensional function approximation via weighted `1 minimization
was established in [2].

In recent years the gradient-augmented high-dimensional function approximation prob-
lem has gained increasing attention. Tang made a first investigation on using gradient-
augmented sampling for sparse Legendre approximation via `1 regularization in [112]. The
first theoretical result for recovery of Hermite polynomial expansions with gradient-augmented
unweighted `1 minimization was provided in [102]. The authors have shown in [102] that,
with gradient-augmented sampling, a better null space property and a smaller coherence
are obtained, which provide sufficient conditions for a successful recovery. For details on
how the null space property implies a stable and robust recovery, we refer to Chapter 1.
Related work on gradient-augmented unweighted `1 recovery of sparse Jacobi polynomial
chaos expansions can be found in [69]. For the work on gradient-augmented unweighted `1

recovery of sparse trigonometric polynomial expansions, see [127].
Finally, for high-dimensional function approximation problem with applications in UQ,

see [3, 12, 16, 40, 92, 95, 104]. For gradient-augmented problem with applications in UQ,
see [9, 80,81,102].

3.2 Notation

In this section, we will define some notation. Throughout this chapter, y = (y1, . . . , yd) ∈ D
denotes the d-dimensional variable, whereD = (−1, 1)d is the d-dimensional domain. For the
one-dimensional case, we have y ∈ (−1, 1). We write ν(y) for a probability density function
on (−1, 1) and ν(y) =

∏d
i=1 ν(yi) for the corresponding tensor-product probability density

function on D. The square-integrable polynomials spaces with respect to ν are denoted by
L2
ν(D) and L2

ν(−1, 1) respectively. We write ‖·‖L2(D) and ‖·‖L2(−1,1) for the corresponding
norms, and the inner products are written as 〈·, ·〉L2(D) and 〈·, ·〉L2(−1,1).
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Let {φn(y)}∞n=0 be a one-dimensional orthonormal basis of L2
ν(−1, 1). The corresponding

tensor-product orthonormal basis {φn(y)}n∈Nd0 of L2
ν(D) is then written as

φn(y) =
d∏

k=1
φnk(yk), n = (n1, . . . , nd) ∈ Nd0,

where n = (n1, . . . , nd) is a multi-index in Nd0. Here, the orthonormal bases we are partic-
ularly interested in are Legendre and Chebyshev polynomial bases, which are special cases
of the ultraspherical and Jacobi families of polynomials.

Jacobi polynomials. For parameters α, β > −1 and n ∈ N0, let P (α,β)
n be the Jacobi polyno-

mial of degree n. Jacobi polynomials are orthogonal on (−1, 1) with respect to the weight
function ω(α,β)(y) = (1− y)α(1 + y)β, and satisfy

〈P (α,β)
n , P (α,β)

m 〉L2
ω(α,β)

= κ(α,β)
n δn,m,

where
κ(α,β)
n = 2α+β+1

2n+ α+ β + 1
Γ(n+ α+ 1)Γ(n+ β + 1)
Γ(n+ 1)Γ(n+ α+ β + 1) .

These polynomials satisfy a three-term recurrence relation:

P
(α,β)
0 (y) = 1, P

(α,β)
1 (y) = 1

2(α+ β + 2)y + 1
2(α− β),

2n(n+ α+β)(2n+ α+ β − 2)P (α,β)
n (y)

= (2n+ α+ β − 1)
(
(2n+ α+ β)(2n+ α+ β − 2)y + α2 − β2

)
P

(α,β)
n−1 (y)

− 2(n+ α− 1)(n+ β − 1)(2n+ α+ β)P (α,β)
n−2 (y), n = 2, 3, 4, . . .

Let c(α,β) =
∫ 1
−1 ω

(α,β)(y) dy.We define a probability density function ν(y) = ω(α,β)(y)
c(α,β) . Then

the corresponding orthonormal Jacobi polynomials with respect to ν(y) are given by

φn(y) = P
(α,β)
n (y)√
κ

(α,β)
n c(α,β)

, n ∈ N0.

That is,
〈φn, φm〉L2

ν
= δn,m, for n,m ∈ N0.

Ultraspherical polynomials. Ultraspherical polynomials belong to the family of Jacobi poly-
nomials, and they are Jacobi polynomials with α = β. Ultraspherical polynomials are or-
thogonal on (−1, 1) with respect to the weight function ω(α,β)(y) = (1− y2)α.

35



Legendre polynomials. Legendre polynomials belong to the family of Jacobi polynomials.
They are Jacobi polynomials with α = β = 0 and are orthogonal on (−1, 1) with respect to
the weight function ω(α,β)(y) = 1.

Chebyshev polynomials. Chebyshev polynomials belong to the family of Jacobi polynomials.
They are Jacobi polynomials with α = β = −1

2 and are orthogonal on (−1, 1) with respect
to the weight function ω(α,β)(y) = (1− y2)−1/2. Chebyshev polynomials satisfy the general
formula

P (−1/2,−1/2)
n (y) = cos(nΘ), Θ = arccos(y), for n ≥ 0.

For more information on the family of Jacobi polynomials, see [111, Chpt. IV].
We write the function to approximate as f : D → C. We approximate f with an

expansion in the basis {φn}n∈Nd0 , that is

f =
∑
n∈Nd0

cnφn.

Thus, in order to approximate f , we need to reconstruct the vector of coefficients c =
(cn)n∈Nd0 ∈ `

2(Nd0). However, c is an infinite vector. In order to recover it, we first need to
truncate the expansion of f using a finite multi-index set Λ ⊂ Nd0 with cardinality N = |Λ|
and consider recovering the coefficient vector in this finite set Λ. We also use ∆ to denote
a finite multi-index set, typically of size |∆| = s, which corresponds to the coefficients of f
that give the best or quasi-best s-term approximation. Or, more frequently in this chapter,
the best or quasi-best s-term approximation in lower sets, which will be defined later.

We consider approximating f withm samples taken at points denoted by y1, . . . ,ym. We
choose those sampling points randomly and independently with respect to some probability
measure. We let µ(y) denote the sampling probability measure on (−1, 1). The corresponding
tensor-product sampling probability measure is then written as µ(y) =

∏d
i=1 µ(yi). Note

that, typically, but not always, we have µ = ν.
The `2 norm and inner product on either CN or `2(Nd0) are denoted by ‖·‖2 and 〈·, ·〉

respectively. We write ‖·‖1,w for the norm on the weighted space `1w(Nd0) as

‖c‖1,w =
∑
n∈Nd0

wn|cn|,

where w = (wn)n∈Nd0 is an infinite vector of positive weights. For finite vectors of positive
weights in RN , the ‖·‖1,w norm is defined likewise.

Finally, we let ∂k be the partial derivative operator with respect to yk, i.e. ∂/∂yk, for
k = 1, . . . , d. For k = 0, ∂0 simply denotes the identity operator, i.e. ∂0f = f .
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3.3 Formulation as a weighted `1 minimization problem

In this section, we will show how to formulate the high-dimensional function approximation
problem as a weighted `1 minimization problem. As defined in §3.2, {φn}n∈Nd0 denotes a
tensor-product orthonormal basis of L2

ν(D), where ν is a tensor-product probability density
function. Then we can write any f ∈ L2

ν(D) as

f =
∑
n∈Nd0

cnφn, cn = 〈f, φn〉L2
ν(D). (3.3.1)

The finite vector of coefficients is denoted by c = (cn)n∈Nd0 ∈ `
2(Nd0). It has been indicated

in §3.2, in order to approximate f , we first need to truncate the expansion (3.3.1) using a
finite multi-index set Λ. The truncated expansion is written as

f = fΛ + eΛ =
∑
n∈Λ

cnφn +
∑
n/∈Λ

cnφn. (3.3.2)

For reasons discussed in §3.4, given s ≥ 1, we choose Λ as the hyperbolic cross index set of
degree s:

Λ = ΛHC
s =

{
n ∈ Nd0 :

d∏
k=1

(nk + 1) ≤ s+ 1
}
. (3.3.3)

Let
n1, . . . ,nN , (3.3.4)

be an ordering of the multi-indices in Λ. Then we write cΛ = (cn)n∈Λ = (cnj )Nj=1 ∈ CN for
the corresponding finite vector of coefficients. Here and throughout this chapter we shall
index over the multi-index set Λ or the index set {1, . . . , N} (using (3.3.4)) interchangeably.
The meaning will be clear from the context.

Let µ be another tensor-product probability density function onD. For technical reasons,
we assume that

sup
y∈D

√
ν(y)/µ(y)|φn(y)| <∞, ∀n ∈ Nd0. (3.3.5)

Note that this condition holds in particular when µ = ν and the φn are polynomials. Let
y1, . . . ,ym ∈ D be sample points, drawn independently and randomly according to µ. If

A = 1√
m

(
φnj (yi)

)m,N
i,j=1

∈ Cm×N , (3.3.6)

is the sampling matrix, then we have a system of linear equations

f = AcΛ + e, (3.3.7)
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where f ∈ Cm and e ∈ Cm are given by

f = 1√
m

(f(yi))mi=1 , e = 1√
m

(eΛ(yi))mi=1 . (3.3.8)

Suppose the tail error e satisfies
‖e‖2 ≤ η, (3.3.9)

for some known η ≥ 0. Given a vector of weights w = (wn)n∈Λ with wn ≥ 1, ∀n, we
consider solving the weighted `1 minimization problem

min
z∈CN

‖z‖1,w subject to ‖Az − f‖2 ≤ η. (3.3.10)

If ĉ ∈ CN is a minimizer of this problem, then the resulting approximation to f is given by

f̂ =
∑
n∈Λ

ĉnφn. (3.3.11)

Note that, in practice, a tail error bound such as (3.3.9) may not be available, since the
error e depends on the unknown function f . For theoretical results on sparse recovery under
unknown errors, see [3, 4, 27].

Before stating a recovery guarantee for the weighted `1 minimization problem (3.3.10),
we need to introduce several additional definitions. First, for a vector of weights w = (wn)
with wn > 0 and a set ∆ ⊂ Nd0, the weighted cardinality of ∆ is defined by

|∆|w =
∑
n∈∆

w2
n. (3.3.12)

Given ν, µ and {φn}n∈Nd0 as in §3.2, we define the intrinsic weights u = (un)n∈Nd0 as

un = sup
y∈D

√
ν(y)/µ(y)|φn(y)|. (3.3.13)

As mentioned in [2, 4], for tensor Chebyshev polynomials with samples drawn from the
Chebyshev measure, we have

un = sup
y∈D
|φn(y)| = 2|n|0/2,

where |n|0 = |{k : nk 6= 0}| for n = (n1, . . . , nd) ∈ Nd0. For tensor Legendre polynomials
with samples drawn from the uniform measure, we have

un = sup
y∈D
|φn(y)| =

d∏
k=1

√
2nk + 1.
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With this in hand, we have the following recovery guarantee for the non-gradient aug-
mented weighted `1 problem (3.3.10):

Theorem 3.3.1. [4, Thm. 2] Let Λ ⊂ Nd0 with |Λ| = N , 0 ≤ ε ≤ e−1, η ≥ 0, w = (wn)n∈Λ
be a vector of weights with wn ≥ 1, ∀n, c ∈ `2(Nd0) and ∆ ⊂ Λ, ∆ 6= ∅ be any fixed set.
Draw y1, . . . ,ym independently according to the measure ν. Let A, f and e be as in (3.3.6)
and (3.3.8) respectively and suppose that η satisfies (3.3.9). Then, with probability at least
1− ε, any minimizer ĉ of (3.3.10) satisfies

‖c− ĉ‖2 . λ
√
|∆|w

(
η + ‖c− cΛ‖1,u

)
+ ‖c− c∆‖1,w,

provided

m &

(
|∆|u + max

n∈Λ\∆

{
u2
n

w2
n

}
|∆|w

)
L, (3.3.14)

where λ = 1 +
√

log(ε−1)
log
(
2n
√
|∆|w

) and L = log(ε−1) log
(
2n
√
|∆|w

)
.

Theorem 3.3.1 provides a nonuniform recovery guarantee for the unaugmented weighted
`1 minimization problem (3.3.10). Suppose the coefficient vector c is exactly sparse. With
∆ = supp(c) and η = 0, the exact recovery of c is obtained when condition (3.3.14) holds.
Moreover, in order to minimize the right-hand side of (3.3.14), we should pick w = u,
so that the second term inside of the parentheses is equal to the first term inside of the
parentheses. In other words, the intrinsic weights are the optimal weights for the problem.
The same conclusion could be reached from the main result for the gradient-augmented
weighted `1 minimization problem, stated as Theorem 3.7.1.

3.4 Lower sets

In [59, Chpt. 12], the authors presented theoretical results for recovering an approximately
sparse vector x ∈ CN using `1 minimization when the sampling matrix A is assumed to
be associated to a bounded orthonormal system. Note that the `1 minimization problem
solved there can be seen as the weighted `1 minimization problem (3.3.10) with wn = 1.
Those results shown in [59, Chpt. 12] imply that, for sparse recovery of an orthonormal
polynomial expansion, a sample complexity

m & K2s× log factors (3.4.1)

is sufficient to attain the best s-term approximation with `1 minimization. Here, K =
supn∈Λ ‖φn‖L∞(D) denotes the bound for the underlying orthonormal basis [2, 4, 43]. As
shown in [4,41,43,49,128], when the best s-term approximation of a d-dimensional multivari-
ate polynomial expansion is considered, this sample complexity can become exponentially-
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large in d. For example, when using Chebyshev polynomials with samples drawn from
the Chebyshev measure, this sample complexity becomes m & 2d × log factors. Similarly,
for Legendre polynomials with sampling with respect to the Chebyshev measure, the best
known sample complexity is m & 3d × log factors [2, 43, 107]. These results indicate that
high-dimensional function approximation with `1 minimization may suffer from the curse of
dimensionality in the sample complexity [4, 43]. The terminology, curse of dimensionality,
is introduced by Bellman in [19], which describes the exponential blow-up behavior of the
complexity with increasing dimension of the problem [4,43].

However, recent work [2, 4, 43] has shown that such sample complexity is not sharp.
We are able to recover polynomial coefficients with a much lower sample complexity by
exploiting the additional sparse structure that polynomial coefficients of analytic and high-
dimensional functions possess. Specifically, the lower set structure:

Definition 3.4.1. A set ∆ ⊆ Nd0 is lower if whenever n = (n1, . . . , nd) ∈ ∆ and n′ =
(n′1, . . . , n′d) ∈ Nd0 satisfies n′k ≤ nk, k = 1, . . . , d, then n′ ∈ ∆.

Lower sets (also known as monotone or downward closed sets) have been studied exten-
sively in the context of multivariate polynomial approximation [2,4,40,41,49]. In particular,
it has been shown in [42] that, for recovering solutions of a broad class of parametric PDEs,
there exist sequences of lower sets of cardinality s which have the same approximation error
decay rate as those of the best s-term approximation.

Note that the union of all lower sets of size at most s is precisely the hyperbolic cross
index set of size s ⋃

{∆ : |∆| ≤ s, ∆ lower} = ΛHC
s , (3.4.2)

where

ΛHC
s =

{
n ∈ Nd0 :

d∏
k=1

(nk + 1) ≤ s+ 1
}
. (3.4.3)

Thus, unless specified, we take the hyperbolic cross index set of size s as the finite multi-
indices set from where the approximation of f is sought, i.e. Λ = ΛHC

s . Then, we can
estimate the approximation error in terms of the `1w-norm error of the best lower s-term
approximation of c:

σs,L(c)1,w = inf
{
‖c− z‖1,w : z ∈ `1w(Nd0), |supp(z)| ≤ s, supp(z) lower

}
. (3.4.4)

Here, supp(z) = {n : zn 6= 0} is the set of indices where zn is nonzero. As mentioned above,
for functions arising as solutions of parametric PDEs, σs,L(c)1,w is a reasonable surrogate
for the true best s-term approximation

σs(c)1,w = inf
{
‖c− z‖1,w : z ∈ `1w(Nd0), |supp(z)| ≤ s

}
.
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A series of recent works [2,4,43] have studied the problem of high-dimensional function
approximation in lower sets via weighted `1 minimization problem. The following theorem
gives the result for approximating with tensor-product Chebyshev or Legendre polynomial
expansions:

Theorem 3.4.2. [4, Thm. 3] Let Λ = ΛHC
s defined as (3.4.3) with |Λ| = N , 0 < ε < e−1,

η ≥ 0, c ∈ `2(Nd0) and ∆ ⊆ Λ be a lower set and |∆| ≤ s with s ≥ 2. Draw y1, . . . ,ym

independently according to the measure ν. Let A, f and e be as in (3.3.6) and (3.3.8)
respectively and suppose that the tail error satisfies ‖e‖2 ≤ η. Set weights w = u = (un)n∈Λ

with un = ‖φn‖L∞, and let {φn}n∈Nd0 be the tensor Legendre or Chebyshev basis. Then, any
minimizer ĉ of (3.3.10) satisfies

‖c− ĉ‖2 . λsγ/2
(
η + ‖c− cΛ‖1,u

)
+ σs,L(c)1,u,

where σs,L(c)1,u is defined as (3.4.4), with probability at least 1− ε, provided

m & sγ log(ε−1) min{d+ log(s), log(2d) log(s)}, (3.4.5)

where λ = 1 +
√

log(ε−1)
log(s) and γ = log(3)/ log(2) or γ = 2 in the Chebyshev or Legendre case

respectively.

Theorem 3.4.2 has shown that quasi-best s-term approximation in lower sets can be
obtained by solving a weighted `1 minimization problem with a suitable choice of weights.
Note that the error bound obtained here is a mixed (`2, `1) error bound, which is standard
for nonuniform recovery guarantees in compressed sensing. This result gives a quasi-best
s-term approximation, in the sense that the error is bounded by the best lower s-term
approximation up to a constant factor. It is also worth pointing out that, if the vector c
is exactly s-sparse and η = 0, then an exact recovery of c is obtained. Moreover, it can
be clearly seen that the sample complexity, shown as (3.4.5), is significantly smaller than
(3.4.1), since (3.4.5) is at most logarithmic in the dimension d and polynomial in s.

As a final remark, Theorem 3.4.2 gives a nonuniform recovery guarantee. Uniform re-
covery guarantees for this problem have been shown in [4,43]. Compared to the nonuniform
recovery guarantee, the uniform recovery guarantee gives a better error bound by a factor of
1/(sγ/2) when a larger log factor in sample complexity is applied. It is a common difference
between nonuniform recovery guarantees and uniform recovery guarantees in compressed
sensing.

For more references on high-dimensional function approximation in low sets with appli-
cations in parametric PDEs, see [40–42,49].
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3.5 The set-up for the gradient-augmented problem

In the previous sections, we have derived the non-gradient augmented weighted `1 mini-
mization problem and introduced the concept of lower sets. In this section, we will set up
the gradient-augmented weighted `1 minimization problem, which will be solved in order to
approximate the high-dimensional function. Here, we aim to use those additional gradient
samples to improve the accuracy of the approximation.

3.5.1 Sturm–Liouville eigenfunctions

The main tool that will be used to define the gradient-augment problem is Sturm–Liouville
(SL) theory. Thus, we will review SL theory first.

Recall that a SL problem is an eigenvalue problem of the form

− (χu′)′ + ζu = λνu, (3.5.1)

where coefficients χ, ζ, and ν are three real-valued functions in (−1, 1). The coefficient χ is
continuously differentiable, strictly positive in (−1, 1) and continuous in [−1, 1], ζ is contin-
uous, nonnegative and bounded in [−1, 1] and ν is continuous, nonnegative and integrable
over (−1, 1). A SL problem is singular when χ vanishes at the boundary, i.e. χ(±1) = 0.
Such a problem has a countable set of nonnegative real eigenvalues 0 ≤ λ0 < λ1 < . . . and
the corresponding eigenfunctions {φn}n∈N0 forms an orthogonal basis of L2

ν(−1, 1) [36, §2.2].
Of relevance to this chapter, the classical orthogonal polynomials are all singular Sturm–

Liouville eigenfunctions:

Legendre polynomials. These are Sturm–Liouville eigenfunctions corresponding to

χ(y) = 1
2(1− y2), ν(y) = 1

2 , ζ(y) = 0.

The corresponding eigenvalues are λn = n(n+1). Note that it is customary to write χ(y) =
1 − y2 and ν(y) = 1 here. We have normalized by 1/2 so that ν is a probability density
function.

Chebyshev polynomials. These are Sturm–Liouville eigenfunctions corresponding to

χ(y) =
√

1− y2

π
, ν(y) = 1

π
√

1− y2 , ζ(y) = 0.

The corresponding eigenvalues are λn = n2.
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Jacobi polynomials. These are Sturm–Liouville eigenfunctions corresponding to

χ(y) = 1
c(α,β) (1− y)α+1(1 + y)β+1, ν(y) = (1− y)α(1 + y)β

c(α,β) , ζ(y) = 0. (3.5.2)

where α, β > −1 and c(α,β) =
∫ 1
−1(1− y)α(1 + y)β dy. The corresponding eigenvalues are

λ(α,β)
n = n(n+ α+ β + 1). (3.5.3)

Note that Jacobi polynomials include both Legendre and Chebyshev polynomials as the
special cases α = β = 0 and α = β = −1/2 respectively.

For the remainder of this chapter, we assume that the orthonormal basis {φn}∞n=0 intro-
duced in §3.2 arises as the eigenfunctions of a singular Sturm–Liouville problem (3.5.1). For
convenience, we also assume that

ζ(y) = 0. (3.5.4)

This is not strictly necessary for what follows. However, it holds for all polynomials we will
consider in this chapter; specifically, the orthogonal polynomials discussed above.

3.5.2 Sobolev orthogonality

The main advantage for setting up gradient-augmented problem with Sturm–Liouville (SL)
theory is that the derivatives of Sturm–Liouville eigenfunctions are also orthogonal in a
particular weighted L2 space. Details on this will be shown in this subsection. Note that
this weighted L2 space does not usually coincide with the original weighted space L2

ν(−1, 1).
However, two exceptions are the Fourier basis and Hermite polynomial basis, which have
been studied in [127] and [102] respectively. The change of weight that occurs in the general
case requires some additional scaling when deriving the gradient-augmented problem. See
§3.5.3 for more details.

Multiplying equation (3.5.1) by φm, integrating by parts and using the fact that χ(±1) =
0 since the problem is assumed to be singular, we get

∫ 1

−1
−(χ(y)φ′n(y))′φm(y) dy = −χ(y)φ′n(y)φm(y)

∣∣∣1
−1

+
∫ 1

−1
χ(y)φ′n(y)φ′m(y) dy

= λn

∫ 1

−1
ν(y)φn(y)φm(y) dy,

Hence, we can see that the derivatives φ′n are orthogonal in L2
χ(−1, 1), since

∫ 1

−1
χ(y)φ′n(y)φ′m(y) dy = λnδn,m, n,m = 0, 1, . . . . (3.5.5)
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With this in hand, we define a weighted Sobolev space

H̃1(−1, 1) =
{
f ∈ L2

ν(−1, 1) : f ′ ∈ L2
χ(−1, 1)

}
,

with norm and inner product

‖f‖2H̃1(−1,1) = ‖f‖2L2
ν(−1,1) +

∥∥f ′∥∥2
L2
χ(−1,1), 〈f, g〉H̃1(−1,1) = 〈f, g〉L2

ν(−1,1) + 〈f ′, g′〉L2
χ(−1,1).

It follows from (3.5.5) that the polynomials

ψn(y) = 1√
1 + λn

φn(y), n = 0, 1, 2 . . . ,

are an orthonormal system in H̃1(−1, 1). Moreover, they form an orthonormal basis of
H̃1(−1, 1).

For d ≥ 2 dimensions, we define the weighted Sobolev space as

H̃1(D) =
{
f ∈ L2

ν(D) : ∂kf ∈ L2
νk

(D), k = 0, . . . , d
}
, (3.5.6)

where νk(y) is the weight function given by

ν0(y) = ν(y) =
d∏
j=1

ν(yj), νk(y) = χ(yk)
d∏
j=1
j 6=k

ν(yj), k = 1, . . . , d.

The associated norm and inner product are

‖f‖2H̃1(D) =
d∑

k=0
‖∂kf‖2L2

νk
(D), 〈f, g〉H̃1(D) =

d∑
k=0
〈∂kf, ∂kg〉L2

νk
(D),

respectively. Furthermore, the functions

ψn(y) = 1√
1 + λn

φn(y), n ∈ Nd0,

where

λn =
d∑

k=1
λnk , (3.5.7)

form an orthonormal basis of H̃1(D).
Since it will be useful later, we now make one further observation. Let g ∈ H̃1(D). By

assumption, we have g ∈ L2
ν(D) and we may write

g =
∑
n∈Nd0

cnφn, cn = 〈g, φn〉L2
ν(D),
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so that
‖g‖2L2

ν(D) =
∑
n∈Nd0

|cn|2.

Moreover, due to the orthogonality relations, the coefficients of g with respect to the basis
ψn are

〈g, ψn〉H̃1(D) =
√

1 + λncn.

In particular,
‖g‖2H̃1(D) =

∑
n∈Nd0

(1 + λn)|cn|2.

3.5.3 The gradient-augmented weighted `1 minimization problem

With the weighted Sobolev space introduced, we are now ready to formulate the gradient-
augmented weighted `1 minimization problem.

Following the notation defined in §3.2, we define the sampling matrices by

Ak = 1√
m

(
∂φnj (yi)
∂yk

)m,N
i=1,j=1

∈ Cm×N , k = 0, . . . , d,

where k = 0 denotes the case that no partial derivative is taken, i.e.

A0 = 1√
m

(
φnj (yi)

)m,N
i=1,j=1

∈ Cm×N .

Then, we have a system of linear equations for the gradient-augmented problem

1√
m

(∂kf(yi))mi=1 = AkcΛ + 1√
m

(∂keΛ(yi))mi=1 , (3.5.8)

where cΛ denotes the vector of coefficients of f corresponding to the finite multi-indices set
Λ and the truncation error eΛ is defined as in (3.3.2). For reasons that will become clear in
a moment, we let

Ā =


T0A0

T1A1
...

TdAd

 ∈ C(d+1)m×N ,

where Tk = diag
((√

τk(yi)
)m
i=1

)
∈ Cm×m are diagonal scaling matrices, and the τk are

defined by

τ0(y) =
∏d
j=1 ν(yj)∏d
j=1 µ(yj)

= ν0(y)
µ(y) , τk(y) =

χ(yk)
∏d
j=1,j 6=k ν(yj)∏d
j=1 µ(yj)

= νk(y)
µ(y) , k = 1, . . . , d.
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As we will show in (3.5.12), the diagonal scaling matrices Tk are used to ensure that Ā∗Ā
is diagonal in expectation. With this in hand, we have a system of linear equations for the
gradient-augmented problem as

f = ĀcΛ + e, (3.5.9)

where

f =


f0
...
fd

 , fk = 1√
m

(√
τk(yi)∂kf(yi)

)m
i=1

, (3.5.10)

and

e =


e0
...
ed

 , ek = 1√
m

(√
τk(yi)∂keΛ(yi)

)m
i=1

.

As for the unaugmented problem, we shall assume that the tail error satisfies

‖e‖2 ≤ η, (3.5.11)

for some known η ≥ 0, which is implied by the condition

sup
y∈D

d∑
k=0

τk(y)|∂keΛ(y)|2 ≤ η2.

Recall that the sample point y1, . . . ,ym are independently and identically distributed
according to the probability density µ. Due to the diagonal scaling matrices Tk and the
Sobolev orthogonality of the basis functions, we have

E
(
Ā∗Ā

)
n,n′

=
d∑

k=0

∫
D
∂kφn(y)∂kφn′(y)τk(y)µ(y) dy

=
d∑

k=0

∫
D
∂kφn(y)∂kφn′(y)νk(y) dy = (1 + λn) δn,n′ . (3.5.12)

Then, we introduce a diagonal scaling matrix Q = diag
(√

1 + λn
)
n∈Λ , so that the scaled

matrix
A = ĀQ−1, (3.5.13)

satisfies E(A∗A) = I. This condition allows us to prove that any vector cΛ could be
reconstructed by solving the optimization problem (3.5.14) with enough measurements [30].
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With this new sampling matrixA in hand, we can now formulate the gradient-augmented
weighted `1 minimization problem as

min
z∈CN

‖z‖1,w subject to ‖Az − f‖2 ≤ η, (3.5.14)

If the minimization problem (3.5.14) has a solution ẑ, then we have ĉ = Q−1ẑ as an
approximation of the true coefficients cΛ. Then the corresponding approximation of the
original function f is given as

f̂ =
∑
n∈Λ

ĉnφn.

Finally, we have the following observation. If fΛ is defined as in (3.3.2), then, due to the
Sobolev orthogonality, we have that∥∥∥fΛ − f̂

∥∥∥
H̃1(D)

= ‖Q(cΛ − ĉ)‖2 = ‖zΛ − ẑ‖2, (3.5.15)

where zΛ = QcΛ are the coefficients vector of f with respect to the Sobolev orthogonal
basis {ψn}n∈Nd0 . Note that, since the analysis of the gradient-augmented problem (3.5.14)
will provide an error bound for ‖zΛ − ẑ‖2, we can use this bound to get an approximation
error bound in the Sobolev norm H̃1(D) by considering (3.5.15).

3.6 Numerical results

As mentioned at the beginning, the objective for this chapter is to use additional gradient
information to enhance the accuracy of the approximation to the high-dimensional function
f . In this section, we wish to show numerically that an accuracy improvement is achieved
with gradient-augmented sampling, when tensor-product Legendre and Chebyshev polyno-
mials are used as the approximating polynomials. For all experiments shown in this section,
we have assumed that the computational cost of computing the gradient is the same as
the cost of computing function values. It is a reasonable assumption in certain uncertainty
quantification (UQ) applications. For instance, when considering approximating a quantity
of interest (QoI) of a parametric differential equation, it is known that the gradient sam-
ples of the QoI can be computed using about the same amount of computational cost as
computing the QoI samples via the adjoint sensitivity analysis method [102]. For details on
how to compute the gradient samples of the QoI with adjoint sensitivity analysis method
and on the computational cost of computing the gradient samples of the QoI, see §4.2 and
§4.7. Thus, in this section, we model the total cost of computing the gradient-augmented
measurements as

m̃ = mo +mg, (3.6.1)
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where mo is the number of function samples and mg is the number of the gradient samples.
Unless otherwise specified, the gradient samples are measured at the same points as the
function samples. This is a reasonable assumption since, as will be shown in §4.3, in order
to compute the gradient samples with the adjoint sensitivity analysis method, we first need
to compute the function samples. Hence, it will be more expensive to measure the gradient
samples at different points to the function samples. Note that, for the unaugmented problem,
the total computational cost is just m̃ = mo.

Throughout this section, we solve the weighted `1 minimization problem using the
SPGL1 package [118, 119] with a maximum number of 10,000 iterations and η = 10−12.
We choose the truncated index set Λ as the hyperbolic cross index set of degree s. Different
values of s are picked in different experiments so that N = |Λ| ≈ 2500. For Figures 3.1–3.8,
the H̃1 norm approximation error is computed on a fixed grid of 4|Λ| points drawn according
to the uniform density for Legendre polynomials and the Chebyshev density for Chebyshev
polynomials. The error is averaged over 10 trials. All numerical experiments are performed
on Matlab R2019a [91].

3.6.1 Approximation error in the H̃1 norm

In this subsection, we will show how the H̃1 norm approximation error is calculated numer-
ically. Suppose we have an error grid containing K points, y1, . . . ,yK ∈ D. These points
are independently and identically distributed according to the probability measure µ. Let

ē =


T0e0

T1e1
...

Tded

 ∈ C(K(d+1))×1,

where diagonal scaling matrices Tk = diag
((√

τk(yi)
)K
i=1

)
∈ CK×K with τk defined as in

§3.5.3 and

ek = 1√
K

(
∂kf(yi)− ∂kf̂(yi)

)K
i=1

, k = 0, . . . , d.

Here, the approximations of (∂kf(yi))Ki=1 are defined by

(
∂kf̂(yi)

)K
i=1

= Gkĉ,
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where the matricesGk =
(
∂φnj (yi)
∂yk

)K,N
i=1,j=1

∈ CK×N and ĉ ∈ CN denotes the approximation

to the true coefficients vector cΛ. Then, we have

E (ē∗ē) =
d∑

k=0

K∑
i=1

E
(
(ek(yi))ek(yi)τk(yi)

)
=

d∑
k=0

K

∫
D

(ek(y))ek(y)τk(y)µ(y) dy

=
d∑

k=0

∫
D

∣∣∣∂kf(y)− ∂kf̂(y)
∣∣∣2 νk(y) dy =

d∑
k=0

∥∥∥∂kf − ∂kf̂∥∥∥2

L2
νk

(D)
=
∥∥∥f − f̂∥∥∥2

H̃1(D)
.

When the number of samples K is large, with the law of large numbers, we have

∥∥∥f − f̂∥∥∥2

H̃1(D)
≈

d∑
k=0
‖Tkek‖2

⇒
∥∥∥f − f̂∥∥∥

H̃1(D)
≈
(

d∑
k=0
‖Tkek‖2

)1/2

.

For all experiments shown in this section, we set K = 4|Λ| = 4N .

3.6.2 Unaugmented and gradient-augmented problem comparison

In the first set of experiments, the weights are taken to be wn = (un)θ for some θ ≥ 0,
where

un = sup
y∈D

√
ν(y)/µ(y)|φn(y)|.

The same way of defining weights has also been applied to the unaugmented problem shown
in §3.3. When θ = 0, the weighted `1 minimization problem becomes the unweighted `1

minimization problem. Moreover, when θ = 1, it corresponds to the optimal weights w = u

as shown in Theorem 3.7.1. As mentioned in Theorem 3.3.1, it is also the optimal weights for
the unaugmented problem. Here, we apply different weights to show that, for the gradient-
augmented case, the weighted `1 minimization gives better approximation results compared
to the unweighted `1 minimization.

In this section, we consider approximating the following functions

Figures 3.1 & 3.2: f1(y) =
d∏

k=1

d/4
d/4 + (yk − ak)2 , ak = (−1)k

k + 1 ,

Figures 3.3 & 3.4: f2(y) =
d∏

k=d/2+1
cos(16yk/2k)/

d/2∏
k=1

(1− yk/4k),

Figures 3.5 & 3.6: f3(y) = exp
(
−

d∑
k=1

yk/(2d)
)
.
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The main conclusion of these experiments is the following. In all dimensions and for all
functions, we see that, with the same amount of computational cost m̃, a consistently smaller
error is obtained by solving the gradient-augmented problem. In other words, applying the
gradient sampling is more beneficial than only taking an equivalent number of function
samples.

Figures 3.1–3.6 also compare different weighting strategies for the weighted `1 minimiz-
tion problem. For those functions we have tested, in most cases, the choice w = u gives
amongst the smallest, if not the smallest, error. In particular, these weights often give an
improvement over the unweighted case. This finding is in agreement with the theoretical
result shown in Theorem 3.7.1. Note that larger values of θ can sometimes give a slightly
smaller error for some of the functions we have considered, but the improvement is not
substantial.
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Figure 3.1: The error ‖f1 − f̃1‖H̃1(D) against m̃ for Legendre polynomials with points drawn from
the uniform density. From left to right, the values (d, s) = (4, 72), (8, 23), (12, 14) were used. The
unaugmented case is shown on the top row and the gradient-augmented case is shown on the bottom
row.

3.6.3 With partial sampling of the gradient

In this experiment, we fix the weights asw = u and consider the situation when the gradient
is measured at only a fixed percentage of the sample points. A similar set-up has also been
considered in [102]. We plot the approximation error of f3 versus the effective cost m̃ defined
in (3.6.1), shown as Figure 3.7. These results show a clear improvement with only 25% of
gradient sampling. It can also be clearly seen that, as the percentage of gradient samples
increases, the approximation error correspondingly decreases.
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Figure 3.2: The same as Fig. 3.1 but for Chebyshev polynomials with points drawn from the Cheby-
shev density.
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Figure 3.3: The same as Fig. 3.1 but for f2.

3.6.4 With independent gradient sampling locations

In Figure 3.8, we investigate how the location of the gradient samples affects the approxima-
tion error. Specifically, we compare the existing set-up where the gradient of f is sampled at
the same points as function f to the case of independent gradient sampling, i.e. where the
gradient of f is sampled at different m points ym+1, . . . ,y2m drawn independently and from
the same density as y1, . . . ,ym. It can be clearly seen that, in all dimensions, independent
gradient sampling gives similar approximation results to the original set-up for the same
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Figure 3.4: The same as Fig. 3.3 but for Chebyshev polynomials with points drawn from the Cheby-
shev density.
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Figure 3.5: The same as Fig. 3.1 but for f3.

computational cost. As shown in Figure 3.8, there is apparently little benefit to sampling
the gradient at a distinct set of sample points. Note that here we do not take into account
the fact that, in practice, sampling the gradient of f at distinct points may be more ex-
pensive. As shown in §4.3, in order to compute the gradient samples of the QoI with the
adjoint sensitivity analysis method, we first need to compute the QoI samples at the same
sample points.
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Figure 3.6: The same as Fig. 3.5 but for Chebyshev polynomials with points drawn from the Cheby-
shev density.
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Figure 3.7: The error ‖f3 − f̃3‖H̃1(D) against m̃ with a different percentage of gradient enhancement.
The values (d, s) = (12, 14) were used. The left plot shows the results for Legendre polynomials with
uniform sampling and the right plot shows the results for Chebyshev polynomials with Chebyshev
sampling.

3.6.5 Comparison in the L∞ norm error

Finally, in Figure 3.9, we compare the L∞-norm error for the unaugmented and gradient-
augmented cases. Here, the approximation error is computed on a fixed grid of 4|Λ| uniformly
distributed points and averaged over 10 trials. Again, we fix the weights w = u. As shown
in Figures 3.1–3.6, with the same amount of computational cost, the gradient-augmented
sampling leads to a smaller error in the L∞ norm compared to the non-gradient augmented
sampling.
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Figure 3.8: The error ‖f1 − f̃1‖H̃1(D) against m̃ for Legendre polynomials with points drawn from
the uniform density. From left to right, the values (d, s) = (4, 72), (8, 23), (12, 14) were used. The top
row shows the original setup, and the bottom row shows independent gradient sampling.
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Figure 3.9: The error ‖f − f̃‖L∞ against m̃ for Legendre polynomials with points drawn from the
uniform density (top) and Chebyshev polynomials with points drawn from the Chebyshev density
(bottom). Function f1 to f3 are shown from left to right. The value (d, s) = (12, 14) was used to
generate the index set.

3.7 Theoretical results

In §3.6, we have shown various numerical experiments to demonstrate the benefits of
gradient-augmented sampling. In this section, we will present theoretical results for the
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gradient-augmented problem. It is worth pointing out that all results shown in this section
are nonuniform recovery guarantees. Before stating those results, several additional defini-
tions must be introduced. First, recall from §3.3, the weighted cardinality for given positive
weights w = (wn)n∈Nd0 and a set ∆ ⊂ Nd0 is defined by

|∆|w =
∑
n∈∆

w2
n.

Second, given ν, µ and {φn}n∈Nd0 as in §3.2 and §3.5, we define the intrinsic weights u =
(un)n∈Nd0 as

un = sup
y∈D

√
ν(y)/µ(y)|φn(y)|. (3.7.1)

Third, we let
κn = u−2

n sup
y∈(−1,1)

χ(y)
µ(y) |φ

′
n(y)|2, n = 0, 1, 2, . . . , (3.7.2)

where χ is the coefficient from Sturm-Liouville problem (shown as (3.5.1)), and for n ∈ Nd0,
we set

κn =
d∑

k=1
κnk . (3.7.3)

Finally, given cΛ, c∆ ∈ CN denotes the vector obtained from cΛ by setting all terms
corresponding to indices n ∈ Λ\∆ to zero.

3.7.1 General recovery guarantees

In this subsection, we will present the general recovery guarantees for the gradient-augmented
problem. Here, the first result is given in the following:

Theorem 3.7.1. Let Λ ⊂ Nd0 with |Λ| = N ≥ 2, 0 < ε < 1, w ∈ RN be a vector of weights
with wn ≥ 1, ∀n, ∆ ⊂ Λ, |∆| ≥ 2 and f =

∑
n∈Nd0

cnφn ∈ H̃1(D), where D = (−1, 1)d and
H̃1(D) is as in (3.5.6). Let

m & max
n∈Λ

{1 + κn
1 + λn

}
·
(
|∆|u + max

n∈Λ

{
u2
n

w2
n

}
|∆|w

)
· L, (3.7.4)

where
L = log(N/ε) + log(|∆|w) · log(|∆|w/ε),

draw y1, . . . ,ym independently according to the density µ, and let A, f and η be as in
(3.5.13), (3.5.10) and (3.5.11) respectively. Then, if ẑ is any minimizer of (3.5.14) and
ĉ = Q−1ẑ, the approximation f̂ =

∑
n∈Λ ĉnφn satisfies

‖f − f̂‖H̃1(D) . ‖f − fΛ‖H̃1(D) + ‖cΛ − c∆‖1,v +
√
|∆|wη,
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with probability at least 1− ε, where vn =
√

1 + λnwn, n ∈ Nd0.

Theorem 3.7.1 is understood as follows. For a fixed function f with coefficients c and
a fixed set ∆, with a high probability, f can be approximated up to an error (measured
in a Sobolev norm) depending on how well cΛ is approximated by its coefficients with
indices in ∆ (the term ‖cΛ − c∆‖1,v) by drawing m samples independently according to the
probability measure µ, if the sample complexity (3.7.4) holds.

An immediate consequence of Theorem 3.7.1 is that, in order to minimize the right-hand
side of (3.7.4), the weights w should be chosen as

w = u.

In other words, the best weights for the optimization problem are the intrinsic weights
defined as in (3.7.1). As pointed out earlier, this is identical to a conclusion obtained for
the unaugmented problem. See the discussion after Theorem 3.3.1 for more details about
the unaugmented problem. Note that this result makes no assumptions on ∆. If we assume
that ∆ is lower (recall §3.4), now the theoretical result becomes:

Corollary 3.7.2. Let s ≥ 2, Λ = ΛHC
s be the hyperbolic cross index set defined in (3.4.3),

0 < ε < 1 and f =
∑
n∈Nd0

cnφn ∈ H̃1(D), where D = (−1, 1)d and H̃1(D) is as in (3.5.6).
Suppose that

m & max
n∈Λ

{1 + κn
1 + λn

}
·K(s) · L. (3.7.5)

where L = (min{d+ log(s/ε), log(2d) log(s/ε)}+ log(K(s)) · log(K(s)/ε)),

K(s) = max {|∆|u : |∆| ≤ s and ∆ is lower} , (3.7.6)

and u are the weights defined in (3.7.1). Draw y1, . . . ,ym independently according to the
density µ, let A, f and η be as in (3.5.13), (3.5.10) and (3.5.11) respectively and set w = u.
Then, if ẑ is any minimizer of (3.5.14) and ĉ = Q−1ẑ, the approximation f̂ =

∑
n∈Λ ĉnφn

satisfies
‖f − f̂‖H̃1(D) . ‖f − fΛ‖H̃1(D) + σs,L(cΛ)1,v +

√
K(s)η,

with probability at least 1−ε, where σs,L(·)1,v is as in (3.4.4) and vn =
√

1 + λnun, n ∈ Nd0.

We see that the error estimate shown in Corollary 3.7.2 is given in terms of the best
s-term approximation error in lower sets σs,L(·)1,v. However, the sample complexity shown
as (3.7.5) is not given explicitly in terms of the sparsity s and dimension d. In order to
do this, we need to estimate the quantities (1 + κn)/(1 + λn) for n ∈ Λ and K(s), which
requires the basis {φn} and sampling density µ to be specified. We will do the estimations
of these quantities in §3.7.2.
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3.7.2 The case of Jacobi polynomials with µ = ν

If we use the Jacobi polynomial basis, defined in §3.2, and take the sampling density µ = ν,
then we have the following corollary:

Corollary 3.7.3. Consider the set-up of Corollary 3.7.2, where {φn}n∈Nd0 is the tensor-
product Jacobi polynomial basis with parameters α, β ≥ −1/2 and sampling density µ = ν.
Suppose that

m & K(s) · (min{d+ log(s/ε), log(2d) log(s/ε)}+ log(K(s)) · log(K(s)/ε)) , (3.7.7)

where
K(s) = K(α,β)(s) = max {|∆|u : |∆| ≤ s and ∆ is lower} . (3.7.8)

Then, if ẑ is any minimizer of (3.5.14) and ĉ = Q−1ẑ, the approximation f̂ =
∑
n∈Λ ĉnφn

satisfies
‖f − f̂‖H̃1(D) . ‖f − fΛ‖H̃1(D) + σs,L(cΛ)1,v +

√
K(s)η,

with probability at least 1−ε, where σs,L(·)1,v is as in (3.4.4) and vn =
√

1 + λnun, n ∈ Nd0.

To prove this corollary, we first need to show that κn . λn, ∀n ∈ Nd0, for the Jacobi
polynomials. Then, the sample complexity is determined up to the magnitude of K(s),
which depends on the parameters α, β of the Jacobi polynomials. We will show the full
proof of Corollary 3.7.3 in §3.8.4. Moreover, for certain values of α and β, we have the
following results (see [93]):

Theorem 3.7.4. Let K(s) = K(α,β)(s) be as in (3.7.8). Then the following hold:

(i) if α, β ∈ N0 then K(s) ≤ s2 max{α,β}+2 ,

(ii) if β = α and 2α+ 1 ∈ N then K(s) ≤ s2α+2,

(iii) if α = β = −1/2 then K(s) ≤ slog(3)/ log(2) .

In particular, K(s) ≤ s2 for Legendre polynomials (α = β = 0) and K(s) ≤ slog(3)/ log(2) for
Chebyshev polynomials (α = β = −1/2).

This result implies that, for values of α, β satisfying Theorem 3.7.4, the sample com-
plexity shown in Corollary 3.7.3 reduces to an estimate of the form

m & sγ · log(2d) · log2(s/ε), (3.7.9)

where γ ≥ 1 depends on the parameters α and β. In other words, now the sample com-
plexity is only a polynomial in s and logarithmic in the dimension d. Hence, the curse of
dimensionality is mitigated to a substantial extent.
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3.7.3 Legendre polynomials and preconditioning

In the previous subsection, we considered the scenario when sampling density is the same
as the orthogonality density ν. However, in practice, we are often in the situation that the
sampling density µ is different from the orthogonality density ν. In particular, the case
where φn are the Legendre polynomials and µ is the Chebyshev density has been studied
in [2, 107, 128]. This case is often referred to as preconditioning in the literature. For this
case, we have the following recovery guarantee:

Corollary 3.7.5. Let µ be the tensor Chebyshev density, ν be the uniform density, s ≥ 2,
Λ = ΛHC

s be the hyperbolic cross index set defined in (3.4.3), 0 < ε < 1, u be the weights
defined in (3.7.1) and f =

∑
n∈Nd0

cnφn ∈ H̃1(D), where D = (−1, 1)d and H̃1(D) is as in
(3.5.6). Suppose that

m & min
{

2ds, (π/2)dslog(1+4/π)/ log(2)
}
· (d+ log(s)) · (d+ log(s/ε)). (3.7.10)

Draw y1, . . . ,ym independently according to the density µ, let A, f and η be as in (3.5.13),
(3.5.10) and (3.5.11) respectively and set w = u. Then, if ẑ is any minimizer of (3.5.14)
and ĉ = Q−1ẑ, the approximation f̂ =

∑
n∈Λ ĉnφn satisfies

‖f − f̂‖H̃1(D) . ‖f − fΛ‖H̃1(D) + σs,L(cΛ)1,v +
√
K(s)η,

with probability at least 1−ε, where σs,L(·)1,v is as in (3.4.4) and vn =
√

1 + λnun, n ∈ Nd0.

3.7.4 Discussion

The unaugmented version of Corollary 3.7.3 has been presented in [2]. Using the same set-up
and notation, it has been proved in Theorem 6.1 of [2] that if

m & K(s) · log(ε−1) ·L, L = (min{log(2s) + d, log(2d) log(2s)}+ log(K(s))) , (3.7.11)

where K(s) is as in (3.7.6), then the approximation error satisfies

‖f − f̂‖L2(D) . σs,L(cΛ)1,u + ‖f − fΛ‖L2(D) + λ
√
K(s)η, (3.7.12)

with high probability, where λ = 1+
√

log(ε−1)/L. It can be clearly seen the sample complex-
ity (3.7.7) shown in Corollary 3.7.3 and the sample complexity (3.7.10) shown in Corollary
3.7.5 are identical to (3.7.11), up to a slightly increased log factor, which is due to the fact
that we have used a slightly different method of proof (see §6.4 of [8]) to remove the factor
λ in the error bound. In particular, as shown in Theorem 3.4.2, (3.7.11) reduces to be

m & sγ log(ε−1) min{d+ log(s), log(2d) log(s)}, (3.7.13)
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in the case of Legendre and Chebyshev polynomials, which is similar to the sample com-
plexity shown as in (3.7.9). Thus, we can conclude that, for the same sample complexity,
the gradient-augmented problem permit an error bounded in the stronger Sobolev norm, as
opposed to an L2(D) norm for the unaugmented problem shown as in (3.7.12).

Recall, as it has been pointed out at the beginning of this section, similar to those results
in [2], all theoretical results presented in the section are nonuniform recovery guarantees,
which ensure the recovery of a single f from a random draw of sample points. For the
unaugmented case, uniform recovery guarantees for Chebyshev and Legendre polynomials
with µ = ν have been proved in [4,43]. Compared to nonuniform recovery guarantee for the
unaugmented problem, as shown in [4,43], the error bound for uniform recovery guarantee is
improved by a factor of 1/

√
K(s) when a similar sample complexity, expect with higher log

factor, is satisfied. This is typical for uniform recovery guarantees in compressed sensing. We
expect a similar uniform recovery guarantee could be attained for the gradient-augmented
problem, but we leave this as future work.

3.8 Proofs

In this section, we will give proofs for the theoretical results presented in §3.7. As a first
step, we will show the gradient-augmented problem can be reformulated as an instance of
the so-call parallel acquisition model, which allows us following the approach of [44] to prove
the recovery guarantees. For references on parallel acquisition model in compressed sensing,
see [20,24,44].

3.8.1 The parallel acquisition model reformulation

Before introducing the parallel acquisition model, it is worth mentioning that, different from
the standard compressed sensing model, the parallel acquisition model considers the scenario
that there are multiple sensors acting in parallel and simultaneously acquiring measurements
of a single vector. As pointed out in Chapter 2, parallel Magnetic Resonance Imaging (MRI)
can be modelled by the parallel acquisition model. Now we follow the framework described
in [44, §II-D] to define the abstract parallel acquisition model,

For some D ∈ N, let F be a distribution on a set of N×D complex matrices. We assume
that F is isotropic in the sense that

E(BB∗) = I, B ∼ F. (3.8.1)
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Let {ei}mi=1 be the canonical basis of Cm and let B1, . . . ,Bm be a sequence of independent
realizations of matrices from the distribution F . Then we define the sampling matrix

A = 1√
m

m∑
i=1
ei ⊗B∗i = 1√

m


B∗1
...
B∗m

 ∈ CDm×N , (3.8.2)

where ⊗ denoted the Kronecker product. Note that this is an extension of the standard com-
pressed sensing setup, which corresponds to the case D = 1, i.e. matrix A has independent
rows. The paper [44] considered solving this parallel acquisition model with a compressed
sensing set-up by using the `1 minimization technique and proved a series of nonuniform
recovery guarantees. In this section, we consider to extend the work presented in [44] by
considering the weighted `1 minimization problem

min
z∈CN

‖z‖1,w subject to ‖Az − f‖2 ≤ η, (3.8.3)

where w = (wj)Nj=1 ∈ RN with wj ≥ 1, ∀j. Here, f = Ac + e are noisy measurements of
the unknown vector c (for ease of notation we write this rather than cΛ) and e is a vector
satisfying ‖e‖2 ≤ η.

Consider the set-up of §3.5.3. We define the random matrix B by

B =

√τk(y)
∂kφnj (y)√

1 + λnj

N,d
j=1,k=0

∈ CN×(d+1), (3.8.4)

where y is the random variable on D drawn with respect to the probability density µ. This
brings about a distribution F on random matrices in CN×D, where D = (d+ 1). It can be
seen that the corresponding matrix (3.8.2) is identical to the matrix defined in (3.5.13) by
applying a simple row permutation. Thus, we deduce that the gradient-augmented problem
(3.5.14) is an instance of above model, corresponding to choice D = (d + 1) and with
F being the distribution of random matrices (3.8.4). In other words, one can think the
gradient-augmented problem as a parallel acquisition model where the 1st sensor records
the function value and the 2nd to (d+ 1)th sensors record the gradient values.

3.8.2 Parallel acquisition model with weighted `1 minimization

Now we present the theoretical result for the model described §3.8.1 with the weighted
`1 regularizer (3.8.3) by generalizing the result of [44]. As a first step, we introduce some
notation. If ∆ ⊆ {1, . . . , N}, then we use the notation P∆ for the orthogonal projection
P∆ ∈ CN×N onto span{ej : j ∈ ∆}. Note that the vector P∆x ∈ CN is isomorphic to a
vector in C|∆|. Also, given weights w ∈ RN , we write the weighting matrix W = diag(w).
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Finally, we note that in this subsection we index over N where relevant, as opposed to Nd0 as
in the original polynomial approximation problem. Then, as in [44], we can define several
notions of local coherence:

Definition 3.8.1. Let ∆ ⊆ {1, . . . , N} and F is a distribution on CN×D satisfying (3.8.1).
The local coherence of F relative to ∆ is the smallest constant Υ(F,∆) such that

‖P∆BB
∗P∆‖2 ≤ Υ(F,∆), B ∼ F,

almost surely.

Definition 3.8.2. Let w ∈ RN be a set of positive weights, ∆ ⊆ {1, . . . , N} and F is
defined the same as in Definition 3.8.1. The local coherence of F relative to ∆ with respect
to the weights w is

Γ(F,w,∆) = max {Γ1(F,w,∆),Γ2(F,w,∆)} ,

where Γ1(F,w,∆) and Γ2(F,w,∆) are the smallest quantities such that∥∥∥W−1BB∗P∆W
∥∥∥
∞
≤ Γ1(F,w,∆), B ∼ F,

almost surely, and

sup
‖z‖∞=1

max
j=1,...,N

E|〈ej ,W−1BB∗P∆Wz〉|2 ≤ Γ2(F,w,∆).

From Definition 3.8.2, we see that, if j ∈ ∆, then

Γ1(F,w,∆) ≥ E|〈ej ,W−1BB∗P∆Wej〉| ≥
∣∣∣E〈ej ,W−1BB∗P∆Wej〉

∣∣∣ = |〈ej ,W−1P∆Wej〉| = 1.

Hence we deduce that Γ1(F,w,∆) ≥ 1. Similarly, for j ∈ ∆, we also have

Γ2(F,w,∆) ≥ E|〈ej ,W−1BB∗P∆Wej〉|2 ≥
∣∣∣E〈ej ,W−1BB∗P∆Wej〉

∣∣∣2
= |〈ej ,W−1P∆Wej〉|2 = 1,

and the same for the unweighted local coherence

Υ(F,∆) ≥ E |〈ej ,P∆BB
∗P∆ej〉| ≥ |E〈ej ,P∆BB

∗P∆ej〉| = 1.

The following is the main result for the abstract model shown in §3.8.1:

Theorem 3.8.3. Let 0 < ε < 1, η ≥ 0, N ≥ 2, ∆ ⊆ {1, . . . , N} with |∆| ≥ 2 and w ∈ RN

be weights with wj ≥ 1, ∀j. Fix c ∈ CN and construct A ∈ CmD×N as in (3.8.2). Let
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y = Ac+ e, where ‖e‖2 ≤ η. If

m & Υ(F,∆) · log(N/ε) + Γ(F,w,∆) · (log(N/ε) + log(|∆|w) · log(|∆|w/ε)) ,

where Υ(F,∆) and Γ(F,w,∆) are as in Definitions 3.8.1 and 3.8.2 respectively, then, with
probability at least 1− ε, any minimizer ĉ of (3.8.3) satisfies

‖c− ĉ‖2 . ‖c− P∆c‖1,w +
√
|∆|wη.

We omit the proof of Theorem 3.8.3 here. For the full proof, see §6.4 of [8]. Note that,
with D = 1, we can get the following corollary by estimating Υ(F,∆) and Γ(F,w,∆).

Corollary 3.8.4. Let Λ ∈ Nd0 with |Λ| = N ≥ 2, 0 < ε < 1, ∆ ⊂ Λ with |∆| ≥ 2, w ∈ CN

be a vector of weights with wn ≥ 1, ∀n, and f =
∑
n∈Nd0

cnφn ∈ L2
ν(D), where D = (−1, 1)d.

Let

m &

(
|∆|u + max

n∈Λ

{
u2
n

w2
n

}
|∆|w

)
· (log(N/ε) + log(|∆|w) · log(|∆|w/ε)) , (3.8.5)

Draw y1, . . . ,ym independently according to the density µ, let A, f and η be as in (3.3.6),
(3.3.8) and (3.3.9) respectively. Then, if ĉ is any minimizer of (3.3.10) satisfies

‖cΛ − ĉ‖2 . ‖cΛ − c∆‖1,u +
√
|∆|uη.

Proof. Let z ∈ CN with ‖z‖2 = 1. B =
(√

ν(y)
µ(y) φnj (y)

)N
j=1

is an N × 1 vector. Then

‖B∗P∆z‖22 =

∣∣∣∣∣∣
∑
n∈∆

√
ν(y)
µ(y) φn(y)zn

∣∣∣∣∣∣
2

≤
∑
n∈∆

ν(y)
µ(y) |φn(y)|2 ≤ |∆|u.

Since z was arbitrary, we have Υ(F,∆) ≤ |∆|u.
Now let z ∈ CN with ‖z‖∞ = 1 and n′ ∈ Λ. Then

∣∣∣〈en′ ,W−1BB∗P∆Wz〉
∣∣∣ = 1

wn′

∣∣∣∣∣∣
√
ν(y)
µ(y)φn

′(y)
∑
n∈∆

√
ν(y)
µ(y) φn(y)wnzn

∣∣∣∣∣∣ . (3.8.6)

62



With Cauchy-Schwarz inequality, we get

∣∣∣〈en′ ,W−1BB∗P∆Wz〉
∣∣∣ ≤ 1

wn′

√
ν(y)|φn′(y)|2

µ(y)
∑
n∈∆

√
ν(y)|φn(y)|2

µ(y) wn

≤ 1
wn′

√
ν(y)|φn′(y)|2

µ(y)

√√√√∑
n∈∆

ν(y)|φn(y)|2
µ(y)

√
|∆|w.

≤ un′

wn′

√∑
n∈∆

u2
n

√
|∆|w

≤
√

max
n∈Λ

{
u2
n

w2
n

}√
|∆|u|∆|w.

Since z and n′ were arbitrary, after applying the inequality ab ≤ a2/2 + b2/2, we obtain

Γ1(F,w,∆) ≤ 1
2 |∆|u + 1

2 max
n∈Λ

{
u2
n

w2
n

}
|∆|w.

We now consider Γ2(F,w,∆). From (3.8.6), we have

E
∣∣∣〈en′ ,W−1BB∗P∆Wz〉

∣∣∣2 ≤ 1
w2
n′
E

ν(y)
µ(y) |φn

′(y)|2

∣∣∣∣∣∣
∑
n∈∆

√
ν(y)
µ(y) φn(y)wnzn

∣∣∣∣∣∣
2



≤ u2
n′

w2
n′
E

ν(y)
µ(y)

∣∣∣∣∣∣
∑
n∈∆

φn(y)wnzn

∣∣∣∣∣∣
2


= u2
n′

w2
n′

∫
D

∣∣∣∣∣∣
∑
n∈∆

φn(y)wnzn

∣∣∣∣∣∣
2

ν(y) dy.

Recall the functions φn are orthonormal with respect to the weight function ν. Thus, by
Parseval’s identity, we get

E
∣∣∣〈en′ ,W−1BB∗P∆Wz〉

∣∣∣2 ≤ u2
n′

w2
n′

∑
n∈∆
|wnzn|2 ≤ max

n∈Λ

{
u2
n

w2
n

}
|∆|w,

Since z and n′ were arbitrary, we deduce that

Γ2(F,w,∆) ≤ max
n∈Λ

{
u2
n

w2
n

}
|∆|w.

Thus, we have

Γ(F,w,∆) ≤ |∆|u + max
n∈Λ

{
u2
n

w2
n

}
|∆|w.
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Applying the bound for Υ(F,∆) and the bound for Γ(F,w,∆) to Theorem 3.8.3 completes
the proof.

Note that, if taking φn as Legendre or Chebyshev polynomials and w = u with the
lower sets assumption, the sample complexity (3.8.5) becomes

m & sγ · log(2d) · log2(s/ε),

which is identical to the sample complexity obtained in Theorem 3.4.2, up to a minor change
in the log factor.

3.8.3 Proofs of Theorem 3.7.1 and Corollary 3.7.2

Now we shall prove Theorem 3.7.1 and Corollary 3.7.2. It can be seen that Theorem 3.7.1
follows as a corollary of Theorem 3.8.3, after estimating the local coherences Υ(F,∆) and
Γ(F,w,∆) for the gradient-augmented problem. The estimations of the local coherences
are done in the following two lemmas. Note that we now revert back to indexing over the
multi-index set Λ ⊂ Nd0 (as was introduced in §3.2), rather than over the integers {1, . . . , N}.

Lemma 3.8.5. Let {φn}n∈Nd0 be the orthonormal basis of tensor-product Sturm–Louiville
eigenfunctions defined in §3.5.1, F be the distribution of matrices defined in §3.8.1 for
the gradient-augmented problem, and suppose that Υ(F,∆) is as in Definition 3.8.1, where
∆ ⊂ Nd0 is a multi-index set. Then

Υ(F,∆) ≤ max
n∈∆

{1 + κn
1 + λn

}
|∆|u,

where λn, κn and u are as in (3.5.7), (3.7.3) and (3.7.1) respectively

Proof. Let z ∈ CN with ‖z‖2 = 1 and let B be as in (3.8.4). Then

‖B∗P∆z‖22 =
d∑

k=0

∣∣∣∣∣∣
∑
n∈∆

√
τk(y) ∂kφn(y)zn√

1 + λn

∣∣∣∣∣∣
2

≤
d∑

k=0

∑
n∈∆

τk(y) |∂kφn(y)|2

1 + λn
,

by Cauchy-Schwarz inequality. Observe that, when k 6= 0,

τk(y) |∂kφn(y)|2 =
χ(yk)

∏d
j=1,j 6=k ν(yj)
µ(y) |φ′nk(yk)|2

d∏
j=1
j 6=k

|φnj (yj)|2

≤ χ(yk)
µ(yk)

|φ′nk(yk)|2
d∏
j=1
j 6=k

u2
nj ≤ κnku

2
n,
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and therefore

d∑
k=0

τk(y) |∂kφn(y)|2 ≤ u2
n

(
1 +

d∑
k=1

κnk

)
= u2

n(1 + κn). (3.8.7)

Hence
‖B∗P∆z‖22 ≤

∑
n∈∆

1 + κn
1 + λn

u2
n ≤ max

n∈∆

{1 + κn
1 + λn

}
|∆|u.

Since z was arbitrary, we deduce the result.

Lemma 3.8.6. Let {φn}n∈Nd0 and F be as in Lemma 3.8.5 and Γ(F,w,∆) be as in Defi-
nition 3.8.2. Then

Γ(F,w,∆) ≤ |∆|u + max
n∈Λ

{
u2
n(1 + κn)
w2
n(1 + λn)

}
|∆|w.

Proof. Let z ∈ CN with ‖z‖∞ = 1 and n′ ∈ Λ. Then

∣∣∣〈en′ ,W−1BB∗P∆Wz〉
∣∣∣ = 1

wn′

∣∣∣∣∣∣
d∑

k=0

√
τk(y)∂kφn′(y)√

1 + λn′

∑
n∈∆

√
τk(y) ∂kφn(y)√

1 + λn
wnzn

∣∣∣∣∣∣ .
(3.8.8)

Hence, by Cauchy-Schwarz inequality,

∣∣∣〈en′ ,W−1BB∗P∆Wz〉
∣∣∣ ≤ 1

wn′

d∑
k=0

√
τk(y)|∂kφn′(y)|2

1 + λn′

∑
n∈∆

√
τk(y)|∂kφn(y)|2

1 + λn
wn

≤ 1
wn′

√√√√ d∑
k=0

τk(y)|∂kφn′(y)|2
1 + λn′

√√√√√ d∑
k=0

∑
n∈∆

√
τk(y)|∂kφn(y)|2

1 + λn
wn

2

≤ 1
wn′

√√√√ d∑
k=0

τk(y)|∂kφn′(y)|2
1 + λn′

√√√√∑
n∈∆

∑d
k=0 τk(y)|∂kφn(y)|2

1 + λn

√
|∆|w.

We now apply (3.8.7) to get

∣∣∣〈en′ ,W−1BB∗P∆Wz〉
∣∣∣ ≤ un′

wn′

√
1 + κn′

1 + λn′

√√√√∑
n∈∆

1 + κn
1 + λn

u2
n

√
|∆|w

≤
√

max
n∈Λ

{
u2
n(1 + κn)
w2
n(1 + λn)

}√
|∆|u|∆|w.

Since z and n′ were arbitrary, after an application of the inequality ab ≤ a2/2 + b2/2, we
obtain

Γ1(F,w,∆) ≤ 1
2 |∆|u + 1

2 max
n∈Λ

{
u2
n(1 + κn)
w2
n(1 + λn)

}
|∆|w. (3.8.9)
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We now consider Γ2(F,w,∆). From (3.8.8) and (3.8.7) we have

E
∣∣∣〈en′ ,W−1BB∗P∆Wz〉

∣∣∣2 ≤ 1
w2
n′
E

 d∑
k=0

τk(y)|∂kφn′(y)|2

1 + λn′

 d∑
k=0

∣∣∣∣∣∣
∑
n∈∆

√
τk(y)∂kφn(y)√

1 + λn
wnzn

∣∣∣∣∣∣
2



≤ u2
n′(1 + κn′)
w2
n′(1 + λn′)

E
d∑

k=0
τk(y)

∣∣∣∣∣∣
∑
n∈∆

∂kφn(y)√
1 + λn

wnzn

∣∣∣∣∣∣
2

= u2
n′(1 + κn′)
w2
n′(1 + λn′)

d∑
k=0

∫
D

∣∣∣∣∣∣
∑
n∈∆

∂kφn(y)√
1 + λn

wnzn

∣∣∣∣∣∣
2

νk(y) dy.

Recall that the functions ∂kφn are orthogonal with respect to the weight function νk, and
that

∫
D |∂kφn(y)|2νk(y) dy = λnk . Therefore, by Parseval’s identity, we get

E
∣∣∣〈en′ ,W−1BB∗P∆Wz〉

∣∣∣2 ≤ u2
n′(1 + κn′)
w2
n′(1 + λn′)

d∑
k=0

∑
n∈∆

|wnzn|2λnk
1 + λn

= u2
n′(1 + κn′)
w2
n′(1 + λn′)

∑
n∈∆
|wnzn|2 ≤ max

n∈Λ

{
u2
n(1 + κn)
w2
n(1 + λn)

}
|∆|w,

where in the last step we recall that ‖z‖∞ = 1. Since z and n′ were arbitrary, we deduce
that

Γ2(F,w,∆) ≤ max
n∈Λ

{
u2
n(1 + κn)
w2
n(1 + λn)

}
|∆|w.

Combining this with (3.8.9) now completes the proof.

Proof of Theorem 3.7.1. We now apply the previous two lemmas to the sample complexity
shown in Theorem 3.8.3 to get the sample complexity (3.7.4). Then, this sample complexity
leads to an error bound ‖zΛ − ẑ‖2 . ‖zΛ − z∆‖1,w +

√
|∆|wη. Recall that zΛ = QcΛ,

ẑ = Qĉ and f̂ =
∑
n∈Λ cnφn. Hence

‖fΛ − f̂‖H̃1(D) = ‖Q(cΛ − ĉ)‖2 = ‖zΛ − ẑ‖2 . ‖cΛ − c∆‖1,v +
√
|∆|wη,

where vn =
√

1 + λnwn, n ∈ Nd0. Thus, the error estimate of Theorem 3.7.1 follows from
the triangle inequality.

We may now prove Corollary 3.7.2:

Proof of Corollary 3.7.2. Given s ≥ 1, let ∆ be a lower set with |∆| ≤ s such that
‖cΛ − c∆‖1,v = σs,L(cΛ)1,v. Since Λ = ΛHC

s is the union of all lower sets of size at most s, we
know that N = |ΛHC

s | ≤ min
{

2s34d, e2s2+log2(d)
}
. See, for example, [4, Eqn. (10)]. Thus,

we have log(N/ε) . min {log(s/ε) + d, log(s/ε) log(2d)} .We now apply Theorem 3.7.1 with
w = u, noting that |∆|u ≤ K(s).
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3.8.4 Proofs of Corollary 3.7.3

In this subsection, we will prove the Corollary 3.7.3. At first, we require some further
background on Jacobi polynomials. For α, β > −1 and n ∈ N0, let P (α,β)

n be the Jacobi
polynomial of degree n. These polynomials are orthogonal on (−1, 1) with respect to the
weight function ω(α,β)(y) = (1− y)α(1 + y)β, and satisfy

〈P (α,β)
n , P (α,β)

m 〉L2
ω(α,β)

= κ(α,β)
n δn,m,

where
κ(α,β)
n = 2α+β+1

2n+ α+ β + 1
Γ(n+ α+ 1)Γ(n+ β + 1)
Γ(n+ 1)Γ(n+ α+ β + 1) .

These polynomials are normalized so that P (α,β)
n (1) =

(
n+ α

n

)
. Moreover, if α, β ≥

−1/2, then

sup
y∈(−1,1)

|P (α,β)
n (y)| =

(
n+ q

n

)
∼ nq

Γ(q + 1) , n→∞, (3.8.10)

where q = max{α, β}. See, for example, [111, Thm. 7.32.1]. We also note the reflection
property

P (α,β)
n (y) = (−1)nP (β,α)

n (−y). (3.8.11)

Let c(α,β) =
∫ 1
−1 ω

(α,β)(y) dy, and define the probability density function ν(α,β)(y) = ω(α,β)(y)
c(α,β) .

Then the corresponding orthonormal polynomials with respect to this density are given by

φn(y) = P
(α,β)
n (y)√
κ

(α,β)
n c(α,β)

, n ∈ N0. (3.8.12)

Proof of Corollary 3.7.3. In view of Corollary 3.7.2, it suffices to show that κn . λn, ∀n ∈
Nd0. Since λn =

∑d
k=1 λnk and κn =

∑d
k=1 κnk (see (3.5.7) and (3.7.3) respectively), it is

enough to show κn . λn, ∀n ∈ N0. Using the definition of κn (see (3.7.2)) and the fact
that χ(y) = 1

c(α,β) (1 − y)α+1(1 + y)β+1 and ν(y) = (1 − y)α(1 + y)β/c(α,β) for the Jacobi
polynomials (see (3.5.2)), this is equivalent to

sup
y∈(−1,1)

{√
1− y2|φ′n(y)|

}
. un

√
λn.

Furthermore, using (3.5.3), (3.8.10) and (3.8.12), we see that it is sufficient to show that

sup
y∈(−1,1)

{√
1− y2

∣∣∣∣(P (α,β)
n (y)

)′∣∣∣∣} . n1+q. (3.8.13)
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Note that from this equation onwards we allow the constant implied by the expression . to
depend on α and β. The derivatives of the Jacobi polynomials satisfy the following bound:∣∣∣∣∣∣ dP (α,β)

n (y)
dy

∣∣∣∣∣
y=cos(θ)

∣∣∣∣∣∣ .
{
θ−α−3/2n1/2 cn−1 ≤ θ ≤ π/2

n2+α 0 ≤ θ ≤ cn−1 , (3.8.14)

(see [111, Thm. 7.32.4]). Using this and the fact that sin(θ) ≤ θ for 0 ≤ θ ≤ π/2, we deduce
that

sup
0≤y≤1

√
1− y2

∣∣∣∣(P (α,β)
n (y)

)′∣∣∣∣ = sup
0≤θ≤π/2

sin(θ)

∣∣∣∣∣∣ dP (α,β)
n (y)
dy

∣∣∣∣∣
y=cos(θ)

∣∣∣∣∣∣
. max

{
sup

cn−1≤θ≤π/2
θ−α−1/2n1/2, sup

0≤θ≤cn−1
n2+αθ

}
. nα+1.

Now suppose −1 ≤ y ≤ 0. Using (3.8.11) and replacing α with β in the above arguments,
we deduce that

sup
−1≤y≤0

√
1− y2

∣∣∣∣(P (α,β)
n (y)

)′∣∣∣∣ . nβ+1,

Therefore, (3.8.13) follows immediately.

3.8.5 Proofs of Corollary 3.7.5

Finally, we shall prove Corollary 3.7.5.

Proof of Corollary 3.7.5. As in the proof of Corollary 3.7.3, we first need to show that
κn . λn, ∀n ∈ N0, which is equivalent to

sup
y∈(−1,1)

(1− y2)3/4|φ′n(y)| . un
√
λn, (3.8.15)

where
un = sup

y∈(−1,1)
(π/2)1/2 (1− y2)1/4|φn(y)|.

We first seek a lower bound for un. The classical Legendre polynomials Pn = P
(0,0)
n satisfy

P (0,0)
n (cos θ) = 21/2(πn sin θ)−1/2 cos ((n+ 1/2) θ − π/4) +O(n−3/2), 0 < θ < π.

See [111, Thm. 8.21.2]. This formula holds uniformly in the interval ε ≤ θ ≤ π− ε. When n
is even, Legendre polynomials have extrema at cos(θ) = 0, i.e. θ = π

2 . Then, we have

P (0,0)
n (0) = 21/2(πn)−1/2 cos (nπ/2) +O(n−3/2) = (2/π)1/2 n−1/2(−1)n/2 +O(n−3/2).
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When n is odd, we consider the point θ = π
2 + εn, where εn = π/(2n+ 1). Then

P (0,0)
n (cos (π/2 + εn)) = 21/2(πn)−1/2(cos (εn))−1/2 cos (nπ/2 + (n+ 1/2) εn) +O(n−3/2)

= (2/π)1/2n−1/2(−1)(n−1)/2 +O(n−3/2)

Therefore, for both even and odd n, we have

sup
y∈(−1,1)

(1− y2)1/4|P (0,0)
n (y)| & n−1/2,

and since φn(y) =
√

2n+ 1P (0,0)
n (y), we deduce that un & 1. Since λn = n(n+ 1) , we then

see that (3.8.15) is now implied by

sup
y∈(−1,1)

(1− y2)3/4|φ′n(y)| . n. (3.8.16)

Using (3.8.14) with α = β = 0 and arguing as in Corollary 3.7.3, we obtain

sup
0≤y≤1

(1− y2)3/4
∣∣∣∣∣ dP (0,0)

n (y)
dy

∣∣∣∣∣ . max
{

sup
cn−1≤θ≤π/2

n1/2, sup
0≤θ≤cn−1

n2θ3/2
}

. n1/2.

Using the reflection property and the fact that φn(y) =
√

2n+ 1P (0,0)
n (y), we now deduce

(3.8.16).
With this in hand, we apply Corollary 3.7.2 to get that the conclusion of Corollary 3.7.5

hold under the condition
m & K(s) · L,

where L = (min{d+ log(s/ε), log(2d) log(s/ε)}+ log(K(s)) · log(K(s)/ε)). It remains to es-
timateK(s) and L. In [2, Cor. 7.7], it was shown thatK(s) . min

{
2ds, (π/2)dslog(1+4/π)/ log(2)

}
.

From this, we also observe that log(K(s)) . d + log(s) and log(K(s)/ε) . d + log(s/ε).
Therefore L . (d+ log(s))(d+ log(s/ε)), which completes the proof.
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Chapter 4

Parametric differential equations

As mentioned in the previous chapter, a motivation of the high-dimensional function ap-
proximation problem comes from approximating a quantity of interest of a parametric dif-
ferential equation (DE) from a set of discrete samples. In this chapter, we will look at
different examples of applying the compressed sensing method to approximate quantities
of interest of such parametric DEs. In particular, we will work on the gradient-augmented
high-dimensional function approximation problem throughout this chapter.

4.1 Preliminaries

We first review some definitions and theorems in functional analysis. For references, see [66,
Chpt. 4 & Chpt. 7], [79, Chpt. 2 & Chpt. 3] and [76, Chpt. 5 & Chpt. 6].

Recall that a normed space is a vector space with a given norm defined on it. A normed
space is called complete if every Cauchy sequence is convergent. A complete normed space
is called a Banach space. Assume Ω is an open measurable subset of Rn. For 1 ≤ p < ∞,
the space Lp(Ω) consists of all measurable functions f on Ω that satisfy∫

Ω
|f(x)|p dx <∞,

and the corresponding Lp-norm of f is defined by

‖f‖Lp(Ω) =
(∫

Ω
|f(x)|p dx

)1/p
.

With p = ∞, the space L∞(Ω) consists of all measurable functions f that are essentially
bounded on Ω, which means that there exist a number 0 < M <∞ with

|f(x)| ≤M almost everywhere in Ω,
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and the L∞-norm is defined by the essential supremum:

‖f‖L∞(Ω) = ess sup
x∈Ω

|f(x)|

= inf{M | |f(x)| ≤M almost everywhere in Ω}.

It can be shown that the Lp(Ω) spaces with 1 ≤ p ≤ ∞ are examples of Banach spaces.

Definition 4.1.1. An inner product on a vector space V to the field K (either R or C) is
a map

〈·, ·〉 : V × V → K

such that, for all v1, v2, v3 ∈ V and a, b ∈ K:

(i) 〈v1, av2 + bv3〉 = a〈v1, v2〉+ b〈v1, v3〉;

(ii) 〈v2, v1〉 = 〈v1, v2〉;

(iii) 〈v1, v1〉 ≥ 0;

(iv) 〈v1, v1〉 = 0 if and only if v1 = 0.

A vector space with an inner product is called an inner product space. Moreover, a
complete inner product space is a Hilbert space. For example, the space of square integrable
function on Ω, denoted as L2(Ω), is a Hilbert space with an inner product

〈f, g〉 =
∫

Ω
fg dx.

Next, we will define the dual space of a normed space:

Definition 4.1.2. Let V be a normed space, the field K is either R or C . Then, the set of
all bounded linear functionals f : V → K constitutes a normed space with norm defined as

‖f‖V ′ = sup
v∈V
v 6=0

|(f, v)|
‖v‖V

,

which is called the dual space of V and is denoted as V ′. Here, (·, ·) denotes the dual pairing
between between an element in V ′ and an element in V. That is, for f ∈ V ′ and v ∈ V,
(f, v) = f(v).

For example, the dual space of the Euclidean space Rn is Rn. See [79, Example 2.10-5]
for the proof. Also, the dual space V ′ is a Banach space. See [79, Thm. 2.10-4] for details.

Moreover, similar with the inner product, the dual pairing (·, ·) : V ′ × V → K has the
following properties [77, §6.2]:
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(i) (f, av1 + bv2) = a (f, v1) + b (f, v2) for f ∈ V ′, v1, v2 ∈ V, a, b ∈ K
(af1 + bf2, v) = a (f1, v) + b (f2, v) for f1, f2 ∈ V ′, v ∈ V, a, b ∈ K

(ii) |(f, v)| ≤ ‖f‖V ′‖v‖V for f ∈ V ′, v ∈ V

(iii) If (f, v) = 0 for all f ∈ V ′, then v = 0.

Since the dual space V ′ is also a normed space, then we can form a dual space of V ′,
which is denoted by V ′′ and called the second dual space or bidual space of V. For every
v ∈ V, there is a bounded linear functional gv ∈ V ′′ satisfying

gv(f) = f(v), for f ∈ V ′.

This relation between V and V ′′ defines a mapping

C : V → V ′′

v → gv,

which is called the canonical mapping of V into V ′′. It can be shown that the canonical
mapping C is injective. If the mapping C is also surjective, we say this normed space V is
reflexive. In other words, it says that V = V ′′ under an isometric mapping C. For example,
every Hilbert space H is reflexive. For more details on dual space, bidual space, canonical
mapping and reflexivity, see [79, §2.8 & §2.10 & §4.6].

Before giving a couple more definitions, more notation is required. Assume there is a
non-negative multi-index α = (α1, . . . , αm) of order |α| =

∑m
n=1 αn. The space of infinitely

differentiable functions with compact support in Ω is denoted by C∞0 (Ω) . For a test function
ψ(x) ∈ C∞0 (Ω), we denote its partial derivative of order |α| as

Dαψ =
(
∂α1

∂xα1
1

)
· · ·
(
∂αm

∂xαmm

)
ψ.

Now we are ready to introduce the concept of weak derivative. As explained in [56, §5.2.1]
(see also [25, §1.2]), the motivation for defining the weak derivative is to extend idea of
differentiability to the space of functions which is only locally integrable.

Definition 4.1.3. Given a domain Ω, the set of locally integrable functions is denoted by

L1
loc(Ω) =

{
f : f ∈ L1(K) ∀ compact K ⊂ Ω

}
.

Definition 4.1.4. Suppose u, v ∈ L1
loc(Ω) and α is a multi-index. We say the v is the

αth-weak partial derivative of u, written Dαu = v, provided∫
Ω
uDαψ dx = (−1)|α|

∫
Ω
vψ dx
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for all test functions ψ ∈ C∞0 (Ω).

We then define the Sobolev space, the Sobolev norm and its dual space the same way as
shown in [56, §5.5.2]:

Definition 4.1.5. Fix 1 ≤ p ≤ ∞ and let k be a nonnegative integer. The Sobolev space
W k,p(Ω) consists of all locally integrable functions u : Ω→ R such that for each multi-index
α with |α| ≤ k, Dαu exists in the weak sense and belongs to Lp(Ω).

Definition 4.1.6. If u ∈W k,p(Ω), we define its norm to be

‖u‖Wk,p(Ω) :=


(∑
|α|≤k

∫
Ω |Dαu|p dx

)1/p
(1 ≤ p <∞),∑

|α|≤k ess supΩ |Dαu| (p =∞).

It can be proved that the Sobolev spaceW k,p(Ω) is a Banach space. For details, see [25, Thm.
1.3.2]. For p = 2, we often write Hk(Ω) = W k,2(Ω). Moreover, the space Hk is a Hilbert
space, and the corresponding inner product is defined as

〈u, v〉 =
∑
|α|≤k

∫
Ω
DαuDαvdx,

for u, v ∈ Hk(Ω). The space of all functions u ∈ H1(Ω) with u = 0 on the boundary ∂Ω
is denoted by H1

0 (Ω). Moreover, the space of all bounded linear functionals on H1
0 (Ω) is

denoted by H∗(Ω). By definition of the dual space, we see that H∗(Ω) is the dual space of
H1

0 (Ω). For more topics on Sobolev space, see [56, Chpt. 5].
Next, we will define the adjoint operator on the normed space. For references, see [79,

§4.5 & §3.9].

Definition 4.1.7. Let F : V → Z be a bounded linear operator, where V and Z are normed
spaces. Then, the adjoint operator F ∗ : Z ′ → V ′ of F is defined by

(F ∗f, v) = (f, Fv) , ∀f ∈ Z ′, v ∈ V.

For an operator F : V → V ′, we say it is self-adjoint if F = F ∗.

It can be shown that the adjoint operator F ∗ is uniquely defined. Suppose there is
another operator S : Z ′ → V ′ satisfying

(Sf, v) = (f, Fv) , ∀f ∈ Z ′, v ∈ V.

Then, we have

(Sf, v)− (F ∗f, v) = (Sf − F ∗f, v) = 0, ∀v ∈ V,
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which implies that Sf − F ∗f = 0 for all f ∈ Z ′. So, we can conclude that S = F ∗.
Moreover, assume V,W,Z are Banach spaces. Let T : V → W and S : W → Z be

two bounded linear operators. The composition of ST is then defined as a bounded linear
operator from V to Z. By definition of the adjoint operator, we have

((ST )∗f, v) = (f, (ST )v) = (S∗f, Tv) = (T ∗(S∗f), v) = ((T ∗S∗)f, v) ,

for all f ∈ Z ′ and v ∈ V, which implies that (ST )∗ = T ∗S∗. Here, (ST )∗ : Z ′ → V ′

denotes the adjoint operator of ST , S∗ : Z ′ → W ′ denotes the adjoint operator of S and
T ∗ :W ′ → V ′ denotes the adjoint operator of T .

The last definition we need before introducing the adjoint sensitivity analysis method is
the Fréchet derivative. See [105, Def. 2.5] or [66, Def. 11.5]. The Fréchet derivative generalizes
the derivative of a real-valued function to the derivative of an operator on a normed space,
and it is often used to formalize the functional derivative [17,122].

Definition 4.1.8. Let V,Z be normed vector spaces and U ⊆ V be an open subset of V. We
say an operator F : U → Z is Fréchet differentiable at a point ū ∈ U if there is a bounded
linear operator DF (ū) : V → Z satisfying

lim
‖h‖V→0+

‖F (ū+ h)− F (ū)−DF (ū)h‖Z
‖h‖V

= 0.

This bounded linear operator DF (ū) is called the Fréchet derivative of F at the point ū.

It can be checked from the definition that, for a bounded linear operator defined on
V, the Fréchet derivative is itself [66, §11.1] [105, §2.2]. Furthermore, we say an operator
F : U → Z is continuously Fréchet differentiable if F is differentiable at every point ū ∈ U
and the operator DF : U → B(V,Z); ū→ DF (ū) is continuous, where B(V,Z) denotes the
set of bounded linear operators from V to Z [18, Chpt. 3] [124, §2.1]. We denote the space of
continuously Fréchet differentiable operators F : U → Z by C1(U ,Z). Moreover, the chain
rule is also valid for the Fréchet derivative. Let V,W,Z be normed vector spaces and U ,X
be open subsets of V,W respectively. If the operator F : U → W satisfies F (U) ⊆ X and is
Fréchet differentiable at a point ū ∈ U , and the operator G : X → Z is Fréchet differentiable
at a point F (ū) ∈ X , then the composition G ◦F : U → Z is Fréchet differentiable at ū and
its Fréchet derivative at ū is

D(G ◦ F )(ū) = DG(F (ū))DF (ū).

For the proof, see [18, Chpt. 4] or [124, §2.1.4]. Finally, we define the partial Fréchet deriva-
tive for operators whose domains are Banach spaces as follows (see [124, §2.4]) :

Definition 4.1.9. Let V = V1 × · · · × Vn be a product of Banach spaces, Z be a Banach
space, and U = U1 × · · · × Un ⊆ V be a subset of V with Ui open in each Vi for i = 1, . . . , n.
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For a given operator F : U → Z, we say it has an ith partial derivative at the point
ū = (u1, . . . , un) ∈ U if the operator Fi : Ui → Z defined by

Fi(u) = F (u1, . . . , ui−1, u, ui+1, . . . , un)

is Fréchet differentiable at the point u = ui. We define the ith partial derivative of F at the
point ū as ∂iF (ū) := DFi(ui).

It can be immediately seen from the definition that each operator ∂iF (ū) is a bounded
linear operator from Vi to Z.

Since it will be useful for later sections, we now introduce the Lax-Milgram Theorem,
which can be used to prove the existence and uniqueness of the weak solutions of the elliptic
PDEs. An example to demonstrate how this theorem is applied will be shown in §4.3.1.

Theorem 4.1.10. [56, Lax-Milgram Theorem, Thm. 1 of §6.2.1] Let H be a real Hilbert
space with norm ‖·‖H . Let (·, ·) denotes the pairing of H with its dual space. Assume that

B : H ×H → R

is a bilinear mapping, for which there exists constants c1, c2 > 0 such that

|B[u, v]| ≤ c1‖u‖H‖v‖H for u, v ∈ H, (4.1.1)

and

c2‖u‖2H ≤ B[u, u] for u ∈ H. (4.1.2)

Finally, let T : H → R be a bounded linear functional on H. Then, there exists a unique
element u ∈ H such that

B[u, v] = (T, v) (4.1.3)

for all v ∈ H.

Finally, we introduce two inequalities will be useful for §4.3.1.

Theorem 4.1.11. [26, Hölder’s inequality, Thm. 4.6] Assume that f ∈ Lp(Ω) and g ∈
Lq(Ω) with 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1. Then, fg ∈ L1(Ω) and∫

Ω
|fg| dx ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

The special case when p = q = 2 is called the Cauchy-Schwarz inequality.
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Proposition 4.1.12. [26, Poincarè’s inequality, Prop. 8.13] Suppose Ω is a bounded in-
terval. Then there exists a constant C (depending on |Ω| <∞) such that

‖u‖W 1,p(Ω) ≤ C‖∇u‖Lp(Ω), ∀u ∈W 1,p
0 (Ω).

4.2 Adjoint sensitivity analysis method

For all examples shown in this chapter, we compute the gradient samples of the quantity of
interest (QoI) with the adjoint sensitivity analysis method, which is a common technique
used in statistics for studying the impact of uncertain parameters [110, §10.2]. In this
section, we will introduce the adjoint sensitivity analysis method, which can be seen as an
application of the implicit function theorem (IFT) from multivariable calculus. First, let us
review the implicit function theorem:

Theorem 4.2.1 (IFT, Thm. 10.7, [110]). Let X ,V and Z be Banach spaces, let W ⊆ X ×V
be open, and let F ∈ C1(W;Z). Suppose that, at (ȳ, ū) ∈ W, the partial Fréchet derivative
∂F
∂u (ȳ, ū) : V → Z is an invertible bounded linear map. Then there exist open sets Y ⊆ X
about ȳ, U ⊆ V about ū, with Y × U ⊆ W, and a unique ϑ ∈ Ck(Y;U) such that

{(y, u) ∈ Y × U| F (y, u) = F (ȳ, ū)} = {(y, u) ∈ Y × U| u = ϑ(y)},

i.e. the contour of F through (ȳ, ū) is locally the graph of ϑ. Furthermore, Y can be chosen
so that ∂F

∂u (y, ϑ(y)) is boundedly invertible for all y ∈ Y, and the Fréchet derivative dϑ
dy (y) :

X → V of ϑ at any y ∈ Y is the composition

dϑ

dy
(y) = −

(
∂F

∂u
(y, ϑ(y))

)−1 (∂F
∂y

(y, ϑ(y))
)
. (4.2.1)

Now we are ready to derive the adjoint equation in the adjoint sensitivity analysis
method with the IFT. The derivation of the adjoint equation presented here is based on [110,
§10.2]. Assume Y and U are open subsets of Banach spaces X and V. We have a differential
equation (DE) which can be represented as an operator F : Y ×U → Z. For any y ∈ Y, we
have u(y) ∈ U as the solution of the function F (y, u(y)) = 0, where 0 is the zero element of
the Banach space Z. We define the quantity of interest (QoI) of the DE as

q : Y → R,

q(y) = Q(y, u(y)),

where the functional Q : Y × U → R. The goal here is to compute the Fréchet derivative
of the QoI with respect to y at a given point ȳ ∈ Y using the adjoint sensitivity analysis
method, given that F (ȳ, ū) = 0 with ȳ ∈ Y and ū = u(ȳ) ∈ U .
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Assume the operator F ∈ C1(Y × U ,Z) and the partial Fréchet derivative ∂F
∂u (ȳ, ū) :

V → Z is invertible. Since F (y, u(y)) = 0, its Fréchet derivative with respect to y vanishes
at the point (ȳ, ū), that is

d

dy
F (y, u(y))

∣∣∣
(y,u)=(ȳ,ū)

= ∂F

∂u
(ȳ, ū)∂u

∂y
(ȳ, ū) + ∂F

∂y
(ȳ, ū) = 0,

Then, we have the Fréchet derivative ∂u
∂y (ȳ, ū) is the composition:

∂u

∂y
(ȳ, ū) = −

(
∂F

∂u
(ȳ, ū)

)−1 (∂F
∂y

(ȳ, ū)
)
, (4.2.2)

as (4.2.1) in the conclusion of the IFT. By the chain rule, we also have that the Fréchet
derivative of q(y) with respect to y at the point (ȳ, ū) is

dq

dy
(ȳ) = ∂Q

∂u
(ȳ, ū)∂u

∂y
(ȳ, ū) + ∂Q

∂y
(ȳ, ū). (4.2.3)

By substituting (4.2.2) into (4.2.3), we get

dq

dy
(ȳ) = −∂Q

∂u
(ȳ, ū)

(
∂F

∂u
(ȳ, ū)

)−1 ∂F

∂y
(ȳ, ū) + ∂Q

∂y
(ȳ, ū). (4.2.4)

As a check, we see that ∂Q∂u (ȳ, ū) defines a bounded linear functional from V to R,
(
∂F
∂u (ȳ, ū)

)−1

defines a bounded linear operator from Z to V, ∂F∂y defines a bounded linear operator from

X to Z. So, the composition ∂Q
∂u (ȳ, ū)

(
∂F
∂u (ȳ, ū)

)−1
∂F
∂y defines a bounded linear functional

between X and R. Moreover, ∂Q∂y defines a bounded linear functional from X to R. It gives
that the right-hand side of (4.2.4) defines a bounded linear functional from X to R, which
matches with how the functional dqdy : X → R is defined on the left-hand side of (4.2.4).

Next, we set

λ = −∂Q
∂u

(ȳ, ū)
(
∂F

∂u
(ȳ, ū)

)−1
.

Then, we can use λ to rewrite (4.2.4) as

dq

dy
(ȳ) = λ

∂F

∂y
(ȳ, ū) + ∂Q

∂y
(ȳ, ū), (4.2.5)

where the functional λ ∈ Z ′ (the dual space of Z) is the solution to

λ
∂F

∂u
(ȳ, ū) = −∂Q

∂u
(ȳ, ū). (4.2.6)
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Alternatively, we can consider the adjoint of (4.2.6). Since the adjoint operator on Banach
space is uniquely defined, (4.2.6) is equivalent to(

λ
∂F

∂u
(ȳ, ū)

)∗
= −

(
∂Q

∂u
(ȳ, ū)

)∗
. (4.2.7)

Since it has been shown in §4.1 that(
λ
∂F

∂u
(ȳ, ū)

)∗
=
(
∂F

∂u
(ȳ, ū)

)∗
λ∗,

then (4.2.7) can be rewritten as(
∂F

∂u
(ȳ, ū)

)∗
λ∗ = −

(
∂Q

∂u
(ȳ, ū)

)∗
, (4.2.8)

which is known as the adjoint equation in the adjoint sensitivity analysis method. Note that(
∂F
∂u (ȳ, ū)

)∗
: Z ′ → V ′ is a bounded linear operator and λ∗ : R → Z ′ is a bounded linear

operator since the dual space of R is R. Thus, we have
(
∂F
∂u (ȳ, ū)

)∗
λ∗ defines a bounded

linear operator from R to V ′, which matches with how the operator
(
∂Q
∂u (ȳ, ū)

)∗
is defined

on the right-hand side.
After solving for λ in (4.2.6), then dq

dy (ȳ) can be directly computed by substituting λ back
to (4.2.5). Note that, in practice, we often solve for λ∗ in (4.2.8) first and find its adjoint,
instead of directly solving for λ via (4.2.6). This approach of computing the derivative of
q(y) at ȳ by solving the adjoint equation is called the adjoint sensitivity analysis method. As
pointed out in [110, §10.2], the adjoint sensitivity analysis method provides an easy way to
compute the bounded linear functional dq

dy without evaluating the derivative ∂u
∂y explicitly.

To compute dq
dy with the adjoint equation (4.2.8), we only need to know the partial Fréchet

derivatives F and Q with respect to y and u. Compared to ∂u
∂y , these derivatives are often

much easier to compute.

4.3 Parametric diffusion equation with homogenous Dirich-
let boundary conditions

In this section, we will present several examples of approximating the quantities of interest
(QoIs) of parametric diffusion equations with homogenous Dirichlet boundary conditions.
The parametric diffusion equation with homogenous Dirichlet boundary conditions is de-
fined by

−∇ · (a(y,x)∇u(x)) = f(x), ∀x ∈ Ω, (4.3.1)

u(x) = 0, ∀x ∈ ∂Ω, (4.3.2)
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where Ω is an open and bounded physical domain in Rn, x = (x1, x2, · · · , xn) is the n-
dimensional physical variable. The parametric diffusion coefficient satisfies a(y,x) > 0,
where y = (y1, y2, . . . , yd) ∈ D is a d-dimensional parameter vector and D is an open subset
of Rd with a probability measure defined on it. The function y → a(y, ·) is continuously
Fréchet differentiable for all y ∈ D. Moreover, the parametric diffusion coefficient a(y,x)
is bounded, that is

M1 ≤ a(y,x) ≤M2, ∀x,y,

where M1,M2 are positive real numbers. The forcing term on the right-hand side of (4.3.1)
satisfies f(x) ∈ L2(Ω). The QoI is q(y) = Q(u(y)), where Q is a bounded linear functional
acting on the solution u. Here, the solution u depends on y through (4.3.1). It is clear that
u always depends on x. For simplicity, we write u(y,x) as u(y).

4.3.1 The weak problem

As the first step for obtaining one sample of QoI and its gradient sample, we need to solve
the weak problem of (4.3.1) and (4.3.2) at a given point ȳ = (ȳ1, . . . , ȳd) ∈ D. We derive
the weak problem to solve with multiplying (4.3.1) by a smooth test function v ∈ C∞0 (Ω)
and integrating over Ω. With integration by parts, we get

−
∫

Ω
(∇ · (a(ȳ,x)∇ū(x))) v(x)dΩ =

∫
Ω

(a(ȳ,x)∇ū(x)) · ∇v(x)dΩ

=
∫

Ω
f(x)v(x)dΩ since v(x) = 0 on ∂Ω.

Due to the fact that C∞0 (Ω) is dense in H1
0 (Ω), the smooth test function v can be replaced

by v ∈ H1
0 (Ω) [37,75]. Now we have ū ∈ H1

0 (Ω) to be a solution of the weak problem

B[ū, v] = (T, v) , ∀v ∈ H1
0 (Ω), (4.3.3)

where the bilinear mapping is defined by

B[ū, v] =
∫

Ω
(a(ȳ,x)∇ū(x)) · ∇v(x)dΩ,

for ū, v ∈ H1
0 (Ω). The functional T : H1

0 (Ω)→ R on the right-hand side is defined by

(T, v) =
∫

Ω
f(x)v(x)dΩ = 〈f, v〉,

where 〈f, v〉 is the L2(Ω) inner product.
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With the Lax-Milgram Theorem, we can show that (4.3.3) has a unique solution. First,
by Cauchy-Schwarz inequality, we have

|B[ū, v]| ≤M2‖∇ū‖L2(Ω)‖∇v‖L2(Ω) ≤M2‖ū‖H1
0 (Ω)‖v‖H1

0 (Ω).

Since M1 ≤ a(ȳ,x), we have

M1
1 + c

‖ū‖2L2(Ω) ≤ B[ū, ū],

where c is the constant from Poincaré’s inequality. Finally, we have that T : H1
0 (Ω) → R

defines a bounded linear functional on H1
0 (Ω), since

|(T, v)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H1
0 (Ω).

In other words, it says that T ∈ H∗(Ω), the dual space of H1
0 (Ω). We have now proved that

(4.3.3) has a unique solution ū ∈ H1
0 (Ω). Note that, for simplicity, we will write H∗(Ω) as

H∗ from now on.

4.3.2 The adjoint equation

In the previous subsection, we derived the weak problem and proved the existence and
uniqueness of the solution. Now we are ready to derive the adjoint equation for generating
the gradient samples of the quantity of interest (QoI).

Recall, in §4.2, we have shown that the adjoint sensitivity analysis method is a simple
application of the implicit function theorem (IFT). Thus, in order to derive the adjoint
equation, we first need to check whether the assumptions needed for the IFT are satisfied.
Since the boundary value problem (shown as (4.3.1) and (4.3.2)) can be rewritten as an
operator

F : D × (H2(Ω) ∩H1
0 (Ω))→ L2.

we have that, for any y ∈ D, the strong solution u ∈ H2(Ω) ∩H1
0 (Ω) solves the function

F (y, u) = −∇ · (a(y,x)∇u(x))− f(x) = 0

with u = 0 on boundaries. Furthermore, we can extend the operator F to be

F : D ×H1
0 (Ω)→ H∗,

which is defined by

(F (y, u), v) = (−∇ · (a(y,x)∇u) , v)− (T, v) = 〈a(y,x)∇u,∇v〉 − 〈f, v〉, (4.3.4)
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for F (y, u) ∈ H∗ and for all v ∈ H1
0 (Ω). In other words, for y ∈ D, the weak solution

u ∈ H1
0 (Ω) solves the function

(F (y, u), v) = 〈a(y,x)∇u,∇v〉 − 〈f, v〉 = 0.

Thus, two open subsets of Banach spaces X and V considered in the IFT are Y = D ⊂ X =
Rd and U = H1

0 (Ω) = V respectively.
Now we shall show the operator F ∈ C1(Y ×U , H∗). Note that F (y, u) can be rewritten

as F (y, u) = G(y, u)− f(x), where the operator G : Y × U → H∗ is defined by

(G(y, u), v) = (−∇ · (a(y,x)∇u) , v) = 〈a(y,x)∇u,∇v〉.

Since f(x) only depends on x, f(x) can be considered as a constant function in y and u. In
other words, in order to show F ∈ C1(Y×U , H∗), all we need is to show G ∈ C1(Y×U , H∗).
For a given ȳ ∈ Y, we define Gȳ : U → H∗ by

(Gȳ(ū), v) = (−∇ · (a(ȳ,x)∇ū) , v) = 〈a(ȳ,x)∇ū,∇v〉.

The operator Gȳ on U is linear, since

Gȳ(ū1 + ū2) = −∇ · (a(ȳ,x)∇ (ū1(x) + ū2(x)))

= (−∇ · (a(ȳ,x)∇ū1(x))) + (−∇ · (a(ȳ,x)∇ū2(x)))

= Gȳ(ū1) +Gȳ(ū2),

for ū1, ū2 ∈ U . With the same procedure used in Chapter 1 of [117], we can prove the
operator Gȳ is also bounded on U . Recall, it has been seen in §4.3.1 that (Gȳ(ū), v) = B[ū, v]
for ū, v ∈ U . So, we have

‖Gȳ(ū)‖H∗ = sup
v∈U
v 6=0

(Gȳ(ū), v)
‖v‖U

= sup
v∈U
v 6=0

B[ū, v]
‖v‖U

≤M2‖ū‖U ,

which proves that Gȳ is a linear bounded operator on U . This implies that the operator
Gȳ is Fréchet differentiable on U and its Fréchet derivative is itself. Given the function
y → a(y, ·) is continuously Fréchet differentiable for all y ∈ Y, we have G ∈ C1(Y×U , H∗).
With this in hand, we can deduce that F ∈ C1(Y × U , H∗).

Next, we need to show the partial Fréchet derivative ∂F
∂u (ȳ, ū) : U → H∗ is invertible.

For the same reason as before, it is equivalent to showing that the partial Fréchet derivative
∂G
∂u (ȳ, ū) : U → H∗ is invertible. Since the Fréchet derivative of the operator Gȳ on U is
itself, we have that ∂G

∂u (ȳ, ū) = Gȳ for any given ȳ ∈ Y. Moreover, it has been proved in
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§4.3.1 that the weak problem

(Gȳ(ū), v) = (T, v) = 〈f, v〉, ∀v ∈ U

has a unique solution ū ∈ U . So, we have the operator Gȳ is invertible and ū = G−1
ȳ (T ),

where the operator G−1
ȳ : H∗ → U . This indicates that the partial Fréchet derivative

∂F
∂u (ȳ, ū) : U → H∗ is invertible.

Now we can apply the IFT and compute the gradient samples of the QoI with

dq

dy
(ȳ) = λ

∂F

∂y
(ȳ, ū), (4.3.5)

where the functional λ ∈ (H∗)′ is the solution to

λ
∂F

∂u
(ȳ, ū) = −∂Q

∂u
(ū). (4.3.6)

Since the operators ∂F
∂u (ȳ, ū) = Gȳ and ∂Q

∂u (ū) = Q, (4.3.6) can be rewritten as

λGȳ = −Q, (4.3.7)

where the bounded linear operator Gȳ : U → H∗, the bounded linear functional λ : H∗ → R,
the composition λGȳ : U → R and the bounded linear operator Q : U → R. Next, we
will derive the adjoint equation of (4.3.7). As a first step, we need to find the adjoint
operator G∗ȳ : (H∗)′ → U ′ of Gȳ. Recall, since every Hilbert space is reflexive, we have
(H∗)′ = H1

0 (Ω) = U . With U ′ = (H1
0 (Ω))′ = H∗, we know that the adjoint operator G∗ȳ

satisfies G∗ȳ : U → H∗. By definition of the adjoint operator (shown in §4.1), we have(
G∗ȳv, w

)
= (v,Gȳw) , (4.3.8)

for all w, v ∈ U . Applying integration by parts twice on the right-hand side of (4.3.8), we
get

(v,Gȳw) =
∫

Ω
(−∇ · (a(ȳ,x)∇w(x))) v(x)dΩ =

∫
Ω

(a(ȳ,x)∇w(x)) · ∇v(x)dΩ

=
∫

Ω
(−∇ · (a(ȳ,x)∇v(x)))w(x)dΩ = (Gȳv, w) ,

which implies that the operator Gȳ = G∗ȳ, i.e. Gȳ is self-adjoint. Thus, we have the adjoint
equation of (4.3.8) as

Gȳλ
∗ = −Q∗, (4.3.9)
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where the bounded linear operators λ∗ : R→ U and Q∗ : R→ H∗ are the adjoint operators
of λ and Q respectively and the bounded linear operator Gȳ : U → H∗. Finally, after solving
(4.3.7) for λ (or (4.3.9) for λ∗) and computing the partial Fréchet derivative ∂F

∂y (ȳ, ū), we
can obtain the gradient of the QoI at ȳ using (4.3.5).

4.3.3 Galerkin discretization and the discretized adjoint equation

In order to solve the weak problem numerically, we first need to truncate the problem into
a finite-dimensional setting. In this subsection, we will discretize the weak problem with
the Galerkin method, described in [25, §0.2] and [57], and show how the adjoint sensitivity
analysis method works for the discretized setting.

Recall, the weak problem to solve is defined by

B[ū, v] = 〈f, v〉, (4.3.10)

where the bilinear mapping B[ū, v] =
∫

Ω (a(ȳ,x)∇ū(x)) · ∇v(x)dΩ and the inner product
〈f, v〉 =

∫
Ω f(x)v(x)dΩ for all v ∈ U . As the first step of the Galerkin method, we define a

finite-dimensional space, Uh, which is a subspace of U . Instead of (4.3.10), now we solve a
discretized problem

B[uh, v] = 〈f, v〉, (4.3.11)

where uh, v ∈ Uh.
Let the set {ϕj : 1 ≤ j ≤ N} be a basis of Uh. We can write an approximated solution of

ū as uh(x) =
∑N
j=1 ujϕj(x) and the test function v as v(x) =

∑N
i=1 viϕi(x) with v(x) = 0

on the boundary. Now (4.3.11) can be rewritten as a matrix equation

Uū = b, (4.3.12)

where

U =
(∫

Ω
a(ȳ,x)∇ϕi(x)∇ϕj(x)dΩ

)N
i,j=1

∈ RN×N ,

b =
(∫

Ω
f(x)ϕi(x)dΩ

)N
i=1
∈ RN ,

ū = (u1, u2, . . . , uN )T ∈ RN .

Then, we solve for ū in (4.3.12) to get an approximated solution uh of ū. The matrix U
defined above is often referred as the stiffness matrix in the finite element literature. Note
that the matrix U is symmetric and is also positive definite since B[w,w] > 0 for all nonzero
w ∈ Uh [25, §0.2]. Thus, (4.3.12) has a unique solution ū = U−1b.
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Recall, at a given point ȳ, the quantity of interest (QoI) is defined by

q(ȳ) = Q(ū), (4.3.13)

where Q : U → R is a bounded linear functional. We approximate ū with uh ∈ Uh, which
has coefficients ū in the {ϕj} basis. In the discretized setting, (4.3.13) becomes

q(ȳ) = Qh(ū) = aT ū, (4.3.14)

where aT : RN → R represents the operator Qh – the discretized version of the operator Q.
Moreover, the operator ∂Qh

∂u (ū) : RN → R defines a mapping ū→ aT ū.
At a given point ȳ, we can write the discretized version of (4.3.4) as

Fh(ȳ, ū) = Uū− b,

where the operator Fh : RN → RN . Moreover, we have

∂Fh
∂u

(ȳ, ū) : RN → RN , ū→ Uū.

Thus, (4.3.7) can be understood as

λh(Uū) = −aT (ū),

⇒ λU = −aT , (4.3.15)

where λ : RN → R represents the functional λh– the discretized version of the functional
λ ∈ (H∗)′, U : RN → RN and the composition λU : RN → R. Since U is symmetric, the
adjoint equation of (4.3.15) becomes

UλT = −a, (4.3.16)

where λT : R→ RN and a : R→ RN . Then, we can solve the matrix equation (4.3.16) for
λT and get λ by simply taking the transpose.

Furthermore, we have that

∂Fh
∂yk

(ȳ, ū) = Ukū, (4.3.17)

where

Uk =
(∫

Ω
ak(ȳ,x)∇ϕi(x)∇ϕj(x)dΩ

)N,N
i,j=1

∈ RN×N with ak = ∂a(ȳ,x)
∂yk

, k = 1, . . . , d.
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Thus, the gradient sample of the QoI at ȳ can be computed as

dq

dyk
(ȳ) = λ

∂Fh
∂yk

(ȳ, ū),

for k = 1, . . . , d.

4.4 Numerical results for homogenous Dirichlet problems

After deriving the discretized weak problem and the discretized adjoint equation in §4.3.3,
we are ready to show some examples. In this section, we will present the approximation
results of the quantities of interest (QoIs) for three problems with the same set-up as shown
in §4.3. Note that, for simplicity, the problems we present here have either one-dimensional
or two-dimensional physical domain, i.e. Ω = (0, 1) or Ω = (0, 1)2. However, the higher
dimensional problem can be solved in the same way. For details on how these problems are
solved numerically, see Appendix A. In this section, §4.6 and §4.7, we use ei ∈ RN to denote
the column vector with 1 at the ith position and 0’s elsewhere.

4.4.1 One-dimensional diffusion equation

Let us first look at a simple one-dimensional problem. Suppose that u : Ω̄ → R solves the
Dirichlet boundary value problem

− d

dx

(
ey

d

dx
u(x)

)
= f(x), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where the physical domain Ω = (0, 1), the parameter y ∈ Y = (−1, 1), and the right-hand
side function is defined as f(x) = x(x+1) ∈ L2(Ω). Here, we are interested in approximating
the QoI q(y) = u(y, 0.18) with gradient-augmented samples.

We discretize this problem by taking 50 equal spaced subregions between 0 and 1,
which gives in total N = 51 nodes on [0, 1]. With this discretization, we can explicitly
form the matrix equation Uū = b at any given point ȳ ∈ Y and write the QoI at ȳ as
q(ȳ) = eT10ū. The adjoint equation is given as UλT = −e10 for λT ∈ RN . In this case, we
have ∂Fh

∂y (ȳ, ū) = Aū = b and the derivative of the QoI can be computed as dq
dy (ȳ) = λb.

Note that this one-dimensional problem is solved by considering a two-dimensional version
of this problem with assuming the solution is constant along the vertical direction. For
reference on how to implement one-dimensional problems on FreeFem++, see [10].

Figure 4.1 shows the approximation error ‖q − q̃‖L∞ against the computational cost m̃
with s = 2048 when different approximating polynomial bases are used. With the same
amount of computational cost, we see that a smaller approximation error is often obtained
when the gradient samples are considered. Figure 4.1 also compares different weighting
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strategies. We see that, compared to the unweighted case, an improvement of the recovery
is obtained when a weighted `1 minimization problem is solved.
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Figure 4.1: The ‖q − q̃‖L∞ recovery error of the one-dimensional diffusion equation against m̃ for
Legendre polynomials with points drawn from the uniform density (top) and Chebyshev polynomials
with points drawn from the Chebyshev density (bottom). The unaugmented case is shown on the
left column and the gradient-augmented case is shown on the right.

4.4.2 Two-dimensional diffusion equation

Next, we consider a two-dimensional problem, which is defined by

−∇ · (a(y,x)∇u(x)) = f(x), ∀x ∈ Ω,

u(x) = 0, ∀x ∈ ∂Ω,

where Ω = (0, 1)2 is the physical domain, x = (x1, x2) is the two-dimensional physical
variable. The parametric diffusion coefficient is defined by

a(y,x) = ey1 · 1Ω1(x) + ey2 · 1Ω2(x), ∀x ∈ Ω, ∀y ∈ Y,

where y = (y1, y2) ∈ Y is a two-dimensional parameter vector and Y = (−1, 1)2. The
indicator function on Ω1 is denoted by 1Ω1 and 1Ω2 is the indicator function on Ω2, where
Ω1 is defined as the left half of the unit square Ω and Ω2 is the right half of Ω. The
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right-hand side is defined as f(x) = x1(x1 + 1) ∈ L2(Ω). The QoI to approximate here is
q(y) = u(y, (0.7, 0.7)).

We discretize the domain by taking 20 equal spaced intervals on each boundary of Ω
and the vertical line in the middle of Ω. By doing this, we will construct a mesh of 896
triangles with in total N = 489 vertices. Figure 4.2 shows the triangular mesh for this
two-dimensional problem.
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Figure 4.2: Triangular mesh for the two-dimensional diffusion equation.

Now, for any given ȳ, we can explicitly from a matrix equation Uū = b. Since x =
(0.7, 0.7) corresponds to the 309th vertex of the mesh, we can write the QoI at ȳ as
q(ȳ) = eT309ū. The corresponding adjoint equation is UλT = −e309 for λT ∈ RN . Moreover,
∂Fh
∂yk

(ȳ, ū) can be computed using (4.3.17) with

ak(ȳ,x) = eȳk × 1Ωk(x), for k = 1, 2.

Then, we have the gradient of the QoI at ȳ as

dq

dyk
(ȳ) = λ

∂Fh
∂yk

(ȳ, ū),

for k = 1, 2.
Figure 4.3 shows the approximation error ‖q − q̃‖L∞ against m̃ with s = 365 when

different kinds of approximating polynomial bases are used. As in the one-dimensional
problem, compared to the unaugmented case, a smaller error is often obtained when the
gradient samples are considered. Again, compared to the unweighted `1 minimization, we
see an improved approximation result when a weighted `1 minimization problem is solved.
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Figure 4.3: The ‖q − q̃‖L∞ recovery error of the two-dimensional diffusion equation against m̃ for
Legendre polynomials with points drawn from the uniform density (top) and Chebyshev polynomials
with points drawn from the Chebyshev density (bottom). The unaugmented case is shown on the
left column and the gradient-augmented case is shown on the right.

4.4.3 The cookie problem

Our final example models how heat distributes inside of an oven with baked goods, which
is defined by

−∇ · (a(y,x))∇u(x)) = f, ∀x ∈ Ω,

u(x) = 0, ∀x ∈ ∂Ω.

Here, the physical domain is Ω = (0, 1)2, x = (x1, x2) is the two-dimensional physical
variable. The parametric diffusion coefficient is given as

a(y,x) = 1−
8∑
i=1

1Ωi(x)(0.5 + 0.49yi), ∀x ∈ Ω, ∀y ∈ Y,

where Ω1, . . .Ω8 are circular subregions of Ω of radius 0.14, centered at (0.5 ± 0.3, 0.5 ±
0.3), (0.5, 0.5 ± 0.3), (0.5 ± 0.3, 0.5). The parameter vector y = (y1, . . . , yd) ∈ Y, where
Y = (−1, 1)8. The forcing term on the right-hand side is defined as f = 100 · 1Ωf , where
Ωf = [0.4, 0.6]2 is a small square in the center of the domain Ω. This problem is referred as
the cookie problem in the literature, where the square Ωf models the central heating source
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of an oven and (Ωi)8
i=1 represents the cookies baking inside of the oven. This problem and

analogous versions of it have been studied in various literatures, see [3,12,13,40]. Here, the
QoI to approximate is defined as q(y) = u(y, (0.5, 0.8)).

We discretize the problem by taking 20 equal spaced intervals along each boundary of Ω
and on the eight circles (Ωi)8

i=1, and taking 5 equal spaced intervals along each boundary of
Ωf . With this discretization, we have in total 1172 triangles with N = 627 vertices. Figure
4.4 shows the triangular mesh for the cookie problem.

0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

1

Figure 4.4: Triangular mesh for the cookie problem.

As the next step, we form the matrix equation Uū = b to solve. Since x = (0.5, 0.8)
corresponds to the 157th vertex, the QoI at ȳ can be written as q(ȳ) = eT157ū. It follows
that the adjoint equation is UλT = −e157 for λT ∈ RN . Moreover, it can be seen that, for
this problem, ∂Fh∂yk

(ȳ, ū) can be simply computed using (4.3.17) with

ak(ȳ,x) = −0.49× 1Ωk(x), for k = 1, . . . , 8.

Finally, we have the gradient of the QoI at ȳ to be

dq

dyk
(ȳ) = λ

∂Fh
∂yk

(ȳ, ū),

for k = 1, . . . , 8.
Figure 4.5 shows the approximation error ‖q − q̃‖L∞ against m̃ with s = 23 when either

Legedre or Chebyshev approximating polynomial basis are used. As have been seen in
the previous two examples, compared to only sample the QoI, a smaller approximation
error is obtained when the gradient samples are also considered. Moreover, compared to
the unweighted `1 minimization, we see a better approximation result when a weighted `1

minimization problem is solved.
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Figure 4.5: The ‖q − q̃‖L∞ recovery error of the cookie problem against m̃ for Legendre polynomials
with points drawn from the uniform density (top) and Chebyshev polynomials with points drawn
from the Chebyshev density (bottom). The unaugmented case is shown on the left column and the
gradient-augmented case is shown on the right.

4.5 Parametric diffusion equation with mixed boundary con-
ditions

In §4.3, we considered the parametric diffusion problem with homogenous Dirichlet bound-
ary conditions. However, in reality, the physical problems we are dealing with often have
more complicated boundary conditions. In this section, we will work on a more realistic sit-
uation when mixed boundary conditions are applied to the parametric diffusion equation.

The parametric diffusion equation with mixed boundary conditions is defined by

−∇ · (a(y,x)∇u(x)) = f(x), ∀x ∈ Ω, (4.5.1)

u(x) = c, ∀x ∈ ΓD, (4.5.2)
∂u(x)
∂n

= 0, ∀x ∈ ΓN , (4.5.3)

where Ω is an open and bounded physical domain in Rn and x = (x1, x2, . . . , xn) is the
n-dimensional physical variable. The parametric diffusion coefficient satisfies a(y,x) > 0,
where y = (y1, y2, . . . , yd) ∈ D is a d-dimensional parameter vector and the parameter
domain D is an open subset of Rd with a probability measure defined on it. The function
y → a(y, ·) is continuously Fréchet differentiable for all y ∈ D. Moreover, the parametric
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diffusion coefficient a(y,x) is bounded, that is

M1 ≤ a(y,x) ≤M2, ∀x,y,

where M1,M2 are positive real numbers. The forcing term on the right-hand side of (4.5.1)
satisfies f(x) ∈ L2(Ω). The boundary ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. On boundary ΓD,
the solution satisfies the non-homogenous Dirichlet boundary condition u(x) = c, where
c is a non-zero real constant. And, on boundary ΓN , the homogenous Neumann condition
∂u(x)
∂n = ∇u(x) · n = 0 is applied. The quantity of interest (QoI) is q(y) = Q(u(y)), where
Q is a bounded linear functional acting on u.

At a given point ȳ ∈ D, we have that the weak problem of (4.5.1) with boundary
conditions (4.5.2) and (4.5.3) satisfies∫

Ω
(a(ȳ,x)∇ū(x)) · ∇v(x)dΩ =

∫
Ω
f(x)v(x)dΩ, ∀v ∈ H1

ΓD , (4.5.4)

since ∂ū(x)
∂n = 0 on ΓN . The space H1

ΓD is defined by

H1
ΓD = {w ∈ H1(Ω) : w = 0 on ΓD},

and the weak solution satisfies

ū ∈ Uc = {w ∈ H1(Ω) : w = c on ΓD}.

However, this weak problem (4.5.4) is hard to be solved directly since ū and v are defined
in different spaces and the space Uc is not a vector space [105, §3.3.3]. Instead, we write the
solution ū(x) of (4.5.4) as

ū(x) = ū0(x) + uc(x) = ū0(x) + c,

where uc(x) = c is the lifting function satisfying the boundary condition on ΓD (shown as
(4.5.2)) and ū0 ∈ H1

ΓD is the solution of the weak problem

B[ū0, v] = (T, v) , ∀v ∈ H1
ΓD , (4.5.5)

where the bilinear mapping

B[ū0, v] =
∫

Ω
(a(ȳ,x)∇ū0(x)) · ∇v(x)dΩ

for ū0, v ∈ H1
ΓD . The linear functional T : H1

ΓD → R is defined by

(T, v) =
∫

Ω
f(x)v(x)dΩ = 〈f, v〉,
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where 〈f, v〉 is the L2(Ω) inner product. With this set-up, at a given point ȳ, the QoI can
be written as q(ȳ) = Q(ū) = Q(ū0 + c). Moreover, the gradient of the QoI can be written
as

∂q

∂y
(ȳ) = ∂q0

∂y
(ȳ) with q0(y) = Q(u0(y)),

since c is a constant.
Next, we will show how to calculate the gradient of q0(y) at ȳ with the adjoint sensitivity

analysis method. Similar to what we have in §4.3.2, now we have an operator

F : D ×H1
ΓD → (H1

ΓD)′,

which is defined by

(F (y, u0), v) = (−∇ · (a(y,x)∇u0) , v)− (T, v) = 〈a(y,x)∇u0,∇v〉 − 〈f, v〉,

for F (y, u0) ∈ (H1
ΓD)′ and for all v ∈ H1

ΓD . The two open subsets of the Banach spaces
in IFT are taken to be Y = D ⊂ X = Rd and U = H1

ΓD = V. With the same procedure
shown in §4.3.2, we can prove F ∈ C1(Y × U , (H1

ΓD)′) and the partial Fréchet derivative
∂F
∂u0

(ȳ, ū0) : U → (H1
ΓD)′ is invertible. Then, we can apply the IFT and get

dq0
dy

(ȳ) = λ
∂F

∂y
(ȳ, ū0), (4.5.6)

where the linear functional λ ∈ ((H1
ΓD)′)′ is the solution to

λGȳ = −Q, (4.5.7)

since the linear operator ∂F
∂u0

(ȳ, ū0) = Gȳ and the linear operator ∂Q
∂u0

(ȳ, ū0) = Q. The linear
operator Gȳ : U → (H1

ΓD)′ is defined by

(Gȳ(ū0), v) = (−∇ · (a(ȳ,x)∇ū0) , v) = 〈a(ȳ,x)∇ū0,∇v〉.

Because the operator Gȳ is self-adjoint on U , we have the adjoint equation of (4.5.7) as

Gȳλ
∗ = −Q∗, (4.5.8)

where the bounded linear operators λ∗ : R→ U , Gȳ : U → (H1
ΓD)′, and Q∗ : R→ (H1

ΓD)′.
With the Galerkin method, described in §4.3.3, we can discretize the weak problem

(4.5.5) into a matrix equation

Uū = b, (4.5.9)
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where

U =
(∫

Ω
a(ȳ,x)∇ϕi(x)∇ϕj(x)dΩ

)N
i,j=1

∈ RN×N ,

b =
(∫

Ω
f(x)ϕi(x)dΩ

)N
i=1
∈ RN ,

ū = (u1, u2, . . . , uN )T ∈ RN .

Note that the matrix equation (4.5.9) has a unique solution ū = U−1b. Now we can write
the QoI at ȳ as q(ȳ) = Qh(ū+ c) = aT (ū+ c) for some fixed column vector a ∈ RN . The
column vector c ∈ RN has value c at each position. Following the same steps as shown in
§4.3.3, we have the discretized version of (4.5.7) as

λU = −aT ,

where λ : RN → R is the discretized version of the functional λ ∈ ((H1
ΓD)′)′. The discretized

adjoint equation (4.5.8) becomes

UλT = −a,

where λT : R→ RN . Furthermore, we have that

∂Fh
∂yk

(ȳ, ū) = Ukū, (4.5.10)

where

Uk =
(∫

Ω
ak(ȳ,x)∇ϕi(x)∇ϕj(x)dΩ

)N,N
i,j=1

∈ RN×N with ak = ∂a(ȳ,x)
∂yk

, k = 1, . . . , d.

Thus, the gradient sample of the QoI at ȳ can be computed as

dq

dyk
(ȳ) = dq0

dyk
(ȳ) = λ

∂Fh
∂yk

(ȳ, ū),

for k = 1, . . . , d.

4.6 Numerical results for mixed boundary problems

In this section, we show the approximation results for the quantities of interest (QoIs) of
two parametric diffusion equations with mixed boundary conditions. For details on how
these problems are solved numerically, see Appendix A.
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4.6.1 One-dimensional diffusion equation

Let us first look at a one-dimensional parametric diffusion equation defined as

− d

dx

(
ey

d

dx
u(x)

)
= f(x), x ∈ Ω = (0, 1),

u(0) = 1, u′(1) = 0.

where the parameter y ∈ Y = (−1, 1) and the right-hand side f(x) = x(x + 1) ∈ L2(Ω).
The QoI is defined by q(y) = u(y, 0.18).

We denote the solution of this one-dimensional problem at ȳ by ū(x) = ū0(x)+1, where
ū0 ∈ U is the solution of the weak problem

B[ū0, v] = 〈f, v〉, ∀v ∈ U . (4.6.1)

Here, the bilinear mapping B[ū0, v] =
∫ 1
0

(
eȳ d

dx ū0(x)
)

d
dxv(x) and 〈f, v〉 is the standard L2

inner product. We discretize the physical domain with 50 equal spaced subregions, then
(4.6.1) can be written as a matrix equation Uū = b and the QoI at the given point ȳ is
q(ȳ) = eT10(ū + 1). Given the adjoint equation UλT = −e10 and ∂Fh

∂y (ȳ, ū) = Uū = b, we
have the derivative of the QoI at ȳ as dq

dy (ȳ) = dq0
dy (ȳ) = λ∂Fd∂y (ȳ, ū) = λb.

Figure 4.6 shows the approximation error ‖q − q̃‖L∞ against m̃ with s = 2048 when
different kinds of approximating polynomial bases are used. As what we have expected, the
approximation results are similar to the example shown in §4.4.1. With the same amount
of computational cost, a smaller approximation error is obtained when additional gradient
samples are also considered. Moreover, we see that, compared to the unweighted case, an
improvement of approximation is often obtained when a weighted `1 minimization problem
is solved.

4.6.2 The Darcy flow problem

Next, we will present an example of the Darcy flow problem, which is often used to model
the porous media flow. Porous medium is a material containing a solid portion along with
a network of pores. Porous media are commonly seen in nature. For instance, soil, gravel,
sandstone and limestone are examples of porous media [62, §7.1] [74, Chpt. 1 & Chpt. 2].

The standard model for steady state porous media flow consists of Darcy’s equation and
the continuity equation for incompressible fluids, which are given as

q(x) + a(x)∇u(x) = g(x), (4.6.2)

∇ · q(x) = 0, (4.6.3)

with some boundary conditions. Here, the physical variable x ∈ Ω ⊂ Rn, u denotes the
pressure, coefficient a measures the permeability of the material, q is the velocity and g is
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Figure 4.6: The ‖q − q̃‖L∞ recovery error of the one-dimensional diffusion equation with mixed
boundary conditions against m̃ for Legendre polynomials with points drawn from the uniform density
(top) and Chebyshev polynomials with points drawn from the Chebyshev density (bottom). The
unaugmented case is shown on the left column and the gradient-augmented case is shown on the
right.

the external source term [46]. The permeability mentioned here is an important property of
porous media, which measures the ability for fluids to pass through the material [74, Chpt.
1]. If we combine (4.6.2) and (4.6.3) with some boundary conditions, then we get a Darcy
flow problem, defined by

−∇ · (a(y,x)∇u(x)) = f(x), ∀x ∈ Ω, (4.6.4)

u(x) = 2, ∀x ∈ ΓD, (4.6.5)
∂u(x)
∂n

= 0, ∀x ∈ ΓN , (4.6.6)

where Ω = (0, 1)2 is the physical domain and x = (x1, x2) is the two-dimensional physical
variable. The parametric permeability coefficient is defined by

a(y,x) =

exp(3yk), x ∈ Ωk for k = 1, . . . , 5,

10−4, x ∈ Ω\ΩL,

where Ω1, . . . ,Ω5 are five circles with radius 0.15 centered at (0.5, 0.5) and (0.5± 0.3, 0.5±
0.3), and ΩL = ∪5

k=1Ωk. Here, these circles are constructed to model the pores inside the
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medium. The parameter vector y = (y1, y2, . . . , y5) ∈ Y = (−1, 1)5. By defining a(y,x)
this way, we see the permeability coefficient may jump more than four orders of magnitude
from inside of the circles to outside of the circles, which is a typical behavior seen in porous
media due to the variation of the material property inside of the domain [46] [74, Chpt.
1] [92, §4.3.3] [95]. We assume that there is randomness in the permeability, which takes into
account the fact that permeability of the material may not be accurately known [92,95]. The
right-hand side source term is defined by f(x) = −∇ · g(x) = 0.1 ∈ L2(Ω). Moreover, we
label four edges of Ω counterclockwise as ∂Ω1, ∂Ω2, ∂Ω3, ∂Ω4 starting with the bottom edge.
We have non-homogenous Dirichlet boundary condition u(x) = 2 on edges ΓD = ∂Ω2∪∂Ω4

and homogenous Neumann boundary condition on edges ΓN = ∂Ω1 ∪ ∂Ω3. By defining
boundary conditions this way, we ensure a steady state flow from left to right [92, 95].
Analogous examples of this one have been studied in various literatures, see [46,92,95], for
instance. The QoI is q(y) = u(y, (0.6, 0.2)).

For a given ȳ, we write the solution of this problem as ū(x) = ū0(x)+2, where ū0(x) ∈ U
is the solution of the weak problem (4.5.5). To solve this weak problem, we discretize the
domain by taking 20 equal spaced intervals on each edge of Ω and on those five circles
(Ωi)5

i=1. Then, we get in total 1020 triangles with N = 551 vertices. Figure 4.7 shows the
triangular mesh for this Darcy flow problem.
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Figure 4.7: Triangular mesh for the Darcy flow problem.

With this discretization, we can form a matrix equation Uū = b of the weak problem
(4.5.5) and the QoI at ȳ can be written as q(ȳ) = eT89(ū + 2). Moreover, the discretized
adjoint equation can be written as UλT = −e89 for λT ∈ RN . For this problem, we also
have

ak(ȳ,x) = 3× exp(3yk)× 1Ωk(x),
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for k = 1, . . . , 5. Then, along with (4.5.10), we have the gradient of the QoI at ȳ as

dq

dyk
(ȳ) = dq0

dyk
(ȳ) = λ

∂Fh
∂yk

(ȳ, ū),

for k = 1, . . . , 5.
Figure 4.8 shows the approximation error ‖q − q̃‖L∞ against computational cost m̃ with

s = 58, when different kinds of approximating polynomial bases are used. As in the previous
example, a smaller approximation error is obtained for the gradient-augmented case than
the unaugmented case when the same amount of computational cost is used. Moreover,
we see that, compared to the unweighted case, an improvement of approximation result is
achieved when a weighted `1 minimization problem is solved.
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Figure 4.8: The ‖q − q̃‖L∞ recovery error of the Darcy flow problem against m̃ for Legendre poly-
nomials with points drawn from the uniform density (top) and Chebyshev polynomials with points
drawn from the Chebyshev density (bottom). The unaugmented case is shown on the left column
and the gradient-augmented case is shown on the right.

4.7 Computational cost

When calculating the computational cost in §4.4 and §4.6, we simply assumed that it takes
the same amount of time to generate samples of the quantity of interest (QoI) and the
gradient samples of the QoI with the adjoint sensitivity analysis method, which was based
on what is indicated in [102]. As what we have seen in §4.3.3 and §4.5, in order to generate
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one sample of the QoI, the most cost intensive step is to solve the matrix equation Uū = b.
To generate one sample of the gradient of the QoI with the adjoint sensitivity analysis
method, in addition to Uū = b, we need to solve another matrix equation UλT = −a. In
other words, theoretically, we should expect to see that it takes about double amount of
the time to generate one sample of the QoI along with one sample of the gradient of the
QoI, compared to the time used to generate one sample of the QoI only, when the adjoint
sensitivity analysis method is applied. In the section, we will perform further investigation
on whether the computational cost for getting the gradient samples is indeed about the
same as the cost for getting the QoI samples. We also want to show that the computational
cost for generating the gradient samples changes mildly with the dimension of the parameter
space d.

The investigation is performed by considering the one-dimensional homogenous Dirichlet
boundary value problem:

− d

dx

(
a(y, x) d

dx
u(x)

)
= f(x), x ∈ Ω

u = 0 x ∈ ∂Ω,

where the physical domain Ω = (0, 1) and the right-hand side source term f(x) = x(x+1) ∈
L2(Ω). We define the random diffusion coefficient as a truncated Karhunen-Loève (KL)
expansion [63, §2.3], given by

a(y, x) = eγd(y,x), γd(y, x) =
d∑

k=1
ξkτk(x)yk, ∀x,y.

For comparison purpose, we consider two different cases of ξk:

C1 : ξk =
√

3 exp(−k),

C2 : ξk =
√

3
k
.

Here, y = (y1, y2, . . . , yd) ∈ D and D = (−1, 1)d. The trigonometric functions τk are defined
by

τk(x) =

sin
(
k
2πx

)
if k is even,

cos
(
k−1

2 πx
)

if k is odd.

Elliptic problems with parametric diffusive coefficients, which are defined as a truncated
KL expansion, have been widely studied. See [11, 46, 72], for instance. Here, the QoI to
approximate is q(y) = u(y, 0.18). We generate samples of y independently and identically
with respect to the uniform measure.
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As with the example shown in §4.4.1, we discretize the physical domain with N = 51,
and form the matrix equation Uū = b. In this case, we have q(ȳ) = eT10ū = eT10(A−1b).
The discretized adjoint equation becomes AλT = −e10 for λT ∈ RN . For both cases, we
can compute ∂Fh

∂yk
(ȳ, ū) using (4.3.17) with ak(ȳ, x) defined by

C1 : ak(ȳ, x) =
(√

3 exp(−k)τk(x)
)
× eγd(y,x),

C2 : ak(ȳ, x) =
(√

3
k
τk(x)

)
× eγd(y,x),

for k = 1, . . . , d. Then, the gradient is computed as

dq

dyk
(ȳ) = λ

∂Fh
∂yk

(ȳ, ū),

for k = 1, . . . , d.
We record the computational time for generating the QoI samples and the computational

time for generating both the QoI and the gradient of the QoI samples for various values of
the dimension d. We compute the computational time ratio as

ratio = time used to generate the QoI and the gradient of the QoI samples
time used to generate the QoI samples .

Figure 4.9 shows the box plot for the computational ratio over various values of d,
when 500 samples of the QoI and 500 samples of the gradient of the QoI are generated on
FreeFem++ (version 3.61) [73]. Here, bottom and top edges of the box indicate the 25th
and 75th percentiles respectively and the central red mark in the box is the median. The
results for C1 are shown on the left and C2 on the right. In table 4.1, we present the average
computational time ratio for generating those 500 samples when different values of d are
considered. The results for C1 are shown on the top and C2 on the bottom. Regardless of
the number of dimension d, we see that, most of the time, the computational time ratio is
less than 3 for both cases. Moreover, for both cases, the average computational time ratio is
always around 2.7 when the dimension of the parameter space d is varying. These indicate
that it takes roughly about the same amount of effort to generate the QoI samples and
the gradient samples of the QoI with the adjoint sensitivity analysis method. Moreover, the
computational cost for generating these samples changes very mildly with the dimension of
the parameter space d.
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Figure 4.9: The box plot of the computational time ratio against d. The result for C1 shows on the
left and C2 on the right.

d 10 20 30 40 50 60
average time ratio 2.50 2.65 2.71 2.74 2.71 2.77

d 10 20 30 40 50 60
average time ratio 2.61 2.76 2.76 2.75 2.71 2.75

Table 4.1: The table of the average computational time ratio for various values of d. The result for
C1 shows on the top and C2 on the bottom.
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Chapter 5

Conclusions and future work

In this thesis, we applied the weighted `1 minimization techniques in CS to the multi-
ple measurement vector (MMV) problem and the high-dimensional function approximation
problem. In Chapter 2, we introduced the variance-based joint sparse (VBJS) method based
on weighed `1 minimization to solve the MMV problem. Unlike the standard `2,1 minimiza-
tion approach commonly used to solve the MMV problem, this VBJS method is easily
parallelizable. Thus, we expect the VBJS method to be much more efficient compared to
the `2,1 minimization method, particularly for problems with a large number of vectors to
recover. As demonstrated through various synthetic numerical experiments on randomly
generated sparse vectors, one application to one-dimensional signal recovery and one ap-
plication to parallel Magnetic Resonance Imaging (MRI), we see that the VBJS method
often achieves the same accuracy as the standard `2,1 minimization approach with fewer
measurements. However, it has been seen that the VBJS method is not a panacea for all
types of image recovery problems. We have seen that the VBJS method gives a less accurate
result compared to the `2,1 minimization method for recovering the colored Shepp-Logan
phantom image. However, the VBJS method has some other uses where it shows promise.
For an application to edge detection, see [6].

In Chapter 3, we studied the problem of high-dimensional function approximation with
sparse polynomial expansions. In particular, we worked on the approximation problem when
both function values and its gradient are sampled. By assuming the computational cost
for generating the gradient samples equals to the computational cost for generating func-
tion samples, we see numerically that the approximation result from gradient-augmented
measurements often gives a smaller error than the case of function samples only. Various
nonuniform recovery guarantees are also presented in Chapter 3. We have proved that, with
the same sample complexity as the unaugmented case, gradient-augmented measurements
permit an error bound in a stronger Sobolev norm as opposed to an L2 norm. Moreover,
for tensor Jacobi polynomials, if we solve a gradient-augmented weighted `1 minimization
problem under the lower sets assumption, then the sample complexity is only a polynomial
in s and logarithmic in the dimension d. Thus, the curse of dimensionality is mitigated.
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A further demonstration of the benefit of adding the gradient samples for approximat-
ing the quantities of interest (QoIs) of parametric differential equations was presented in
Chapter 4. In all numerical experiments, we see that, with additional gradient samples, the
QoI can be more accurately approximated than with function samples only when the same
amount of computational cost is used. Moreover, we see the weighted `1 minimization prob-
lem gives an improved approximation result compared to the unweighted `1 minimization
problem for both gradient-augmented and unaugmented problems. A simple comparison
of the computational cost for generating the QoI samples and the computational cost for
generating its gradient samples was also conducted in Chapter 4. We see that, by using the
adjoint sensitivity analysis method, it takes about the same amount of computational time
to generate samples of the QoI as to generate the gradient samples of the QoI. Moreover,
computational time for generating the gradient samples is independent of the dimension of
the parameter space d.

Beyond what has been completed in this thesis, there are numerous topics left as future
work. There are two potential topics related to the MMV problem. The first one is to explore
other weighting strategies. As seen from the experiment of color image recovery, the VBJS
method with reciprocal weights gives a worse result than the `2,1 minimization method.
It suggests us to explore other weighting strategy so that an improved performance of the
VBJS method can be obtained. The second one is to apply the VBJS method to other
problems. For instance, hyperspectral image recovery can be a potential application for the
VBJS method.

There are also several topics related to the high-dimensional function approximation
problem left as future work. As mentioned before, the recovery guarantees obtained in
Chapter 3 for the high-dimensional function approximation problem with the gradient-
augmented weighted `1 minimization are all nonuniform recovery guarantees. For first future
topic, we should extend those results to uniform recovery guarantees. In [43], based on the
concept of lower restricted isometry property (RIP), uniform recovery guarantees for the
unaugmented weighted `1 minimization problem on lower sets were proved. We expect
that a similar procedure could be applied to obtain uniform recovery guarantees for the
gradient-augmented problem. The second future topic is to explore other ways to exploit
the gradient information. For example, in [112] Tang used a basis pursuit-type technique
to approximate the high-dimensional function with the gradient-augmented measurements.
Moreover, in [112], Tang only considered the case of recovering with Legendre polynomial
expansion. Extending his work to other types of orthogonal polynomial expansion, such
as Chebyshev polynomial expansion, also left as future work. The third future topic is to
examine the gradient-augmented weighted `1 minimization method on more complicated
parametric partial differential equation (PDE) problems. Recall that those examples we
have worked on in Chapter 4 are all simple elliptic problems. As a next step, we should also
perform experiments on more realistic problems. Problems in computational fluid dynamics
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and shape optimization could be potential directions to work on, for instance. Finally, as
a way to connect the MMV problem with the high-dimensional function approximation
problem, a topic for future work is that of simultaneously approximating solutions of a
high-dimensional parametric PDE with the VBJS method. As shown in Chapter 3, if the
solution of a parametric PDE is analytic, then it can be expressed as a polynomial chaos
expansion. Thus, to approximate the solution, the task is to reconstruct the corresponding
coefficient vector of the polynomial expansion. As what has been shown in [51], we can then
reformulate this coefficient vector reconstruction problem as a MMV problem, which could
be solved with the VBJS method introduced in Chapter 2.
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Appendix A

Numerical experiments set-up for
Chapter 4

All problems presented in §4.4 and §4.6 are solved numerically with the finite element
method. As a first step, we discretize the physical domain with a triangular mesh. We
simply define the finite approximation space Uh on the triangular mesh to be the space of
continuous piecewise linear functions. It can be shown that Uh is a subset of the solution
space U . See [64, §4.1.1] for the proof. If the triangular mesh has in total N vertices, then
the approximation space Uh has a dimension of N . We denote these vertices by (xi)Ni=1. Let
the set {ϕj : 1 ≤ j ≤ N} be a basis of Uh. Following what has been done in [25, §0.4], we
assume this basis satisfying ϕj(xi) = δij = the Kroneacker delta function. This set {ϕj} is
so-called the nodal basis of Uh. By defining the basis like this, we will have

uh(xi) =
N∑
j=1

ujϕj(xi) = uj , for i, j = 1, . . . , N,

which are called the nodal values of the function uh [57]. After the basis {ϕj} has been
defined, now we can explicit form the matrix equation Uu = b. Then, we solve this matrix
equation and compute samples of the quantity of interest (QoI) with their gradient samples
on FreeFem++ (version 3.61) [73]. Note that the given sampling point ȳ ∈ Y is generated
independent and identically distributed (i.i.d) with respect to the uniform measure when
Legendre approximating polynomials are used and with respect to the Chebyshev measure
when Chebyshev approximating polynomials are used.

After the QoI samples and the gradient samples are generated, the QoI is approximated by
solving the gradient-augmented weighted `1 minimization problem

min
z∈CN

‖z‖1,w subject to ‖Az − q‖2 ≤ η,

where sampling matrix A is defined the same way as in Chapter 3. The vector q contains
samples of the QoI and the gradient samples of the QoI obtained through FreeFem++.
Same as in Chapter 3, this weighted `1 minimization problem is solved using the SPGL1
package [118, 119] with a maximum number of 10,000 iterations and η = 10−12 on Matlab
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R2019a [91]. We choose the truncated index set Λ as the hyperbolic cross index set of
degree s, where the degree s will be specified for each problem. The weights are defined as
wn = (un)θ for some θ ≥ 0 and un is defined the same way as in Chapter 3. Again, we
model the total cost of computing the gradient-augment measurements by

m̃ = mo +mg,

where mo is the number of function samples and mg is the number of the gradient samples.
For the unaugmented problem, the computational cost is just m̃ = mo. For all problems
shown in §4.4 and §4.6, we generate the gradient samples of the QoI at the same points as
the QoI samples. The approximation error ‖q − q̃‖L∞ , where q is the QoI value obtained
with finite element method and q̃ denotes the approximated value of QoI, is computed on
a grid of 4 |Λ| uniformly distributed points and averaged over 10 trials.
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