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Abstract

In and around porous systems with at least one characteristic dimension below 100 nm,
solid/liquid interfaces play a key role in surface-charge-governed transport, separation pro-
cesses and energy storage devices. Nanopores with well-defined geometry and chemical char-
acteristics have emerged as valuable tools to unravel interactions between external and in-
duced electric fields and the underlying transport, in the presence of embedded charges. In
this thesis, theoretical and numerical investigations of electrokinetic effects in soft cylindrical
nanochannels with uniformly distributed surface charges are carried out within continuum
mean-field approximations. The aim is to provide a theoretical framework through which one
can access a comprehensive understanding of the coupling between electrokinetic transport,
double-layer charging and wall deformations in nanochannels embedded in soft polymeric
membranes.

In the first part of the thesis, numerical calculations using the coupled continuum mean-field
equations are conducted to quantify ion and fluid transport in a finite, cylindrical and rigid
nanochannel connected to cylindrical electrolytic reservoirs. Results of these calculations,
verified by experiments, serve as a guide for theoretical investigations in later components
of the thesis. Subsequently, the transport of protons and water in a long, negatively charged
channel is studied from a theoretical point of view. A theoretical model is developed that
describes nonlinear coupling between wall deformation and water and proton flows in a
charged, deformable nanochannel whose viscoelasticity is governed by the linear Kelvin-
Voigt model. In addition to focusing on transport phenomena in an open nanochannel, we
direct attention to the equilibrium structure of the electric double layers. This was achieved
by considering a physical situation where the charged channel is finite and sealed at both
ends by metal electrodes under external voltage bias. Size-modified mean-field equations
were used to account for finite ion sizes, subject to a self-consistent electroneutrality con-
dition which demands that the net amount of charge on both electrode surfaces balances.
Equilibrium ion distributions and differential capacitance curves are presented and anal-
ysed. Motivated by electroactuators, the last part of the thesis added deformations of the
channel walls to the closed-channel system modelling.

Keywords: Electrokinetic phenomena; Poisson-Boltzmann; Nernst-Planck; Electroosmosis;
Streaming potential; Counterions; Electric double layer; Electroactuator
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Chapter 1

Introduction

This thesis presents the development of a physical-mathematical treatment and its numerical
simulations for electrokinetic transport phenomena of water molecules and ions in a charged,
cylindrical nanochannel with soft walls. The modelling approach is based on continuum
mean-field theories for mass and momentum conservation. This chapter presents context
and motivation for this work, together with a brief outline of the structure of the remainder
of the thesis.

1.1 Background and motivation

Pioneering exploration of electrical phenomena in the late eighteenth century, particularly
the work of Alessandro Volta in 1798, set the stage for active research on the influence
of an electrical current on transport phenomena in various media. Among the electrical
experiments were those performed in 1808 in Moscow by the German scientist Ferdinand
Friedrich Reuss [1,2], who investigated the influence of direct electrical current on electrolyte
solutions. Reuss’s discovery marked the birth of a very important branch of surface and
colloid science, later called ‘electrokinetic phenomena’: the electric field–induced transport
of fluids and ions relative to a charged solid surface. Reuss established linearity between
the mobility and the applied electric field. Although a number of quantitative experiments
with various porous media were carried out following Reuss’s work, the basic electrokinetic
mechanism remained enigmatic for a long time.

It was not until 1879 that a quantitative theory for electrokinetic phenomena was pro-
posed by von Helmholtz [3], which was developed further by Smoluchowski [4]. Helmholtz–
Smoluchowski’s classical theory still remains the basis of continuum models used to study
electrokinetic systems today, and it rests on the fundamental concept of a diffuse ‘electric
double layer’ (EDL): when a solid surface is in contact with an electrolyte solution, the static
charges on the solid surface will attract counter-ions and repel co-ions in the electrolyte.
This leads to the enrichment of counter-ions in a layer of fluid adjacent to the charged sur-
face. The region with a net charge near the surface interacts with applied electric fields. In
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the most simplistic conceptual model proposed by Helmholtz [3], the EDL structure is anal-
ogous to that of a conventional dielectric capacitor with planar electrodes. Subsequently,
and continuing until today, theories of the EDL have gone through many refinements and
paradigm changes. These ideas led to the discovery of some classical electrokinetic phe-
nomena such as electroosmotic flow and streaming potential [5]. The former refers to the
generation of bulk fluid flow when an externally applied electric field interacts with the ions
in the EDL, while the later phenomenon describes the generation of a potential difference
from a pressure-induced flow of a fluid in contact with a charged substrate in the absence
of any external electric field.

A more comprehensive theoretical consideration of the EDL model was pioneered by
classical works of Gouy [6] in 1910 and Chapman [7] in 1913. In the ‘Gouy–Chapman’
picture, the ions (regarded as point-like particles/charges) are mobile in a solvent that is
described as a continuum dielectric, and are driven by the coupled influences of diffusion
and electrostatic forces within the framework of the Poisson–Nernst–Planck (PNP) equa-
tions. The equilibrium concentration of ionic species is given by the Boltzmann distribution,
and the local electric potential in the EDL is determined by the Poisson–Boltzmann (PB)
equation assuming constant electrolyte permittivity. This results in the so-called ‘diffuse
layer’ of mobile ions near the charged substrate.

The neglect of ion sizes, ion-ion interactions and the structure of the solvent, associ-
ated with the application of the PB equation, however, is invalid for large surface charges
and electric potentials. Specifically, high ionic concentrations introduce steric repulsion and
additional correlations among ions due to over-crowding [25]. Therefore, there has been a
continuous endeavour toward modification of the PB and PNP models to aptly account
for the effect of finite ion size in the electrolyte solution. Stern, in his acclaimed work [9],
incorporated the ion size effect in the EDL theory by taking into account a distance of
closest approach whereby mobile ions are excluded from the first molecular layer close to
the surface. He described the EDL as two layers, namely, (i) the Stern layer (or Helmholtz
layer), referring to the compact layer of immobile ions interacting with the electrode surface,
and (ii) the diffuse layer where the ions are highly mobile and the Gouy–Chapman model
applies. The total EDL capacitance consists of Stern layer and diffuse layer capacitances in
series.

Later studies on the inclusion of steric effects were based, predominantly, on statisti-
cal mechanical considerations within mean-field approximations [10,11]. Typically, the two
dimensional (2-D) lattice-gas formalism [11,12] was adopted to model the statistical distri-
bution function of ions and derive the free energy in the mean field approximation, from
which size-modified PB and PNP equations were obtained. The first complete size-modified
PB model was developed by Bikerman [13], who considered anions and cations of equal size
by including an additional entropy term in the free energy. Over the next several years,
many researchers have worked on the reformulation of Bikerman’s modified PB (mPB)
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model to handle ion size effects. Notable work has been reported by Freise [14], Wickie and
Eigen [15–17], Strating and Wiegel [18, 19], Borukhov et al. [10, 11], Bohinc et al. [20, 21],
Kornyshev [22], Kilic et al. [23, 24] and Bazant et al. [25].

A practical need for a clear, fundamental understanding of the structural properties of
the EDL arises from the necessity to control and manipulate the flow rates of fluids and
ions for a wide array of engineering systems. Electrokinetic transport in nanometer-sized
channels at characteristic dimensions below 100 nm enables the occurrence of rich phenom-
ena not seen at bigger length scales. At such scales (below 100 nm), surface charges at the
channel walls largely dictate the functionality [5,26]. Ion selectivity is most prominent if the
diffuse charge screening length is comparable to the smallest dimension of the nanochannel
cross section [26], leading to a predominantly counterion-containing nanometer-sized aper-
ture. One significant benefit of such nanoscale flows is that they present the possibility of
learning new science using custom-made regular nanostructures. The capability to steer the
flow of ions and fluids in nanopores and nanochannels with high precision and selectivity
carries major implications for nanofluidic devices [27–29], water desalination [30], energy
harvesting and conversion [31, 32], biochemical systems [33, 34], bionanosensing [35] and
polymer electrolyte membranes (PEMs) in fuel cells and electrolysers [36,37].

In the realm of PEM fuel cells, polymeric membranes serve as charge-selective elec-
trolytes that facilitate proton conduction through water-filled nanopores. The polymeric
pore walls are comprised of dissociated anionic moieties exposed to an aqueous phase.
The most commonly used material is Nafion, which consists of a tetrafluoroethylene back-
bone and perfluoroalkyl ether side chains terminated in negatively charged sulfonic acid
groups [37,38]. Only hydrated proton-complexes (cations) and water are transported in the
channels. Thermodynamic forces due to pressure and/or electrostatic potential gradients
result in a displacement of water and protons along the channels from the anode side of
the fuel cell to the cathode. A plethora of studies has been undertaken toward a better
understanding of hydration dynamics and transport phenomena in PEMs, motivated by
the desire to optimize fuel cell design and operation [39–45].

Over the past few years, theoretical pore-level models for PEMs were proposed in the
literature. These include equilibrium pore sorption and swelling models [46, 47] and other
aspects of continuum modelling [48–50], and molecular dynamics simulations [51]. Within
the domain of continuum modelling, three-dimensional Poisson–Nernst–Planck (PNP) equa-
tions are employed to describe ion transport phenomena. The validity of the PNP equations
at the nanoscale, however, requires that the channel radius be at least 2 nm for valid con-
tunuum approximations to hold and the EDLs from opposite sides of the walls do not have a
strong overlap [52,53]. Hence, continuum models can predict experimental results provided
the nanochannels have strongly charged walls where double layers do not overlap. Generally,
strongly charged walls increase the concentration of counterions inside the channel, and this
leads to the reduction of the double layer thickness. One significant step towards finding full
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analytical solutions for the PNP–Stokes equations is in the modelling framework recently
taken by Ladipo et al. [50], whereby the membranes were modelled as cylindrical channels
with negative, uniform surface charge density.

A major limitation of existing electrokinetic flow models in most of the theoretical
literature is that they do not account for viscoelastic deformations of the nanochannel walls,
and they assume negligible axial electrolyte concentration and electric field variations. In
pressure-steered flows, soft matter nanochannels with high aspect ratio tend to deform
elastically [54]. Consequently, the understanding of flow characteristics in these media is
compromised if deformations are not taken into account. Nafion, for instance, shows viscous
and elastic properties at fuel-cell operating conditions [55]. Elastic deformations have been
cleverly exploited to synthesize valves [56–58] and to model peristaltic vascular dynamics
[59, 60]. Understanding the interplay between the walls’ viscoelasticity and their surface
charge density, and its impact on the transport dynamics is essential for accurate modelling
of such systems.

One area where the coupling of ion flux, solvent flux and wall deformation is crucial is in
electroactuator systems. Usually, in this field a phenomenological coupling coefficient is used
in the modelling of the electroactuator response [61] and – to the best of our knowledge – a
fundamental theory for the coupling between pore expansion and fluxes of ions and solvent
has not been developed. Among bio-inspired actuation materials, ionic polymer metal com-
posite (IPMC) actuators have been intensively studied [62–64]. These find applications in
various engineering fields such as bio-mimetic robots [66–68], MEMS devices [69], adaptive
optics and medical devices [70–72], energy harvesting [73], and biosensing [74].

Motivated by the necessity to rigorously and accurately model transport mechanism in
ionic nanoporous media, this thesis presents a continuum-based theoretical and numerical
treatment of electrokinetic flow in a fluid-filled cylindrical nanochannel with charged walls.
More importantly, this work goes a step further by introducing deformations of the channel
walls. The starting points are the three-dimensional PNP and Stokes equations for the
ion-fluid system under the influence of an electric driving field and pressure gradients,
along with a model for deformations that couples the internal fluid pressure and elastic
response on the soft channel walls. A comprehensive theoretical and numerical study of
a finite channel connected to reservoirs is explored first, with emphasis on the dynamical
and thermodynamic equilibrium properties near and far away from reservoirs. For a long
channel away from reservoirs, an effective 1-D model is constructed that couples counter-ion
and fluid flow with viscoelastic wall deformations. Finally, double layer charging in a closed,
finite channel is investigated numerically both for the case of a rigid cylindrical channel and
a deformable channel characteristic of cylindrical capacitors and electroactuators.
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1.2 Structure of the thesis

This thesis is divided into eight chapters, the contents of which are as follows:

Chapter 1: Introduction. This chapter provides context and motivation for the
presented research.

Chapter 2: Electrokinetic Phenomena and Continuum Modelling. This chapter
presents a detailed discussion of EDL-induced electrokinetic phenomena with continuum
modelling methods available in the literature, with emphasis on cylindrical nanochannels.

Chapter 3: Numerical Simulations for a Cylindrical Nanochannel. As a
benchmark for theoretical considerations and assumptions in later chapters, this chapter
develops numerical tools for simulating transport in ionic solution for a finite and rigid
cylindrical nanochannel connected to electrolyte reservoirs.

Chapter 4: Theory of Proton Transport Through a Soft Nanochannel.
Here, a 1-D theoretical model is developed that describes nonlinear coupling between
wall deformations and the flow of water molecules and protons in a charged, deformable
nanochannel with the viscoelasticity of the walls governed by the Kelvin-Voigt model.

Chapter 5: Impact of Channel Elasticity on Proton and Water Trans-
port. Results from the 1-D model developed in Chapter 4 are presented. We investigate
the driving mechanism behind deformation and relaxation dynamics of the channel walls
in response to the water-proton flow in it. Within the framework of nonequilibrium
thermodynamics, compact formulae are derived for the electrokinetic transport parameters
in terms of Onsager phenomenological coefficients and, subsequently, for the energy
conversion efficiency.

Chapter 6: Cylindrical and Finite Nanochannel Under Closed Confine-
ment. This chapter presents numerical simulations of electric double layer charging in a
closed, finite and cylindrical nanochannel with charged walls and sealed at both ends by
metal electrodes under external voltage bias.

Chapter 7: Closed and Deformable Nanochannel: Model for an Ionic Polymer
Actuator. This chapter extends the results of Chapter 6. A theoretical and numerical
investigation of the closed nanochannel is explored further, while allowing the channel
walls to exhibit elastic deformations in response to an internal voltage-triggered fluid and
osmotic pressure from within. This carries implications for accurately simulating ionic
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polymer electroactuators.

Chapter 8: Conclusions and Outlook. A summary of the findings of the work
is presented together with suggestions of possible directions for future study.
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Chapter 2

Electrokinetic Phenomena and
Continuum Modelling

The discussion begins with an introduction to the relevant physics governing electrokinetic
transport processes through nanochannels. The channels of interest can be smooth cylindri-
cal nanotubes [75], slit-like nanopores [76], or nanopores of complex geometries as observed
in biological systems [77,78]. In the present study, we are interested in channels of cylindrical
geometry, which are ideal for exploring fundamental transport phenomena due to simplifi-
cations in the mathematical formalism (yielded by radial symmetry) while enabling control
and characterization of all channel dimensions with ease. Also, studies reveal that highly
swollen polymeric membranes tend to self-organize into cylindrical pore structures [79–81].

Electrokinetic flows can be maneuvered using several kinds of volume (long-range) forces
from pressure gradients and electric fields to magnetic fields. These fields are either applied
externally, e.g., at channel inlets and outlets, or generated locally within the channel. As
dimensions decrease, the relative importance of surface to volume forces increases. The
basic physics underpinning the behaviour of the flow can be modelled down to the quantum
level. Such level of detail, however, is mostly unnecessary for practical purposes since the de
Broglie wavelength of the ions and fluid molecules is usually smaller than the average inter-
ionic/molecular distance and all entities can thus be treated in a classical manner. The most
detailed results which can be obtained from modelling come from molecular dynamics (MD),
Monte Carlo (MC), Brownian dynamics (BD) and mean-field approximation methods.

In classical MD simulations, ions and solvent molecules are treated as discrete parti-
cles and described in atomic detail, and then Newton’s equations of motion are solved for
each particle to calculate their new positions and momenta. The MC method uses ran-
dom sampling to generate different microscopic configurations of a system which share the
same macroscopic state. In BD simulations, the motions of particles follow a stochastic
governing equation describing some effective potential effects. Further simplifications are
based on mean-field approximations, whereby ion species are represented by macroscopic
ion concentrations instead of microscopic distributions of discrete particles. As previously
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mentioned, one of the most celebrated mean field theories for electrokinetic transport is the
Poisson-Nernst-Planck (PNP) theory. In the PNP theory, the Poisson equation describes
the electric field in terms of the electrostatic potential, whose gradient serves as the electric
driving force of ion motion. The Nernst-Planck (NP) equation describes the electrodiffusion
of ions in terms of ion concentrations.

2.1 Electrokinetic effects

For this work, the drivers of electrokinetic phenomena are the externally applied electric
field and mechanical actuation by application of a pressure gradient between the channel
openings. Here, we provide a brief literature overview of some electrokinetic effects and
focus on how they impact transport through nanochannel structures.

2.1.1 Electric double layer

When considering an aquous ionic solution in chemical equilibrium with the channel walls,
the origin of electrokinetic effects lies in the presence of fixed surface charges on the walls
that arise from the dissociation of surface groups, specific adsorption of ions from solution
[82–84], or through isomorphic substitution where ions with certain valency are replaced by
ions with a different valency [85].

Owing to the fixed surface charges at the wall interface, ions in the vicinity of the
wall experience electrostatic interaction wherein counter-ions are attracted and co-ions are
repelled from the charged surface. Consequently, a layer of fluid enriched in counter-ions
and excluding co-ions is formed adjacent to the charged walls. This layer is known as an
‘electrical double layer’ (EDL) and is shown in Figure 2.1. The shielding of the walls by
counter-ions is such that the bulk, far away from the walls towards the center of the channel,
is electroneutral. In narrow channels, double layers on opposite surfaces can interact and
even overlap, which can create perm-selective openings that repel co-ions.

Several phenomenological models have been developed to understand the structure of
the EDL. The Gouy-Chapman-Stern (GCS) model finds widespread use within the inter-
facial science community. As mentioned, within this model, the EDL is described by two
layers, namely, (i) the ‘Stern layer’, referring to the compact layer of counter-ions strongly
interacting with the surface, and (ii) the ‘diffuse layer’ composed of a mixture of co-ions and
counter-ions that move under tangential stress since they are not immobilized in the Stern
layer. Because of its resemblance to macroscopic capacitive devices, the EDL’s structure is
most conveniently probed by studying its capacitance.

2.1.2 Electroosmosis

The development of the EDL near the channel walls, discussed above, exerts a considerable
impact on processes which involve fluid flow. If an external electric field is applied along
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Figure 2.1: Schematic illustration of the EDL in a narrow channel. Arrows represent the
typical fluid flow velocity u.

the channel, the net counterions in the diffuse EDL experience a net electrostatic force.
This eventually manifests itself as a net body force on the fluid. In the absence of any
opposing forces, the fluid would thus start flowing toward the cathode (negative terminal
of the voltage supplier). This phenomenon is called ‘electroosmotic flow’ (EOF) and the
resulting velocity profile of EOF in nanochannels is plug-like (see Figure 2.1), where the
velocity increases as the ionic strength increases. There is no net effect of the action of the
electric field far from the walls since the total charge is zero and the fluid is only driven by
the fluid pressure gradients and viscous forces along the channel.

2.1.3 Streaming potential

Now, consider the situation when a mechanical flow is actuated in the channel, for instance
with an applied pressure gradient, instead of an electric field. In this scenario, pressure-
driven fluid flow through the channel triggers downstream movement of ions in the diffuse
part of the EDL. This generates an electric current, which is termed the ‘streaming current’,
flowing in the same direction as the liquid and it leads to an effective accumulation of ions
downstream under certain boundary conditions. The downstream ion accumulation gives
rise to an electric field, which causes a current to flow in the opposite direction to that
of the liquid conduction current (see Figure 2.2). This induced electric field is called ‘the
streaming electric field’ and the resultant electrostatic potential difference between the two
ends of the channel is referred to as the ‘streaming potential’. When the conduction current
is equal to the streaming current, a steady state is achieved.
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Figure 2.2: Schematic depiction of the physical situation leading to the generation of the
streaming potential.

2.1.4 Diffusiophoresis and diffusioosmosis

When an ionic concentration gradient exists along the channel (parallel to the walls), a
dielectric colloidal particle can spontaneously migrate along the channel from low to high
ion concentration regions via a phenomenon called ‘diffusiophoresis’. This mechanism arises
from interaction of the particle with the EDL by means of the van der Waals and/or dipole
attractive forces. It finds application in particle manipulation and DNA sequencing [86,87].
If the particle is charged, migration is caused by electrostatic interactions between the par-
ticle and ions in the solution. In addition, electrostatic forces will strengthen the magnitude
of the concentration gradient at the channel walls. This results in a significant gradient in
osmotic pressure along the walls, and a resulting fluid velocity field along the channel from
high to low ion concentration. This so-called ‘diffusioosmosis’ process is opposite to the usual
direction of the fluid flow in an osmotic process, which is from low to high ion concentration.

2.2 Nanochannel phenomena and applications

Since the beginning of the 19th century, control of the flows of ions and fluids in nanochan-
nels has found applications in technology, most importantly in ion-selective devices, and en-
ergy conversion and storage devices. In parallel with technological developments, nanochan-
nel research has produced new physical insights into various functional mechanisms of
naturally-occuring ion channels. This section provides an overview of some electrokinetic
channels found in engineering and science.
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2.2.1 Polymer electrolyte membranes

Fuel cells are one of the most attractive, sustainable means for power generation with
the advantages of high efficiency and minimal environmental impact [88]. Among various
types of fuel cells, the most attractive for applications in the automotive and portable
electronics industry is the polymer electrolyte fuel cell (PEFC). At the anode of the PEFC,
solvated protons are generated by oxidation of hydrogen and transported through a water-
swollen polymer electrolyte membrane (PEM) to the cathode, where they take part in the
electrochemical reduction of oxygen leading to water production [37,38].

As an electronic insulator and a transport medium of protons, the membrane is a
key component of PEFCs and must exhibit specific capabilities such as chemical stabil-
ity, enhanced water permeability and retention, high proton conductivity but low electronic
conductivity, thermal stability, and mechanical strength [89]. Nowadays, state-of-the-art
commercial membranes commonly used in PEFC are based on poly(perfluorosulfonic) acid
(PFSA) ionomer, and the most popular is Nafionr [55,90,91] manufactured by DuPontTM .

The ability of a Nafionr membrane to facilitate the transport of protons rests upon the
property that its fully hydrated state differs from its dehydrated state. Nafionr consists of
a polytetrafluoroethylene (PTFE) backbone and pendant short perfluoroalkyl ether side-
chains terminated in negatively charged sulfonic acid groups [38]. The hydrated morphology
of the PEM has a direct bearing on the transport of protons and water in the membrane.
Owing to the immiscible nature of the hydrophobic PTFE backbone and hydrophilic sulfonic
acid groups, fully hydrated Nafionr represents a two phase system that consists of a network
of water containing clusters or pores surrounded by the PTFE medium, giving the PEM
stability and immobilizing the dissociated sulfonic acid groups.

It is customary to model the PEM pores as cylindrical channels [43–45], typically of
radius in the order of 1 nm and length ∼ 10–50 nm [48,49,79,80]. A body of experimental
and theoretical work [39–45] has been directed to understanding the nature and character of
water in pores. In response to an electric field and pressure drop applied at the electrodes,
water and protons are believed to be transported in the EDLs between sulfonic acid groups
fixed on the walls of hydrophilic channels. Protons may also be transported in PEM via
structural diffusion, more commonly known as the ‘Grotthus mechanism’ – the ostensible
tunnelling of protons from one water molecule to the next via hydrogen-bonding [92].

2.2.2 Nanofluidic channels

Nanofluidics deals with the use of fabricated nanochannels to control and manipulate the
transport of fluids and ions in a manner similar to the functionality of solid-state electronic
devices, such as diodes and transistors. To fabricate nanofluidic devices with nanochannels,
a variety of methods have been used, including high-energy beam milling [93,94], sacrificial
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layer deposition [95, 96], selective ion-track etching [97], polymer replication [99], e-beam
lithography [100], and nanoimprint lithography [98].

Developments in nanofluidics are driven by the rising demand for a more refined under-
standing of nanoscale processes and their potential for use in chemical analysis. In contrast
to microfluidics, the reduced physical dimensions (1 to 100 nm diameter) in nanofluidics
shortens the analysis time due to enhanced mass transport and, in addition, the considerably
higher surface-to-volume ratio leads to the emergence of rich surface-induced electrokinetic
phenomena, discussed in Section 2.1, presenting opportunities for a new class of sensors,
molecular separation techniques, energy conversion and storage devices.

As far as separation methods are concerned, nanofluidic desalination techniques [101]
are established methods for drinking water production from seawater or brackish water
and are considered a key solution to mitigating the world-wide drinking water scarcity.
Water desalination of sea water is commonly performed on the basis of the energy-efficient
‘reverse osmosis’ method [102], which consists of forcing the passage of salty water through
a membrane that rejects ions. This category of desalination techniques relies on utilizing
the ion-selectivity property of the membrane channels, induced by the overlap of EDLs.
By applying a voltage bias along the channel, the use of voltage-induced reverse osmosis
to create osmotic diodes can be realized in asymmetric membranes. One technique was
suggested by Deng et al. [103], which takes advantage of nonlinear structures induced by
concentration polarization in order to purify water.

Another interesting application of nanofluidic concepts is in the field of sustainable
energy harvesting. Under an applied hydrostatic pressure difference at the ends, a stream-
ing potential develops along the channel as counter-ions that form the EDL are carried
downstream. When the resulting streaming current is driven through an external load re-
sistor, electrical energy is harvested from the fluidic system and this corresponds to the
‘power generation mode’ (see Figure 2.3). Electrokinetic energy conversion in the ‘pumping
mode’ indicates a conversion of electrical energy into mechanical energy: when an exter-
nal electric field is imposed on an ion-fluid system, electrostatic pressure develops from
electrosmotic flow of the fluid and this can be used to do mechanical work, e.g., in elec-
troactuators [104–106]. The conversion efficiency of the power generation mode is the same
as for the pumping mode. A leading experimental observation of electrokinetic energy con-
version, working with fluid capillaries, was conducted by Osterle [107]. Osterle predicted
a low conversion efficiency of 0.39%. Later, theoretical modelling and experimental results
have been reported on the effect of geometry and surface charge on the electrokinetic energy
efficiency [108–111].

Nanofluidic channels can be used in technology to create ionic devices that mimic solid-
state electronic circuits. Certain types of nanofluidic channels exhibit the ionic current
rectification effect [112] for which changing the polarity of the applied electric field turns
the ionic flow on and off. This diode-like effect results from asymmetry in channel geom-
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Figure 2.3: Schematic illustration of electrokinetic power generation in a nanofluidic channel.

etry, surface charge, solution concentrations, or a combination of these aspects [112–115].
Nanofluidic diodes have been proposed for use as biosensors [114]. In some practical con-
siderations, the nanochannel is embedded together with an electrically controllable gate
electrode. This so-called ‘nanofluidic field effect transistor’ offers a simple means of control-
ling the surface charge property of the channel, which in turn regulates the electrokinetic
transport phenomena within [115].

2.2.3 Biological nanochannels

In parallel with synthetic nanochannels, nanopores functioning under the influence of elec-
trokinetic effects are found naturally in living organisms. Biological systems contain highly-
ordered structures in compartmentalized environments separated by membranes, which
are marked by different transporters to regulate the distribution of biologically relevant
species. Among the transporters are ion channels, usually localized in particular areas within
cells [116]. The driving force of ionic movement in these channels is determined by mem-
brane function, concentration gradients and electric potential differences present across the
membrane, or electrostatic interactions between ions and the charged membrane surface.
Ion channels are usually highly selective for particular ions, and they can open or close via
a conformational change when detecting an external factor, such as a chemical molecule or
a changing voltage, a property known as ‘gating’ [117].

Design guidelines for synthetic nanopores can be derived from a comprehensive un-
derstanding of the transport and gating characteristics of biological nanopores. Biological
nanopores offer promising devices for developing sensitive biosensors, DNA sequencing, bio-
inspired batteries and nanotransistors [28, 29]. Compared to their synthetic counterparts,
biological nanopores can be reproducibly fabricated and modified with an atomic level
of precision. One challenge in synthesizing biological channels is their limited mechanical
stability owing to the fragility of the lipid bilayers that support the channel. Synthesized
biological channels should have their sizes at least comparable to that of diffusing ions
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(∼ 0.2–0.6 nm) and their walls should be subject to proper chemical residues for selective
interactions with the ions.

Biological nanopore technology has been fuelled predominantly by interest in develop-
ing bio-inspired biological and chemical sensing applications. Biosensing is a single-molecule
approach which converts a biological response into an electrical signal to study features of
biomolecules that cannot be accessed by considering ensemble systems. The sensing princi-
ple is as follows: when a target molecule enters a charged nanopore, the charge distribution
and transport around the pore is perturbed. This perturbation manifests itself as an elec-
trical signal from the intermittent ionic blockade event and can be analysed statistically
by measuring the amplitudes, duration, frequencies, and shapes of the blockade events to
obtain real time properties of the target molecule at the single-molecule level. This has been
used to detect various biomolecules including oligonucleotides, peptides, oligosaccharides,
organic molecules, and disease-related proteins [116,118].

One rapidly growing industry in biosensing engineering is DNA sequencing. The idea of
using a nanopore for DNA sequencing was first demonstrated by Kasianowicz et al. [119] in
the 1990s. In principle, a negatively charged DNA molecule is driven through a nanopore
in a membrane from head to tail by applying an electric field. Changes in the ion current
passing through the pore or transverse electronic currents across the membrane itself are
measured as discrete conductance blockade levels and used to determine the nucleotide
sequence [120–122].

2.3 Continuum modelling of electrokinetic phenomena

The continuum modelling approach adopted here is based on the Gouy-Chapman [6, 7]
picture, where interactions of charged species with solvents hinge on the classical theory of
interaction of mobile point charges within dielectric continuum media. It should be stressed
that continuum models are not always valid in nanochannel systems. It has been found
that continuum theories largely overestimate shielding effects when the pore radius is of
the order of the size of EDLs [52, 53]. This becomes an issue when one studies capacitive
properties of the EDLs – since ion sizes play a crucial role in ion arrangement in the EDL.
In such cases, steric (finite ion-size) effects can be accounted for in the continuum models.
However, most of the discussions that follow will not include steric effects. In Chapter 6,
however, steric effects will be discussed and included in the model since we will be studying
EDL charging.

Mean-field theories reduce the complexity of the many-body problem by presenting
equations in terms of continuous-space density functions (i.e., distributions per unit volume)
of certain quantities like fluxes and free energies. This implies that the effective electrostatic
potential implicitly incorporates the influence of all the ions in the system. Through the
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use of the divergence and transport equations in three-dimensional space, local equations of
conservation of fluids and ions (continuity equations) are obtained, along with the relation
between the electrostatic field and the ions.

2.3.1 Poisson-Boltzmann equation

We start with the ionic species treated as mobile point charges in the electrolyte domain Ω,
which comprises the volumetric interior of the channel and reservoirs, if considered. Local
density approximations require the free energy of each ion species at every point r in the
volumetric domain to depend only on local quantities such as the the electric potential
ψ [V] (here [V] denote units, Volts, of the quantity ψ) or the ionic charge density

ρion(r) =
∑
i

qzici(r) , (2.1)

where ci
[
m−3] denotes an average distribution (local concentration expressed as the number

of ions per unit volume) of ions of ith species with valency zi and q = 1.602 ·10−19 C denotes
the elementary charge.

The total electrostatic free-energy functional of ions in Ω can be expressed as

F [ψ, ρion] =
∫

Ω

[
−εε0

2 |∇ψ(r)|2 + ρion(r)ψ(r) +
∑
i

µi(r)ci(r)
]
d3r , (2.2)

where ε0 = 8.85·10−12 F/m is the permittivity of free space and ε is the relative permittivity
(assumed to be space independent) of the electrolyte domain. The first term in Equation
(2.2) is the dielectric self-energy of the electric field E = −∇ψ, the second term gives the
electrostatic energy of mobile ions, and the last term couples the system to the bulk, where
µi [J] denotes the chemical potential of ion species i [123]. The entropic contribution due to
steric effects is neglected since ions are considered as point charges and are thus assumed
to not occupy any space in the aqueous solution.

Minimizing F with respect to ψ, i.e., ∂F/∂ψ = 0, gives the electrostatic Poisson equation

∇2ψ(r) = −ρ
ion(r)
εε0

, (2.3)

which presents a relationship between a static electric field and the electric charges that
cause it – the standard definition of the differential form of Gauss’ law in the absence of a
dynamic magnetic field.

The electrochemical potential µ̄i of the ith ionic species, defined as the total mechanical
work done in bringing 1 mole of an ion from a standard state to a specified concentration
and electrical potential at constant pressure and temperature, is equivalent to the variation
of F with respect to ci,
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µ̄i(r) = ∂F
∂ci

= ziqψ(r) + µi(r) , (2.4)

highlighting contributions from electrostatics (ziqψ) and the chemical potential µi. Take
the bulk to be electroneutral and located far away from the channel walls so that ρion = 0
and ci = c0i hold, and set ψ = 0 there. In principle, this bulk region could be at one of
the reservoirs, or at the center of the channel if the channel is wide enough that the EDL
is much smaller than the channel radius. From this perspective, the chemical potential is
given as [5, 37,124]

µi(r) = µ0
i + kBT ln

[
γa
ci(r)
c0i

]
, (2.5)

where γa is the activity coefficient, µ0
i the standard chemical potential of ion i, kB =

1.38 · 10−23 J/K the Boltzmann constant, and T [K] the absolute temperature. Hence,

µ̄i(r) = ziqψ(r) + µ0
i + kBT ln

[
γa
ci(r)
c0i

]
. (2.6)

At equilibrium, the electrochemical potential of the ions must be the same everywhere, i.e.,

∇µ̄i(r) = 0 ⇐⇒ ∇
{

ln
[
γa
ci(r)
c0i

]}
= − ziq

kBT
∇ψ(r) . (2.7)

Integrating Equation (2.7) from a point in the bulk solution, where ψ = 0 and ci = c0i,
leads to the Boltzmann equation, giving the local concentration of each type of ion in the
diffuse layer,

ci(r) = c0i exp
[
−ziqψ(r)

kBT

]
. (2.8)

Note that γa vanishes when performing the integration. Substituting Equations (2.1) and
(2.8) into Equation (2.3), we obtain the complete PB equation, which describes how the
electrostatic potential due to a distribution of ions varies in Ω at equilibrium,

∇2ψ(r) = − q

εε0

∑
i

zic0i exp
[
−ziqψ(r)

kBT

]
. (2.9)

For a binary symmetric z : z electrolyte (all positive ions have valency z and all negative
ions have valency −z, where z > 0, and c0i = c0 ∀i = 1, 2), we have

∇2ψ(r) = 2qc0
εε0

sinh
[
−zqψ(r)

kBT

]
. (2.10)
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2.3.2 Nernst-Planck equation

The PB equation (Equation (2.9)) presented above is only valid at equilibrium. However,
one needs to understand the dynamical evolution of ψ and c from some nonequilibrium
state, where the Poisson equation (Equation (2.3)) still holds. The most obvious approach
is to appeal to the mass conservation law for each ionic species, defined by

∂ci(r)
∂t

+∇ · J i(r) = Gi(r) . (2.11)

The quantity J i
[
m−2s−1] is the total flux density for ionic species i, and Gi

[
m−1s−1]

denotes the rate of production of i per unit volume in Ω. In this work, we set Gi = 0.
The total ionic flux density is a combination of different transport contributions which

are classified into electrochemically-induced and fluid-induced transport, i.e.,

J i(r) = Jelectrochemical
i (r) + Jfluid

i (r) . (2.12)

The electrochemical contribution is an electrodiffusion flux arising from diffusion and the
interaction of ions with the electric field and is proportional to the gradient of the electro-
chemical potential according to the Einstein-Smoluchowski relation:

Jelectrochemical
i (r) = − Di

kBT
ci(r)∇µ̄i(r) , (2.13)

where Di
[
m2s−1] is the diffusion constant for ionic species i. The fluid contribution comes

from the advection of ions by the fluid velocity field u(r)
[
ms−1] via

Jfluid
i (r) = ci(r)u(r) . (2.14)

Using Equation (2.6) for the electrochemical potential appearing in Equation (2.13), the
total flux density becomes

J i(r) = −Di∇ci(r)− ωizici(r)∇ψ(r) + ci(r)u(r) , (2.15)

where ωi
[
C · kg−1s

]
is the mobility for ion species i which is related to the diffusivity by

virtue of the Nernst-Einstein relation [125],

ωi = qDi

kBT
. (2.16)

Equation (2.15) is known as the Nernst-Planck (NP) equation. The first term is the diffusive
component of the flux, described by Fick’s first law of diffusion. The minus sign indicates
that the flux is directed from higher to lower ion concentration regions. The second term
indicates transport by electromigration – the transport of ions and charged small particles
due to the electric field without an underlying source related to the existence of an EDL.
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Positive ions electromigrate from higher to lower electric potentials and negative ions
from lower to higher electric potentials. Accordingly, the ions would accelerate in the
absence of any viscous forces. At a stationary state, however, there is a balance of the
diffusion, advective and electromigration fluxes. A system of the NP equations (Equations
(2.15) & (2.11)), describing the fluxes of individual ions, and the Poisson field equation
(Equation (2.3)) constitutes a mathematical framework for a deterministic description of
ionic electrodiffusion in the continuum approximation.

2.3.3 Hydrodynamics equations

To complete the system of differential equations, the hydrodynamics part of the model is
considered to couple the fluid to ion transport. Under isothermal conditions, a Newtonian
fluid, i.e., a fluid viscosity that is not dependent on shear stress, has its velocity perturbation
fully described by the continuity and momentum conservation (Navier-Stokes) equations:

∂ρf

∂t
+∇ · [ρfu(r)] = 0 (2.17)

ρf

∂u(r)
∂t

+ ρf [u(r) · ∇]u(r) = −∇p(r) + ν∇2u(r) +
∑
fbody(r) , (2.18)

where ρf

[
kg ·m−3] is the mass density of the fluid, p [Pa] the hydrostatic pressure, and ν

[Pa · s] the dynamic viscosity; fbody

[
N ·m−3] are body forces per unit volume externally

applied to the fluid. In Equation (2.18), the first term on the left hand side corresponds to
inertia and the second term is a measure of advective momentum transport. The ∇p term
corresponds to fluid transport by mechanical force due to the internally generated pressure
gradient and the ν∇2u term constitutes viscous momentum transport.

The body force term may contain different contributions (e.g. gravitational, electrostatic,
or magnetic forces), but in our case of interest the only body force considered is one that
develops because of the electric field in the EDL:

∑
fbody(r) = −ρion(r)∇ψ(r) = −

∑
i

qzici(r)∇ψ(r) . (2.19)

The effect of gravity is typically neglected in such analyses as can be gleaned from a simple
order-of-magnitude calculation.

To reduce the complexity of Equations (2.17) & (2.18), a number of approximations can
be made. The fluid is taken to be incompressible and of uniform density, i.e., ∂ρf/∂t ≈ 0 and
∇ρf = 0. At the nanoscale, the fluid flow velocity is much less than the speed of sound. Using
the low Mach number expansions of the velocity fields [126], the flow can be assumed steady,
essentially rendering flow inside the channel completely inertia-free (∂u/∂t ≈ 0). The ratio
between advective and viscous terms is measured by the Reynolds number Re = ρfUL/ν,
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where L and U are characteristic length scale and fluid speed, respectively. For water and
typical values in a nanochannel, L ∼ 10−6 m, U ∼ 10−4 ms−1, ρf ∼ 103 kg m−3, and
ν = 10−4 kg m−1s−1, we obtain Re ∼ 10−3 � 1, implying a limit where viscous forces are
large compared to advective momentum forces. Hence, the advective term in the Navier-
Stokes equation can be neglected (ρf [u · ∇]u ≈ 0). We end up with the much simplified
equations,

∇ · u(r) = 0 , (2.20)

ν∇2u(r)−∇p(r)−
∑
i

qzici(r)∇ψ(r) = 0 . (2.21)

Equation (2.21) is the Stokes equation, and is valid for fluid flows under very low Reynolds
numbers (the so-called ‘creeping flow’ approximation). The above set of equations can be
solved for any given boundary conditions. In nanofluid channels under consideration, the
no-slip boundary condition is assumed at the wall-fluid interface, where u = 0.

2.4 Nanochannel model system

The electrokinetic effects and the continuum model discussed in Section 2.3 are assumed
to hold for all nanoporous geometries. In what follows, we study the specific nanochannel
system, which forms the basis for the rest of the thesis.

Figure 2.4 shows a schematic of a conventional channel with negative surface charges
on the walls. In our model system, a cylindrical nanochannel is connected to two large
reservoirs. Reservoirs are filled with aqueous ionic solutions with controlled pH and liquid
pressure. In addition to surface-induced transport, the flow of ions and fluid can be controlled
by applying an electrical potential to reversible electrodes located in the reservoirs and/or
applying a pressure drop between the reservoirs. In these conditions, anions will flow toward
the positive electrode and cations toward the negative one, and the fluid will be forced
against the pressure gradient. Other electrokinetic effects outlined in Section 2.1, introduced
by the surface charges, will be observed.

2.4.1 Electrokinetic length and time scales

The nanochannel is characterized by a radius Rp and length Lp (the subscript p stands
for ‘pore’). Typical ranges are Rp ∼ 1–100 nm and Lp ∼ 10–1000 nm. Beyond these two
parameters, electrokinetic phenomena in the channel entail a number of length scales
closely coupled due to the long range nature of electrostatics.
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Figure 2.4: Schematic of the nanochannel system connected to two reservoirs, with ion
solution driven by external electric field and/or pressure drop at the reservoirs.

Debye length. In order to gain insight into Equation (2.10), we may linearize the
exponential term to obtain the linearized PB equation

∇2ψ(r) = 1
λ 2
D

ψ(r) , (2.22)

where

λD =
√

εε0kBT

q2∑
i c0iz2

i

(2.23)

is called the ‘Debye screening length’, which is a measure of the EDL thickness. It
is interesting to note that λD is smaller for a larger bulk concentration, and it is
independent of the channel’s surface charge density. Typically, λD ranges from a few
Angstroms to tens of nanometres. In nanochannels, it is instructive to report λD rela-
tive to the channel radius Rp via the dimensionless Debye screening parameter `D = λD/Rp.

Bjerrum length. The Bjerrum length is defined as the distance at which the elec-
trostatic interaction energy between two charged species in a dielectric medium is equal to
the thermal energy unit, kBT . It is given by

λB = z2q2

4εε0kBT
.

More intuitively, the Bjerrum length is the scale below which direct electrostatic interactions
dominate over thermal effects. For bulk water, ε ≈ 81, so at room temperature and va-
lency z = 1, the Bjerrum length is about 7 Å . In this case, λB compares with molecular sizes.
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Surface charge length scales. Both the Debye and Bjerrum lengths are indepen-
dent of surface charges on the channel walls. From the surface electrostatic properties,
however, length scales may be constructed that depend on the amount of charges on the
channel.

The first is the Gouy-Chapman length,

λGC = q

2πσpλB
, (2.24)

defined as the distance from the channel wall where the electrostatic interaction energy
of a single ion with the wall is equal to kBT . Here, σp is the surface charge density on
the channel wall. The Gouy-Chapman length is large for a strongly charged channel. For a
typical surface charge density, say σp = 50 mC/m2, we have `GC ≈ 1 nm.

Another surface charge dependent length scale is the Dukhin length,

λDu = σp
qc0
∼ λ 2

D

λGC
. (2.25)

This length scale relates the surface charges to the bulk charges and, physically, it charac-
terizes the channel width below which surface conduction dominates over bulk conduction.
Hence, it plays an important role for the study of ion conductance in nanochannels, in
which surface effects prevail. Typically, for σp = 50 mC/m2 and c0 = 1 M, we have
`Du ≈ 0.5 nm. A measure of the relative importance of surface conductivity is given by the
dimensionless Dukhin number, Du = σpRp/c0.

Transport time scales. Dimensional analysis of the Nernst-Planck equation allows
us to define a few characteristic time scales for the EDL,

τL =
L2
p

D
, τEDL = λ 2

D

D
, τadv = Lp

uz
. (2.26)

Here, τL is the characteristic time for an ion in bulk to diffuse the axial length of the
channel Lp, τEDL is the characteristic equilibration time of the EDL, and τadv is the
characteristic time it takes for an ion in the EDL to be advectivelly transported from one
end of the channel to the other, given a typical axial fluid speed uz.

2.4.2 EDL overlap and perm-selectivity

For an aqueous electrolyte solution confined in a nanochannel, the EDLs from opposite walls
may have strong interactions. The phenomenon is referred to as the ‘EDL overlap’, which
results in significant changes in the composition of the electrolyte, the related electric field,
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and transport properties – consequently, novel transport effects emerge, with applications
for chemical analysis. Broadly speaking, EDL overlap is realized when `D = λD/Rp & 1.

One important physical effect associated with EDL overlap is the so-called ‘Donnan
equilibrium’: Long-range excess charges introduced by the fixed charges on the channel walls
lead to the build-up of a potential drop, termed ‘Donnan potential’, between the channel’s
interior and the external reservoirs to maintain a spatially uniform chemical potential of
the ions. Plecis et al. [127] demonstrated that nanochannels with EDL overlap and non-
vanishing Donnan potential exhibit a selective permeability for ion transport: co-ions have a
lower permeability than counter-ions. The diffusive flux of counter-ions will be accordingly
larger than for co-ions, leading to charge-specific effective diffusivities for co- and counter-
ions. The difference in ion permeability can lead to a charge separation between the two ends
of the channel. This, therefore, leads to the creation of an opposing electric field along the
channel, pointing to the complex couplings associated with ion transport in nanochannels.

2.4.3 Electroneutrality

One important assumption in electrochemistry is the electroneutrality approximation, which
assumes that charge separation in electrolyte solutions is impossible at appreciable length
scales. Early use of the electroneutrality approximation was by Walther Nernst in 1889 [128]
in his study of electromotive forces in electrolyte solutions at appreciable scales. Electroneu-
trality is usually applied ‘globally’ for a closed system and ‘locally’ if a continuum model
is used to describe the charge distribution. For a continuum distribution of ions with con-
centration ci inside a confined channel volume Ω with boundaries ∂Ω and having surface
charge density σp, global electroneutraliy can be expressed as∫

Ω

∑
i

qzici(r)d3r =
∫
∂Ω
σp(r)d2r , (2.27)

and local electroneutrality as ∑
i

zici(r)d3r = 0 . (2.28)

Note that Equation (2.27) reduces to Equation (2.28) only when there are no concentration
gradients and the channel is uncharged. In a nanochannel system, global electroneutrality
(Equation (2.27)) is a consequence of the Poisson equation when the boundary condition

∇ψ(r) · n̂(r) = σp(r)
εε0

(2.29)

is utilized. Here, n̂ is the unit outward normal vector of the channel surface. The equivalence
of Equation (2.27) with the Poisson equation (Equation (2.3)), provided Equation (2.29) is
satisfied, can easily be checked by integrating the Poisson equation and using the divergence
theorem.
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Local electroneutrality defined by (2.28), however, cannot hold in nanochannels where
ion concentration profiles depart from their bulk values due to the interaction of ions with
the surface charges. In fact, dimensional analysis reveals that the local electroneutrality
approximation breaks down at nanosecond and nanometre scales [129]. For a uniform radius
channel, the following local electroneutrality condition that comes naturally from Equation
(2.29) is defined in place of Equation (2.28):

∫
Γz

∑
i

qzici dΓz = 2πRpσp , (2.30)

where local electroneutrality is interpreted as a perfect balance between the total net charges
within a given cross section (denoted Γz) of the channel and the total charges on the part
of the surface surrounding the cross section. Equation (2.30) assumes σp is uniform. This
can be applied to all cross sections along the channel length. Implicitly, Equation (2.30)
is a hidden assumption in the model and it emanates from the boundary condition (2.29).
Since global electroneutrality is ensured, local electroneutrality will simply be referred to
as ‘electroneutrality’ for the rest of the thesis, and it is the one defined by Equation (2.30).

Equation (2.29) is a consequence of Gauss’s Law when the electric field outside the
channel is assumed to vanish. In real systems, however, the surrounding medium can be
conducting (can have nonzero permittivity) and can lead to ‘dielectric leakage’. This could
arise from non-insulating walls of the channels, or a different conducting medium outside
the channel. In this scenario, electroneutrality is violated. Assuming that the electrolyte
is embedded in a constant dielectric medium with permittivity constant εout, the electric
potentials inside ψin and outside ψout the channel are governed by a set of PB and Laplace
equations,

∇2ψin(r) = − q

εinε0

∑
i

zic0 exp
[
−ziqψ(r)

kBT

]
, ∀r ∈ Ω , (2.31)

∇2ψout(r) = 0 , ∀r 6∈ Ω , (2.32)

and the boundary condition in Equation (2.29) becomes

n̂(r) · [εout∇ψout(r)− εin∇ψin(r)] = σp(r) . (2.33)
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Chapter 3

Numerical Simulations for a
Cylindrical Nanochannel

This chapter develops rigorous numerical tools for quantitative simulations of electrokinetic
flow in a cylindrical nanochannel. A preliminary step involves solving the continuum-based
model comprising the fully coupled steady-state Poisson-Nernst-Planck (PNP) and Stokes
equations for a finite, rigid channel that is connected to reservoirs of cylindrical geometry.
The influence of several important factors – including bulk electrolyte concentration, geom-
etry of the channel, externally applied voltage and pressure, and density of charges grafted
to the channel surface – on the electrokinetic transport of ions and fluid are investigated.

It is important to remark that although the numerical problem investigated here has
been reported in the literature [130–132], this work aims to assess a number of features of
the transport to identify the dominant physical phenomena that must be accounted for as
a benchmark for understanding the theoretical work presented in the later chapters, where
effects such as channel deformations and closed confinement are explored.

The structure of the present chapter is as follows. First, a detailed discussion of the
physical-mathematical model of the system is presented in Section 3.1, comprising a brief
outline of the governing equations and boundary conditions. Section 3.2 provides a de-
scription of the numerical method employed and its implementation. Section 3.3 presents
numerical results. Here, we first study the hydrodynamic transport properties of the chan-
nel. This is followed by an in-depth analysis of the ionic current as a function of the channel
geometry, surface charge density, bulk ion concentration, and applied voltage. Next, the
ion-selective properties of the channel are explored. Numerical results for the continuum
model are verified by experimental data of the nanochannel conductance available in the
literature. Finally, Section 3.4 concludes this chapter with a summary of results.
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Figure 3.1: Schematic of the numerical system consisting of a cylindrical nanochannel system
connected to two cylindrical reservoirs

3.1 Model description

3.1.1 Schematics and assumptions

Figure 3.1 shows the schematic of the computational domain simulated in the present study.
A nanochannel of radius Rp and length Lp is connected to two large cylindrical reservoirs.
The left reservoir has radius R` and length L`, and the right reservoir has radius Rr and
length Lr. Herein, we consider nanochannels with Rp between 2 nm and 10 nm, while
the length of the channel varies between 25 nm and 100 nm. A voltage bias V` and a
pressure difference P` are applied across the reservoirs-channel system. To guarantee a
constant electric potential and bulk ion concentration at the far ends, reservoirs should have
dimensions which are much larger than the dimensions of the channel. Both the channel and
the reservoirs are loaded with an aqueous 1:1 binary electrolyte (e.g., KCl) solution, and
the walls of the nanochannel have fixed uniform charge density σp. Cylindrical coordinates
(r, θ, z), with the origin indicated in Figure 3.1, are adopted to formally frame the problem.
Because the present problem is θ-symmetric, only the 2-D axisymmetric (r, z) domain is
considered.

To make the problem mathematically and numerically tractable, we rely on the following
key assumptions undertaken for this study:

• isothermal conditions prevail

• electric potential and ion concentration are invariant with time (steady state)
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• steric and solvation effects of ions are neglected

• anions and cations have the same and constant effective diffusivity, independent of
electrolyte concentrations and position

• permittivity ε and dynamic viscosity ν of the fluid are invariant parameters

3.1.2 Governing equations

The local steady-state and equilibrium electric potential in the electrolyte solution (ψ),
concentrations of positive and negative ionic species (c+ and c−, respectively), the fluid
velocity field (u) and pressure (p) are modelled by the PNP and Stokes equations:

− εε0∇2ψ = q (c+ − c−) , (3.1a)

∇ · J± = 0 , J± = −D∇c± ∓
D

kBT
c±∇ψ + c±u , (3.1b)

ν∇2u−∇p− q(c+ − c+)∇ψ = 0 , (3.1c)

∇ · u = 0 . (3.1d)

A comprehensive discussion of Equations (3.1a)–(3.1d), along with explanations of param-
eters, is accessible in Chapter 2. Here, D = D+ = D− is taken as the constant effective
diffusivity of all ionic species.

3.1.3 Boundary conditions

The numerical study focuses on an aqueous binary-symmetric electrolyte solution at room
temperature characterized by the set of physical parameters summarized in Table 6.1. The
following boundary conditions are assumed for Equations (3.1a)–(3.1d): an external electric
field is applied by setting ψ = V` on the furthest end of the left reservoir and grounding
the furthest end of the right reservoir (ψ = 0). An analogous pressure drop is applied with
p = P` at the left reservoir end and p = 0 at the right reservoir end.

At the far-end walls of the reservoirs, ion concentrations are maintained at their bulk
value, c+ = c− = c0. For the Stokes equation, a no-slip boundary condition (u = 0) is
imposed at the channel walls and the side walls of the reservoirs, with the assumption that
the fluid flow is normal to boundaries at the farthest reservoir ends. The side walls of the
reservoirs are taken to be ion impenetrable (n̂ · J± = 0) and uncharged (∇ψ · n̂ = 0).
Channel walls are ion impenetrable (n̂ · J± = 0) and have inner surface charge density σp
with an insulation boundary condition for the electric potential (i.e., εε0∇ψ · n̂ = σp).
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Parameter Description Value (range)
q elementary charge 1.602 · 10−19 C
kB Boltzmann constant 1.38 · 10−23 J/K
ε0 vacuum permittivity 8.85 · 10−12 F/m
ε dielectric constant 80
ν dynamic viscosity 0.5 · 10−4 Pa s
T temperature 300 K
D ion diffusivity 2 · 10−9 m2/s
Rp channel radius 2 – 10 nm
Lp channel length 25 – 100 nm
|σp| surface charge density 0 – 0.3 C/m2

|V`| external voltage bias 0 – 100 mV
P` external pressure drop 0 – 20 kPa

Table 3.1: Typical parameters for a rigid cylindrical nanochannel connected to reservoirs.

3.2 Numerical implementation

Equations (3.1a)–(3.1d), along with the associated boundary conditions, are numeri-
cally solved by the finite element method (FEM), implemented by using the COMSOL
Multiphysicsr commercial simulation package. The FEM, initially coined by Clough [133]
in the early 1960s for structural analysis, is based on discretizing the computational domain
into individual spatial subdomains, called finite elements, connected by ‘nodes’ whose poten-
tial energy functions can be approximated from the system’s governing differential equations
using the so-called ‘trial base functions’ [134–136]. The resulting potential energy expression
for the assembled discrete system is a set of algebraic equations which are minimized to
form an approximate set of nodal solutions for the individual finite elements. The solution
for the global continuous system is found by interpolating between the nodal solution values
using approximate functions called ‘shape functions’, usually low-order polynomials.

COMSOL Multiphysics allows for a straightforward application of the FEM outlined
above, as well as permitting easy coupling of multiple physical effects on one system. Next,
we present details of the implementation of the problem. In COMSOL, simulations can be
performed from the Graphical User Interface (GUI) or can be set up to interface with Mat-
lab. In this work, we only use the GUI. Implementation involves four main stages, namely;
problem identification and geometry definition, multiphysics modelling, discretization, and
post-processing and results visualization.

3.2.1 Problem identification and geometry definition

The first step is to identify and classify the problem based on the physical phenomena
involved. The problem can be defined in 1-D, 3-D, 2-D in-plane and 2-D axisymmetric
dimensions, and solved for stationary, time or frequency dependent conditions. In consid-
eration of the cylindrically axisymmetric nature of the problem (see Figure 3.1), the 2D
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axisymmetric coordinate system is chosen. We seek stationary solutions. The simulation
geometry consists of three rectangular domains in the r–z plane: one for the channel and
the other two for the reservoirs. User-defined parameters are fed into the model instead of
using COMSOL’s parametrized ‘solid geometry’.

3.2.2 Multiphysics modelling

This step involves setting up the model equations and all boundary conditions using
fully coupled multiphysics solvers. All global parameters are defined first. Contingent on
the implementation procedure, modelling of Equations (3.1a)–(3.1d) can be classified into
equation-based modelling and module-based modelling. The former entails manually in-
putting the equations using the ‘Mathematics’ interface, and we use it for the Nernst-Planck
equations. The latter uses modules (predefined models from Electromagnetism, Fluid Flow,
Acoustics, Chemical Engineering, etc.) already built into COMSOL to allow for more effi-
cient and straightforward handling of the physics, and we use it for the Poisson and Stokes
equations.

For the Poisson equation, the ‘electrostatics’ interface under the ‘AC/DC module’ is
used. Equation (3.1a) is loaded by the ‘Charge Conservation’ tree, with the nonhomogeneous
function set up under ‘Space Charge Density’. The far end boundary conditions for the
electric potential are fed in by selecting ‘Electric Potential’ tree and applying the appropriate
boundaries. The electric flux boundary conditions, on the channel walls and reservoir side
walls, are implemented by selecting ‘Surface Charge Density’.

The Nernst Planck equations are implemented using the ‘General Form PDE’ tree of the
PDE interface under the ‘Mathematics’ model builder. The ‘General Form PDE’ interface
has the advantage that it allows the equation to be set up in term of fluxes, whose boundary
conditions can be treated with ease. Zero ionic fluxes are automatically imposed on the
boundaries. The bulk ionic concentration boundary conditions at the reservoir ends are
added by selecting ‘Dirichlet Boundary Condition’.

Finally, the Stokes equations are implemented using the ‘Laminar Flow’ interface under
the ‘Fluid Flow Module’. The no-slip boundary conditions are added by selecting ‘no-slip’
under the ’Wall’ tree. Pressure boundary conditions at the reservoir ends are added by
choosing ‘inlet’ and ‘outlet’. The electroosmotic force term in the Stokes equation is treated
separately by selecting ‘Volume Force’. It should be noted that with the additional ‘Fluid
Flow Module’, this force is easily implemented by selecting ‘Migration’ under the main tree
of the model builder.

3.2.3 Discretization scheme

Once the model equations in the domains and the boundary conditions are set up, the
next crucial step is to discretize the geometry. In essence, the accuracy of the solution is
easily improved by increasing the number of elements in regions where high gradients of
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field quantities are expected1. User-controlled meshing is used inside the channel. Here, a
triangular finite mesh is adopted. Close to the channel boundaries, a user-controlled mesh
is heavily refined with maximum element sizes of 1.2 Å. This ensures sufficient resolution
of the physics in the EDL for accuracy. Outside these boundary domains, corresponding
to the channel interior and the reservoirs, a predefined mesh explicitly optimized for fluid
dynamics is used. A typical mesh for the full geometry is shown in Figure 3.2.

Figure 3.2: 2D axisymmetric model mesh, with an increased density of elements close to
the channel wall.

3.2.4 Post-processing and visualization

Once the computation is finished, the results are analysed and evaluated in several
ways. Quick inspection of results can be done on COMSOL’s graphical interface. Under
the model tree, local functions are defined that do data post-processing procedures like
domain integration, projections, functional evaluations etc. In some cases, data is manually
exported to Matlabr for post-processing. All graphs reported here, with the exception of
surface plots, which are taken straight from COMSOL’s graphical interface, are produced
using the Graphics Layout Engine (GLEr) scripting language.

3.3 Results and discussion

3.3.1 Hydrodynamic equilibrium

We first investigate the system’s charging and geometry effects on the fluid motion. This
corresponds to a situation where fluid transport stems solely from an externally applied

1Note that the Poisson equation often results in a stiff problem.
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Figure 3.3: Typical surface plot of the computed fluid axial velocity uz in the system’s r–z
plane for Rp = 5 nm (top figure) and Rp = 10 nm (bottom figure). Arrows indicate the
velocity vector field.

electric field and surface charges on the channel walls. The pressure at the reservoirs is
maintained the same (i.e., P` = 0). In a sense, the surface charges break the symmetry of
the system by introducing the EDL, resulting in fluid flow.

The computed fluid velocity plots in a two-dimensional slice that includes the channel
axis are shown in Figure 3.3 for channel radii (a) Rp = 5 nm (top) and (b) Rp = 10 nm
(bottom). The surface plot represents the axial velocity component only, and the arrows
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symbolize the velocity vector field. We remark that the cross-channel coordinate for all plots
is shown, for convention, to run from negative values to show positions from one wall of the
channel to the other on the r–z plane. As expected, the flow within the channel is along
the axial direction only. The radial component of the fluid velocity is only seen near the
channel’s inlet and outlet regions. These regions extend a few multiples of Rp away from
the channel ends. At reservoir regions far away from the channel, fluid flow is much slower
than inside the channel. For the larger channel radius, the EDL region accounts for a small
fraction of the total cross-sectional area, and, thus, the flow is fully plug-like (the velocity
profile converges quickly towards a constant, non-zero value as one moves from the channel
wall towards the pore center). At some regions along the channel, we observe the formation
of a local minimum in the axial velocity profile around the center of the channel for large Rp.
For the smaller radius, however, the flow profile is not fully plug-like but nearly parabolic.
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Figure 3.4: Fluid axial velocity profile in r direction at the center of the channel for varying
(a) σp, (b) c0, (c) V`, (d) Rp, (e) Lp and (f) P`. Reference case: Rp = 5 nm, Lp = 50 nm,
σp = −0.05 C/m2, V` = 0.1 V, c0 = 0.1 M, P` = 0 Pa.

A detailed depiction of the full parametric effects on the cross-sectional flow velocity
(axial) profiles is shown in Figure 3.4. Profiles are computed in the r direction2 at the
center of the channel (z = Lp/2). In Figure 3.4(a), we note the role played by the surface
charges in speeding up the flow everywhere across the channel’s interior. Figure 3.4(b)

2The coordinate r/Rp represents a straight line from one point on the channel wall (r/Rp = −1) to the
opposite side (r/Rp = 1), passing through the center of the pore (r/Rp = 0).
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depicts that high bulk ion concentrations (1) lower the fluid flow speed, (2) enforce plug-
like profiles and (3) introduce a central local minimum in the velocity profile. This stems
from a reduced Debye length at high c0, forcing substantial electroosmotic-induced flow only
very close to the walls. At high c0, this near-wall flow can be faster than at the channel’s
central region, hence the local minimum. Increasing V` increases the velocity equally across
the channel (Figure 3.4(c)). This is attributed to the change in the externally applied
electric field Ez = V`/Lp, which increases with V` and decreases with Lp. In addition to the
emergence of the central local minimum at large channel radii, the velocity in the central
region diminishes while it still increases near the wall (Figure 3.4(d)). This is because the
Debye length becomes much smaller than the channel radius, forcing most of the flow to
regions close to the channel walls. Increasing the channel length reduces the velocity equally
across the channel (Figure 3.4(e)). Finally, the effect of the pressure difference P` is shown
in Figure 3.4(f). At very high P`, the flow profile becomes parabolic, a characteristic of
Poiseuille flow [137] – the quadratic laminar flow profile across a long cylindrical channel.
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Figure 3.5: Fluid pressure profile in z direction along the channel’s centerline (r = 0) as
a function of (a) σp, (b) c0, (c) V`, (d) Rp, (e) Lp and (f) P`. Reference case: Rp = 5 nm,
Lp = 50 nm, σp = −0.05 C/m2, V` = 0.1 V, c0 = 0.1 M, P` = 0 Pa.

Pressure profiles along the channel’s centerline (r = 0), extending to the reservoirs,
are shown in Figure 3.5. The asymmetric patterns of the plots, with respect to rota-
tion/reflection across z = Lp/2, arise from the surface charges on the channel walls and
the applied external voltage differential. One noteworthy feature observed in each profile is
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the development of a fluid pressure gradient inside the channel even in the absence of an
external pressure drop. We call this pressure gradient ‘electrochemically induced pressure’,
and it arises from the arrangement of ions due to an electrochemical potential gradient
(Donnan potential) inside the channel. This allows for an insightful formulation of the total
fluid pressure,

p(r, z) = pelectrochemical(r, z) + papplied(z) , (3.2)

accounting for the electrochemically induced pressure pelectrochemical and externally applied
pressure drop papplied. Note that at channel walls pelectrochemical becomes the so-called ‘elec-
troosmotic pressure’ [138]. From Figure 3.5(a), we observe that pelectrochemical near the center
of the channel increases with |σp|. Evidently, at large σp most of the counter-ions flow near
the walls leaving the wide fraction of the channel cross-section ion-depleted (with relatively
few co-ions, depending on c0) and fluid-saturated. Hence a high fluid pressure develops in
that central region. A similar effect is seen in Figures 3.5(b) and (c), where ion-depletion
(reduced co-ions) in the central region is prominent at low c0 and low V` (co-ions are drawn
towards electrified reservoirs); resulting in high fluid pressure. Narrower and longer channels
generally exhibit high fluid pressure (Figure 3.5(d) and (e)). In Figure 3.5(f), we see the su-
perimposed external pressure drop papplied on pelectrochemical. The 1 MPa curve corresponds
to the case when pelectrochemical(r, z) � papplied(z), where a constant pressure gradient de-
velops along the entire channel. This pressure gradient is given by P = P`/Lp and, hence,
papplied(z) ∼ Pz inside the channel.

3.3.2 Ionic fluxes

Hereafter, we explore ion transport in the nanochannel. Figure 3.6 shows the electric po-
tential on a two-dimensional slice that includes the channel axis for σp = −0.05 C/m2 (top
figure) and σp = −0.3 C/m2 (bottom figure). Arrows represent vector field of the cation
flux density, J+. The channel is under the reservoir potential bias V` = 0.1 V. Within
the channel, the direction of the ion flow is along the channel’s axis. The channel’s surface
charges force more ions to flow in the EDLs near the walls. In principle, the narrower EDLs
at high σp strengthens near-wall ion transport quite significantly.

If we let S be the surface of the cross-section located at the center of the channel
(z = Lp/2), the ionic current I can be evaluated in terms of the flux by

I =
∫
S
q

( 2∑
j=1

zjJ j

)
· n̂ dS . (3.3)

Recall that the total current J has contributions from advection, diffusion and migration.
Our first course of action is to closely investigate the radial profile of each contribution
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Figure 3.6: Surface plot of the computed electric potential in the system’s r–z plane for
σp = −0.05 C/m2 (top figure) and σp = −0.3 C/m2 nm (bottom figure). Arrows represent
the cation flux density vector field. Reference case: Rp = 5 nm, Lp = 100 nm, V` = 0.1 V,
c0 = 0.1 M, P` = 10 kPa.

across S. We define the following coefficients:

ηadv = Iadv

I
, ηdiff = Idiff

I
, ηmigr = Imigr

I
,

measuring the ratio of current contributions due to advection, diffusion and migration,
respectively, to the total current.

Figure 3.7 shows radial profiles of ηadv, ηdiff and ηmigr across S at different parameters,
each varied in each row. An immediate observation is that ηdiff is generally much smaller
(about 10 times) than the other ionic current contributions. Instead of focusing on these
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Figure 3.7: Contributions of advection (first column), diffusion (second column) and mi-
gration (third column) to the total ionic current as functions of σp (first row), c0 (second
row), Rp (third low) and V` (fourth row). Fluxes are calculated at the cross section located
at the channel center (z = Lp/2). Reference case: Rp = 5 nm, Lp = 100 nm, σp = −0.05
C/m2, V` = 0.1 V, c0 = 0.1 M, P` = 10 kPa.
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stark differences, which can easily be eliminated by changing parameters like V`, we try to
understand the shapes of the profiles. Additionally, the diffusive contribution is negative
in the proximity of the walls due to the streaming potential in the EDL, and increases to
positive values towards the center of the channel.
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Figure 3.8: Sectionally averaged current plotted as a function of σp for different values of
(a) c0, (b) V`, (c) Rp and (d) Lp. Reference case: Rp = 5 nm, Lp = 50 nm, σp = −0.05
C/m2, V` = 0.1 V, c0 = 0.1 M, P` = 10 kPa.

Generally, ηadv profiles are concave-shaped and assume maximal values in the EDLs
near the channel’s walls, where a majority of counter-ions reside and trigger strong surface-
induced electroosmotic flow of the fluid. For each concave profile, we define ∆central as the
radial region over which the local central minimum of the profile extends. This relates to the
position of the local maximum located near the walls, which, in turn, depends on the Debye
length parameter, `D = λD/Rp. Accordingly, c0 and Rp are the only parameters explored
in Figure 3.7 that affect ∆central since they control `D. This is in accord with the respective
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results in Figure 3.7(b) and (c). Individual profiles and all parameters have opposite effects
on ηadv and ηmigr profiles, since the diffusion contribution is relatively small.
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Figure 3.9: Sectionally averaged fluid-induced ionic current coefficient ηcoef plotted as a
function of σp for different values of (a) c0, (b) V`, (c) Rp and (d) Lp. Reference case:
Rp = 5 nm, Lp = 50 nm, σp = −0.05 C/m2, V` = 0.1 V, c0 = 0.1 M, P` = 10 kPa.

Based on the results above, the cross-sectional domain of the channel can be divided
into three regions depending on which of ηadv, ηdiff, and ηmigr peaks. The EDL region is
where ηadv peaks, while ηmigr peaks in the central region (and at the edges of the channel
walls), and ηdiff peaks in the region in between the two.

Figure 3.8 shows the total current I across S, plotted against σp for different parametric
values. A universal feature of the plots is that I increases with |σp|, and the current adopts
a local minimum at σp = 0. As anticipated, ionic current increases with c0, Rp and V` due
to both cation and anion enrichment in the channel. The channel’s length, however, has the
opposite effect owing to a reduced electric field at large Lp.
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Figure 3.10: The concentration of cations and anions along the center of the channel at
different values of σp (row 1), Rp (row 2) and c0 (row 3) (All plots are in the semi-log scale).
Reference case: Rp = 5 nm, Lp = 100 nm, σp = −0.05 C/m2, V` = 0.1 V, c0 = 10 mM,
P` = 10 kPa.

Neglecting fluid flow in modelling electrokinetic transport phenomena is common in
the literature [139–143]. The standard assumption is that the time scale for fluid flow is
much larger than that of ion flow. In Figure 3.9, we explore the validity of this assumption
by plotting ηadv against σp for different parameters. Results demonstrate that ηadv goes
to zero sharply as |σp| approaches 0. This implies that the channel’s surface charges speed
up ionic transport faster than fluid transport at low |σp|, and the opposite is true for high
|σp|. The other parameter that has strong influence on ηadv is c0: high c0 lowers ηadv to the
point where advective transport can be ignored altogether. The potential bias V` and the
channel length Lp do not have much influence on ηadv. Increasing Rp, however, lowers ηadv.
For all plots, the opposite trends in co- and counter-ions at the two ends of the channel
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come from the externally applied electric field.

3.3.3 Ionic selectivity

As discussed in Chapter 2, charged nanochannels tend to allow counter-ions to pass through
and repel co-ions. In what follows, we analyse the perm-selective properties of the channel
as functions of σp, Rp, and c0. Figure 3.10 shows the concentrations of cations and anions
along the channel’s centerline. Results reveal that the channel is more selective at large σp,
small Rp and small c0, which is somewhat intuitive. These conditions are realized when
the Debye length parameter `D is larger than 1, corresponding to the strong EDL overlap
regime. For a highly selective nanochannel, we notice that the concentration of counter-ions
stays virtually constant along the channel.
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Figure 3.11: Ionic selectivity of the channel at different values of σp , Rp and c0. Reference
case: Rp = 5 nm, Lp = 100 nm, σp = −0.05 C/m2, V` = 0.1 V, c0 = 10 mM, P` = 10 kPa.
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To quantify the channel’s perm-selective properties, we define the ion selectivity

Ωselectivity =

∫
S
|J−(r)|d2r∫

S
|J+(r)|d3r

, (3.4)

which is the ratio of the total sectionally-averaged flux of cations to anions on the channel’s
cross section S. With this definition, Ωselectivity directly measure the passage of particular
ions so that Ωselectivity = 1 corresponds to a non-selective channel, 0 < Ωselectivity � 1
corresponds to a cation-selective channel, and Ωselectivity � 1 corresponds to an anion-
selective channel.

Figure 3.11 shows Ωseclectivity. The results agree with what we expect from Figure
3.10. These results will be useful in Chapter 4, where we make an assumption that the
channel only allows counter-ions to pass through due to its small radius. As seen in Fig-
ure 3.11(B), Ωseclectivity can approach 1% when Rp < 3 nm for a negatively charged channel.

3.3.4 Experimental validation

The validity of the continuum model and numerical method used is verified by the exper-
imental data of Smeets et al. [144] on the conductance of a solid-state nanochannel filled
with a KCl solution. Parameters used are in accordance with those from Ref. [144]. The
diffusivities of K+ and Cl− ions are 1.96×10−9 m2/s and 2.03×10−9 m2/s, respectively.
Note that we now have D+ 6= D−. Other parameters adopted are ν =1×10−3 Pa·s, Lp =
34 nm, σp = −60 mC/m2, Rp = 5 nm, V` = 200 mV, and a background solution pH of 7.5.
The conductance is calculated via

G = I

V`
= 1
V`

∫
S
q

( 2∑
j=1

zjJ i

)
· n̂ dS . (3.5)

Results are shown in Figure 3.12. We notice a good agreement with experimental data
at concentrations larger than about 1 mM. Below this threshold concentration, the model
overestimates the conductance. These results confirm the validity of the numerical model in
capturing the essential physics of the ionic conductance in a silica nanochannel at concen-
trations greater that 1 mM. The failure at lower concentrations comes from the invalidity
of the continuum approximation when very few ions are in the system.

3.4 Summary

In this chapter, we conducted numerical simulations of ionic and fluid transport in a charged
nanochannel connected to reservoirs. The coupled Poisson-Nernst-Planck and Stokes system
of equations was used to model a system with cylindrical geometry. The fluid velocity profiles
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were found to be plug-like and concave-shaped at high charging of the system and at large
channel size. We observed a pressure build-up in the center of the channel, which comes
from the electrochemical potential gradients in the system. The ionic current was evaluated
at different parameters. We found that the advective contribution to the overall current
dominates at regions near the channel walls, while migration dominates at the center of
the channel. The overall current was found to increase with the channel’s surface charge
density, the bulk concentration and the channel size. The perm-selective properties of the
channel were investigated. Results indicate that the channels become highly selective to
counter-ions at high surface charge densities, low bulk concentrations and small channel
sizes. Predictions of the model about the nanochannel conductance agrees well with the
experimental data available from the literature, only above a certain concentration of ions.

0.1

1

10

100

C
on
d
u
ct
an
ce

[n
S
]

10−6 10−5 10−4 10−3 10−2 10−1 1

KCl concentration [M]

Numerical

Figure 3.12: Comparison of numerical results with experimental data for the dependence of
the electric conductance on the bulk KCl concentration. Dashed line represents numerical
results. Symbols represent experimental data from Smeets at al. [144]. Different symbols
are for different samples prepared. Simulation input parameters used were chosen to match
those of the experiments: Rp = 5 nm, Lp = 34 nm, σp = −0.06 C/m2, V` = 0.2 V, P` = 0
kPa.
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Chapter 4

Theory of Proton Transport
Through a Soft Nanochannel

In the last chapter, we evaluated the flow of ions and fluids in a rigid and cylindrical
nanochannel that is connected to reservoirs. In general, simulating the reservoirs is crucial
for accurate modelling in finite channels, while intrinsic complexities arise near the chan-
nel’s inlet and outlet. In many cases, this renders analytical tractability of the problem an
enormous challenge, so that a nontrivial numerical treatment may be necessary to address
even a simple problem in the system. If the channel is very long, however, reservoirs can
be neglected and the problem can be simplified significantly without sacrificing any essen-
tial physics. This enables us to theoretically investigate additional aspects of the system,
such as the impact of the deformational properties of channel walls. In essence, we focus
on the channel interior and roll any effects due to reservoirs and inlets and outlets into the
boundary conditions.

In this chapter, we explore theoretically electrokinetic flow in a long, soft cylindrical
channel. The goal here is to establish a baseline scenario and analytical relationships that
reveal the role of core processes and parameters governing charged fluid flow in viscoelastic
channels. The chapter is divided into two parts. The first part, Sections 4.1 and 4.2, examines
a rigid, negatively charged channel that is long enough that reservoirs can be ignored, and
the flow of water and protons in the highly-selective channel is studied. Analytical solutions
of the problem are presented, and the electroneutrality property of the channel is evaluated.

In the second part, Sections 4.3 and 4.4, a theoretical model of water and protons is con-
structed that couples channel wall deformations and flows. This nonlinear coupling considers
a charged, deformable nanochannel whose viscoelasticity is governed by the linear Kelvin-
Voigt model. Using continuum mean-field theories for mass and momentum conservation
of the solid-liquid coupled system, a set of one-dimensional nonlinear partial differential
equations is derived to capture the dynamics of wall deformations. Section 4.4 concludes
the chapter with a summary of results.
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4.1 Analytical solutions for a long and rigid nanochannel

4.1.1 Assumptions

Consider a channel of radiusRp and length Lp connected to reservoirs filled with a symmetric
(valency of cations is the same as that of anions) and binary aqueous electrolyte solution,
identical to the problem studied numerically in the previous chapter. The size of the channel
can be defined using the aspect ratio,

raspect = Lp
Rp

. (4.1)

In the numerical work discussed in Chapter 3, raspect can be easily controlled by changing Rp
and fixing Lp to maintain the strengths of external fields applied. Typical numerical results
are shown in Figure 4.1, where Rp is varied from 1 to 4 nm and the axial electric field, fluid
pressure, fluid velocity, and ionic concentrations are plotted as functions of the distance
along the channel’s centerline (note that qualitatively similar results are obtained when
r 6= 0). The highest raspect is attained when Rp = 1 nm (red curves). Away from reservoirs
(z ≈ Lp/2), the following conclusions can be drawn about the nature of the transport at
high raspect:

• The electric field is constant along z (see Figure 4.1(a)). Given this, the total electric
potential (ψ) can be written as a superposition of the radially-varying potential (φ)
due to the charged channel walls and the axially-varying potential due to the constant
electric field (Ez), i.e.,

ψ(r, z) ≈ φ(r)− Ezz . (4.2)

• The pressure gradient remains constant along z (see Figure 4.1(b)). The overall pres-
sure gradient is approximately equal to the pressure drop between the channel ends.
Hence, the fluid pressure can be expressed as

p ≈ Pz , (4.3)

where P is the constant pressure gradient. Recall, from Chapter 3, that we can still
obtain this same effect when a very high pressure drop is applied at the reservoirs. In
this case, the constant pressure gradient extends to the reservoirs.

• The fluid velocity remains constant along z (see Figure 4.1(c)).

• The channel becomes strongly ion-selective (see Figure 4.1(d)). Co-ions are repelled
and only counter-ions pass through. Hence, it is reasonable to assume only counter-
ions are present in such channels.

• The concentration of counter-ions remains constant along z (see Figure 4.1(d)).
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To leading order, these findings describe a perturbation of the system about its equilibrium,
driven by an applied axial electric field and pressure gradient. With these observations, the
transport equations can be simplified to remove the z-dependence in some field quantities
so that only the surface-induced radial dependence is taken into account. The often drastic
departures from the qualitative findings near the entry/exit mouths of the channel come
from weakened electrostatic interactions between the channel center and the reservoirs.
Here, we are only concerned about the middle of the channel, not the overall channel.

Inspired by proton exchange membranes, whose near-complete dissociation provides
conductive protons to the water-filled interior, we assume that the channel walls are
negatively charged and only protons (z = 1), along with water, are transported through. In
principle, the theoretical study in this work is a special case of the more general analysis
of co- and counter-ion flow inside charged nanochannels, conducted by Peters et al. [145].
The difference is that the presence of co-ions considered in that work does not allow for
the derivation of closed-form expressions and flow solutions but instead requires numerical
calculations. The limiting case of counter-ions-only, on the other hand, neglects the crucial
coupling of the channel to surrounding reservoirs via electric double layers at the channel
ends which, among other things, determines the boundary conditions for the fluid flow and
electric potential in the channel interior.

4.1.2 Analytical solutions

If only protons (with concentration c = c+) are considered in a negatively charged channel,
the PNP and Stokes equations (Equations (3.1a)–(3.1d)) can be written in 2-D axisymmetric
cylindrical coordinates as (exploiting the symmetry of a cylindrical channel of circular cross-
section)

1
r

∂

∂r

(
r
∂ψ

∂r

)
+ ∂2ψ

∂z2 = − qc

εε0
, (4.4a)

∇ · J = 0 ,


Jr = −D∂c

∂r
− ωc ∂ψ

∂r
,

Jz = −D∂c

∂z
− ωc ∂ψ

∂z
+ cuz ,

(4.4b)

ν

[
1
r

∂

∂r

(
r
∂uz
∂r

)
+ ∂2uz

∂z2

]
− ∂p

∂z
− qc ∂ψ

∂z
= 0 . (4.4c)

In the above, ω = D/kBT is the proton mobility, and the subscripts in u and J indicate
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Figure 4.1: Numerical results illustrating the effect of the channel’s aspect ratio on the (a)
axial electric field, (b) fluid pressure, (c) axial fluid velocity, and (d) ionic concentrations
along the central axis of the channel. The plot legend in graph (a) applies to all other
graphs. Reference case: Lp = 100 nm, σp = −0.1 C/m2, V` = 0.1 V, c0 = 0.01 M, P` = 10
kPa.

vector components (along r and z) of the fluid velocity u and proton flux density J . The
radial component of u is ignored, i.e., ur = 0.

Due to the radial symmetry and the vanishing proton flux at the channel walls, radial
components of the proton flux must be zero,

Jr = 0 ⇐⇒ −D∂c

∂r
− ωc ∂ψ

∂r
= 0 ⇐⇒ c(r) = c0 exp

(
−qφ(r)
kBT

)
, (4.5)

giving the Boltzmann distribution of protons along r. Here, we used Equation (4.2) for
ψ(r, z) in terms of φ(r), and c0 is taken to be the concentration at the center of the channel
(r = 0) where we set φ = 0. Noting that ψzz = 0 (since ψz = 0) and substituting Equation
(4.5) for c into Equation (4.4a), we obtain the 1D Poisson-Boltzmann (PB) equation,
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1
r

d

dr

(
r
dφ

dr

)
= − q

εε0
c0 exp

(
− qφ

kBT

)
. (4.6)

The following boundary conditions hold,

dφ

dr
= 0, at r = 0 , (4.7)

dφ

dr
= σp
εε0

, at r = Rp , (4.8)

where a uniform surface charge density σp is assumed. Equation (4.7) is due to radial
symmetry: the radial component of the electric field must be zero in the pore centre). An
analytical solution of Equation (4.6) was derived by Berg and Ladipo [48]:

φ(r̂) = kBT

q
ln
[(

1− Λr̂2
)2
]
, (4.9)

where r̂ = r/Rp and Λ is a dimensionless parameter given as

Λ =
R2
pq

2c0

8εε0kBT
, (4.10)

and Equation (4.8) enables us to to determine the concentration at the channel’s center:

c0 = 8σp
q2R2

pσp/8εε0kBT − 4qRp
. (4.11)

The proton concentration can be determined via Equation (4.5) as

c(r̂) = c0

(1− Λr̂2)2 . (4.12)

A comparison of the analytical solutions from Equation (4.9) with numerical results from
Chapter 3 is shown in Figure 4.2. Here, plots of φ vs. r̂ at the central cross-section of
the channel are shown for Rp = 1, 2, 3 nm. Results establish that numerical results match
analytical results very well when Rp = 1 nm, and a slight deviation is noticed as the
channel radius increases. This highlights the effect of changing the channel’s aspect ratio
on the validity of the results presented above.

Taking ∂2uz/∂z
2 = 0, ∂p/∂z = P, and ∂ψ/∂z = −Ez, the Stokes equation (Equation

4.4c) yields

ν
d

dr

(
r
duz(r)
dr

)
− P + qc(r)Ez = 0 , (4.13)
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Figure 4.2: Comparison of numerical results with analytical results for the electric potential
across the centre of the channel computed for (a) Rp = 1 nm, (b) Rp = 2 nm, and (c) Rp = 3
nm. Reference case: Lp = 100 nm, σp = −0.1 C/m2, V` = 0.1 V, c0 = 0.01 M, P` = 10 kPa.

where c(r) is given by Equation (4.12). Symmetry and no-slip boundary conditions should
be fulfilled:

duz
dr

= 0, at r = 0 , (4.14)

uz = 0, at r = R . (4.15)

Solving Equation (4.13), subject to these boundary conditions, results in the velocity profile
[49],

uz(r̂) =
qc0EzR

2
p

4Λν ln
(

1− Λr̂2

1− Λ

)
−
PR2

p

4ν (1− r̂2) . (4.16)

The first term gives rise to the plug-like nature of the flow and comes from electroosmotic
flow, and the second term reflects pressure-driven Poiseuille flow.
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4.2 Breakdown of electroneutrality

Electroneutrality is usually assumed to hold away from the channel-reservoir interfaces
where Donnan equilibria are established. For a sufficiently long channel, it seems intuitive
that electroneutrality certainly holds at the center of the channel. In fact, for symmetry
reasons the center of the channel must be the point where electroneutrality is violated the
least and the maximum violation occurs near the channel-reservoir interface, where axial
(between reservoir and pore interior) and radial double layers overlap. Such electroneutral-
ity breakdown in nanochannels has been reported in Refs. [146–150]. Therefore, we will
focus on the center of the channel so as to determine a lower bound for the violation of
electroneutrality. At z = Lp/2, we have Ez = −ψzz = 0 for symmetry reasons, which turns
the analysis for the electric field into a one-dimensional problem, similar in spirit to the
electroneutral case considered in Section 4.1.2.

4.2.1 Non-insulating channel walls

As argued in Chapter 2, one situation that leads to electroneutrality breakdown is when the
channel walls (assumed thick) are non-insulating. A consistent treatment of the problem
demands us to solve the Laplace equation outside the electrolyte, in addition to the PB
equation inside:

1
r

d

dr

(
r
dψext
dr

)
= 0, outside channel , (4.17)

1
r

d

dr

(
r
dψin
dr

)
= − q

εinε0
c0 exp

(
− qψin
kBT

)
, inside channel . (4.18)

Here, ψin and ψext denote the electric potentials inside and outside the channel, respectively.
Similarly, εin and εout are the dielectric constants inside and outside the channel.

Four boundary conditions are now required to solve this problem, three of which are
easy to determine: a symmetry condition at the channel centre (r = 0), a vanishing electric
potential at infinity and a continuous electric potential at the channel walls where the
channel interior and exterior meet. These translate successively into

dψin
dr

= 0, at r = 0 , (4.19)

ψext = 0, as r →∞ , (4.20)

ψin = ψext, at r = Rp . (4.21)

The fourth condition is obtained from the jump condition of the electric field at the channel
surface where fixed charges are present,

dψext
dr
− dψin

dr
= 4πσp, at r = Rp . (4.22)
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Levy and Bazant [150] have shown that in the limit of high-aspect-ratio channels, the
problem of solving Equations (4.17) and (4.18), subject to the conditions (4.19)–(4.22), is
equivalent to solving Equation (4.18), subject to the boundary conditions (4.19) and

dψin
dr

= σ

εin
+ εext

εin

ψin
RpM

, at r = Rp . (4.23)

Here, M is a geometric parameter that represents the aspect ratio of the channel,

M = ln
(

2L
πRp

)
− γp , (4.24)

with the Euler-Mascheroni constant γp ≈ 0.577. Define

εratio = εext
εin

, (4.25)

the ratio of the dielectric constants. The electroneutral case is found in the limit εratio → 0.
For real systems, this ratio may be of the order O

(
10−1) but this alone does not speak

to the magnitude of the violation of electroneutrality. Therefore, we need to pursue the
analysis further. First, we non-dimensionalize the equations by introducing

r̂ = r

Rp
, ψ̂in = qψin

kBT
, σ̂ = Rpqσp

εinkBT
, ĉ =

R2
pq

2c

8εinkBT
, (4.26)

transforming Equation (4.18) into

1
r̂

d

dr̂

(
r̂
dψ̂in
dr̂

)
= −ĉ = −Λe−ψ̂in , (4.27)

subject to the boundary conditions

dψ̂in
dr̂

= 0, at r̂ = 0 , (4.28)

dψ̂in
dr̂

= σ̂ + εratio
M

ψ̂in, at r̂ = 1 . (4.29)

A solution can be found step-by-step with a slight generalization of the solution for the
electroneutral case, presented in Equation (4.9), namely, with the one-parameter family of
functions

ψ̂in(r̂) = ln
[
θ

(
1− Λ

θ
r̂2
)2]

, (4.30)

where the parameter θ is chosen so that ψin satisfies Equation (4.29) for an arbitrary εratio.
Note that the electroneutral scenario for the counter-ions-only case is recovered by setting
θ = 1, but Λ in Equation (4.27) is then a function of Rp and σp only, since c0 becomes a
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function of Rp and σp (see [48, 49]). In other words, only one particular choice of c0 yields
perfect electroneutrality. In what follows, we consider the general case of independent Rp,
σp and bulk concentration c0.

As can be seen by inspection, Equation (4.30) is a solution to (4.27). Due to the sym-
metry of Equation (4.30) in r̂, the boundary condition in Equation (4.28) is also naturally
met. This only leaves Equation (4.29). Substitution of Equation (4.30) into Equation (4.29)
results in

4Λ
Λ− θ = σ̂ + εratio

M
ln
[
θ

(
1− Λ

θ

)2]
. (4.31)

This is a nonlinear algebraic equation for θ, given Λ (see Equation (4.10)).
With θ determined, we can finally compute the total dimensionless charge (density)

inside the cross section of the channel at z = Lp/2 via

ĉpT = 2π
∫ 1

0
ĉ(r̂) r̂ dr̂, (4.32)

and compare that to the total density of fixed charges along the wall,

ĉwT = 2πσ̂, (4.33)

so as to assess the degree to which electroneutrality is violated.
Using Equations (4.30), (4.26) and (4.5), the integral in Equation (4.32) can be computed

in closed form, yielding
ĉpT = πΛ

θ − Λ . (4.34)

Hence, the degree of violation of electroneutrality, as expressed by the ratio of total counter-
ion charge density within a cross section and the corresponding wall charge density, becomes

χ ≡ ĉpT
ĉwT

= 1
2σ̂

Λ
θ − Λ . (4.35)

For self-consistency, however, it is important to ensure that

ψ̂in(r̂ = 0, z = 0)� −1 (4.36)

holds so that it is justified to neglect co-ions and approximate the local charge density by

ĉ(r̂) = − sinh(ψ̂) → ĉ(r̂) = Λe−ψ̂in , (4.37)

as done above for the PB equation (Equation (4.18)).
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4.2.2 Impact on water and proton transport

The solution for the electric potential, Equation (4.30), which also determines the counter-
ion concentration via Equation (4.5), depends on θ. However, the structure of ψ̂in is such
that it still allows for the derivation of closed-form expressions for fluxes of water and
counter-ions (protons) along the channel.

The fluid (water) velocity uz in the axial direction, driven by a constant axial electric
field Ez and a constant axial pressure gradient P, is given by the Stokes equation (Equation
(4.16)). Introducing the dimensionless variable û = µquz/εinkBTEz and the dimensionless
pressure parameter µp = qPR2

p/εinkBTEz, Equation (4.16) can be cast into the dimension-
less form,

1
r̂

d

dr̂

(
r̂
dû(r̂)
dr̂

)
= −ĉ(r̂) + µp , (4.38)

with the boundary conditions

û = 0, at r̂ = 1 , (4.39)
dû

dr̂
= 0, at r̂ = 0 . (4.40)

Integrating Equation (4.38) and using ĉ(r̂) = Λe−ψin(r̂) with the boundary conditions above
gives the velocity profile [49]

û(r̂) = 2 ln
(
θ − Λr̂2

θ − Λ

)
+ µp

4
(
r̂2 − 1

)
. (4.41)

The advective and total proton flux densities (ĵadv and ĵtot, respectively) at z = Lp/2 can
be expressed, in dimensionless form, as

ĵadv(r̂) = û(r̂)c(r̂) , (4.42)

ĵtot(r̂) = û(r̂)c(r̂) + µD ĉ(r̂) . (4.43)

Here, µD = µq2D
εin(kBT )2 is a dimensionless proton mobility parameter, where D is the proton

diffusion coefficient. The fluxes have been normalized by π(εinkBT )2Ez
µq3R2

p
. Note that the diffusive

contribution to the total flux vanishes since ∂c/∂z = 0. We compute the average flux
densities across the circular section of the channel as follows,

〈ĵadv〉 = 2
∫ 1

0
û(r̂)ĉ(r̂)r̂dr̂

= 16(aµp − 1) ln
(
θ − Λ
θ

)
+ Λ + 2µp(θ − Λ)

θ − Λ , (4.44)
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and

〈ĵtot〉 = 2
∫ 1

0
[û(r̂)ĉ(r̂) + µD ĉ(r̂)] r̂dr̂

= 16(µpθ − 1) ln
(
θ − Λ
θ

)
+ Λ(1 + 8µD) + 2µp(θ − Λ)

θ − Λ . (4.45)

This result is fortuitous and allows for a fairly straightforward calculation of transport
parameters for fluid flow along the channel, albeit restricted to regions in the interior of
the channel which are far away from the channel-reservoir interfaces. Figure 4.3 shows the
impact of εratio on χ, 〈ĵadv〉 and 〈ĵtot〉. For the set of parameters used, we notice that χ
starts deviating from unity noticeably at around εratio = 0.02. The dielectric leakage effects
also reduce the proton flux density. This effect is noticeable from around εratio = 0.1 and,
therefore, one may consider 0.1 as the ratio of external and internal dielectric constants
above which the violation of electroneutrality plays a role in nanochannels as considered in
this thesis.
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Figure 4.3: Effect of εratio on (a) the electroneutrality parameter χ and (b) proton fluxes
(advective flux density 〈ĵadv〉 and total flux density 〈ĵtot〉). Used parameters: Lp = 100 nm,
σp = −0.1 C/m2, Rp = 1 nm, c0 = 0.01 M, P = 1010 Pa/m, Ez = 106 V/m.

4.3 Model of deformable nanochannels

This section considers the long-channel limit, but with wall deformations accounted for.
For soft polymeric channels, such as Nafionr channels in PEM, deformations are known to
be an important consideration. Consider a deformable cylindrical nanochannel initially at
equilibrium with uniform radius and high aspect ratio (Lp � Rp), connected to two reser-
voirs, as shown in Figure 4.4(a). Inner walls of the cylindrical section are lined by negative
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charges with uniform surface charge density σ0, balanced by a proton distribution with
concentration c inside the channel to establish electroneutrality. Reservoirs are filled with
an aqueous solution with controlled pH and liquid pressure. Cylindrical coordinates, with
the origin fixed at the center of the nanochannel entrance, are adopted. This is effectively
identical to the system considered in Chapter 3, and its theoretical considerations follow the
previous sections of this chapter. Electroosmotic (EO) flow in the z-direction arises from
an externally applied electric field (and from the pressure drop) between the reservoirs.

Now let us introduce deformations to the channel. An axial section of the channel far
away from reservoirs is considered. This channel interior is, in terms of the corresponding
Donnan equilibrium, at least a Debye length away from the channel-reservoir interfaces. It
has uniform radius R0 and length L0, and it is the actual channel we will focus on from
now on. Nevertheless, the boundary conditions at the channel ends will effectively reflect
the coupling to the reservoirs. A constant pressure and voltage drop exists between the ends
of this channel, denoted ∆V0 and ∆p, respectively. A key assumption undertaken here is
that the pressure and the axial electric field are constant over the entire cross-sections at
the channel ends. It should be stressed that the effect of axial double layers that form at
the channel-reservoir interface is not modelled explicitly with this assumption. This is not
always justifiable in real systems but, at high aspect ratios, the effect is negligible when
considering the physics only at the middle cross-section of the channel. From Section 4.1,
it is understood that field quantities like the axial electric field, axial water velocity, axial
liquid pressure gradient and proton concentration are all constant along the channel, but
may vary with r.

Consider the following scenario: At t = 0, a jump in pressure or electric potential
of the left channel end (via reservoirs in the complete system) is applied, resulting in
dynamic displacement of water and protons, and prompting the deformation of channel
walls, as illustrated in Figure 4.4(b). In this configuration the channel’s radius is denoted
R. The deformation propagates along the channel, creating gradients in the axial electric
field component, proton concentration, and liquid pressure in the axial direction. We
want to build a model that couples this deformation to the transport within the channel
and understand the nature of this deformation. A theoretical approach is taken, since it
can be computationally expensive to simulate the whole system with moving boundary
conditions. The methodology proposed here allows us to reduce the dimensional complex-
ity of the problem and explore the effect of channel deformations on the transport of protons.

4.4 Effective 1-D viscoelastic model

To model the dynamic behaviour of the deformations coupled with EO flow within the
channel, we use the general system of governing equations to obtain a reduced 1-D model.
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Figure 4.4: Schematic illustration of the examined configuration: (a) equilibrium nanochan-
nel in 2-D cross-section and (b) 3-D deformed nanochannel.

The reduction in dimensionality from 2-D to 1-D is based on the assumption, reasonable for
high-aspect-ratio channels (R0 � L0), that the rate of change of variables is much slower
in the axial direction than in the radial direction. Under this so-called lubrication approx-
imation, flow is nearly one-dimensional, i.e., u = [0, uz(r, z, t)]T and J = [0, jz(r, z, t)]T.
In this perspective, it is important to point out that the channel radius in the deformed
configuration is non-uniform, i.e., R = R(z, t).

The 1-D reduction approach that we will use is based on the work of Marconi et al. [151].
To exclude the dependence on the radial coordinate r, we use cross-sectional averaging of
variables viz. c, uz, p and Ez. The sectional average of a general field f(r, z) is defined as

〈f(r, z)〉 ≡ f̄(z) = 2
R2(z)

∫ R(z)

0
rdrf(r, z) , (4.46)

and its axial gradient is determined as [151]

〈
∂f(r, z)
∂z

〉
= ∂f̄(z)

∂z
+

2
[
f̄(z)− f(R, z)

]
R

∂R

∂z
. (4.47)

4.4.1 Water continuity equation in 1-D

Accounting for a change in cross sectional area, A(z, t) = πR2(z, t), conservation of mass for
the fluid requires redefining the continuity equation so that it takes a form that conserves
the volumetric flow rate along the non-uniform radius channel:
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∂ (ρfA)
∂t

+∇ · (ρfAu) = 0 , (4.48)

where ρf is the mass density of the fluid. With ur = 0 and ρf taken to be a constant (fluid is
incompressible), and applying the sectional averaging operator (Equation 4.46), the fluid’s
volumetric flow rate is conserved via the 1-D equation,

∂
(
R2)
∂t

+ ∂
(
R2ūz

)
∂z

= 0 . (4.49)

4.4.2 Stokes equation in 1-D

With the help of the lubrication approximation (∂zz(uz) = 0), Equation (4.4c) gives the
axial Stokes equation,

ν

[
∂2uz
∂r2 + 1

r

∂uz
∂r

]
− ∂p

∂z
+ qcEz = 0 . (4.50)

We apply sectional averaging on Equation (4.50) term by term using Equations (4.46) and
(4.47):

〈
∂2uz
∂r2

〉
= 2
R2

∫ R

0
rdr

∂2uz
∂r2 = 2

R

∂uz
∂r

∣∣∣∣
R

+ 2uz(0)
R2 , (4.51)

〈1
r

∂uz
∂r

〉
= 2
R2

∫ R

0
dr

∂uz
∂r

= −2uz(0)
R2 , (4.52)

〈
∂p

∂z

〉
= ∂p̄

∂z
+ 2 [p̄− p(R, z)]

R

∂R

∂z
, (4.53)

〈qcEz〉 ≈ qc̄Ēz. (4.54)

The last approximation assumes Ez is weakly dependent on r. Collecting the above results,
Equation (4.50) becomes

2τw
R
− ∂p̄

∂z
− 2 [p̄− pw]

R

∂R

∂z
+ qc̄Ēz = 0 , (4.55)

where τw = ν∂uz(R, z)/∂r is the shear wall stress and pw = p(R, z) is the pressure at the
wall. The radial dependence of the flow velocity has two contributions; namely, pressure-
driven (Poiseuille) velocity UPO and electroosmotic velocity UEO, i.e., uz = UPO + UEO.
Assuming a quadratic form of the Poiseuille component, i.e.,

UPO = a0 + a1r + a2r
2 , (4.56)
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and approximating the electroosmotic component with results from Section 4.1.2,

UEO(r) = qĒz
4λBν

ln
[

1− Λ
(
r
R

)2
1− Λ

]
, (4.57)

we can express τw as a function of the averaged quantities – ūz, c̄ and Ēz. Here, λB =
q2/4εε0kBT is the Bjerrum length (discussed in Chapter 2). The coefficients a0, a1 and a2

can be found by imposing the conditions,

UPO

∣∣∣∣
R

= 0, ∂UPO
∂r

∣∣∣∣
0

= 0, ν
∂UPO
∂r

∣∣∣∣
R

= τw . (4.58)

This gives

uz =
(
Rqc̄Ēz + 2τw

4νR

)(
r2 −R2

)
+ qĒz

4λBν
ln
[

1− Λ
(
r
R

)2
1− Λ

]
, (4.59)

and

ūz = 2
R2

∫ R

0
ruz dr ⇔ τw = −4ν

R
ūz −

{Λ(2− Λ) + 2(1− Λ) ln(1− Λ)
2Λ2

}
Rqc̄Ēz .

(4.60)

If we assume p̄ ≈ pw (externally-induced pressure variation along z is much stronger than
that along r), substituting Equation (4.60) into Equation (4.55) gives

8ν
R2 ūz + ∂p̄

∂z
− qc̄Ēz [1− ξu(Λ)] = 0 , (4.61)

where

ξu(Λ) = Λ2 + 2Λ(1− Λ) + 2(1− Λ) ln(1− Λ)
Λ2 =

∞∑
i=1

2
(i+ 1)(i+ 2)Λi

= 1
3Λ + 1

6Λ2 + 1
10Λ3 +O(Λ4) . (4.62)

Recall that Λ is a dimensionless parameter measuring how strongly protons interact electro-
statically (see Equation (4.10)),

Λ = 1
8

(
R

λD

)2
. (4.63)

In the above, λD is the characteristic decay length (Debye length) of the electric potential
away from the charged channel walls. To test the validity of the 1-D Stokes model in
approximating the fluid velocity (Equation (4.61)) against the full 2-D model, we run
simulations (from Chapter 3) of the transport in a long channel with uniform radius R0.
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The sectionally-averaged fluid velocity is calculated from the 2-D numerical data obtained,
and this is compared with ūz found via Equation (4.61) for some values of |σ0| (note that
σ0 ≤ 0). Results are shown in Figure 4.5, obtained at the cross-section in the middle of
the channel (z = L0/2). We obtain a perfect match for low values of |σ0| (<0.05 C/m2).
A small deviation, however, is seen when the channel is strongly charged. The qualitative
behaviour of the curves, however, is the same.

0.0
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z

[c
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Figure 4.5: Comparison of ūz from 2-D numerical model with results of the 1-D model
given in Equation (4.61) as a function of σ0 for a rigid channel. Used parameters: R0 = 1
nm, L0 = 200 nm, ∆V0 = 0.1 V, c0 = 0.01 M, ∆P = 10 kPa.

4.4.3 Nernst-Planck equation in 1-D

The continuity equation for protons, taking into account the variable cross-sectional area,
takes the form

∂ (Ac)
∂t

+∇ · (AJ) = 0 , (4.64)

and the 2-D formulation of the axial proton flux density is given by the axial Nernst-Planck
equation (note that Jr = 0),

Jz = cuz −D
∂c

∂z
+ ωqcEz = Jadv

z + Jdiff
z + Jmigr

z , (4.65)
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where we distinguish contributions due to advection of the fluid, Jadv
z , diffusion, Jdiff

z , and
migration, Jmigr

z . Before sectional averaging of Equation (4.65), we present the following
equations which are found from algebraic manipulations of Equation (4.12) for c(r):

c(r) = c0

[
1− Λ

(
r

R

)2
]−2

= c0

∞∑
i=1

i

[
Λ ·
(
r

R

)2
]i−1

, (4.66)

c̄ = 2
R2

∫ R

0
c(r)rdr = c0

1− Λ , (4.67)

cw = c(R) = c0

(1− Λ)2 , (4.68)

Λ = 1
2λBR

2c0 = 1
2λBR

2c̄(1− Λ) ⇒ Λ = λBR
2c̄

2 + λBR2c̄
. (4.69)

In accordance with Equation (4.59), we rewrite uz as follows,

uz(r) = A+Br2 + C ln
[
1− Λ

(
r

R

)2
]

= A+Br2 − C
∞∑
i=1

1
i

[
Λ
(
r

R

)2
]i
, (4.70)

where the coefficients A and B are found by demanding that uz(R) = 0 and ∂uz(0)/∂r = 0,
and C = qĒz

4λBν
. Accordingly, we obtain

A = 2ūz + R2qc̄Ēz
4ν

[
ξu −

1− Λ
Λ ln(1− Λ)− 1

]
︸ ︷︷ ︸

ξA

, (4.71)

B = − 1
R2 ×

{
2ūz + R2qc̄Ēz

4ν [ξu − 1]︸ ︷︷ ︸
ξB

}
, (4.72)

C = qĒz
4`Bν

= R2qc̄Ēz
4ν︸ ︷︷ ︸
U∗

(1− Λ
Λ

)
︸ ︷︷ ︸

ξC

. (4.73)

We derive the expression for the cross-sectionally averaged advective term j̄advz using the
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results above:

J̄adv
z = 〈uzc〉 = 2

R2

∫ R

0
uzc rdr

= 2
R2

{
Ac0

∫ R

0
r
∞∑
i=1

i

[
Λ ·
(
r

R

)2
]i−1

dr +Bc0

∫ R

0
r3
∞∑
i=1

i

[
Λ ·
(
r

R

)2
]i−1

dr

− Cc0
∫ R

0

∞∑
i=1

i

[
Λ ·
(
r

R

)2
]i−1 ∞∑

i=1

1
i

[
Λ
(
r

R

)2
]i
dr

}
(4.74)

= c0

{
A
∞∑
i=0

Λi +BR2
∞∑
i=0

(
i+ 1
i+ 2

)
Λi − C

∞∑
i=1

1
i+ 1

(
i∑

k=1

k

1 + i− k

)
Λi
}
. (4.75)

Using c0 = c̄(1− Λ) (from Equation (4.67)) in Equation (4.75), we obtain

J̄adv
z = ūz c̄

{
1−

∞∑
i=1

2Λi

(i+ 1)(i+ 2)︸ ︷︷ ︸
ξu

}
+ U∗c̄

{1− Λ
Λ

∞∑
i=1

[
ξA −

iξB +
i∑

k=1

k(Λ−1)
1+i−k

i+ 1

]
Λi
}

︸ ︷︷ ︸
1−ξE

= ūz c̄(1− ξu) + R2qc̄2Ēz
4ν (1− ξE) , (4.76)

where ξu is given in Equation (4.62) and the other Λ-dependent function ξE is given by

ξE = 1− 1− Λ
Λ

∞∑
i=1

[(1− Λ)
i∑

k=1

k
1+i−k − i(1− ξu)

i+ 1 + ξu −
∞∑
k=1

Λk

(k + 1)(k + 2)

]
Λi

= 1
3Λ + 5

36Λ2 + 4
45Λ3 +O(Λ4) . (4.77)

On the basis of Equation (4.69), we notice that Λ ∈ [0, 1]. For a weakly charged channel
with small radius, one finds Λ ≈ λBR

2c̄ → 0 and, hence, ξu & ξE → 0. For a strongly
charged channel with large radius, Λ→ 1 and, hence, ξu & ξE → 1. According to Equations
(4.61) and (4.76), the effects of charge strength on the sectionally averaged electroosmotic
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Figure 4.6: Dependence of ξu and ξE on Λ.

flow diminish at very high proton concentration. The functions ξu and ξE are plotted in
Figure 4.6 as functions of Λ.

Sectional diffusion and migration flux densities follow directly from Equations (4.46) &
(4.47). Expressing the proton concentration at the wall as cw = c(R, z) ≈ 1

2 c̄(2 + λBR
2c̄)

(derived in Equation (4.68)), which holds exactly in the limit of an infinite aspect ratio,
leads to the fluxes

J̄adv
z = c̄ūz(1− ξu) + R2qc̄2Ēz

4ν (1− ξE) , (4.78a)

J̄diff
z = −D

(
∂c̄

∂z
− λBRc̄

2∂R

∂z

)
, (4.78b)

J̄migr
z = ωqc̄Ēz . (4.78c)

In a manner similar to Figure 4.5, Figure 4.7 compares J̄z computed from numerical results
obtained for the full 2-D channel with J̄z found from the equations above for the reduced
1-D model, for the case of uniform R. Again, we notice a small deviation only at high values
of |σ0|. This highlights the reliability of using ξu and ξE in the 1-D model to approximate
the 2-D model.
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Figure 4.7: Comparison of J̄z from 2-D numerical model with results of the 1-D model
given in Equation (4.61) as a function of σ0 for a rigid channel. Used parameters: R−0 = 1
nm, L0 = 100 nm, ∆V0 = 0.1 V, c0 = 0.01 M, ∆P = 10 kPa.

4.4.4 Poisson equation in 1-D

In terms of the electric field E, the Poisson equation reads

∇ ·E = qc

εε0
, (4.79)

along with the boundary condition at the wall,

E · n̂
∣∣∣∣
r=R

= − σp
εε0

. (4.80)

Here, σp is the surface charge density at the wall and n̂ is a unit normal vector to the wall.
Accounting for the deformed state of the channel, n̂ can be expressed as

n̂ = dzêr − dRêz√
(dR)2 + (dz)2 , (4.81)

for some small element dz. Equation (4.79) takes the 2-D form

1
r

∂(rEr)
∂r

+ ∂Ez
dz
− qc

εε0
= 0 . (4.82)
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We apply cross-sectional averaging to Equation (4.79) term by term:

〈1
r

∂(rEr)
∂r

〉
= 2

R2

∫ R

0

1
r

∂(rEr)
∂r

rdr =
2Er

∣∣
R

R
, (4.83)

〈
∂Ez
∂z

〉
= ∂Ēz

∂z
+

2
(
Ēz − Ez

∣∣
R

)
R

∂R

∂z
, (4.84)

〈
qc

εε0

〉
= qc̄

εε0
. (4.85)

Hence, Equation (4.82) becomes

2Er
∣∣
R

R
+ ∂Ēz

∂z
+

2
(
Ēz − Ez

∣∣
R

)
R

∂R

∂z
− qc̄

εε0
= 0 , (4.86)

and the electroneutrality boundary condition (Equation (4.80)) becomes

− (E · n)
∣∣∣
R

=

[
(dR/dz) Ez

∣∣
R
− Er

∣∣
R

]
√

1 + (dR/dz)2 = σp
εε0

(4.87)

⇒ Er
∣∣∣
R

= Ez
∣∣∣
R

∂R

∂z
− σp

√
1 + (dR/dz)2

εε0
. (4.88)

Substituting Equation (4.88) into Equation (4.86), and using the assumption Ēz = Ez
∣∣
R
,

we get the 1-D Poisson equation,

1
R2

∂
(
R2Ēz

)
∂z

− 2σp
√

1 + (dR/dz)2

εε0R
− qc̄

εε0
= 0 . (4.89)

For weak deformations, we assume (dR/dz)2 � 1 so that the (dR/dz)2 term in Equa-
tion (4.89) vanishes. We model the surface charge density as [47]

σp = σ0 ×
(
R0
R

)α
, (4.90)

where the channel geometry parameter α measures the extent of surface group reorgani-
zation upon deformation. Weak surface charge reorganization corresponds to α → 0 and
α→ 1 indicates strong reorganization of surface charges. Note that the total surface charge

within the channel, equal to
∫ L

0
2πR(z)σp(z)dz, remains constant under deformation, im-

plying a dynamic change in channel length under deformation, except when α = 1. In each
cross-section, located at some z, the charge density is proportional to 2πR(z)σp(z) ∼ R1−α.
This means that the amount of protons changes when a cross-sectional element grows or
shrinks in size, again except for α = 1 when the number of protons remains constant. Any
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dramatic changes in the channel lengths are ignored.

4.4.5 Wall pressure balance

In an effort to couple the fluid transport with the deformation of the walls, we assume
that the walls’ viscoelasticity leads to a time-dependent deformation given by the linear
Kelvin-Voigt model [152],

σ = Y ε+ η
∂ε

∂t
, (4.91)

describing a balance between the stress, σ, and the strain, ε at the channel wall. Y is the
modulus of elasticity and η is the viscosity constant for the walls. The Kelvin-Voigt model
captures effects of creep, stress relaxation and storage of strain energy at equilibrium in the
simplest manner possible by being linear in strain and its rate of change.

For symetry reasons, Equation (4.91) can be treated in 1-D along the circumferential
direction only. Assuming thin channel walls with constant thickness h0, the balance of
pressure forces normal to the wall gives the coupling between the 1-D flow equations and wall
deformations. We consider (1) the fluid pressure at the wall pw = p̄, (2) the electroosmotic
pressure posm = kBTcw, and (3) the tangential stress σθ, also referred to as circumferential
or hoop stress, and Equation (4.91) as

σθ = Y εθ + η
∂εθ
∂t

. (4.92)

Here, the tangential strain is determined by εθ = (R − R0)/R0, whereas the axial strain is
neglected as is justified for R0 � L0. Moreover, maintaining the pressure balance at the
wall requires

(
p̄+ posm

)
R0 − h0σθ = 0 . (4.93)

4.4.6 Dimensionless viscoelastic model formulation

Collecting Equations (4.49), (4.61), (4.78), (4.93), we present a summary of the 1-D model
equations to solve for the cross-sectional variables R, ūz, p̄, Ēz and c̄:

∂
(
R2)
∂t

+ ∂
(
R2ūz

)
∂z

= 0 , (4.94a)

8ν
R2 ūz + ∂p̄

∂z
− qc̄Ēz(1− ξu) = 0 , (4.94b)

1
R2

∂
(
R2Ēz

)
∂z

− 2σ0
εε0R

(
R0
R

)α
− qc̄

εε0
= 0 , (4.94c)
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p̄R+ kBTRc̄
(
1+λB

2 R
2c̄)− Y h0

R0
(R−R0)− ηh0

R0

∂R

∂t
= 0 , (4.94d)

J̄z = c̄ūz(1− ξu) + R2qc̄2Ēz
4ν (1− ξE)−D

(
∂c̄

∂z
− λBRc̄

2 ∂R

∂z

)
+ ωqc̄Ēz . (4.94e)

For further analysis, Equations (4.94) are non-dimensionalized using properties of
the initially equilibrated channel in Figure 4.4(a). We thus use the following non-
dimensionalization scheme,

x = z

L0
, τ = t( 8νL2

0
|σ0|R0∆V0

) , R̃ = R

R0
, ũ = ūz(

|σ0|R0∆V0
8νL0

) ,

p̃ = p̄(
|σ0|∆V0
R0

) , c̃ = c̄(
|σ0|
qR0

) , Ẽ = Ēz(
∆V0
L0

) . (4.95)

Note that the above non-dimensionalization scheme is different from that used in Equations
(4.26). The tilde (‘∼’) on top of symbols indicates dimensionless and sectionally-averaged
field quantities, and the bar (‘–’) only indicates sectionally-averaged field quantities in proper
dimensions. The scheme transforms Equations (4.94) into dimensionless form,

∂
(
R̃2
)

∂τ
+
∂
(
R̃2ũ

)
∂x

= 0 , (4.96a)

ũ = −R̃2
(
∂p̄

∂x
− c̃Ẽ(1− ξu)

)
, (4.96b)

1
R̃2

∂
(
R̃2Ẽ

)
∂x

−Kσ
(
c̃− 2

R̃α+1

)
= 0 , (4.96c)

p̃ = KY (R̃− 1)
R̃

−Kosmc̃(1 + κR̃2c̃) +Kη
∂R̃

∂τ
, (4.96d)

j̃z = c̃ũ(1− ξu) + 2(R̃c̃)2Ẽ(1− ξE)−Kdiff

(
∂c̃

∂x
− 2κR̃c̃2 ∂R̃

∂x

)
+Kmigrc̃Ẽ . (4.96e)

In the above, the dimensionless parameter Kσ = |σ0|L2
0

εε0R0∆V0
measures the strength of

the electric field in the radial direction relative to the axial direction; KY = Y h0
|σ0|∆V0

,
Kosm = kBT

q∆V0
and Kη = ηh0R0

8νL2
0

measure the strength of elastic, osmotic and viscous forces,
respectively, relative to electroosmotic forces; Kdiff = 8νD

|σ0|R0∆V0
and Kmigr = 8νqD

|σ0|R0kBT
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measure the strengths of the diffusion and migration fluxes, respectively, relative to the
convection flux from electroosmotic forces. Finally, κ = λB|σ0|R0/2q is a new dimensionless
parameter introduced so that Λ = κR̃2c̃

1+κR̃2c̃
.

4.4.7 Non-viscous and elastic nanochannel

Equations (4.96) provide the generic 1-D model for the flow-deformation system at high
aspect ratio. One approach to simplifying these equations is to scrutinize the dimensionless
parameters and eliminate terms that are negligible for a particular case of interest. An
example is transport through a PEM Nafion membrane. Typical viscoelastic variables are
Y = 0.5 GPa and η = 0.1 MPa·s [153, 154]. Other typical variables governing the flow are
R0 = 1 nm, L0 = 50 nm, T = 353 K, ν = 0.335 mPa·s, σ0 = −0.16 C/m2, ∆V0 = 0.1
V, D = 7 · 10−6 cm2/s, and ε = 45. These give the following parameters: KY = 1.6,
Kη = 0.007, Kosm = 0.3, Kdiff = 0.2, Kmigr = 0.4, and Kσ = 1 · 1010. These channels exhibit
high aspect ratio and they feature strongly charged surfaces (1� Kσ) and very small wall
viscosity (Kη � 1). Hence, we can neglect the viscous term in Equation (4.96d).

4.4.8 Advection-diffusion model

As mentioned in the model description above, this contribution focuses on the nanochannel
interior which is at least a Debye length away from the nanochannel-reservoir interface.
Hence, we can assume that local electroneutrality holds at leading order ( εoutεin

< 0.1) and,
consequently, that the electric flux is conserved at leading order. In mathematical form,
these assumptions follow from Equation (4.96c) as

c̃ ≈ 2
R̃α+1 & Ẽ ≈ Const.

R̃2 . (4.97)

Here, we set Const. = 1 without loss of generality. The problem can be simplified further
by substituting Equations (4.97) back into Equations (4.96a)–(4.96d) and setting Kη = 0.
Substituting Equations (4.97) into Equations (4.96), from Equation (4.96d) backwards to
Equation (4.96a), the wall dynamics model is reduced to a nonlinear 1-D equation of the
‘advection-diffusion’ type,

∂ã

∂τ
= ∂

∂x

[
D(ã) · ∂ã

∂x

]
− ∂

∂x

[
G(ã)

]
, (4.98)

where ã = R̃2, and the diffusion and drift functions are
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D(ã) = KY ã
1
2

2 +Kosm

[
(1 + α)ã

1−α
2 + 4ακã1−α

]
, (4.99)

G(ã) = 2(1− ξu)ã
1−α

2 . (4.100)

Equation (4.98) is solved in the finite domain x ∈ [0, 1] by imposing an initial profile
corresponding to uniform radius and thus mechanical equilibrium of the channel with ∆p =
0. Assuming the pressure at the inlet is perturbed by ∆p̃i, resulting in a deformation of
radius ∆R̃i, the inlet steady-state (mechanical equilibrium) deformation gives,

∆R̃i = ∆p̃i
KY

, (4.101)

found from Equation (4.96d) by substituting p̃ = ∆p̃i− p0 = ∆p̃i− p(R̃ = 1), R̃− 1 = ∆R̃i
and R̃ ≈ 1. Assuming that Equation (4.101) is valid at τ = 0 (immediately after applying
the perturbation) is based on a simplifying assumption that the response of the inlet radius
to a pressure perturbation at the inlet is instantaneous. There is a time scale associated
with the change of R at the inlet after applying the perturbation. However, we assume that
this time is very short in comparison to the time for the deformation front to penetrate the
channel. For sufficiently high aspect ratios, this condition will be fulfilled. The boundary
conditions at the channel ends are R̃(0, t) = 1 + ∆R̃i, R̃(1, t) = 1.

4.5 Summary

In this chapter, we presented analytical solutions for water-proton flow in a long, cylindrical
and negatively charged channel, starting from the continuum-based Poisson-Nernst-Planck
and Stokes model. This enabled us to assess the electroneutrality of the channels when
the walls are non-insulating. A theoretical model was developed that describes nonlinear
coupling between wall deformation and water and proton flows in a charged, deformable
nanochannel whose viscoelasticity is governed by the Kelvin-Voigt model. Using continuum
mean-field theories for mass and momentum conservation of the solid-liquid coupled system,
a set of one-dimensional nonlinear partial differential equations was derived to capture the
dynamics of wall deformations. Our theory suggests that for elastic but non-viscous walls
undergoing small deformation, the problem simplifies to one of advection-diffusion type.
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Chapter 5

Impact of Channel Elasticity on
Proton and Water Transport

In the previous chapter, we derived a 1-D model for the nonlinear coupling between wall
deformations and water-proton transport in a nanochannel with negatively charged walls.
Assuming that transport occurs in a channel of very high aspect ratio, we demonstrated
that the equations can be reduced to a 1-D system which simplifies to an equation of the
‘advection-diffusion’ type when the channel walls are elastic but nonviscous.

The present chapter extends from the preceding one. Results from Chapter 4 are used to
investigate the effect of the system’s charging on the wall deformational and proton-water
transport properties. Within the framework of nonequilibrium thermodynamics, compact
formulae are derived for the electrokinetic transport parameters in terms of Onsager
phenomenological coefficients and, subsequently, for the energy conversion efficiency. The
chapter is structured as follows: In Section 5.1, an approximate analytical solution for weak
deformations is presented. Section 5.2 discusses the interplay between the wall charges
and elasticity in driving the deformations within the channel. Section 5.3 explores the
coupling between the channel’s elasticity and the water-ion fluxes within. Section 5.4
contains derivations and a discussion of the Onsager transport coefficients. In Section 5.5,
we discuss the energy conversion efficiency of the electrokinetic system explored herein.
Finally, Section 5.6 gives a summary of results.

5.1 Linear perturbative solution

We recall the channel’s advection-diffusion model for deformations derived in Chapter 4:

∂ã

∂τ
= ∂

∂x

[
D(ã) · ∂ã

∂x

]
− ∂

∂x

[
G(ã)

]
, (5.1)
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where ã = R̃2 (where R̃(z) = R(z)/R0), and the diffusion and drift functions are

D(ã) = KY ã
1
2

2 +Kosm

[
(1 + α)ã

1−α
2 + 4ακã1−α

]
, (5.2)

G(ã) = 2(1− ξu)ã
1−α

2 . (5.3)

For deformations which are small compared to the channel radius, i.e., ∆R̃ � 1, Equation
(5.1) can be solved using a linear perturbation approach via expansion about ã = 1,

ã = 1 + ε̃∆ã+O
(
ε̃2
)
, (5.4)

and

D(ã) = D(1) + ε̃D′(1)∆ã+O
(
ε̃2
)
, (5.5)

G(ã) = G(1) + ε̃G′(1)∆ã+O
(
ε̃2
)
, (5.6)

where the prime (′) indicates derivatives with respect to ã. The first-order problem gov-
erning ∆ã can later be recovered by setting ε̃ = 1 in the original equation. Substituting
Equations (5.4)–(5.6) into Equation (5.1) gives the 1-D linear advection-diffusion equation,

∂∆ã
∂τ

= D0
∂2∆ã
∂x2 − V0

∂∆ã
∂x

, (5.7)

where D0 = D(1) and V0 = G′(1), and the accompanying initial and boundary conditions
are

∆ã(0, τ) = ∆ãi, τ ≥ 0 ,

∆ã(x, 0) = 0, x ≥ 0 ,

∆ã(1, τ) = 0, τ ≥ 0 .

(5.8)

The solution to the above problem was found by Davis [155] employing the Laplace Trans-
form technique,

∆ã(x, τ) = ∆ãi exp(λx)
{sinh[λ (1− x)]

sinh(λ ) − 2π
∞∑
n=1

n sin(nπx)
(λ 2 + n2π2) e

−(λ 2+n2π2)D0τ
}
, (5.9)

where λ = V0/2D0 and

∆ãi = ∆R̃i
(
2 + ∆R̃i

)
= ∆p̃i
KY

(
2 + ∆p̃i
KY

)
. (5.10)
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5.2 Wall deformation dynamics

Using the formalism and the solution presented in the previous section, we model the
dynamics of the walls as a dispersive transport process, characterized by Equation (5.1) and
having solutions at small deformations approximated by Equation (5.9). In this section, we
study the relaxation characteristics of the deformable channel corresponding to different
regimes of interest. Following PEM operating conditions, we use the following parameters:
T = 353 K, ν = 3.3 · 10−4 kg/m·s, L0 = 50 nm, D = 7 · 10−6 cm2/s and h0 = 0.5 nm.
(Parameters and reference values are listed in Table 5.1. Table 5.2 lists the variables that
depend on the axial coordinate z.)

Parameter Description Reference value
D proton diffusivity 7 · 10−6 cm2/s
h0 channel wall thickness 0.5 nm
kB Boltzmann constant 1.38 · 10−23 J/K
L0 channel equilibrium length 50 nm
q elementary charge 1.602 · 10−19 C
R0 channel equilibrium radius 2 nm
T Temperature 353 K
Y wall elasticity constant 0.1 GPa
α surface charge scaling parameter 0.5

∆V0 voltage across channel length 0.1 V
ε permittivity 45
ε0 vacuum permittivity 8.85 · 10−12 F/m
η channel wall viscosity 0.1 MPa s
µ proton mobility 1.43 · 1015 m2/J s
ν fluid kinematic viscosity 3.35 · 10−4 Pa s
σ0 equilibrium surface charge density −0.2 C/m2

Table 5.1: Parameters of the deformable channel system, based on common properties of
PEMs.

Variable Description Units
c proton concentration (number density) 1/m3

Ez axial electric field V/m
p fluid pressure Pa
R channel radius m
uz axial fluid velocity m/s
σp surface charge density C/m2

Table 5.2: Axial-dependent variables of the system.

We begin by numerically solving for the deformation dynamics and comparing them with
analytical results for small deformations. Equation (5.1) is solved, using the finite difference
method considering the central difference approximation for the spatial derivative terms
and the forward difference approximation for the temporal derivative terms. Figure 5.1
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shows the variation in the channel deformation variable ã expressed along the dimensionless
length of the channel at various values of non-dimensional time, while keeping ∆ãi = 0.1,
KY = 0.5, Kosm = 0.3, κ = 2 and α = 0.5 constant. Symbols display the numerical
solution of Equation (5.1) and solid lines correspond to analytical results from Equation
(5.9). Simulation results are only shown at times (τ ≥ 0.01) not very far from equilibrium
(from τ → ∞), since the inviscid assumption for the channel walls is invalid at very small
time scales. We observe excellent agreement between numerical and analytical solutions,
suggesting that we can confidently use the linearized problem (solved as Equation (5.9)) as
a basis for analysing the dynamics of the system in the discussion that follows.

τ = 0.01

τ = 0.025

τ = 0.05

τ = 0.1

τ = 1

1.0

1.02
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1.1

ã
=
(R
/R

0
)2

0.0 0.25 0.5 0.75 1.0

x = z/L0

Figure 5.1: Deformation profile for a nanochannel after application of a pressure step for a
small deformation (∆ãi = 0.1). Solid lines represent analytical solutions in the limiting case
of non-viscous flow, given by Equation (5.9); symbols correspond to the numerical solutions
of the fully coupled model. The reference case corresponds to ã = 1. Reference parameters
used are: KY = 0.5, Kosm = 0.3, κ = 2 and α = 0.5.

The channel will change its length under deformation unless α = 1 holds. This dynamic
change in length calls, in principle, for an advanced modelling approach, resulting in complex
governing equations that are not conducive to intuitive interpretation or the derivation of
approximate solutions. However, for α = 0.5 a 10% variation in radius along the channel
(see Figure 5.1) corresponds to a change in length of less than 5%. Hence, the error made
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by neglecting the change in channel length has a negligible bearing on the overall results
presented herein.

We investigate the driving mechanism behind deformation and relaxation dynamics
of the channel walls. The diffusion and advection time scales reveal essential information
about the different mechanisms driving the deformations. We consider the Peclet number
Pe = V0/D0, which is a dimensionless measure of the relative importance of advection and
diffusion (Pe �1 when advection dominates). For this consideration, it can be shown that

Pe = (1− α)(2κ− ln (2κ+ 1))
(8Kosmακ+ 2Kosmα+KY + 2Kosm)κ2 . (5.11)
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Figure 5.2: Variation of the Peclet number with the channel surface charge density for
different values of (a) the elasticity constant Y and (b) initial channel radius R0. Other
parameters used are: L0 = 50 µm, ∆V0 = 0.1 V, R0 = 2 nm, Y = 0.05 GPa, and α = 0.5.

Figure 5.2 shows the variation of the Peclet number with the surface charge density at
the channel walls. In Figure 5.2(a), this variation is explored at different elasticity constants.
For the reference set of parameters which represents the case of a soft membrane, the wall
dynamics are mostly controlled by diffusion (Pe<1). Advection becomes more prominent as
the surface charge density increases owing to the internally generated force by electrosmotic
drag. However, for very high |σ0|, the dynamics are dominated by diffusion again. For
this condition, electroosmotic drag (and, hence, advection) is reduced owing to friction
introduced by the abundance of protons in the double layer, close to the walls, where
fluid motion is diminished significantly. This effect is accounted for in Equation (4.61):
at large |σ0|, one has ξu → 1, diminishing the electrosmotic drag term. Consequently,
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the Peclet number is greatly reduced with increasing |σ0| beyond the peak, and diffusive
transport dominates. The coupling between wall deformation, surface charge density, and
elasticity is demonstrated by the various graphs in Figure 5.2(a). It can be seen that a large
elastic modulus reduces the Peclet number and, hence, favors diffusion. This is because high
elasticity enforces strong ion concentration gradients along the channel. One key feature
of the graphs is the vanishing dependence on the elastic modulus at very large |σ0|. The
physics behind this observation is explained in the next section. Hence, the coupling between
channel deformations |σ0| vanishes for strongly charged nanochannels. Figure 5.2(b) reveals
an opposite coupling behaviour between deformations and charge density and channel size:
the coupling between deformations andR0 and σ0 vanishes for weakly charged nanochannels.
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Figure 5.3: (a) Variation of the relaxation time of the walls with the position along the
channel. (b) Variation of the averaged relaxation time with the charge density at different
elasticity constants. Among the fixed parameters are: L0 = 50 µm, ∆V0 = 0.1 V, R0 = 2
nm, Y = 0.1 GPa, and α = 0.5.

One critical time scale is the time it takes for the channel walls to relax to equilibrium
after the inlet is perturbed. This dimensionless relaxation time can be estimated by the
mean value theorem [156],

τrelax(x) =
∫ ∞

0

∆ã∞(x)−∆ã(x, τ)
∆ã∞(x)−∆ã0(x) dτ , (5.12)

where ∆ã0(x) is the initial deformation profile and ∆ã∞(x) = lim
τ→∞

∆ã(x, τ) is the steady-
state profile.
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Figure 5.4: Profiles of total proton flux along the nanochannel at different times. The
reference case corresponds to J̄z/J̄ref = 1. Reference parameters are: L0 = 50 µm, ∆Vref =
0.1 V, Rref = 2 nm, Yref = 0.1 GPa, σref = −0.5 C/m2, ∆p̃i = 0.05 and αref = 0.5.

Equation (5.9) applies in the linear regime and we find

τrelax(x) = 2π sinh(λ )
sinh[λ (1− x)]

∞∑
n=1

n sin(nπx)
(λ 2 + n2π2)2D0

, (5.13)

which is independent of the initial inlet deformation ∆ãi. We multiply Equation (5.13) by
t0 = 8νL2

0/|σ0|R0∆V0 to obtain the physical relaxation time trelax as a function of position
along the channel. The results are shown in Figure 5.3, for different surface charge densities.
The surface charges drive the overall deformation. The average relaxation time over the
channel length was calculated according to 〈trelax〉x =

∫ 1
0 trelaxdx, and the results are shown

in Figure 5.3(b) for different elasticity constants. We notice that both σ0 and Y enhance
the axial speed of the deformation. However, for strongly charged channels the elasticity
has no influence on the relaxation time owing to the weak coupling discussed before.

5.3 Deformation-flux coupling

Next, we explore the proton flux within the channel given by J̃z = R̃2j̃z, where j̃z is de-
termined in Equation (4.96e). To gain deeper insight into the underlying proton transport
dynamics, we consider the dimensionless flux normalized by the reference flux J̃ref corre-
sponding to the initial uniform flux before the pressure perturbation is applied at the inlet.
In dimensionless form, this reference flux can be shown to be

J̃ref = 4(1− ξu(1))2 + 8(1− ξE(1)) + 2Kmigr , (5.14)
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Figure 5.5: Variation of the average proton flux at steady state with surface charge for
different (a) elasticity constants Y and (b) channel charge parameters α. Reference param-
eters are: L0 = 50 µm, ∆Vref = 0.1 V, Rref = 2 nm, Yref = 0.1 GPa, σref = −0.2 C/m2,
∆p̃i = 0.05 and αref = 0.5.

and it is kept constant for all calculations. With this normalization, the computed flux can
be interpreted relative to the fixed initial transport without channel deformation. Profiles
of the normalized total flux at different time scales (expressed in dimensionless units) are
shown in Figure 5.4. Close to the steady state, attained at τ = 1, the total flux exceeds
that of the initial state (which is J̃z = 1). The accuracy of the model is reflected in the
steady-state flux, which should be constant in light of Equation (4.64). Our results give
non-constant flux (violated by a few percent). This could be due to the imposed local
electro-neutrality condition. Note again that, for α = 0.5, an increasing cross-section gains
mobile charges (protons) to maintain local electro-neutrality (while the channel, strictly
speaking, shortens). This is reflected by the profile of the proton flux in Figure 5.4 with its
non-zero axial divergence (∂xJ 6= 0) until steady state is reached.

Figure 5.5 shows the dependence of the average flux 〈J̃z〉 on surface charge density, for
different Y and α, representing the impact of channel elasticity and deformation on the
flux response. There are two charging regimes revealed: at low |σ0| (< 0.3 C/m2), all curves
lie on top of each other and the curvature is convex; at high |σ0| (> 0.3 C/m2), curves
fan out and the curvature changes. Hence, proton transport characteristics strongly depend
on elasticity and channel geometry for strongly charged channels. From Figure 5.5(a), the
channel elasticity inhibits the proton flow at very high |σ0|; whereas flow is independent
of Y at weakly charged channels. The same effect is observed for the charge parameter α,
shown in Figure 5.5(b): the proton flux is independent of α for weakly charged channels,
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whereas a small dependence is seen for strongly charged channels; large values of α enhance
transport of protons.
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Figure 5.7: Variation of the average proton flux at steady state with surface charge for
different (a) voltage drops and (b) channel radii. Reference parameters are: L0 = 50 µm,
∆Vref = 0.1 V, Rref = 2 nm, Yref = 0.1 GPa, σref = −0.2 C/m2, ∆p̃i = 0.05 and αref = 0.5.

These results can be explained by examining separate contributions of convection, dif-
fusion, and migration to the total steady-state proton flux within the channel. Results are
shown in Figure 5.6. We show results for parameters in which convection, diffusion and
migration fluxes of comparative importance. Diffusion opposes the other two fluxes due to
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the deformation of the channel. Since, for α < 1, an increase in cross-sectional area of the
channel results in a smaller total charge of protons in that cross section. Hence, diffusion
points in the direction of increasing channel radius. We find a different curve shape for
the convective flux and the migration component. At low |σ0| , the diffusion and migration
fluxes increase with |σ0| faster than the convective flux, and transport is independent of
Y and α. This is a consequence of the small osmotic pressure within the channel. This
weakens the elastic response so that the overall transport is independent of Y . In the high
charge regime, convective flux grows exponentially with |σ0| and migration increases linearly
with |σ0|. This arises because a majority of protons resides within the EDL, close to the
wall, where advection plays a minor role and migration is the dominant transport process.
Meanwhile, the flow of water near the center of the channel is enhanced by an increased
concentration of protons as |σ0| grows, resulting in a large fluid velocity and an even larger
convective flux since it is the product of proton concentration and fluid velocity. Here, the
elasticity response is not only strongly correlated with the elasticity constant, Y , but also
with the charge reorganization factor, α, which determines the proton distribution within
a cross-section. Both factors have a substantial impact at large charge densities, meaning
small `D, because the electroosmotic pressure at the channel wall is large and the impact on
channel deformation significant. In contrast, at low wall-charge densities the dependencies
of the flow on these two parameters diminishes since the electroosmotic pressure at the
channel wall is now small and it no longer affects the channel shape in significant ways,
leaving the flow unchanged.
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Figure 5.8: Variation of the average water flux at steady state with surface charge for
different elasticity constants. Reference parameters are: L0 = 50 µm, ∆Vref = 0.1 V, Rref = 2
nm, Yref = 0.1 GPa, σref = −0.2 C/m2, ∆p̃i = 0.05 and αref = 0.5.

Figure 5.7 shows the average steady-state flux as a function of surface charge density, for
different ∆V0 and R0. We see that the channel behaves essentially like a simple linear proton
resistor, where flow is proportional to the applied voltage difference. The conductance is a
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nonlinear function of |σ0|, with the conductance slowing down at very high |σ0|, which is
an effect of electrostatic correlations, i.e., stronger pinning of protons to walls and, hence,
gradual immobilization of protons (reduced mobility) at higher |σ0|. Finally, Figure 5.8
shows the steady-state water flux (Ūz = R2ūz, normalized by Ūref = |σref|R3

ref∆Vref/8νL0)
against |σ0| for different values of Y . We observe the same behaviour found in Figure 5.5(a)
in terms of the two charging regimes: water flux is independent of Y only at low |σ0|
(< 0.25 C/m2).

5.4 Onsager transport coefficients

The axial fluid velocity, proton flux density, and fluid pressure can be reformulated (in
dimensionless form) as

ũz = −R̃2
(
∂p̃

∂x
− c̃Ẽz[1− ξu]

)
, (5.15)

j̃z = c̃ũz[1− ξu(R̃)]−Kdiff

(
∂c̃

∂x
− 2κR̃c̃2 ∂R̃

∂x

)
+
(
Kmigr + 2(R̃c̃)2(1− ξE)

)
Ẽz , (5.16)

p̃ = KY

(
R̃− 1
R̃

)
−Kosmc̃(1 + κR̃2c̃) . (5.17)

In the linear response regime, the Onsager coefficient matrix [µ] relates the volumetric water
flux Q = R2ūz and the axial proton current I = qR2j̄z to the pressure gradient ∇p̄ = ∂z p̄

and the axial electric field Ēz via
Q

I

 =


µhyd µosm

µstr µele



−∇p̄

Ēz

 . (5.18)

The µij denote Onsager phenomenological transport coefficients: µhyd characterizes the
hydraulic conductance (and permeability) in accordance with Darcy’s law, µ̃ele the electric
conductance in accordance with Ohm’s law, µosm the electroosmotic effect, and µstr the
streaming potential effect.

We assume that in the system under consideration the fixed charges located on the walls
are balanced by a proton concentration c̄ inside the channel and in each cross-section so that
global and local electroneutrality are both preserved. This condition is met for long-aspect-
ratio channels, for which i) the rate of change of the electric field in the axial direction is
much slower than that in the radial direction, and ii) the radius varies gradually along the
channel. From Equation (4.90), this condition yields

c̃ = 1
R̃1+α . (5.19)
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Essentially, these assumptions eliminate any free choice in concentration gradients, leaving
only two driving forces (due to gradients in pressure and electric potential) for two fluxes,
those of water and ions1. This consistent description would need to be extended to three
driving forces, including concentration gradients, and three fluxes, including co-ions, if local
electroneutrality is not guaranteed [145]. Using Equations (5.15), (5.16), (5.17) and (5.19),
and setting ã = R̃2, one finds the transport coefficients

µhyd =
(
R4

0
8ν

)
ã2 , (5.20)

µele = (R0σ0)2

2ν

{
ã(1−α)/2

[
Kmigr + 2˜̃a(1−α)/2[1− ξE(a)]

]
+ ã1−α[1− ξu(ã)]2

}
, (5.21)

µosm = R3
0σ0
4ν

{
ã(3−α)/2 [1− ξu(ã)]

}
. (5.22)

µstr =



µosm , for a rigid channel (KY →∞) ,

µosm + R3
0σ0
4ν

Kdiff
[
2κ
√
ã+ ãα/2(1 + α)

]
ã1−α

KY +Kosm
[
2
√
ã+ ãα/2(1 + α)

]
 , for a deformed channel.

(5.23)

From Equations (5.23), Onsager’s reciprocal relation is upheld with µosm = µstr when
the channel has a uniform radius and is rigid (KY → ∞). However, when the channel is
deformable and has non-uniform radius, the symmetry of [µ] is broken. A channel curvature,
or more precisely a gradient in the channel radius, ∂zR, introduces a diffusive proton-driving
force. This results in a violation of Onsager’s reciprocal relation. Since p is related to R
according to Equation (5.17), we do not classify ∂zR or ∂zA, where A is the cross-sectional
area of the channel (∂zA = ∂z[πR2]), as a thermodynamic force. After all, they can be
expressed in terms of ∂zp which is a true driving force. Instead, we refer to ∂zA as a pseudo-
force and it is associated with the curvature coefficient,

µcurv = σ2
0∆V0
2ν

Kdiff
[
2(ã(1−α)/2κ+ 1)− (1− α)

]
ã(1−α)/2

2ã

 . (5.24)

It stems from the reduction of a three-dimensional system to a one-dimensional problem,
coupled with local electroneutrality. In contrast, in the original three-dimensional formu-
lation of the problem, Onsager’s reciprocal relations are not violated at any point in the
fluid.

1Here, we assume isothermal conditions so that a temperature gradient ∇T is absent
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In the deformed state, the system’s linear response can be formulated as

J̄ = [µ]X̄ + ξ̄ , (5.25)

where J̄ = [Q, I]T , X̄ = [−∇p, Ez]T and ξ̄ = [0, µcurv∂zA]T give the thermodynamic
fluxes, thermodynamic forces and the diffusional pseudo-force, respectively.
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Figure 5.9: Transport coefficients vs. channel cross-sectional area ã. Coefficients are nor-
malized with reference parameters, i.e., µ̃ele = µele/ (µele)ref, etc. The fixed parameters used
as reference are: L0 = 50 µm, D = 7 × 10−6 cm2/s, ∆V0 = 0.1 V, R0 = 2 nm, Y = 0.05
GPa, T = 300 K, h0 = 1 nm, ε = 45, ν = 3.35× 10−4 Pa s, and α = 0.5.

Figure 5.9 shows plots of the transport coefficients as a function of the channel cross-
sectional area relative to its equilibrium area (note that ã = A/Aeq), for different values
of σ0. Coefficients are normalized with reference parameters, i.e., µ̃ele = µele/ (µele)ref, etc.
Figure 5.9(a) illustrates the relative strength of electric and hydraulic conductance at
different values of ã. The model predicts that electric conductance increases with σ0 in
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a concave fashion. On the other hand, the hydraulic conductance, which is independent
of σ0, increases in a convex manner and eventually dominates electric conductance as
the radius grows much larger than the relaxed state. Very large ã ramps up the fluid
pressure within the channel, owing to the enhanced elastic response of the channel walls.
This directly leads to large hydraulic conductance, and hence high pressure-induced water
flux. Figure 5.9(b) shows the expected linear increase of electroosmotic and streaming
coupling coefficients with ã. The curvature coefficient that measures the extent to which
the system’s Onsager symmetry is broken as a result of curvature-induced proton diffusion
is plotted in Figure 5.9(c). The symmetry breaking is more pronounced at small ã and
large σ0, equivalent to highly charged channels.

5.5 Electrokinetic energy conversion

In this part, we investigate the thermodynamic efficiency of (1) electrokinetic power har-
vesting devices and (2) electrokinetic pumping devices. Energy conversion is realized in an
individual nanochannel by means of streaming currents and electroosmotic flow. The resis-
tance of the reservoirs is neglected in our calculations. In order to calculate the conversion
efficiency, transport properties explored in Section 5.4 have to be determined.

The thermodynamic efficiency χ of energy conversion is defined as the ratio of power
output, Pout, to power consumption, Pin:

χ =



IĒz
Q∇p̄

, electrical power generation mode.

Q∇p̄
IĒz

, pumping mode.

(5.26)

Substituting Q and I by the expressions in Equation (5.18), Pout and χ for each energy
conversion mode in Equation (5.26) are established as functions of the output thermo-
dynamic force only, provided the input thermodynamic forces and all Onsager transport
coefficients are known (we assume a linear response). Therefore, the output thermodynamic
force and the conversion efficiency under maximization of either the power output Pout or
the efficiency χ can be obtained separately.

5.5.1 Maximizing power output

We start by working out the output thermodynamic forces (Ēmax for power generation
mode and ∇p̄max for pumping mode) and efficiency χmax at maximum power output (IĒz
for power generation mode and Q∇p̄ for pumping mode). This is done by differentiating
Pout with respect to the corresponding output thermodynamic force. For the two conversion
modes, one obtains the maximum output force for each case,
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Figure 5.10: Dependence of electrokinetic conversion efficiency on the cross-correlation
coefficient at maximum output power and maximum efficiency.

Ēmax = µstr
2µele

∇p̄ , (5.27)

∇p̄max = µosm
2µhyd

Ēz . (5.28)

The efficiency at maximum power output, which is the same for both power generation and
pumping modes, can be shown to be

χmaxP = χ0
2

β

2− β , (5.29)

where β = (µosm/µele) × (µstr/µhyd) and χ0 = µstr/µosm. The dimensionless parameter β
is a cross-correlation coefficient, usually called the ‘figure of merit’ [157, 158], and can be
described as the product of the streaming current effect and the electro-osmotic effect. The
coefficient χ0 measures the symmetry of the Onsager coefficient matrix [µ], and it assumes
a value of 1 for rigid channels.

5.5.2 Maximizing efficiency

Using a similar approach, we determine the output forces that maximize the conversion
efficiency. This is done by differentiating χ with respect to the corresponding output ther-
modynamic force. The resulting optimum output forces obtained for pumping and power
generation modes, respectively, are
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Figure 5.11: Electrokinetic energy conversion efficiency at maximum efficiency against
surface charge density at different (a) channel radii and (b) cation diffusion constants. The
first row corresponds to the case of a rigid channel and the second row is for a deformable
channel. Results are obtained via Equation (5.32). Among the fixed parameters used as
references are: D = 7 × 10−6 cm2/s, R0 = R = 2 nm, Y = 0.05 GPa, T = 300 K, h0 = 1
nm, ε = 45, ν = 3.35× 10−4 Pa s, and α = 0.5.

Ēmax = µhyd
µosm

(
1−

√
1− β

)
∇p̄ , (5.30)

82



∇p̄max = µele
µstr

(
1−

√
1− β

)
Ēz . (5.31)

The corresponding efficiency, which is also the same for both power generation and pumping
modes, can be shown to be

χmaxE = χ0

(
1−
√

1− β
1 +
√

1− β

)
, (5.32)

and all equations are valid under the constraint 0 ≤ β < 1 to maintain non-negative intrinsic
entropy generation in electrokinetic flows. Variation of χmaxP/χ0 and χmaxE/χ0 with β is
shown in Figure 5.10. In the low β limit (i.e., β → 0), both χmaxP/χ0 and χmaxE/χ0 vary
linearly with β (χmax/χ0 ≈ β/4). In the high β limit (i.e., β → 1), χmaxP/χ0 and χmaxE/χ0

are monotonically increasing hyperlinear functions of β, with χmaxP assuming half the value
of χmaxE.

Plots of maximum efficiency determined via Equation (5.32) against σ0, which are almost
the same as those obtained from Equation (5.29) for the case of β � 1 (i.e., χmax = χmaxP =
χmaxE), are shown in Figure 5.11. For a typical set of parameters, χmax is on the order of
5%, and β is on the order of 0.2. The behaviour is similar to what has been reported
from experiments [159–163]: χmax increases with σ0 for sufficiently small σ0 but reaches a
maximum at an absolute value of around 0.05 C/m2; a further increase in σ0 results in a
decrease in χmax. At very large σ0, corresponding to regions past the peak, the coupled fluid-
ion transport is reduced since a large fraction of protons occupy the EDL where fluid flow
is significantly hampered. This affects both electroosmotic flow and the streaming current.

Furthermore, we explored the dependence of χmax on R0 and D for the case of a rigid
channel, and then for a deformable channel using results from Equation (5.32). For a rigid
channel, increasing R0 only shifts the peak of χmax towards smaller σ0; whereas for a
deformable channel, this effect further changes the value of χmax at the peak. For large
σ0, χmax achieves larger values when R0 is small. The opposite effect is observed for small
σ0. Conditions for which a smaller fraction of protons reside in the EDL yield a higher
χmax. In other words, χmax is optimized when the double layers from opposite walls of the
channel overlap. From Figure 5.11, we see that higher proton diffusivity tends to lower the
efficiency. This effect is even more significant for the case of a deformable channel where the
channel curvature induces a diffusional force that opposes the migration of protons, thereby
reducing the overall transport.

Finally, the dependence of χmax on elastic and geometric properties of the channel is
shown in Figure 5.12. In each plot, the black solid curve represents a rigid channel. χmax

increases with the elastic coefficient, Y . Optimal χmax is realized when the channel is rigid.
Hence, the model predicts that softness of the channel walls is not beneficial for energy
harvesting. For soft channels, energy is lost due to elastic deformations taking place along
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Figure 5.12: Electrokinetic energy conversion efficiency at maximum efficiency against
surface charge density at different (a) elasticity constants and (b) values of surface geometry
parameter α. Results are obtained via Equation (5.32). Among the fixed parameters used
as references are: D = 7× 10−6 cm2/s, R0 = R = 2 nm, Y = 0.05 GPa, T = 300 K, h0 = 1
nm, ε = 45, ν = 3.35× 10−4 Pa s, and α = 0.5.

the walls, thereby changing the flow dynamics and reducing χmax as a consequence. Figure
5.12(b) shows that χmax is also influenced by the channel geometry parameter α. All curves
converge at one specific value of σ0, which is∼ 0.1 C/m2 for the case shown in Figure 5.12(b).
Below this value, smaller values of α optimize χmax. The opposite is seen for values of σ0

above this convergence point. The convergence can be well understood from a mathematical
point of view. Dependence on α, for the case of ã = 1 and a deformable channel, is only seen
through µosm given in Equation (5.23). This dependence vanishes when 2κ = KY /Kosm + 2,
and this gives the value of σ0 at which all curves converge.

One universal feature of the results reported here is that the efficiency gets amplified
and peaks over a narrow regime at low σ0. The peak region is not much affected by the
channel’s elasticity. Figure 5.13 compares results with data obtained from experiments and
MD simulations. In Figure 5.13(a), we compare with experimental results reported by Xie
et al. [160], where the efficicieny χ is plotted against the sectionally-averaged counterion
concentration (c̄ = 2|σ0|/qR0). Xi et al. studied single track-etched nanochannels by
measuring the streaming currents and conductance. Data reported is from two of their
samples, corresponding to nanochannels with inner radii 32 nm and 31 nm. We use R0 = 32
nm and D = 20× 10−6 cm2/s to calculate χmax from the 1-D model and compare with the
data. The peak region obtained in our 1-D model matches that from the experimental data.
However, the model gives a larger decay of χ towards lower concentrations. This could
arise from the failure of the continuum model at low ion concentrations. In Figure 5.13(b),
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Figure 5.13: Comparison of the 1-D model with (a) experimental results from Xie et al. [160]
and (b) MD simulations results from Bakli et al. [163]. For experimental results shown in
(a), single track-etched nanochannels with outer radius of 120nm. Two samples are reported,
with inner channel radii of 32 nm (sample (iii)) and 31 nm (sample (iv)), and values of χ
were scaled by a factor of 1/10 to make qualitative comparison.. For MD simulations results
shown in (b), channel radii of 0.3 nm and 0.9 nm were used D = 20× 10−6 cm2/s was used
for the model results in (a), and D = 15 × 10−6 cm2/s was used in (b). Among the fixed
parameters used are Y = 0.5 GPa, T = 300 K, h0 = 1 nm, ε = 45, ν = 3.35 × 10−4 Pa s,
and α = 0.5.

we compare our 1-D model results with MD simulation results reported by Bakli and
Chakraborty [163]. The numerical values they obtained for the efficiency are much higher
than obtained in our model. Hence, we scaled their efficiency values by a factor of 1/10 to
match our results. With this modification, we obtain the same qualitative behaviour as
theirs. Data is from channels of radii 0.3 nm and 0.9 nm, and D = 15 × 10−6 cm2/s was
used for the model results. Our model gives an efficiency peak at a region that matches
that from their data. Note that a deformable nanochannel (Y = 0.5 GPa and α = 0.5) was
assumed to obtain the 1-D model results in Figure 5.13.

5.6 Summary

In this chapter, we used the formalism from Chapter 4 to investigate the coupling between
deformations of the channel walls and the transport of water and protons within the chan-
nel. Relaxation time scales of wall deformation and transport properties of the channel
upon application of a pressure perturbation at the channel inlet were investigated. Results
reveal a strong coupling of the wall deformations and transport within the channel with the

85



channel elasticity and surface charge density. In the limit of high charging, deformation and
proton flux exhibit a strong dependence on surface charge density and channel geometry.
For strongly charged channels, the dynamics are inhibited by the channel’s elasticity. These
results unravel the role played by the elasticity of a nanoporous host medium in controlling
electrokinetic transport processes, more significant for strongly charged nanochannels. The
Debye parameter `D is the main control parameter that steers transition between trans-
port regimes. Closed-form formulae for Onsager transport coefficients were derived first
for the case of rigid and subsequently for deformable channels. For the general case of co-
and counter-ions, the coefficients are only attainable numerically. For the limiting case of
low co-ion concentration inside the channel, closed-form solutions may still be attainable
via a perturbative analysis of the counter-ions-only case. Results reveal that the Onsager
reciprocity principle holds for rigid channels but is not fulfilled when the channel is de-
formed. As demonstrated in this article, the symmetry violation is caused by a ‘fictitious’
contribution to diffusion introduced by the reduction of the model to 1D. Furthermore, this
work explored the energy conversion mechanism of electrokinetic systems. The maximum
efficiency was calculated as a function of the phenomenological transport coefficients. We
found that the efficiency of an electrokinetic system is maximized when there is a strong
double-layer overlap within the channel. Moreover, the proposed model predicts that the
softness of channel walls diminishes the efficiency compared to their rigid counterparts.
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Chapter 6

Cylindrical and Finite
Nanochannel Under Closed
Confinement

While the previous chapters focused on transport, this chapter explores the formation and
structure of equilibrium electric double layers (EDLs) within the channel. In our study, the
EDLs under consideration are established between the electrolyte solution filling the channel
and flat electrode surfaces at the channel ends. A large body of research activity has been
aimed at understanding the formation of EDLs in an electrolyte where interaction forces and
potentials exist between charged surfaces. The structure and properties of the electric double
layer (EDL) determines the electrostatic and electrokinetic properties of electrified inter-
faces, playing an important role in diverse technological and bio-physiochemical applications
involving, among others, capacitive energy storage and conversion [164, 165], stabilization
of colloidal systems [166–169], biomolecular recovery in oil/water interfaces [170], control of
ion transport through charged channels of biological membranes [171–173], plasma treat-
ment of surfaces [174], scanning electrometer for electric double-layer operation [175], and
dielectrophoresis [176,177].

When studying electrokinetic phenomena near interfaces, it is crucial to include steric
(finite size) effects since ion sizes dictate the structure of the EDL. From a computational
point of view, the Bikerman model remains popular due to its ease of implementation
and qualitatively good agreement with experiments and molecular dynamics simulations
[178, 179]. Owing to recent numerical studies [180–186] grounded in Bikerman modelling,
many interesting phenomena such as capacitance-voltage curves, confinement effects, lattice
saturation, improvement of cross-stream diffusion, over-screening effects and layering of ions
near electrode surfaces are now reasonably well understood.

A majority of these studies consider systems under open boundaries, in which the elec-
trolyte is presumed to be in thermodynamic equilibrium with an electrolyte reservoir, the
so-called ‘semi-grand canonical ensemble’. The most studied system is an electrolyte solu-
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tion in contact with a planar electrode surface or between two parallel-plates with a voltage
applied between them. The apparent scarcity of studies concerning closed systems could be
due to two main reasons: (1) The difficulty of numerically solving the system of integro-
differential-equations, complicated by the inclusion of conservation constraints. (2) In prac-
tice, electrokinetic devices are usually connected to reservoirs. However, closed confinement
of electrolytes between charged walls can present additional effects potentially resulting in
rich phenomena that are particularly important in nanoscale devices. Particularly, electric
double-layer capacitors for electrical energy storage and electroactive polymer actuators for
artificial muscles are closed systems whose performance is dictated by the underlying EDL
structure.

This chapter presents a physical-mathematical treatment and numerical simulations of
electric double layer charging in a closed, finite and cylindrical nanochannel of circular cross
section, embedded in a polymeric host with charged walls and sealed at both ends by metal
electrodes under external voltage bias. This means we are dealing with a closed system with
a fixed number of ions and water molecules. Modified Poisson-Nernst-Planck equations are
used to account for finite ion sizes, subject to the electroneutrality condition. A binary
electrolyte solution is enclosed inside the channel to maintain electro-neutrality. While we
focus on rigid nanochannels in this chapter, an extension to flexible channels [187,188] will
be considered in Chapter 7. We study the EDL formation and relaxation near the electrodes.
Differential capacitance data is presented and analysed, with a focus on its dependence on
the channel surface charge density, electrolyte concentration, ion size and channel size. The
numerical model is modified to also account for asymmetry in the charge valencies and ion
sizes of each individual ionic species, as well as a non-uniform distribution of charges along
the channel surface.

This chapter is organised as follows. The physical-mathematical methodology will be
presented in Section 6.1, including a brief outline of the governing equations, a presentation
of the electroneutrality condition imposed onto the system for self-consistency, and the
description of the numerical method employed. Section 6.2 presents numerical results.
Here, the time evolution of the formation and relaxation of the double layers is explored.
Moreover, equilibrium ion distributions and differential capacitance curves are investigated
as functions of the channel surface charge density, electrolyte concentration, ion sizes and
channel size. Finally, Section 6.3 concludes this chapter with a summary of the results.

6.1 Methodology

6.1.1 Schematics and assumptions

In what follows, we are concerned with a binary symmetric z : z electrolyte solution. The
case of asymmetric ion charges will be considered in Section 6.2.4. The electrolyte is confined
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inside a charged cylindrical polymeric channel of radius R and length L with electrodes
attached at both ends; see Figure 6.1 for a schematic illustration. The walls of the channel
carry charged head groups which we will model as a uniform distribution with surface charge
density σp. The problem is two-dimensional, with coordinates in radial (r) and axial (z)
directions. Cylindrical coordinates are adopted, with the origin fixed at the center of the
inner surface of the left electrode. An externally applied potential bias ∆V is introduced
between the electrodes, with the right electrode sitting at a higher potential and located at
z = L.

Figure 6.1: Schematic illustration of the examined configuration: electrolyte in a closed,
cylindrical channel of circular section and channel wall surface charges of density σp.

In the basic simplified variant, both cations and anions are assumed to be equi-sized
hard spheres of constant diameter a. Steric ion-ion interactions, included in the free energy,
are taken into account within a continuous dielectric medium approach with constant per-
mittivity, while advection of the electrolyte is assumed negligible – a reasonable assumption
for pores with small radius (1-2 nm). Isothermal conditions are assumed to prevail in the
system. Ions can accumulate at the electrode surfaces but without ion insertion into the
electrode. We denote the net accumulated ion charges on the left and right electrode as QL
and QR, respectively.

From a physical point of view, the model system presented above mimics closely confined
and nearly cylindrical energy storage (e.g., capacitors, batteries) and generation devices, or
electroactuation devices [104–106]. We would like to emphasize that the highly confined
ionic system studied in this work is expected to exhibit properties that are not accounted
for in the Bikerman model. Because of this limitation, model results are expected to deviate
from experimental findings. However, the goal here is to explore essential trends revealing
the impact of core parameters on the double-layer capacitance. Other effects such as over-
screening and the transition to crowding [189] are expected to play a role in regimes with
high ion concentration. In addition, ion-wall interactions [190,191], correlations between wa-
ter molecules, and image effects are expected to play a role. Such effects can be accounted
for by employing molecular dynamics simulations of the system, which will be a subject of
future work.
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6.1.2 Governing equations

Following the Bikerman model, the free energy functional of the ionic system is modified,
based on a mean-field approximation, by adding an ideal-gas-like solvent entropy term to
account for over-crowding of ions and solvent molecules:

F =
∫

d3r

{
− εε0

2 |∇ψ|
2 + zqψ (c+ − c−)

+ kBT
[
c+ log

(
c+a

3
)

+ c− log
(
c−a

3
)]

+ kBT

[
1− a3(c+ + c−)

a3 log
[
1− a3(c+ + c−)]

)]}
, (6.1)

where ψ is the electrostatic potential; c± denotes the local concentration of positive and
negative ionic species; kB is the Boltzmann constant; ε0 the permittivity of free space; ε the
dielectric constant of the electrolyte; T the absolute temperature. The first two terms of
the integral in Equation (6.1) can be interpreted as the total electrostatic free energy. The
first term is the dielectric self-energy of the electric field E = −∇ψ, and the second term
gives the electrostatic energy of mobile ions. The remaining two terms represent entropic
contributions of ions and solvent molecules, respectively. These terms impose a cut-off on the
value of ionic concentration, cmax

± = 21/2/a3, which is the maximum density of close-packed
(face-centered cubic or hexagonal close-packed) spheres of diameter a.

Demanding the variation of F with respect to c± to be equal to the electrochemical
potential µ± of ionic species and the variation of F with respect to ψ to be zero, one
obtains

µ± = ±zqψ + kBT log
[

c±a
3

1− a3(c+ + c−)

]
, (6.2)

and the Poisson equation
−∇ · (εε0∇ψ) = zq(c+ − c−) , (6.3)

respectively. Assuming that the diffusivities D for each ionic species are the same and
constant, the modified Nernst-Planck equations for ionic fluxes are

J± = − D

kBT
c±∇µ±

= −D∇c± ∓
Dzq

kBT
c±∇ψ + a3D

c±∇(c+ + c−)
1− a3(c+ + c−) , (6.4)

and the conservation equations for the ionic species take the form

∂c±
∂t

+∇ · J± = 0 . (6.5)
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At equilibrium, no ionic and fluid flows are present, i.e., J± = 0. Using Equation (6.4)
and integrating J± = 0 from some reference concentration c0 gives the ionic concentrations
(number density) in terms of the electric potential

c± =
c0 exp

(
∓zqψ
kBT

)
1 + 2(z + 1)c0a3 sinh2

(
zqψ

2kBT

) . (6.6)

In this context, c0 = c±(ψ = 0) is the reference concentration of both cations and anions
at which the electric potential is set to be zero. Note that the region where c± = c0 does
not need to be defined within the system. Substituting Equation (6.6) into Equation (6.3)
gives the modified PB (mPB) equation for the local steady-state electric potential in the
electrolyte solution,

∇ · (εε0∇ψ) =
2zqc0 sinh

(
zqψ
kBT

)
1 + 2(z + 1)c0a3 sinh2

(
zqψ

2kBT

) . (6.7)

6.1.3 Boundary conditions and electroneutrality

Having established the equations that model the dynamics and steady-state equilibrium
for electrochemical properties of the system, we turn to the task of identifying all bound-
ary conditions. All equations in Sec. 6.1.2 are valid in the cylinder’s inner volumetric do-
main Ω (r ∈ [0, R], θ ∈ [0, 2π], z ∈ [0, L]), which is bounded by the cylindrical channel ∂p
(r = R, θ ∈ [0, 2π], z ∈ [0, L]), left electrode ∂L (r ∈ [0, R], θ ∈ [0, 2π], z = 0) and right elec-
trode ∂R (r ∈ [0, R], θ ∈ [0, 2π], z = L).

The boundary condition at the channel’s inner walls are determined by the surface
charge density and a vanishing electric field outside the channel,

(εε0∇ψ · n̂)
∣∣∣∣
∂p

= σp . (6.8)

Here, n̂ is a unit vector normal to the respective boundaries. At the channel surface, we do
not consider any chemical reaction involving ions or functional groups.

As a side note, the smaller the ratio is between the dielectric constants of channel walls
and electrolyte, the lesser is the degree to which the field will extend into the surrounding
wall region. Strictly speaking, Equation (6.8) is only valid in the limit of that ratio tending
to zero but it is an on-going debate as to how to assess the violation of Equation (6.8) for
small but non-zero ratios [150].
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A central aspect of the model is the boundary condition for the electrostatic potential
bias between the metal electrodes, which is introduced externally. It can be expressed by

ψ

∣∣∣∣
∂R

= VR and ψ

∣∣∣∣
∂L

= VL . (6.9)

Each electrode surface, free of adsorbed species and charge transfer reactions, is taken to
be ideally polarizable (no Faradaic current exists between the electrode surface and the
electrolyte) and its apparently nonuniform surface charge density is an unknown quantity,
which can be controlled by adjusting the potential bias ∆V = VR−VL or the concentration
of the electrolyte solution.

Conditions (6.8) and (6.9) are sufficient to numerically solve Equation (6.7) for the
potential and ion density distribution at equilibrium. If the boundary conditions for the mPB
problem are not chosen carefully, however, global electroneutrality will generally be violated,
which is unphysical for a closed system that must retain the electroneutrality of its initial
(reference) state. We define a reference state with uncharged electrodes, QL = QR = 0, for
which ∆V = 0, corresponding to the potential (or, better in this case, voltage) of zero charge
of the capacitor configuration. In this state, an exact charge balance is fulfilled between the
net ionic charge in the electrolyte solution and the fixed surface charge on the polymeric
channel walls, given by

zq

∫
Ω
d3r(c+ − c−) +

∫
∂p
d2r (εε0∇ψ · n̂) = 0 , (6.10)

and this is referred to as global electroneutrality (GEN) in the context of our study. In the
case with charged electrodes, we control the metal-phase potential at one of the electrode
interfaces, tacitly assumed to be uniform, relative to the potential of zero charge. Then the
metal-phase potential of the second electrode cannot be known a priori but needs to be
chosen self-consistently so as to uphold the condition of global electroneutrality. In addition
to (6.9), the following balance condition must be fulfilled in the charged state,

QL +QR = −
∫
∂L

d2r (εε0∇ψ · n̂)−
∫
∂R

d2r (εε0∇ψ · n̂) = 0 , (6.11)

where the total charges on left and right electrodes, QL and QR, are defined through the
respective integrals. In essence, the metal phase potential at one electrode is treated as a
free parameter. For numerical calculations reported herein, VR is provided and a potential
range must be scanned until the unique value of VL is found so that condition (6.11) holds
for a given value of c0. These conditions are sufficient to find a unique and physically-
consistent solution of the problem. Thus, the output of numerical calculations includes the
total voltage difference and amount of charge that is being shifted between the electrodes.
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6.1.4 Constitutive relations and numerical methods

The present study focuses on aqueous binary and monovalent (symmetric) electrolyte solu-
tions at room temperature, with the basic set of parameters listed in Table 6.1. Equations
(6.5) and (6.7), along with the boundary conditions given by Equations (6.8)–(6.11), are
solved using the commercial finite element solver COMSOL 5.4. To reduce computational
cost, only a single 2D domain of the rotationally symmetric model is considered. This is
realized in COMSOL by choosing the ‘2D Axisymmetric’ component. The ‘general form
PDE’ mode and electrostatics module are used to solve for the time-dependent PNP and
the stationary PB problem, respectively.

The computational domain (R × L = 2 nm × 10 nm) is discretized into quadratic tri-
angular elements. Nonuniform elements are employed with a finer mesh generated near
boundaries to capture the EDLs. Typically, the applied triangular mesh comprises mesh
elements with dimensions ranging from about 0.03 Å in the vicinity of the electrodes and
channel interfaces to about 0.1 Å at the center of the domain. The numerical model in-
cludes about 10, 000 mesh elements and 20, 000 degrees of freedom. COMSOL’s numerical
scheme has been validated to be adequately accurate for solving comparable electrokinetic
problems, and a comprehensive description of its numerical implementation is accessible in
the literature [192]. Convergence and mesh-independence of all results are verified first.

Parameter Description Reference value
q elementary charge 1.602 · 10−19 C
kB Boltzmann constant 1.38 · 10−23 J/K
ε0 vacuum permittivity 8.85 · 10−12 F/m
ε dielectric constant 80
T temperature 300 K
σp surface charge density −0.1 C/m2

D ion diffusivity 7 · 10−6 cm2/s
R channel radius 2 nm
L channel length 10 nm

Table 6.1: Parameters of the system.

6.2 Results and discussion

6.2.1 Time evolution of double layers

Steady-state solutions are the main focus in the literature for comparable problems, chiefly
for EDL structure and capacitance studies. In this work, the preliminary step is to in-
vestigate the non-equilibrium dynamical aspects. In particular, we examine the temporal
evolution of the electric potential and ion density distribution across the entire domain. Our
own interest in exploring the system’s nonequilibrium dynamics stems from two key mo-
tivations: (1) Understanding the formation and relaxation of EDLs is critically important
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Figure 6.2: Two-dimensional view of the time evolution and relaxation of the EDL. Surface
plot gives the concentration of cations c+, contour plots represent the electric potential ψ
and the arrows give the flux density vector for positive ions J+. Parameter values: σp =
−0.1 C/m2, ∆V = 1.21 V, c0 = 1 · 1025 /m3.

for practical applications like controlling the performance of electrochemical devices such as
supercapacitors. (2) The second motivation, detailed below, is that numerical simulations of
the dynamics will provide useful insight into the connection between the dynamical model
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described by the modified PNP (mPNP) equations and the equilibrium model. The latter
is characterized by the mPB equation that satisfies the electroneutrality condition (6.11).
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Figure 6.3: (a) Variation of the total ion concentration, ct = c+ + c−, along the center of
the channel. (b) Variation of total charge on left and right electrode, viz. QL and QR, as a
function of time. Parameters are σp = −0.1 C/m2, ∆V = 1.21 V, c0 = 1 · 1025 /m3.

In Sec. 6.1.3, we highlighted that for a given set of conditions, there is a unique potential
difference between the electrodes that ensures electroneutrality. For numerical solutions at
equilibrium via the mPB equation, this ∆V is essentially the output of the model. For
solving the dynamics via the mPNP-based numerical solver, however, it is necessary that
∆V is predetermined initially. Our general strategy to ensure that the dynamics is driven
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to a globally electroneutral equilibrium state involves an initial equilibration of the system,
before studying its dynamics. In this approach, we begin with the task of solving for the
equilibrium problem by appealing to the mPB equation, given a set of conditions such as σp
and the total magnitude of charges enclosed in the volume, dictated by c0. From the results
of the mPB solver, ∆V is extracted to be used as the Dirichlet boundary condition for the
dynamical model. The second step is to solve the full mPNP equations assuming no fluxes
at all boundaries, along with boundary conditions (6.8)–(6.9). Convection is neglected. The
dynamics start off with a globally electroneutral state. For simplicity, a uniform density of
cations and anions cinitial± is prescribed as the initial condition at t = 0. The value of c0 used
in the equilibration step places a powerful constraint on the choice of cinitial± . Although this
choice of cinitial± seems unphysical, it helps us understand a typical nonequilibrium response
of ions in the channel to both the surface charges and the electrode potential bias. To
understand this idea more concretely, the link between c0 and cinitial± needs to be addressed.

Within the mPB solver, the channel wall surface charge density σp determines the net
charge, Qnet, due to electrolyte ions in the volumetric domain, and c0 determines the total
positive and negative ionic charges (Q+ and Q−) enclosed:

Qnet = −
∫
∂p
d2r σp, (6.12)

and

Q± = ±
∫

Ω
d3r

qc0 exp
(
∓zqψ
kBT

)
1 + 2(z + 1)c0a3 sinh2

(
zqψ

2kBT

) , (6.13)

where Qnet = Q+ +Q− must be fulfilled – the condition of global electroneutrality. In light
of this, it is a straightforward matter that the initial condition cinitial± = Q±/qπR

2L will
lead to a consistent solution for the dynamics when charge conservation is enforced in the
mPNP solver. The system is then driven accordingly from this non-equilibrium state to an
equilibrium state, whose solutions converge to those of the mPB solver.

In COMSOL, the mPB solver is executed by solving Equation (6.7) using the ‘Charge
Conservation’ model builder under the ‘AC/DC - Electrostatics’ module. Constraint (6.11)
is implemented via the ‘Floating Potential’ function. The mPNP-based solver, however,
introduces time dependence by additionally solving Equation (6.5) and using the ‘General
Form PDE’ solver under the ‘Mathematics - PDE interfaces’ module.

Figure 6.2 shows a 2-D representation of the time evolution of the EDL in a channel,
whose polymer walls are negatively charged (σp = −0.1 C/m2) and to which a potential
bias ∆V = 1.21 V, obtained from the mPB solver, is applied at t = 0. The underlying color
shows the local cation concentration, white contours represent the electric potential and
arrows give the cation flux density vector field. In a more compact way of illustrating the
ion dynamics in the channel, Figure 6.3(a) presents the total ion concentration, ct = c++c−,
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along the center of the channel (r = 0) at different times, and Figure 6.3(b) shows the charge
on each electrode, QLand QR, as a function of time in the range 1–20 ns.

By virtue of these results, we distinguish four regimes in the relaxation dynamics: at very
short times, Figure 6.2 shows a sudden displacement of counter-ions (cations) towards all
boundaries. This corresponds to a time regime far out of equilibrium. The system is forced
to balance strong local electric fields that develop from it being initially set to be extremely
out of equilibrium. Here, all boundaries become negatively charged. This effect manifests
itself as the rapid dip in the blue curve in Figure 6.3(b). In the next time regime, anions
accumulate at the right electrode (sitting at higher potential) and counter-ions (cations) are
translated towards the negative electrode. This is observed in Figure 6.2 at t = 5 ns. The
lateral diffusion of counter-ions in the first layer near the channel walls is actually faster than
that in the bulk. The next time regime, which occurs on a much longer time scale, is the
‘EDL relaxation’ phase. In this regime, seen at t = 10 ns in Figure 6.2, there is no diffusion
of counter-ions in the bulk. However, we observe a small-scale translation of counter-ions in
the EDL largely due to the slow ion diffusion involved during EDL reorganization. The final
time regime corresponds to a steady-state equilibrium. This is characterized by the plateaus
of both curves in Figure 6.3(b), approached at around t = 20 ns. It is imperative that the
results in this regime agree with those from the mPB solver, i.e., electroneutrality must be
fulfilled. According to Figure 6.3(b), the values of Qeq

R and Qeq
L are 2×10−18 C and −1.94×

10−18 C, respectively, exhibiting a deviation of no more than 3%. Hence, we can confidently
say that, through using the mPNP model and a careful choice of initial conditions, we
are able to drive the system from some non-equilibrium state to an equilibrium state that
satisfies both the electroneutrality condition (6.11) and the mPB equation.

6.2.2 Differential capacitance

The voltage-dependent capacitance of the EDL is a parameter that plays a significant role
in the characterization of the EDL structure in electrochemical systems. Of key interest in
experimental studies is the differential capacitance, Cdiff , defined as

Cdiff = 1
πR2

∂Qeq
R

∂∆V , (6.14)

where the total charge at the right electrode

Qeq
R =

∫
∂R

d2r

(
εε0

∂ψ

∂z

)
, (6.15)

is evaluated at equilibrium. In essence, Cdiff represents the ability of an electrochemical cell
to store charge at its electrodes in response to a perturbation potential applied between
them. Capacitance data provide an important indirect means to assess the EDL structure
since the local charge imbalance occurs only in the EDL region.
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Figure 6.4: (a) Variation of Cdiff with ∆V . (b) Cross-sectionally averaged total ion con-
centration, c̄t(z), as a function of distance from the left electrode. Parameter values:
σp = −0.1 C/m2, a = 3 Å, c0 = 1 · 1025 /m3, QT = 1.63 · 10−17 C.

When calculating the differential capacitance, the total amount of combined positive
and negative charges enclosed in the volumetric domain,

QT = |Q+| + |Q−|

=
∫
∂V

zqc0
[
exp

(
− zqψ
kBT

)
+ exp

(
zqψ
kBT

)]
1 + 2(z + 1)c0a3 sinh2

(
zqψ

2kBT

) d3r , (6.16)
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Figure 6.5: Variation of the total net charge on the right electrode against the elec-
trode potential bias ∆V to illustrate the lack of symmetry in differential capacitance
curves (insert shows the corresponding differential capacitance curves). Parameter values:
c0 = 1 · 1025 /m3, a = 3Å, QT = 1.63 · 10−17 C.

is conserved. This is achieved by setting the constraint (6.16) for some constantQT while ∆V
is adjusted, via changing VR, so that condition (6.11) is fulfilled. The ‘Global Constraints’
function in COMSOL enforces this condition. In this work, Cdiff curves are computed as
follows: The total charge at each voltage is calculated via Eq. (6.15). The derivative in
Eq. (6.14) is then computed numerically, for ascending values of ∆V . About 100 data
points (voltages) are used for each curve.

Figure 6.4(a) shows a typical plot of Cdiff as a function of ∆V . Two noteworthy features
of the Cdiff curve are apparent: (1) the presence of a double peak and (2) the lack of
symmetry with respect to ∆V . The former is attributed to excluded-volume-interaction
effects. We present and discuss Figure 6.4(b) to support this view. Foremost, we formalize
the discussion by defining the cross-sectionally averaged total ion density with respect to
the axial distance from the left electrode,

c̄t(z) = 2
R2

∫ R

0
ct(r, z) rdr . (6.17)

This quantity, compared to taking ct along the center of the channel, provides a more
rigorous measure of the axial ion density profile in 1-D due to the strong radial variations
of c when the channel is strongly charged.

Figure 6.4(b) shows plots of c̄t(z) for a few values of ∆V around, and inclusive of, the
left peak in Figure 6.4(a). Four coloured markers in Figure 6.4(a) correspond to the coloured
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distributions shown in Figure 6.4(b). On account of these results, we understand that the
decline of Cdiff at high positive or negative ∆V appears to be a consequence of overcrowding
of counter-ions near the electrodes: at higher |∆V |, c̄t increases at a faster rate near the
electrode surface and the decay length (λD) of c̄t(z) decreases sharply. (Here, the decay
length is defined as the distance from the left electrode at which c̄t(z) is reduced to 1/e of
its peak value attained directly at the electrode surface.) This behaviour is observed up to
the peak voltage, indicated by the red curve in Figure 6.4(b). Beyond the peak, counter-ions
saturate near the electrode and can only further accumulate by growing the thickness of the
saturation layer to distances further away from the surface. This leads to a sudden change
in λD as a function of ∆V , shown in the insert of Figure 6.4(a), caused by ion screening.

The lack of symmetry in Cdiff in Figure 6.4(a) is attributed to the presence of fixed
charges on the channel wall. This effect is demonstrated in Figure 6.5, where Qeq

R is plotted
against ∆V at different values of σp. We recognize the existence of symmetry only when
the channel is uncharged, i.e., at σp = 0. When the channel is charged, reversing the sign
of ∆V leads to a different magnitude of net charge on each electrode. This can be ascribed
to the global electroneutrality condition enforced in the system: consider the channel with
σp < 0 and the right electrode at negative potential with respect to the left electrode; by
electroneutrality, there are more cations (majority charge carriers) than anions (minority
charge carriers) in Ω; in this case, Cdiff arises primarily from the large amount of cations
in the channel, giving a high Qeq

R . If the right electrode is at a positive potential, the low
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Figure 6.7: The influence of QT on (a) the total charge on the right electrode and (b)
the differential capacitance as a function of the voltage bias. Parameter values: σp =
−0.1 C/m2, a = 3Å.

amounts of negative charged co-ions (minority charge carrier in the channel) are drawn
towards this electrode; resulting in a relatively diminished |Qeq

R |.
Figure 6.6 shows the effect of σp on the potential (or voltage) of zero charge (pzc), i.e., the

point at which |Qeq
R | = 0. As a consequence of the previously explained asymmetry, the pzc

is shifted relative to ∆V , with the sign and magnitude of this shift exhibiting a dependence
on σp: the more negative σp is, the more negative is the value of ∆V at which |Qeq

R | = 0.
This figure thus embodies in a highly condensed form the consequence of using a charged
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a = 2 Å
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porous host matrix, such as provided by a polymer electrolyte membrane, for energy storage
in double-layer capacitive devices. The insert of Figure 6.6 shows the symmetry parameter
α = Cpeak, left

diff /Cpeak, right
diff , which is the ratio of the left peak in the differential capacitance

to the right one.
The effect of QT on the electrode charging is illustrated in Figure 6.7. At low QT,

the electrode charging is insensitive to changes in low ∆V and only high ∆V can lead to
EDL overcrowding, forcing the peaks in Cdiff to be farther apart and thus widening the
low-capacitive plateau. At high QT, however, the peaks move closer together, owing to
ion saturation, and the local central minimum of Cdiff increases. This agrees with similar
studies in the literature [193], albeit for different geometries, where it is observed that, at
even higher QT, the Cdiff curve transitions to just a single peak. For the case of a closed
cylinder, simulations do not allow for such high concentrations required to see a single peak.

Figure 6.8 shows the effects of a on Cdiff . Here, a shifts the voltage bias at peak Cdiff

(∆Vpeak) without affecting the results at small |∆V |. This underlines the excluded-volume-
interaction effects seen only at high |∆V |, and the reduction to the Gouy-Chapman regime
at low |∆V |. Predictably, a large a enhances the overcrowding effect of counter-ions as the
competition for volume becomes fiercer. Hence, peaks in Cdiff occur at lower |∆V |.
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(b) uses asymmetric valences z+/z− = +1/ − 2. Parameter values: σp = −0.05 C/m2,
c0 = 1 · 1023 /m3, a = 4 Å, QT = 1.03 · 10−17 C.

6.2.3 Effect of asymmetry in ion properties

So far, we have considered electrolytes having two ionic species with identical valence and
size. However, experimental data reported on capacitors in the literature [194–196] utilize
electrolytes with asymmetric valence. Also, asymmetric electrolytes have practical implica-
tions in capacitive deionization [197] and biosensors [198].
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axis on log scale). Parameter values: σp = −0.05 C/m2, c0 = 1 · 1025 /m3, a = 4 Å,
QT = 1.63 · 10−17 C.

We now investigate the impacts of asymmetry in the electrolyte valence within the mPB
description. For nonidentical valency and ionic sizes, a complete rederivation based on the
formalism presented in Section 6.1.2 gives the modified Boltzmann distributions of cations
and anions [199],

c± = c0e
∓ z±qψ
kBT

1 + c0a3
+

(
e
− z+qψ
kBT − 1

)
+ c0a3

−

(
e
− z−qψ
kBT − 1

) , (6.18)

where z± and a± denote the valency and ion size, respectively, for cations and anions.
Differential capacitance results are shown in Figure 6.9. In Figure 6.9(a), the valency of

anions is varied. We see a pronounced asymmetry in Cdiff curves as a manifestation of the
asymmetry in ionic valency. Asymmetry in the double layer structure originates from an
imbalance between the magnitude of forces experienced by cations and anions, dictated by
the ionic valence. The effect of z+/z− is only seen at positive ∆V since the valency of positive
ions, which controls the DC curve when ∆V < 0, is fixed here. Another key observation is
that the position of a local maximum shifts towards lower ∆V when the ionic asymmetry
increases. This observation is consistent with the prediction that high valency leads to a
stronger electric force and, hence, a stronger ion saturation effect. Figure 6.9(b) shows a
similar effect when ion sizes are asymmetric. Changing a+ only affects the left hump of the
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Cdiff curve, and a− affects the right hump. These results highlight feasible exploitations of
valence asymmetry as a way to tune the energy and power density of capacitors.

The sectional ion density profiles along the channel at different values of z+/z− are shown
in Figure 6.10. Both cation and anion profiles are affected. The more pronounced saturation
of cations near the left electrode is observed at larger z−, while their distribution away from
the left electrode is unaffected. The anion distribution, however, is affected throughout the
length of the channel. We see a stronger pull of anions towards the left electrode at higher
z−.

6.2.4 Effect of surface charge density modulation

We saw in Section 6.2.2 that the presence of a uniform charge density on the channel
surface introduces asymmetry in Cdiff curves and offers a way of modifying the double-layer
structure near each electrode. In this section, we investigate the effect of a non-uniform
distribution of σp, similar in spirit to nanofluidic diodes [200].

First, we consider a σp(z) profile that follows a cyclic square-wave like modulation defined
in the following manner: let nσ be the (even) number of equal segments along the length
of the channel with a constant surface charge density that switches between −σ0 and σ0.
Mathematically, this can be expressed by

σp(z) =


−σ0, for 2kL

nσ
≤ z < (2k + 1)L

nσ

+σ0, for (2k + 1)L
nσ

≤ z < 2kL
nσ

,

(6.19)

where k = 0, 1, 2, · · · , nσ/2 and nσ being even. With this profile, the net amount of charge
on the channel surface is zero. We use σ0 > 0, so that the negatively-charged left electrode
is closer to a negative section of the channel.

The case nσ = 2 is of particular relevance, as it corresponds to the case of nanofluidic
diodes [201]. Moreover, this channel configuration mimics the interfacial conditions
encountered in electrochemical devices with bipolar membranes [202–204], where a contact
region between a proton exchange membrane (PEM) and an anion exchange membrane
(AEM) exists. In the latter context, it is of foremost interest to determine the potential
distribution and corresponding electric field strength in the contact or space charge region
where the two ion-conducting media with different majority carriers meet. Figure 6.11
shows results for a 2-D slice of the channel along the axial direction for nσ = 2 for different
values of σ0. Coloured images show the net ion concentration cnet = c+ − c−, and labelled
contours illustrate the electric potential in volts. As expected, counter-ions are drawn
towards oppositely charged sections of the channel. Figure 6.12 shows the variation of the
axial electric field and net ion concentration (see insert) with σ0 along the center of the
channel (r = 0). The strength of the local electric field in the space charge region reaches
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Figure 6.11: Effect of σ0 on charge distribution within the channel for the case nσ = 2.
Distribution of net ion concentration (colour plot) and the electric potential (contour plots
with labels in volts) on a 2-D slice along the channel. Parameter values: c0 = 1 · 1025 /m3,
a = 6 Å, QT = 0.71 · 10−17 C.

values of 108 V m−1; the region is about 5 nm wide. These results imply water splitting in
the channel, the same as observed in [204].
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Figure 6.12: Net ion concentration along the center of the channel for different values
of σ0. Insert shows the corresponding axial electric field (Ez = −ψz). Parameter values:
c0 = 1 · 1025 /m3, a = 6 Å, QT = 0.71 · 10−17 C.

6.3 Summary

This chapter presented numerical simulations of electric double layers formed by a binary
electrolyte in a closed, cylindrical and charged nanochannel whose ends are met by metal
electrodes, subject to an externally applied potential bias. The applied model consists of
the modified Poisson-Nernst-Planck/Poisson-Boltzmann equations, accounting for finite ion
sizes similar to the Bikerman model. A self-consistent electroneutrality condition at equilib-
rium was enforced that requires equal magnitudes of net charges on the electrodes. Applica-
tion of this condition establishes the correct correspondence between the modified Poisson-
Nernst-Planck and Poisson-Boltzmann equations at equilibrium. Numerical results were
presented that illustrate the formation and relaxation of double-layer charging near the
electrodes and the internal channel surface. Differential capacitance data were analysed and
discussed, with a focus on their dependence on the channel surface charge density, elec-
trolyte concentration, ion sizes and channel size. Results indicate that the structure of the
double layer near the electrode can be controlled, or is affected by, the charge distribution
along the channel, the asymmetry in the total charges for each ion species in the electrolyte,
and the ion sizes.
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Chapter 7

Closed and Deformable
Nanochannel: Model for an Ionic
Polymer Actuator

Closed, charged nanochannels exhibit interesting properties when the walls are flexible. In
addition to demonstrating double-layer charging behaviour near electrodes, as seen in Chap-
ter 6, such channels undergo wall deformations under an applied voltage. Voltage-induced
drifting and diffusion of mobile ions cause accumulation or depletion of excess ions at dif-
ferent regions within the channel, resulting in a bending actuation due to volume expansion
or contraction in these regions. An example of a device that uses such a mechanism is the
ionic metal-polymer composite (IMPC) actuator [61, 104–106]. It is composed of an ionic
ionomeric membrane material like Nafionr , Teflonr or Flemionr whose surfaces are chem-
ically plated or physically coated with highly conductive metal electrodes such as platinum
or gold.

IPMC actuators have unique advantageous characteristics such as softness, light weight,
biocompatibility, relatively high degree of deformation, quick response to low driving volt-
ages, and facile processability at low costs. This makes them ideal candidates for many
electromechanical transduction applications such as sensing [74], soft biorobotics [66–68],
artificial muscles [65], bio-medicine [70–72], polymer-based microelectromechanical systems
(MEMS) [69], and energy harvesting [73]. Considerable efforts have been made to develop
models [205–207] for the electromechanical transduction of IMPC, primarily to enable ad-
vanced IMPC device design.

In this chapter, we study electromechanical transduction induced by counter-ions in a
closed channel of circular cross section. This is a continuation of Chapter 6. Contrary to
the preceding work, the channel is allowed to deform elastically in response to fluid and
osmotic pressure variations along the channel walls. The steady state distribution of ions
is described by the equilibrium PB equation, and the neo-Hookean model is employed for
the elastic polymer walls. The chapter is organized as follows: Section 7.1 describes the
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physical system and contains a comparison to IMPC devices. A 1-D model for the system is
derived in Section 7.2. Section 7.3 presents the numerical method used to solve the model.
Subsequently, Section 7.4 contains results and discussion. The chapter is concluded with a
summary of results in Section 7.5.

Figure 7.1: Schematic illustration of (a) the swelling of a single closed pore and (b) the
electroactuating system studied here.

7.1 Model system

Consider a closed, negatively charged and deformable nanochannel of radius Rp and length
Lp containing a binary 1:1 electrolyte solution sandwiched between two metal electrodes.
A majority of counter-ions occupy regions close to the channel walls. When a voltage bias
is applied at the electrodes, the electric field drives cations towards the cathode. Migrating
cations drag the water molecules along, causing osmotic pressure changes along the channel.
More osmotic pressure exerted on the walls near the cathode leads to swelling in that region,
and contraction of the polymer walls near the anode results from ion (only relatively few
co-ions are present) and water depletion (see Figure 7.1(a)).

In this study, it is essential to distinguish our model actuating system from the IMPC
actuator. In the IMPC system, the metal electrodes are coated on the membrane surface
and anions are immobile fixed charges attached to the polymer backbone, leading to more
mobile cations than mobile anions in the solution. Cations, which are abundant, drag
fluid molecules along with them towards the cathode side when an electric field is applied
at the electrodes. Immense electroosmotic and fluid pressure at the cathode side lead to
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bending of the polymer toward the anode. The model system considered herein consists of
a soft membrane (e.g., Nafion), clamped between two mesh electrodes. The membrane is
assumed, for simplicity, to consist of straight parallel pores, running perpendicular to the
electrode interfaces. We assume further that all pores are equal and organized in an ordered
2-D lattice in the electrode planes. When a voltage is applied at the electrodes, each pore,
seen as a unit cell in the whole system, follows the same mechanoelectrical transduction
mechanism illustrated in Figure 7.1(a). Ion-induced electromechanical bending takes place
at the channel walls and at the electrodes. Using this unit cell model, the deformation of
each pore scales up to the whole system, resulting in a configuration similar to Figure 7.1(b).

7.2 Model in 1-D

As hinted in Chapter 4, numerically solving the full 2-D continuum-based problem can
pose an enormous challenge if the radius of the channel is not uniform. Seeking solutions
of the system at the single pore level, we reduce the 2-D problem to a 1-D problem which
can be readily solved numerically, and even analytically (this is beyond the scope of this
work). The methodology hinges on the assumption that the channel is weakly charged. We
are only concerned about equilibrium solutions. The 2-D system is framed in the domain
r ∈ [0, Rp(z)] and z ∈ [−Lp/2,+Lp/2], i.e., we let the origin be located at the center of the
channel. Hence, the channel can change its shape only in the radial direction. In deriving
the model equations, the channel is assumed to be long enough that each electrode surface
can be taken to be flat.

7.2.1 Theory for the electric potential in 1-D

At equilibrium, the charge distribution in the closed system is described by the Poisson-
Boltzmann equation,

∇ · (εε0∇ψ) = 2zqc0 sinh
(
zqψ

kBT

)
, (7.1)

because ionic and fluid fluxes all vanish. In 2-D and for constant permittivity, we have

1
r

∂

∂r

(
r
∂ψ

∂r

)
+ ∂2ψ

∂z2 −
2zqc0
εε0

sinh
(
zqψ

kBT

)
= 0 , (7.2)

with the electroneutrality boundary condition at the channel walls

∂ψ

∂r

∣∣∣∣
r=Rp

= σp
εε0

. (7.3)
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The channel considered here is weakly charged, and we expect small radius perturbations.
Hence, the axial contribution to (∇ψ · n̂)

∣∣
Rp

= σp
εε0

is neglected, and Equation (7.3) is
presumed to be sufficient to enforce vanishing electric fields outside the channel.

The left and right electrodes sit at potentials ψ = VL and ψ = VR, respectively, and the
potential difference between the electrodes is ∆V = VR − VL. Charge balance between the
inner surfaces of each electrode is demanded for self-consistency and electroneutrality,∫

z=−Lp/2

∂ψ

∂z
rdr =

∫
z=Lp/2

∂ψ

∂z
rdr . (7.4)

As discussed previously, c0 in Equation (7.2) is the reference concentration when c+ = c− =
c0 and the electric potential is set to zero there. Apart from ψ and c±, two further functions
must be solved for, viz, the channel radius Rp(z) and fluid pressure on the wall. Hence, it is
helpful to define the reference radius and reference pressure at the wall. Define the reference
R0 as the radius when the wall is in the undeformed state. At Rp = R0, the surface charge
density is σ0. The surface charge density at Rp(z) is modelled by

σp(z) = σ0

(
R0
Rp

)α
, (7.5)

where α is the surface charge reorganization parameter, the details of which are contained
in Chapter 4. The reference for pressure will be discussed in Section 7.2.2.

We use these reference parameters to make Equation (7.2) dimensionless by introducing
the scheme,

R̃ = Rp
R0

, z̃ = z

R0
, r̃ = r

R0
, ψ̃ = zqψ

kBT
, c̃0 = 2(zR0q)2c0

εε0kBT
, σ̃ = zR0qσ0

εε0kBT
, (7.6)

and by using the linear approximation sinh(ψ̃) ≈ ψ̃, valid when ψ � kBT/zq. Equation
(7.2) then takes the dimensionless form,

∂

∂r̃

(
r̃
∂ψ̃

∂r̃

)
+ ∂2ψ̃

∂z̃2 − c̃0ψ̃ = 0 . (7.7)

Note that the linear approximation sinh(ψ̃) ≈ ψ̃ requires that the channel is weakly charged
and the applied voltage bias should be less than kBT/zq. In contrast, high values of σp can
result in high potentials developing inside the channel. Equation (7.7) is solved, along with

∂ψ̃

∂r̃

∣∣∣∣
r̃=R̃

= σ̃R̃−α , (7.8)

in the domain r̃ ∈ [0, R̃(z̃)] and z̃ ∈ [−`,+`], where ` = Lp/R0.
From the previous chapters, we noted that the electric potential profile along r̃ follows a

smooth function that ranges from nearly quadratic to highly concave-shaped as the surface
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charge density is varied. It is therefore reasonable to approximate ψ̃ as a polynomial function
of r̃ whose coefficients are functions of z̃,

ψ̃(r̃, z̃) =
∞∑
i=0

ψ̃2i(z̃)r̃2i = ψ̃0(z̃) + ψ̃2(z̃)r̃2 + ψ̃4(z̃)r̃4 + ψ̃6(z̃)r̃6 + · · · . (7.9)

Odd-power terms are assumed to vanish based on the analytical form of ψ(r) encountered
in Chapter 3. We will consider terms up to 6th order, based on the assumption that the
functions ψ̃i converge fast to zero as i is increased

ψ̃ = ψ̃0 + ψ̃2r̃
2 + ψ̃4r̃

4 + ψ̃6r̃
6 . (7.10)

Equation (7.8) enables us to eliminate ψ̃6 and write it in terms of R̃, ψ̃2 and ψ̃4:

ψ̃6(R̃) = −2ψ̃2R̃+ 4ψ̃4R̃
3 − σ̃R̃−α

6R̃5 . (7.11)

Substituting Equation (7.10) into Equation (7.7) and equating powers of r̃ yields the fol-
lowing system of second order ODEs in ψ̃0, ψ̃2 and ψ̃4:

r̃0 : d2ψ̃0
dz̃2 = c̃0ψ̃0 − 4ψ̃2 , (7.12)

r̃2 : d2ψ̃2
dz̃2 = c̃0ψ̃2 − 16ψ̃4 , (7.13)

r̃4 : d2ψ̃4
dz̃2 =

( 12
R̃4

)
ψ̃2 +

(
24 + c̃0R̃

2

R̃2

)
ψ̃4 −

6σ̃
R5+α . (7.14)

To satisfy ψ̃ = ṼL and ψ̃ = ṼR at z̃ = `/2 and z̃ = −`/2, respectively, the functions ψ̃2, ψ̃4

and ψ̃6 should vanish at the channel ends. The boundary conditions are thus

ψ̃2 = ψ̃4 = 0 at z̃ = ± `2 , (7.15)

ψ̃0 = ṼR at z̃ = + `

2 , (7.16)

ψ̃0 = ṼL at z̃ = − `2 , (7.17)

with ∆Ṽ = ṼR − ṼL. The condition given in Equation (7.4) leads to

[
24R̃α ∂ψ̃0

∂z̃
+ 10R̃α+2 ∂ψ̃2

∂z̃
+ 4R̃α+4 ∂ψ̃4

∂z̃
+
[
8R̃α+1(ψ̃2 + ψ̃4R̃

2)− (5 + α)σ̃
] ∂R̃
∂z̃

] ∣∣∣∣∣
z̃=−`/2

=
[
24R̃α ∂ψ̃0

∂z̃
+ 10R̃α+2 ∂ψ̃2

∂z̃
+ 4R̃α+4 ∂ψ̃4

∂z̃
+
[
8R̃α+1(ψ̃2 + ψ̃4R̃

2)− (5 + α)σ̃
] ∂R̃
∂z̃

] ∣∣∣∣∣
z̃=+`/2

.

(7.18)
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The 2-D problem has been reduced to a 1-D problem given by Equations (7.12)–(7.14), along
with the boundary condition given by Equations (7.15)–(7.18). An additional constraint is
required to ensure that the total volume inside the closed channel does not change from the
undeformed configuration as the channel swells at one side and shrinks at the other side.
This volume conservation constraint takes the dimensionless form,

∫ `/2

−`/2
R̃2(z̃) dz̃ − ` = 0 . (7.19)

We have six conditions for three 2nd-order ODEs and are now, in principle, in a position to
solve the problem. Note that conditions (7.18) and (7.19) are non-local. However, a swelling
model remains to be defined.

7.2.2 Swelling model

Mathematical modelling of the mechanical behaviour of the channel wall’s polymer mate-
rial focuses, to a large extent, on the development of an appropriate function that couples
the pressure on the channel walls to the the channel radius. The undeformed configura-
tion has the radial coordinate defined as r0, radius R0 and channel wall thickness H0, i.e.,
R0 ≤ r0 ≤ R0 + H0. The deformed configuration has radius Rp and wall thickness H, i.e.,
Rp ≤ r ≤ Rp + H. This is illustrated in Figure 7.2, where a cross-section of the channel
is shown. To conduct the stress analysis of the channel walls, we assume the channels are
thick and undergo elastic deformation.

Figure 7.2: Stress analysis in a cross-section of the cylindrical channel.

For an element of the membrane, we formulate the Biot stress tensor and Green’s deforma-
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tion tensor, respectively, describing the forces in action,

σ =


σrr 0 0
0 σθθ 0
0 0 σzz

 , λ =


λ 2
r 0 0
0 λ 2

θ 0
0 0 λ 2

z

 , (7.20)

where the σii’s are the principal stresses and λi’s are the principal stretches in radial,
azimuthal and axial directions.

According to the assumption that the channel material is incompressible, we have the
constraint λrλθλz = 1. From geometry, λθ = r/r0 must hold. Assuming that the channel is
long enough so that λz remains almost constant after deformation, i.e., λz = 1, and using
the incompressibility constraint, we have

λθ = r

r0
, λr = r0

r
, λz = 1 . (7.21)

The standard relation between the stress and deformation tensors is given by

σii = ∂W

∂λi
− p/λi (i = r, θ, z) , (7.22)

where p is the undetermined Lagrange multiplier, taken as the arbitrary hydrostatic pressure
which arises due to the condition of incompressibility, and W is the strain-energy function.
The membrane is assumed to be a neo-Hookean material, whose strain-energy function takes
the simple form,

W (λr, λθ, λz) = Y

2
(

λ
2
r + λ

2
θ + λ

2
z − 3

)
, (7.23)

where Y is the linear elastic shear modulus.
At equilibrium, the membrane configuration is described by the Cauchy momentum

equation,
∇ · σ = 0 . (7.24)

Due to symmetry, Equation (7.24) gives only one nontrivial equation,

dσrr
dr

+ 1
r

(σrr − σθθ) = 0 , (7.25)

for any point in the element located at radial coordination r. Inner walls of the channel
experience stress due to the fluid pressure pfluid at the wall, while the outer walls are traction-
free (assume no applied pressure from outside the channel):

σrr

∣∣∣∣
r=Rp

= pfluid

∣∣∣∣
r=Rp

, σrr

∣∣∣∣
r=Rp+H

= 0 . (7.26)
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Using Equations (7.21), (7.22) and (7.23), along with the boundary conditions (7.26), and
integrating Equation (7.25) over r/r0 ∈ [Rp/R0, (Rp +H)/(R0 +H0)], one obtains

pfluid

∣∣∣∣
r=Rp

= Y

2

[(
Rp +R0H0/Rp

R0 +H0

)2
−
(
Rp
R0

)2
]
− Y ln

[
R0(Rp +R0H0/Rp)

Rp(R0 +H0)

]
, (7.27)

where we used R0H0 = RpH for the incompressible wall so as to eliminate H. Using the
dimensionless scheme,

Ỹ = Y

c0kBT
, p̃fluid = pfluid

c0kBT
, h̃ = H0

R0
, (7.28)

Equation (7.27) takes the dimensionless form ,

p̃fluid

∣∣∣∣
r̃=R̃

= Ỹ

1
2

(R̃+ h̃/R̃

1 + h̃

)2

− R̃2

− ln
[
R̃+ h̃/R̃

R̃+ h̃R̃

] . (7.29)

The right-hand side of Equation (7.29) is the elastic pressure, pelastic , giving the elastic
response to the fluid pressure so that the balance p̃fluid = p̃elastic is achieved at the channel
walls. A plot of p̃elastic as a function of R̃ is shown in Figure 7.3, for h̃ = 0.1, 0.5 and 1. The
elastic pressure is such that it becomes zero at R̃ = 1, corresponding to the undeformed
configuration.

The fluid pressure at the wall can also be described as resulting from local electrokinetics
and can be expressed in terms of the electric potential at the channel’s inner surface by
appealing to the Stokes equation at equilibrium, where u = 0:

∇pfluid = −qc∇ψ . (7.30)

Integrating Equation (7.30) along r from the potential reference point ψ = 0 to the channel
wall, one obtains the dimensionless equation,

p̃fluid

∣∣∣∣
r̃=R̃

= p̃0 − ψ̃2
∣∣∣∣
r̃=R̃

. (7.31)

Note that the linear approximation c̃ = c̃0ψ̃ was used (see Equation (7.7)). In Equation
(7.31), p̃0 is the fluid pressure (in dimensionless form) at the reference ψ̃ = 0, and it can be
found by using the condition p̃fluid

∣∣
r̃=1 = 0. This gives p̃0 = ψ̃2∣∣

r̃=1.

7.3 Numerical methods

We summmarize the 1-D system of differential-algebraic equations for ψ̃0, ψ̃2, ψ̃4 and R̃

that need to be solved:
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at R̃ = 1: p̃elastic = 0
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Figure 7.3: The elastic response of the channel vs. the radius.

d2ψ̃0
dz̃2 = c̃0ψ̃0 − 4ψ̃2 , (7.32a)

d2ψ̃2
dz̃2 = c̃0ψ̃2 − 16ψ̃4 , (7.32b)

d2ψ̃4
dz̃2 =

( 12
R̃4

)
ψ̃2 +

(
24 + c̃0R̃

2

R̃2

)
ψ̃4 −

6σ̃
R5+α , (7.32c)

ψ̃2∣∣
r̃=1 − ψ̃

2∣∣
r̃=R̃ = Ỹ

1
2

(R̃+ h̃/R̃

1 + h̃

)2

− R̃2

− ln
[
R̃+ h̃/R̃

R̃+ h̃R̃

] , (7.32d)

where ψ̃(r̃) = ψ̃(ψ̃0(z), ψ̃2(z), ψ̃4(z), r̃) according to Equation (7.10). Equations (7.32) go
along with the boundary conditions

ψ̃2 = ψ̃4 = 0 at z̃ = ± `2 , (7.33a)

ψ̃0 = ṼR at z̃ = + `

2 , (7.33b)

ψ̃0 = ṼL at z̃ = − `2 , (7.33c)
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[
24R̃α ∂ψ̃0

∂z̃
+ 10R̃α+2 ∂ψ̃2

∂z̃
+ 4R̃α+4 ∂ψ̃4

∂z̃
+
[
8R̃α+1(ψ̃2 + ψ̃4R̃

2)− (5 + α)σ̃
] ∂R̃
∂z̃

] ∣∣∣∣∣
z̃=−`/2

=
[
24R̃α ∂ψ̃0

∂z̃
+ 10R̃α+2 ∂ψ̃2

∂z̃
+ 4R̃α+4 ∂ψ̃4

∂z̃
+
[
8R̃α+1(ψ̃2 + ψ̃4R̃

2)− (5 + α)σ̃
] ∂R̃
∂z̃

] ∣∣∣∣∣
z̃=+`/2

,

(7.33d)

and constraint (7.19). The swelling model and the scaling of the surface charge density
∼ 1/R5+α make the model nonlinear, even in the linear regime for ψ. The equations are
solved using the finite element method implemented in Comsol Multiphysics. The ‘General
Form PDE’ interface is used to implement Equations (7.32a)–(7.32c), and the ‘Domain
ODEs and DAEs’ interface is used to implement Equation (7.32d). The ‘Global Constraint’
function is used to implement all constraints. Boundary conditions are enforced using the
standard ‘Dirichlet and flux’ functions under the ‘General Form PDE’ interface.

7.4 Results and discussion

We first consider a rigid channel characterized by R̃ = 1. This conforms to the 2-D problem
investigated in Chapter 6. Figure 7.4 shows the functions ψ̃0, ψ̃2, ψ̃4 and ψ̃6 along the channel
for different values of σ̃. We observe that high |σ̃| values lead to high potentials along the
channel. Equation (7.10) relies on the assumption that ψ0 ≥ ψ2 ≥ ψ4 ≥ ψ6. However, when
|σ̃| is high, this assumption is not valid near the channel ends, where ψ̃6 > ψ̃4. Hence, it is
essential that the channel is weakly charged for the 1-D model to hold.

We now analyse the validity of the 1-D model in detail. Figure 7.5 shows the electric
potential profiles across the center of the channel (z̃ = 0). Results are compared with those
from the 2-D model from Chapter 6. We notice an agreement between the two results for
all three values of σ̃ explored. Hence, the sensitivity of our model to σ̃ is only noticeable
near the channel ends but not at the center of the channel.

Upon deformation, the total number of ions NT in the channel should be conserved.
This is also required when one does parametric studies of the problem. This constraint is
enforced via

NT =
∫

Ω
c(r)d3r ≈ qz2c0

kBT

∫ Lp/2

−Lp/2

∫ Rp

0
ψ(r, z)rdrdz , (7.34)

which can be expressed in dimensionless form as

ÑT =
∫ `/2

−`/2

[
4[(6ψ̃0 + 3ψ̃2 + 2ψ̃4)R̃5 − 2ψ̃4R̃

3 − ψ2R̃]R̃α + σ

48R̃5+α

]
dz̃ , (7.35)

where ÑT = NT /c0R
3
0.

Figure 7.6 shows the variation of the channel radius R̃ along the channel’s length after
deformation. We see deformations up to the order of 10%. The parameters used correspond
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Figure 7.4: Typical axial profiles of the functions ψ̃0, ψ̃2, ψ̃4 and ψ̃6. Different curves
represent different values of σ̃ shown in the legend of (a). Parameters used: c̃0 = 1, R̃ =
1, ṼR = 0.2, ` = 20.

to surface charge densities ∼ 1 mC/m2, voltage bias ∼ 1 mV, ionic concentration ∼ 10
mM. One noteworthy observation is that a weakly charged channel deforms more, with
deformation more pronounced near electrodes. This can be argued from the fact that at
low |σ̃| more counterions are drawn towards the cathode than towards the channel walls.
Also, the anode is ion-deficient. This leads to more pronounced swelling and shrinkage near
the cathode and anode, respectively. For high |σ̃|, however, the channel walls draw more
ions and swelling near the channel center is also realized. We notice this with the black
curve in Figure 7.6, which floats above 1 at the channel center. Near the channel ends,
deformations are not as predominant as for the case when |σ̃| is low. Higher ∆Ṽ leads to
high deformations near the electrodes, as anticipated. Apparently, deformations are more
sensitive to ∆Ṽ than the other parameters explored. Note that in all calculations we used
α = 1 to conserve the total amount of charge on the channel walls, since Lp is assumed
constant.

118



σ̃ = −0.01

(a)
-0.017

-0.018

-0.019

-0.02

-0.021

ψ̃

-1.0 -0.5 0.0 0.5 1.0

r̃

1-D model

2-D model

σ̃ = −0.05

(b)

-0.105

-0.1

-0.095

-0.09

-0.085

ψ̃

-1.0 -0.5 0.0 0.5 1.0

r̃

1-D model

2-D model

σ̃ = −0.1

(c)

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

ψ̃

-1.0 -0.5 0.0 0.5 1.0

r̃

1-D model

2-D model

Figure 7.5: Typical radial profiles of the electric potential ψ̃(r̃) at z̃ = 0 for (a) σ̃ = −0.01,
(b) σ̃ = −0.05 and (c) σ̃ = −0.1. Red dots show numerical results from the full 2-D model.
Parameters used: c̃0 = 1, R̃ = 1, h̃ = 0.5, ` = 20.

From Figure 7.6(c), we see that c0 only affects the decay length of the curvature in
R̃(z), as measured from the electrodes. At low c0, the axial decay length of ψ near the
electrodes becomes larger, implying a slower decay of ionic distributions near the channel
ends. Consequently, the decay length of R̃(z) will be increased. Finally, Figure 7.6(d) shows
that at very low aspect ratio, the channel deforms linearly along z, assuming a conical shape.
It is essential to underline that all results, with the exception of Figure 7.6(b), are found
while enforcing ∆Ṽ = 0.2, and the constraint in Equation (7.35) is relaxed for results in
Figure 7.6(c). Also, the analysis is restricted to the linear regime which includes any small
pertubations around the equlibrium channel configuration ∆Ṽ = 0, r̃(z̃) = 1.

One means of understanding the nature of the deformation is by looking at the channel
displacement |∆R̃| = |R̃− 1| at the ends (z̃ = ±`/2). This gives the extent of opening and
closing of the channel at the cathode and anode ends, respectively. Plots of |∆R̃| are shown
in Figure 7.7 as continuous functions of σ̃, ∆Ṽ , c̃0 and `. With the exception of Figure
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Figure 7.6: Radial deformation of the channel as a function of z̃ for different values of (a)
σ̃, (b) ∆Ṽ , (c) c̃0 and (d) `. Parameters used: σ̃ = −0.01, c̃0 = 1, ∆Ṽ = 0.2, h̃ = 0.5, ` =
20, α = 1.

7.7(b), displacement changes along each parameter sweep are very small, of the order of
1%. However, one can learn a lot from the qualitative behaviour of each plot. The opening
of the cathode end is more sensitive to σ̃, compared to the closing of the anode end (see
Figure 7.7(a)). Both ends have linear sensitivity to σ̃. From Figure 7.7(b), we observe that
|∆R̃| is strongly and equally sensitive to ∆V for both ends of the channel. Increasing c̃0

forces the cathode end to start shrinking and the anode end to start opening (see Figure
7.7(c)). This drives the channel to the state in which the highly abundant ions occupy all
regions in the channel. As the channel’s aspect ratio increases, the channel ends open and
close less due to reduced overall concentration of ions within the channel (see Figure 7.7(d)).
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Figure 7.7: The influence of (a) σ̃, (b) ∆Ṽ , (c) c̃0 and (d) ` on the opening of the cathode
end and shrinkage of the anode side of the channel. The hiccup in the data seen in (a)
comes from an unidentified numerical error. Parameters used: σ̃ = −0.01, c̃0 = 1, ∆Ṽ =
0.2, h̃ = 0.5, ` = 20, α = 1.

7.5 Summary

As an extension to the previous chapter, this chapter provided a preliminary exploration
of the behaviour of a deformable nanochannel of circular cross section, sealed at both ends
by metal electrodes under external voltage bias. Based on a polynomial expansion of the
electric potential in the radial coordinate, a 1-D model was derived that couples the equi-
librium distribution of ions and the elastic deformations of the neo-Hookean channel walls
in response to fluid pressure on the surface. Numerical results show agreement between the
1-D model and the full 2-D model studied in Chapter 6 for the case of a rigid channel with
uniform radius. Channel deformations are sensitive to the surface charge density on the
channel walls, the voltage bias between electrodes, the number of ions in the channel, and
the channel geometry. We explored how sensitive the extent of channel opening and closing
are to these parameters. Somewhat surprisingly, weakly charged channel walls deform more
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than strongly charged ones. Compared to all other explored parameters, we found that the
deformations are most sensitive to the voltage bias.
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Chapter 8

Conclusions and Outlook

In this final chapter, the main findings of the work are summarised and discussed, and
suggestions are presented for future studies.

8.1 Conclusions

In this thesis, theoretical and numerical investigations of electrokinetic effects in soft cylin-
drical nanochannels were carried out. The aim was to provide a theoretical framework
through which one can obtain a comprehensive understanding of the coupling between
electrokinetic transport, double-layer charging and wall deformations in nanochannels em-
bedded in soft polymeric membranes. To reach this goal, the work provided in this thesis
is divided into four parts.

In the first part (Chapter 3), numerical calculations using the coupled Poisson-Nernst-
Planck and Stokes equations were conducted to quantify ion and fluid transport in a finite,
cylindrical and rigid nanochannel connected to cylindrical electrolytic reservoirs. Results
from this part of the thesis served as a guideline for theoretical investigations in later com-
ponents of the thesis. We presented numerical results from COMSOL for the fluid pressure,
velocity profiles and ionic current within the channel. The study substantiates that high
surface charging and large channel widths give rise to plug-like and concave-shaped fluid
velocity profiles across the channel. We observed the emergence of the Donnan potential
gradient along the channel, which manifests as a fluid pressure build-up in the channel’s in-
terior. Calculations of the ionic current reveal that advective current flow dominates at the
EDL regions in the vicinity of the channel walls, while eloctromigration current dominates
at the center of the channel. Results manifest a pronounced influence on the overall current
of the channel’s surface charge density, the bulk concentration and the channel size. The
channel was found to exhibit a high degree of perm-selectivity at high surface charge densi-
ties, low bulk concentrations and small channel sizes. Numerical results match conductance
experimental data available from the literature.
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In the second part of the thesis (Chapters 4 and 5), the transport of protons and water
in a long, negatively charged channel was studied from a theoretical point of view. At
the outset, we presented simplifications of the otherwise complex continuum equations for
a uniform radius and long channel, enabling us to access analytical solutions and explore
electroneutrality properties and their impact on the transport. Next, a theoretical model was
developed that describes nonlinear coupling between wall deformation and water and proton
flows in a charged, deformable nanochannel whose viscoelasticity is governed by the Kelvin-
Voigt model. Using continuum mean-field theories for mass and momentum conservation
of the solid-liquid coupled system, a set of one-dimensional nonlinear partial differential
equations was derived to capture the dynamics of wall deformations. For elastic but non-
viscous walls undergoing small deformation, the problem simplifies to one of advection-
diffusion type which is analytically solvable at first-order perturbation.

Perhaps the most striking finding of this work is the evidence for a rich coupling between
the elasticity and charge distribution of the channel walls, which vanishes in the limit of
weakly charged channels. This coupling significantly alters the quantitative response of the
walls’ relaxation dynamics and the channel’s electrokinetic transport, thereby having im-
portant consequences for the description and understanding of electrokinetic flow through
charged, elastic media. Within the framework of nonequilibrium thermodynamics, compact
formulae are derived for the electrokinetic transport parameters in terms of Onsager phe-
nomenological coefficients and, subsequently, for the energy conversion efficiency. Results
confirm that Onsager’s reciprocity principle holds for rigid channels. However, the method-
ology used to derive a 1D formulation of the problem does not maintain the symmetry
of Onsager’s matrix when the channel is deformed, owing to the introduction of a ‘ficti-
tious’ diffusion term of counter-ions. Furthermore, the model predicts a reduced efficiency
of electrokinetic energy harvesting for channels with soft deformable walls.

The third part (Chapter 6) of the thesis took a different direction from the previous
chapters. Instead of focusing on transport phenomena in an open nanochannel, we directed
our attention to the equilibrium structure of the electric double layers. This was achieved by
considering a physical situation where the charged channel is finite and sealed at both ends
by metal electrodes under external voltage bias. Size-modified mean-field equations were
used to account for finite ion sizes, subject to a self-consistent electroneutrality condition
which demands that the net charge on both electrode surfaces balances. The time evolution
of the formation and relaxation of the double layers was explored. Moreover, equilibrium
ion distributions and differential capacitance curves were investigated as functions of the
pore surface charge density, electrolyte concentration, ion sizes and pore size. Asymmetric
properties of the differential capacitance curves reveal that the structure of the double layer
near each electrode is controlled by the charge concentration along the pore surface and
by charge asymmetry in the electrolyte. These results carry implications for accurately
simulating cylindrical capacitors.
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The last part (Chapter 7) of the thesis added deformations on the channel walls to
the system of a charged channel that is sealed at both ends by metal electrodes under
external voltage bias. Motivated by ionic metal polymer composite actuators, the goal was
to transform the sealed channel into a surface-charge-mediated actuating system that has
the capability to swell and shrink in response to counter-ion flooding at different regions
of the channel. To simplify the 2-D equations for the model system, the electric potential
was approximated as a polynomial expansion in the radial coordinate, whose coefficients
are functions of the axial coordinate. Assuming a weakly charged channel whose walls are
neo-Hookean, this enabled us to reduce the 2-D model to a 1-D system of differential-
algebraic equations. Numerical solutions of the 1-D model agree with the full 2-D model.
Results demonstrate that channel deformations are sensitive to the surface charge density
on the channel walls, the voltage bias between electrodes, the number of charged species
in the channel, and the channel geometry. We further explored the opening and closing at
the channel ends. We found that weakly charged channels deform more than the strongly
charged ones, and deformations are more sensitive to the voltage bias than the surface
charge density on the channel walls.

8.2 Outlook

There are a number of possible directions for further study. Much attention could be di-
rected to running more numerical simulations for deformational properties of the channel.
In this work, numerical work that involves the full channel deformations was avoided. In-
stead, we opted to reduce the dimensionality of the model first. Simulating the 2-D model
equations can be time-consuming and computationally costly since one has to take care of
moving boundaries. In the future, with available time and computational resources, numer-
ical simulations of the full model can be conducted. This will enable us to relax some of
the assumptions proposed in this work and compare new findings to the results we have
obtained so far.

In Chapter 4, we carefully derived a 1-D model for deformations of the channel and
found an ‘advection-diffusion’ type equation. Further work could involve finding travelling
wave solutions for the channel deformations. Intuition tells us that such solutions could
be obtainable, albeit restricted to a certain domain of parameters or initial conditions.
Likewise, we can attempt to find out if shock waves are characteristic of the deformations.
If travelling waves are obtained, one can find their properties, such as the wave speed, as
functions of the charging properties of the channel.

Collaborations with experimentalists can be helpful in assessing the validity of our re-
sults pertaining to channel deformations. So far, experimental work in the literature does
not focus on the coupling between transport and deformations in nanochannels. The last
chapter, for instance, introduced a model system that can use a sealed cylindrical channel
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as an electroactuator. This system can be studied experimentally and can potentially find
applications in designing new nano-sensitive actuating devices.
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