
Implementing Belnap-Logical Conflation
and Implication Operators in Answer Set

Programming

by

Zhao Yi Han

B.Sc., University of British Columbia, 2016

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

c© Zhao Yi Han 2020
SIMON FRASER UNIVERSITY

Spring 2020

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Zhao Yi Han

Degree: Master of Science (Computing Science)

Title: Implementing Belnap-Logical Conflation and
Implication Operators in Answer Set Programming

Examining Committee: Chair: David Mitchell
Associate Professor

James Delgrande
Senior Supervisor
Professor

Fred Popowich
Supervisor
Professor

Aaron Hunter
External Examiner
Instructor
School of Computing
British Columbia Institute of Technology

Date Defended: March 19, 2020

ii

Abstract

Two types of negation are allowed in answer set programming (ASP), default negation and
classical negation. When using two-valued logic as its basis, the presence of classical negation
in ASP can lead to gluts (both true and false) and gaps (neither true nor false), which are
handled in unintuitive ways. Belnap’s four-valued logic, with gluts and gaps as truth values,
is a more intuitive basis for ASP. This thesis examines the intuition behind Belnap logic,
showing that the conflation operator, which has no obvious intuitive meaning, is central to
the representation of default negation in Belnap logic. There is no single correct implication
operator in Belnap logic that can be used in ASP rules, so we examine a number of different
implication operators in Belnap logic, before presenting a new implication operator that
generalizes them and showing how this implication operator can be implemented in ASP
without changing its specifications.

Keywords: Logic programming; answer set programming; paraconsistent logic; Belnap
logic

iii

Table of Contents

Approval ii

Abstract iii

Table of Contents iv

List of Tables v

List of Figures vi

1 Introduction 1

2 Belnap’s Four-Valued Logic 4
2.1 Truth, Falsity, and Truth Values . 4
2.2 Operators in Belnap Logic . 7

3 Default Negation in Four-Valued Answer Set Programming 14
3.1 Logic Programming and Stable Model Semantics 14
3.2 Default Negation in Four-Valued ASP . 20

4 Implications in Four-Valued Answer Set Programming 23
4.1 The Basic Implication Operator . 23
4.2 Other Implication Operators in Belnap Logic 26
4.3 General Unidirectional Implication Operators in Belnap Logic 31
4.4 Implementation of General Unidirectional Implications and Contraposition

in ASP . 36

5 Conclusion and Further Research 44

Bibliography 46

iv

List of Tables

Table 2.1 The symbols and names for the infimum, supremum, and inversion
operators of the truth and information partial orderings in Belnap logic. 8

Table 2.2 The truth tables of conjunction and its decomposition. 9
Table 2.3 The truth tables of disjunction and its decomposition. 10
Table 2.4 The truth tables of negation and its decomposition. 10
Table 2.5 The truth tables of consensus and its decomposition. 11
Table 2.6 The truth tables of gullibility and its decomposition. 11
Table 2.7 The truth tables of conflation and its decomposition. 11

Table 3.1 The truth tables of default negation and its decomposition. 21

Table 4.1 The truth tables of →t and its decomposition. 26
Table 4.2 The truth tables of →cmi and its decomposition. 27
Table 4.3 The truth tables of →le and its decomposition. 29
Table 4.4 The truth tables of →si and its decomposition. 30

v

List of Figures

Figure 2.1 A double Hasse diagram of 4 and its two partial orderings. 7

vi

Chapter 1

Introduction

Logic programming is a highly robust field today, useful in artificial intelligence and many
other fields where the domain can be represented by a set of yes/no values. One of its
main advantages is that it satisfies the knowledge representation hypothesis, where the
logic program contains symbols that transparently and explicitly represent the knowledge
that it reasons about, compared to approaches like neural networks that are more opaque
and “black box”-like. Most forms of logic programming use classical (propositional or first-
order) logic as a base, and are effectively classical logic with specific constraints that limit its
expressiveness (mainly based on Horn clauses by Horn [12]), because fully general classical
logic can be computationally intractable (exponential or worse) to solve, whereas more
restricted logic programming is guaranteed to be solvable in more reasonable amounts of
time (such as NP and co-NP); the computational complexity of logic programming is beyond
the scope of this thesis and can instead be found in works like Faber and Leone [5]. Some
forms of logic programming are also non-monotonic, meaning that they are able to draw
tentative conclusions that can be later retracted upon obtaining some counter-evidence, a
capability that classical logic itself lacks.

Classical logic suffers from the principle of explosion, where it becomes possible to prove
every single possible logical formula if the premises are inconsistent; a single contradiction
causes the entire domain to collapse into incoherent triviality and uselessness. This is es-
pecially problematic because it is often not possible to tell whether a set of premises is
inconsistent, as they may not appear to directly contradict one another at the first glance,
but can have further logical consequences that turn out to be inconsistent with each other.
The premises could have long since been integrated into a knowledge base and used to make
conclusions, without knowing that all conclusions made after the inclusion of said premises
are meaningless due to the premises being secretly inconsistent. Furthermore, the knowledge
base may accept input from multiple different sources, necessitating mechanisms to handle
inconsistencies one way or another. Paraconsistent logic is a field of logic that attempts to

1

avoid the principle of explosion, allowing the logic to prove certain contradictions without
necessitating that everything else in the domain collapses into triviality; an overview of this
field can be found in Priest [16]. Since logic programming is usually based on classical logic,
it usually also suffers from the principle of explosion, so it is beneficial to have a form of
logic programming that uses some paraconsistent logic as a basis instead of classical logic.
Ideally, a contradiction should be detected and potentially given some specific treatment,
but it should not be able to affect other parts of the program that are not related to the
contradiction itself.

Answer set programming (ASP) is a non-monotonic logic programming paradigm, based on
stable model semantics originally proposed by Gelfond and Lifschitz [8], widely used in many
fields today, some of which are summarized by Falkner et al. [6]. The most basic version
of ASP contains default negation as a major feature, representing the lack of knowledge or
information on a subject. Most versions of ASP are usually extended by the ability to encode
classical negation separately from default negation [9], representing explicit knowledge that
something is false, as opposed to the lack of knowledge that something is true. The original
formulation of ASP with classical negation was intended to agree with classical logic as much
as possible, such that the principle of explosion is explicitly enforced by a separate clause
in every program. But aside from this explicit explosion clause, there is in fact nothing else
in ASP that causes explosive behavior even if a knowledge base contains both a formula
and its classical negation, due to the specific, limited way in which it can draw conclusions.
And in the absence of additional clauses to restrict this kind of behavior, it is also possible
for ASP to derive nothing at all about a formula, neither its explicit truth nor its explicit
falsity, another departure from classical logic where something must be either true or false.
The potential existence of gluts (both true and false) and gaps (neither true nor false) in
ASP suggests that it has much in common with Belnap’s four-valued logic [2], which will be
referred to as “Belnap logic” for the remainder of this thesis, a paraconsistent logic where
the glut and the gap are both truth values in their own right in addition to true and false;
it is used in some fields today, like an IT access control system by Bruns and Huth [3]. In
Belnap logic, the truth and falsity of any formula can be handled separately [4], which bears
great similarity to how ASP handles classical negation as well. A major part of this thesis
will be examining Belnap logic in detail and showing how it is an intuitive basis to be used
for ASP, with emphasis on the qualitative meanings of certain important nuances that,
from my knowledge, receive relatively little attention from other works involving Belnap
logic.

This thesis will be structured as follows:

• Chapter 2 introduces Belnap logic and examines it in detail, focusing on the qualitative
meanings of truth and falsity in knowledge representation, and the relations those

2

meanings have with the various operators in Belnap logic. It ends with remarks about
the lack of any obvious intuitive meaning for the “conflation” operator in Belnap
logic, and the lack of a single perfect Belnap logic generalization of classical two-
valued implication [11], two points that are central to the new findings of this thesis,
presented in the next two chapters.

• Chapter 3 introduces ASP, defining program rules, models, and stable models. Two
forms of negation in logic programming, default negation and classical negation, are
introduced. And the first of the two findings in this thesis will be presented, that the
conflation operator in Belnap logic is closely related to the concept of default negation.

• Chapter 4 focuses on the implication operator that is the backbone of every program
rule, and the second major finding of my thesis is presented. Past attempts of combing
ASP with Belnap logic exist, like Chen and Lin in 2016 [4], but they do not focus
on what type of implication in Belnap logic that is to be used, whereas we show
how several different types of implication operators in Belnap logic can all be used in
tandem in ASP. We also present a new generalized implication operator that subsumes
all implication operators examined in this chapter, and show how this generalized
implication can be easily implemented in ASP.

• Chapter 5 summarizes the findings and proposes some potential directions for further
research.

Before we begin, we should note that despite the focus on Belnap logic, the words “if”,
“then”, “iff”, “and”, “or”, and “not” in this thesis are to be interpreted as per classical logic.
Whenever these words themselves are used, they apply to binary mathematical conditions
that are either satisfied or not satisfied, where paraconsistency is not necessary or relevant,
as opposed to actual Belnap logical constructs that will be denoted with symbols like ∧ and
→. This is important as some of the conditions in this thesis are more intuitively defined
via constructing their complements, such as “P is not satisfied iff Q is satisfied”, where Q

is a condition that has already been defined, such that P is satisfied iff Q is not satisfied,
exactly like how biconditionals behave in classical logic.

Additionally, a distinction is made between what this thesis refers to as “propositions”
versus “theorems”. A proposition is a truth obtained from previous works in the field, while
a theorem is one of the new findings of this thesis.

3

Chapter 2

Belnap’s Four-Valued Logic

Unless stated otherwise, all information on Belnap logic in this chapter can be assumed to
be from Belnap [2].

2.1 Truth, Falsity, and Truth Values

Belnap’s four-valued logic centers around the set of four truth values 4 = {T, F, B, N}.
These truth values can be thought of as subsets of the set of classical truth values 2 = {t, f},
where T = {t}, F = {f}, B = {t, f}, and N = ∅; their meanings can be thought of
respectively as “true and not false”, “false and not true”, “both true and false”, and “neither
true nor false”. Immediately, we notice that the words “true” and “false” are used here as
if they are independent qualities, as opposed to negations of each other. All constructs in
Belnap logic are defined in terms of the qualities of “is true” and “is false”.

Definition 1. A literal is a positive literal or a negative literal. A positive literal is an atom
a, and a negative literal is an atom’s classical negation ¬a. An interpretation I is a set of
literals. A literal l is:

• true in I iff l ∈ I;

• false in I iff ¬l ∈ I.

Again, we notice that truth and falsity are completely independent conditions; being true
is not the same as being not false, and being false is not the same as being not true. There
is nothing stating that an interpretation cannot contain both, or neither, of an atom and
its negation. It is possible to be simultaneously true and false, but it is not possible to be
simultaneously true and not true, since it is not possible for I to simultaneously contain
and not contain a; it is similarly impossible to be simultaneously false and not false.

4

Another thing we emphasize is that, as originally formulated by Belnap, truth and falsity
in Belnap logic are epistemic, representing the user’s knowledge. The positive literals in an
interpretation I represents the atoms in I that the user “has been told” of as true, and the
negative literals being the set of atoms the user “has been told” of as false. A typical use
case is that the user receives information from a number of different sources that are each
individually trusted to be mostly reliable, but are not guaranteed to be consistent with each
other. For example, suppose that the user has two sources, Alice and Bob. Alice tells the
user that Microsoft stocks have risen today, while Bob tells the user that Microsoft stocks
have not risen today; the user then records in her database that she has been told conflicting
information about whether Microsoft stocks have risen today 1. On the other hand, neither
Alice nor Bob tells the user anything about Google stocks, so the user’s database contains no
information on whether Google stocks have risen today. Belnap logic is not concerned with
the ontological, i.e. “inherent” or “metaphysical” truth or falsity of any logical formula, and
therefore is not concerned with whether it is “possible” for a formula to be simultaneously
true and false, or neither true nor false; it is only concerned with potentially conflicting
or incomplete information about a formula’s truth and falsity. Belnap logic is completely
independent on the user’s views on dialetheism.

Definition 2. Let 2 = {t, f} be the set of classical truth values, and VI(a) ⊆ 2 be the truth
value of atom a in an interpretation I. Then,

• t ∈ VI(a) iff a ∈ I;

• f ∈ VI(a) iff ¬a ∈ I.

The possible values of VI(a) are given the following names:

• T = {t};

• F = {f};

• B = {t, f};

• N = ∅.

Definition 3. An operator Op is a function of arity n, domain 4n, and codomain 4. A
formula is of the form Op(A1, ..., An), where each of A1, ..., An is a formula; the most basic
formula is a single atom. As syntactic sugar, a unary operator can be written as Op a, while
a binary operator can be written as a Op b. In an interpretation I, VI(Op(A1, ..., An)) =
Op(VI(A1), ..., VI(An)), evaluated recursively until atoms are evaluated. A formula A is:

1Note that nothing precludes a single source from providing conflicting information to the user; it is
entirely possible for Alice to tell the user that Microsoft stocks have risen today but also that Microsoft
stocks have not risen today.

5

• true in I iff t ∈ VI(A);

• false in I iff f ∈ VI(A).

Definitions 2 and 3 form the basis of how Belnap truth values relate to truth, falsity, and
classical truth values.

Proposition 1. For a formula A in interpretation I:

• VI(A) = T iff t ∈ VI(A) and f /∈ VI(A) (i.e. T is true and not false);

• VI(A) = F iff t /∈ VI(A) and f ∈ VI(A) (i.e. F is not true and false);

• VI(A) = B iff t ∈ VI(A) and f ∈ VI(A) (i.e. T is true and false);

• VI(A) = N iff t /∈ VI(A) and f /∈ VI(A) (i.e. T is not true and not false);

• t ∈ VI(A) iff VI(A) ∈ {T, B} (i.e. T and B are true);

• f ∈ VI(A) iff VI(A) ∈ {F, B} (i.e. F and B are false);

• t /∈ VI(A) iff VI(A) ∈ {F, N} (i.e. F and N are not true);

• f /∈ VI(A) iff VI(A) ∈ {T, N} (i.e. T and N are true).

Proposition 1 is evident from Definitions 2 and 3. It provides a complete translation from
truth and falsity to truth values, and vice versa.

The Belnap truth values form a bilattice, a set with two partial orderings, each of which is
equipped with its own infimum and supremum operators [10]. For the purpose of this thesis,
we do not need to examine bilattices in general; the only parts of bilattices that are made
use of in the findings of this thesis are the two partial orderings of 4 (defined below) and
their respective operators (defined later in this chapter).

Definition 4. The set {T, F, B, N} has two partial orderings, ≤t and ≤i:

• In the truth ordering ≤t, T is the maximal element and F the minimal element. B
and N are each greater than F, less than T, and incomparable with each other.

• In the information ordering ≤i, B is the maximal element and N the minimal element.
T and F are each greater than N, less than B, and incomparable with each other.

The two partial orderings are illustrated in Figure 2.1, a double Hasse diagram where the
horizontal axis represents the truth ordering and the vertical axis represents the information
ordering.

The truth ordering is more accurately described as the “more true and less false” ordering.
For two atoms a and b, a ≤t b holds iff neither of the following two conditions hold: 1) a is

6

Figure 2.1: A double Hasse diagram of 4 and its two partial orderings.

true and b is not true; 2) a is not false and b is false. a ≤t b means that a is simultaneously
more false or equal to b, and less true or equal to b. Truth and falsity thus cannot be
decoupled from each other in this ordering.

The information ordering represents how much information an interpretation has about an
atom. The minimal element has no information, the two middle elements have only positive
information and only negative information respectively, and the maximal element has both
positive and negative information. According to Definition 2 where the truth values are
defined as subsets of {t, f}, the information ordering is equivalent to the subset relation; we
will also see later that the supremum and infimum operators of the information ordering
are equivalent to set union and intersection respectively.

2.2 Operators in Belnap Logic

In Ginsberg’s original definition of bilattices [10], he requires that a bilattice has a supremum
and infimum operator for each partial ordering, as well as an unary operator that inverts
the first ordering, preserves the second ordering, and is its own inverse. For 4, this operator
is classical negation, which inverts the truth ordering while preserving the information
ordering. However, we can easily add a second, analogous inversion operator that inverts
the information ordering but preserves the truth ordering, and many extensions of Belnap
logic do so. Details will be discussed in their relevant sections below, and we will eventually
see that this second inversion operator is in fact vital to logic programming using Belnap
logic.

7

The precise mathematical definitions of infimum, supremum, and inversion for bilattices are
not relevant to this thesis, and interested readers can instead refer to Ginsberg [10]; here we
will simply describe them in informal language. Let a and b be Belnap truth values. Then
for either of the two partial orderings:

• If a and b are comparable, their infimum is the lesser (or equal) of the two; otherwise
the infimum is the truth value that is less than them both.

• If a and b are comparable, their supremum is the greater (or equal) of the two; oth-
erwise the supremum is the truth value that is greater than them both.

• If a is the maximal element, its inversion is the minimal element, and vice versa. If it
is neither maximal nor minimal, its inversion is itself.

Ordering Infimum Supremum Inversion
Truth ≤t ∧ (conjunction) ∨ (disjunction) ¬ (inversion)

Information ≤i ⊗ (consensus) ⊕ (gullibility) − (conflation)

Table 2.1: The symbols and names for the infimum, supremum, and inversion operators of
the truth and information partial orderings in Belnap logic.

Each operator in Table 2.1 has its own intuitive meaning, which will be covered in the
remainder of this chapter. Before getting into those, we take note of some general identities
of these operators.

Proposition 2. For both partial orderings, the infimum, supremum, and inversion operators
have the following identities:

• The inversion operator is its own inverse. For example, −(−A) = A.

• The two inversion operators are commutative with each other. For example, −¬A =
¬−A.

• Each partial ordering has its own version of De Morgan’s laws. For example, −(A ⊕
B) = −A⊗−B.

• Each negation operator is distributive toward the infimum and supremum operators of
the other partial ordering. For example, −(A ∨B) = −A ∨ −B.

Proposition 2 can easily be verified by manually checking the truth tables of the formulas
involved, using the truth tables provided later in this chapter.

Omori and Sano [15] developed a procedure to decompose any Belnap logical operator
into a separate truth condition and falsity condition, possible because truth and falsity are
conditions that are independent from each other by Definition 3. A truth condition is a
function with domain 4 and codomain {T, N}, a binary condition that can only be true or

8

not true; similarly for a falsity condition with codomain {F, N}. This procedure splits an
operator into two independent functions, one only containing information on truth and the
other information on falsity. Unless stated otherwise, all information on decompositions can
be assumed to have been taken from Omori and Sano [15].

Definition 5. The decomposition of an n-arity operator Op is a tuple (Opt, Opf), where
Opt is a function with domain 4 and codomain {T, N}, and Opf a function with domain 4
and codomain {F, N}. For formulas A1, ..., An, their values are as follows:

• If Op(A1, ..., An) = T, then Opt(A1, ..., An) = T and Opf (A1, ..., An) = N.

• If Op(A1, ..., An) = F, then Opt(A1, ..., An) = N and Opf (A1, ..., An) = F.

• If Op(A1, ..., An) = B, then Opt(A1, ..., An) = T and Opf (A1, ..., An) = F.

• If Op(A1, ..., An) = N, then Opt(A1, ..., An) = N and Opf (A1, ..., An) = N.

By this definition, Op(A1, ..., An) = Opt(A1, ..., An)⊕Opf (A1, ..., An).

Definition 5 is a purely mechanical procedure for generating the decomposition of an oper-
ator. But as noted by Omori and Sano, for some operators it is possible to simplify their
decompositions further by qualitatively examining their truth tables. In fact, such qualita-
tive simplifications exist for all operators relevant to this thesis, as we will show below.

We will now show the decompositions of all the operators in Table 2.1. Blank entries in
the truth and falsity condition tables indicate N; they have been left blank to more easily
emphasize the conditions that make the original operator true and false.

∧ T F B N ∧t T F B N ∧f T F B N
T T F B N T T T T F F
F F F F F F F F F F F
B B F B F B T T B F F F F
N N F F N N N F F

Table 2.2: The truth tables of conjunction and its decomposition.

Proposition 3. For formulas A and B in interpretation I,

• t ∈ VI(A ∧B) iff t ∈ VI(A) and t ∈ VI(B);

• f ∈ VI(A ∧B) iff f ∈ VI(A) or f ∈ VI(B).

Proposition 3, obtainable as a qualitative simplification of the truth and falsity conditions
from Table 2.2, is a four-valued generalization of the behavior of conjunction in two-valued
logic, where a conjunction is true if both arguments are true, and false if either of the
arguments is false. In fact, this was the criteria from which Belnap developed the four-valued
truth table of conjunction in the first place, as a generalization of two-valued conjunction.

9

This is the reason for some of the seemingly unintuitive entries in the truth table, like
B ∧N = F; the more useful intuition is to think of conjunction as combining the truths
and falsities of its arguments, rather than their truth values directly.

All similar propositions in the remainder of this chapter will be qualitative simplifications
of the truth and falsity conditions of the rest of the Belnap operators. Their validity can be
verified by checking the appropriate truth tables.

∨ T F B N ∨t T F B N ∨f T F B N
T T T T T T T T T T T
F T F B N F T T F F F
B T B B T B T T T T B F F
N T N T N N T T N

Table 2.3: The truth tables of disjunction and its decomposition.

Proposition 4. For formulas A and B in interpretation I,

• t ∈ VI(A ∨B) iff t ∈ VI(A) or t ∈ VI(B);

• f ∈ VI(A ∨B) iff f ∈ VI(A) and f ∈ VI(B).

Similarly to conjunction, Proposition 4 is a four-valued generalization of two-valued dis-
junction, where it is true if either argument is true, and false if both arguments are false.
It explains some unintuitive truth table entries like B ∨N = T.

¬ ¬t ¬f
T F T T F
F T F T F
B B B T B F
N N N N

Table 2.4: The truth tables of negation and its decomposition.

Proposition 5. For a formula A and interpretation I,

• t ∈ VI(¬A) iff f ∈ VI(A);

• f ∈ VI(¬A) iff t ∈ VI(A).

Four-valued negation is also a generalization of two-valued negation, where it is true if its
argument is false and false if its argument is true.

Proposition 6. For formulas A and B in interpretation I,

• t ∈ VI(A⊗B) iff t ∈ VI(A) and t ∈ VI(B);

• f ∈ VI(A⊗B) iff f ∈ VI(A) and f ∈ VI(B).

10

⊗ T F B N ⊗t T F B N ⊗f T F B N
T T N T N T T T T
F N F F N F F F F
B T F B N B T T B F F
N N N N N N N

Table 2.5: The truth tables of consensus and its decomposition.

The consensus operator is meant to represent the information that two truth values can
agree on; it is only true if both arguments are true, and only false if both arguments are
false. As we can see from its truth table, and from its decomposition, the consensus operator
behaves exactly like set intersection for Belnap truth values.

⊕ T F B N ⊕t T F B N ⊕f T F B N
T T B B T T T T T T T F F
F B F B F F T T F F F F F
B B B B B B T T T T B F F F F
N T F B N N T T N F F

Table 2.6: The truth tables of gullibility and its decomposition.

Proposition 7. For formulas A and B in interpretation I,

• t ∈ VI(A⊕B) iff t ∈ VI(A) or t ∈ VI(B);

• f ∈ VI(A⊕B) iff f ∈ VI(A) or f ∈ VI(B).

The gullibility operator is meant to represent combining all the information contained in two
truth values, believing all of it regardless of any contradictions; it is true if either argument
is true, and is false if either argument is false. Similarly to consensus, we can see from its
truth table and decomposition that the gullibility operator behaves exactly like set union
for Belnap truth values.

− −t −f
T T T T T
F F F F F
B N B B
N B N T N F

Table 2.7: The truth tables of conflation and its decomposition.

Proposition 8. For a formula A and interpretation I,

• t ∈ VI(−A) iff f /∈ VI(A);

• f ∈ VI(−A) iff t /∈ VI(A).

11

From simply examining Proposition 8, it is unclear what the conflation operator is meant
to represent, aside from a simple mechanical inversion of the information ordering. The
intuitive meaning of this operator will become apparent in the context of logic programming
involving both classical negation and default negation, as we will show in the next chapter
of this thesis.

We conclude this chapter with a few final remarks.

One, when we look at the truth and falsity conditions of the Belnap bilattice operators as
logical operators in their own right, we can see that some of them are equivalent to each
other, and others can be converted into each other by composing them with some other
operators. This can be verified via truth tables.

Proposition 9. For formulas A and B in interpretation I, the following identities hold:

• A ∧t B = A⊗t B; A ∨t B = A⊕t B; A ∧f B = A⊕f B; A ∨f B = A⊗f B;

• ¬(¬A ∨f ¬B) = A ∧t B; ¬(¬A ∧t ¬B) = A ∨f B;

• ¬(¬A ∨t ¬B) = A ∧f B; ¬(¬A ∧f ¬B) = A ∨t B;

• ¬¬t¬A = ¬f A; ¬¬f¬A = ¬tA; ¬−t¬A = −f A; ¬−f¬A = −tA;

• ¬t−¬A = −tA; −t−¬A = ¬tA; ¬f−¬A = −f A; −f−¬A = ¬f A.

Two, Belnap’s original formulation of his logic [2] does not contain consensus, gullibility, or
conflation; the only defined operators are conjunction, disjunction, and negation. Without
the three information ordering operators, Belnap logic is not functionally complete, as in
it cannot represent all possible functions that map from 4n to 4. Most notably, it cannot
represent tautologies or contradictions, as in no formula is T in every interpretation or F in
every interpretation. However, if consensus, gullibility, and conflation are added to Belnap
logic, then it does become functionally complete; Omori and Sano [15] examine this issue
more deeply.

Three, Belnap’s original formulation of his logic does not actually contain any implication
operator. Simply using ¬A∨B is undesirable, because it does not follow the modus ponens
property of “if A is true then B is true” for some of the truth values. He defines that formula
A entails B iff VI(A) ≤t VI(B) for all interpretations I. This definition avoids the principle
of explosion, A ∧ ¬A → B, and also invalidates disjunctive syllogism, (A ∨ B) ∧ ¬A → B,
but does not allow for any formula to explicitly contain an implication in itself; we cannot
have a formula like P ≡ A → B. There are works like Hazen, Pelletier, and Sutcliffe 2018
[11] that examine the topic of adding explicit implication operators to Belnap logic, noting
that there are many possible generalizations of the classical two-valued implication. We will
hold off on defining implication operators in Belnap logic until Chapter 4, which focuses on

12

how several different Belnap implication operators can be implemented and used in ASP;
the topic of modus ponens and ¬A ∨B will also be revisited.

13

Chapter 3

Default Negation in Four-Valued
Answer Set Programming

This chapter focuses on the behavior of default negation in logic programming that uses
Belnap logic as a basis. A brief explanation of the concept of default negation itself will be
provided.

3.1 Logic Programming and Stable Model Semantics

We will begin by introducing two-valued ASP without any extensions (like classical negation
that will be covered later in this chapter). This is one of several variants of ASP that will be
covered in this thesis, denoted as ASP2, the superscript indicating that it uses two-valued
classical logic as a basis. Unless specified otherwise, all definitions and propositions on ASP
can be assumed to have been taken from Gelfond and Lifschitz [8] [9].

Definition 6. Let ASP2 be a language with the following objects:

• An interpretation is a set of atoms.

• A d-literal (default literal) is either a positive d-literal or a negative d-literal. A positive
d-literal is an atom a, and a negative d-literal is the default negation of an atom, ∼a.

• A rule is a formula of the form (d0 ← d1, ..., dn) 1 where the head d0 is a positive
d-literal or empty, and the body (d1, ..., dn) is a conjunction of d-literals (positive

1Rules are written with brackets around them because they contain commas. Without brackets surround-
ing them, it would be difficult to tell apart the commas in a rule and the commas delimiting different rules
in a set.

14

or negative) or empty. 2 head(r) is the head of rule r, body(r) is the body of rule r,
body+(r) is the set of literals that appear as positive d-literals in body(r), and body−(r)
is the set of literals that appear as negative d-literals in body(r).

• A program is a set of rules.

Definition 7. An object defined in Definition 6 may or may not be satisfied by an inter-
pretation I. Different objects have different satisfaction conditions:

• A positive d-literal a is satisfied by I iff a ∈ I. A negative d-literal ∼a is satisfied by
I iff a /∈ I.

• A conjunction of d-literals (d1, ..., dn) is satisfied by I if all d-literals in it are satisfied
by I.

• A rule r is not satisfied by I iff its body is satisfied but its head is not satisfied. An
empty rule body is always satisfied, and an empty rule head is never satisfied. 3

• A program P is satisfied by I iff all rules in it are satisfied. In this case, I is a model
of P . If there exists no other model I ′ such that I ′ ⊂ I, then I is a minimal model of
P .

Definition 8. The reduct of a program P relative to interpretation I, written as P I , is
the program containing the rules {(head(r) ← body+(r)) | r ∈ P, body−(r) ∩ I = ∅}. I is a
stable model of P iff I is a minimal model of P I .

The only type of negation allowed in two-valued ASP without extensions is default negation,
so-called because of its relation to the concept of defaults. Defaults, most prominently
handled by Reiter’s default logic [18], are statements about what to believe “by default” in
the absence of information. For example, we may have a formula saying that we can assume
by default that a swan is white, in the absence of information explicitly stating that the
swan is black. Defaults give logic programming the ability to be non-monotonic, to retract
previous conclusions when faced with new contrary evidence. We may have concluded q

based on the rule “if we don’t know p to be true, then conclude q”, but we must retract
this conclusion if we later discover that p is true. Every ASP program can be converted
into a default logic program [9], though this is not something we need to be concerned
about for this thesis. All we need to know is that default negation indicates an absence

2Logical programming rules of this form are based on Horn clauses by Horn [12], which can be thought
of as an implication whose antecedent is a conjunction of atoms, and whose consequent is an atom, or
equivalently a disjunction containing exactly one positive literal.

3A rule with an empty body, like (d0 ←), is called a fact, which forces d0 to be satisfied in every model. A
rule with an empty head, like (← d1, ..., dn), is called an integrity constraint, which prevents d1, ..., dn from
all being satisfied at the same time in any model.

15

of information, that a negative d-literal ∼a means “we do not know a to be true”. Seeing
that default negation indicates the absence of information, we can already see its potential
relation to the presence and absence of truth and falsity in Belnap logic.

A stable model, a.k.a. an “answer set” in Answer Set Programming, is the crux of stable
model semantics by Gelfond and Lifschitz [8]. The reduct of a program P relative to in-
terpretation I removes any rule that contains a negative d-literal not satisfied by I (since
these rules are trivially satisfied by I), and removes all negative d-literals from any rules
that remain (since these d-literals are satisfied by I), resulting in a simplified program that
contains only positive d-literals, which is guaranteed to have a single unique minimal model;
I is a stable model of P iff it is the unique minimal model of P I . The intuition behind stable
models is that a stable model is a rational, self-justifying set of beliefs, able to re-derive no
more and no less information than itself based on its own information. Every stable model
is a minimal model, and minimal models are desirable because we do not want to assume
the truth of anything more than what is strictly necessary. Another intuitive meaning ap-
proximately relates stable model semantics to the well-founded semantics by Van Gelder,
Ross, and Schlipf [21], where an atom is “unfounded” if it is either 1) unable to be derived
from any rule in P , or 2) only derivable through circular reasoning (like a→ a); unfounded
atoms are not in any stable model of a program.

Before we proceed further, we should examine a few examples of ASP to establish some
intuitions.

Example 1. Let P = {(a ← ∼b)}, which has three models: I1 = {a}, I2 = {b}, and
I3 = {a, b}.
P I1 = {(a←)}, whose minimal model is {a} = I1, so I1 is a stable model.
P I2 = ∅, whose minimal model is ∅ 6= I2, so I2 is not a stable model.
P I3 = ∅, whose minimal model is ∅ 6= I3, so I3 is not a stable model.
This example shows that b, an atom that cannot be derived from any rule, is not in a stable
model.

Example 2. Let P = {(a← b), (b← a)}, which has two models: I1 = ∅, I2 = {a, b}.
P I1 = {(a← b), (b← a)}, whose minimal model is ∅ = I1, so I1 is a stable model.
P I2 = {(a← b), (b← a)}, whose minimal model is ∅ 6= I2, so I2 is not a stable model.
This example shows that “circular reasoning” like a→ b and b→ a results in the involved
atoms to not be in a stable model.

Example 3. Let P = {(a← ∼a)}, which has one model: I = {a}.
P I = ∅, whose minimal model is ∅ 6= I, so I is not a stable model.
This example shows that “self-contradicting” rules can result in programs that have no
stable models.

16

Example 4. Let P = {(a← ∼b), (b← ∼a)}, which has three models: I1 = {a}, I2 = {b},
I3 = {a, b}.
P I1 = {(a←)}, whose minimal model is {a} = I1, so I1 is a stable model.
P I2 = {(b←)}, whose minimal model is {b} = I2, so I2 is a stable model.
P I3 = ∅, whose minimal model is ∅ 6= I3, so I3 is not a stable model.
This example shows that some programs can have more than one stable model.

Example 5. Let P1 = {(a←)} and P2 = {(← ∼a)}. P1 has one stable model, {a}, whereas
P2 has no stable models. This example shows that facts allow us to conclude new atoms,
while integrity constraints by themselves do not let us make new conclusions; they only
serve to remove existing unacceptable conclusions.

In ASP2, the only information we can have about an atom is information asserting its
truth, and an atom a is (assumed by default to be) false in interpretation I iff I contains no
information about the truth of a. This is in accordance with the closed-world assumption,
also originally formulated by Reiter [17], stating that all true formulas are known to be true,
and any formula not known to be true is false. This is a necessity in logic programming that
uses strictly two-valued classical logic, where the only possible states for a formula are true
and false. In the absence of information on a formula’s truth, or in other words, if we fail
to find any proof for a formula’s truth, then by default we assume that formula to be false;
this allows us to derive a formula’s falsity by negation as failure (to prove the formula’s
truth). Falsity is the default state, and a minimal model has a minimal number of atoms
that we assume to be true.

One major problem with ASP2 is that it does not allow us to express explicitly negative
information. The most common extension to it allows it to do exactly that, adding classical
negation to the language. However, this requires changing the definition of d-literals and
interpretations, and causes a few other problems, as we will discuss below.

Definition 9. Let ASP2
CN be an extension of ASP2 with the following modifications:

• A literal is either a positive literal or a negative literal. A positive literal is an atom
a, while a negative literal is the classical negation of an atom, ¬a.

• A positive d-literal is now a literal l, while a negative d-literal is now a default-negated
literal, ∼l; in either case l may be a positive or a negative literal.

• An interpretation is now a set of literals.

All other definitions remain unchanged.

We can see that positive and negative literals are effectively being treated as different
atoms, a remark made explicit by Gelfond and Lifschitz [9] when they proved that ASP2

CN

17

programs can be converted into ASP2 programs by replacing each negative literal with a
corresponding new atom. A positive d-literal is an explicit assertion of truth or falsity, and
a negative d-literal is a statement on the absence of information on truth and falsity. The
resemblance to Belnap logic starts to become more apparent here, but we are technically
still working in the realm of classical, two-valued logic, which does not allow gluts (both
true and false) or gaps (neither true nor false). To retain the behavior of classicality, a few
additional clauses must be added to every logic program.

Proposition 10. Let U be the set of all atoms that appear in ASP2
CN program P . Then,

for program P ′ = P ∪ {(b ← a,¬a) | a, b ∈ U} ∪ {(¬b ← a,¬a) | a, b ∈ U}, the only model
of P ′ that contains any pair of complementary literals a and ¬a is the set of all possible
literals that can be created from atoms in U . For program P ′′ = P ∪ {(← a,¬a) | a ∈ U},
no model of P ′′ contains any pair of complementary literals a and ¬a.

Program P ′ in Proposition 10 has rules that artificially enforce the principle of explosion,
which can only be satisfied by an interpretation containing all possible literals if any pair of
complementary literals is present at all. P ′′ instead simply has integrity constraints that can-
not be satisfied by any interpretation that contains complementary literals. Both approaches
enforce classicality by eliminating contradictions, and only one approach is needed; different
implementations of ASP may not use the same approach. At least one of these two types
of rules must be automatically added to every program to ensure that its models are not
inconsistent.

Most modern ASP implementations used in industry do not disallow gaps. While they do
not allow any model to have both an atom a and its classical negation ¬a, it is perfectly
allowed to have neither a nor ¬a in a model. This implicitly means that ASP2

CN is a three-
valued logic, where an atom can be true, false, or neither, but not both. It may depend on
the specific problem being modelled whether a gap is interpreted as false, no information,
or something else. We can try to enforce the closed-world assumption by adding rules like
(¬a ← ∼a), but doing so makes us no longer able to conceptually distinguish between
classical and default negation, and can change a program’s stable models, 4 so doing so may
not be a good idea.

Example 6. Let P1 = {(b ← ∼a), (← a,¬a), (← b,¬b)}, and P2 = {(b ← ¬a), (←
a,¬a), (← b,¬b)}. The only stable model of P1 is {b}, where the lack of information on
the truth of a lets us conclude b. On the other hand, the only stable model of P2 is ∅, where
we cannot conclude b because we do not have explicit information on the falsity of a. In

4For example, the program {(b ← ¬a)} has ∅ as its only stable model, but adding (¬a ← ∼a) to the
program causes its only stable model to become {¬a, b}.

18

neither stable model do we have any actual information on a; whether a counts as false or
unknown here would depend on the specifications of the problem being modelled.

Example 7. Let P = {(b ← ∼a), (¬b ← ∼a), (a ← ∼b,∼¬b), (← a,¬a), (← b,¬b)}. If the
contradiction-removing rule (← b,¬b) was not in P , then it would have two stable models,
{a} and {b,¬b}, but the presence of this rule makes {a} the only acceptable stable model.

Before we proceed further, we need to take a step back and examine how rules in ASP2

correspond to formulas in classical propositional logic.

Proposition 11. Let I be a set of atoms that functions as both an ASP2 interpretation
and a classical logic interpretation. Let a0, ..., an be atoms. Then I satisfies the ASP2 rule
(a0 ← a1, ..., am,∼am+1, ...,∼an) iff I is a model of the classical logical formula a1 ∧ ... ∧
am ∧ ¬am+1 ∧ ... ∧ ¬an → a0.

Note that Proposition 11 simply refers to models of a rule, from Definition 7, not stable
models. It is true because ASP2 d-literals have the same satisfaction conditions as classical
logical literals, and similarly for ASP2 conjunctions versus classical logical conjunctions,
and ASP2 rules versus classical logical implications; it shows that rules in ASP2 are meant
to represent implications in classical logic. However, generalizing Proposition 11 to ASP2

CN

program P is awkward, as ASP2
CN program P is actually a three-valued logic with the

inclusion of Proposition 10, not to mention the difficulty of representing two different types
of negation (classical and default) in classical logic. This thesis will show that Belnap logic
provides an intuitive generalization of Proposition 11 into ASP with classical negation.

Definition 10. Let ASP4 (four-valued ASP) be a language with identical specifications to
ASP2

CN . However, the classicality-enforcing rules in Proposition 10 are not automatically
added to any programs.

As stated previously, when classical negation is involved, positive and negative literals can
be effectively treated as separate atoms, and ASP based on four-valued logic has no need to
artificially restrict the presence of gluts or gaps in an interpretation. Since an interpretation
in ASP4 is a set of literals, it can also be treated as an interpretation in Belnap logic.

Example 8. Let P = {(a←), (← ¬a), (¬b←), (← b), (c←), (¬c←), (← d), (← ¬d)}. The
only stable model of P is I = {a,¬b, c,¬c}, where VI(a) = T, VI(b) = F, VI(c) = B, and
VI(d) = N, showing us that we can still specify the truth values of atoms exactly in ASP4.

Example 9. Let P = {(b ← a,¬a), (a ←), (¬a ←), (d ← c)}. The only stable model of P

is I = {a,¬a, b}, where VI(a) = B, VI(b) = T, and VI(c) = VI(d) = N. This example shows
that a rule can still require an atom to have a specific truth value to be able to make a
conclusion, like (b ← a,¬a) requiring a to be B to conclude b. It also shows that, despite

19

the presence of a contradiction, the program does not explode into triviality and conclude
the irrelevant atoms c and d.

To generalize Proposition 11 to ASP4, there are two main tasks that must be done:

1. representing default negation in Belnap logic;

2. finding a suitable four-valued implication that ASP rules represent.

Task 1 will be covered by the remainder of this chapter, while the next chapter is dedicated
to Task 2.

3.2 Default Negation in Four-Valued ASP

Since we are leaving implications for the next chapter, for now we only need to consider
individual d-literals that may be default-negated. First, we need to consider what satisfying
a d-literal in ASP4 corresponds to in Belnap logic. For positive d-literals, it is possible
for an interpretation I to satisfy both a d-literal d and its classical negation ¬d, or sat-
isfy neither, independently of each other, like how a Belnap formula can be independently
true, false, both, or neither, suggesting that satisfying a d-literal in ASP4 corresponds to
truth in Belnap logic, and satisfying the d-literal’s classical negation corresponds to falsity.
Therefore, we can impose the following condition for conversion between ASP4 and Belnap
logic.

Definition 11. Let I be an interpretation, and X an object in ASP4 for which the satis-
faction of X and ¬X by interpretations is defined, from Definitions 6 and 7. Let the Belnap
logical conversion of X, BLC(X), be a Belnap logical formula fulfilling the conditions that
I satisfies X iff t ∈ VI(BLC(X)), and I satisfies ¬X iff f ∈ VI(BLC(X)). Additionally, let
BLC−1 be the inverse of BLC such that BLC(X) = Y iff X = BLC−1(Y).

Definition 11 is not a constructive definition. It only provides the conditions that a Belnap
formula must fulfill to be considered the BLC of X, and it is up to us to actually find what
BLC(X) is, necessitating much of the work in this thesis. Sometimes, the classical negation
of X is not yet defined, in which case we must then define it ourselves in a way that is
intuitively reasonable and useful to the problem we are modeling.

For a positive d-literal l: l as a d-literal is satisfied by I iff l ∈ I, and l as a Belnap literal
is true in I iff l ∈ I; ¬l as a d-literal is satisfied by I iff ¬l ∈ I, and l is false in I iff ¬l ∈ I.
Therefore, the BLC of a positive d-literal is exactly what we intuitively expect.

Proposition 12. For a positive d-literal l, where l is a literal, BLC(l) = l.

To find the BLC of a negative d-literal ∼l, where l is a literal, we must first define its
classical negation. We have already established in Proposition 12 that I satisfying a positive

20

d-literal l means l is true in I in Belnap logic. Since negative d-literals represent the absence
of information, it is intuitive to guess that I satisfying a negative d-literal ∼l means l is
not true in I in Belnap logic. The classical negation of “l is true” is “¬l is true”, which
intuitively suggests that the classical negation of “l is not true” is “¬l is not true”; therefore
it is intuitively reasonable to define that ¬(∼l) ≡ ∼¬l. This means we have the following
conditions to fulfill:

• I satisfies ∼l iff t ∈ VI(BLC(∼l));

• I satisfies ∼¬l iff f ∈ VI(BLC(∼l)).

Which, according to the satisfaction conditions of negative d-literals, become:

• l /∈ I iff t ∈ VI(BLC(∼l));

• ¬l /∈ I iff f ∈ VI(BLC(∼l)).

From Definition 11 and Proposition 12: l ∈ I iff t ∈ VI(l), so l /∈ I iff t /∈ VI(l); ¬l ∈ I iff
f ∈ VI(l), so ¬l /∈ I iff f /∈ VI(l). Therefore, the conditions we need to fulfill become the
following:

• t /∈ VI(l) iff t ∈ VI(BLC(∼l));

• f /∈ VI(l) iff f ∈ VI(BLC(∼l)).

We have in fact arrived at a decomposition for an operator that is the Belnap logic version
of default negation, which we will also denote by ∼ for consistency. This means we now
have enough information to determine its complete truth table.

∼ ∼t ∼f
T F T T F
F T F T F
B N B B
N B N T N F

Table 3.1: The truth tables of default negation and its decomposition.

As we can see from Table 3.1, ∼l inverts both the truth ordering and the information
ordering of l, making it equivalent to −¬l. Finally, we arrive at the conclusion of how the
conflation operator is related to default negation, the first major finding of this thesis.

Theorem 1. For a negative d-literal ∼l, where l is a literal, BLC(∼l) = ∼l = −¬l.

Corollary 1.1. For a literal l, BLC−1(−l) = ∼¬l.

This is the intuitive meaning of the conflation operator, mentioned near the end of Chapter
2. It applies classical negation and default negation simultaneously to a literal, and the two

21

types of negation do not cancel each other out. Conflation switches between two different
types of “evidence” in favor of a formula, asserting truth versus asserting absence of falsity,
converting “is true” (T or B) into “is not false” (T or N). Classical negation, on the other
hand, inverts truth and falsity, converting “is true” into “is false” (F or B). Applying both
classical negation and conflation converts “is true” into “is not true” (F or N), the default
negation of “is true”.

In addition to the steps we used above to arrive at BLC(∼l) = −¬l, there is another way
of showing BLC(∼¬l) = −l.

Proof. For a literal l and interpretation I:

t ∈ VI(−l) iff f /∈ VI(l), according to the decomposition of the conflation operator.
f /∈ VI(l) iff t /∈ VI(¬l).
t /∈ VI(¬l) iff I does not satisfy the d-literal ¬l.
I does not satisfy ¬l iff I satisfies ∼¬l.
Therefore, t ∈ VI(−l) iff I satisfies ∼¬l.

f ∈ VI(−l) iff t /∈ VI(l), according to the decomposition of the conflation operator.
t /∈ VI(l) iff I does not satisfy the d-literal l.
I does not satisfy l iff I satisfies ∼l.
Therefore, f ∈ VI(−l) iff I satisfies ∼l.

Because t ∈ VI(−l) iff I satisfies ∼¬l and f ∈ VI(−l) iff I satisfies ∼l, BLC(∼¬l) = −l.

With Theorem 1, we now have a concept of default negation in Belnap logic, where ∼l = −¬l

for a literal l. Therefore, d-literals are defined in Belnap logic as well, where a d-literal d

can be treated as both a Belnap logical formula and an ASP4 construct.

Definition 12. In Belnap logic, a d-literal is either a positive d-literal or a negative d-
literal. A positive d-literal is a literal l, while a negative d-literal is the default negation of
a literal, ∼l = −¬l.

By Proposition 12, Theorem 1, and Definition 12, the BLC of a d-literal in ASP4 is simply
the same d-literal in Belnap logic.

Proposition 13. For a d-literal d, BLC(d) = d.

Having established the equivalence of d-literals in ASP4 and Belnap logic, we are now ready
to examine rules that join d-literals together.

22

Chapter 4

Implications in Four-Valued
Answer Set Programming

Having defined the Belnap logical conversions of individual d-literals in ASP4, we now turn
our attention to rules.

4.1 The Basic Implication Operator

The bulk of this chapter concerns the implication operators that logic programming rules
are meant to represent, but before that, the conjunction of d-literals that forms a rule’s body
needs to be considered. Conjunctions of d-literals have already been defined as a part of the
ASP4 specification, but for clarity they will be defined again here, along with disjunctions
of d-literals.

Definition 13. Let I be an interpretation, and d1, ..., dn be d-literals. Then:

• (d1, ..., dn) is a conjunction of d-literals, satisfied by I iff every one of d1, ..., dn is
satisfied by I. An empty conjunction is always satisfied.

• (d1; ...; dn) is a disjunction of d-literals, satisfied by I iff at least one of d1, ..., dn is
satisfied by I. An empty disjunction is never satisfied.

• The classical negation of (d1, ..., dn) is not yet defined, so we define it as (¬d1; ...;¬dn).

• The classical negation of (d1; ...; dn) is not yet defined, so we define it as (¬d1, ...,¬dn).

Since a conjunction in ASP4 is meant to represent a conjunction in Belnap logic, we use the
intuition of De Morgan’s laws to define that the classical negation of an ASP4 conjunction
is an ASP4 disjunction, and vice versa. This will be relevant later in this chapter when
we touch upon disjunctive logic programming, and is needed to show that the BLC of an
ASP4 conjunction is indeed a Belnap logical conjunction.

23

Proposition 14. For a conjunction of d-literals (d1, ..., dn), BLC((d1, ..., dn)) = d1∧...∧dn.

Proof. Let d1, ..., dn be d-literals, and I an interpretation.

(d1, ..., dn) is satisfied by I iff I satisfies all of d1, ..., dn.
For all 1 ≤ i ≤ n, I satisfies di iff t ∈ VI(di).
Therefore, I satisfies (d1, ..., dn) iff t ∈ VI(di) for all 1 ≤ i ≤ n.
t ∈ VI(di) for all 1 ≤ i ≤ n iff t ∈ VI(d1 ∧ ... ∧ dn).
Therefore, I satisfies (d1, ..., dn) iff t ∈ VI(d1 ∧ ... ∧ dn).

¬(d1, ..., dn) is satisfied by I iff I satisfies any of ¬d1, ...,¬dn.
For any 1 ≤ i ≤ n, I satisfies ¬di iff f ∈ VI(di).
Therefore, I satisfies ¬(d1, ..., dn) iff f ∈ VI(di) for any 1 ≤ i ≤ n.
f ∈ VI(di) for any 1 ≤ i ≤ n iff f ∈ VI(d1 ∧ ... ∧ dn).
Therefore, I satisfies ¬(d1, ..., dn) iff f ∈ VI(d1 ∧ ... ∧ dn).

Since I satisfies (d1, ..., dn) iff t ∈ VI(d1 ∧ ... ∧ dn) and I satisfies ¬(d1, ..., dn) iff f ∈
VI(d1 ∧ ... ∧ dn), BLC((d1, ..., dn)) = d1 ∧ ... ∧ dn.

Now we move on to implications, the core part of every program rule. In ASP2, the be-
havior of the arrow in a rule appropriately matches the behavior of implications in classical
logic, as in a → b = ¬a ∨ b, for models (but not stable models). The presence of classical
negation in ASP2

CN causes program rules to start exhibiting behaviors different from clas-
sical implications, the exact details of which are not relevant to this thesis. Generalizing
to ASP4 has even more issues, as there are multiple possible implication operators with
different properties.

Belnap’s original formulation of his logic [2] contains no implication operator (not using
¬A∨B due to it not following modus ponens for some truth values), instead only containing
a meta-theoretic entailment relation where formula A entails formula B iff VI(A) ≤t VI(B)
for all interpretations I. This means entailment is a binary condition that a pair of formulas
may or may not fulfill, instead of being a four-valued operator, and entailment also cannot
be embedded into a formula like A→ B. The definition of VI(A) ≤t VI(B) as an implication
operator is a usable one, but it is not the only intuitively sensible type of implication that
we can think of in four-valued logic. Hazen et al. [11] examine this in detail, listing a number
of desirable properties that one can expect a useful implication operator to have. As logic is
meant to be a simplified model of reality, how the model behaves ultimately boils down to the
requirements of the specific problem being modelled, again without any objectively correct
one-size-fits-all answer. The list by Hazen et al. was produced via intuition, but Hazen et al.
stated that they themselves do not fully agree on which of these properties are necessary, and
I personally do not agree to some of them as I consider them to be unnecessarily restrictive

24

(e.g. what they call designated antecedent in a diamond). Therefore, I will simply list the
clauses that are considered in the writing of this thesis.

Two important properties of the classical two-valued implications are modus ponens (if
the antecedent is true then the consequent is true; not satisfying this condition causes the
implication to be false) and vacuous truth (if the antecedent is false or the consequent is true
then the implication is true). However, in Belnap logic, there are two types of “evidence”
of a formula’s truth: information on its truth (T or B), and the lack of information on
its falsity (T or N); the conflation operator swaps between these two types of evidence.
Similarly, there are two types of evidence of falsity, information on falsity (F or B) and the
lack of information on truth (F or N). This means we can have several similar versions of
modus ponens and vacuous truth in a Belnap implication. Additionally, since the Belnap
implication should be a generalization of the classical implication, it must take on the same
truth values as the classical implication when its arguments are classical. Overall, these are
the properties that we may intuitively define a Belnap implication operator to have:

• Modus ponens: If A is (true or not false) then B is (true or not false); not satisfying
this condition causes A→ B to be (not true or false).

• Vacuous truth: If A is (not true or false) or B is (true or not false), then A → B is
(true or not false).

• Classicality: A → B must agree with the two-valued implication when its arguments
are T or F.

For now, these are merely rough guidelines rather than hard requirements. They will be
made more rigorous at a later section in this chapter.

Moreover, another property that will receive significant attention in this chapter is contra-
position, where A → B = ¬B → ¬A. Not every implication operator discussed below will
have this property; its presence and absence will be directly relevant.

Before examining viable implication operators, we will quickly remark that defining A →
B ≡ ¬A∨B in Belnap logic does not fulfill the classical “if A is true then B is true” version
of modus ponens, but it does fulfill several other versions of modus ponens and vacuous
truth listed above. We will leave ¬A∨B for now and come back to it after we have defined
modus ponens and vacuous truth rigorously.

First, we examine how the basic “arrow operator” in ASP4 rules defined thus far translates
to Belnap logic. Let→t be an operator in Belnap logic such that BLC((d← D)) = D →t d,
where d is a d-literal and D is a conjunction of d-literals; the reason for calling this operator
→t will be elaborated on shortly. Conjunctions in ASP4 can be converted into conjunctions

25

in Belnap logic and vice versa via Proposition 14, so D can be treated as a single unit here
when discussing whether it is satisfied.

Remembering that (d ← D) is not satisfied iff D is satisfied but d is not satisfied, by the
definition of BLCs, we know that t /∈ VI(D →t d) iff t ∈ VI(D) and t /∈ VI(d) for any
interpretation I; this gives us the truth condition of →t. Rule satisfaction in ASP4 is a
binary condition rather than four-valued, so we can define →t as false iff it is not true,
which causes its falsity condition to be f ∈ VI(D →t d) iff t ∈ VI(D) and t /∈ VI(d). With
both halves of its decomposition, we can construct its full truth table.

→t T F B N (→t)t T F B N (→t)f T F B N
T T F T F T T T T F F
F T T T T F T T T T F
B T F T F B T T B F F
N T T T T N T T T T N

Table 4.1: The truth tables of →t and its decomposition.

Theorem 2. For an arbitrary ASP4 rule containing d-literals d0, ..., dn, BLC((d0 ←
d1, ..., dn)) = d1 ∧ ... ∧ dn →t d0.

→t represents the “preservation of truth” from antecedent to consequent, in exactly the same
way as how rules in ASP4 behave, hence the t subscript. Only the preservation of truth
matters to→t, while the falsities of its consequent and antecedent have no effect on its value,
and it does not have the contraposition property; these behaviors appropriately reflect how
ASP4 treats positive and negative literals of the same atom as effectively different atoms
that do not affect each other. It agrees with the two-valued implication where appropriate,
and obeys the following versions of modus ponens and vacuous truth:

• If A is true then B is true; not satisfying this condition causes A→t B to be not true.

• If A is true then B is true; not satisfying this condition causes A→t B to be false.

• If A is not true or B is true then A→t B is true.

• If A is not true or B is true then A→t B is not false.

With this, we now have a complete mapping of ASP4 to Belnap logic. Any Belnap logical
formula of the appropriate form can be converted as-is into an ASP4 rule as per Theorem
2.

4.2 Other Implication Operators in Belnap Logic

Our work does not end here, however, as there are a few other implication operators in
Belnap logic that are worth examining. So far, ASP4 still only treats positive and negative

26

literals of the same atom as practically different atoms, but as we will soon see, some of the
other implication operators do not behave this way.

One of the implication operators considered in Hazen et al. [11], and also mentioned in
Omori and Sano [15], is the “classical material implication” →cmi, originally proposed by
Arieli and Avron [1]. Its definition is that the implication takes on the same value as the
consequent if the antecedent is true; otherwise the implication is (vacuously) equal to T.
Arieli and Avron defined a consequence relation A |=4 B iff every model of A is a model
of B, and showed that X ∧ A |= B iff X |=4 A →cmi B for all Belnap formulas X, A, and
B; so →cmi can be considered one of the more intuitive implication operators in Belnap
logic.

To see how →cmi can be implemented in ASP4, we start with its decomposition.

→cmi T F B N (→cmi)t T F B N (→cmi)f T F B N
T T F B N T T T T F F
F T T T T F T T T T F
B T F B N B T T B F F
N T T T T N T T T T N

Table 4.2: The truth tables of →cmi and its decomposition.

Proposition 15. For formulas A and B in interpretation I,

• t /∈ VI(A→cmi B) iff t ∈ VI(A) and t /∈ VI(B);

• f ∈ VI(A→cmi B) iff t ∈ VI(A) and f ∈ VI(B).

→cmi obeys the following versions of modus ponens and vacuous truth:

• If A is true then B is true; not satisfying this condition causes A →cmi B to be not
true.

• If A is true then B is not false; not satisfying this condition causes A →cmi B to be
false.

• If A is not true or B is true then A→cmi B is true.

• If A is not true or B is not false then A→cmi B is not false.

We can immediately see that (→cmi)t is identical to (→t)t, the preservation of truth from
antecedent to consequent. But whereas the falsity condition of →t is simply the opposite
of its truth condition, making its result binary, the falsity condition of →cmi is different.
A→cmi B is true iff truth is preserved from A to B, while it is false iff A is true and B is
false. This sounds exactly like the truth and falsity “conditions” of the implication operator

27

in classical logic, except in classical logic these two conditions are not independent from
each other.

Now is the time to take a step back and remember what these implication operators in
Belnap logic, and ASP4 rules, are meant to model in the real world. An implication A→ B

represents the idea of “if A then B” in some sense. A model that uses →t would see truth
preservation from A to B as information stating A → B is true, and the violation of such
truth preservation as information stating A→ B is false. The truth and falsity conditions of
→t cannot overlap, so →t is a binary condition that is either satisfied or violated. However,
if the model uses →cmi, it still sees truth preservation from A to B as information stating
that A → B is true, but it would also see A being true and B being false as information
stating that A→ B is false. For a rule that uses→cmi, we can think of an interpretation that
satisfies its truth condition as an “example” that “satisfies” this rule, and an interpretation
that satisfies its falsity condition as an explicit “counter-example” that “violates” this rule.
Should an interpretation be considered a model of A → B if it is both an example and
a counter-example of A →cmi B? If it is neither an example nor a counter-example of
A →cmi B? There is no objectively right answer to these questions; the treatment of gluts
and gaps in a program’s rules would likely vary depending on the specific requirements of
the problem being modelled.

The most intuitive approach is that a model should satisfy and also not violate a rule. Since
→t and →cmi have the same truth condition, and D →t d is implemented in ASP4 as the
rule (d← D), we know that t ∈ VI(D →cmi d) iff I satisfies (d← D); this means the truth
condition of D →cmi d can be implemented as the same rule. On the other hand, the falsity
condition of D →cmi d is identical to the non-satisfaction condition of (← ¬d, D), so this
integrity constraint can be used to eliminate the interpretations that are counter-examples
to D →cmi d. This proves the following theorem:

Theorem 3. Let I be an interpretation, and d0, ..., dn be d-literals.

• t ∈ VI(d1, ..., dn →cmi d0) iff the rule (d0 ← d1, ..., dn) is satisfied by I.

• f ∈ VI(d1, ..., dn →cmi d0) iff the rule (← ¬d0, d1, ..., dn) is not satisfied by I.

The presence of ¬d in the implementation of the falsity condition of D →cmi d indicates
that d and ¬d are no longer treated as entirely independent from each other; they both
affect the truth value of D →cmi d.

As previously stated, it depends on the specific requirements of the problem being modelled
whether satisfaction and violation should be taken into account when determining whether
an interpretation should be a model of a rule that uses→cmi. If satisfying the rule is relevant,
its truth condition can be implemented as a regular ASP4 rule. If not violating the rule is

28

relevant, its falsity condition can be implemented as an integrity constraint. One or both
halves of the rule can be implemented as the problem requires, and this treatment can even
be done on a per-rule basis. For example, one rule may have both its truth and falsity
conditions implemented, requiring its truth value to be T only in models, while another
rule may have only its truth condition implemented, allowing its truth value to be either T
or B.

The two implication operators we have examined so far both do not follow the contraposition
property, while the next two implication operators we will examine do have this property.
Contraposition is not supported by ASP4 rules alone, so some additional considerations
will be needed to implement such a feature.

The first contrapositive-supporting implication operator will be called→le, where the impli-
cation is T iff the antecedent is less than or equal to the consequent in the truth ordering;
otherwise the implication is F. This is the implication operator originally presented by
Belnap [2], except converted into an operator in the logic itself instead of simply being a
meta-theoretical relation between two formulas, meaning it can be embedded in formulas
as one can do in classical logic. As usual, we start with the decomposition of this opera-
tor.

→le T F B N (→le)t T F B N (→le)f T F B N
T T F F F T T T F F F
F T T T T F T T T T F
B T F T F B T T B F F
N T F F T N T T N F F

Table 4.3: The truth tables of →le and its decomposition.

Proposition 16. For formulas A and B in interpretation I:

• t /∈ VI(A→le B) iff (t ∈ VI(A) and t /∈ VI(B)) or (f /∈ VI(A) and f ∈ VI(B));

• f ∈ VI(A→le B) iff (t ∈ VI(A) and t /∈ VI(B)) or (f /∈ VI(A) and f ∈ VI(B)).

Proposition 17. For formulas A and B, A→le B = X(A, B)∧Y (A, B), where X(A, B) =
A→t B = −¬B →t −¬A and Y (A, B) = ¬B →t ¬A = −A→t −B.

Belnap in [2] derived that the ≤t condition in four-valued logic requires forward preser-
vation of truth from antecedent to consequent, and backward preservation of falsity from
consequent to antecedent. →t represents forward truth preservation only, and does not
obey contraposition, so A →le B is constructed from conjoining A →t B with its “con-
trapositive” ¬B →t ¬A. Backward preservation of falsity is also equivalent to forward
preservation of non-falsity (if antecedent is not false then consequent is not false), repre-
sented by −A→t −B, a fact that can easily be checked via truth tables. Similarly, forward

29

preservation of truth is equivalent to backward preservation of non-truth (if consequent is
not true then antecedent is not true), represented by −¬B →t −¬A. As a result, there
are four total ways in which →le can be constructed from →t, hence writing X(A, B) and
Y (A, B) in two possible forms each in Proposition 17. Later in this chapter we will examine
contrapositives in Belnap logic more carefully, referring back to these two different “types”
of contrapositives.

The final implication we will look at is the “strong implication” →si in Arieli and Avron
[1], defined as A→si B = (A→cmi B) ∧ (¬B →cmi ¬A). This is similar to the A→le B =
(A→t B) ∧ (¬B →t ¬A) above, conjoining a non-contrapositive implication operator with
its “contrapositive”.

→si T F B N (→si)t T F B N (→si)f T F B N
T T F F N T T T F F
F T T T T F T T T T F
B T F B N B T T B F F
N T N N T N T T N

Table 4.4: The truth tables of →si and its decomposition.

Proposition 18. For formulas A and B in interpretation I:

• t /∈ VI(A→si B) iff (t ∈ VI(A) and t /∈ VI(B)) or (f /∈ VI(A) and f ∈ VI(B));

• f ∈ VI(A→si B) iff t ∈ VI(A) and f ∈ VI(B).

We can see that the truth condition of →si is identical to the truth condition of →le,
requiring both forward truth preservation and backward falsity preservation, while its falsity
condition is identical to the falsity condition of →cmi, being violated when its antecedent is
true and consequent is false. The truth condition of→si can be constructed in four possible
ways, similarly to →le stated earlier in Proposition 17.

Proposition 19. For formulas A and B, A(→le)tB = Xt(A, B)∧Yt(A, B), where Xt(A, B) =
A(→cmi)tB = −¬B(→cmi)t−¬A and Y (A, B) = ¬B(→cmi)t¬A = −A(→cmi)t−B. How-
ever, there is no similar equivalence for (→si)f .

Since →le can be constructed from two →t rules, and similarly for →si with →cmi, these
two implications can be implemented in ASP4 simply by implementing their constituents.
However, rather than writing them out as separate theorems, we can devise a general clas-
sification system for implication operators in Belnap logic, taking into account the list of
properties that we may intuitively expect implication operators to have. This system would
encompass all four implication operators we have examined so far, and have a simple and
intuitive way of implementation in ASP4.

30

4.3 General Unidirectional Implication Operators in Belnap
Logic

We are now going to rigorously define modus ponens and vacuous truth in Belnap logic. The
four implication operators we examined previously all fulfill some of these modus ponens
and vacuous truth properties, which we will show later in the relevant section.

Definition 14. Let Op be a binary Belnap operator, and P, Q, R ∈ {+,−}, where + is the
unary identity operator in Belnap logic and − is the conflation operator. 1 Then MP (Op) is
the set of modus ponens properties of Op, and V T (Op) is the set of vacuous truth properties
of Op, each of which being a set of triples of operators in {+,−}.

• (P, Q, R) ∈MP (Op) iff the following condition holds: VI(Op(A, B)) ∈ {R(F), R(N)}
iff VI(A) ∈ {P (T), P (B)} and VI(B) ∈ {Q(F), Q(N)} for all formulas A, B and all
interpretations I.

• (P, Q, R) ∈ V T (Op) iff the following condition holds: VI(Op(A, B)) ∈ {R(T), R(B)}
iff VI(A) ∈ {P (F), P (N)} or VI(B) ∈ {Q(T), Q(B)} for all formulas A, B and all
interpretations I.

As stated earlier in this chapter, in Belnap logic there are two types of “evidence” toward
the truth of a formula X: X being true, and X being not false. Similarly, X being false and
X being not true are two types of “evidence” toward the falsity of a formula. Modus ponens
and vacuous truth properties make use of these types of “evidence”, with the required
type of “evidence” being controlled by the P, Q, R functions. For example, if P = +, then
VI(X) ∈ {P (T), P (B)} = {T, B} means X is true in I, whereas if P = −, then VI(X) ∈
{P (T), P (B)} = {T, N} means X is not false in I. The modus ponens property represents
the property of “if A is (true or not false, controlled by P) and B is (not true or false,
controlled by Q), then Op(A, B) is (not true or false, controlled by R)”. The vacuous truth
property represents the property of “if A is (not true or false, controlled by P) or B is (true
or not false, controlled by Q), then Op(A, B) is (true or not false, controlled by R)”. Of
course, not all two-argument Belnap operators satisfy these properties; the operators that
satisfy these properties are what we may consider to be implication operators.

Theorem 4. For a two-argument Belnap operator Op, and P, Q, R ∈ {+,−}, (P, Q, R) ∈
MP (Op) iff (P, Q, R) ∈ V T (Op).

1The + symbol is used here to denote the identity operator, because it and the conflation operator denoted
by − play roles akin to multiplication by 1 and −1, where multiplying by 1 does nothing, multiplying by −1
turns it from “positive” to “negative” and vice versa, and multiplying by −1 twice also does nothing.

31

Proof. Let Op be a two-argument Belnap operator, P, Q, R ∈ {+,−}, A, B be Belnap
formulas, and I an interpretation.

Assume (P, Q, R) ∈ V T (Op), so that VI(Op(A, B)) ∈ {R(T), R(B)} iff VI(A) ∈ {P (F), P (N)}
or VI(B) ∈ {Q(T), Q(B)}. Then we negate both sides of this biconditional.

The left side becomes VI(Op(A, B)) /∈ {R(T), R(B)}.
If R = +, then {R(T), R(B)} = {T, B}, so the left side becomes VI(Op(A, B)) /∈ {T, B},
which means VI(Op(A, B)) ∈ {F, N}, because VI(Op(A, B)) has to take on a value in 4.
And because R = +, {F, N} = {R(F), R(N)}, so the left side becomes VI(Op(A, B)) ∈
{R(F), R(N)}.
Similarly, if R = −, then VI(Op(A, B)) /∈ {R(T), R(B)} = {T, N} means VI(Op(A, B)) ∈
{F, B} = {R(F), R(N)}.
In both cases, the left-side condition becomes VI(Op(A, B)) ∈ {R(F), R(N)}.

The right side becomes VI(A) /∈ {P (F), P (N)} and VI(B) /∈ {Q(T), Q(B)}. By similar
procedures as above, this becomes VI(A) ∈ {P (T), P (B)} and VI(B) ∈ {Q(F), Q(N)}.

Overall, the biconditional becomes VI(Op(A, B)) ∈ {R(F), R(N)} iff VI(A) ∈ {P (T), P (B)}
and VI(B) ∈ {Q(F), Q(N)}, which is the definition of (P, Q, R) ∈ MP (Op) according to
Definition 14.

For the reverse direction, assume (P, Q, R) ∈MP (Op), so that VI(Op(A, B)) ∈ {R(F), R(N)}
iff VI(A) ∈ {P (T), P (B)} and VI(B) ∈ {Q(F), Q(N)}. Then we can negate both sides of the
biconditional, and use the same procedures as above to show that the biconditional is equiv-
alent to VI(Op(A, B)) ∈ {R(T), R(B)} iff VI(A) ∈ {P (F), P (N)} or VI(B) ∈ {Q(T), Q(B)}
for all possible values of P, Q, R. As per Definition 14, this is the definition of (P, Q, R) ∈
V T (Op).

Therefore, (P, Q, R) ∈MP (Op) iff (P, Q, R) ∈ V T (Op).

Theorem 4 shows that the modus ponens and vacuous truth properties are actually different
ways of describing the same property. This makes sense if we examine the truth table of an
implication operator. The modus ponens property specifies four entries in the truth table
that are different from the rest of the entries (e.g. not true instead of true). The vacuous
truth property specifies two rows and two columns, leaving out four entries that are the
same four entries specified by the modus ponens property. Therefore we only need to specify
modus ponens properties from now on, since every modus ponens property has an equivalent
vacuous truth property.

Definition 15. Let a general unidirectional implication F,G−−→
f,g

be a two-argument Belnap

logical operator such that for Belnap formulas A and B, A
F,G−−→
f,g

B = (−¬F (A)∨t G(B))⊕

32

(¬f(A) ∨f −g(B)), where ∨t and ∨f are the truth and falsity conditions of the disjunction
operator shown in Table 2.3 (where blank entries indicate N as previously stated), and
F, G, f, g ∈ {+,−}. 2

Theorem 5. Let F, G, f, g ∈ {+,−}. Then {(F, G, +), (f, g,−)} ⊆MP

(
F,G−−→
f,g

)
.

Proof. Let F, G, f, g ∈ {+,−}, A, B be Belnap formulas, and I an interpretation. Let
Op(A, B) = A

F,G−−→
f,g

B, so that Opt(A, B) = −¬F (A) ∨t G(B) and Opf (A, B) = ¬f(A) ∨f

−g(B).

For the truth condition of Op, we know that t /∈ VI(Op(A, B)) iff t /∈ VI(−¬F (A)) and
t /∈ VI(G(B)).
For the right side of this biconditional, we know that t /∈ VI(−¬F (A)) iff f ∈ VI(¬F (A)),
and f ∈ VI(¬F (A)) iff t ∈ VI(F (A)). Therefore, the right side becomes t /∈ VI(Op(A, B))
iff t ∈ VI(F (A)) and t /∈ VI(G(B)).
We also know that t ∈ VI(F (A)) iff VI(F (A)) ∈ {T, B}. Since F (F (A)) = A for any F ∈
{+,−}, we then know that VI(F (A)) ∈ {T, B} iff VI(F (F (A))) = VI(A) ∈ {F (T), F (B)}.
Similar to above, t /∈ VI(G(B)) iff VI(B) ∈ {G(F), G(N)}.
Therefore, the biconditional becomes t /∈ VI(Op(A, B)) iff VI(A) ∈ {F (T), F (B)} and
VI(B) ∈ {G(F), G(N)}.
For the left side of the biconditional, we know that t /∈ VI(Op(A, B)) iff VI(Op(A, B)) ∈
{F, N} = {+F, +N}.
Therefore, the biconditional becomes VI(Op(A, B)) ∈ {+F, +N} iff VI(A) ∈ {F (T), F (B)}
and VI(B) ∈ {G(F), G(N)}. This is the same condition as the definition of (F, G, +) ∈
MP (Op) as per Definition 14.

For the falsity condition of Op, we know that f ∈ VI(Op(A, B)) iff f ∈ VI(¬f(A)) and
f ∈ VI(−g(B)).
For the right side of this biconditional, we know that f ∈ VI(¬f(A)) iff t ∈ VI(f(A)), and
f ∈ VI(−g(B)) iff t /∈ VI(g(B)). Therefore, the right side becomes f ∈ VI(Op(A, B)) iff
t ∈ VI(f(A)) and t /∈ VI(g(B)).
By procedures similar to the previous half of this proof, we can show that t ∈ VI(f(A)) iff
VI(A) ∈ {f(T), f(B)} and t /∈ VI(g(B)) iff VI(B) ∈ {g(F), g(N)}. Therefore, the bicondi-
tional becomes f ∈ VI(Op(A, B)) iff VI(A) ∈ {f(T), f(B)} and VI(B) ∈ {g(F), g(N)}.
For the left side of the biconditional, we know that f ∈ VI(Op(A, B)) iff VI(Op(A, B)) ∈
{F, B} = {−F,−N}.
Therefore, the biconditional becomes VI(Op(A, B)) ∈ {−F,−N} iff VI(A) ∈ {f(T), f(B)}

2Here −¬F (A)∨t G(B) is the truth condition, since the ∨t can only take on values in {T, N}. Similarly,
¬f(A) ∨f −g(B) is the falsity condition, and the two are combined via gullibility as per Definition 5.

33

and VI(B) ∈ {g(F), g(N)}. This is the same condition as the definition of (f, g,−) ∈
MP (Op) as per Definition 14.

Theorem 5 shows that F,G−−→
f,g

has two separate modus ponens properties, one with its truth

condition and one with its falsity condition. Its truth condition is “if the antecedent is (true
or not false, controlled by F) and the consequent is (not true or false, controlled by G),
then the implication is not true”, while its falsity condition is “if the antecedent is (true or
not false, controlled by f) and the consequent is (not true or false, controlled by g), then
the implication is false”. The functions F, G, f, g control the specifics of these modus ponens
properties. F, G are placed above the arrow, representing how they control the implication’s
truth condition, while f, g are below the arrow, controlling its falsity condition. F, f are at
the left side of the arrow, controlling how it handles the antecedent, while G, g are at the
right side, controlling how it handles the consequent.

Theorem 6. Let A, B be Belnap formulas, and I an interpretation where VI(A), VI(B) ∈
{T, F}. Then for any F, G, f, g ∈ {+,−}, if VI(A) = T and VI(B) = F, then VI

(
A

F,G−−→
f,g

B

)
= F; otherwise VI

(
A

F,G−−→
f,g

B

)
= T.

Proof. Let A, B be Belnap formulas, and I an interpretation where VI(A), VI(B) ∈ {T, F}.
Then because VI(A), VI(B) ∈ {T, F}, for any F, G, f, g ∈ {+,−}, VI(F (A)) = VI(f(A)) =
VI(A), and VI(G(B)) = VI(g(B)) = VI(B). So in I, A

F,G−−→
f,g

B simplifies down to (−¬A ∨t

B) ⊕ (¬A ∨f −B). For the same reason, VI(−A) = VI(A) and VI(−B) = VI(B), so the
expression further simplifies down to (¬A ∨t B)⊕ (¬A ∨f B) = ¬A ∨B, which we know to
match the behavior of classical logic when VI(A), VI(B) ∈ {T, F}.

With Theorems 5 and 6, we can see that the general unidirectional implication operator
is a proper four-valued generalization of the two-valued implication operator. However, it
is unidirectional because it does not have the contraposition property. If we want such a
property, we must define the contrapositive ourselves and manually conjoin it with the
original implication, much like what was done with →le and →si.

Definition 16. Let A, B be Belnap formulas, and Op be a two-argument Belnap operator.
Then C¬ and C− are contraposition transformations, where C¬(Op(A, B)) = Op(¬B,¬A),
C−(Op(A, B)) = Op(−A,−B), and C−¬(Op(A, B)) = C¬(C−(Op(A, B))) = C−(C¬(Op(A,

B))) = Op(−¬A,−¬B).

Theorem 7. Let A, B be Belnap formulas, and F, G, f, g ∈ {+,−}.

• C¬

(
A

F,G−−→
f,g

B

)
= A

−G,−F−−−−−→
−g,−f

B.

34

• C−

(
A

F,G−−→
f,g

B

)
= A

−F,−G−−−−→
−f,−g

B.

• C−¬

(
A

F,G−−→
f,g

B

)
= A

G,F−−→
g,f

B.

Proof. Let A, B be Belnap formulas, F, G, f, g ∈ {+,−}, and Op(A, B) = A
F,G−−→
f,g

B. First,

we note that for any h ∈ {+,−} and formula X, h(¬X) = ¬h(X) and h(−X) = −h(X),
because negation and conflation are commutative with each other.

Let C¬(Op(A, B)) = (−¬F ′(A) ∨t G′(B))⊕ (¬f ′(A) ∨f −g′(B)).
C¬(Opt(A, B)) = −¬F (¬B) ∨t G(¬A) = −F (B) ∨t ¬G(A) = −¬(−G(A)) ∨t (−F (B)).
Therefore, F ′ = −G and G′ = −F .
C¬(Opf (A, B)) = ¬f(¬B)∨f −g(¬A) = f(B)∨f −¬g(A) = ¬(−g(A))∨f −(−f(B)). There-
fore, f ′ = −g and g′ = −f .

C− is much simpler. For any h′(X) = h(−X), we know h′ = −h, which applies to all of
F, G, f, g in C−(Op(A, B)).

The C−¬ case can be obtained by simply composing the procedures of the above two cases.

With Theorem 7, we can now construct→t,→cmi,→le, and→si from general unidirectional
implications. The following theorem can be verified by simply checking the appropriate truth
tables.

Theorem 8. Let A, B be Belnap formulas.

• A→t B = A
+,+−−→
+,+

B.

• A→cmi B = A
+,+−−→
+,−

B.

• A →le B =
(

A
+,+−−→
+,+

B

)
∧ C¬

(
A

+,+−−→
+,+

B

)
=

(
A

+,+−−→
+,+

B

)
∧ C−

(
A

+,+−−→
+,+

B

)
=(

A
+,+−−→
+,+

B

)
∧

(
A
−,−−−→
−,−

B

)
.

• A→si B =
(

A
+,+−−→
+,−

B

)
∧C¬

(
A

+,+−−→
+,−

B

)
=

(
A

+,+−−→
+,−

B

)
∧

(
A
−,−−−→
+,−

B

)
6=

(
A

+,+−−→
+,−

B

)
∧C−

(
A

+,+−−→
+,−

B

)
=

(
A

+,+−−→
+,−

B

)
∧

(
A
−,−−−→
−,+

B

)
.

• ¬A ∨B = A
−,+−−→
+,−

B.

35

As we can see, →le can be constructed from →t and either its C¬ contrapositive or its C−

contrapositive, but →si must be constructed from →cmi and its C¬ contrapositive; its C−

contrapositive will not work.

Theorem 8 tells us the modus ponens and vacuous truth properties that the four other
implication operators we previously examined have, through Theorem 5. The same can be
said about ¬A ∨ B, as stated earlier in this thesis when it was last mentioned. It does
not fulfill (+, +, +) or (+, +,−), the purely forward truth preservation form of modus
ponens displayed by →t, but instead fulfills (−, +, +) and (+,−,−). Therefore, whether
¬A∨B is usable or useful as an implication operator depends on the specific problem being
modelled.

Overall, a large number of possible implication operators can be constructed from general
unidirectional implication operators and their contrapositives. However, conjoining multiple
general unidirectional implications together means the resulting implication may no longer
have modus ponens or vacuous truth properties exactly as defined in Definition 14. The
intuitive meaning of such a composite implication can be determined by examining the
modus ponens properties of the truth and falsity conditions of each of its unidirectional
constituents, and examining how these truth and falsity conditions are combined by the
truth and falsity conditions of conjunction. It ultimately depends on the specific problem
being modelled whether these operators make sense.

The implementation of general unidirectional implications and contraposition in ASP4 has
some nuances, which will be discussed in the next and final section of this chapter.

4.4 Implementation of General Unidirectional Implications
and Contraposition in ASP

A Belnap formula can be implemented in ASP4 if it is a “rule”, an implication with a
conjunction of d-literals as its antecedent and a d-literal as its consequent. However, at first
glance, it seems that the C¬ contrapositive of a rule is an implication with a d-literal as its
antecedent and a disjunction of d-literals as its consequent. For example, C¬(d1∧ ...∧dn →t

d0) = ¬d0 →t ¬d1 ∨ ... ∨ ¬dn. This suggests that implementing contraposition may require
disjunctive logic programming, a form of logic programming where the head of a rule is a
disjunction of d-literals.

In a disjunctive version of ASP4, a rule is of the form (d1; ...; dm ← dm+1, ..., dn), where the
head is a disjunction of d-literals and the body a conjunction of d-literals; a disjunction of
d-literals is satisfied iff any one of its members is satisfied. The reduct of program P with
respect to interpretation I is the set of rules {(head+(r)← body+(r) | r ∈ P, body−(r)∩I =
∅, head−(r) ⊆ I}. However, allowing disjunction in rule heads causes ASP to become much

36

more computationally expensive 3, in addition to no longer guaranteeing the minimality of
stable models. For example, the program {(a;∼a ←)} has two stable models, {a} and ∅,
each of which is the minimal model of its own reduct, but only one of them is the minimal
model of the original program. There are many more problems and nuances with disjunctive
logic programming, which are beyond the scope of this thesis, so we will avoid resorting to
disjunctive logic programming for the scope of this thesis.

Fortunately, Theorem 7 allows us to have C¬ contrapositions of rules that still have a con-
junction of d-literals as the antecedent and a single d-literal as the consequent: C¬ (d1 ∧ ... ∧ dn

F,G−−→
f,g

d0

)
= d1 ∧ ...∧ dn

−G,−F−−−−−→
−g,−f

d0. Since there will always be no more than one d-literal in
the consequent, we do not need to involve disjunctive logic programming.

Another issue with implementing general unidirectional implications, and contraposition,
is that it sometimes requires the head of a rule to be a default-negated literal. First, we
need to redefine a few things in ASP4 to accommodate allowing negative d-literals in rule
heads.

Definition 17. Let ASP4
NH be an extension of ASP4 with the following modifications:

• The head of a rule can now also be a negative d-literal.

• If the head of rule r is the positive d-literal l, then head+(r) = {l} and head−(r) = ∅.
If the head of r is the negative d-literal ∼l, then head+(r) = ∅ and head−(r) = {l}.
If the head of r is empty, then head+(r) = head−(r) = ∅.

• The definition of the reduct is changed such that for a program P and interpretation
I, P I = {(head+(r)← body+(r) | r ∈ P, body−(r) ∩ I = ∅, head−(r) ⊆ I}.

All other definitions remain unchanged.

When default negation is allowed in rule heads, the definition of the reduct is the same
as the definition of the reduct in the disjunctive version of ASP briefly mentioned above.
For a rule (∼l0 ← l1, ..., lm,∼lm+1, ...,∼ln), if l0 ∈ I and {lm+1, ..., ln} ∩ I = ∅, then the
rule is transformed into (← l1, ..., lm), an integrity constraint. This fact, plus the fact that
allowing default negation in rule heads does not make ASP any more expressive (as shown
by Janhunen [13]), suggests that rules with default-negated heads may be replaceable by
integrity constraints. We will now show that this is true.

Theorem 9. For a conjunction of literals L = (l1, ..., ln), let ∼L denote the conjunction of
d-literals (∼l1, ...,∼ln). Let h be a literal, and B+, B− be conjunctions of literals. Let P be an

3As stated in the introduction of this thesis, computational complexity is beyond the scope of this thesis,
and interested readers can refer to works like Faber and Leone [5]. In short, ASP with default negation is
co-NP, while allowing both default negation and disjunction results in ΠP

2 .

37

arbitrary ASP4
NH program, P1 = P∪{(∼h← B+,∼B−)}, and P2 = P∪{(← h, B+,∼B−)}.

Then P1 and P2 have the same stable models.

Proof. For interpretations X, Y where X ⊆ Y , let (X, Y) be an SE-model of ASP4
NH

program P iff Y is a model of P and X is a model of P Y . Turner [20] showed that two
programs have the same stable models iff they have the same SE-models. 4 Let P be an
arbitrary program, r1 = (∼h ← B+,∼B−), r2 = (← h, B+,∼B−), P1 = P ∪ {r1}, and
P2 = P ∪ {r2}; then P1 and P2 have the same stable models iff they have the same SE-
models.

For any rule r and interpretation I, let the rule rI = (head+(r)← body+(r)) iff body−(r)∩
I = ∅ and head−(r) ⊆ I; otherwise rI does not exist. For any program P such that
P ′ = P ∪ {r}, then by the definition of reducts, rI does not exist iff (P ′)I = P I , and if rI

exists, then (P ′)I = P I ∪ {rI}.

Proof that every SE-model of P1 is an SE-model of P2:
Let (X, Y) be an SE-model of P1, so that Y is a model of P1 and X is a model of P Y

1 .
If rY

1 exists, then P Y
1 = P Y ∪ {rY

1 }; otherwise P Y
1 = P Y . Either way, P Y ⊆ P Y

1 . Also, X

satisfies every rule in P Y
1 . Therefore, X is a model of P Y .

r1 and r2 have the same models. Y is a model of every rule in P1, so Y is a model of r1; so Y

is a model of r2. Since P ⊆ P1, Y is a model of P . Therefore, Y is a model of P2 = P ∪{r2}.
Case 1: Assume B− ∩ Y 6= ∅. Then rY

2 does not exist, so P Y
2 = P Y . Since X is a model of

PY , X is a model of P Y
2 . In this case, (X, Y) is an SE-model of P2.

Case 2: Assume B− ∩ Y = ∅. Then rY
2 = (← h, B+).

Case 2.1: Assume h /∈ Y . Since X ⊆ Y , h /∈ X. Therefore X satisfies rY
2 .

Case 2.2: Assume h ∈ Y . Then rY
1 = (← B+), which X satisfies since (X, Y) is an SE-model

of P1, so B+ 6⊆ X. Therefore, X satisfies rY
2 .

In both cases 2.1 and 2.2, X satisfies rY
2 . Since X is a model of P Y and satisfies rY

2 , it is a
model of P Y ∪ {rY

2 } = P Y
2 . Therefore (X, Y) is an SE-model of P2 in case 2.

In both cases 1 and 2, (X, Y) is an SE-model of P2. Therefore, every SE-model of P1 is an
SE-model of P2.

Proof that every SE-model of P2 is an SE-model of P1: Let (X, Y) instead of an SE-model
of P2, so that Y is a model of P2 and X is a model of P Y

2 .
By similar procedures as before, X is a model of P Y , and Y is a model of P1.
Case 1: Assume B− ∩ Y 6= ∅. Then rY

1 does not exist. By similar procedures as before,
(X, Y) is an SE-model of P1 in this case.

4Technically Turner [20] only applies to consistent programs, but our definition of ASP4
NH treats com-

plementary literals as if they are different atoms (can substitute every negative literal ¬a with a new atom
a′), so his result is still applicable to us.

38

Case 2: Assume B− ∩ Y = ∅.
Case 2.1: Assume h /∈ Y . Then rY

1 does not exist. By similar procedures as before, (X, Y)
is an SE-model of P1 in this case.
Case 2.2: Assume h ∈ Y . Since Y is a model of r2 = (← h, B+,∼B−), and h ∈ Y and
B− ∩ Y = ∅, the only way for Y to satisfy r2 is to have B+ 6⊆ Y . Since X ⊆ Y , that means
B+ 6⊆ X. Therefore X satisfies rY

1 = (← B+). By similar procedures as before, (X, Y) is
an SE-model of P1 in this case.
In all cases, (X, Y) is an SE-model of P1. Therefore, every SE-model of P2 is an SE-model
of P1.

P1 and P2 have the same SE-models, so they have the same stable models.

Theorem 9 shows that every rule with a default-negated head can be transformed into
an integrity constraint by moving its head to the body and removing the default negation.
This way, ASP4

NH is reduced to ASP4 without changing the language’s expressiveness, and
general unidirectional implications can be implemented in ASP4 without problem.

Theorem 10. Let l0, ..., ln be literals, I an interpretation, and F, G, f, g ∈ {+,−}. Let
R = l1 ∧ ... ∧ lm ∧ −¬lm+1 ∧ ... ∧ −¬ln

F,G−−→
f,g

l0. Let rF be a conjunction of d-literals where

rF = (l1, ..., lm,∼lm+1, ...,∼ln) iff F = +, and rF = (∼¬l1, ...,∼¬lm,¬lm+1, ...,¬ln) iff
F = −; and let rf be similarly defined regarding l1, ..., ln and f . Then,

• if G = +, t ∈ VI(R) iff the rule (l0 ← rF) is satisfied;

• if G = −, t ∈ VI(R) iff the rule (← ¬l0, rF) is satisfied;

• if g = +, f /∈ VI(R) iff the rule (l0 ← rf) is satisfied;

• if g = −, f /∈ VI(R) iff the rule (← ¬l0, rf) is satisfied.

Overall, a general unidirectional implication is implemented as (G(l0)← F (l1), ..., F (lm),
F (∼lm+1), ..., F (∼ln)) for its truth condition, and similarly with f, g for its falsity condition.
+ leaves things unchanged, while −l = ∼¬l and −∼l = ¬l.

Proof. Assume we have all specifications stated in Theorem 10.

Let Op(A, B) = A
F,G−−→
f,g

B, where A, B are Belnap formulas. By Theorem 8, we have

established that A
+,+−−→
+,+

B = A →t B. Thus, A(→t)tB = −¬A ∨t B and A(→t)f B =
¬A ∨f −B. Therefore, the truth condition of Op(A, B) is F (A)(→t)tG(B), and its falsity
condition is f(A)(→t)f g(B). In other words, t ∈ VI(Op(A, B)) iff t ∈ VI(F (A) →t G(B)),
and f ∈ VI(Op(A, B)) iff f ∈ VI(f(A)→t g(B)).

39

By Theorem 2, t ∈ VI(F (A) →t G(B)) iff the rule (BLC−1(G(B)) ← BLC−1(F (A))) is
satisfied. Let A = l1 ∧ ... ∧ lm ∧ −¬lm+1 ∧ ... ∧ −¬ln and B = l0.
If F = +, then BLC−1(F (A)) = BLC−1(l1∧...∧lm∧−¬lm+1∧...∧−¬ln) = (l1, ..., lm,∼lm+1,

...,∼ln).
If F = −, then BLC−1(F (A)) = BLC−1(−l1∧...∧−lm∧¬lm+1∧...∧¬ln) = (∼¬l1, ...,∼¬lm,

¬lm+1, ...,¬ln).
If G = +, then BLC−1(G(B)) = BLC−1(l0) = l0.
If G = −, then BLC−1(G(B)) = BLC−1(−l0) = ∼¬l0, which can be moved from the rule
head to the rule body as ¬l0, via Theorem 9.
In all cases, the rule’s head and body match those presented in Theorem 10.

By the definition of →t, f ∈ VI(F (A) →t G(B)) iff t /∈ VI(f(A) →t g(B)). Therefore,
f ∈ VI(Op(A, B)) iff t /∈ VI(f(A) →t g(B)). In other words, f /∈ VI(Op(A, B)) iff t ∈
VI(f(A)→t g(B)).
Then by Theorem 2, t ∈ VI(f(A)→t g(B)) iff the rule (BLC−1(g(B))← BLC−1(f(A))) is
satisfied. The remainder of this part of the proof proceeds identically to the previous part
of the proof.

Now we are capable of implementing all implication operators we have discussed. The general
unidirectional implication operators are implemented using Theorem 10, while contraposi-
tion transformations are reduced to more general unidirectional implications via Theorem
7. Implementation summaries are given below.

l1 ∧ ... ∧ lm ∧ −¬lm+1 ∧ ... ∧ −¬ln →t l0 can be implemented as:

• Truth condition: (l0 ← l1, ..., lm,∼lm+1, ...,∼ln)

• Falsity condition: (l0 ← l1, ..., lm,∼lm+1, ...,∼ln)

Note that the truth and falsity conditions are identical and redundant with each other, due
to →t being effectively two-valued.

l1 ∧ ... ∧ lm ∧ −¬lm+1 ∧ ... ∧ −¬ln →cmi l0 can be implemented as:

• Truth condition: (l0 ← l1, ..., lm,∼lm+1, ...,∼ln)

• Falsity condition: (← ¬l0, l1, ..., lm,∼lm+1, ...,∼ln)

l1 ∧ ... ∧ lm ∧ −¬lm+1 ∧ ... ∧ −¬ln →le l0 can be implemented as:

• Truth condition: (l0 ← l1, ..., lm,∼lm+1, ...,∼ln)

• Falsity condition: (l0 ← l1, ..., lm,∼lm+1, ...,∼ln)

• Truth condition of contrapositive: (← ¬l0,∼¬l1, ...,∼¬lm,¬lm+1, ...,¬ln)

40

• Falsity condition of contrapositive: (← ¬l0,∼¬l1, ...,∼¬lm,¬lm+1, ...,¬ln)

Like with →t, the truth and falsity conditions of →le are redundant due to it being two-
valued.

l1 ∧ ... ∧ lm ∧ −¬lm+1 ∧ ... ∧ −¬ln →si l0 can be implemented as:

• Truth condition: (l0 ← l1, ..., lm,∼lm+1, ...,∼ln)

• Falsity condition: (← ¬l0, l1, ..., lm,∼lm+1, ...,∼ln)

• Truth condition of contrapositive: (← ¬l0,∼¬l1, ...,∼¬lm,¬lm+1, ...,¬ln)

• Falsity condition of contrapositive: (← ¬l0, l1, ..., lm,∼lm+1, ...,∼ln)

As mentioned when first introducing →si, its falsity condition is the same as that of →cmi;
the falsity conditions of its non-contrapositive and contrapositive halves are identical and
redundant.

¬(l1 ∧ ... ∧ lm ∧ −¬lm+1 ∧ ... ∧ −¬ln) ∨ l0 can be implemented as:

• Truth condition: (l0 ← ∼¬l1, ...,∼¬lm,¬lm+1, ...,¬ln)

• Falsity condition: (← ¬l0, l1, ..., lm,∼lm+1, ...,∼ln)

Finally, we present an example of using some of the implication operators we have examined,
and implementing it.

Example 10. Suppose we are in front of a train track, and trying to decide whether to
cross the track. Let t represent knowing that a train is coming, and c represent deciding to
cross. The following considerations need to be made when modelling this problem:

• We may lack access to any information on the train schedule, so t may take on the
value of N. We may also have access to multiple conflicting versions of the train
schedule, some of which may be wrong or outdated, so t may also take on the value
of B.

• We cannot decide to simultaneously cross and not cross, so c cannot take on the value
of B, necessitating the constraint c ∧ ¬c →t. Using another implication operator is
unnecessary here because an integrity constraint using →t is already unsatisfiable if
its body is true.

• If we do not have a compelling reason that we definitely should cross, then it is better
to be safe and not cross; ∼c→t ¬c. We can use a different implication operator here,
but doing so ultimately only gives us trivialities like ∼c ∧ c→t or redundancies with
c ∧ ¬c→t.

41

• If we have a version of the train schedule saying that no train is coming, and also
do not have any conflicting versions of the train schedules saying a train is coming,
then we conclude that it is safe to cross. However, the “counter-example” of being
absolutely sure that no train is coming but still deciding to not cross is not very
unreasonable, as we may have some other reason to not cross, so we do not need to
rule out this counter-example. Similarly, if we look at the contrapositive of this rule,
it says that if we did not cross, we can conclude that there must have been a train
coming or that we must have been unable to verify that no train was coming, which
is not necessarily true due to the aforementioned other potential reason to not cross;
so we do not need to enforce the contrapositive here. Therefore, we should write this
rule as ¬t ∧ ∼t→t c.

• If we know the train is coming, then we must not cross. The counter-example of
knowing the train is coming but still crossing is lethal, so it must be eliminated.
Therefore, this rule should at least be t→cmi ¬c. When we look at its contrapositive,
we reason that if we crossed, that means we knew no train was coming, which must
be true in our model of the problem, so we can incorporate the contrapositive and
have this rule be t→si ¬c.

• If we cannot verify that the train is not coming, then we must not cross. Similarly to
the previous point, the counter-example of not knowing the train is not coming but
still crossing is lethal and must be eliminated. Also similarly to the previous point,
the contrapositive of if we crossed then we did not have any information telling us the
train was coming is true. Therefore, this rule should also be ∼¬t→si ¬c.

When converting the above Belnap formulas into ASP4 rules, some of the resulting rules are
redundant with each other. Overall, we have the program P = {(← c,¬c), (¬c← ∼c), (c←
¬t,∼t), (¬c ← t), (← c, t), (¬c ← ∼¬t), (← c,∼¬t)}. Now we add in some facts about our
knowledge of the train schedule to see what conclusions we can make.

• Let P1 = P ∪ {(t ←)}, meaning that we know the train is coming and also has no
information saying the train is not coming. Then our only stable model is {t,¬c},
meaning we should not cross.

• Let P2 = P ∪ {(¬t ←)}, meaning that we know the train is not coming and also
has no information saying the train is coming. Then our only stable model is {¬t, c},
meaning we should cross.

• Let P3 = P ∪ {(t ←), (¬t ←)}, meaning that we have conflicting information on
whether the train is coming. Then our only stable model is {t,¬t,¬c}, meaning we
should not cross.

42

• Let P4 = P ∪∅, meaning that we have no information on whether the train is coming.
Then our only stable model is {¬c}, meaning we should not cross.

We can see that the only time we know we can safely cross is when we are absolutely
sure that the train is not coming, and that we know not to cross when facing conflicting
information on whether the train is coming and the lack of information.

43

Chapter 5

Conclusion and Further
Research

Now that we are finished with presenting our major findings, we will summarize what we
have done and present opportunities for further research.

This thesis, and paraconsistent logic as a whole, is motivated by the desire to avoid the
principle of explosion A ∧ ¬A→ B in classical logic, since otherwise the presence of a con-
tradiction would cause every possible formula to become true. In answer set programming
with classical negation, this is handled by rules like (b← a,¬a) or (← a,¬a), which artifi-
cially enforce the principle of explosion, resulting in some awkwardness such as the language
being a three-valued logic that lacks clearly-defined intuitive meaning when a model con-
tains neither an atom nor its negation. Thus we instead define a four-valued version of ASP,
showing that Belnap logic is a more intuitive basis for logic programming that uses both
classical negation and default negation. We have shown that the conflation operator in Bel-
nap logic has an intuitive meaning corresponding to default negation, as in ∼a = −¬a. We
then examined a number of implication operators in Belnap logic, culminating in the cre-
ation of a general unidirectional implication operator that generalizes the notion of modus
ponens in a four valued context, which are implemented in ASP as a combination of normal
rules and integrity constraints. The primary contributions of this thesis are the definition
of ASP-like default negation in Belnap logic, and the general unidirectional implication
in Belnap logic that encompasses many previous Belnap implications and can be easily
implemented in ASP.

This thesis only considers basic ASP and ground atoms, but predicates with variables can
simply be replaced by their groundings, so extending from propositional to first-order logic
should make no difference as long as the domain is finite. Similarly, certain extensions of
ASP are reducible to basic ASP, such as cardinality rules and weighted rules, so the results
of this thesis should also be applicable to ASP with these extensions. Disjunctive logic

44

programming, on the other hand, is a true extension of ASP that we briefly examined in
the previous chapter, so extending four-valued ASP with disjunction is an obvious direction
of further research. An area of particular interest is the effect of moving d-literals between
the head and body of a rule on a program’s stable models. For example, the program
{(a,∼a←)} has two stable models, but moving the second a into the rule body to produce
{(a← a)} eliminates one of the stable models.

Another concession that must be made is the fact that Belnap logic is not immune to the
principle of explosion either. Belnap’s original formulation of it [2], which does not contain
the conflation, gullibility, or consensus operators, is immune to the principle of explosion
due to not being able to form contradictions or tautologies, but the language is also not
functionally complete. Adding the three missing operators makes the language functionally
complete, and while the classical principle of explosion A∧¬A→ B is not valid, a form of the
principle of explosion like A∧−¬A→ B still takes on the value T in all interpretations for
all general unidirectional implications. That is because A∧−¬A is a “hypercontradiction”,
like saying “A is simultaneously true and not true”, which is impossible in Belnap logic,
as opposed to saying “A is simultaneously true and false”, which is possible. This is not
a problem in ASP4 because an interpretation is a set of literals, not a set of d-literals,
so we cannot have something like ∼a as an explicit assertion in our knowledge base; a
conjunction like (a,∼a) is unsatisfiable by any interpretation. However, another potential
way of resolving “hypercontradictions” is to extend Belnap logic in the same way that
Belnap logic extends classical logic, by constructing a set of truth values that are subsets of
the power set of 4. This is a topic explored by Shramko and Wansing [19], who presented
a sixteen-valued logic among others; it may be possible to generalize ASP4 to arbitrarily
higher-ordered multilattices.

Finally, other approaches to non-classical ASP can be considered, such as fuzzy logic and
probabilistic logic, in works like Janssen et al. [14] (fuzzy ASP) and Finger and de Morais
[7] (probabilistic ASP). While these approaches involve drastically different underlying ma-
chinery to function, it may be possible to convert two-valued fuzzy ASP into four-valued
fuzzy ASP in the same way that two-valued normal ASP is converted into four-valued ASP,
and similarly for probabilistic ASP. However, doing so may also require the development of
four-valued fuzzy or probabilistic logic beforehand.

45

Bibliography

[1] Ofer Arieli and Arnon Avron. The value of the four values. Artificial Intelligence,
102:97–142, 1998.

[2] Nuel D. Belnap, Jr. A useful four-valued logic: How a computer should think. In
Entailment: The Logic of Relevance and Necessity, volume 2, pages 506–541. Princeton
University Press, 1992.

[3] Glenn Bruns and Michael Huth. Access control via Belnap logic: Intuitive, expressive,
and analyzable policy composition. ACM Transactions on Information and System
Security, 14(1), 2011.

[4] Chen Chen and Zuoquan Lin. Restricted four-valued semantics for answer set pro-
gramming. PRICAI 2016: Trends in Artificial Intelligence, pages 68–79, 2016.

[5] Wolfgang Faber and Nicola Leone. On the complexity of answer set programming with
aggregates. In Proceedings of the 9th International Conference on Logic Programming
and Nonmonotonic Reasoning, page 97–109. Springer-Verlag, 2007.

[6] Andreas Falkner, Gerhard Friedrich, Konstantin Schekotihin, Richard Taupe, and
Erich C. Teppan. Industrial applications of answer set programming. Künstliche In-
telligenz, 32:165–176, 2018.

[7] Marcelo Finger and Eduardo Menezes de Morais. Probabilistic answer set program-
ming. In Proceedings of the 2013 Brazilian Conference on Intelligent Systems, pages
150–156. IEEE Computer Society, 2013.

[8] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Proceedings of International Logic Programming Conference and Symposium,
pages 1070–1080. MIT Press, 1988.

[9] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365–385, 8 1991.

[10] Matthew L. Ginsberg. Multivalued logics: A uniform approach to inference in artificial
intelligence. Computational Intelligence, 4:265–316, 1988.

[11] Allen P. Hazen, Francis Jeffry Pelletier, and Geoff Sutcliffe. Making Belnap’s “useful
four-valued logic” useful. In The Thirty-First International Florida Artificial Intel-
ligence Research Society Conference. Association for the Advancement of Artificial
Intelligence, 2018.

46

[12] Alfred Horn. On sentences which are true of direct unions of algebras. The Journal of
Symbolic Logic, 16(1):14–21, 1951.

[13] Tomi Janhunen. On the effect of default negation on the expressiveness of disjunctive
rules. Logic Programming and Nonmotonic Reasoning, 1:93–106, 2001.

[14] Jeroen Janssen, Steven Schockaert, Dirk Vermeir, and Martine De Cock. Answer Set
Programming For Continuous Domains: A Fuzzy Logic Approach, volume 5 of Atlantis
Computational Intelligence Systems. Atlantis Press, 2012.

[15] Hitoshi Omori and Katsuhiko Sano. Generalizing functional completeness in Belnap-
Dunn logic. Studia Logica, 103:883–917, 2015.

[16] Graham Priest. Paraconsistent Logic, pages 287–393. Springer Netherlands, 2002.

[17] R. Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker, editors,
Logic and Data Bases, pages 55–76. Springer Science+Business Media, 1978.

[18] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

[19] Yaroslav Shramko and Heinrich Wansing. Truth and Falsehood: An Inquiry into Gen-
eralized Logical Values. Springer Science+Business Media, 2011.

[20] Hudson Turner. Strong equivalence made easy: Nested expressions and weighted con-
straints. Theory and Practice of Logic Programming, 3:609–622, 2003.

[21] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics
for logic programs. Journal of the ACM, 38(3):620–650, 1991.

47

	Approval
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Belnap’s Four-Valued Logic
	Truth, Falsity, and Truth Values
	Operators in Belnap Logic

	Default Negation in Four-Valued Answer Set Programming
	Logic Programming and Stable Model Semantics
	Default Negation in Four-Valued ASP

	Implications in Four-Valued Answer Set Programming
	The Basic Implication Operator
	Other Implication Operators in Belnap Logic
	General Unidirectional Implication Operators in Belnap Logic
	Implementation of General Unidirectional Implications and Contraposition in ASP

	Conclusion and Further Research
	Bibliography

