
Functional Neural Networks
for Scalar Prediction

by

Barinder Thind
B.Sc. Honors, Simon Fraser University, 2018

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Statistics & Actuarial Science

Faculty of Science

c© Barinder Thind 2020
SIMON FRASER UNIVERSITY

Spring 2020

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Barinder Thind

Degree: Master of Science (Statistics)

Title: Functional Neural Networks
for Scalar Prediction

Examining Committee: Chair: David Stenning
Assistant Professor
Department of Statistics & Actuarial Science
Simon Fraser University

Jiguo Cao
Supervisor
Associate Professor
Department of Statistics & Actuarial Science
Simon Fraser University

Liangliang Wang
Committee Member
Associate Professor
Department of Statistics & Actuarial Science
Simon Fraser University

Lloyd Elliott
Examiner
Assistant Professor
Department of Statistics & Actuarial Science
Simon Fraser University

Date Defended: April 7, 2020

ii

Abstract

We introduce a methodology for integrating functional data into densely connected feed-

forward neural networks. The model is defined for scalar responses with at least one func-

tional covariate and some number of scalar covariates. A by-product of the method is a set of

functional parameters that are dynamic to the learning process which leads to interpretabil-

ity. The model is shown to perform well in a number of contexts including prediction of new

data and recovery of the true underlying coefficient function; these results were confirmed

through cross-validations and simulation studies. A collection of useful functions are built

on top of the Keras/Tensorflow architecture allowing for general use of the approach.

Keywords: Functional Data Analysis, Machine Learning, Neural Networks, Prediction

iii

Dedication

I would like to dedicate this work to my grandma and to my family pet.

They both unfortunately, passed away while I was completing this degree.

iv

Acknowledgements

I wanted to take this space to appreciate the relationships I have with the people in my

life. In particular, I want to thank my supervisor Jiguo Cao, for his encouraging words and

meaningful contributions to the research done here. To everyone in my cohort for being

an awesome group of people. To my closest friends and many others, thank you for being

there. I’m grateful that professors like Richard, Rachel, Jinko, Ian, Tom, Harsha, Steve,

Carl, Robin, Tim, Joan, Brad, and Derek provided me with wisdom that was, and still

is, far beyond my years. I am appreciative of Charlene, Sadika, and Jay for making my

life so much easier. I am so thankful to Marie for all that she did for me; I truly looked

forward to our spontaneous conversations! A thank you as well to Lloyd, Liangliang, and

David for providing me valuable feedback on my thesis and agreeing to be on the examining

committee. Also, a thanks to Dr. Ng. And finally, I am so grateful for my family. I am glad

to have grown closer to my brother over these past two years and it goes without saying,

my parents have provided me with more than I could ever put into words.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures x

1 Introduction 1

2 Methodology 5

2.1 Functional Neural Networks . 5

2.2 Network Training . 9

2.3 Functional Neural Coefficients . 10

2.4 Weight Initialization and Parameter Tuning 12

3 Real World Verifications 13

3.1 Bike Rental Data . 13

3.2 Tecator Data . 14

3.3 Canadian Weather Data . 16

4 Simulation Studies 18

vi

4.1 Recovery of β(s) . 18

4.2 Prediction . 20

5 Conclusions & Discussions 24

Bibliography 25

Appendix A Proof of Theorem 1. 27

Appendix B List of All Parameters 29

Appendix C Model Hyperparameter Values 30

Appendix D MSPE Values for Simulated Data 31

vii

List of Tables

Table 3.1 Tabulated 10 fold cross-validated mean-squared predication error and

R2 of eight models, including the FNN. The italics indicate second-

best model performance, whereas the bolded (and green coloured) cells

indicate best performance. 14

Table 3.2 This table compares the results of our method to those used in (Bande

and Fuente, 2012). We can observe that our approach was nearly the

best with respect to MEP. The italics indicate second-best model per-

formance, whereas the bolded (and green coloured) cells indicate best

performance. Note that we only presented the results using the second

derivative as the covariate since it was the better performer. 15

Table 3.3 Tabulated leave-one-out cross-validated mean-squared predication er-

ror and R2 of eight models, including the FNN. The italics indicate

second-best model performance, whereas the bolded (and green coloured)

cells indicate best performance. We see that the functional neural net-

work performed the best. 16

Table 4.1 Information regarding simulation runs. The average values along with

the associated deviation of the IMSE over the 250 iterations are pro-

vided for both the FNNs and the functional linear model. The compu-

tation times given are the average per simulation. 20

Table B.1 A list of the parameters in the network. 29

Table C.1 Configurations for FNN models throughout the paper. 30

viii

Table D.1 MSPE values for simulated data predictions. As it was evident by the

boxplots in Figure 6, the FNN approach outperforms the others in 3 of

the 4 simulations. In the one case that it does not, it performs second

best. 31

ix

List of Figures

Figure 2.1 The form of the general functional neural network for when the in-

puts are a combination of functions, xk(s), and scalar values, zj . The

response/output of this network is a scalar value, ŷ. 8

Figure 2.2 An example of how the FNC changes over varying the number of

epochs. At 99, the validation error stops decreasing (with respect

to some threshold). We can see that the difference in the curves is

most pronounced in the beginning and is least pronounced after the

model finds some local extrema. In this example, the weights were

initialized from a uniform distribution. 11

Figure 3.1 The estimated coefficient functions for the usual functional linear

model and the functional neural network for the bike rental data set.

The plot on the left is a functional linear model and the plot on the

right is the FNN. The optimal number of basis functions was 11 for

the linear model and 3 for the neural network. 14

Figure 3.2 The estimated coefficient functions for the usual functional linear

model and the functional neural network for the weather data set.

For this data set, we decided to keep the number of basis functions

the same across both models - the choice for this was 11 and comes

from (Ramsay et al., 2009). 17

x

Figure 4.1 Boxplots of root IMSE results over 250 simulation runs for four sce-

narios. Plot (A) is for when we use the identity link function. Plot

(B) are the results from the exponential link. The bottom plots, (C)

and (D) are the results from simulation 3 and 4, respectively. . . . 20

Figure 4.2 Boxplots of rMSPE values for all simulations. 23

xi

Chapter 1

Introduction

The ever-expanding umbrella that encompasses deep-learning methodologies has been lim-

ited to the multivariate scope, thus excluding usage of functional covariates. With the advent

and rise of functional data analysis (FDA) (Ramsay and Silverman, 2010), it is natural to

extend neural networks to this space. The main goal of this article is to provide a new means

of modelling functional data for scalar response prediction. Previous methods include the

classical functional linear model defined as (Cardot et al., 1999):

E(Y |X) = α+
∫
S
β(s)X(s) ds,

where Y is the scalar response, X(s) is the functional covariate, α is the intercept term, S is

the domain over which the functional data is observed, and β(s) is the functional coefficient.

Note, it is useful to represent β(s) in a functional form β(s) =
∑
j cjφj(s), where {φj(s)}

forms a basis (Cardot et al., 2003). In this scheme, in order to estimate β(s), the error

is minimized: β∗(s) = min
β(s),α

{∑
i (yi − α−

∫
S β(s)xi(s) ds)2

}
(Hastie and Mallows, 1993).

However, this can result in volatile estimates along with some significant probability of

over-fitting (Ramsay and Silverman, 2010). Instead, a constrained approach can be used

where we penalize the second derivative. This approach was extended to the general linear

model case and took the following form:

E(Y |X) = g

(
α+

∫
S
β(s)X(s) ds

)

1

where g(·) is referred to as the link function (Müller et al., 2005). When this function g(·)

has no parametric form, the model is referred to as the functional single index model (Jiang

et al., 2011). Other predictive methods in the realm of FDA are related to the estimation of

β(s). For example, a partial least squares approach was used by Preda et al. (2007) where an

attempt was made to maximize the covariance between the response, Y and the functional

covariate, X(s). We can also consider a non-parametric approach as seen in Ferraty and

Vieu (2006) where the model is:

E(Y |X) = r (X(s)) .

In this case, r(·) is a smooth function that is estimated using a kernel approach. Another

method, which serves as an extension to the previous, is that of the semi-functional partial

linear model (Aneiros-Pérez and Vieu (2006)) defined as:

E(Yi|Xi) = r (Xi(s)) +
∑
p

βipZip,

where Z is the non-functional covariate that is observed in the usual multivariate case.

Again, the function r(·) is estimated using kernel methods. All of these approaches have

shown to have some level of predictive success. However, we show that the general neural

network proposed here outperforms these approaches.

To the best of our knowledge, this is the first neural network approach that details

the methodology for when the initial inputs are functions; we provide the generalization

for J functional covariates and K scalar covariates along with a way to estimate the true

underlying coefficient function, β(s). The form of a single neuron vi, in this model is written

as:

vi = g

 K∑
k=1

∫
S
βk(s)xik(s) ds+

J∑
j=1

w
(1)
j zij + b(1)

 (1.1)

2

where g(·) is some activation function, w is the vector of weights associated with the scalar

covariates, the superscript represents the layer number, and βk(s) is the set of functional

neural coefficients (FNCs) that weigh the functional covariates.

We are motivated to pursue this marriage of FDA and neural networks because neu-

ral networks have shown to supersede previous benchmarks, and functional analyses serve

as powerful inference techniques. Recent advances in deep learning have been empirically

shown to outperform other methods in a number of important problems. For example, the

(Krizhevsky et al., 2012) approach won the ImageNet Large-Scale Visual Recognition Chal-

lenge in 2012 beating out the next best approach by an error rate that was over 10% less.

In 2015, (He et al., 2016) introduced ResNets which allowed for circumvention of vanishing

gradients – an innovation that carved a path for networks with exponentially more lay-

ers thus further improving error rates. These successes however, have come at the cost of

interpretability. As the models become more complex, it becomes an increasingly difficult

task to make sense of the network parameters. Classical linear regression models have a

relatively clear interpretation of the parameters estimates (Seber and Lee, 2012). In the

functional linear regression case, the coefficient parameters being estimated are functions

β(s), rather than a set of scalar values, β. This paper details an approach that makes the

functional coefficient traditionally found in the regression model readily available from the

neural network process as the FNCs alluded to earlier; the expectation is that this allows

for interpretation from a set of models with superior predictive power.

Our paper contributes three main components: first, we introduce the methodology for

functional neural networks which can be found in Chapter 2. Additionally, commentary

is provided on the inferential potential, weight initialization, and the hyperparameters of

these networks. Then, Chapter 3 provides results from real world examples; this includes

prediction comparisons between a number of methods for multiple data sets. The first

example concerns the relationship between daily bike rentals and temperature curves. The

second and third are applications of this approach to predict meat contents using absorbance

curves and predict total precipitation using temperature curves, respectively. In Chapter

4, we use simulation studies for the purpose of recovering the true underlying coefficient

3

function β(s), and to test the predictive accuracy of multivariate and functional methods in

four different contexts. Lastly, Chapter 5 contains some closing thoughts and new avenues

of research for this kind of network.

4

Chapter 2

Methodology

2.1 Functional Neural Networks

The usual neural network is made up of hidden layers each of which contains some number

of neurons. We can index these as n1 to nu where the subscript u refers to the uth hidden

layer and nu is the number of neurons in that particular layer. Each neuron (in each layer)

is some (potentially) non-linear transformation of a linear combination of each activation

in the previous layer. An activation value is the output from each of these neurons. For

example, the first hidden layer v(1) would be defined as

v(1) = g
(
W (1)x+ b(1)

)
,

where W (1) and b(1) are the weights and biases and g(·) is some activation function that

transforms the resulting linear combination (Tibshirani et al., 2009). In this example, the

dimensionality of W (1) would be (n1 x J) where J is the number of scalar covariates

associated with each observation, i. The choice of the function g : Rn1 → Rn1 is highly

context dependent. The rectifier (Glorot et al., 2011) and sigmoidal functions (Han and

Moraga, 1995) have been shown to have useful properties which makes them useful choices

for g. Note that the vector x corresponds to a single observation of our data set. The

resulting vector v(1) is n1-dimensional. This vector contains the activation values to be

passed on to the next layer.

Thus far, the assumption has been that x is J dimensional. However, we wish now to

consider the case when our input is infinite dimensional defined over some domain S, i.e.,

5

we postulate our input is a function x(s) : S → R, s ∈ S. We must weigh this covariate at

every point along its domain and so, as in the case with the functional linear model, our

coefficient must be infinite dimensional as well. We define this coefficient as β(s). The form

of a neuron with a single functional covariate then becomes

v(1)
n = g

(∫
S
βn(s)x(s) ds+ b(1)

n

)
, (2.1)

where the subscript n is an index that denotes one of the n1 neurons in this first hidden

layer, i.e., n ∈ {1, 2, . . . , n1}. We omit the superscript on the functional parameter β(s),

because this parameter only exists in the first layer of the network. The functional covariate

x(s), is passed into the network as its basis expansion. Since our estimations will likely

not be exact interpolations of the discrete data points, the assumption is made that the

difference between the functional fit and the discrete values is a matter of random error.

That is, y = x(s) + ε, where x(s) =
∑P
p=1 cpφp(s) = c Tφ(s). The coefficients c can be

estimated with some minimization approach, e.g., ĉ = (ΦTΦ)−1ΦT y where Φ is the n1 by

P matrix containing the evaluations of the P basis functions at some pre-specified values

of s. We remind the reader that while we accrue some error in the smoothing process, we

also reduce the stochastic error associated with the raw discrete data; this trade-off can

circumvent the overfitting nature of universal approximators such as neural networks.

The same treatment is given to β(s) in that it is written as a linear combination of

basis functions. The coefficients on the basis expansion for β(s) will be initialized by the

network; these initializations will then be updated as the network learns. The choice of

basis is a hyperparameter in both cases with b-splines, polynomial expansions, and Fourier

functions being common choices. We also note that the evaluation of the neuron in (2.1)

results in some scalar value - this implies that the rest of the U−1 layers of the network can

be of any of the usual forms (feed-forward, convolution, recurrent, etc.). Using these basis

approximations of x(s) and b(s), we can apply a special case of Fubini’s theorem which

states that for general fn, if
∫ ∑
|fn| <∞ or

∑∫
|fn| <∞, then

∫ ∑
fn =

∑∫
fn (Fubini,

6

1907). The form of a single neuron then becomes:

v(1)
n = g

(∫
S
βn(s)x(s) ds+ b(1)

n

)
(2.2)

= g

(∫
S

M∑
m=1

cnmφnm(s)x(s) ds+ b(1)
n

)
(2.3)

= g

(
M∑
m=1

cnm

∫
S
φnm(s)x(s) ds+ b(1)

n

)
, (2.4)

where the integral in (2.4) can be approximated if need be, such as in the case when the

basis expansion of β(s) or x(s) is done using B-splines.

We can now consider the generalization for K functional covariates and J scalar covari-

ates. Consider the input layer as presented in Figure 2.1. The values correspond to the ith

functional observation and can be seen as the set:

input = {x1(s), x2(s), ..., xK(s), z1, z2, ..., zJ}.

Then the nth neuron of the first hidden layer corresponding to the ith functional observation

can be formulated as:

v(1)
n = g

 K∑
k=1

∫
S
βkn(s)xk(s) ds+

J∑
j=1

w
(1)
jn zj + b(1)

n

 ,
where

βkn(s) =
M∑
m=1

cknmφknm(s)

and φm(s) is as usual, the evaluation of the mth basis function at some value s. This neuron

formulation is the core of this methodology as alluded to in (1.1). Note that cm here is

unique at the initialization for each weight function, β(s). The choice of these initializations

is discussed later in the article. We also note that in this formation, we have assumed that

M is the same across all K functional weights. However, this is for the sake of brevity and

the the choice of the hyperparameter for each of the K functional covariates is left at the

7

discretion of the user. It could be the case that the user prefers some weight functions to

be defined using a different number of basis terms than M , say Mk.

Figure 2.1: The form of the general functional neural network for when the inputs are a
combination of functions, xk(s), and scalar values, zj . The response/output of this network
is a scalar value, ŷ.

Having specified the form, we define the following formation of the first layer in general:

v(1)
n = g

 K∑
k=1

∫
S

Mk∑
m=1

ckmnφkmn(s)xk(s) ds+
J∑
j=1

w
(1)
jn zj + b(1)

n


= g

 K∑
k=1

Mk∑
m=1

ckmn

∫
S
φkmn(s)xk(s) ds+

J∑
j=1

w
(1)
jn zj + b(1)

n

 .
To justify this, we consider the one-layer case and use Theorem 1 and Lemma 1 as de-

fined in (Cybenko, 1989). The proof states that linear combinations of the form G(x) =∑N
n=1 αnσ

(
yTn z + θn

)
exhibit the quality that under some conditions, the function you want

to learn, f , differs from G(x) by only some error ε > 0. Since we are looking at the one-layer

case, we have n1 neurons (indexed from n = 1 to n1) and we omit the superscript that

indexes the layer number, u = 1. Additionally, we fix the observation number i since it does

not play a role in the proof (you can apply the same argument to each observation).

8

Theorem 1. Let g : R→ R be any continuous sigmoidal function, In denote the n−dimensional

hypercube [0, 1]n and C(In) denote the space of continuous functions. Then, the finite sum

of the following form, is dense in C(In):

h(s) =
n1∑
n=1

Ψng

 K∑
k=1

(∫
S
βnk(s)xk(s) ds

)
+

J∑
j=1

wnjzj + bn

 ,
meaning that for any f(s) ∈ C(In) and for ε > 0, the function h(s) obeys:

|h(s)− f(s)| < ε

A proof is provided in the Appendix. After running through this set of initial neurons

and calculating the activations for the layers following, we can arrive at a final value. The

output will be single dimensional, ŷ. In order to assess performance, we can use some loss

function, R; for example, mean squared error

R(θ) =
N∑
i=1

(yi − ŷi(θ))2 ,

where θ is the set of parameters defining the network and yi is the true scalar response.

2.2 Network Training

Having defined the general formation of functional neural networks (FNNs), we can now

turn our attention to the optimization of this kind of network. We will consider the usual

backpropogation algorithm (Rumelhart et al., 1985). While in the implementation, we used

an adam() optimizer (Kingma and Ba, 2014), we can explain the general process when the

optimization scheme uses stochastic gradient descent.

Given our generalization and reworking of the parameters in the network, we can note

that the set θ′ making up the gradient associated with the parameters is:

θ
′ =

{ K⋃
k=1

Mk⋃
m=1

n1⋃
n=1

∂R

∂ckmn
,
U⋃
u=1

Ju⋃
j=1

nu⋃
n=1

∂R

∂wujn
,
U⋃
u=1

nu⋃
n=1

∂R

∂bun

}
,

9

This set exists for every observation, i. We are trying to optimize for the entirety of

the training set, so we will move slowly in the direction of the gradient. The rate at which

we move (the learning rate) will be denoted by γ. For the sake of efficiency, we will take

a subset of the training observations (a mini batch) for which we calculate θ′
sub, where the

subscript sub refers to the fact that it is a mini batch. Then, letting ā =
∑N
i

a
′
i
N , where

a
′
i = ∂R

∂ai
is the derivative of any parameter ai ∈ θ for the ith observation and N is the size

of the mini batch, we observe that the update for a is a = a− γā. We summarize the entire

network process in Algorithm 1.

Lastly, we would like to emphasize that the number of parameters in the network pre-

sented here has decreased significantly under this approach. Consider a longitudinal data

set where we have n observations and Jml scalar repeat measurements of some covariate at

different points along a continuum. Passing this information into a network will mean that

the number of parameters in the first layer will be (Jml + 1) · n1. Note that when we define

a functional observation, it is good practice that the number of basis functions M is less

than the number of observed points, Jml to avoid overfitting via interpolation. Therefore,

the number of parameters in the first layer of our network is (M + 1) · n1 where M < Jml.

2.3 Functional Neural Coefficients

Since a leading contributor to the black-box reputation of neural networks is the inordinate

amount of changing weights and biases, it would be helpful to consider rather a function

defined by these seemingly uninterpretable numbers. In a functional neural network, one set

of weights we are estimating defines a basis function (e.g., βk(s) =
∑M
m=1 ckmφkm(s)). These

basis functions are akin to the ones predicted in the functional regression model (Ramsay

and Silverman, 2010); the final set of weights here define the M -basis β coefficient weight

functions which can be compared with the one estimated from a function linear model.

This extracted function will be referred to as the functional neural coefficient. In the case

of multiple neurons, we take the average of the estimated coefficients; that is, if we are

considering cm, then the estimated value will be cm =
∑n1

n=1 cnm

n1
. Over iterations of the

10

Algorithm 1: Functional Neural Networks

Input: Functional and Scalar Observations
Output: θ
————————————————————————————————————
1. Set Hyperparameters:
γ, # of Basis Functions, Activation Functions, # of Layers, # Of Neurons per
Layer, Epochs, Loss Function

2. Initialize weights of network, θp
3. for j in 1:Epochs

3i. Forward Pass
a. Observed data passed to first hidden layer
b. Approximate

∫
S φkm(s)x(s) ds = φ̃km for each basis function, m and for

each functional covariate, k
c. Calculate g

(∑K
k=1

∑Mk
m=1 ckmφ̃km +

∑J
j=1w

(1)
j zj + b(1)

)
for each neuron

d. Pass activations in c. to any other network architecture as per usual
e. Calculate loss: R(θ)

3ii. Backward Pass
a. Compute θ′

b. ∀ a ∈ θp, update a as: a = a− γā
3iii. If j ≤ Epochs

a. Go to 3i.
b. Else: Go to 4.

4. Return θ = θp

network, as it is trained, we can see movement of the functional coefficient. Figure 2.2 may

be illuminating.

−1

0

1

2

0 5 10 15 20 25
Time

 Epochs: 1

be
ta

(t
)

−1

0

1

2

0 5 10 15 20 25
Time

 Epochs: 25

be
ta

(t
)

−1

0

1

2

0 5 10 15 20 25
Time

 Epochs: 50

be
ta

(t
)

−1

0

1

2

0 5 10 15 20 25
Time

 Epochs: 99

be
ta

(t
)

−1

0

1

2

0 5 10 15 20 25
Time

 Epochs: 120

be
ta

(t
)

−1

0

1

2

0 5 10 15 20 25
Time

 Epochs: 140

be
ta

(t
)

Figure 2.2: An example of how the FNC changes over varying the number of epochs. At 99,
the validation error stops decreasing (with respect to some threshold). We can see that the
difference in the curves is most pronounced in the beginning and is least pronounced after
the model finds some local extrema. In this example, the weights were initialized from a
uniform distribution.

11

2.4 Weight Initialization and Parameter Tuning

For any usual neural network, the weights and biases can be initialized in a number of

ways. For example, in (Kim and Ra, 1991) weights are initialized based on a boundary

that allowed for faster convergence. Another approach is to consider a zero-initialization

i.e., letting the initial parameter values be 0. Many of these approaches have also been

compared to one another using various guidelines (Fernández-Redondo and Hernández-

Espinosa, 2001). In the case of the networks presented here, this is left as a hyperparameter.

Since the implementation is built on top of Keras, the initialization is dependant on the

type of connected layer, but generally the glorot_uniform() initializer (which is a unifrom

distribution that has parameters depending on the dimensionality of the inputs) is the choice

(for dense layers) (Chollet et al., 2015).

Due to the sheer number of hyperparameters in the network, a tuning function is pro-

vided. The function FNN_Tune() will take in a list of possible values for each parameter and

run a cross-validation for all combinations. The number of folds is left at the discretion of the

user. The general scheme is that the function creates a grid, calculates the cross-validated

mean squared prediction error

MSPECV =
∑
i

(
xCV
i − xtrue

i

)2

n
,

where the dimensionality of the CV set depends on the number of folds, and outputs the

combination with the minimum value of this criterion. A complete list of hyperparameters

is given in the Appendix.

One important parameter in this particular kind of network is the number of basis

functions that govern the functional weights. Tuning this is fairly important as the number

of terms significantly impacts the potential for interpretability and restricts us to some

particular shape of the curve. In the examples to come, we tune for this hyperparameter

using the tuning function mentioned above.

12

Chapter 3

Real World Verifications

3.1 Bike Rental Data

An important problem in rental businesses is the amount of supply to keep on-site. If the

company cannot meet demands, they are missing out on profit, and if they exceed the

required supply, they have made investments that are not yielding an acceptable return.

Using the bike rental data set (Fanaee-T and Gama, 2014), we look to model the relationship

between the total number of daily rentals and hourly temperature throughout the day. The

102 functional observations are made using a 31-basis fourier expansion for each Saturday

of a week.

We are first concerned with the accuracy of our predictions. Using R2 and a 10-fold

cross-validated MSPE, we can compare results for a number of models. Here, we compare

with the usual functional linear model, an fPCA approach, a non-parametric functional

linear model, and a functional partial least squares model. The results are summarized in

Table 3.1. We observe that FNNs outperform all the other models using both criteria but

note that the penalized partial least squares approach and the principal ridge regression

performed comparably.

We can also look to see what the determined relationship is according to these models

between temperature and daily rentals as indicated by β(s). In Figure 3.1, the estimated

functions are given. For the functional linear model, we note that there seems to be no

obvious discernable relationship between temperature and bike rentals. In the case of the

FNC, we see that there seems to be a positive relationship as we move into the afternoon

13

and that this relationship tapers off as the day ends. We would also expect there to be no

effect for when bike rental retailers would be closed, and this is much better reflected in the

FNC than the linear model coefficient curve.

Model MSPECV R2

Functional Linear Model (Basis) 0.0723 0.515

Functional Non-Parametric Regression 0.143 0.154

Functional PC Regression 0.0773 0.503

Functional PC Regression (2nd Deriv Penalization) 0.128 0.0481

Functional PC Regression (Ridge Regression) 0.0823 0.464

Functional Partial Least Squares 0.0755 0.458

Functional Partial Least Squares (2nd Deriv Penalization) 0.0701 0.545

Functional Neural Networks 0.0669 0.582

Table 3.1: Tabulated 10 fold cross-validated mean-squared predication error and R2 of eight
models, including the FNN. The italics indicate second-best model performance, whereas
the bolded (and green coloured) cells indicate best performance.

1.6

1.7

1.8

0 5 10 15 20 25
Time

be
ta

(t
)

Model: Functional Linear Model

−0.1

0.0

0.1

0.2

0 5 10 15 20 25
Time

be
ta

(t
)

Model: Functional Neural Network

Figure 3.1: The estimated coefficient functions for the usual functional linear model and the
functional neural network for the bike rental data set. The plot on the left is a functional
linear model and the plot on the right is the FNN. The optimal number of basis functions
was 11 for the linear model and 3 for the neural network.

3.2 Tecator Data

We consider the classic Tecator data set (Thodberg, 2015). The data are recorded on

a Tecator Infratec Food and Feed Analyzer working in near-infrared wavelength range:

14

850 nm - 1050 nm. Each sample contains meat with different moisture, fat, and protein

contents. The goal is to predict the fat contents of some given meat sample using the func-

tional covariate of the near infrared absorbance spectrum and the scalar covariate associated

with the water contents. Absorbance spectroscopy measures the fraction of incident radia-

tion absorbed by the sample. Samples with higher water composition may exhibit different

spectral features (absorbance bands) than samples with higher protein content. So using

functional information, we expect to perform better than other methods because we can

provide information about the derivatives to the network – embedding more of the associ-

ated physics into the learning task.

Model MEP R2

fregre.basis(X.d1, Fat) 0.0626 0.928

fregre.basis.cv(X.d2, Fat) 0.0566 0.965

fregre.pc(X.d1, Fat) 0.0580 0.950

fregre.pc(X.d2, Fat) 0.0556 0.954

fregre.pls(X.d1, Fat) 0.0567 0.951

fregre.pls(X.d2, Fat) 0.0487 0.962

fregre.lm(Fat, X.d1 + Water) 0.0097 0.987

fregre.lm(Fat, X.d2 + Water) 0.0119 0.986

fregre.np(X.d1, Fat) 0.0220 0.987

fregre.np(X.d2, Fat) 0.0144 0.996

fregre.plm(Fat, X.d1 + Water) 0.0090 0.996

fregre.plm(Fat, X.d2 + Water) 0.0115 0.997

FNN(Fat, X.d2 + Water) 0.00883 0.965

Table 3.2: This table compares the results of our method to those used in (Bande and Fuente,
2012). We can observe that our approach was nearly the best with respect to MEP. The
italics indicate second-best model performance, whereas the bolded (and green coloured)
cells indicate best performance. Note that we only presented the results using the second
derivative as the covariate since it was the better performer.

In total, there are 215 functional observations. The first 165 absorbance curves are used

as the training set and predictions are made on the remaining. We borrow the results from

(Bande and Fuente, 2012) and they, along with the results from the FNN, are given in Table

15

3.2. In the original paper, the authors use the metric mean squared error of prediction,

MEP = MSPE
Var(y) , where MSPE is the average squared error of the test set and Var(y) is

the variance of the true response (we can think of MEP as a rescaling of the MSPE) to

assess the models. They also used R2, which we tabulate in Table 3.2. In the functional

neural network, we tuned to find that a six-layer network was optimal with a total of 4029

parameters. The exact configuration is provided in the Appendix. We found that our model

has the lowest MEP, but is about 3% lower than the best R2. Most other models perform

worse with the Semi-Functional Partial Linear Model (Aneiros-Pérez and Vieu, 2006) being

the most comparable.

3.3 Canadian Weather Data

The data set used here has information regarding the total amount of precipitation in

a year and the daily temperature for 35 Canadian cities. We are interested in modelling

the relationship between precipitation and temperature. Generally, you would expect that

lower temperatures would indicate higher precipitation rates. However, this is not always

the case. In some regions, the temperature might be very low, but the inverse relationship

with rain/snow does not hold. Our goal is to see whether we can successfully model these

anomalies relative to other methods.

Model MSPECV R2

Functional Linear Model (Basis) 0.123 0.00312

Functional Non-Parametric Regression 0.0561 0.0900

Functional PC Regression 0.0272 0.352

Functional PC Regression (2nd Deriv Penalization) 0.0930 0.00298

Functional PC Regression (Ridge Regression) 0.0259 0.382

Functional Partial Least Squares 0.0449 0.177

Functional Partial Least Squares (2nd Deriv Penalization) 0.0483 0.155

Neural Networks 0.126 0.0453

Functional Neural Networks 0.0194 0.541

Table 3.3: Tabulated leave-one-out cross-validated mean-squared predication error and R2

of eight models, including the FNN. The italics indicate second-best model performance,
whereas the bolded (and green coloured) cells indicate best performance. We see that the
functional neural network performed the best.

16

The functional observations are defined for the temperature of the cities for which there

are 365 (daily) time points, t. In total, there are 35 functional observations and the scalar

response is the average precipitation. A Fourier basis expansion was used with 65 basis

functions defining each of the 35 cities (Ramsay et al., 2009). The choice of the number

of basis functions defining the FNC is left to tuning. The results from two criteria (R2 =

1 −
∑

i
(yi−ŷi)2∑

i
(yi−ȳ)2 and a leave-one-out-cross-validated MSPE) are measured for a number of

models. We see that the FNN model outperforms all other approaches including the usual

neural networks. All models were tuned with the final choice for the FNN being presented

in the Appendix. Table 3.3 summarizes the predictive results.

We can observe the recovered coefficient functions in Figure 3.2. We compare the recov-

ered coefficient from the functional linear model with the FNC. We observe similar patterns

between the two. Note that the difference between the two only accounts for some of the

difference in R2. The FNN has many more parameters allowing for more flexibility in the

modelling process and thus the great increase in accuracy. With respect to the number of

basis terms for the coefficient function, we optimized to find the optimal number for the

linear model (11) and used the same number for the network. This was to measure how

similar the coefficient curves would be under the same conditions.

−0.5

0.0

0.5

1.0

0 100 200 300
Time

be
ta

(t
)

Model: Functional Linear Model Functional Neural Network

Figure 3.2: The estimated coefficient functions for the usual functional linear model and the
functional neural network for the weather data set. For this data set, we decided to keep
the number of basis functions the same across both models - the choice for this was 11 and
comes from (Ramsay et al., 2009).

17

Chapter 4

Simulation Studies

4.1 Recovery of β(s)

In this section, we present results from when we know the true underlying coefficient func-

tion. The goal is to compare the functional neural coefficient to the coefficient function

extracted using functional regression. Useful results here would go a long way in showing

that the FNN is not only useful for prediction, but can be a valiant tool when the goal

is to approximate relationships via parameter estimation. In order to measure this, the

integrated mean square error (IMSE) is used which is defined as

IMSE = 1
|S|

∫
S

(β(s)− β̂(s))2ds,

where β̂(s) is the predicted coefficient function either from the FNN or from the functional

regression. We use the following to generate our response, y:

y∗ = g

(
α+

∫
S
β(s)(

∑
i

φiψi(s)) ds
)

+ ε∗, (4.1)

where our choice for β is

β(s) = m1 +m2 sin(sπ) +m3 cos(sπ) +m4 sin(2sπ) +m5 cos(2sπ),

αi is sampled from the uniform distribution, X ∼ U(d, e) for the ith observation, and ε∗ is

sampled from the Gaussian distribution, Y ∼ N (0, 1). The true data from which x(s) is

generated comes from either a · sin(a) + b or c · exp(a) + sin(a) + b, where a ∼ N (0, 1),

18

b ∼ N (0, i
100), and c ∼ N (0, 1) are parameters that govern the difference between the

functional observations.

This generative procedure will be used for four different simulations. In all four, we

generate 300 observations randomly using (4.1) by varying a, b and c. The coefficients for

β(s) are set beforehand. We fit the functional linear model and the functional neural network

for 250 iterations of these 300 generations of data. We cross-validate over a grid for λ in

order to find a smooth (and less volatile) estimate of β(s) from the functional linear model.

The difference is measured using IMSE.

The first simulation is for when the link function g(·) is the identity function. Here, we

would expect the functional linear model to perform comparably (if not better) than the

functional neural network due to its deterministic nature and the linear relationship. In the

second simulation, we look to see if our method can recover β(s) for when the link function

is exponential. The third simulation explores this behaviour for a sigmoidal relationship.

And lastly, we simulate a logarithmic relationship between the response and the functional

covariates. These simulations are summarized as follows:

Simulation 1 : y∗ = α+
∫
S
β(s)(

∑
i

φiψi(s)) ds+ ε∗

Simulation 2 : y∗ = exp
(
α+

∫
S
β(s)(

∑
i

φiψi(s)) ds
)

+ ε∗

Simulation 3 : y∗ = 1
1 + exp (α+

∫
S β(s)(

∑
i φiψi(s)) ds) + ε∗

Simulation 4 : y∗ = log
(∣∣∣∣∣α+

∫
S
β(s)(

∑
i

φiψi(s)) ds
∣∣∣∣∣
)

+ ε∗.

In all but the fourth scenario, we use a three-layer network with ReLU and linear activation

functions. In the final scenario, we use a one-layer hidden network with a sigmoidal activation

function. With respect to the linear model, we cross-validate over a grid to find the optimal

λ parameter to smooth the resulting coefficient function. In Figure 4.1, we present the

results for these four simulations. We observe that the usual linear model seems to perform

better when the relationship is linear. There are far more parameters in the FNN that are

contributing to the prediction of y. When the relationship is non-linear, the functional linear

19

model struggles where relatively, the FNN does a much better job in recovering the true

β(s). Note that, in the case of more than a single neuron in the functional layer, we take

an average of the basis coefficient estimates across the n1 neurons. The averages of these

results along with computation times, are provided in Table 4.1.

2.1

2.2

2.3

2.4

2.5

FNN LM
Model

 (A)

IM
S

E

2.4

2.6

2.8

FNN LM
Model

 (B)

IM
S

E

6.2

6.4

6.6

FNN LM
Model

 (C)

IM
S

E

6.4

6.8

7.2

7.6

FNN LM
Model

 (D)

IM
S

E

Figure 4.1: Boxplots of root IMSE results over 250 simulation runs for four scenarios. Plot
(A) is for when we use the identity link function. Plot (B) are the results from the exponential
link. The bottom plots, (C) and (D) are the results from simulation 3 and 4, respectively.

Functional Linear Model Functional Neural Networks

Mean SD Avg. Comp. Time Mean SD Avg. Comp. Time

Simulation: 1 5.081 0.1471 0.2319s 5.705 0.2403 4.679s

Simulation: 2 7.549 0.1292 0.2322s 5.609 0.2195 4.672s

Simulation: 3 44.68 0.2367 0.2470s 41.33 1.335 5.999s

Simulation: 4 56.17 0.6502 0.2580s 41.77 0.9566 6.302s

Table 4.1: Information regarding simulation runs. The average values along with the asso-
ciated deviation of the IMSE over the 250 iterations are provided for both the FNNs and
the functional linear model. The computation times given are the average per simulation.

4.2 Prediction

We can also observe how our method predicts the response y∗, relative to other functional

and multivariate approaches across the simulations, and under the four different condi-

tions given in the previous section. We are interested in seeing how FNNs perform versus

20

functional and multivariate approaches. The multivariate methods to be compared include:

least squares regression (MLR), LASSO (Tibshirani, 1996), random forests (RF) (Breiman,

2001), gradient boosting approaches (GBM, XGB) (Friedman, 2001) (Chen et al., 2015),

and projection pursuit regression (PPR) (Friedman and Stuetzle, 1981).

We did not tune our network (and in fact, we kept the same configuration for the FNNs

that we had in the previous simulations for the four variations) but made an effort to tune

all the other models. For example, the choice of λ for the LASSO was made using cross-

validation. The tree methods were tuned for across a number of their hyperparameters (such

as the amount of parameters [mtry (Liaw and Wiener, 2002)] chosen for each built tree and

the number of nodes), and for PPR, we built models with a number of terms and picked

the model with the lowest MSPE. In these simulations, we did 100 runs. For each run, we

generated 300 functional observations with a corresponding value of y∗ in accordance to

(4.1). After the realization, we split the data randomly, built a model on the training set,

and predicted on the test set. This process is repeated for the same four simulation scenarios

as given in 4.1. The box plots in Figure 4.2 measure the relative error in each simulation

run. We call this the relative MSPE,

rMSPE = MSPE
min

all models
MSPE .

For example, on any given run, we calculate the MSPE values for each model, and then

divide each of them by the minimum in that run. The best model according to this measure

will have a value of 1. Averages centered at values greater than 1 perform worse. The results

of the simulations are summarized in Figure 4.2 (also see Table D.1 in the supplementary

materials for the absolute MSPE).

The relative measure we use makes it easy to compare each model within a simulation,

and across the four simulation classes. Notably, we see in Figure 4.2 that the FNN performs

well, not only within a simulation, but also we see it perform comparably to itself among

the different simulations. This can be attributed to the addition of functional information

passed into the network, so that the learning efficiency increases. By learning efficiency we

mean that for a given training data sample (here, a curve), the network can learn more

21

about the underlying distribution in one epoch. Therefore, we can learn more about the

underlying distribution function, without crossing over to an over-fitting regime. In the

curve building process, we assume that there is noise associated with the observed discrete

values - by reverse engineering into an approximation of the curve, we effectively reduce

that noise and then later, avoid some of the error chasing that we would otherwise be

privy to. This is a good application of Theorem 1, as we proved that this method should

produce estimates of the response that come arbitrarily close to the true response (given

that the response is a continuous function). As a comparison, we see that generally the

tree-based methods perform comparably within a particular simulation, but performance

changes across different simulations. We expect this behaviour from these methods because

there are underlying assumptions about the space of functions that tree-based methods can

learn (without over-fitting completely). With respect to the outliers, we can see that they

are most prevalent in Simulation 2 ; this is because this simulation was for when the link

function g(·) was exponential. In this context, we expect that the raw difference between

our prediction and the true value is greater than it would be in the other cases - this leads

to a plethora of outliers observed.

22

0

1

2

3

4

5

S
im

ul
at

io
n:

 1
R

el
at

iv
e

M
S

P
E

0

1

2

3

4

5

S
im

ul
at

io
n:

 2
R

el
at

iv
e

M
S

P
E

0

1

2

3

4

5

S
im

ul
at

io
n:

 3
R

el
at

iv
e

M
S

P
E

0

1

2

3

4

5

M
LR

LA
S

S
O

_M
in

LA
S

O
O

_1
se R

F

G
B

M

P
P

R

X
G

B

F
LM F
P

C

F
P

C
_D

er
iv

F
P

C
_R

id
ge

F
P

LS

F
P

LS
_D

er
iv

F
N

N

S
im

ul
at

io
n:

 4
R

el
at

iv
e

M
S

P
E

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

M
LR

LA
S

S
O

_M
in

LA
S

O
O

_1
se R

F

G
B

M

P
P

R

X
G

B

F
LM F
P

C

F
P

C
_D

er
iv

F
P

C
_R

id
ge

F
P

LS

F
P

LS
_D

er
iv

F
N

N

S
im

ul
at

io
n:

 1
R

el
at

iv
e

M
S

P
E

S
im

ul
at

io
n:

 2
R

el
at

iv
e

M
S

P
E

S
im

ul
at

io
n:

 3
R

el
at

iv
e

M
S

P
E

S
im

ul
at

io
n:

 4
R

el
at

iv
e

M
S

P
E

Figure 4.2: Boxplots of rMSPE values for all simulations.

23

Chapter 5

Conclusions & Discussions

The extreme rise in popularity of deep learning research has resulted in enormous break-

throughs in computer vision, classification, and scalar prediction. However, these advantages

thus far had been limited to when the data is treated as discrete. This paper introduced

the first of a family of neural networks that extend into the functional space.

In particular, we present a functional feed-forward network for when the responses are

scalar. We developed a methodology which showed the steps required to compute a solution

for the network. This methodology took advantage of integration approximation methods

and the usual gradient descent approach. Multiple examples were provided which showed

that the functional neural network outperformed a number of other functional models and

multivariate methods with respect to the mean squared prediction error. It was also shown

through simulation studies that the recovery of the true underlying coefficient function is

better done by the FNN than the functional linear model when the relationship is non-linear.

To extend this project, algorithms can be developed for other combinations of input and

output types such as the function on function case (Wang et al., 2016). Moreover, one can

consider adding additional constraints to the first-layer neurons via penalization or other

methods.

24

Bibliography

Manuel Bande and Manuel Fuente. Statistical computing in functional data analysis: The
r package fda. usc. 2012.

James O. Ramsay, Giles Hooker, and Spencer Graves. Functional data analysis with R and
MATLAB. Springer New York, 2009.

Jim Ramsay and B. W. Silverman. Functional data analysis. Springer New York, 2010.

Hervé Cardot, Frédéric Ferraty, and Pascal Sarda. Functional linear model. Statistics &
Probability Letters, 45(1):11–22, 1999.

Hervé Cardot, Frédéric Ferraty, and Pascal Sarda. Spline estimators for the functional linear
model. Statistica Sinica, 13(3):571–591, 2003.

Trevor Hastie and Colin Mallows. A statistical view of some chemometrics regression tools:
Discussion. Technometrics, 35(2):140–143, 1993.

Hans-Georg Müller, Ulrich Stadtmüller, et al. Generalized functional linear models. the
Annals of Statistics, 33(2):774–805, 2005.

Ci-Ren Jiang, Jane-Ling Wang, et al. Functional single index models for longitudinal data.
The Annals of Statistics, 39(1):362–388, 2011.

Cristian Preda, Gilbert Saporta, and Caroline Lévéder. Pls classification of functional data.
Computational Statistics, 22(2):223–235, 2007.

Frédéric Ferraty and Philippe Vieu. Nonparametric functional data analysis: theory and
practice. Springer Science & Business Media, 2006.

Germán Aneiros-Pérez and Philippe Vieu. Semi-functional partial linear regression. Statis-
tics & Probability Letters, 76(11):1102–1110, 2006.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016.

George AF Seber and Alan J Lee. Linear regression analysis, volume 329. John Wiley &
Sons, 2012.

25

Robert Tibshirani, Trevor Hastie, and Jerome Friedman. The elements of statistical learn-
ing: data Mining, inference, and prediction. Springer, 2009.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intelligence and
statistics, 2011.

Jun Han and Claudio Moraga. The influence of the sigmoid function parameters on the speed
of backpropagation learning. In International Workshop on Artificial Neural Networks.
Springer, 1995.

Guido Fubini. Sugli integrali multipli. Rend. Acc. Naz. Lincei, 16:608–614, 1907.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

David Rumelhart, Geoffrey Hinton, and Ronald Williams. Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

YK Kim and JB Ra. Weight value initialization for improving training speed in the back-
propagation network. In IEEE International Joint Conference on Neural Networks. IEEE,
1991.

Mercedes Fernández-Redondo and Carlos Hernández-Espinosa. Weight initialization meth-
ods for multilayer feedforward. In ESANN, 2001.

François Chollet et al. Keras. https://keras.io, 2015.

Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and back-
ground knowledge. Progress in Artificial Intelligence, 2(2-3):113–127, 2014.

Hans Henrik Thodberg. Tecator meat sample dataset. statlib datasets archive, 2015.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Jerome Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, 29(5):1189–1232, 2001.

Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, and Yuan Tang. Xgboost:
extreme gradient boosting. R package version 0.4-2, pages 1–4, 2015.

Jerome Friedman and Werner Stuetzle. Projection pursuit regression. Journal of the Amer-
ican statistical Association, 76(376):817–823, 1981.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R News,
2(3):18–22, 2002. URL https://CRAN.R-project.org/doc/Rnews/.

Jane-Ling Wang, Jeng-Min Chiou, and Hans-Georg Müller. Functional data analysis. An-
nual Review of Statistics and Its Application, 3:257–295, 2016.

26

https://keras.io
https://CRAN.R-project.org/doc/Rnews/

Appendix A

Proof of Theorem 1.

Theorem 1. Let g : R→ R be any continuous sigmoidal function, In denote the n−dimensional
hypercube [0, 1]n and C(In) denote the space of continuous functions. Then, the finite sum
of the following form is dense in C(In):

h(s) =
n1∑
n=1

Ψng

 K∑
k=1

(∫
S
βnk(s)xk(s) ds

)
+

J∑
j=1

wnjzj + bn

 ,
meaning that for any f(s) ∈ C(In) and for ε > 0, the function h(s) obeys:

|h(s)− f(s)| < ε

Proof. The proof is to show that h(s) has the form from Cybenko’s result, i.e. Cybenko
form (Cybenko, 1989):

G(x) =
N∑
n=1

αnσ
(
yTn z + θn

)
=

N∑
n=1

αnσ

 J∑
j=1

ynjzj + θn

 .
To begin we consider our function g and its argument,

g

 K∑
k=1

(∫
S
βnk(s)xk(s) ds

)
+

J∑
j=1

wnjzj + bn

 ,
and we note that

J∑
j=1

wnjzj + bn,

is already in Cybenko form. Therefore, all we need to show is that

K∑
k=1

(∫
S
βnk(s)xk(s) ds

)
,

27

depends only on n, the neuron number index. If we expand our weight function as a finite
linear combination of basis functions, we get:

βnk(s) =
Mk∑
m=1

cnkmφnkm(s),

Therefore,

K∑
k=1

(∫
S
βnk(s)xk(s) ds

)
=

K∑
k=1

∫
S

Mk∑
m=1

cnkmφnkm(s)xk(s) ds


=

K∑
k=1

Mk∑
m=1

cnkm

(∫
S
φnkm(s)xk(s) ds

)
︸ ︷︷ ︸

ankm

=
K∑
k=1

Mk∑
m=1

cnkmankm

= b̃n

Note, since we have a finite sum under the integral, we can integrate term-by-term and
switch the integral and sum in the second step above. In total, we have:

g

 K∑
k=1

(∫
S
βnk(s)xk(s) ds

)
+

J∑
j=1

wnjzj + bn

 = g

 J∑
j=1

wnjzj +
(
bn + b̃n

)
Therefore, if we let αn = Ψn, ynj = wnj , and θn = bn + b̃n, we obtain Cybenko’s form for
g(·). �

28

Appendix B

List of All Parameters

Parameter Type Details

β(s) Estimated Coefficient function found by the FNN.

w Estimated The scalar covariate weights.

b Estimated The bias in each neuron.

Number of Layers Hyperparameter The depth of the FNN.

Neurons per Layer Hyperparameter Number of neurons in each layer of the FNN.

γ Hyperparameter The learning rate of the FNN.

Decay Rate Hyperparameter A weight on the learning process across epochs for the FNN.

Validation Split Hyperparameter The split of train/test set.

FNC Basis Hyperparameter The size of M for the estimation of β(s).

Epochs Hyperparameter The number of learning iterations.

Batch Size Hyperparameter Subset of data per pass of the FNN.

Activations Hyperparameter The choice of g(·) for each layer.

Early Stop Hyperparameter Stops the model building process if no improvement in error.

Table B.1: A list of the parameters in the network.

29

Appendix C

Model Hyperparameter Values

Model Layers Neurons Activations FNC Basis Learn Rate

Weather 2 c(16, 8) c(relu, sigmoid) 5 0.05

Bike 4 c(32, 32, 32, 32) c(sigmoid, sigmoid, relu, linear) 3 0.002

Tecator 6 c(24, 24, 24, 24, 24, 58) c(relu*5, linear) 3 0.005

Sim 1 Rec 3 c(16, 16, 16) c(relu, linear, linear) 5 0.001

Sim 2 Rec 3 c(16, 16, 16) c(relu, linear, linear) 5 0.001

Sim 3 Rec 1 c(16) c(sigmoid) 5 0.01

Sim 4 Rec 3 c(16, 16, 16) c(relu, linear, linear) 5 0.001

Sim 1 Pred 3 c(16, 16, 16) c(relu, linear, linear) 5 0.001

Sim 2 Pred 3 c(16, 16, 16) c(relu, linear, linear) 5 0.001

Sim 3 Pred 1 c(16) c(sigmoid) 5 0.01

Sim 4 Pred 3 c(16, 16, 16) c(relu, linear, linear) 5 0.001

Table C.1: Configurations for FNN models throughout the paper.

30

Appendix D

MSPE Values for Simulated Data

Sim/Model Simulation 1 Simulation 2 Simulation 3 Simulation 4

Functional Linear Model (Basis) 0.2325 0.9448 0.01788 0.3933

Functional PC Regression 0.2320 0.9694 0.01873 0.3933

Functional PC Regression (2nd Deriv Penalization) 0.1228 0.8610 0.01560 0.3923

Functional PC Regression (Ridge Regression) 0.2318 0.9680 0.01884 0.3933

Functional Partial Least Squares 0.1599 0.9536 0.02035 0.6552

Functional Partial Least Squares (2nd Deriv Penalization) 0.1440 0.9126 0.02058 0.6107

Functional Neural Networks 0.1397 0.7063 0.01518 0.1218

Multiple Linear Regression 0.4582 1.373 0.06553 2.047

LASSO - Min λ 0.1704 1.009 0.01830 0.4017

LASSO - 1SE λ 0.1961 1.043 0.01930 0.4450

Random Forest 0.2660 0.9618 0.01795 0.1704

Gradient Boosting 0.2799 0.9727 0.01792 0.1967

Projection Pursuit Regression 0.3625 1.370 0.03617 1.229

Extreme Gradient Boosting 0.2556 1.098 0.01934 0.1687

Table D.1: MSPE values for simulated data predictions. As it was evident by the boxplots
in Figure 6, the FNN approach outperforms the others in 3 of the 4 simulations. In the one
case that it does not, it performs second best.

31

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Methodology
	Functional Neural Networks
	Network Training
	Functional Neural Coefficients
	Weight Initialization and Parameter Tuning

	Real World Verifications
	Bike Rental Data
	Tecator Data
	Canadian Weather Data

	Simulation Studies
	Recovery of (s)
	Prediction

	Conclusions & Discussions
	Bibliography
	Appendix Proof of Theorem 1.
	Appendix List of All Parameters
	Appendix Model Hyperparameter Values
	Appendix MSPE Values for Simulated Data

