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Abstract 

It is often difficult in capture-recapture (CR) studies of grizzly bear populations to 

determine the age of detected bears. As a result, analyses often omit age terms in CR 

models despite past studies suggesting age influences detection probability. This paper 

explores how failing to account for age in the detection function of an open, spatially-

explicit CR model, introduced in Efford & Schofield (2019), affects estimates of apparent 

survival, apparent recruitment, population growth, and grizzly bear home-range sizes. 

Using a simulation study, it was found that estimates of all parameters of interest 

excluding home-range size were robust to this omission. The effects of using two 

different types of detectors for data collection (bait sites and rub objects) on bias in 

estimates of above parameters was also explored via simulation. No evidence was 

found that one detector type was more prone to producing biased parameter estimates 

than the other.     

Keywords:  capture-recapture; spatially explicit; open population; grizzly bear; 

simulation study; age data 
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Chapter 1.  
 
Introduction 

Capture-recapture (CR) models have been standard tools for studying the 

dynamics, and assessing the ecological status, of wildlife populations that cannot be 

counted directly (Chapman, Otis, Burnham, White, & Anderson, 1978; Pledger, Pollock, 

& Norris, 2010; Royle, Chandler, Sollmann, & Gardner, 2014). In one variant, CR studies 

are carried out by deploying a set of “detectors” over a desired study area, which record 

whether animals were present within their vicinity. Detectors can range from traps which 

physically capture animals, to snares that non-invasively collect an animal’s hair, to 

acoustic sensors and camera traps (Borchers & Efford, 2008; Royle et al., 2014). 

Typically, detectors are deployed for multiple sampling sessions, and “detection 

histories” are created for each detected animal, detailing where and when each animal 

was both detected and not detected over the course of the study period. These detection 

histories, along with covariates of interest, are then used as inputs to a CR model.   

A wide range of CR models have been created to accommodate various study 

designs, and animal behaviours. CR models are capable of estimating parameters such 

as population size and density, survival probabilities, recruitment rates, and animal home 

range sizes (Borchers & Efford, 2008; Efford & Schofield, 2019; Pradel, 1996; Royle et 

al., 2014; Schwarz & Arnason, 1996).  

This paper focuses on the application of a CR model introduced in Efford & 

Schofield (2019) to a long-running grizzly bear monitoring project in British Columbia. 

This model can be classified as an open, and spatially explicit, CR model. It is “open” as 

it does not assume the population under study is static, instead modelling animals both 

entering and leaving the population in the study area over time though birth, death, 

immigration and emigration. It is “spatially explicit” because it directly models the 

probability of detecting a given animal at a detector as, in part, a function of where it is 

observed to reside in the study region (Efford & Schofield, 2019; Royle et al., 2014). This 

model was referred to as OSECR in this paper. OSECR was selected from the open, 

spatially explicit models available (Gardner, Reppucci, Lucherini, & Royle, 2010; 

Glennie, Borchers, Murchie, Harmsen, & Foster, 2019; Royle et al., 2014) because it is 
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relatively fast to fit (especially when compared to Bayesian methods), as well as being 

fairly well documented and straightforward to implement in the R programming language 

(R Team Core, 2017).  

Since 2006, an ongoing long-term CR study, referred to here as the South 

Rockies Grizzly Bear Project has been carried out on grizzly bears (Ursus arctos) living 

in a 10 600 km2 region of the Canadian Rocky Mountains, in south-eastern British 

Columbia. This region has high abundances of grizzly bear food, and at one point in the 

late 1980’s had the highest recorded grizzly bear density in North America (Lamb, 

Mowat, McLellan, Nielsen, & Boutin, 2017; McLellan, 1989). This region frequently has 

undesirable conflicts between bears and humans (Lamb et al., 2017). 

Each year, detectors which collect grizzly bear hair were deployed and checked 

on multiple occasions for hair samples within this study region. Collected hair samples 

were analyzed using the genetic methods of Paetkau (2003), in an attempt to determine 

both the sex, and individual identification of the bear which deposited the sample (Lamb, 

Walsh, & Mowat, 2016). Two different types of detectors have been used over the 

course of this study: Bait sites (BS), and rub-objects (RO). BS detectors were 

constructed using the methods of Mowat et al. (2005): Barbed wire was wrapped around 

groups of trees surrounding a lured bait station containing a non-rewarding lure. When 

bears came to inspect the lure, they would pass under or over the barbed wire, resulting 

in hair samples being collected. RO detectors were lengths of barbed wire wrapped 

around objects frequently rubbed on by bears (typically trees, though power poles or 

fence posts were also used). When bears rubbed on these objects, the barbed wire 

would collect hair samples.  

Multiple CR analyses have been conducted on South Rockies hair data (Lamb et 

al., 2017, 2019). In addition, Lamb et al. (2016) used a linear mixed effects model to 

investigate the average number of grizzly detections per day, broken down by sex, for 

each detector deployed between 2006 – 2012. Based on Akaike’s Information Criterion 

(Akaike, 1974), these analyses consistently found that detection probability was best 

modelled as a function of detector type (BS or RO), sex, and season (breeding season 

or not breeding season), with the detection function usually including a detector type – 

sex interaction term (Lamb et al., 2016).  
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An acknowledged shortcoming of these analyses was that multiple studies 

suggest in addition to sex and detector type, other factors such as bear age, and 

breeding status can also influence detection probability (Boulanger, Stenhouse, & 

Munro, 2004; Lamb et al., 2016). For instance, Clapham et al. (2012, 2014) found that all 

age-sex classes in their study region rubbed on trees, but that the probability of doing so 

varied by age, sex, and breeding status: Adult males, and adult females with cubs 

tended to rub more frequently than sub-adults and adult females without cubs. Similarly, 

Kendall et al. (2009) found that BS detectors could also detect all age-sex classes of 

bears in their study region, with cubs having lower detection probabilities than other age 

classes.  

While for the South Rockies Grizzly Bear Project, and many other grizzly bear 

monitoring programs, it is possible to directly include detector type, sex, and season as 

covariates in the detection probability portion of CR models, age and breeding status 

cannot be, as this information cannot be easily gathered based on genetic information. 

For example, in the South Rockies project it is only possible to determine birth year by 

live-capturing bears. As a result, age data is only available for roughly 10% of all bears 

detected in this project. As data for these two covariates is rarely collected in large 

quantities, this prohibits their inclusion in CR analyses, and as result they are often 

omitted from CR models fit to grizzly bear hair data. Thus, it is possible that many CR 

parameter estimates, including those in South Rockies Grizzly Bear Project analyses, 

are biased. This is by no means an uncommon issue, as many ecological processes are 

highly complex by nature, and can only feasibly be studied using models that likely omit 

some variables of importance.  

In the context of CR models, failing to adequately address heterogeneity in 

detection probabilities between individual animals results in many of the remaining 

parameter estimates being noticeably biased (Glennie et al., 2019; Pledger et al., 2010). 

However, if most variability in detection probability has already been accounted for, the 

addition of covariates with small effects on detection probability may worsen model 

performance, as increased variance in parameter estimates could negate the minimal 

bias reductions. Thus, while the parameter estimates of many models fit to grizzly bear 

hair data are likely biased, these models may still outperform others with less biased 

estimates. 
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This paper’s first goal was to quantify how failing to include age in detection 

function specification affects OSECR estimates of year-to-year survival, per-capita 

recruitment, home range size, and population growth in South Rockies data. While other 

parameters, such as population density, can also be estimated via OSECR, only the 

above were examined. In order to investigate this question, first OSECR models were fit 

to the full South Rockies Grizzly Bear Project data set and the subset of bears with age 

data available. The results of these models, as well as the findings of Clapham et al. 

(2012, 2014) and Kendall et al. (2009), were then used to simulate sets of grizzly bear 

detection histories where detection probability was a function of sex, detector type (BS 

or RO), and age. Detection histories were generated over a simulated study region 

where both BS and RO detectors had been deployed in a similar manner to that of the 

South Rockies project. Two OSECR models were then fit to these sets of detection 

histories: one which included the age term that was used when generating the data, and 

one which did not but was identical to the previous model in all other respects. The 

distributions of percentage relative bias (PRB) for estimates of each parameter of 

interest were compared between these two models, as well as each parameter’s sample 

root mean squared error (RMSE). It should be noted that for simplicity’s sake, and to 

reduce computational time, seasonal and breeding-status effects were not included in 

the simulated detection function, and subsequent analyses.   

This study’s second goal involved comparing parameter estimates produced 

using data collected via RO and BS, relative to their typical deployment scheme in the 

South Rockies Grizzly Bear Project. Specifically, it was of interest whether data from one 

detector type was more prone to producing biased estimates of parameters of interest 

when age was unaccounted for in the OSECR detection function. This analysis was 

carried out by splitting simulated detection histories into two separate sets, where one 

contained only detection data collected via BS, and the other contained detection data 

collected via RO. Next, the same two OSECR models described above were fit to these 

detector-specific detection histories (with any detector type covariates removed), and the 

PRB distributions of parameters estimates were examined and compared between 

detector types. Note that only bias was examined in this second analysis, and not 

RMSE. This is because the current South Rockies sampling scheme, which was similar 

to the scheme used when simulating capture histories, consists of roughly three times 

more RO detectors than BS on average (owing mainly to the fact that BS detectors are 
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much more costly to deploy). Thus, it’s likely that parameter estimates derived using RO 

data would have lower variance than those from BS data by virtue of there being more 

recorded detections, which could result in lower RMSE. An analysis of which detector 

type produces overall better estimates (relative to a metric such as RMSE), or what the 

optimal composition of RO and BS detectors in a study design should be, subject to 

budget constraints, was not within the scope of this paper. 

In the following Methods section, brief overviews of the South Rockies Grizzly 

Bear Project and the OSECR model are first provided. After this, the simulation studies 

and subsequent analyses to be performed are outlined. 
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Chapter 2.  
 
Methods 

2.1. South Rockies Grizzly Bear Project Study Design 

South Rockies Grizzly Bear Project sampling was carried out using the ‘Robust 

Design’ (RD) introduced by Pollock (1982). This sampling scheme divides the study 

period into a series of “primary” sampling occasions. Population turnover (i.e. births, 

deaths, immigration, and emigration) is assumed to occur between primary sampling 

occasions. Within a primary sampling occasion, there are multiple “secondary” sampling 

occasions where detectors are deployed, and data are collected. It is assumed there is 

no population turnover between secondary sampling occasions within a primary 

occasion. Each year of the South Rockies project had a group of consecutive months 

which were treated as primary sampling occasions, each of which had several 

secondary occasions within them where data were collected. 

Each deployed detector recorded whether a bear was detected on each 

secondary occasion in the study. The number of detectors deployed over the course of 

the project fluctuated, as well as the BS:RO ratio: In some years almost only BS 

detectors were deployed, while others used exclusively RO detectors. In addition, the 

area over which detectors were deployed changed from year to year, due to changes in 

landscape and project scope. 

For further details on the South Rockies Grizzly Bear Project study design, as 

well as an exploratory analysis of its data, see Appendix 2. 

2.2. The OSECR Model 

OSECR detection histories are assumed to come from studies with 𝐽 primary 

occasions, each having 𝐾𝑗 secondary occasions. An array of 𝑆𝑗 detectors are deployed 

over each primary occasion. Assuming deployed detectors can only record whether an 

animal was present at a detector during a given secondary occasion, which was the 

case in the South Rockies project, an individual animal’s OSECR detection history, 𝜔𝑖, 
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would be a set of 𝐽, 𝐾𝑗  ×  𝑆𝑗 matrices with matrix 𝑗 having a value of 1 in element (𝑠, 𝑘) if 

animal 𝑖 was detected at detector 𝑠 during secondary occasion 𝑘 of primary occasion 𝑗, 

and 0 if it was not detected then. Note that detectors which collect this type of data are 

often referred to as ‘binary proximity detectors’. The full OSECR detection history, 𝜔, is 

the collection of these matrices. 

There are several ways to parameterize the OSECR model. This analysis will 

look exclusively at OSECR models which use a half-normal detection function, a Pradel-

Link-Barker (PLB) parameterization of apparent survival and recruitment (Efford & 

Schofield, 2019; Link & Barker, 2005; Pradel, 1996), and treat animal home-range 

centres as stationary between primary occasions. These conditions are all described 

below. This class of OSECR model will be referred to as a spatial PLB model.  

OSECR assumes detection probabilities between animals are independent, and 

that multiple detections of the same animal are also independent (after accounting for 

any necessary covariates). The half-normal model for detection probability has the form: 

𝑝𝑗𝑘𝑠 = 𝜆0 exp (−
1

2𝜎2
‖𝐗 − 𝑡𝑠‖2), 

where 𝑝𝑗𝑘𝑠 is the probability of detecting an animal with home-range centre 𝐗, over the 

course of secondary occasion 𝑘 of primary occasion 𝑗, at detector 𝑠 – located at 

Cartesian coordinates 𝑡𝑠. An animal’s home-range centre can be thought of as the 

average of all the locations the animal inhabited during the study period. ‖𝐗 − 𝑡𝑠‖ is the 

Euclidian distance between the animal’s home-range centre and detector 𝑠. 𝜆0 can be 

thought of as the probability of detecting an animal whose home-range centre precisely 

coincides with the location of a detector. σ can be thought of as a home-range size 

parameter, with larger values of σ corresponding to larger home-range sizes. Note that 

under this detection model, it is assumed that bears have a Gaussian space-usage 

pattern (Royle et al., 2014). Both 𝜆0 and 𝜎 can be modelled as functions of covariates, 

often on the logit and log scales respectively.  

The PLB parameterization assumes animals only enter the population being 

studied through birth or permanent immigration, and only exit it through death or 

permanent emigration. Temporary immigration/emigration is assumed not to occur. Two 

parameters are used to govern population turnover. The first is apparent survival (𝜙), the 

probability of an animal not dying/emigrating from the population between two primary 
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occasions. The second is apparent recruitment (𝑓), the number of animals that were 

either born or permanently immigrated to the study region between primary occasions 𝑖 

and 𝑖 + 1 and remained alive up to primary occasion 𝑖 + 1, divided by the number of 

animals alive at primary occasion 𝑖. The terms “apparent survival” and “apparent 

recruitment” will be used interchangeably with “survival” and “recruitment” in this 

analysis. These two turnover parameters, along with the half-normal detection function, 

are used in conjunction to explicitly model each animal’s observed detection history. See 

Efford & Schofield (2019), and Link & Barker (2005)  for how this is done. Note that this 

specific spatial PLB parameterization treats population growth rate, 𝜆, as the derived 

parameter: 𝜆 =  𝜙 + 𝑓. 𝜙 and 𝑓 can both be modelled as functions of covariates, typically 

on the logit and log scales respectively. 

While OSECR models can be formulated to model home-range centres as 

moving between primary occasions (Efford & Schofield, 2019), it was ultimately decided 

that simulated bear home-range centres in this study would be treated as stationary. As 

will be seen in later sections, this was primarily decided upon to limit simulation times. 

For convenience, this analysis will use the following notation when discussing the 

spatial PLB models fit: 𝜙(∗), 𝑓(∗), 𝜎(∗), 𝜆0(∗), where ∗ is a placeholder for the covariates 

used to model each parameter. Intercept-only models are denoted with a period in place 

of ∗ (e.g. 𝑓(. )). 

A more extensive overview of OSECR, and related models, can be found in 

Appendix 1.  

2.3. Determining Simulation Study OSECR Parameters 

Before detection histories could be simulated, a spatial PLB model needed to be 

selected to generate detection history data, and reasonable values for this model’s 

parameters needed to be determined.  

As 13 years of South Rockies Grizzly Bear Project data were available at the 

time of this analysis, several spatial PLB models of the form described in Section 2.2 

were fit using the openCR package (Efford, 2019) in the R programming language to 

help determine what covariate effects should be included in the model used to generate 
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simulation study data. Specifically, conditional versions of the above spatial PLB model 

were fit, which are referred to as ‘JSSAsecrfCL’ models in openCR. Conditional models 

condition the OSECR likelihood on the number of animals detected, and tend to be 

faster to fit than models which use the full likelihood (Efford, 2019). Also note that 

openCR assumes bears are distributed uniformly throughout the study region when 

fitting OSECR models. This assumption is likely not true for the South Rockies Grizzly 

Bear Project data and will be further discussed in Section 2.4. 

Sex and detector type were both considered as possible parameter covariates 

when fitting models to South Rockies data. Built-in predictors provided by openCR, such 

as behavioural responses, and primary occasion-specific effects were also explored 

(Efford, 2019). After fitting several OSECR models to the 2006 – 2018 South Rockies 

Grizzly Bear Project data set, and comparing them via AIC, it was decided that in 

simulations, primary occasion-to-primary occasion survival probabilities (𝜙), as well as 

the home range size parameter (𝜎), would be modelled as a function of sex, and that 

per-capita recruitment between primary occasions (𝑓) would be modelled as constant. 

These relationships were chosen because models that included them tended to be well 

supported by AIC, they seemed reasonable from a bear biology standpoint, and they 

were not so complex that they risked greatly slowing down computation time in the 

simulation study.  

The spatial PLB parameter values for survival, recruitment, and home-range size 

used when simulating detection histories were determined by fitting a 

𝜙(𝑆𝑒𝑥), 𝑓(. ), 𝜎(𝑆𝑒𝑥), 𝜆0(𝑆𝑒𝑥 × 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑇𝑦𝑝𝑒) spatial PLB model with stationary home-

range centres to the full South Rockies Grizzly Bear Project data set. See Table 2.1 for 

these values. While this is likely not the optimal model for this data, its estimates were 

deemed reasonable to use in the simulation study. 𝜆0 was parameterized as a two-way 

interaction between sex and detector type for the derivation of these values because this 

relationship was often supported by AIC. 

Table 2.1. List of OSECR parameters (excluding 𝝀𝟎) used to generate capture 
histories for all simulations. These parameters were derived by 
fitting an OSECR model to 2006 – 2018 South Rockies Grizzly Bear 
Project data. 

𝝓 (Males) 𝝓 (Females) 𝒇 𝝀 (Males) 𝝀 (Females) 𝝈 (Males) 𝝈 (Females) 

0.84 0.89 0.12 0.96 1.01 9970 3634 



10 

 

It was decided that an effect for age in detection probability would be 

incorporated into simulations through the 𝜆0 term. 𝜆0 was selected for this as it would 

allow for a simple, and biologically intuitive age effect. Specifically, in simulations 𝜆0 was 

chosen to be modelled as a three-way interaction on the logit scale between age, sex, 

and detector type, where age was treated as a factor variable with 3 levels: Yearling 

(ages 0 to 2), sub-adult (ages 3 to 7), and adult (ages 8 and up).  These age classes 

were selected as they represent three periods in the bear life cycle where behavior and 

physiology are generally distinct.  

Thus, the model used to generate simulated data was a  

𝜙(𝑆𝑒𝑥), 𝑓(. ), 𝜎(𝑆𝑒𝑥), 𝜆0 (𝑆𝑒𝑥 × 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑇𝑦𝑝𝑒 × 𝐴𝑔𝑒 𝐶𝑙𝑎𝑠𝑠) spatial PLB model. This 

model assumes that within sexes, home-range size was independent of age class. It 

also assumes that the probability of detecting an animal given its home-range centre 

perfectly overlaps a detector’s location was a function of the animal’s age class, sex, and 

the type of detector. It should be restated that this model may not be a completely 

biologically accurate model for bear behaviour. For instance, there are reasons to 

assume that both survival and home-range size could also be functions of age class. 

However, it was believed that this model would still provide a reasonable depiction of 

bear behaviour, while retaining the parsimony necessary to keep the simulation study’s 

runtime down to an acceptable level.  

In order to determine the 𝜆0 values for each age class-sex-detector type 

combination for the simulation study, a 𝜙(𝑆𝑒𝑥), 𝑓(. ), 𝜎(𝑆𝑒𝑥), 𝜆0(𝑆𝑒𝑥 × 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑇𝑦𝑝𝑒 ×

𝐴𝑔𝑒 𝐶𝑙𝑎𝑠𝑠∗) OSECR model was first fit to the subset of detected South Rockies bears 

with a birth year identified, where 𝐴𝑔𝑒 𝐶𝑙𝑎𝑠𝑠∗ was a truncated age variable indicating 

whether a bear was either an adult or not an adult at the time of sampling. This truncated 

variable was used as the limited data set would not converge when the full age class 

variable was used. The results of this model, as well subject matter knowledge, and the 

findings of Clapham et al. (2012, 2014), and  Kendall et al. (2009) were then used to 

derive 𝜆0 values for the simulation study. Three different sets of 𝜆0 values were 

generated for three separate simulation studies: One with small differences in 𝜆0 values 

between age classes, one with moderate differences, and one with very large 

differences. See Table 2.2 for the set of 𝜆0 values selected. The 𝜆0 values in Table 2.2 

were on the scale of a single day, and thus can be thought of as representing the 
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probability of detecting a grizzly bear whose home-range centre aligns with the detector 

location when the detector has been deployed for a single day. As will be further 

discussed in Section 2.4, simulation studies conducted in this paper assume BS and RO 

detectors were deployed for multiple days in a row. See Table 2.3 in Section 2.4 for 𝜆0 

values that have been scaled for respective BS and RO deployment lengths using the 

methods described in Efford, Borchers, & Mowat (2013) for binary proximity detectors. 

See Figure 2.1a for plots of the detection functions for each age class of male 

bears with respect to RO detectors, using 𝜆0 values from Table 2.2. Note that the 

detection curves have been scaled assuming the RO detector was deployed for 40 

consecutive days, using the methods described in Efford, Borchers, & Mowat (2013) for 

binary proximity detectors. As can be seen, for a given sex and detector type, detection 

probabilities between age classes are proportional to each other. In addition, see Figure 

2.1b for plots of the total area each sex of bear was assumed to spend 95% of its time 

under the half-normal detection function, using the 𝜎 values from the simulation 

procedure. 

The sets of 𝜆0 values used in the first two simulation studies were selected to 

take on values which could plausibly occur in nature. The 𝜆0 values in the third 

simulation study were selected mainly to produced very large discrepancies in detection 

probabilities between age classes within a given sex and detector type, which were 

unlikely to occur in this field of study. This was done to test the robustness of parameter 

estimates when a very large age effect had been omitted from the model. 
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Figure 2.1. a) Detection probability curves for males of each age class at a RO 

detector that has been deployed for 40 days. 𝝀𝟎 values were taken 

from scenario 2: 𝝀𝟎 – Moderate. b) Regions where bears are 
assumed to spend 95% of their time under a half-normal detection 

function, using the 𝝈 values from Table 2.1. 
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Table 2.2. List of 𝝀𝟎 values used in the 3 different simulated scenarios 
examined in this study (small difference in 𝝀𝟎values between age 

classes, moderate difference in 𝝀𝟎 values, and a large difference in 

𝝀𝟎 values). Note that 𝝀𝟎 values have been scaled to represent the 
probability of detecting an animal whose home-range centre 
coincides with the location of a detector when the detector has been 
deployed for only a single day. Detection probabilities when 
detectors have been left for multiple days can be calculated using 
the methods described in (Efford et al., 2013). 

Sex Age Class Detector Type 𝝀𝟎 - Small 𝝀𝟎 - Moderate 𝝀𝟎 - Large 

F Adult BS 0.015 0.01 0.01 

F Sub-adult BS 0.035 0.07 0.15 

F Yearling BS 0.001 0.0005 0.0005 

F Adult RO 0.0015 0.0001 0.0001 

F Sub-adult RO 0.003 0.003 0.02 

F Yearling RO 0.005 0.009 0 

M Adult BS 0.004 0.015 0.1 

M Sub-adult BS 0.002 0.005 0.01 

M Yearling BS 0.001 0.0005 0.0005 

M Adult RO 0.0008 0.003 0.02 

M Sub-adult RO 0.0006 0.0003 0.01 

M Yearling RO 0.005 0.009 0 
 

2.4. Simulation Study Design 

100 sets of detection histories were simulated for each set of 𝜆0 values. Data was 

simulated over a 150 km x 150 km study region. Bear home-range centres could be 

located anywhere within the region, while detectors were placed within a 50 km x 50 km 

square located at the centre of the region. In order to match the detector placement 

scheme of the South Rockies Grizzly Bear Project, BS detectors were placed in a 

uniform grid with 14 km spacing, while RO detectors were randomly distributed 

throughout the detector region with the constraint that there must be a minimum distance 

of 500 m between any two detectors. BS locations were consistent across all simulated 

data sets, while RO locations varied. A 3:1 ratio between the number of RO and BS 

detectors was used, resulting in 16 BS, and 48 RO detectors being deployed in each 

simulated data set.  

In each simulated capture history, sampling took place over five equally spaced 

primary sampling occasions (years), each of which having four secondary occasions. 
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RO detectors were deployed for 40 days in each secondary occasion, while BS 

detectors were deployed for 14 days in the first two secondary occasions of every 

primary occasion, and we not deployed in the last two. These time periods were chosen 

to roughly match the sampling intervals in the South Rockies project.  

RO detectors are left out longer each secondary sampling secondary occasion 

and are also deployed for more secondary occasions than BS detectors. As such, Table 

2.2 does not paint a clear picture of the differences in detection probabilities between the 

two detector types. To aid with this, see Table 2.3, which contains the probability of 

detecting a grizzly bear whose home-range centre is precisely at the location of a 

detector, over the course of a secondary occasion, for each age class-sex-detector type 

combination in the simulation study. This probability was calculated using the equation 

𝑝 = 1 − (1 −  𝜆0−𝐶) 𝑇𝐷 , where 𝑝 is detection probability, 𝜆0−𝐶  is the 𝜆0 value found in 

Table 2.2 for a given age class-sex-detector type combination, and 𝑇𝐷 is the number of 

days during which the given detector type was deployed (Efford et al., 2013). 

Table 2.3. Probabilities of detecting bears from each age-sex class over the 
course of a simulated secondary occasion – 14 days for a BS 
detector, and 40 days for a RO detector – when their home-range 

centres overlap a detector. These 𝝀𝟎 were calculated by rescaling 

the 𝝀𝟎 in Table 2.2 using the methods for binary proximity detectors 
found in Efford et al. (2013). 

Sex Age 
Detector 

Type 𝝀𝟎- Small  𝝀𝟎- Moderate 𝝀𝟎- Large 

F Adult BS 0.19 0.13 0.13 

F Sub-adult BS 0.39 0.64 0.90 

F Yearling BS 0.014 0.0070 0.0070 

F Adult RO 0.058 0.0040 0.0040 

F Sub-adult RO 0.11 0.11 0.55 

F Yearling RO 0.18 0.30 0 

M Adult BS 0.055 0.19 0.77 

M Sub-adult BS 0.028 0.068 0.13 

M Yearling BS 0.014 0.0070 0.0070 

M Adult RO 0.032 0.11 0.55 

M Sub-adult RO 0.024 0.012 0.33 

M Yearling RO 0.18 0.30 0 

 

Bear home-range centre locations were assumed to be the result of an 

inhomogenous Poisson process. The specific home-range centre density function used 

in simulations was constructed to resemble the estimated distribution of bears found in 
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the CR analysis of South Rockies data conducted in Lamb et al. (2019). A heat map of 

this simulated distribution can be found in Figure 2.2. Home-range centres were 

sampled from this distribution using Accept-Reject sampling (Robert, 2004). The initial 

population size in each round of simulations was treated as a Poisson random variable 

with mean equal to the integral of the density function (𝑃𝑜𝑖𝑠(𝜆 = 285.77)). See Figure 

2.3 for a plot of a simulated detector layout, along with home-range centres drawn from 

this distribution.  

 

Figure 2.2. Heatmap of the inhomogeneous density function that home-range 
centres in each simulation are drawn from using Accept-Reject 
sampling. The simulated study region is 150km x 150 km. 
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Figure 2.3. An example of the detector layout, and initial distribution bear home-
range centres (black) used in a round of simulations. The detector 
layout was the same over the 5 simulated years, while the 
distribution of home-range centres changed as bears entered and 
exited the population. 

openCR assumes bear home-range centres are distributed uniformly over the 

study region. This assumption will be violated as home-range centre density function 

was non-uniform. However, the effects of this violation were likely negligible, as draws 

from the simulation study’s home-range centre distribution typically looked similar those 

from a uniform distribution, for the population sizes under consideration in this study. 

See Figure 2.3 for an example of this; note how home-range centres appear as if they 

could have been drawn from a two-dimensional uniform distribution.  

The number of bears in each age-sex class was treated as a multinomial 

variable, with probabilities equal to the estimated average age-sex proportions in the 

study region (Table 2.4). 
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Table 2.4. Proportions used to generate the number of bears of each age-sex 
class in simulated capture histories. Initial age-sex class counts are 
treated as a draw from a Multinomial distribution, using the 
proportions in this table as parameter values. 

Prop. Yearling 
Male 

Prop. Sub-
adult Male 

Prop. Adult 
Male 

Prop. Yearling 
Female 

Prop. Sub-adult 
Female 

Prop. Adult 
Female 

0.11 0.18 0.12 0.11 0.2 0.28 

 

After generating the initial population, detections histories for each bear were 

created for the first primary occasion. Next, the number of bears lost through apparent 

death (i.e. death and permanent emigration from the study region) and gained through 

apparent recruitment (i.e. birth or permanent immigration into the study region) were 

calculated. This was repeated for the remaining 4 primary sampling occasions. The 

number of male and female apparent deaths (𝐷𝑒𝑎𝑡ℎ𝑠 + 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝐸𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛) were 

each treated as binomial random variables, with the sex-specific death rates (1 −

 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠/𝑀𝑎𝑙𝑒𝑠) as “success” probabilities. Similarly, the number of apparent births 

(𝐵𝑖𝑟𝑡ℎ𝑠 + 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝐼𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛) were also treated as a binomial random variable, 

with the per-capita recruitment rate as the success probability. (Note that in practice per-

capita recruitment can be greater than 1, and thus apparent births should normally not 

be modelled as binomial; however, in this simulation study’s case the selected per-capita 

recruitment rate was well below 1, and the resulting binomial variable had nearly 

equivalent variance to an analogous Poisson random variable.) All new entrants to the 

population were assigned an age-sex class using the Multinomial method described 

earlier. 

In addition, it was assumed that bears did not age over years, and retained their 

starting age-sex class for the duration of the simulation study. This choice was made so 

that population demographics stayed relatively constant around their average values for 

each simulation. This is a simplifying assumption as the age-sex composition of grizzly 

bear populations can often fluctuate noticeably from year-to-year and is a function of 

several factors.  

Once all simulated detection histories had been generated, the histories from 

each round of simulations had a 𝜙(𝑆𝑒𝑥), 𝑓(. ), 𝜎(𝑆𝑒𝑥), 𝜆0(𝑆𝑒𝑥 ∗ 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑇𝑦𝑝𝑒 ∗

𝐴𝑔𝑒 𝐶𝑙𝑎𝑠𝑠) spatial PLB model fit to them, referred to here as the correct model (𝑀𝑐), as 

well as a 𝜙(𝑆𝑒𝑥), 𝑓(. ), 𝜎(𝑆𝑒𝑥), 𝜆0(𝑆𝑒𝑥 ∗ 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑇𝑦𝑝𝑒) spatial PLB model fit to them – 
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the closest to the true model that can be fit with the data available in the South Rockies 

Grizzly Bear Project, hence referred to as the biased model (𝑀𝑏). The distribution of the 

observed PRB for estimates of 𝜙𝑀𝑎𝑙𝑒𝑠, 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠, 𝑓, 𝜆𝑀𝑎𝑙𝑒𝑠(=  𝜙𝑀𝑎𝑙𝑒𝑠 +  𝑓), 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠(=

 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠 +  𝑓), 𝜎𝑀𝑎𝑙𝑒𝑠, and 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 were plotted and compared between 𝑀𝑐 and 𝑀𝑏. In 

addition, RMSE were calculated for each of these parameters and compared between 

models. Both 𝑀𝑐 and 𝑀𝑏 correctly assume home-range centres are stationary. 

These same models (minus the detector type covariate) were then refit on RO 

and BS detection data separately, with the same parameter estimates’ PRB distributions 

analyzed, and compared between detector types.  This was carried out to investigate 

how prone the two detector types were, relative to their deployment methodologies in the 

South Rockies Grizzly Bear Project, to producing biased parameter estimates.  

A total of 1800 spatial PLB models were fit in this simulation study (600 for each 

set of 𝜆0 values). All models were fit using openCR’s default maximization procedure. 

openCR discretizes the study region into a series of points that serve as possible home-

range centres for detected animals, which are associated with pixels of equal area, 

resulting in several integrals in the OSECR likelihood being replaced by summations 

(Efford & Schofield, 2019). This analysis modeled the study region as a grid with 3 km 

spacing between points, that extended 40 km outwards from the perimeter of the 

detector array. This 40 km distance is often referred to as a ‘buffer’ width, and was 

selected as all the detection functions used in simulations essentially reach a value of 0 

40 km away from a given detector. 
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Chapter 3.  
 
Results 

Results of the three simulation studies are presented in this section. Each sub-

section contains boxplots comparing the distribution of PRB for each parameter of 

interest between 𝑀𝑐 and 𝑀𝑏, for the full simulated detection data set, the BS only data 

set, and the RO only data set. The standard boxplot layout was used, with box edges 

representing the data’s first and third quartiles, and the line inside each box marking the 

data’s median. Whiskers extend 1.5 times the inter-quartile range from the median. In 

addition, sample mean PRB are marked as points on each box for every parameter of 

interest, along with corresponding unadjusted 95% Wald confidence intervals. 

Parameters were classified as having potentially biased estimates by examining their 

distribution and observing whether the confidence intervals for mean PRB contained 0. 

As these intervals are unadjusted, they were used more to help identify parameters 

whose estimates may be biased enough that they potentially limit the utility of 𝑀𝑏, than 

to conclusively test that there was some level of bias present. Intervals adjusted for 

multiple comparisons were not included as a very large number of comparisons would 

have to be made for each simulation study, which would likely cause confidence 

intervals to be overly conservative.  

 Boxplots were arranged so that 𝑀𝑐 and 𝑀𝑏 could be easily compared, and can 

be found in subsections 3.1 – 3.3. Each subsection also includes tables listing and 

comparing RMSE of parameters of interest from the two models, as well as summary of 

the results for each simulated scenario. See Section 4.1 for an interpretation of 

simulation results in the context of the South Rockies Grizzly Bear Project. See 

Appendix 3.1 for boxplots arranged for easy comparison of PRB distributions between 

detector types, within the same simulated scenario. Also see Appendix 3.2 for tables 

containing summary statistics of PBR for each model fit in the three simulated scenarios.  

The results of four models were removed from Figure 3.2 because they 

contained very large 𝜎̂𝑀𝑎𝑙𝑒𝑠 outlier values, caused by model convergence issues. The 

parameter estimates for these models can be found in Appendix 3.2.  



20 

There were several instances during all three scenarios in the simulation study 

where openCR’s default maximization algorithm issued warnings about possible 

convergence errors. The results from these models were included in analyses anyway 

(except for the four extreme outliers mentioned above). While openCR does 

accommodate more robust optimization routines, these generally take longer to 

converge than the default algorithm, and overall run-time was already a major concern 

for this study. In addition, the full South Rockies Grizzly Bear Project data set is 

considerably larger than the simulated capture histories in this study, with models fit 

using the fast default maximization algorithm already taking on the scale of days to 

weeks to fit in some cases. Thus, it will not always be practical to use even slower 

algorithms in conjunction with the openCR package, and so it was of interest to examine 

how reliable openCR estimates were even when convergence criteria were not 

necessarily met. 
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3.1. 𝝀𝟎 − 𝑺𝒎𝒂𝒍𝒍 

 

Figure 3.1. Standard boxplots of percentage relative bias (PRB) for each parameter of interest in 𝑴𝒄 and 𝑴𝒃, using 
detections from both BS and RO detectors, for the 𝝀𝟎 – Small simulated scenario. Whiskers extend a distance 
of 1.5 time the inter-quartile range from the median. Sample mean PRB along with corresponding 95% 
confidence intervals are also included. The results from 100 rounds of simulations were included in this 
figure. 
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Figure 3.2. Standard boxplots of percentage relative bias (PRB) for each parameter of interest in 𝑴𝒄 and 𝑴𝒃, using only 

detections at BS detectors, for the 𝝀𝟎 – Small simulated scenario. Whiskers extend a distance of 1.5 time the 
inter-quartile range from the median. Sample mean PRB along with corresponding 95% confidence intervals 
are also included. The results from 96 rounds of simulations were included in this figure (the results from four 
rounds were removed due to very large outliers). 
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Figure 3.3. Standard boxplots of percentage relative bias (PRB) for each parameter of interest in 𝑴𝒄 and 𝑴𝒃, using only 

detections at RO detectors, for the 𝝀𝟎 – Small simulated scenario. Whiskers extend a distance of 1.5 time the 
inter-quartile range from the median. Sample mean PRB along with corresponding 95% confidence intervals 
are also included. The results from 100 rounds of simulation were included in this figure.
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Table 3.1. Sample root mean squared error (RMSE) values for each parameter 

of interest in 𝑴𝒄 and 𝑴𝒃, along with their ratio, for the 𝝀𝟎 – Small 
simulated scenario using the full simulated data. 

Parameter Simulation Value RMSE (𝑴𝒄) RMSE (𝑴𝒃) RMSE (𝑴𝒃)/RMSE (𝑴𝒄) 

𝑓 0.12 0.0406 0.044 1.08 

𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 1.01 0.0551 0.053 0.96 

𝜆𝑀𝑎𝑙𝑒𝑠 0.96 0.0528 0.052 0.99 

𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  0.89 0.0574 0.060 1.04 

𝜙𝑀𝑎𝑙𝑒𝑠  0.84 0.0434 0.046 1.06 

𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 3634 253.1808 270.470 1.07 

𝜎𝑀𝑎𝑙𝑒𝑠 9970 446.3984 1500.337 3.36 

 

Figure 3.1 shows that with respect to the full data set, there appeared to be 

noticeable biases introduced in 𝑀𝑏. 𝜙̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 and 𝜙̂𝑀𝑎𝑙𝑒𝑠 were biased downwards (Mean 

PRB =  −2.5% and −1.1% respectively), while 𝑓 and 𝜎̂𝑀𝑎𝑙𝑒𝑠 were biased upwards (Mean 

PRB =  12.8% and 12.0% respectively). Based on the scales of 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠, 𝜙𝑀𝑎𝑙𝑒𝑠, and 𝑓, 

these observed biases are not too large: A −2.5% PRB in 𝜙̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠( = 0.89) corresponds 

to a biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠 estimate (denoted here as 𝜙̃𝐹𝑒𝑚𝑎𝑙𝑒𝑠 ) of 𝜙̃𝐹𝑒𝑚𝑎𝑙𝑒𝑠 =  0.86775, a 

−1.08% PRB in 𝜙̂𝑀𝑎𝑙𝑒𝑠( = 0.84)  corresponds to 𝜙̃𝑀𝑎𝑙𝑒𝑠 =  0.830928, and a 12.8% PRB 

in 𝑓 ( = 0.12) corresponds to 𝑓 = 0.13536. (Note that a portion of the positive bias in 𝑓 

could be a function of its chosen value being close to 0: There were instances where 

𝑃𝑅𝐵(𝑓) > 100%, however downward bias was limited to 𝑃𝑅𝐵(𝑓) = −100%). The bias in 

𝜎𝑀𝑎𝑙𝑒𝑠 estimates is more substantial however. A 12.0% PRB in 𝜎̂𝑀𝑎𝑙𝑒𝑠( =  9970) 

corresponds to 𝜎̃𝑀𝑎𝑙𝑒𝑠 =  11166.4. For context, under the half-normal detection function 

this corresponds to the predicted area in which bears spend 95% of their time being 

roughly 25% larger than it actually is. These same patterns were also observed in the 

RO only data set, with the exception of a small negative bias (PRB =  −1.41%) being 

observed for 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 estimates (see Figure 3.3).  

Moving to the BS only analysis, Figure 3.2 indicated that in addition to bias likely 

being present in 𝑀𝑏 parameters, 𝑀𝑐 may also biased for 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠. The distribution of 𝑀𝑐 

estimates of 𝑓 and 𝜎𝑀𝑎𝑙𝑒𝑠 and 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 also appeared skewed, which is less favourable 

than estimates being clustered around their true value. The likely reason these patterns 

in 𝑀𝑐 estimates were present for the BS data and not the RO data set is that while BS in 

this scenario tended to have higher age-sex class detection probabilities than RO 
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overall, this was not enough to compensate for the fact that there were 3 times more RO 

deployed, for twice as many secondary occasions. Likely, a combination of not getting 

enough recaptures to properly estimate home-range shapes and sizes, combined with 

possible convergence issues caused by a small data set, led to the bias and skewed 

distributions observed in 𝑀𝑐. This is supported by the fact that the bias and skew in 

𝜎𝑀𝑎𝑙𝑒𝑠 and 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 estimates were reduced in 𝑀𝑐 models fit to BS only data in the 𝜆0 – 

Moderate simulated scenario (see Figure 3.5), which had higher average detection 

probabilities for both male and female bears (𝑀𝑐 still appeared biased for 𝑓 however, 

which is discussed in Section 4.2). 

In the full data set, Figure 3.1 does not seem to imply there was any noticeable 

decrease in parameter variability under 𝑀𝑏 compared to 𝑀𝑐. In fact, in some cases, such 

as for 𝜎𝑀𝑎𝑙𝑒𝑠, estimates seem more variable under 𝑀𝑏. In addition, Table 3.1 shows that 

in general, 𝑀𝑐 outperformed 𝑀𝑏 in terms of RMSE. The only exceptions were for 𝜆𝑀𝑎𝑙𝑒𝑠 

and 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 , which had lower RMSE under 𝑀𝑏. Thus, it appears that overall 𝑀𝑐 

outperformed 𝑀𝑏. Although using 𝑀𝑏 instead of 𝑀𝑐 will often yield fairly reliable 

estimates of most parameters (as the PRB observed relative to the size of many of the 

parameters was not very large), with 𝜎𝑀𝑎𝑙𝑒𝑠 being the main exception. 
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3.2. 𝝀𝟎 − 𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆 

 

Figure 3.4. Standard boxplots of percentage relative bias (PRB) for each parameter of interest in 𝑴𝒄 and 𝑴𝒃, using 

detections from both BS and RO detectors, for the 𝝀𝟎 – Moderate simulated scenario. Whiskers extend a 
distance of 1.5 time the inter-quartile range from the median. Sample mean PRB along with corresponding 
95% confidence intervals are also included. The results from 100 rounds of simulation were included in this 
figure. 
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Figure 3.5. Standard boxplots of percentage relative bias (PRB) for each parameter of interest in 𝑴𝒄 and 𝑴𝒃, using only 

detections at BS detectors, for the 𝝀𝟎 – Moderate simulated scenario. Whiskers extend a distance of 1.5 time 
the inter-quartile range from the median. Sample mean PRB along with corresponding 95% confidence 
intervals are also included. The results from 100 rounds of simulation were included in this figure. 
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Figure 3.6. Standard boxplots of percentage relative bias (PRB) for each parameter of interest in 𝑴𝒄 and 𝑴𝒃, using only 

detections at RO detectors, for the 𝝀𝟎 – Moderate simulated scenario. Whiskers extend a distance of 1.5 time 
the inter-quartile range from the median. Sample mean PRB along with corresponding 95% confidence 
intervals are also included. The results from 100 rounds of simulation were included in this figure.
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Table 3.2. Sample root mean squared error (RMSE) values for each parameter 

of interest in 𝑴𝒄 and 𝑴𝒃, along with their ratio, for the 𝝀𝟎 – Moderate 
simulated scenario using the full simulated data. 

Parameter Simulation Value RMSE (𝑴𝒄) RMSE (𝑴𝒃) RMSE (𝑴𝒃)/RMSE (𝑴𝒄) 

𝑓 0.12 0.0322 0.0376 1.167 

𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 1.01 0.0570 0.0594 1.042 

𝜆𝑀𝑎𝑙𝑒𝑠 0.96 0.0430 0.0441 1.025 

𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  0.89 0.0520 0.0643 1.235 

𝜙𝑀𝑎𝑙𝑒𝑠  0.84 0.0370 0.0378 1.020 

𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 3634 250.016 295.020 1.180 

𝜎𝑀𝑎𝑙𝑒𝑠 9970 334.838 888.201 2.653 

 

Figure 3.4 shows that, like the first simulation study, there was bias introduced by 

𝑀𝑏 when fitting models to the full data set. This was most noticeable for 𝜙̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 (Mean 

PRB =  −4.2%), 𝑓 (Mean PRB =  15.4%), 𝜎̂𝑀𝑎𝑙𝑒𝑠 (Mean PRB =  6.9%), and 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 

(Mean PRB =  −3.2%). Comparing Tables A3.1 and A3.4, it appears that 𝑀𝑏 bias tended 

to be higher in the second simulated scenario (with 𝑃𝑅𝐵(𝜎̂𝑀𝑎𝑙𝑒𝑠) being the biggest 

exception), which is not surprising given a larger effect had been omitted in it. In 

addition, compared to the other parameters in 𝑀𝑐, and relative to the size of the 

parameter, the Mean PRB of  𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 (=  1.7%) is somewhat high. The unadjusted 95% 

confidence interval for mean PRB of 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 also narrowly excludes 0. There is no clear 

reason why this parameter should be biased upwards, other than this being an artifact of 

too few simulations or having been caused by convergence issues.  

Like in the first simulation study, the pattern of biases in the RO only analysis 

was similar to the full data set’s (see Figure 3.6), with the main exception being that it 

lacked the 𝑀𝑏 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 bias observed in the full data set. However, the bias pattern in the 

BS only analysis (see Figure 3.5) was different from the other two analyses. Specifically, 

the BS only analysis results did not contain the 𝜎̂𝑀𝑎𝑙𝑒𝑠 𝑀𝑏 bias observed in the other two. 

This difference is likely a function of the structure of the omitted age class effect, and 

potentially the difference in layouts of the two classes of detectors. 𝑀𝑐 estimates of 𝑓 in 

the BS only analysis appeared biased overall. This was likely caused by some 

combination of convergence issues, 𝑓 being a small quantity, or the results being an 

artifact of too few simulations. 
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As in the 𝜆0 – Small scenario, there does not appear to be a large difference in 

the variability of parameters estimates between 𝑀𝑐 and 𝑀𝑏 when using the full simulated 

data set (see Figure 3.4). Thus, it is not surprising that RMSE values were higher for all 

parameters in 𝑀𝑏. Once again, the differences in RMSE varied from small (e.g. 𝜙
𝑀𝑎𝑙𝑒𝑠

), 

to quite large (e.g. 𝜎𝑀𝑎𝑙𝑒𝑠). It should be noted that once again, except for the home-range 

parameters, the PRB introduced in 𝑀𝑏 are not very large when the scale of the 

parameters being estimated is considered. 
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3.3. 𝝀𝟎 − 𝑳𝒂𝒓𝒈𝒆 

 

Figure 3.7. Standard boxplots of percentage relative bias (PRB) for each parameter of interest in 𝑴𝒄 and 𝑴𝒃, using 
detections from both BS and RO detectors, for the 𝝀𝟎 – Large simulated scenario. Whiskers extend a distance 
of 1.5 time the inter-quartile range from the median. Sample mean PRB along with corresponding 95% 
confidence intervals are also included. The results from 100 rounds of simulation were included in this figure. 
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Figure 3.8. Standard boxplots of percentage relative bias (PRB) for each parameter of interest in 𝑴𝒄 and 𝑴𝒃, using only 

detections at BS detectors, for the 𝝀𝟎 – Large simulated scenario. Whiskers extend a distance of 1.5 time the 
inter-quartile range from the median. Sample mean PRB along with corresponding 95% confidence intervals 
are also included. The results from 100 rounds of simulation were included in this figure. 
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Figure 3.9. Standard boxplots of percentage relative bias (PRB) for each parameter of interest in 𝑴𝒄 and 𝑴𝒃, using only 
detections at RO detectors, for the 𝝀𝟎 – Large simulated scenario. Whiskers extend a distance of 1.5 time the 
inter-quartile range from the median. Sample mean PRB along with corresponding 95% confidence intervals 
are also included. The results from 100 rounds of simulation were included in this figure.
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Table 3.3. Sample root mean squared error (RMSE) values for each parameter 

of interest in 𝑴𝒄 and 𝑴𝒃, along with their ratio, for the 𝝀𝟎 – Large 
simulated scenario using the full simulated data. 

Parameter Simulation Value RMSE (𝑴𝒄) RMSE (𝑴𝒃) RMSE (𝑴𝒃)/RMSE (𝑴𝒄) 

𝑓 0.12 0.0361 0.0342 0.949 

𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 1.01 0.0628 0.0624 0.993 

𝜆𝑀𝑎𝑙𝑒𝑠 0.96 0.0517 0.0468 0.905 

𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  0.89 0.0679 0.0657 0.967 

𝜙𝑀𝑎𝑙𝑒𝑠  0.84 0.0375 0.0357 0.952 

𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 3634 246.228 312.455 1.269 

𝜎𝑀𝑎𝑙𝑒𝑠 9970 297.882 426.894 1.433 

 

Figure 3.7 shows the distribution of PRB for parameters, for models fit to the full 

set of detection histories, in the third simulated scenario. There are biases that seem to 

be introduced by 𝑀𝑏, however they differ somewhat from those in the previous two 

scenarios, possibly in part because the pattern of RO 𝜆0 values changed dramatically 

between the second and third simulation study (see Tables 2.2 and 2.3). Particularly, 𝑀𝑏 

appeared noticeably biased in estimates of 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠 (Mean PRB =  −4.0%), 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 

(Mean PRB = −2.1%), 𝜆𝑀𝑎𝑙𝑒𝑠 (Mean PRB = 1.0%),  𝑓 (Mean PRB = 12.1%), 𝜎𝑀𝑎𝑙𝑒𝑠 

(Mean PRB =  2.4%), and 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 (Mean PRB =  6.4%). In addition, 𝑀𝑐 also 

appeared biased in estimates of 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠 (Mean PRB =  −3.5%), 𝑓 (Mean PRB =

12.1%), and 𝜎𝑀𝑎𝑙𝑒𝑠 (Mean PRB =  0.9%). These three biases are likely either simulation 

artifacts, or the result of convergence issues; openCR struggled particularly in this 

scenario to adequately estimate 𝜆0. 

The BS only analysis had a different bias pattern in 𝑀𝑏 than the analysis of the 

full data set (see Figure 3.8). Particularly, estimates of 𝜙𝑀𝑎𝑙𝑒𝑠, 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠, 𝑓, 𝜎𝑀𝑎𝑙𝑒𝑠, and 

𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 appeared at least somewhat biased. 𝑀𝑐 was also positively biased for 𝜎̂𝑀𝑎𝑙𝑒𝑠, 

and 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 ; likely due to convergence issues. The RO analysis was almost entirely 

unbiased for both 𝑀𝑐 and 𝑀𝑏, with the exception of 𝜙̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 and 𝜎̂𝑀𝑎𝑙𝑒𝑠 for 𝑀𝑏 (see 

Figure 3.9). This could indicate that converge issues, and subsequent biases in the full 

data set analysis may have been largely due to the BS detectors.  

Looking at Table 3.3, except for the home-range size parameters, 𝑀𝑏 had lower 

RMSE than 𝑀𝑐 when the full data set was used. In addition, the difference in RMSE for 
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the home-range parameters was not especially large compared to what was observed in 

the previous simulation studies. This is surprising as this was the scenario where it was 

expected RMSE would be the most unfavourable for 𝑀𝑏, as a very large effect was 

being omitted from the model. The likely explanation for this is again convergence 

issues. What may have occurred is that openCR struggled estimating the wide-ranging 

𝜆0 values in 𝑀𝑐 with the data available, resulting in the convergence criterion not being 

met and increasing bias/variance of estimates of remaining parameters.  
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Chapter 4.  
 
Discussion 

4.1. Interpretation of Simulation Results 

The above results provide several useful insights for the South Rockies Grizzly 

Bear Project. The first being that despite 𝑀𝑐 frequently outperforming 𝑀𝑏 in terms of 

RMSE (with scenario 3 being the main exception, although as mentioned above this was 

likely due to convergence issues) the variability of most parameter estimates tended to 

be roughly comparable between the two methods, and the biases introduced by 𝑀𝑏, with 

the exception of the home-range size parameters, tended to not be very large relative to 

the size of the parameters being estimated. This low bias was even the case in the 𝜆0 – 

Large scenario where a very large effect was being omitted from the model. Thus, this 

suggests that South Rockies Grizzly Bear Project estimates of survival, per-capita 

recruitment, and population growth rates may be robust to the likely effect of an age term 

in 𝜆0 being omitted. 

The home-range size parameters, however, did have some relatively large 

biases introduced in several scenarios. The specific biases found in the 𝜆0 – Small and 

Moderate scenarios are the most relevant to the South Rockies Grizzly Bear Project, as 

the parameters in the 𝜆0 – Large scenario were chosen more to create a very large 

unaccounted effect than to produce plausible detection probabilities for the South 

Rockies population. PRB distributions from the first two scenarios predicted that, using 

the full South Rockies data set, 𝑀𝑏 𝜎̂𝑀𝑎𝑙𝑒𝑠 values would likely be positively biased, and 

𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 values would potentially be negatively biased.  

This positive 𝑀𝑏 𝜎̂𝑀𝑎𝑙𝑒𝑠 bias was likely the result of male yearlings having much 

higher 𝜆0 values at RO in the first two simulated scenarios (and higher detection 

probabilities; see Table 2.2 and Figure 2.1) than other age classes. When the age term 

was omitted, the 𝑀𝑏 𝜆0 estimate for all males detected at RO was likely lower than the 

male yearling-specific 𝜆0 value. This resulted in 𝜎̂𝑀𝑎𝑙𝑒𝑠 being biased upwards in order to 

produce reasonable detection probability estimates for yearlings. This is supported by 

Figures 3.3 and 3.6 showing a similar positive 𝜎̂𝑀𝑎𝑙𝑒𝑠 bias when only RO data was used. 
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The negative bias in 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 likely had a similar explanation. At BS female yearlings had 

much lower 𝜆0 values than other age classes, especially in the second and third 

simulated scenarios (see Table 2.2). As a result, the 𝑀𝑏 𝜆0 estimate for all females 

detected at BS was likely much higher than the female yearling-specific 𝜆0. As a result, 

𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 was biased downwards in order to produce reasonable detection probability 

estimates for yearlings. This is supported by Figures 3.2 and 3.5, which show that a 

negative bias was likely present in 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 when only BS data was used.  

Some telemetry analyses have been carried out on the South Rockies 

population, placing estimated grizzly home-range size at roughly 200 km2 for females, 

and 400 km2 for males (Clayton Lamb, personal communication, June 3, 2019). Under 

the Gaussian space-usage pattern assumed under a half-normal detection function, this 

would correspond to 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 = 3259.7, and 𝜎̂𝑀𝑎𝑙𝑒𝑠 = 4609.9.  While the telemetry 

estimate of  𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 is similar to that obtained when 𝑀𝑏 was fit to South Rockies data, 

this was not the case for 𝜎𝑀𝑎𝑙𝑒𝑠, where 𝑀𝑏 produced a much larger estimate than the 

telemetry analysis (see Table 2.1). As telemetry analyses are more suited to estimating 

home-range size, this shows that similar to the findings of this simulation study, 𝑀𝑏 likely 

overestimated 𝜎𝑀𝑎𝑙𝑒𝑠 when fit to South Rockies data. This overestimation was much 

larger than what was observed in this study’s simulations however, and there are several 

reasons why this might be the case.  

One reason could be that had a more accurate 𝜎𝑀𝑎𝑙𝑒𝑠 value been used to 

simulate capture histories (as well as corresponding 𝜆0 values), higher variability in 

𝜎̂𝑀𝑎𝑙𝑒𝑠 may have been observed.  

Another reason could have been there was indeed home-range centre 

movements in male bears which 𝑀𝑏 did not account for. When home-range movement is 

unaccounted for in spatial CR models, including OSECR, this can often result in 𝜎 

parameters being overestimated, and 𝜆0 values being underestimated (Efford & 

Schofield, 2019; Glennie et al., 2019). A 𝑀𝑏 model, with an added exponential home-

range centre movement term was fit to a subset of the South Rockies data set (years 

2012 – 2014) and compared to a 𝑀𝑏 model fit to the same data which did not include 

home-range movement. The home-range centre movement model produced estimates: 

𝜎̂𝑀𝑎𝑙𝑒𝑠 = 6832.7, and 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 = 4900.5, while the static home-range centre models 

produced estimates: 𝜎̂𝑀𝑎𝑙𝑒𝑠 = 8789.0, and 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠 = 3522.1. Thus, looking at this subset 
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provided some conflicting evidence. While including home-range centre movement likely 

improved 𝜎𝑀𝑎𝑙𝑒𝑠 estimates, it also may have worsened 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 estimates. 

A third cause could be that as South Rockies bears likely do not follow the 

Gaussian space usage pattern assumed under a half-normal detection function (see 

Appendix 2.2), then assuming they did could have biased 𝜎̂𝑀𝑎𝑙𝑒𝑠 upwards. Likely, some 

combination of these three reasons caused the observed bias.  

Overall, this probable bias in the 𝜎𝑀𝑎𝑙𝑒𝑠 value used for simulations likely does not 

discount the study’s findings for the non-home-range size parameters. There are two 

reasons for this, the first being that if the 𝜎𝑀𝑎𝑙𝑒𝑠 value used in simulations was biased 

upwards, then the male 𝜆0 values used in simulations were likely biased downwards as 

they were partially based on the 𝜆̂0 values from OSECR models fit to the South Rockies 

Grizzly Bear Project data set. These  𝜆̂0 values likely would have been deflated in order 

to generate semi-reasonable detection probabilities, based on the observed data, given 

the inflated 𝜎̂𝑀𝑎𝑙𝑒𝑠 value. Thus, the detection probabilities used to generate simulated 

data may not have been too biased. Secondly, the simulation study varied  𝜆0 values 

considerably, resulting in male bear detection functions taking on many different shapes, 

and in all these cases, it did not appear that 𝑀𝑏 estimates of survival, recruitment, or 

growth rate had been greatly biased.  

The finding that 𝑀𝑏 𝜎𝑀𝑎𝑙𝑒𝑠 estimates are often subject to bias is not very 

surprising. As detection probability is a function of both 𝜎 and 𝜆0, it makes sense that 𝜎 

estimates may become biased to compensate for 𝜆0 being misspecified. Of all the 

parameters under consideration in this study, the home-range size parameters were of 

the least interest, in part because bear home-range sizes are already relatively well 

understood, and because there are alternative methods for estimating their size, such as 

telemetry analyses. Thus, this simulation study’s findings are promising, as they 

concluded that estimates of survival, recruitment, and population growth rate are likely 

not being overly affected by the lack of age data in South Rockies Grizzly Bear Project 

data sets.  

Moving on to the second question posed in this analysis, comparing the 

differences in BS and RO only results for the first two simulated scenarios (again, 

because these two scenarios contain plausible 𝜆0 values for the South Rockies 
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population) shows that both detector types tended to produce reasonably accurate 

parameter estimates under 𝑀𝑏, with the exception of 𝜎̂𝑀𝑎𝑙𝑒𝑠 and 𝜎̂𝐹𝑒𝑚𝑎𝑙𝑒𝑠. Both detector 

types showed different patterns in PRB distributions for these two parameters, with BS 

detectors generally producing more accurate estimates of 𝜎𝑀𝑎𝑙𝑒𝑠, and RO detectors 

producing more accurate estimates of 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠. It is difficult to determine which detector 

type is less prone overall to producing biased parameter estimates using these results 

alone, as some of the bias in BS parameter estimates may have been caused by the 

size of simulated detection histories. This was evidenced by PRB being much more 

variable in BS only analyses, as well as bias in home-range size parameters dropping 

noticeably in BS only analyses between the first and second simulation study, coinciding 

with average detection probabilities across sexes increasing.  

Thus, overall it seems both detector types are prone to bias that is capable 

hindering 𝑀𝑏 ’s ability to accurately estimate home-range size parameters. Further work 

would be required to determine which type of detector produces the best parameter 

estimates relative to a performance metric such as RMSE, within the context and budget 

of the South Rockies project. 

4.2. Future Work 

There are several avenues for future work on this problem. These mainly centre 

on modifying the simulation procedure to be more realistic. For example, as mentioned 

in Section 2.3, there are likely other OSECR parameters that could be modelled as a 

function of age, such as survival and home-range size: Younger males likely have lower 

survival rates than older males, yearling home-range size is likely very similar to adult 

female home-range sizes as they follow them around, etc. Further work could be done to 

determine reasonable values for these effects and incorporate them.  

Similarly, home-range centre movement models (especially ones that model 

home-range centre movement as a function of sex) should be further explored, as there 

is evidence (see Section 4.4 and Appendix 2.2) that this is occurring in South Rockies 

data. Once these models have been examined, home-range centre movement could be 

added to simulations and be included in 𝑀𝑐 and 𝑀𝑏 models used to evaluate PRB.  
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The main hurdle for implementing these changes to the simulation procedure 

would be controlling computation time. The results of this simulation study showed that 

to avoid convergence issues in openCR’s default algorithm, a larger simulated data set 

is likely required. This would be especially true if further model complexity was 

introduced. Data set size could be increased by deploying more detectors over a larger 

region, or simulating additional primary/secondary sampling occasions. Doing either of 

these would likely cause issues though, as simulating more data, as well as increasing 

model complexity, both have the potential to greatly increase computation time. Thus, 

before attempting this with openCR, other packages that use frequentist methods to 

quickly estimate parameters from open, spatial CR models, such as openpopscr 

(Glennie et al., 2019), or oSCR (Sutherland, Royle, & Linden, 2018) should be explored 

to see if they can reduce computation time.  

Many other forms of data have been collected in the South Rockies Grizzly Bear 

Project, such as telemetry data, and incidental bear sightings. Further analyzing these 

data sets, as well as researching models that can directly incorporate this data in models 

along with the CR data could also prove enlightening. 
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Chapter 5.  
 
Conclusion 

Under the models examined in this paper, it is likely that South Rockies Grizzly 

Bear Project OSECR estimates of apparent year-to-year survival, apparent per-capita 

recruitment, and population growth rate have only a small bias when grizzly bear age 

class (yearling, sub-adult, or adult) is not included in the 𝜆0 portion of the half-normal 

detection probability function. This was not the case for estimates of the male and 

female home-range size parameters though (and especially so for the male parameter), 

which were biased in several of the simulated scenarios examined. In addition, it was 

found that while both detector types tended to produce low-bias estimates of survival, 

recruitment, and population growth when 𝑀𝑏 was used, they also often produced 

noticeably biased estimates of home-range size parameters. In the case of BS 

detectors, this may have been in part caused by the simulated sample size being too 

small. Finally, this study also found that the default maximization algorithm in the 

openCR package can struggle with convergence issues when there are very large class 

differences in 𝜆0 values, and that larger simulated data sets may need to be employed in 

future studies to account for this. 
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Appendix 1.   
 
Relevant Capture-Recapture Models 

The OSECR model, introduced in Efford & Schofield (2019), can be thought of as 

a combination of two well-known CR models: The non-spatial, open population model of 

Schwarz & Arnason (1996), referred to here as JSSA, and the spatially explicit, closed 

population model of Borchers & Efford (2008), hence referred to as SECR. These two 

models will be examined in further detail before OSECR is.  

Appendix 1.1: JSSA 

In studies using the JSSA model, each detected animal’s detection history is a 

string of 1’s and 0’s, indicating whether that animal was detected at any of the detectors 

on a given secondary sampling occasion. Individual 𝑖’s JSSA detection history will be 

denoted as 𝜔𝑖′. For example, if a study was conducted with 4 primary occasions, each 

one having a single secondary occasion, a detection history of  𝜔𝑖
′ = 𝟎𝟏𝟏𝟎 would 

indicate animal 𝑖 was not detected during the first, and fourth primary occasions, but was 

on the second and third. Animals that were not detected are assumed to have detection 

histories of all zeros. Note that in order to use this form of the JSSA, you must have a 

method of individually identifying or marking animals, so that each animal can be 

assigned a unique detection history. These detection histories are used as inputs in the 

JSSA model, which has a likelihood of the form: 𝐿(𝜃, 𝑁|𝜔′) = Pr(𝑛|𝜃, 𝑁) Pr(𝜔′|𝑛, 𝜃), 

where 𝜔′ is the set of observed detection histories, 𝑛 is the number of individual animals 

detected, 𝑁 is a superpopulation parameter representing the number of unique animals 

available for detection in the population over the study period, and 𝜃 is a list of detection 

and population dynamics parameters which will be explained below.  

Treating 𝑛 as a binomial random variable, the first component of the JSSA’s 

likelihood is expressed as: Pr(𝑛|𝜃, 𝑁) =  (𝑁
𝑛

)𝑝𝑛(1 − 𝑝)𝑁−𝑛, where 𝑝 is the probability that 

an animal from the super population 𝑁 is detected at least once over the course of the 

study. The second component of the likelihood has the form: Pr(𝜔′|𝑛, 𝜃)  ∝

 ∏ Pr(𝜔𝑖
′|𝜔𝑖

′ > 0)𝜔𝑖
′∈ 𝜔′ , where Pr(𝜔𝑖

′|𝜔𝑖
′ > 0) represents the probability of observing 

detection history 𝜔𝑖
′, conditional on the animal being detected at all during the study.  



46 

Using the individual-based notation of Link & Barker (2005) and Schofield & Barker 

(2008), Pr(𝜔𝑖
′|𝜔𝑖

′ > 0) is expressed as:  

Pr(𝜔𝑖
′|𝜔𝑖

′ > 0) =  ∑ ∑ Pr(𝑏, 𝑑) Pr (

𝐽

𝑑= 𝑙𝑖

𝑓𝑖

𝑏=1

𝜔𝑖
′|𝑏, 𝑑, 𝜔𝑖

′ > 0) (𝐴1 − 1), 

where 𝑓𝑖 is the primary occasion where animal 𝑖 was first detected, and 𝑙𝑖 is the 

last primary occasion where animal 𝑖 was detected. 

Pr(𝑏, 𝑑) is the probability that an animal was first available for detection at 

primary occasion 𝑏 (either because the animal was already in the population of interest if 

𝑏 = 1, or because the animal subsequently entered the population through birth or 

immigration if 𝑏 > 1 ), and was last available for detection at primary occasion 𝑑 (either 

because the animal died, or emigrated from the population after occasion 𝑑).  This 

probability can be parameterized as Pr(𝑏, 𝑑) =  𝛽𝑏−1(∏ 𝜙𝑗
𝑑−1
𝑗=𝑏 )(1 − 𝜙𝑑), where 𝛽𝑗 

represents the probability that an animal from superpopulation 𝑁 first became available 

to be detected at primary occasion 𝑗 + 1. These 𝛽 parameters are often referred to as 

entrance probabilities. 𝜙𝑗 represents the probability that an animal available for detection 

at primary occasion 𝑗 remained available for detection at primary occasion 𝑗 + 1 (i.e. 

because it did not die, or permanently emigrate after primary occasion 𝑗). These 𝜙 

parameters are usually called apparent survival rates. The term “apparent” is used 

because this model does not distinguish between animals that died, and animals that 

simply left the study area permanently. 

As an example, we’ll return to the 𝜔𝑖
′ = 𝟎𝟏𝟏𝟎 detection history. In this example, 

𝑓𝑖 = 2, and 𝑙𝑖 = 3.  See the third column of Table A1.1 for all the possible Pr(𝑏, 𝑑) values 

for this scenario. 

Table A1.1 All possible 𝑷𝒓 (𝒃, 𝒅) and 𝐏𝐫(𝝎𝒊
′|𝒃, 𝒅, 𝝎𝒊

′ > 𝟎) values under the JSSA 

model for the detection history 𝝎𝒊
′ = 𝟎𝟏𝟏𝟎. 

𝒃 𝒅 𝐏𝐫(𝒃, 𝒅) 𝐏𝐫 (𝝎𝒊
′|𝒃, 𝒅, 𝝎𝒊

′ > 𝟎) 

1 3 𝛽0𝜙1𝜙2(1 − 𝜙3) 𝑝.
−1(1 − 𝑝1)𝑝2𝑝3 

1 4 𝛽0𝜙1𝜙2𝜙3 𝑝.
−1(1 − 𝑝1)𝑝2𝑝3(1 − 𝑝4) 

2 3 𝛽1𝜙2(1 − 𝜙3) 𝑝.
−1𝑝2𝑝3 

2 4 𝛽1𝜙2𝜙3 𝑝.
−1𝑝2𝑝3(1 − 𝑝4) 
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The second component of equation (A1 – 1) has the form:  

Pr (𝜔𝑖
′|𝑏, 𝑑, 𝜔𝑖

′ > 0) = 𝑝.
−1 ∏ ∏ 𝑝

𝑗,𝑘

𝜔𝑖𝑗𝑘
′

(1 − 𝑝𝑗,𝑘)
1−𝜔𝑖𝑗𝑘

′

𝐾𝑗

𝑘=1

𝑑

𝑗=𝑏

.  

𝑝𝑗,𝑘 is the probability an animal is detected on secondary occasion 𝑘 of primary 

occasion 𝑗, assuming the animal was available for detection then. 𝜔𝑖𝑗𝑘
′  is animal 𝑖's 

detection history for secondary occasion 𝑘 of primary occasion 𝑗 (i.e. 𝜔𝑖𝑗𝑘
′ = 1 if the 

animal was detected on that secondary occasion, 𝜔𝑖𝑗𝑘
′ = 0 otherwise). 𝑝. represents the 

probability that an animal is detected at all during the study period, and is expressed as 

𝑝. = 1 − ∑ ∑ {Pr(𝑏, 𝑑) ∏ ∏ (1 − 𝑝𝑗,𝑘)
𝐾𝑗

𝑘=1
𝑑
𝑗=𝑏 }𝐽

𝑑=𝑏
𝐽
𝑏=1 . 

Using the above parameterization of the JSSA, it is possible to estimate primary 

occasion-specific population sizes using 𝛽̂𝑗 and 𝜙̂𝑗 values. Alternatively, they can also be 

calculated using the Horvitz-Thompson style estimator: 𝑁𝑗 = ∑ 𝑝̂𝑖,𝑗
−1 ∗ 𝐼(𝑖 ∈  𝑛𝑗

𝑛
𝑖=1 ), where 

𝐼(𝑖 ∈  𝑛𝑗) = 1 if animal 𝑖 was detected in primary occasion 𝑗, and 0 otherwise.  𝑝̂𝑖,𝑗 

represents the model estimated probability of detecting animal 𝑖 during primary occasion 

j and can be written as 𝑝̂𝑖,𝑗 = 1 − ∑ (1 −  𝑝̂𝑗,𝑘)
𝐾𝑗

𝑘=1
.  

Conceptually, the notion of parameterizing the JSSA likelihood with entry 

probabilities 𝛽𝑗 is straightforward; however, these probabilities do not have clear 

biological interpretations, and do not lend themselves to explaining the dynamics of a 

population. As a result, several different parameterizations of the JSSA likelihood have 

been derived (Efford & Schofield, 2019; Pradel, 1996; Schwarz & Arnason, 1996). A 

commonly used parameterization explored in this paper is the Pradel-Link-Barker (PLB) 

formulation (Link & Barker, 2005; Pradel, 1996). In the PLB parameterization, the entry 

probabilities 𝛽𝑗 are replaced with per-capita recruitment probabilities 𝑓𝑗, which represents 

how many new animals enter the population between primary occasions 𝑗 and 𝑗 + 1 and 

are still alive at primary occasion 𝑗 + 1, per animal currently alive at primary occasion 𝑗.  

It is possible to first fit the JSSA model described above, and then recursively 

calculate the 𝑓𝑗 parameters, using the following relationships shown in Link & Barker 

(2005): 𝑑𝑗+1 = 𝑑𝑗𝜙𝑗 + 𝛽𝑗 (where 𝑑1 = 𝛽0), and 𝑓𝑗 = 𝛽𝑗 𝑑𝑗⁄ . Examining the form of 𝑑𝑗+1, it 
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represents the proportion of the super-population that is alive during primary occasion 

𝑗 +  1. Thus, 𝛽𝑗 𝑑𝑗⁄  is the ratio of the portion of the super-population that became 

available for sampling in primary occasion 𝑗 +  1, and the portion of the super-population 

alive at primary occasion 𝑗, which is equivalent to the definition of per-capita recruitment 

probabilities described above. In addition, Link & Barker (2005) also provides an 

alternative likelihood parameterization that directly uses 𝑓𝑗 instead of 𝛽𝑗. If this form is 

used, 𝛽𝑗 can be derived recursively. It should be noted that the PLB formulation is a 

conditional CR model: Its likelihood has the form  𝐿(𝜃, 𝑁|𝜔′) = Pr(𝜔′|𝑛, 𝜃), and does not 

contain a super-population parameter. In this case, the super-population parameter can 

be calculated using the Horvitz-Thompson style estimator: 𝑁̂ =  ∑ 𝑝̂𝑖
−1𝑛

𝑖=1 , where 𝑝̂𝑖 is the 

estimated probability that animal 𝑖 was detected at least once over the course of the 

study. Primary occasion-specific population estimates can be derived in the same way 

as in the JSSA model. 

In the JSSA model, 𝑁 is parameterized on the log scale, while the parameters 𝑝, 

𝑝𝑗,𝑘, and 𝜙𝑗 are parameterized on the logit scale. This is to ensure the estimated super-

population is positive, and the parameters which represent probabilities are bounded 

between 0 and 1. In the PLB parameterization, 𝑓𝑗 is on the log scale. These parameters 

can be modelled as linear combinations of covariates in their respective link scales in a 

straightforward manner. 

One issue with JSSA/PLB abundance estimates is that unless the study region is 

a thoroughly sampled, geographically closed region, such as a pond, there is no way to 

know exactly what region estimates of abundance corresponds to. As a result, there is 

no clear method of estimating population density (which could then be used to estimate 

abundance in a region of interest). There are a number of ad-hoc methods that have 

been developed to estimate density, but this issue can also be directly resolved by using 

spatially explicit CR methods (Borchers & Efford, 2008; Royle et al., 2014) 

The JSSA/PLB models have a number of assumptions: 

• Animals are detected independently of one-another, i.e. Pr(𝜔′|𝑛, 𝜃)  ∝
 ∏ Pr(𝜔𝑖

′|𝜔𝑖
′ > 0)𝜔𝑖

′∈ 𝜔′ . 

• Detections within an individual animal, across sampling occasions, are 

independent, i.e. Pr (𝜔𝑖
′|𝑏, 𝑑, 𝜔𝑖

′ > 0) = 𝑝.
−1 ∏ ∏ 𝑝

𝑗,𝑘

𝜔𝑖𝑗𝑘
′

(1 − 𝑝𝑗,𝑘)
1−𝜔𝑖𝑗𝑘

′𝐾𝑗

𝑘=1
𝑑
𝑗=𝑏 . 
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• Animals remain individually identifiable over the course of the study. 

• The study area remains consistent over the entire study. 

• Detection probability, year-to-year survival, and per-capita recruitment are the 
same for both detected and undetected animals who share the same covariate 
values. 

• Animals do not die in the detection process. 

• Once an animal has left the population, it cannot return, i.e. animals do not 
temporarily emigrate.  

Appendix 1.2: SECR 

SECR is a spatially explicit, closed CR method. It assumes that there is no 

population turnover between primary occasions, and that the probability of detecting an 

animal at a detector is in part a function of what areas in the study region an animal 

occupies. SECR is parameterized in such a way that it can directly generate population 

density estimates. 

Like JSSA models, it is assumed the study has 𝐽 primary sampling occasions, 

each with 𝐾𝑗 secondary sampling occasions. A series of 𝑆𝑗 detectors are deployed each 

primary occasion, with detector 𝑠 located at Cartesian coordinate 𝑡𝑠. There are assumed 

to be 𝑛 unique animals caught. Each animal is assumed to have a “home-range centre”, 

𝑿, located at Cartesian coordinate 𝑥𝑖. Royle et al. (2014) defined an animal’s home-

range centre as “The centroid of the space that individual occupied (or used) during the 

period in which traps [detectors] were active”. 𝑿 is not directly observable. SECR 

assumes home-range centres are independent and are generated by an 

inhomogeneous Poisson process with rate parameter 𝐷(𝐗; 𝜏), were 𝜏 is a vector of 

parameters governing the Poisson process. 

The set of detection histories for a SECR study is represented as 𝜔, with 𝜔𝑖 

referring to animal 𝑖’s individual detection history. 𝜔𝑖 can be thought of as a collection of 

𝐽, 𝑆𝑗 × 𝐾𝑗 matrices, with matrix 𝑗 having a value of 1 in element (𝑠, 𝑘) if animal 𝑖 was 

detected at detector 𝑠 during secondary occasion 𝑘 of primary occasion 𝑗, and 0 if it was 

not detected then. Note that depending on the type of detector used, the matrices in 𝜔𝑖 

can contain different values. For example, there are SECR formulations that take as 

inputs the number of times an individual was detected at a detector over the course of a 
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secondary occasion. When acoustic sensors are used, SECR models can take the 

amplitude of animal noises detected as input. This paper will focus on the binary form of 

𝜔𝑖 described first, as this was how data in the South Rockies Grizzly Bear Project were 

summarized.  

It is assumed the probability of an animal being captured at detector 𝑠 during 

secondary occasion 𝑘 of primary occasion 𝑗 governed by the detection function 

𝑝𝑗𝑘𝑠(𝐗; 𝜃), where 𝜃 is a vector of detection probability parameters. There are a number 

of detection functions that can be used in CR studies (Borchers & Efford, 2008; Royle et 

al., 2014). The most commonly used detection function, which will be used in this paper, 

is the half-normal detection function:  

𝑝𝑗𝑘𝑠 = 𝜆0 exp (−
1

2𝜎2
‖𝐗 − 𝑡𝑠‖2) (𝐴1 − 2), 

where 𝜆0 can be interpreted as the probability of detecting an animal at a detector 

located at 𝑡𝑠, and σ can be thought of as a home-range size parameter, with larger 

values of σ corresponding to larger home-range sizes. σ will be discussed further below. 

The detection function selected dictates what space usage model is assumed of 

animals in a study. For instance, choosing the half-normal detection function implies a 

bivariate normal model of space use, where the probability of an animal using a point on 

the habitat grid can be modelled as coming from a circular bivariate Gaussian 

distribution with standard deviation σ (the same σ as in equation A1 – 2). This clarifies 

how the σ parameter in equation A1 – 2 is directly linked with home-range size. 

The SECR likelihood can be written as   

                    L(τ, θ | 𝑛, 𝜔) = Pr(𝑛 |  𝜏, 𝜃) Pr(𝜔 |  𝑛, 𝜃, 𝜏)                                          (𝐴1 − 3).  

If it is assumed that detection probabilities are independent between animals, 

then the first component of equation A1 – 3, Pr(𝑛 |  𝜏, 𝜃), is a Poisson probability density 

function with rate parameter 𝛿(𝜏, 𝜃) =  ∫ 𝐷(
ℛ2 𝐗; 𝜏)𝑝.(𝐗; 𝜃)𝑑𝐗, where 𝑝.(𝑥𝑖; 𝜃) is the 

probability that an animal with home-range centre 𝑿 is detected at least once over the 

course of the study period. Using the half-normal detection function, and assuming that 

detections within animals are independent, 𝑝.(𝐗; 𝜃) = 1 − ∏ ∏ ∏ (1 −
𝑆𝑗

𝑠=1

𝐾𝑗

𝑘=1
𝐽
𝑗=1
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𝑝𝑗𝑘𝑠(𝐗; 𝜃)). This equation for the rate parameter makes intuitive sense. As the Poisson 

process 𝐷(𝐗; 𝜏) parameterizes the density of animals at each point in ℛ2, and 𝑝.(𝐗; 𝜃) 

parameterizes the probability of detecting an animal at each point in ℛ2, the integral of 

their product would give the expected number of detected animals. 

The second component of equation A1 – 3, Pr(𝜔 |  𝑛, 𝜃, 𝜏), is expressed as 

Pr(𝜔 |  𝑛, 𝜃, 𝜏)  ∝  ∏ Pr(𝜔𝑖  |  𝜔𝑖 > 0, 𝜏, 𝜃)𝑛
𝑖=1 , where 𝜔𝑖 > 0 indicates animal 𝑖 was detected 

at least once in the study. The likelihood of each animal’s detection history, conditional 

on it being detected, can in turn be written as  

        Pr(𝜔𝑖  |  𝜔𝑖 > 0, 𝜏, 𝜃) = ∫ Pr(𝜔𝑖  |  𝜔𝑖 > 0, 𝜏, 𝜃, 𝐗)𝑓(
ℛ2

𝐗 | 𝜔𝑖 > 0, 𝜏, 𝜃)𝑑𝐗                 (𝐴1 − 4), 

where 

𝑓(𝐗 | 𝜔𝑖 > 0, 𝜏, 𝜃) =  
𝐷(𝐗; 𝜏)𝑝.(𝐗; 𝜃)

∫ 𝐷(𝐗; 𝜏)𝑝.(𝐗; 𝜃)𝑑𝑥𝑖ℛ2

⁄    

    =  
𝐷(𝐗; 𝜏)𝑝.(𝐗; 𝜃)

𝛿(𝜏, 𝜃)⁄ , 

is the probability density function of animal 𝑖's home-range centre, conditional on it being 

detected.  

The probability of a detection history, conditional on home-range centre 𝑿, and 

the animal being detected, can be written as Pr(𝜔𝑖  |  𝜔𝑖 > 0, 𝜏, 𝜃, 𝐗) =

 𝑝.(𝐗)−1 ∏ ∏ ∏ 𝑝𝑗𝑘𝑠
𝜔𝑖𝑗𝑘𝑠 (1 − 𝑝𝑗𝑘𝑠)1−𝜔𝑖𝑗𝑘𝑠

𝑆𝑗

𝑠=1

𝐾𝑗

𝑘=1
𝐽
𝑗=1 , where 𝜔𝑖𝑗𝑘𝑠 = 1 if animal 𝑖 was 

detected at detector 𝑠 on secondary occasion 𝑘 of primary occasion 𝑗, and 0 otherwise. 

Thus, because the probability of detecting an animal is a function of its home-

range centre, which is unobserved, to calculate the marginal likelihood of a detection 

history one must integrate over all possible home-range centres. 

Using the maximum likelihood estimate of 𝜏, it is possible to estimate density at 

locations of interest using 𝐷̂(𝐗; 𝜏̂). Region-specific densities can be estimated using 

∫ 𝐷̂(𝐗;𝜏̂)𝑑𝐗𝐴

‖𝐴‖
, where 𝐴 is a region of interest with area ‖𝐴‖. 
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In the case when the Poisson process generating home-range centres is 

homogeneous (i.e., population density is assumed constant), with rate parameter 𝐷, 

then equation A1 – 3 can be rewritten as  

                 L(θ, D | 𝑛, 𝜔) ∝  
[𝐷𝑎(𝜃)]𝑛exp (−𝐷𝑎(𝜃))

𝑛!
× ∏

∫ Pr(𝜔𝑖  |  𝐗; 𝜃)𝑑𝐗

𝑎(𝜃)

𝑛

𝑖=1
              (𝐴1 − 5), 

where Pr(𝜔𝑖  |  𝐗; 𝜃) =  ∏ ∏ ∏ 𝑝𝑗𝑘𝑠
𝜔𝑖𝑗𝑘𝑠 (1 − 𝑝𝑗𝑘𝑠

1−𝜔𝑖𝑗𝑘𝑠)
𝑆𝑗

𝑠=1

𝐾𝑗

𝑘=1
𝐽
𝑗=1 , and 𝑎(𝜃) =  ∫ 𝑝.(𝐗; 𝜃).  

When this homogeneity is assumed, it is possible to estimate detection parameters 𝜃 

separate from 𝐷, using the conditional model 𝐿(𝜃 | 𝑛, 𝜔) ∝ ∏ ∫ Pr(𝜔𝑖 | 𝐗;𝜃)𝑑𝐗

𝑎(𝜃)
𝑛
𝑖=1 . The 

maximum likelihood estimates from this conditional model are identical to those of the 

full model in equation A1 – 5 (Borchers & Efford, 2008). Under the conditional model, 

density must be estimated using the Horvitz-Thompson style estimator 𝐷̂ = ∑ 𝑎̂(𝑧𝑖)−1𝑛
𝑖=1 , 

where 𝑧𝑖 are any covariates for detection probability which may be in the model (see 

below). This conditional model is analogous to the JSSA conditional model discussed 

previously.  

The detection parameters 𝜆0 and 𝜎 are typically parameterized using logit and 

log links respectively, and both can be parameterized as linear functions of covariates on 

their link scales. Population density for a given point in space, 𝐷(𝐗; 𝜏), is typically 

parameterized using a log link, and can similarly be treated as a linear function of 

covariates on the log scale. Note that in order to model density as a function of 

covariates (thus assuming inhomogeneous density) the full likelihood model must be 

used. 

While the Poisson process 𝐷(𝐗; 𝜏) was first described parameterizing density 

over ℛ2, in practice this area of integration can be reduced substantially, as after a 

certain distance detection probability essentially drops to 0 under the half-normal 

detection function (as well as most other commonly used detection functions). The area 

of integration should be selected by the SECR user, taking into account how large the 

home-ranges of the species under consideration are thought to be. Also note that any 

non-habitat area in a study region where it is highly unlikely a home-range centre would 

occur can also be removed from the area of integration. 
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In CR studies certain detectors may only be deployed for a subset of secondary 

occasions within a primary occasion, or are left out longer than others. Both the full and 

conditional SECR likelihoods can be modified to accommodate these possibilities. In the 

first case, the Bernoulli terms in Pr(𝜔𝑖  |  𝜔𝑖 > 0, 𝜏, 𝜃, 𝐗) =

 𝑝.(𝐗)−1 ∏ ∏ ∏ 𝑝𝑗𝑘𝑠
𝜔𝑖𝑗𝑘𝑠 (1 − 𝑝𝑗𝑘𝑠)1−𝜔𝑖𝑗𝑘𝑠

𝑆𝑗

𝑠=1

𝐾𝑗

𝑘=1
𝐽
𝑗=1  that correspond to the occasions a 

detector wasn’t deployed can simply be replaced by 1. Addressing the second case is 

dependent on the type of detectors used. For binary detectors, this can be addressed by 

replacing the 𝑝𝑗𝑘𝑠 terms in Pr(𝜔𝑖  |  𝜔𝑖 > 0, 𝜏, 𝜃, 𝐗) with 𝑔𝑗𝑘𝑠 = 1 − (1 − 𝑝𝑗𝑘𝑠)𝑇𝑠𝑘 , where 𝑇𝑠𝑘  

is the amount of time a detector was deployed for (often in days) (Efford et al., 2013). In 

this case the half-normal detection function parameter 𝜆0 should be interpreted as the 

probability of detecting an animal over a single time unit when its home range centre 

lines up with a detector’s location.   

The SECR model has several assumptions, some of which have already been 

mentioned in passing: 

• There is no population turnover for the duration of the study. 

• Detection probabilities are independent between animals. 

• Detection probabilities are independent within animals. 

• Animals remain individually identifiable throughout the study period. 

• There is no death on detection. 

Note that the JSSA assumption that the study area remains constant can be 

relaxed in SECR. As long as the area of integration is large enough to encompass all the 

feasible home-range centres, based on the detectors deployed in the study, then the 

region in which detectors are deployed is free to vary between primary or secondary 

occasions. In addition, the assumption that animals with identical covariate values have 

the same detection probability has also been relaxed, as detection probability is allowed 

to vary with home-range centre location. 

Appendix 1.3: OSECR 

The OSECR model derived by Efford & Schofield (2019) is a spatiotemporal CR 

model that is spatially explicit, while also allowing for population turnover. Efford & 
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Schofield (2019) derived two forms of OSECR, one where home-range centres are 

assumed stationary throughout the study period, and one where they are modeled as 

moving between primary sampling occasions. This paper will focus on the stationary 

model. For convenience, OSECR will refer to the stationary home-range centre OSECR 

model. 

When home-range centres are assumed stationary, OSECR adapts the JSSA 

model to be spatially explicit, borrowing parts of SECR’s functional form. OSECR 

essentially replaces the JSSA detection model from equation A1 – 1: 

𝑝.
−1 ∏ ∏ 𝑝

𝑗,𝑘

𝜔𝑖𝑗𝑘
′

(1 − 𝑝𝑗,𝑘)
1−𝜔𝑖𝑗𝑘

′𝐾𝑗

𝑘=1
𝑑
𝑗=𝑏 , with the SECR detection model from equation A1 – 

4: ∫ 𝑝.(𝐗)−1 ∏ ∏ ∏ 𝑝𝑗𝑘𝑠
𝜔𝑖𝑗𝑘𝑠(1 − 𝑝𝑗𝑘𝑠)1−𝜔𝑖𝑗𝑘𝑠

𝑆𝑗

𝑠=1

𝐾𝑗

𝑘=1
𝐽
𝑗=1 𝑓(𝐗| 𝜔𝑖 > 0, 𝜏, 𝜃)𝑑𝐗

ℛ2    . Secondly, it 

parameterizes the JSSA super-population as a collection of animal home-range centres 

that are generated by an inhomogeneous Poisson point process, 𝐷(𝑿; 𝜏), over ℛ2. 

The OSECR likelihood has the familiar L(τ, θ | 𝑛, 𝜔) = Pr(𝑛 |  𝜏, 𝜃) Pr(𝜔 |  𝑛, 𝜃, 𝜏) 

form. This likelihood’s first component, Pr(𝑛 |  𝜏, 𝜃), is modelled as a Poisson density, 

with rate parameter 𝛿 =  ∑ ∑ Pr (𝑏, 𝑑) ∫ 𝑝.(𝑿| 𝑏, 𝑑)𝐷(
𝐽
𝑑=𝑏

𝐽
𝑏=1 𝑿; 𝜏)𝑑𝑿, where Pr (𝑏, 𝑑) is the 

same as in the JSSA model, and 𝑝.(𝑿| 𝑏, 𝑑) is equivalent to 𝑝.(𝑿) from SECR, modified 

for the animal first being available for detection at primary occasion 𝑏, and last available 

for detection at primary occasion 𝑑: 𝑝.(𝑿; 𝑏, 𝑑) = 1 − ∏ ∏ ∏ (1 − 𝑝𝑗𝑘𝑠(𝑿; 𝜃))
𝑆𝑗

𝑠=1

𝐾𝑗

𝑘=1
𝑑
𝑗=𝑏 .   

The second component of the above likelihood has the form 

 Pr(𝜔 |  𝑛, 𝜃, 𝜏)  ∝  ∏ ∑ ∑ Pr(𝑏, 𝑑) Pr(𝜔𝑖  |  𝑏, 𝑑, 𝜔𝑖 > 0)𝐽
𝑑= 𝑙𝑖

𝑓𝑖
𝑏=1𝜔𝑖∈𝜔 .  

Similar to SECR, Pr(𝜔𝑖  |  𝑏, 𝑑, 𝜔𝑖 > 0) =  ∫ Pr(𝜔𝑖  |  𝑏, 𝑑, 𝜔𝑖 > 0, 𝑿)𝑓(𝑿 | 𝑏, 𝑑, 𝜔𝑖 >

0). The resulting distribution of detected animals’ home-range centres is  

𝑓(𝑿| 𝑏, 𝑑, 𝜔𝑖 > 0) =  𝑝.(𝑿 | 𝑏, 𝑑)𝐷(𝑿; 𝜏) ∫(𝑝.(𝑿 | 𝑏, 𝑑)𝐷(𝑿; 𝜏)⁄ 𝑑𝑿,  

which results in   

Pr(𝜔𝑖  |  𝑏, 𝑑, 𝜔𝑖 > 0) =

 ∫ Pr(𝜔𝑖  |  𝑏, 𝑑, 𝜔𝑖 > 0, 𝑿)𝑝.(𝑿 | 𝑏, 𝑑)𝐷(𝑿; 𝜏) 𝑑𝑿 ∫ 𝑝.(𝑿| 𝑏, 𝑑)𝐷(𝑿; 𝜏)𝑑𝑿⁄ .  



55 

As indicated earlier,  

Pr(𝜔𝑖  |  𝑏, 𝑑, 𝜔𝑖 > 0, 𝑿) =  𝑝.(𝑿 | 𝑏, 𝑑)−1 ∏ ∏ ∏ 𝑝𝑗𝑘𝑠
𝜔𝑖𝑗𝑘𝑠 (1 − 𝑝𝑗𝑘𝑠)1−𝜔𝑖𝑗𝑘𝑠

𝑆𝑗

𝑠=1

𝐾𝑗

𝑘=1
𝑑
𝑗=𝑏 . 

Estimates of super-population density can be calculated using the same method 

used in SECR to calculate time-specific densities. OSECR also has an equivalent to the 

SECR conditional model: L( θ | 𝑛, 𝜔)  ∝ ∏ ∑ ∑ Pr(𝑏, 𝑑) ∫
Pr(𝜔𝑖 | 𝑿;𝜃,𝑏,𝑑)𝑑𝑿

∫ 𝑝.(𝑿 | 𝑏,𝑑)

𝐽
𝑑=𝑙𝑖

𝑓𝑖
𝑏=1

𝑛
𝑖=1 , where 

Pr(𝜔𝑖  |  𝑿; 𝜃, 𝑏, 𝑑) =  ∏ ∏ ∏ 𝑝𝑗𝑘𝑠
𝜔𝑖𝑗𝑘𝑠 (1 − 𝑝𝑗𝑘𝑠)1−𝜔𝑖𝑗𝑘𝑠

𝑆𝑗

𝑠=1

𝐾𝑗

𝑘=1
𝑑
𝑗=𝑏 . Note that this model 

assumes a homogenous distribution of home-range centres. Estimates of 

superpopulation density using the conditional OSECR model can be found using a 

Horvtiz-Thompson style estimator, similar to SECR. Similar to JSSA, OSECR can be 

parameterized in terms of per-capita recruitment (𝑓), either through calculating it 

recursively as described in the JSSA section of this appendix, or by using the 

parameterization of Link & Barker (2005) modified for spatial detection in the same vein 

JSSA was. These models are sometimes referred to as spatial PLB models. 

OSECR’s model assumptions can be thought of as a mixture of those from JSSA 

and SECR: 

• Detection probabilities are independent between animals. 

• Detection probabilities are independent within animals. 

• Animals remain individually identifiable throughout the study period. 

• Year-to-year survival, and per-capita recruitment are the same for both 
detected and undetected animals who share the same covariate values. 
Similarly, detection probability at a given detector is equivalent for animals that 
have the same covariate values, and home-range centres. 

• Animals do not die in the detection process. 

• Home-range centres are stationary (this can be relaxed if desired). 

• Once an animal has left the population, it cannot return, i.e. animals do not 
temporarily emigrate (this can be relaxed if home-range centre movement is 
explicitly modelled).  

OSECR models with homogenous density have been implemented in the R 

programming language, using the package openCR (Efford, 2019). As of now, openCR 

does not accommodate inhomogeneous population densities. To ease computation, 
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openCR treats the study region as a series of equal area discrete pixels in a finite 2-

dimensional polygon instead of as ℛ2. Each pixel contains a point where it is assumed a 

home-range centre could exist. As a result, all the integrals in the OSECR likelihood are 

replaced with summations over this set of pixels. For example, the distribution of an 

animal’s home-range centre, conditional on its capture would be 𝑓(𝑥𝑖  | 𝑏, 𝑑, 𝜔𝑖 > 0) =

 𝑝.(𝑥𝑖  | 𝑏, 𝑑) ∑ 𝑝.(𝑥𝑖  | 𝑏, 𝑑)𝑃
𝑖=1⁄ , where 𝑃 is the number of pixels used (note that due to 

density being assumed homogenous, the Poisson point process terms cancel out). By 

default openCR uses the nlm function in R, which employs a Newton-Raphson style 

algorithm, to maximize this discretized likelihood (R Core Team, 2019). 

When fitting an OSECR model with openCR, it is important to include a large 

buffer region of pixels around each detector so that all plausible home-range centre 

locations are included in the study area that is summed over when calculating marginal 

detection probabilities. This buffer should be selected so that home-range centres at its 

outer limits have a detection probability of essentially zero. Failing to account for this can 

bias parameter estimates. Similarly, it is important to use a grid of pixels that isn’t too 

coarse relative to animal home-range sizes, otherwise this can also bias parameter 

estimates.  
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Appendix 2.   
 
Analysis of the South Rockies Grizzly Bear Project 
Data 

Appendix 2.1: South Rockies Grizzly Bear Project Study 
Design 

South Rockies Grizzly Bear Project sampling has been carried out on a yearly 

basis since 2006, with one primary sampling occasion each year, and multiple 

secondary occasions within each primary occasion. Both BS, and RO detectors were 

deployed during the study period.  

With the exception of 2012, BS locations were selected by imposing a 14 x 14 

km grid over the study area of interest, and placing one BS in each square of this grid. 

The location of a BS within a grid square was selected, based on expert opinion, to 

maximize detection success. BS detectors were typically left out for two, 14-day 

secondary sampling occasions within a year, with hair samples being collected at the 

end of each occasion. BS detectors were not moved between sessions within a year, 

and were not deployed in the same location in back-to-back years. After hair samples 

had been collected from a BS, a blowtorch was used to burn off any lingering hairs from 

the barbed wire, to prevent them from being mistakenly identified as having been 

deposited during the subsequent secondary period. This was also done for RO 

detectors. 

RO locations were selected by using expert opinion to determine where bears 

were most likely to rub. Selected locations were typically trees, fence posts or sign posts 

that displayed evidence bears were rubbing on them. As the study continued, more and 

more RO sites were discovered. RO detectors were typically checked every 30 – 40 

days during a primary period, however this number could vary substantially (much more 

than was the case for BS). RO detectors were typically spaced at least 500m apart from 

one another. RO coverage was sometimes spotty because there were areas where field 

staff struggled to find suitable trees. 
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A sample of hair was only subjected to genetic analyses if it contained enough 

individual hairs to ensure a high probability of successfully identifying which bear it came 

from (Lamb et al., 2016). In addition, if multiple samples of hair appeared as if they came 

from the same bear (due to colouration, location on the detector’s barbed wire, etc.) then 

they were marked as such, and once one of them produced a successful identification, 

the remaining samples were not analyzed. This was done to control costs, and as a 

result, it is possible that detections were missed because of this. 

Table A2.1. Additional details on the sampling carried out each year in the South 
Rockies Grizzly Bear Project. Trap nights is the sum of the total 
number of days each detector deployed in a given year was capable 
of detecting grizzly bears. 

Year (Primary 
Occasion) 

Secondary 
Occasions Sampling Date Range Bait Sites 

Rub-
objects 

Trap 
Nights 

2006 3 June 8 - July 28 68 1 1929 

2007 3 June 25 - July 26 70 6 1862 

2008 2 July 6 - July 29 82 16 2219 

2009 3 July 7 - September 25 56 74 3908 

2010 4 June 28  - October 29 27 89 7713 

2011 3 July 11  - October 20 22 157 12946 

2012 5 June 6 - October 18 16 176 17694 

2013 5 June 26 - October 13 52 209 16574 

2014 5 June 21 - October 19 42 221 23545 

2015 5 June 3 - October 30 0 244 31898 

2016 6 May 4 - November 9 0 246 29364 

2017 5 June 11 - November 1 0 271 31345 

2018 6 June 5 - November 6 34 276 34532 

 

Figure A2.1 contains the locations of the detectors deployed each year. As can 

be seen, the composition of detectors varied noticeably between years. This was 

because, over time, more RO locations were discovered, and so their numbers 

increased. In addition, since RO detectors were cheaper and easier to deploy than BS 

detectors, BS numbers were reduced over time, resulting in them temporarily being 

phased out from 2015 to 2017. The proportion of the study region covered by deployed 

detectors also varied from year to year. This was mainly caused by changes in the 

physical layout of the study region itself (such as stands of trees being lost to logging or 

fires), changes in the scope of the South Rockies Grizzly Bear Project, and changes in 

budget.  
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Table A2.1 contains further details on the sampling that was carried out each 

year. In this table, “Trap Nights” refers to the cumulative sum of the number of days each 

deployed detector was capable of detecting an animal. As can be seen, trap nights 

increased substantially over the course of the study, mainly due to additional RO 

detectors being added to the study (which almost always had longer sampling windows 

than BS detectors), and later study years having more secondary sampling occasions. 

This table also shows that all sampling took place no earlier than May, and no later than 

December. This date range was selected in part to reduce the amount of population 

turnover between secondary sampling occasions within a primary sampling occasion. 

Specifically, sampling start dates were selected to be near or after the end of the grizzly 

bear hunting season (before the hunt was closed indefinitely in 2018) to reduce human 

caused mortality between secondary occasions. In addition, sampling ended well before 

the time of year when cubs are typically birthed (Haroldson, Ternent, Gunther, & 

Schwartz, 2002), limiting recruitment between secondary occasions. 
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Figure A2.1. Yearly detector layout in the South Rockies Grizzly Bear Project 
study region.  

Appendix 2.2: Exploratory Data Analysis 

Before this paper’s simulation study was conducted, it was necessary to first 

perform an exploratory data analysis to verify that the data in the South Rockies Grizzly 

Bear Project data set conformed to the assumptions of OSECR, and to gain an 

understanding of the behaviour of the population being studied. 

First, some summary statistics commonly used to summarize CR data were 

calculated for the subsets of data collected in each year (primary occasion) of the study, 

as well as over the entire data set. Tables A2.2 – A2.15 below contain these summary 

statistics. Each table has a column for each secondary occasion within the primary 

occasion of interest, except for the final table, which contains these summary statistics 
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for the entire data set. Each row in a table contains a different summary statistic. The 

first three rows of each table warrant explanation: 𝑛 refers to the number of bears 

detected on each occasion, 𝑢 refers to the number of individuals detected for the first 

time on a given occasion, and 𝑓 refers to the number of individuals detected exactly 𝑓 

times.  

Table A2.2. Summary statistics for the 2006 South Rockies Grizzly Bear Project 
data. 

2006 1 2 3 Total 

n 10 40 53 103 

u 10 39 39 88 

f 73 15 0 88 

detections 10 44 57 111 

detectors visited 5 29 38 72 

detectors used 6 61 69 136 

 

Table A2.3. Summary statistics for the 2007 South Rockies Grizzly Bear Project 
data. 

2007 1 2 3 Total 

n 1 62 40 103 

u 1 62 34 97 

f 91 6 0 97 

detections 1 69 42 112 

detectors visited 1 38 29 68 

detectors used 1 69 63 133 

 

Table A2.4. Summary statistics for the 2008 South Rockies Grizzly Bear Project 
data. 

2008 1 2 Total 

n 31 62 93 

u 31 56 87 

f 81 6 87 

detections 35 64 99 

detectors visited 27 40 67 

detectors used 68 97 165 
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Table A2.5. Summary statistics for the 2009 South Rockies Grizzly Bear Project 
data. 

2009 1 2 3 Total 

n 57 42 5 104 

u 57 30 5 92 

f 80 12 0 92 

detections 66 47 7 120 

detectors visited 32 38 6 76 

detectors used 73 95 33 201 

 

Table A2.6. Summary statistics for the 2010 South Rockies Grizzly Bear Project 
data. 

2010 1 2 3 4 Total 

n 0 20 41 18 79 

u 0 20 33 14 67 

f 56 10 1 0 67 

detections 0 25 44 18 87 

detectors visited 0 20 33 17 70 

detectors used 2 47 79 75 203 

 

Table A2.7. Summary statistics for the 2011 South Rockies Grizzly Bear Project 
data. 

2011 1 2 3 Total 

n 16 35 43 94 

u 16 32 32 80 

f 66 14 0 80 

detections 16 35 55 106 

detectors visited 13 31 46 90 

detectors used 56 113 152 321 

 

Table A2.8. Summary statistics for the 2012 South Rockies Grizzly Bear Project 
data. 

2012 1 2 3 4 5 Total 

n 17 57 41 43 15 173 

u 17 44 19 30 3 113 

f 73 26 10 2 2 113 

detections 32 82 51 49 21 235 

detectors visited 15 57 37 43 15 167 

detectors used 18 167 176 179 37 577 
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Table A2.9. Summary statistics for the 2013 South Rockies Grizzly Bear Project 
data. 

2013 1 2 3 4 5 Total 

n 1 31 37 27 35 131 

u 1 31 33 20 24 109 

f 89 18 2 0 0 109 

detections 1 33 42 30 46 152 

detectors visited 1 22 31 28 44 126 

detectors used 11 103 105 168 185 572 

 

Table A2.10. Summary statistics for the 2014 South Rockies Grizzly Bear Project 
data. 

2014 1 2 3 4 5 Total 

n 8 45 56 35 31 175 

u 8 43 40 23 14 128 

f 92 28 5 3 0 128 

detections 11 48 69 45 43 216 

detectors visited 10 37 57 41 42 187 

detectors used 58 114 191 200 175 738 

 

Table A2.11. Summary statistics for the 2015 South Rockies Grizzly Bear Project 
data. 

2015 1 2 3 4 5 Total 

n 8 43 28 52 43 174 

u 8 41 16 37 14 116 

f 74 28 12 2 0 116 

detections 10 50 36 71 63 230 

detectors visited 10 42 32 64 57 205 

detectors used 48 194 234 235 238 949 

 

Table A2.12. Summary statistics for the 2016 South Rockies Grizzly Bear Project 
data. 

2016 1 2 3 4 5 6 Total 

n 1 8 41 49 50 42 191 

u 1 7 39 33 26 21 127 

f 81 30 14 2 0 0 127 

detections 1 10 56 67 63 53 250 

detectors visited 1 10 53 59 51 48 222 

detectors used 3 55 215 216 215 168 872 
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Table A2.13. Summary statistics for the 2017 South Rockies Grizzly Bear Project 
data. 

2017 1 2 3 4 5 Total 

n 9 53 41 53 62 218 

u 9 47 24 33 30 143 

f 90 36 13 3 1 143 

detections 9 75 58 82 86 310 

detectors visited 6 66 57 67 76 272 

detectors used 27 238 254 211 241 971 

 

Table A2.14. Summary statistics for the 2018 South Rockies Grizzly Bear Project 
data. 

2018 1 2 3 4 5 6 Total 

n 3 76 54 53 57 55 298 

u 3 75 40 25 25 15 183 

f 104 51 20 8 0 0 183 

detections 3 106 59 72 72 75 387 

detectors visited 3 88 33 71 67 74 336 

detectors used 20 258 63 248 262 264 1115 

 

Table A2.15. Summary statistics for the full South Rockies Grizzly Bear Project 
data set. 

Full Data 
Set  

1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

n 88 97 87 92 67 80 113 109 128 116 127 143 183 1430 

u 88 71 52 54 32 39 52 50 57 37 29 39 61 661 

f 321 149 85 41 28 17 12 6 2 0 0 0 0 661 

detections 111 112 99 120 87 106 235 152 216 230 250 310 387 2415 

detectors 
visited 

46 52 57 58 50 75 92 99 131 132 145 160 200 1297 

detectors 
used 

69 244 246 271 310 76 98 130 116 179 192 261 263 2455 

 

Examining these tables provides some insight into the data. First, sampling effort 

generally increased with time, with later primary occasions tending to have more 

secondary occasions than earlier ones. In addition, most bears were detected between 1 

and 3 times over the course of the study. Also, the values of 𝑢 in the full data set table 

indicate that turnover was likely, as new animals were consistently being detected well 

into the study. Overall, these tables show no obvious problems with the South Rockies 
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Grizzly Bear Project data set that would prevent a CR analysis from being conducted 

with it.  

 

Figure A2.2. Plot of bear recaptures in each year of South Rockies Grizzly Bear 
Project data. Connected points represent individual recaptures. 
Bears are individually coloured. 

 

Next, individual detection and redetection data was plotted for each primary 

occasion (see Figure A2.2). Each individual animal was assigned a unique colour. As 

can be seen, relative to the scale of the study region, individual detections and 

redetections typically occurred close to each other. Based on this data it is likely that 

many animals spend time both within and outside of the study region, thus making it 

important that an appropriate buffer width is used when analyzing this data set, as well 

as when simulating spatial CR data. Figure A2.2 seems to indicate that the number of 
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individuals with multiple detections within a primary period increased over time. This was 

likely due to secondary occasions and trap nights increasing over the course of the 

study.  

In addition to the CR data collected, several bears were also live-captured and 

fitted with GPS tracking collars that would transmit, in some cases, multiple locations a 

day. This telemetry data was analyzed to investigate bear home-range shape, whether 

home-range centres appear to move between years, and whether the Gaussian space 

usage model implied by the half-normal detection function appears to be present in the 

data. 

First, telemetry data for a subset of the collared bears was plotted to compare 

bear movements between years. Specifically, a bear’s average location for each day it 

had location data collected was plotted. This was done because the number of locations 

transmitted by a collar on a given day could vary drastically. Few bears had the amount 

of location data necessary for this kind of comparison, and so it was only possible to 

compare the movements of three bears between years: Bailey, a female bear born in 

2012, Brittney, a female bear born in 2011, and Olson, a male bear born in 2009.  2017 

and 2018 movement data for these bears can be found in Figure A2.3. It should be 

noted that only movement data recorded in the same months in both 2017 and 2018 

were compared: July – November for Bailey, June – November for Brittney, and May, 

June, and October for Olson. Yearly home-range centres were estimated by respectively 

averaging each bear’s average daily 𝑥, and 𝑦 coordinates. These are displayed as black 

points. 

Figure A2.3 provides some insights. First, it suggests that the bears in this study 

have roughly circular home-ranges. It also shows (especially with respect to Olson) that 

there may be home-range centre movement between years. Table A2.16 contains the 

distance between estimated home-range centres for each bear. 
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Figure A2.3. Plots of average locations in 2017 and 2018 for South Rockies 
Grizzly Bear Project bears Bailey, Brittney, and Olson. Average 
movement data was from July-November for Bailey, June-November 
for Brittney, and May, June, and October for Olson. Black point mark 
each bear’s estimated home-range centre for a given year, 
calculated via average the 𝒙 and 𝒚 coordinates of each day’s 
average location. 

 

Table A2.16. Euclidian distance between estimated 2017 and 2018 home-range 
centres for each bear in Figure A2.3. 

Bear Distance between estimated home-range centres (km) 

Bailey 2.18 

Brittney 1.90 

Olson 3.06 

 

It is not surprising that home-range centres appeared to have shifted between 

2017 and 2018, as bears may change their space usage patterns over time based on 

changes in their habitat, and in human disturbance levels, from one year to the next. Too 

much weight shouldn’t be put on the exact observed home-range shapes, and calculated 
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movements in home-range centres, as only 3 bears had sufficient data for analysis, and 

the data available only covered a portion of each year.   

Finally, individual telemetry data was examined to see if the collared bears 

appeared to follow a Gaussian space usage pattern. For this to be the case, space 

usage probabilities should resemble those of a circular bivariate Gaussian distribution, 

with mean equivalent to the animal’s home-range centre.  

Upon analyzing telemetry data from several bears, it did not appear that bears 

followed this space usage pattern. Figure A2.4 contains the movements for a 16-year-

old bear named Gums. Location data for Gums was collected daily between May 2018 

and October 2018. On most days, four locations were collected at times 00:00, 06:00, 

12:00, and 18:00. There were some instances where only two or three locations were 

collected on a given day, but this happened rarely. Points with the same colour were 

collected on the same day. Gums’ estimated home-range centre is marked as a black 

point.    

As can be seen, there are multiple areas a large distance away from the home-

range centre, relative to the observed home-range size, that have high usage. This goes 

against the Gaussian space usage assumption that space usage would monotonically 

decrease with distance from the home-range centre.  This is not surprising, and there 

are many reasons why a bear would act in such a manner, such as discovering a region 

abundant in food that it wishes to stay in. These general findings were observed in 

essentially all of the collared bears that had enough data available to properly analyze. 

Efford (2014) details how the SECR detection function can be modified to account for 

space usage caused by resource selection, and this could potentially be extended to an 

OSECR fit to South Rockies Grizzly Bear Project data. However, it does not seem that 

the openCR package is currently equipped to make this adjustment. As such, the space 

usage assumption will likely be violated when fitting OSECR models to the South 

Rockies Grizzly Bear Project data set. Ideally the OSECR model will be robust to this 

violation, however we are unsure if this will be the case. Data used in the simulation 

study portion of this paper were generated assuming space usage conforms to the 

assumptions of OSECR for simplicity’s sake. 
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Figure A2.4. Movement data for a South Rockies Grizzly Bear Project bear names 
Gums, taken between May-October 2018. Each day is individually 
coloured, with dates close together being similarly coloured 
(multiple locations were recorded each day). In black is the 
estimated home-range centre calculated by taking the average of the 
recorded x and y coordinates. 
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Appendix 3.   
 
Additional Figures and Tables 

Appendix 3.1: Additional Figures 
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Figure A3.1. Standard boxplots of the percentage relative bias for each parameter of interest in 𝑴𝒄 for the 𝝀𝟎 – Small 
simulated scenario. Whiskers extend a distance of 1.5 time the inter-quartile range from the median. Sample 
mean biases along with corresponding 95% confidence intervals are also included. This figure contains the 

same 𝑴𝒄 data found in Figures 3.1 – 3.3, rearranged to aid comparisons between simulated data sets. 
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Figure A3.2. Standard boxplots of the percentage relative bias for each parameter of interest in 𝑴𝒃 for the 𝝀𝟎 – Small 
simulated scenario. Whiskers extend a distance of 1.5 time the inter-quartile range from the median. Sample 
mean biases along with corresponding 95% confidence intervals are also included. This figure contains the 

same 𝑴𝒃 data found in Figures 3.1 – 3.3, rearranged to aid comparisons between simulated data sets 
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Figure A3.3. Standard boxplots of the percentage relative bias for each parameter of interest in 𝑴𝒄 for the 𝝀𝟎 – Moderate 
simulated scenario. Whiskers extend a distance of 1.5 time the inter-quartile range from the median. Sample 
mean biases along with corresponding 95% confidence intervals are also included. This figure contains the 

same 𝑴𝒄 data found in Figures 3.4 – 3.6, rearranged to aid comparisons between simulated data sets. 
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Figure A3.4. Standard boxplots of the percentage relative bias for each parameter of interest in 𝑴𝒃 for the 𝝀𝟎 – Moderate 
simulated scenario. Whiskers extend a distance of 1.5 time the inter-quartile range from the median. Sample 
mean biases along with corresponding 95% confidence intervals are also included. This figure contains the 

same 𝑴𝒃 data found in Figures 3.4 – 3.6, rearranged to aid comparisons between simulated data sets. 
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Figure A3.5. Standard boxplots of the percentage relative bias for each parameter of interest in 𝑴𝒄 for the 𝝀𝟎 – Large 
simulated scenario. Whiskers extend a distance of 1.5 time the inter-quartile range from the median. Sample 
mean biases along with corresponding 95% confidence intervals are also included. This figure contains the 

same 𝑴𝒄 data found in Figures 3.7 – 3.9, rearranged to aid comparisons between simulated data sets. 
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Figure A3.6. Standard boxplots of the percentage relative bias for each parameter of interest in 𝑴𝒃 for the 𝝀𝟎 – Large 
simulated scenario. Whiskers extend a distance of 1.5 time the inter-quartile range from the median. Sample 
mean biases along with corresponding 95% confidence intervals are also included. This figure contains the 

same 𝑴𝒃 data found in Figures 3.7 – 3.9, rearranged to aid comparisons between simulated data sets. 
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Appendix 3.2: Additional Tables 

Table A3.1. Summary statistics for the percentage relative biases observed in each parameter of interest, in the 𝝀𝟎 – Small 
simulated scenario using the full simulated data set. 

Model Parameter 
Mean % 

Relative Bias 

Mean % 
Relative 

Bias 
Lower 

95% CL 

Mean % 
Relative 

Bias 
Upper 

95% CL 

Median % 
Relative 

Bias 

% Relative 
Bias 

Quartile 1 

% Relative 
Bias 

Quartile 3 

Correct 𝜙𝑀𝑎𝑙𝑒𝑠 0.22 -0.82 1.26 0.09 -2.37 3.16 

Correct 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -0.49 -1.78 0.80 -0.76 -3.70 4.16 

Correct 𝑓 1.20 -5.59 8.00 -3.29 -19.55 20.33 

Correct 𝜆𝑀𝑎𝑙𝑒𝑠 0.34 -0.76 1.45 1.24 -4.18 3.60 

Correct 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.29 -1.38 0.81 -0.51 -3.54 3.36 

Correct 𝜎𝑀𝑎𝑙𝑒𝑠 0.19 -0.71 1.09 0.57 -2.99 3.40 

Correct 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.75 -0.64 2.14 0.22 -3.40 5.29 

Biased 𝜙𝑀𝑎𝑙𝑒𝑠 -1.08 -2.16 0.00 -1.08 -4.27 1.67 

Biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -2.49 -3.74 -1.23 -2.64 -5.99 1.64 

Biased 𝑓 12.78 5.88 19.67 10.64 -9.30 31.53 

Biased 𝜆𝑀𝑎𝑙𝑒𝑠 0.65 -0.44 1.74 1.05 -4.11 4.22 

Biased 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.67 -1.72 0.38 -1.04 -4.05 3.33 

Biased 𝜎𝑀𝑎𝑙𝑒𝑠 11.97 10.14 13.81 11.84 5.00 18.20 

Biased 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.11 -1.60 1.39 -0.10 -5.54 5.38 
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Table A3.2. Summary statistics for the percentage relative biases observed in each parameter of interest, in the 𝝀𝟎 – Small 
simulated scenario using the BS only data set. 

Model Parameter 
Mean % 

Relative Bias 

Mean % 
Relative 

Bias 
Lower 

95% CL 

Mean % 
Relative 

Bias 
Upper 

95% CL 
Median % 

Relative Bias 

% Relative 
Bias 

Quartile 1 

% Relative 
Bias 

Quartile 3 

Correct 𝜙𝑀𝑎𝑙𝑒𝑠 -3.17 -7.32 0.98 0.44 -16.85 19.04 

Correct 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -1.17 -3.89 1.54 -0.73 -8.30 12.35 

Correct 𝑓 4.21 -18.70 27.13 -23.50 -100.00 67.74 

Correct 𝜆𝑀𝑎𝑙𝑒𝑠 -2.25 -5.27 0.78 -1.01 -12.86 4.77 

Correct 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.53 -3.08 2.02 -0.99 -9.34 4.63 

Correct 𝜎𝑀𝑎𝑙𝑒𝑠 -3.17 -13.33 6.98 -11.02 -26.16 19.76 

Correct 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -13.90 -20.99 -6.82 -0.73 -47.38 12.44 

Biased 𝜙𝑀𝑎𝑙𝑒𝑠 -6.07 -10.34 -1.80 -2.00 -19.66 16.12 

Biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -4.15 -6.95 -1.34 -3.09 -14.24 8.26 

Biased 𝑓 28.94 5.45 52.43 8.85 -79.43 115.32 

Biased 𝜆𝑀𝑎𝑙𝑒𝑠 -1.69 -4.67 1.28 -1.21 -11.65 7.67 

Biased 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.22 -2.86 2.43 -1.34 -8.94 6.39 

Biased 𝜎𝑀𝑎𝑙𝑒𝑠 -4.66 -12.38 3.06 -10.63 -24.70 18.51 

Biased 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -16.08 -23.58 -8.57 -0.28 -52.20 11.23 
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Table A3.3. Summary statistics for the percentage relative biases observed in each parameter of interest, in the 𝝀𝟎 – Small 

simulated scenario using the RO only data set. 

Model Parameter 

Mean % 
Relative 

Bias 

Mean % 
Relative 

Bias Lower 
95% CL 

Mean % 
Relative 

Bias Upper 
95% CL 

Median % 
Relative Bias 

% Relative 
Bias 

Quartile 1 

% Relative 
Bias 

Quartile 3 

Correct 𝜙𝑀𝑎𝑙𝑒𝑠 0.39 -0.65 1.43 0.28 -2.53 3.53 

Correct 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -1.11 -2.56 0.34 -1.24 -5.51 3.25 

Correct 𝑓 1.34 -5.97 8.64 -6.14 -26.23 24.33 

Correct 𝜆𝑀𝑎𝑙𝑒𝑠 0.51 -0.64 1.65 1.09 -3.39 3.83 

Correct 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.82 -2.01 0.37 -1.21 -5.07 3.85 

Correct 𝜎𝑀𝑎𝑙𝑒𝑠 0.09 -0.84 1.02 0.28 -3.57 3.18 

Correct 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.98 -0.67 2.63 1.49 -4.61 6.02 

Biased 𝜙𝑀𝑎𝑙𝑒𝑠 -1.43 -2.50 -0.36 -1.53 -4.98 1.94 

Biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -3.81 -5.25 -2.36 -3.75 -7.72 1.01 

Biased 𝑓 16.33 8.97 23.69 13.98 -5.34 37.39 

Biased 𝜆𝑀𝑎𝑙𝑒𝑠 0.79 -0.31 1.90 1.13 -3.15 4.04 

Biased 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -1.41 -2.58 -0.24 -1.63 -5.57 3.25 

Biased 𝜎𝑀𝑎𝑙𝑒𝑠 13.49 11.51 15.48 13.74 6.23 20.80 

Biased 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.89 -0.80 2.58 1.38 -4.09 5.94 
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Table A3.4. Summary statistics for the percentage relative biases observed in each parameter of interest, in the 𝝀𝟎 – 

Moderate simulated scenario using the full simulated data set. 

Model Parameter 

Mean % 
Relative 

Bias 

Mean % 
Relative 

Bias Lower 
95% CL 

Mean % 
Relative 

Bias Upper 
95% CL 

Median % 
Relative Bias 

% Relative 
Bias 

Quartile 1 

% Relative 
Bias 

Quartile 3 

Correct 𝜙𝑀𝑎𝑙𝑒𝑠 0.25 -0.62 1.12 0.66 -1.70 2.66 

Correct 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -0.19 -1.34 0.96 -0.57 -4.15 4.05 

Correct 𝑓 2.27 -2.99 7.54 0.39 -19.57 21.55 

Correct 𝜆𝑀𝑎𝑙𝑒𝑠 0.50 -0.37 1.38 0.48 -2.69 3.67 

Correct 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.10 -1.01 1.21 -0.47 -3.84 4.10 

Correct 𝜎𝑀𝑎𝑙𝑒𝑠 -0.30 -0.96 0.36 -0.33 -2.19 1.61 

Correct 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 1.69 0.38 3.00 1.83 -2.85 5.89 

Biased 𝜙𝑀𝑎𝑙𝑒𝑠 -0.58 -1.46 0.29 -0.15 -2.83 2.07 

Biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -4.24 -5.39 -3.08 -4.43 -8.42 -0.18 

Biased 𝑓 15.38 10.00 20.75 13.84 -5.51 31.51 

Biased 𝜆𝑀𝑎𝑙𝑒𝑠 1.41 0.55 2.27 1.50 -1.53 4.45 

Biased 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -1.91 -3.00 -0.81 -2.32 -5.95 1.48 

Biased 𝜎𝑀𝑎𝑙𝑒𝑠 6.90 5.78 8.01 6.36 2.70 10.53 

Biased 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -3.24 -4.70 -1.77 -3.33 -8.21 1.92 
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Table A3.5. Summary statistics for the percentage relative biases observed in each parameter of interest, in the 𝝀𝟎 – 

Moderate simulated scenario using the BS only data set. 

Model Parameter 

Mean % 
Relative 

Bias 

Mean % 
Relative 

Bias Lower 
95% CL 

Mean % 
Relative 

Bias Upper 
95% CL 

Median % 
Relative Bias 

% Relative 
Bias 

Quartile 1 

% Relative 
Bias 

Quartile 3 

Correct 𝜙𝑀𝑎𝑙𝑒𝑠 1.94 -0.27 4.15 0.95 -5.85 9.58 

Correct 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  1.95 0.19 3.71 3.15 -3.53 10.47 

Correct 𝑓 -16.09 -27.98 -4.20 -14.79 -68.90 20.56 

Correct 𝜆𝑀𝑎𝑙𝑒𝑠 -0.31 -1.89 1.26 -0.22 -5.87 4.93 

Correct 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.19 -1.84 1.45 -0.99 -6.30 4.72 

Correct 𝜎𝑀𝑎𝑙𝑒𝑠 -1.89 -4.58 0.80 -1.81 -10.10 5.68 

Correct 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -3.71 -8.20 0.78 -1.43 -6.99 8.76 

Biased 𝜙𝑀𝑎𝑙𝑒𝑠 -3.01 -5.14 -0.88 -2.83 -10.72 4.66 

Biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -2.84 -4.80 -0.88 -2.67 -8.18 4.53 

Biased 𝑓 17.07 4.65 29.49 11.06 -29.21 56.05 

Biased 𝜆𝑀𝑎𝑙𝑒𝑠 -0.50 -2.06 1.07 -0.85 -6.09 4.83 

Biased 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.48 -2.18 1.23 -1.26 -6.18 4.35 

Biased 𝜎𝑀𝑎𝑙𝑒𝑠 -1.87 -4.57 0.82 -0.89 -9.76 6.77 

Biased 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -5.50 -9.99 -1.01 -3.60 -10.81 6.64 
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Table A3.6. Summary statistics for the percentage relative biases observed in each parameter of interest, in the 𝝀𝟎 – 

Moderate simulated scenario using the RO only data set. 

Model Parameter 
Mean % 

Relative Bias 

Mean % 
Relative 

Bias 
Lower 

95% CL 

Mean % 
Relative 

Bias 
Upper 

95% CL 
Median % 

Relative Bias 

% Relative 
Bias 

Quartile 1 

% Relative 
Bias 

Quartile 3 

Correct 𝜙𝑀𝑎𝑙𝑒𝑠 0.32 -0.66 1.30 0.46 -2.26 3.55 

Correct 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  0.38 -1.23 1.99 -0.87 -4.94 6.67 

Correct 𝑓 4.33 -1.88 10.54 3.78 -19.18 29.34 

Correct 𝜆𝑀𝑎𝑙𝑒𝑠 0.82 -0.19 1.83 0.50 -2.27 5.20 

Correct 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.85 -0.64 2.34 0.14 -5.17 6.22 

Correct 𝜎𝑀𝑎𝑙𝑒𝑠 -0.35 -1.07 0.38 -0.67 -2.62 1.57 

Correct 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.53 -1.10 2.15 0.71 -4.81 5.26 

Biased 𝜙𝑀𝑎𝑙𝑒𝑠 -0.78 -1.74 0.17 -0.75 -3.03 2.72 

Biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -3.29 -4.71 -1.86 -3.19 -7.97 1.89 

Biased 𝑓 16.57 10.28 22.87 17.91 -6.74 38.21 

Biased 𝜆𝑀𝑎𝑙𝑒𝑠 1.39 0.42 2.36 1.82 -1.68 5.33 

Biased 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.93 -2.28 0.43 -1.96 -5.57 3.25 

Biased 𝜎𝑀𝑎𝑙𝑒𝑠 6.65 5.42 7.89 5.98 2.67 9.74 

Biased 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.28 -1.44 2.00 0.93 -5.28 5.63 
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Table A3.7. Summary statistics for the percentage relative biases observed in each parameter of interest, in the 𝝀𝟎 – 

Large simulated scenario using the full simulated data set. 

Model Parameter 
Mean % 

Relative Bias 

Mean % Relative 
Bias Lower 95% 

CL 

Mean % 
Relative Bias 
Upper 95% CL 

Median % 
Relative 

Bias 

% Relative 
Bias 

Quartile 1 

% Relative 
Bias 

Quartile 3 

Correct 𝜙𝑀𝑎𝑙𝑒𝑠  -0.57 -1.44 0.30 -0.55 -4.19 2.79 

Correct 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -3.46 -4.80 -2.13 -3.27 -6.53 0.37 

Correct 𝑓 12.15 6.73 17.57 16.17 -9.21 30.39 

Correct 𝜆𝑀𝑎𝑙𝑒𝑠 1.02 -0.02 2.06 1.03 -1.61 4.32 

Correct 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -1.61 -2.79 -0.43 -1.43 -5.33 1.52 

Correct 𝜎𝑀𝑎𝑙𝑒𝑠 0.88 0.32 1.44 0.97 -1.49 2.71 

Correct 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.14 -1.48 1.19 -1.60 -4.24 2.58 

Biased 𝜙𝑀𝑎𝑙𝑒𝑠  -0.61 -1.43 0.22 -0.40 -4.05 2.65 

Biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -3.97 -5.19 -2.74 -4.10 -7.64 -0.22 

Biased 𝑓 12.12 7.03 17.21 14.67 -9.95 30.53 

Biased 𝜆𝑀𝑎𝑙𝑒𝑠 0.98 0.04 1.93 0.85 -1.58 4.22 

Biased 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -2.06 -3.20 -0.91 -2.47 -6.04 1.46 

Biased 𝜎𝑀𝑎𝑙𝑒𝑠 2.35 1.64 3.05 1.81 -0.38 4.80 

Biased 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 6.41 5.29 7.54 6.67 2.90 9.92 
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Table A3.8. Summary statistics for the percentage relative biases observed in each parameter of interest, in the 𝝀𝟎 – 

Large simulated scenario using the BS only data set. 

Model Parameter 
Mean % 

Relative Bias 

Mean % Relative 
Bias Lower 95% 

CL 

Mean % 
Relative Bias 
Upper 95% CL 

Median % 
Relative 

Bias 

% Relative 
Bias 

Quartile 1 

% Relative 
Bias 

Quartile 3 

Correct 𝜙𝑀𝑎𝑙𝑒𝑠  -0.99 -2.22 0.23 -0.27 -5.89 4.61 

Correct 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  0.14 -1.53 1.80 -0.01 -5.96 6.62 

Correct 𝑓 7.22 -1.28 15.72 11.42 -23.79 38.50 

Correct 𝜆𝑀𝑎𝑙𝑒𝑠 0.03 -1.23 1.30 -0.33 -4.28 4.65 

Correct 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.98 -0.59 2.55 -0.48 -5.62 7.39 

Correct 𝜎𝑀𝑎𝑙𝑒𝑠 7.73 6.73 8.74 7.59 4.20 11.38 

Correct 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 9.34 6.69 11.98 10.89 2.17 17.95 

Biased 𝜙𝑀𝑎𝑙𝑒𝑠  -2.42 -3.64 -1.20 -2.07 -7.09 1.69 

Biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -1.95 -3.50 -0.39 -1.30 -7.23 3.30 

Biased 𝑓 19.17 10.70 27.65 21.38 -9.37 47.93 

Biased 𝜆𝑀𝑎𝑙𝑒𝑠 0.28 -0.92 1.47 -0.68 -3.93 4.50 

Biased 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.56 -0.94 2.06 -0.56 -5.46 6.40 

Biased 𝜎𝑀𝑎𝑙𝑒𝑠 10.23 8.73 11.73 10.70 5.43 14.81 

Biased 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 8.86 6.27 11.46 11.28 2.13 16.91 
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Table A3.9. Summary statistics for the percentage relative biases observed in each parameter of interest, in the 𝝀𝟎 – 

Large simulated scenario using the RO only data set. 

Model Parameter 
Mean % 

Relative Bias 

Mean % Relative 
Bias Lower 95% 

CL 

Mean % 
Relative Bias 
Upper 95% CL 

Median % 
Relative 

Bias 

% Relative 
Bias 

Quartile 1 

% Relative 
Bias 

Quartile 3 

Correct 𝜙𝑀𝑎𝑙𝑒𝑠  -0.22 -1.03 0.59 -0.27 -3.44 2.92 

Correct 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -0.46 -1.83 0.90 -0.21 -4.66 4.58 

Correct 𝑓 2.42 -2.57 7.41 5.61 -14.13 20.87 

Correct 𝜆𝑀𝑎𝑙𝑒𝑠 0.11 -0.80 1.02 0.08 -2.43 3.10 

Correct 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.12 -1.42 1.18 0.51 -3.97 3.78 

Correct 𝜎𝑀𝑎𝑙𝑒𝑠 0.03 -0.40 0.46 -0.09 -1.23 1.69 

Correct 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.68 -0.47 1.82 1.09 -4.00 3.97 

Biased 𝜙𝑀𝑎𝑙𝑒𝑠  -0.24 -1.05 0.56 -0.27 -3.52 2.99 

Biased 𝜙𝐹𝑒𝑚𝑎𝑙𝑒𝑠  -1.62 -2.98 -0.27 -1.07 -6.24 3.55 

Biased 𝑓 4.04 -0.92 9.01 6.30 -11.67 21.31 

Biased 𝜆𝑀𝑎𝑙𝑒𝑠 0.29 -0.61 1.20 0.55 -2.21 3.36 

Biased 𝜆𝐹𝑒𝑚𝑎𝑙𝑒𝑠 -0.95 -2.22 0.32 -0.02 -5.58 3.15 

Biased 𝜎𝑀𝑎𝑙𝑒𝑠 1.07 0.44 1.70 0.66 -0.99 3.11 

Biased 𝜎𝐹𝑒𝑚𝑎𝑙𝑒𝑠 0.68 -0.45 1.80 0.68 -3.80 3.54 
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Table A3.10. Parameter estimates for the 4 rounds of simulations in the 𝝀𝟎 – Small simulated scenario that produced major 

𝝈̂𝑴𝒂𝒍𝒆𝒔 outliers. 

𝝓̂𝑴𝒂𝒍𝒆𝒔 𝝓̂𝑭𝒆𝒎𝒂𝒍𝒆𝒔  𝒇̂ 𝝀̂𝑴𝒂𝒍𝒆𝒔 𝝀̂𝑭𝒆𝒎𝒂𝒍𝒆𝒔 𝝈̂𝑴𝒂𝒍𝒆𝒔 𝝈̂𝑭𝒆𝒎𝒂𝒍𝒆𝒔 

Data 
Set Model 

0.537 0.536 0.487 1.024 1.023 2.45916E+13 747.447 BS Only Correct 

0.543 0.540 0.484 1.027 1.024 79808725.49 760.421 BS Only Biased 

0.864 1.000 0.220 1.085 1.220 1751885828 4237.451 BS Only Correct 

0.776 0.992 0.257 1.033 1.249 16463614.29 4423.344 BS Only Biased 

 


