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Abstract

We investigate a model that allows us to look at electron transfer in the fast-hopping regime.
Using recent developments in the study of non-equilibrium processes, we compute optimal
protocols which minimize the excess work required to drive the system from one control
parameter value to another. Using these protocols, we evolve the system using Fokker-Planck
dynamics to calculate how successful these protocols are over a variety of parameter values.
We find that in using these protocols there is a trade-off between reducing the dissipation
and successfully transferring the electron.
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Chapter 1

Introduction

Our goal is to explore and develop theory on how to minimize the excess work done when
trying to transfer an electron from one surface to another in non-equilibrium conditions.
We examine the non-equilibrium thermodynamics of a simple model system that reflects
the potential an electron may feel.

This topic may be of interest in a variety of fields. For example, in many fuel cells,
electron-transfer efficiency plays an important role. Efficiency is also important when de-
signing solar cells or artificial photosynthesis. It may also have further application in bio-
physics in explaining how molecular machines achieve very high efficiency, despite operating
out of equilibrium.

A theoretical background will be described in Chapter 2 to flesh out the necessary details
on optimal control of an out-of-equilibrium stochastic system.

1.1 The Model System

This section will cover the specifics of the model used [1]. We are interested in the transfer
of an electron from one surface to another, such as from a metal to a molecule. We want
to transfer the electron by ramping the potential voltage of one of the surfaces up or down
appropriately in order to make it energetically favourable for the electron to be on one
surface or the other. For the model, the two surfaces are described by two offset quadratic
traps. V0(x, λ) describes the system when the molecule is uncharged, and V1(x) describes
the system when an electron has been transferred from the metal to the molecule:

V0(x, λ) = 1
2k0x

2 + λ (1.1)

V1(x) = 1
2k1(x− x0)2, (1.2)

where λ is our time-dependent control parameter (the voltage) which we optimize, x0 is
some fixed distance between the surfaces, and the k’s are the force constants of the traps.
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We will make the approximation that we are in the fast-hopping regime. Then our elec-
tron is quickly switching between the distinct potentials V0(x, λ) and V1(x), and effectively
sees a continuous potential of mean force (PMF) [2] defined by

E(x, λ) = − 1
β

ln
(
e−βV0 + e−βV1

)
, (1.3)

which is the Helmholtz free energy of the partition function summing over the two distinct
potentials. Here, β ≡ (kBT )−1 is the inverse temperature. The control parameter λ can take
any value, but in the limit of large |λ| the PMF approaches one of the distinct potentials
(V0 for negative λ and V1 for positive λ). k0 and k1 can take any positive values, and we set
x0 and β to unity.
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Figure 1.1: PMF E(x, λ) (black dashed curve) and distinct potentials V0(x, λ) (blue curve)
and V1(x) (red curve), for k0 = 16.0, k1 = 4.0, and λ = −2.0.
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Chapter 2

Theoretical Background

Fokker-Planck dynamics [3] describe a particle under the influence of drag and random
forces, such as in Brownian motion. For any system that obeys Fokker-Planck dynamics,
the excess work which is the extra work we have to do because we are operating out
of equilibrium, is guaranteed to be non-negative for any path through control-parameter
space [4]. We want to find a way to dynamically change our control parameter in order to
drive electron transfer. Ideally, we would like to find an optimal path through parameter
space that will transfer the electron, while minimizing the energy dissipation of the system.
In order to minimize the excess work we need some framework that will approximate the
near-equilibrium excess work [5]. We will later compare the optimal path to a naive path
that goes linearly from λi to λf .

2.1 Optimal Paths

This section summarizes results from several papers [4–7]. A physical system at thermal
equilibrium with a heat reservoir of temperature T is described by the canonical ensemble

π(x|λ) ≡ expβ[F (λ)− E(x, λ)], (2.1)

where E(x, λ) is the system energy (for our purposes, this is just the PMF) as a function
of microstate x and control parameter λ. F (λ) is the free energy integrated over all the
possible microstates of the system,

F (λ) ≡ −kBT ln
∫ ∞
−∞

dx exp[−βE(x, λ)] . (2.2)

For twice-differentiable protocols, applying linear response theory gives the average ex-
cess power (above the average equilibrium process power), exerted at time t′ by the controller
on the system as

Pex(t′) =
[
dλT

dt

]
t′

ζ
[
λ(t′)

] [dλ
dt

]
t′

(2.3)
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for the generalized friction tensor

ζij
[
λ(t′)

]
≡ β

∫ ∞
0

dt′′〈δfj(0)δfi(t′′)〉λ(t′). (2.4)

〈δfj(0)δfi(t′′)〉λ(t′) is the force autocorrelation function, in terms of the equilibrium force
fluctuations. The friction coefficient is indicative of the increase in energy cost of driving
through parameter space quickly.

For potentials which satisfy E(x, λ) −→ ∞ as |x| −→ ∞ it is possible [7], and much more
convenient, to express the friction tensor in the form

ζij(λ) = 1
D

∫ ∞
−∞

dx
∂λiΠeq(x, λ)∂λjΠeq(x, λ)

ρeq(x, λ) . (2.5)

Here the components of the generalized friction are written entirely in terms of the equilib-
rium probability distribution ρeq and the equilibrium cumulative distribution function Πeq

(both of which are analytic for our system), and a diffusion coefficient, which will be set to
unity.

Our system only has a single control parameter λ, so the excess power and friction
simplify to

Pex(t′) = ζ(λ(t′))
(
dλ

dt

)2
, (2.6)

ζ(λ) = 1
D

∫ ∞
−∞

[∂λΠeq(x, λ)]2

ρeq(x, λ) . (2.7)

The average excess work is just the time integral of the average excess power

Wex =
∫ τ

0
dtPex(t), (2.8)

where τ is the duration of the protocol. We also have a generalized thermodynamic length

L ≡
∫ τ

0
dt
√
Pex(t). (2.9)

We can place a lower bound on the excess work:

Wex ≥
L2

τ
. (2.10)

For the linear response approximation, by the Cauchy-Schwarz inequality the bound is only
achieved by a protocol such that the excess power is constant over the protocol duration.
We can solve the Euler-Lagrange equation, where the cost function f(λ(t), λ̇) = ζ(λ)λ̇2 is
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the excess power. This gives the solution

λ̇opt(t) = (λf − λi)ζ(λ(t))−1/2∫ τ
0 dtζ(λ(t))−1/2 ∝ ζ(λ(t))−1/2 . (2.11)

Put more intuitively, this shows that we would like to choose a path through parameter
space where we are driving slowly when the friction coefficient is large, and quickly when
the friction coefficient is small. Using the above expression, we can compute an optimal
path through protocol space which should minimize the excess work.

Furthermore, it can be shown that

Wnaive
ex

W opt
ex

= ζ

ζ1/22 , (2.12)

where the overbars represent the averages over the protocol. Wnaive
ex is the excess work done

for a naive (linear) protocol, and W opt
ex is the excess work for the optimal protocol. This

expression for the work ratio is the asymptotic limit we expect our work ratio to reach as
we go to sufficiently long protocol duration.
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Chapter 3

Results

3.1 Friction Coefficient

The model system is fairly simple and tractable, because of the quadratic form of the
potential. Despite this, the friction coefficient in Eq. (2.5) must be solved numerically. The
free energy of the system can be written

F (λ) = kBT ln
∫ ∞
−∞

dxe−βE(x,λ) (3.1)

= −kBT ln
∫ ∞
−∞

dx
[
e−βV0(x,λ) + e−βV1(x)

]
, (3.2)

which is just the natural logarithm of the sum of two Gaussian integrals. Performing the
integration gives

F (λ) = −kBT ln
[√

2π
β

(
e−βλ√
k0

+ 1√
k1

)]
. (3.3)

This and the PMF can then be plugged into Eq. (2.1) for the equilibrium probability.
Because of the form of the probability distribution, we can also get an analytic expression
for the cumulative probability distribution. Skipping the ugly expression for the probability
distribution, the cumulative probability distribution is

Π(x) =

√
k0

[
eβλ + erf

(√
βk1

2

)
(x− x0)

]
+
√
k1

[
erf
(

1 +
√

βk0
2 x

)]
2
√
k0eβλ +

√
k1

. (3.4)

We can easily take ∂Π
∂λ . We now have every component of the integrand for the friction

coefficient. The friction coefficient does not have an closed-form expression, so we turn to
numerical integration.

As may be expected by looking at its constituent parts, the friction coefficient, shown in
Fig. 3.1 is somewhat sharply peaked at λ ≈ 0. Intuitively, the force variance is largest when
λ is close to zero due to the form of the potential. When λ is small, a change in λ causes a
large change in the potential, but as λ gets larger the exponentials cause the potential to

6



approach the form of one of the distinct potentials, and changes in λ have little effect. In
the large and equal k limit, the force variance approaches

〈δf2〉λ = 1
4 sech2 λ

2 . (3.5)

For k0 = k1, the friction peaks at exactly λ = 0 and is symmetric with respect to λ. For
k0 6= k1 the friction’s peak is shifted to a positive λ when k0 < k1, and a negative λ for
k0 > k1, and the friction is no longer symmetric about its maximum. In general, the friction
peaks at larger values the larger the force constants are. This is also intuitive: as k increases,
the force variance reaches some limit, but one would expect the relaxation time to continue
increasing as the barrier between the wells continues to increase with k. Additionally, small
values of λ do not significantly change the large barrier height, so we expect the relaxation
time to be relatively constant near λ = 0, where our force variance is largest.

5 0 5
10 6

10 5

10 4

10 3

10 2

10 1

100

101
k0 = 4.0

5 0 5

k0 = 16.0

5 0 5

k0 = 64.0

k1 = 4.0
k1 = 16.0
k1 = 64.0

Figure 3.1: The friction coefficient (Eq. (2.5)) as a function of λ for several values of k0 and
k1.

3.2 Optimal Path

As shown in Sec. 2.1, for the designed protocols the time derivative of the control parameter
is proportional to the inverse square root of the friction coefficient. Again, there is no analytic
solution to the path as a function of time, or as a function of λ, so we must use numerical
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methods. We can rearrange Eq. (2.11) to get

t(λ) =
∫ λ
λi
dλ
√
ζ(λ)

1
τ

∫ λf
λi
dλ
√
ζ(λ)

, (3.6)

which is not a particularly enlightening form, but gives us expected behaviour as we drive
quickly where the friction is small, and slowly where the friction is large.

As we expect from looking at our friction coefficient in Fig. 3.1 and considering the
velocity’s dependence on it (Eq. (2.11)), the designed protocol ramps slowly when λ is close
to zero, where the friction is large, and quickly when |λ| is large, where the friction is small,
as shown in Fig. 3.2. All three paths are quite similar, this is because the velocity depends on
the shape of the friction coefficient with respect to the control parameter λ, not necessarily
its magnitude. For example, the optimal path is insensitive to multiplying the friction by a
constant. This is especially noticeable for the k = 64 and k = 16 curves.

0.0 0.2 0.4 0.6 0.8 1.0
t/

6

4

2

0
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4

6
k0 = k1 = 4.0
k0 = k1 = 16.0
k0 = k1 = 64.0

Figure 3.2: Calculated optimal path as a function of time (normalized by the total protocol
duration τ), for several pairs of force constants. The k0 = k1 = 16 curve is thicker to make
it more legible.
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Compared to a naive (straight-line) path, we want to drive our system quickly at the
start and end of our protocol but more slowly in the middle.

3.3 Excess Work

Now that we know what our optimal path looks like, we can calculate the approximate
excess work we do over the duration of our protocol, and compare it to the excess work we
would do following a naive path. Although our previous expression for the path in Eq. (3.6)
gives us the correct answer, we would prefer to have λ(t), rather than t(λ). We achieve this
by switching from an integral to a discrete step,

λ(t+ ∆t) = λ(t) + ∆t
τ

∫ λf
λi
dλ
√
ζ(λ)√

ζ(λ)
, (3.7)

which depends on our chosen protocol duration and endpoints. For sufficiently small ∆t
steps, we get the same paths we did previously using Eq. (3.6), and in a much more useful
form.

We can now begin calculating the approximate average excess work, as well as run
simulations to find the actual expected average excess work. In the limit of long proto-
col duration, it is expected that the results of the approximation and the simulation will
converge. This is because the approximation of the average excess work given in Eq.(3.8)
assumes that we are near equilibrium over the course of the entire protocol. No matter
how fast our protocol is, we assume that we are still near equilibrium. This obviously holds
better if we can go slower. In the simulations, we instead solve the Fokker-Planck equation
to find how our probability distribution changes over the protocol, while not necessarily
assuming that the system remains near equilibrium.

In general, we expect that for short protocol duration the average excess work will
be similar for both naive and optimal paths as there isn’t enough difference between the
protocols to significantly affect the excess work. In the extremely short-duration limit, both
protocols converge to the same path, i.e., an instantaneous jump between the two endpoints
λi and λf . We also expect the approximation results to be higher than the simulated results.
The approximation of the excess work scales as τ−1, which diverges as τ −→ 0. However,
there is an upper bound on the excess work as protocol time goes to zero: the true work can
not be any larger than the energy difference between the final and initial states, weighted
by the initial equilibrium probability distribution. In the long-duration limit, we expect the
optimal protocol to have a reduced average excess work compared to the naive protocol,
and that the ratio of the average excess works should approach Eq. (2.12). We also expect
that in the long duration limit, the average excess work will reach its lower bound and go
as Wex ∝ 1

τ .
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The excess work is just the time integral of the excess power. Then the excess work is

〈Wex〉 =
∫ τ

0
dt ζ(λ(t))

(
dλ

dt

)2
, (3.8)

which is approximated numerically by the sum

〈Wex〉 =
∑
i

δt ζ(λ(ti))
(
dλ

dt

)2

i
, (3.9)

where
(
dλ
dt

)2

i
indicates the time derivative of the control parameter at a particular time ti.

There is some symmetry in the approximation of the excess work. Conjugate pairs of k,
where the force constants are swapped (for example having parameters k0 = 4 and k1 = 16,
then k0 = 16 and k0 = 4), will have the same excess work. This is due to our system having
no preference (in the near-equilibrium limit) between going forward (driving from the left
well to right well) and backwards (driving from the right well to left well). They are the
same thing energetically, we just choose to go from left to right. Having k0 = a and k1 = b

and going from left to right is the same situation as having k0 = b and k1 = a and going
from right to left.

For the Fokker-Planck simulations, the work is

〈W 〉λi−→λi+1 =
∫ ∞
−∞

dx [E(x, λi+1 − E(x, λi)] ρ(x), (3.10)

where ρ(x) is the current probability distribution, which is generally not the same as the
equilibrium distribution. Again, numerically we compute this as the sum

〈W 〉λi−→λi+1 =
∑
j

[E(xj , λi+1)− E(xj , λi)] ρ(xj). (3.11)

To go to the average excess work we sum over all steps in the protocol, minus the free
energy, to get

〈Wex〉 = 〈W 〉 −∆F. (3.12)

The simulations act as expected in the long- and short-duration regimes. Generally, as
the force constant of the traps increases, the excess work is increased. An interesting point
is that although we start with our electron in the left well, where it is affected mostly by
k0, the excess work for short durations depends more on k1, shown by the grouping of the
curves in Fig. 3.3. This is likely due to the probability distribution lagging far behind its
equilibrium value for a particular λ along the protocol for short protocol durations. Because
of the form of the PMF, as λ is increased, the PMF looks more and more like V1(x), and
our electron, which has fallen behind due to the fast protocol, is farther from its equilibrium
probability value. As our potential looks more like V1(x), it looks more like a quadratic, so

10
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Figure 3.3: Optimal (left) and naive (right) excess works as a function of protocol duration,
for the linear-response approximation given in Eq. (3.8), and Eq. (3.11). The dashed lines are
the approximate excess work, and the markers are the results of simulation. Circle markers
indicate k0 = k1, up triangle markers indicate k0 > k1, and down triangle markers indicate
k0 < k1. For conjugate pairs of k (where one pair has k0 = a, k1 = b and the conjugate pair
has k0 = b, k1 = a), the approximate excess works are equal.

when the electron is farther from equilibrium it is pushed on harder. Then for short protocol
durations we push our particle the hardest when our PMF looks more like V1(x). Going
from a stronger to a weaker trap strength we approach the approximation of the excess
work from below, and going from weaker to stronger, we approach the approximation of the
excess work from above. Similar patterns also follow for the naive protocol.

Figure 3.4 shows the ratio of the excess works. For almost all the protocols, the work
ratio shows significant improvement at τ ≈ 1.0. This aligns reasonably well with one of
the time scales in our model. There is the characteristic timescale of the particle bouncing
around inside the well, which goes as τtrap ≈ L2

D , where L is the characteristic length scale
L = 1√

βk
, and D is the diffusion coefficient. This timescale shrinks as the force constant

is increased, which is opposite to what we observe. The other characteristic timescale is
roughly for the particle crossing between the traps, and goes as τcross ≈

x2
0e
β∆E

D , where x0 is
the separation of the traps, and ∆E is the energy difference between the bottom of the left
well and the barrier, which will depend on k. Because the work ratio for each k combination
(aside from k0 = k1 = 64) begins increasing significantly at roughly the same protocol
duration, it seems that the timescale that matters the most is τcross. One complication is

11



10 2 10 1 100 101 102

Protocol Duration

1.0

1.2

1.4

1.6

1.8

2.0
W

na
iv

e
ex

/W
op

t
ex

k0 = 4, k1 = 4
k0 = 4, k1 = 16
k0 = 16, k1 = 4
k0 = 4, k1 = 64
k0 = 64, k1 = 4
k0 = 16, k1 = 16
k0 = 16, k1 = 64
k0 = 64, k1 = 16
k0 = 64, k1 = 64

Figure 3.4: Ratio of excess works as a function of protocol duration, for linear-response
approximation. The dashed lines are the expected asymptotic excess work, and the markers
are the results of simulation. Circle markers indicate k0 = k1, up triangle markers indi-
cate k0 > k1, and down triangle markers indicate k0 < k1. For conjugate pairs of k, the
asymptotic excess works are equal.

that the barrier height is changing as we advance the protocol. To get a feel for the numbers,
k0 = 4 and k1 = 16 give τcross ≈ 1.3, k0 = 16 and k1 = 4 give τcross ≈ 1.5, and k0 = 16
and k1 = 16 give τcross ≈ 3.7. Though certainly rough, this timescale does follow the correct
observable pattern of increased time before significant improvement, as k increases.

For short protocol times (τ / 1.0), as expected, the ratio is close to 1. As the protocol
time goes to zero, it is expected to go to exactly 1. For k0 = 64 and k1 = 16, the optimal
protocol actually does worse for short protocol times. Although not expected, we do not
necessarily expect the optimal protocol to always do better: recall that the derivation of the
optimal path depends on the linear-response approximation, which does not necessarily hold
if we are driving our system too quickly. For long protocol duration, the work ratios for the
most part approach their asymptotic limit and go flat. Noticeably, for mixed k values, the
last points at τ = 200 diverge to either side of the asymptotic limit. This is due to numerical
error in solving the Fokker-Planck equation. If we were to increasing the precision in solving
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it, the points would converge. Unfortunately, this is difficult to continue due to increasing
computational cost, both in calculating the optimal path on a finer time grid, and in solving
the Fokker-Planck equation on a finer time grid and finer spatial grid.

Overall, for nearly any time, smaller k values allow a larger improvement in the amount
of excess work done. The protocols with smaller k values approach their asymptotic limit
more quickly (at a shorter protocol duration), and that limit is usually larger. In all cases,
barring the case when k0 = 64 and k1 = 16, the optimal protocol successfully reduces the
excess work done on the system. If the excess work is the primary concern in transferring
our electron, the optimal path should be used in nearly all cases.

3.4 Distance from Equilibrium

The Kullback-Leibler divergence, also known as the relative entropy, is a measure of how
one probability distribution is different from another reference probability distribution. We
can use it as a measure of whether or not our protocol’s succeed in getting the electron from
the left well to the right well by comparing the final out-of-equilibrium distribution from
the simulation to the equilibrium distribution expected for λf .

The relative entropy is defined as

DKL(P | Q) ≡
∑
x∈X

P (x) ln P (x)
Q(x) , (3.13)

where, in our usage, P (x) = ρneqλf
(x) is the final probability distribution from the Fokker-

Planck simulation, Q(x) = ρeqλf (x) is the equilibrium probability distribution for the system
at the final control-parameter value of λ, and X is the system state space our distributions
go over, which is the same for both of them. For our purposes, a smaller relative entropy is
better, as it indicates the two distributions are more similar, and hence the protocol more
successfully transfers the electron.

The relative entropy for several simulations are shown in Fig. 3.5, and the actual prob-
ability distributions are shown in Fig. 3.6. Again, at short protocol times, the results seem
to be most strongly grouped by the k1 value, rather than by k0, even though the particle
does not have a high probability of reaching the right well. Presumably, this is because k1

has a dominant effect on the final equilibrium distribution we are comparing to. Similar to
the ratio of the excess work, the relative entropy is best (lowest) when the force constants
of the wells are lowest. Looking at the results for long protocol time, most of the simula-
tions give well-grouped results, with the exception of simulations where k1 = 64. There are
likely two reasons for this. The first, is that it is difficult to get into the well; with such a
strong force constant, there is a large energy barrier between the two wells, so even with
long protocols it is by no means guaranteed that the electron makes it over the barrier. The
second, and more dominant, reason is that with such a strong force constant, the probability
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Figure 3.5: Relative entropy at the conclusion of optimal (left) and naive (right) protocols,
as a function of protocol duration. Circle markers indicate k0 = k1, up triangle markers
indicate k0 > k1, and down triangle markers indicate k0 < k1.

distribution at equilibrium is very narrow. Because of how narrow the distribution is, the
initial distribution is relatively farther out of equilibrium than for a case with a broader
final equilibrium distribution. Because of how the relative entropy is defined, when we have
a very narrow final equilibrium distribution, differences from it have larger contributions to
the relative entropy than differences from other broader final equilibrium distributions.

Similar to the results for the excess work, the relative entropy begins to decrease strongly
for τ > 1.0 for all simulations except k0 = k1 = 64. This again indicates that the important
timescale is τcross, the timescale for transitions between the two wells. For the naive relative
entropies the long-duration protocol points group strongly and start to flatten out. Again,
similar to the excess work case, this is due to numerical error when solving the Fokker-Planck
equation. The lower bound of the relative entropy is zero, and there is nothing physically
preventing the distribution from continuing to relax further toward equilibrium as duration
increases.

Overall, relative entropy decreases monotonically with longer protocol duration, and is
also generally smaller for smaller k values. In all cases the naive protocol results in a lower
relative entropy than the optimal protocol. This is not necessarily expected. Intuitively
one could imagine the optimal path being more successful in transferring because it drives
slowly when the friction is high, and it’s possible for thermal fluctuations to help push our
particle, without our input. In simulation this does not seem to be the case for this system.

14



0 1
x

0.000

0.005

0.010
Pr

ob
ab

ilit
y

= 0.1
Naive
Optimal

0 1
x

= 0.5

0 1
x

= 1.0

0 1
x

= 2.0

0 1
x

= 10.0

Figure 3.6: Probability mass function at end of protocols for simulations where k0 = 16, k1 =
64. The left dotted curve is the starting equilibrium distribution. The right dotted curve is
the final equilibrium distribution.

Therefore, if the primary concern is having a high probability of transferring the electron,
the naive protocol, though not necessarily optimal, does a better job than the optimal one.
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Chapter 4

Methods

Most of the programming for this project was done in FORTRAN. The only exception was
the code used for the Fokker-Planck equation, which was adapted from existing code written
in Cython, which was developed by Joseph Lucero.

4.1 Integration

Because of the simple form of the model, many functions had a closed-form expression. For
those that did not, numerical methods were used.

Many of the expressions for quantities we were interested in included integration from
negative to positive infinity. If there was no analytic solution, in order to make the problem
tractable, we selected an appropriate range over which to integrate. For integration over
λ, the canonical ensemble for the system was used to find the probability of being on the
potential V0 or V1, as appropriate. Taking V0(x, λ) and V1(x) as the energy states of the
system, we can then integrate out x by taking

Uα(λ) = −1
β

ln
∫ ∞
−∞

dxe−βVα , (4.1)

where α just labels the potential we are currently working with. Because the individual po-
tentials are simple quadratic wells, these are just Gaussian integrals with analytic solutions.
Additionally, V1 is independent of λ, so this expression will just give a constant. We can
then find our probability of being on one potential or the other by taking

ρα = e−βUα

e−βU0 + e−βU1
. (4.2)

We set a tolerance on the probability of 0.001, and can then solve for the minimum value
of λ necessary to ensure, with probability 0.999, that our particle is in the right well, and
the maximum value of λ necessary to ensure, with probability 0.999, that our particle is
in the left well. The resulting λ range is a function of the force constants. For equal force
constants, the start and end points are always ± ln 0.001. For mixed force constants, the
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range is skewed towards the tighter trap. For example, for k0 < k1 the λ range will shift to
more positive values.

We do something similar when trying to find a reasonable x range to integrate over. In
this case, we look to our analytic solution for the probability distribution. We are interested
in an x range where the probability of finding our particle is greater than some tolerance,
and also contains both wells (we don’t stop at the low probability at the energy barrier).
We can find where the probability distribution gets sufficiently small by using bisection [8].
We bracket an interval (a, b) such that f(a) has a value greater than our desired tolerance,
and f(b) has a value less than our desired tolerance. Using bisection we can find, to machine
precision, where our probability distribution is equal to our desired tolerance. As long as
our initial guess for a and b bracket our desired tolerance, the bisection method can not fail.
Using this method we find out how far we must integrate over x before the probability of
our particle being there is sufficiently small such that we can call that point infinity. As one
may expect, this x range is significantly smaller for traps with higher force constants, where
the probability distribution quickly becomes small away from the centres of the wells.

4.2 Simulations

The Fokker-Planck equation, was used to find the non-equilibrium distribution of the sys-
tem. The Fokker-Planck equation is

∂

∂t
ρ(x, t) = − ∂

∂x
[µ(x, t)ρ(x, t)] + ∂2

∂x2 [D(x, t)ρ(x, t)] , (4.3)

where ρ is the probability distribution, µ ≡ −∂E(x,λ)
∂x is the convection or drift, and D

is the diffusion constant, which is (the same diffusion coefficient as is used Eq.(2.5) for
the friction). The Fokker-Planck equation is a partial differential equation that describes
the time evolution of the probability density function ρ of the velocity of a particle under
the influence of drag, random, and deterministic forces. It can also be applied to other
observables, in our case position. When applied to the probability density function of the
position of a particle it is often called the Smoluchowski equation.

Simulations are done by starting with the steady-state distribution. At each timestep we
update λ and the PMF, and then integrate the discrete Fokker-Planck equation timestep
until the protocol is over, and the final probability distribution is produced. The work is
computed at each timestep using Eq. (3.11).

We solved the Fokker-Planck equation using a Forward-Time Central-Space (FTCS)
algorithm, which is an explicit method of solving partial differential equations [8]. Explicit
methods use information about the system’s current state to calculate its future state. This
is contrary to implicit methods, which are more stable but more complex, computing the
future state of the system through solving a system of equations with chosen boundary
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conditions and a guess of the solution. In order to apply the FTCS method, we must
discretize the derivatives in Eq. (4.3). The FTCS scheme is first order in time, and second
order in space. Then the obvious way to discretize the derivatives is to set

∂

∂t
ρ(x, t) ≈ ρ(x, t+ ∆t)− ρ(x, t)

∆t , (4.4a)

∂

∂x
[µ(x, t)ρ(x, t)] ≈ µ(x+ ∆x, t)ρ(x+ ∆x, t)− µ(x, t)ρ(x, t)

2∆x , (4.4b)

∂2

∂x2 [D(x, t)ρ(x, t)] ≈ D(x+ ∆x, t)ρ(x+ ∆x, t)− 2D(x, t)ρ(x, t) +D(x−∆x, t)ρ(x−∆x, t)
(∆x)2 ,

(4.4c)
where ∆t and ∆x are the temporal and spatial spacing of the grid we are solving on.
Plugging Eq. (4.4) in to Eq. (4.3), and solving for ρ(x, t+ ∆t) gives the complete update as

ρ(x, t+ ∆t) =ρ(x, t)

−∆t
[
µ(x+ ∆x, t)ρ(x+ ∆x, t)− µ(x−∆x, t)ρ(x−∆x, t)

2∆x

]
+∆t

[
D(x+ ∆x, t)ρ(x+ ∆x, t)− 2D(x, t)ρ(x, t) +D(x−∆x, t)ρ(x−∆x, t)

(∆x)2

]
.

(4.5)

4.3 Boundary Conditions

We want no flux at the boundaries of the simulated domain. Therefore, we wish to impose
von Neumann boundary conditions by setting the derivative of the probability flux to zero
at the boundaries, thereby containing all of our probability in the box. This is surprisingly
nontrivial. Using left- or right-handed finite difference schemes was not sufficient to keep
the probability density from escaping. Instead, a ghost point method was used. The ghost
point is calculated as if there were an additional point, outside of our grid. We can then
solve for the conditions on this outside point in terms of points inside the grid in order to
produce the desired outcome. We then plug these conditions in at the boundaries, where
our space centered derivatives require knowledge of points outside our grid. By definition,
this should be achievable by requiring that the fluxes of the convection (first term on RHS
in Eq. (4.3)) be zero at the ends of the box, such that

µ−1ρ−1 = µ0ρ0, (4.6)

where the subscript indicates the ith point on the space grid, and -1 indicates a point outside
the grid. In practice, this is not sufficient: the probability leaks out of the simulation box
over time.
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One may also consider discretizing the probability flux and setting it to zero, where the
flux is obtained by solving

∂ρ

∂t
= −∂J

∂x
, (4.7)

where J is the flux. This gives us

J = µρ− ∂

∂x
(Dρ). (4.8)

Discretizing this and setting it to zero at the boundary, we get

0 = µρ0 −D
(
ρ0 − ρ−1

∆x

)
, (4.9a)

ρ−1 = ρ0

(
µ∆x
D
− 1

)
, (4.9b)

for the left boundary, which is still not good enough. The probability is still able to leak
out of the simulation box. However, if we apply both conditions (Eq. (4.6) and Eq. (4.9))
together, we get

ρ0(t+ ∆t) =ρ0(t)

−∆t
[
µ1(t)ρ1(t)− µ0(t)ρ0(t)

2∆x

]

+∆t

D0(t)ρ0(t)
(
−1+∆xµ0(t)

D0(t)

)
+D0(t)ρ1(t)

(∆x)2

 ,
(4.10)

for the left boundary, and

ρN−1(t+ ∆t) =ρN−1(t)

−∆t
[
µN−1(t)ρN−1(t)− µN−1(t)ρN−1(t)

2∆x

]

+∆t

DN−1(t)ρN−1(t)
(

1+∆xµN−1(t)
DN−1(t)

)
+DN−1(t)ρN−2(t)

(∆x)2

 ,
(4.11)

for the right boundary, where N − 1 is the last point in the grid, as is the convention in
Cython, which succeed in setting the probability flux to zero at the boundaries. Thus, it
seems that we need two separate boundary conditions, one for the convection term, and
one for the diffusion term. Using this form produces the same equilibrium results as the
analytic form of the probability density.
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Chapter 5

Conclusions

This research explored how to transfer an electron or other particle from one surface to
another out of equilibrium while minimizing the amount of excess work done. To this end,
a simple model was developed, using two quadratic potential wells to simulate the two
surfaces. We made the assumption that we were operating in the fast-hopping regime,
where we could treat the two distinct potentials as one continuous one. We calculated
the general friction tensor, and used it to calculate an optimal path through parameter
space that should require the least excess work. We then simulated the evolution of the
probability distribution using the Fokker-Planck equation. From these simulations we were
able to calculate the excess work, and we were able to calculate the relative entropy by
comparing the final non-equilibrium distribution to the expected equilibrium distribution.

Our results suggest that there is a trade-off between optimizing for reduced excess work,
and how fast one is able to have a high chance of successfully transferring the electron. In
nearly all cases, excluding some for short protocol times, the calculated optimal protocol
required less excess work than the naive straight line protocol. This can be seen most clearly
in Fig. 3.4, where the ratios of the excess works for naive and optimal protocols are shown.
As may be intuitive, more loosely bound electrons (represented by smaller force constants)
allow for greater excess work savings, and we can reach the asymptotic limit of these savings
in a shorter protocol duration. Conversely, the distance from equilibrium at the conclusion
of the protocol (quantified by the relative entropy, shown in Fig. 3.5) was higher for the
optimal protocol compared to the naive protocol for equal duration. This indicates that
the final non-equilibrium probability density of the optimal protocol was not as similar to
the desired equilibrium probability density as was its naive counterpart. Using the optimal
protocol generally results in excess work savings, but has a reduced chance of successfully
transferring the electron in a given protocol time.
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5.1 Future Work

For future works continuing this research we would like to improve the precision of our
simulations. This would be best done by changing our method of solving the Fokker-Planck
equation, as well as how we input protocols. At the time of writing, the protocol was cal-
culated and written to file so that they would be reusable. For increased precision, it is
necessary to reduce the time step between points on the protocol. Gaining high precision
means very small time steps (which results in very large files) and long run times. Moving
forward, it may be beneficial to compute the path one step at a time, as the simulation
runs, to keep the memory cost manageable. Additionally, we could move to more sophis-
ticated methods, such as implicit methods. Although the FTCS algorithm works, it is not
particularly stable. Implicit methods would allow better stability, putting less constraints
on the timestep size we use when integrating.

Aside from programming improvements, we would also like to explore other aspects of
the system. In this instance we operated in the fast-hopping regime, where we smoothed our
two distinct potentials into one continuous one. Alternatively, we could leave the potentials
as distinct, and describe the transfer of electrons through a hopping probability such as
γ0−→1 = Γ∆t

~ f(E(x, t)) for transfer from the left well to the right well, and γ1−→0 = Γ∆t
~ (1−

f(E(x, t))) for transfer from the right well to the left well, where f(E(x, t)) is the Fermi
function, E(x, t) is the energy difference between the distinct potentials, and Γ is a constant
which describes the electron coupling, which is independent of the energy gap.
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