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Abstract 

Despite over $20B of annual federal funding directed towards domestic HIV efforts, 38,000 

new cases were diagnosed in 2017 in the US. The recently announced “Ending the HIV 

Epidemic: A Plan for America” initiative set ambitious goals to reduce new HIV infections 

by 90% within 10 years. Achieving these ambitious goals necessitates a resource-

intensive response consisting of targeted, context-specific combination implementation 

strategies. Economic models play a critical role in informing resource allocations for the 

care and prevention of HIV/AIDS, providing a unified framework to quantify the health and 

economic value of different strategies. A diversity of modelling designs and approaches 

exist, each requiring different forms of data. Input data are rarely known with certainty. 

This in turn might propagate into result uncertainty and lead to suboptimal decisions. 

However, presently there is a paucity of standardized guidelines on model structural 

design, evidence selection and methods to address decision uncertainty. The objective of 

this thesis is to provide methodological advances in decision-analytic modeling in 

HIV/AIDS, with a focus on model design, the quality of supporting evidence, calibration, 

validation and analysis of uncertainty. 

The design of a model and input data are two central factors in ensuring credible 

inferences. We executed a narrative review of a set of dynamic HIV transmission models 

to comprehensively synthesize and compare the structural design and the quality of 

evidence used to support each model parameter (Study 1). Model complexity and 

uncertainty surrounding its inputs can diminish our confidence in a model. We provided a 

comprehensive description of the calibration and validation of a dynamic HIV transmission 

model for six US cities with diverse microepidemics, detailing key methodological 

innovations and efforts to increase rigorousness in the process. The resulting projections 

will provide a basis for assessing the incremental value of further investments in HIV 

combination implementation strategies (Study 2). Value of information analysis quantifies 

the value of collecting more information to reduce decision uncertainty and helps guide 

efforts for future data collection. Using the developed HIV model, we performed 

probabilistic sensitivity analysis on the highest-valued combination strategies and applied 

metamodels to estimate the value of collecting additional information to eliminate decision 

uncertainty (Study 3). 

Findings of this study will make substantial methodological and public health contributions, 

providing implications for health decision-makers and scientists alike. This methodological 

approach can serve as a means of optimizing HIV strategies and be applied to diverse 

settings across North America and internationally. 



iv 

Keywords: HIV/AIDS; dynamic compartmental transmission model; model calibration and 

validation; cost-effectiveness analysis; narrative review; value of information analysis 



v 

Dedication 

This thesis is dedicated to my beloved wife Lijiao who inspired me to pursue PhD. 

To my mom Ping who gave me life, love and support. 

To my supervisor Bohdan, for without his continuous guidance, support and enthusiasm, 

none of this would be possible. 



vi 

Acknowledgements 

This thesis is comprised of many collaborative works that would not have been 

possible without the contributions and support from the Health Economic Research Unit 

at British Columbia Centre for Excellence in HIV/ADIS. I am especially grateful for the 

guidance, support, and encouragement of my supervisor, Dr. Bohdan Nosyk, whose 

knowledge, patience, advice and mentorship has been invaluable throughout my PhD 

progress and thesis work. 

I would also like to thank my colleagues, Emanuel Krebs, Jeong Eun Min, 

Benjamin Enns, Linwei Wang and Lindsay Pearce for their support and help at various 

times throughout the development of this research. I would also like to express my 

gratitude for my PhD committee members, Dr. Zabrina Brumme, Dr. Hui Xie and Dr. Stuart 

Peacock, for their support, advice and academic insight. Last but not least, I would like to 

thank my parents, Hejiang Zang and Ping Ma, and my wife, Lijiao Feng, for your 

unconditional love and support that helps me go through all the ups and downs of my life. 



vii 

Table of Contents 

Approval .......................................................................................................................... ii 

Abstract .......................................................................................................................... iii 

Dedication ....................................................................................................................... v 

Acknowledgements ........................................................................................................ vi 

Table of Contents .......................................................................................................... vii 

List of Tables ................................................................................................................... x 

List of Figures................................................................................................................. xi 

List of Acronyms ............................................................................................................ xii 

Preface......................................................................................................................... xiv 

Chapter 1. Introduction .............................................................................................. 1 

1.1. Human Immunodeficiency Virus / Acquired Immunodeficiency Syndrome ............. 1 

1.1.1. Epidemiology of HIV/AIDS ............................................................................. 1 

1.1.2. Treatment and prevention of HIV/AIDS .......................................................... 2 

1.1.3. Public health response to HIV/AIDS .............................................................. 2 

1.2. Health economic evaluation ................................................................................... 4 

1.3. Decision-analytic modeling .................................................................................... 6 

1.3.1. Types of models ............................................................................................ 7 

1.3.2. Decision-analytic modeling in HIV .................................................................. 8 

1.4. Handling uncertainty in economic modeling ......................................................... 10 

1.4.1. Model calibration ......................................................................................... 10 

1.4.2. Sensitivity analysis ...................................................................................... 11 

1.4.3. Value of information analysis ....................................................................... 15 

1.5. Model validation................................................................................................... 18 

1.6. Thesis background .............................................................................................. 19 

1.7. Thesis aims and objectives .................................................................................. 20 

Chapter 2. Structural Design and Data Requirements for Simulation Modelling in 
HIV/AIDS: A Narrative Review ........................................................................... 22 

2.1. Introduction .......................................................................................................... 23 

2.2. Methods .............................................................................................................. 24 

2.2.1. Selection of relevant articles ........................................................................ 24 

2.2.2. Assessment of model structure .................................................................... 25 

2.2.3. Assessment of analytical components ......................................................... 26 

2.2.4. Assessment of quality of supporting evidence ............................................. 26 

2.2.5. Synthesis of model structure and quality of evidence................................... 27 

2.3. Results ................................................................................................................ 27 

2.3.1. Population construction ............................................................................... 28 

2.3.2. Model entry exit and HIV care engagement ................................................. 29 

2.3.3. HIV Disease progression ............................................................................. 30 

2.3.4. The Force of HIV infection ........................................................................... 31 

2.3.5. Model analytical design ............................................................................... 32 



viii 

2.4. Discussion ........................................................................................................... 34 

2.5. Conclusion........................................................................................................... 37 

Chapter 3. Development and calibration of a dynamic HIV transmission model 
for 6 US cities .................................................................................................... 52 

3.1. Introduction .......................................................................................................... 52 

3.2. Methods .............................................................................................................. 54 

3.2.1. Model description ........................................................................................ 54 

3.2.2. Model calibration ......................................................................................... 56 

3.2.3. Model validation ........................................................................................... 59 

3.2.4. Establishing the status quo scenario in each city ......................................... 60 

3.3. Results ................................................................................................................ 61 

3.3.1. Model calibration ......................................................................................... 61 

3.3.2. Model validation ........................................................................................... 62 

3.4. Discussion ........................................................................................................... 63 

Chapter 4. Prioritizing additional data collection to reduce decision uncertainty 
in the HIV/AIDS response in 6 US cities: a value of information analysis ..... 74 

4.1. Introduction .......................................................................................................... 75 

4.2. Methods .............................................................................................................. 76 

4.2.1. Model Description ........................................................................................ 76 

4.2.2. Cost-effectiveness analysis ......................................................................... 77 

4.2.3. Probabilistic Sensitivity Analysis .................................................................. 78 

4.2.4. Value of Information Analysis ...................................................................... 78 

4.3. Results ................................................................................................................ 80 

4.3.1. Uncertainty in cost-effectiveness ................................................................. 80 

4.3.2. Expected value of perfect information .......................................................... 80 

4.3.3. Expected value of partial perfect information ............................................... 81 

4.4. Discussion ........................................................................................................... 81 

4.5. Conclusion........................................................................................................... 84 

Chapter 5. Conclusion ............................................................................................. 90 

5.1. Overview of thesis findings .................................................................................. 90 

5.1.1. Chapter 2 – Modeling review ....................................................................... 90 

5.1.2. Chapter 3 – Model calibration and validation ............................................... 92 

5.1.3. Chapter 4 – Value of information ................................................................. 93 

5.2. Limitations ........................................................................................................... 94 

5.3. Study implications ................................................................................................ 96 

5.4. Future work ......................................................................................................... 98 

References ................................................................................................................. 100 

Appendix A.    Supplementary Material for Chapter 2 .......................................... 118 

Appendix B.    Supplementary Material for Chapter 3 .......................................... 125 



ix 

Appendix C.    Supplementary Material for Chapter 4 .......................................... 185 
 



x 

List of Tables 

Table 1.1. Types of health economic evaluation .............................................................. 4 

Table 2.1. Definitions of the epidemic context and dynamic model types. ..................... 38 

Table 2.2. Data quality assessment criteria used to evaluate supporting evidence ........ 39 

Table 2.3. Design characteristics of the selected modeling studies ............................... 40 

Table 3.1. Specifications for calibration process ............................................................ 67 

Table 3.2. Specifications for validation process ............................................................. 68 

Table 3.3. Model parameters selected as free-parameters by Morris method................ 69 

 



xi 

List of Figures 

Figure 1.1. Example of a tornado diagram for one-way sensitivity analysis .............. 12 

Figure 1.2. Example figure for two-way sensitivity analysis ...................................... 13 

Figure 1.3. Example figure for a cost-effectiveness plane ........................................ 15 

Figure 1.4. Example figure for a cost-effectiveness acceptability curve .................... 15 

Figure 2.1. Colour codes of the quality of evidence .................................................. 43 

Figure 2.2. Flow diagram of the process for model identification .............................. 44 

Figure 2.3. Population construction .......................................................................... 45 

Figure 2.4. Model entry, exit and HIV care engagement ........................................... 46 

Figure 2.5. HIV disease progression ........................................................................ 48 

Figure 2.6. The force of HIV infection ....................................................................... 49 

Figure 2.7. Health economic evaluation ................................................................... 51 

Figure 3.1. Model schematic diagram ...................................................................... 71 

Figure 3.2. Model fit of new diagnoses for calibration ............................................... 72 

Figure 3.3. Model external validity and status quo projections for the rate of new 
incidence ................................................................................................ 73 

Figure 4.1. Flowchart depicting the process of the expected value of partial perfect 
information analysis ............................................................................... 85 

Figure 4.2. The selected optimal combination implmentation strategies ................... 86 

Figure 4.3. The city-level expected value of perfect information under different cost-
effectiveness thresholds ......................................................................... 88 

Figure 4.4. The city-level expected value of partial perfect information for identified 
parameter groups ................................................................................... 89 

 



xii 

List of Acronyms 

ABM agent-based model 

ANN artificial neural network 

ATL Atlanta 

ART antiretroviral therapy 

BAL Baltimore 

BWM Best-worst method 

CBA cost benefit analysis 

CCA cost consequence analysis 

CDC Centers for Disease Control and Prevention 

CEA cost effectiveness analysis 

CMA cost minimization analysis 

CUA cost utility analysis 

CHEERS Consolidated Health Economic Evaluation Reporting Standards 

DALY disability-adjusted life year 

DCM deterministic compartmental models 

EVSI expected value of sample information 

EVPI expected value of perfect information 

EVPPI expected value of partial perfect information 

FSW female sex workers 

GAM generalized additive model 

GoF goodness-of-fit 

HET heterosexual 

IBMM individual-based microsimulation 

ICER incremental cost-effectiveness ratio 

INMB incremental net monetary benefit 

LA Los Angeles 

MIA Miami 

MSM men who have sex with men 

NMB net monetary benefit 

NHBS National HIV Behavioral Surveillance 

NYC New York City 

PLHIV people living with HIV 



xiii 

PrEP pre-exposure antiretroviral prophylaxis 

PSA probabilistic sensitivity analysis 

pVL plasma viral load 

PWID people who inject drugs 

QALY quality-adjusted life year 

RCT randomized controlled trial 

SAC Scientific Advisory Committee 

SEA Seattle 

SSP syringe services program 

US United States 

USD United States Dollar 

VoI value of information 

 



xiv 

Preface 

This thesis is formatted using the integrated thesis format (i.e. ‘sandwich thesis’) 

that consists of three individual manuscripts, already published or under review by peer-

reviewed journals. Chapter 2 has been published in Pharmacoeconomics, Chapter 3 is 

published in Medical Decision Making, while Chapter 4 has been submitted to Value in 

Health. As the first author, I was responsible for the study design, data analysis and 

manuscript preparation in all the three manuscripts. The references and some 

tables/figures from the original manuscripts have been reformatted to fit this thesis. 

Chapters – Manuscript status at time of thesis completion 

Chapter 2: Zang X, Krebs E, Wang L, Marshall BD, Granich R, Schackman BR, 

Montaner JS, Nosyk B, Localized HIV modeling study group. Structural Design and Data 

Requirements for Simulation Modelling in HIV/AIDS: A Narrative Review. 

PharmacoEconomics. 2019 37(10):1219-1239. 

Chapter 3: Zang X, Krebs E, Min JE, Pandya A, Marshall BD, Schackman BR, 

Behrends CN, Feaster DJ, Nosyk B. Development and calibration of a dynamic HIV 

transmission model for 6 US cities. Medical Decision Making. 2020;40(1):3-16. 

Chapter 4: Zang X, Jalal H, Krebs E, Pandya A, et al, Prioritizing additional data 

collection to reduce decision uncertainty in the HIV/AIDS response in 6 US cities: a value 

of information analysis. 2nd review, Value in Health.  

 



1 

Chapter 1.  
 
Introduction 

1.1. Human Immunodeficiency Virus / Acquired 
Immunodeficiency Syndrome 

1.1.1. Epidemiology of HIV/AIDS 

HIV/AIDS has remained one of the world’s major public health issues since the 

first documented HIV case in 1981. Globally, an estimated 37.9 million (32.7-44.0 

million) people were living with HIV in 2018. Among people living with HIV (PLHIV), 

19.6 million were residing in East and Southern Africa. In the same year, only 23.3 

million (20.5-24.3 million) were accessing antiretroviral therapy (ART) while 770,000 

(570,000-1,100,000) died from AIDS-related illness. The number of individuals 

becoming newly infected in 2018 was estimated to be 1.7 million (1.4-2.3 million), a 

40% decline since the peak in 1997 (2.9 million, 2.3-3.8 million)1. HIV 

disproportionately affects key populations at higher risk of contracting HIV, including 

men who have sex with men (MSM), people who inject drugs (PWID) and sex workers. 

Canada and the United States (US) feature concentrated HIV epidemics where more than 

half of the new HIV infections occur in MSM. In Canada, more than 63,000 individuals 

were estimated to be living with HIV in 2016, with a total of 2,400 new HIV diagnoses 

reported in 2017. Among Canadian provinces, the rate of reported HIV cases is highest in 

Saskatchewan, particularly among indigenous people and people from HIV-endemic 

countries2.  

In the United States (US), approximately 1.1 million people are living with HIV, 

with over 38,000 people newly infected with HIV each year. HIV has a disproportionate 

impact across populations and regions, with the Southern states accounting for 50% 

of new HIV diagnoses in 2017 and male-to-male sexual contact accounting for 68% of 

all new cases in 2015 (despite gay and bisexual men comprising only about 2% of the 

US population)3,4. Furthermore, the rate of new HIV diagnoses for blacks and Latinos 

was about 8 times and 3 times that of whites3. The US HIV epidemic is a diverse set of 
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microepidemics dispersed primarily across large urban centres, each with distinct 

underlying epidemiological and socio-structural features5. 

1.1.2. Treatment and prevention of HIV/AIDS 

The decline of new HIV infections from the peak in the 1990s is attributable to 

many effective prevention and treatment interventions implemented to combat HIV, 

including behavioural change programs, medical male circumcision, promotion of condom 

use, HIV testing, blood supply safety, and harm reduction efforts (e.g. syringe service 

programs, substitution therapies and supervised injection facilities) for PWID6. Timely 

engagement of PLHIV in ART has also been shown to improve individual health outcomes 

while significantly reducing the risk of transmission (also known as “treatment as 

prevention”)7. Pre-exposure antiretroviral prophylaxis (PrEP) is another highly effective 

HIV prevention strategy that has been recommended for individuals at high risk for HIV 

infection8.  

National and international governing bodies have mobilized efforts to optimize 

engagement and retention of PLHIV along the cascade of HIV care, most notably in 

UNAIDS’ targets of 90% of all people living with HIV will know their HIV status, 90% of all 

people with diagnosed HIV infection will receive sustained antiretroviral therapy, and 90% 

of all people receiving antiretroviral therapy will have achieved viral suppression9. 

However, global data has shown that in 2018, only 79% [67-92%] of PLHIV were aware 

of their HIV status, 78% [69-82%] were accessing treatment among people who knew their 

status and 86% [72-92%] of people accessing treatment were virally suppressed. At 

present, the global public health response has moved toward combination implementation 

strategies - the application of multiple evidence-based HIV strategies to maximize 

population-level effects - to combat HIV/AIDS10-13. 

1.1.3. Public health response to HIV/AIDS 

Since the discovery of the secondary preventative benefits of ART and introduction 

of PrEP, the world has witnessed a substantial scale up of investment in the global fight 

against HIV/AIDS. An estimated US$19.0 billion was invested to combat HIV/AIDS in low- 

and middle-income countries in 2018, an increase from US$13.7 billion in 2008. However, 

such enormous spending on HIV/AIDS is still insufficient for the 38 million people living 
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with HIV, with an estimated financial shortfall of $7.2 billion in 20201. In the US, this 

investment has grown to $28 billion of federal funding directed towards domestic HIV 

efforts in 201914. The implementation and expansion of a variety of HIV prevention 

initiatives, despite being effective, is constrained by the scarcity of resources – both human 

and financial. Decisions on health resource allocation have thus become the crux of this 

battle. The main focus of this thesis is to solve complex resource allocation decisions in 

the context of the US HIV epidemic. 

To address its stalled progress in epidemic control, on February 5, 2019 at the 

State of the Union Address, the US administration announced the intention to end the HIV 

epidemic in the US by reducing new infections by 75% within 5 years and by 90% within 

10 years15. To fulfill the goals set by this initiative, key strategies have been identified: 1. 

Diagnose all individuals with HIV as early as possible; 2. Treat people with HIV rapidly 

and effectively to reach sustained viral suppression; 3. Prevent new HIV transmissions by 

using proven interventions, including PrEP and syringe services programs; 4. Respond 

quickly to potential HIV outbreaks to get needed prevention and treatment services to 

people who need them15. Meanwhile, on June 11, 2019, the US Preventive Services Task 

Force published new guidelines for HIV screening and PrEP, in which they provided a 

grade A recommendation for routine, voluntary HIV screening in persons aged 15-65, all 

individuals at high risk of infection and all pregnant women16. They also provided a grade 

A recommendation for offering PrEP with effective antiretroviral therapy to persons at high 

risk of HIV acquisition17.  

US HIV epidemic is concentrated primarily in the southern states and other 

“hotspot” counties18-20, typically in large urban centers, with fundamental differences in 

health system infrastructure, funding and HIV-related laws and policies5. Our previous 

study comparing the microepidemics in six US cities identified wide disparities in the 

prevalence of HIV by race and risk group, and vast differences in access to HIV treatment 

and prevention services in each city5. Achieving the ambitious goals of ending the HIV 

epidemic thus necessitates targeted, localized strategies to optimize the limited resources 

available for HIV/AIDS response in each locale. 
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1.2. Health economic evaluation 

Funding allocation decisions in healthcare provision are made in the face of 

resource scarcity. Health economic evaluation therefore aims to identify decisions 

representing the best value for money, as every unit of investment spent on one strategy 

comes at the opportunity cost of the potential benefits gained from funding another. Unlike 

clinical trials that focus on efficacy or effectiveness of health care interventions, health 

economic evaluation is a comparative analysis of alternative courses of action in terms of 

both their costs and health consequences21. Health economic evaluation seeks to improve 

the efficiency of scarce health resources, and can inform decisions about the allocation of 

resources to implementation strategies that maximize the public health benefits. 

Table 1.1 presents a summary of the five most commonly used types of health 

economic evaluation21-23. 

Table 1.1. Types of health economic evaluation 

Types of Analysis  Costs Consequences Result 

Cost Minimization (CMA) Dollars Identical in all aspects Least cost alternative 

Cost Consequence (CCA)  Dollars 
Multi-dimensional listing of 
Outcomes 

Costs and consequences 
listed but no decision rule 
prescribed 

Cost Effectiveness (CEA) Dollars 

Different magnitude of a single 
effect of interest, common to 
all alternatives, e.g. life years 
gained 

Cost per unit of 
consequence, e.g. cost per 
life year gained 

Cost Utility (CUA) Dollars 
Single or multiple effects 
valued as “utility” e.g. quality-
adjusted life year (QALY) 

Cost per unit of 
consequence, e.g. cost per 
QALY 

Cost Benefit (CBA) Dollars 
As for CUA but valued in 
monetary unit 

Net monetary benefit; 
benefit-cost ratio 

Among them, cost-effectiveness analysis (CEA) and cost utility analysis (CUA) are 

the two most common study designs in the literature. Often, these two terms are used 

interchangeably; however, they differ in how they treat health consequences, where a 

utility-based outcome is used for CUA, which is a measure of strength of preference that 

people have for particular health states22. CEA is theoretically grounded in welfare 

economics24. The focus on the incremental cost per utility gained of a new policy, 

treatment modality or intervention, is considered an ‘extrawelfarist’ approach25, which 

identifies health outcomes as the primary focus in maximizing social welfare subject to 
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funding constraints that occur as governments allocate resources among competing 

priorities. 

The most commonly used metric for utility in economic evaluation is quality-

adjusted life years (QALY). The QALY is a measure that defines health in terms of time 

spent in health states, thus capturing improvements in both morbidity and mortality26. The 

theory underlying the construct of QALY is that individuals move through health states 

over time and that each health state has a value attached to it ranging usually from zero 

(i.e., dead) to one (i.e., perfect health). Health, which is the objective decision makers are 

seeking to maximize, is defined as the value‐weighted time—life‐years weighted by their 

quality—accumulated over the relevant time horizon, i.e. QALY. Assessments of value 

from utility-based cost-effectiveness analyses are easily interpretable, allowing for direct 

comparison across diseases27,28, and are consistent with the theoretical basis of health 

economic evaluation. This practice is deemed preferable by panels in the US, Britain, and 

the World Health Organization29. Our previous study assessed the relative value of 

different HIV combination interventions in British Columbia, comparing the optimal 

combination strategies identified using new infections averted versus QALY gained as the 

health outcomes. Our findings suggested that focusing on averting new HIV infections can 

lead to sub-optimal decisions as a result of ignoring the health benefits accumulated 

among the HIV infected population, in particular, undervaluing the full benefits of ART in 

mitigating disease progression and mortality among this population29. 

In CEA and CUA, the decision criteria are generally expressed as the incremental 

cost-effectiveness ratio (ICER), which measures the difference in costs, divided by the 

difference in health effects between the evaluated intervention and the comparison 

strategy (e.g. status quo). This estimated ICER is then compared to a cost-effectiveness 

threshold (λ) set by the decision maker: an intervention is cost-effective if its ICER is less 

than this threshold (i.e. ICER < λ). The cost-effectiveness threshold represents the 

opportunity cost of health benefits forgone elsewhere from the investment in the new 

intervention in a healthcare system under resource scarcity30. More specifically, the ICER 

is calculated by: 

𝐼𝐶𝐸𝑅 =  
𝐶𝑜𝑠𝑡𝑖 − 𝐶𝑜𝑠𝑡𝑗

𝐸𝑓𝑓𝑒𝑐𝑡𝑖 − 𝐸𝑓𝑓𝑒𝑐𝑡𝑗
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An alternative measure for cost-effectiveness is the incremental net monetary 

benefit (INMB), which is estimated by the multiplication of incremental effect with the 

willingness-to-pay threshold less the incremental cost31. More specifically, the INMB is 

calculated by: 

𝐼𝑁𝑀𝐵 = (𝐸𝑓𝑓𝑒𝑐𝑡𝑖 − 𝐸𝑓𝑓𝑒𝑐𝑡𝑗) ∗ λ −(𝐶𝑜𝑠𝑡𝑖 − 𝐶𝑜𝑠𝑡𝑗) 

Health economic evaluation is usually conducted either alongside clinical trials or 

using decision-analytical modeling32. Under the former framework, all costs and health 

outcomes relevant to the research question are collected directly alongside a trial and are 

averaged across all subjects among the different trial arms. The averaged total costs and 

health outcomes are then compared to estimate the cost-effectiveness of different 

strategies. Other relevant data such as individuals’ preferences can also be collected 

simultaneously to estimate utility weights for each health state. Health economic 

evaluation alongside clinical trials provides reliable and less biased estimates for evidence 

at low marginal cost, as well as individual-level data for more granular studies. However, 

this form of economic evaluation also has some limitations, including a limited time 

horizon, comparators, and generalizability to other settings, and more importantly, clinical 

trials are not always feasible32,33. As a result, decision-analytic modeling is increasingly 

used for health economic evaluation. 

1.3. Decision-analytic modeling 

Decision-analytical modeling has been widely used in business, natural sciences 

and health sciences. These models are simplifications of reality to capture the ‘essence’ 

of the problem with the minimum level of complexity, synthesizing evidence from multiple 

sources and extrapolating outcomes that are unavailable, unobservable or unethical to 

collect. It is a systematic approach to decision making under uncertainty, using 

mathematical relationships to define a series of possible consequences that would flow 

from a set of alternative options being evaluated34. Therefore, they can provide a critical 

and unified framework to quantify the clinical and economic impacts of multiple health 

interventions across disparate settings, accounting for the synergistic effects between 

different combinations of interventions35. Model estimates can provide objective evidence 

for decision-makers to prioritize expenditures and allocate resources. This is particularly 
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important for HIV/AIDS, an infectious disease in which interventions implemented today 

can have far-reaching effects on the epidemic in the future. Generally, with high-quality 

data, appropriate modeling techniques can clarify, within a causal framework, the 

relationship between program inputs and effects. 

It is important to note, however, that previous studies using disparate model 

structures have occasionally reached discordant results and conclusions about the same 

question20,21, underlining the importance of model design. Models are based on 

assumptions, and if the required data are sparse or limited, structural designs will be 

constrained and this uncertainty in inputs will be reflected in the results. Therefore, caution 

needs to be taken when selecting the appropriate model design and input evidence. 

1.3.1. Types of models 

A variety of modelling approaches have been developed in decision analysis36. 

Decision Trees are the simplest form of decision-analytic models where 

alternative options are represented by a series of pathways or branches32. An illustrated 

decision tree includes three types of nodes: decision nodes, chance nodes and terminal 

nodes. A branch of chance nodes illustrates the probability of a particular pathway 

occurring and the terminal node represents the average outcome of an event. In health 

economic evaluation, expected values for the cost and benefits of a particular course of 

action are derived by summing up the pathway values weighted by pathway probabilities. 

Although decision trees are valued for their simplicity and transparency, their use is largely 

limited by their incapability to model time variables and recurring or looping events.  

Markov models consist of a set of mutually exclusive health states, each 

accommodating a proportion of the study population for a chosen time interval. Transitions 

between these health states are guided by a set of defined transition probabilities32. 

Markov models permit a more straightforward and flexible sequencing of outcomes, 

including recurring outcomes over a period of time. However, the complexity of Markov 

models grows exponentially with an increase in the number of health states and they are 

also sometimes criticized for their memoryless feature (Markovian assumption). 

Dynamic compartmental models can be considered as a special case of Markov 

models applied in infectious disease applications that assume the probability for 
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susceptible study population to become infected is a function of the size of the infected 

population, which can change over time37. They divide the study population into various 

compartments according to each individual’s characteristics and disease status, 

representing their average state, and use differential equations to track the rate of 

transition of individuals between these compartments38. Individuals within a single 

compartment are considered homogeneous. The dynamic transmission probabilities are 

often determined by a force of infection function, capturing the key drivers of the probability 

of infection. 

Individual-based microsimulation models simulate the study population at the 

individual level, whereby individuals’ transitions are generated using a random process 

drawn from probability distributions, a process referred to as Monte Carlo simulation39. 

This modelling approach may capture a greater breadth of heterogeneity among subjects 

and has the capacity to incorporate individual history, allowing greater structural 

complexity, although it may require more extensive data to populate such models and 

incur a higher computational burden, particularly when probabilistic sensitivity analysis is 

also undertaken40.  

Agent-based models are also individual-based, and simulate the behaviours and 

interactions of autonomous “agents”41, differing from individual-based microsimulations by 

allowing interactions between agents. They permit the formation of interactive dynamic 

networks, and the analysis of the network effects that are difficult to capture in other 

models. Agents can possess great flexibility and have autonomy in communicating and 

interacting with each other and the environment governed by specified internal rules. This 

method may better capture heterogeneity among subjects, though it requires more 

extensive data to realize its potential benefits and may be constrained from modeling large 

populations due to computational challenges. 

1.3.2. Decision-analytic modeling in HIV 

Decision-analytic modeling has been widely used in evaluating a broad spectrum 

of HIV interventions and programs. The transmission mechanism of HIV involves both 

biological and social determinants that is important to account for during model 

development: biological determinants may include characteristics of the pathogen, the 

host, and biomedical interventions. Further, social determinants may include individual-
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level, pairwise processes that affect behaviour and thus the structure and dynamics of the 

transmission networks42. The transmissible nature of HIV requires a dynamic design in 

modeling such that ‘the probability of a susceptible individual becoming infected at any 

one point in time (the force of infection) is related to the number of infectious individuals 

in the population, will change over time, and will feed back into the future force of 

infection’38. This is a key feature of HIV modeling that differentiates it from non-

communicable disease models. 

One of the most prominent examples of HIV modeling was demonstrated in a 

recent article in the Lancet by Andersen et al43. Using a wealth of data on the 

spatiotemporal course of the HIV epidemic in Kenya to operationalize a dynamic, 

compartmental model, the authors demonstrated that, with exactly the same investment, 

a focused strategy for HIV prevention, in which interventions are tailored to specific 

jurisdictions with disparate HIV epidemics, can be substantially more effective than a 

strategy in which interventions are rolled out uniformly across the country. Another notable 

example is the Cost Effectiveness of Preventing AIDS Complications (CEPAC) Model44-

46, a state-transition, Monte Carlo microsimulation model, that has been used in myriad 

applications evaluating HIV treatment and prevention programs in the US and 

internationally, as well as in other infectious disease areas such as Tuberculosis. Birger 

et al. constructed a model of HIV infection including specific care-continuum steps, 

calibrating to the HIV epidemic in Newark, New Jersey over a 10-year period,47 whereby 

a set of four interventions to improve the cascade were tested and compared according 

solely to their epidemiological impacts. Lasry et al. described a national HIV resource 

allocation model, designed to inform the Division of HIV/AIDS Prevention at the US CDC 

on allocation strategies that might improve the effectiveness of HIV prevention efforts48. 

Several other noteworthy modeling and cost-effectiveness studies have provided insights 

about interventions targeted at specific steps in the HIV care cascade, including screening 

and ART initiation in Washington DC49, behavioral interventions for HIV-infected people 

who inject drugs in addition to opioid agonist therapy (OAT)50, and home-based testing 

and linkage to care in South Africa51. Furthermore, Marshall et al. developed a stochastic 

agent-based model to simulate HIV transmission in dynamic networks of MSM in Atlanta52 

and PWID in New York City53 to examine the effectiveness of long-acting injectable PrEP 

and combination prevention strategies among the targeted population. Jenness et al.54,55, 

focusing on MSM populations, scrutinized key factors relevant to HIV transmission 
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dynamics using a network-based mathematical model. We also noted several HIV 

modeling comparison studies by Eaton et al.56-58, directly comparing projections of different 

HIV models on a common question. Results were then used to consolidate evidence for 

the effect of HIV interventions and examine the differences in projection as a result of the 

underlying evidence used and several structural attributes, such as the construction of 

transmission behaviours and functions. Their work highlighted the importance of the 

structural assumptions of HIV simulation models and the quality of supporting evidence 

inputted into them. 

1.4. Handling uncertainty in economic modeling 

Health economic models are comprised of complex mathematical relationships 

and various input data from different evidence sources whose results are inevitably subject 

to uncertainty. Four types of uncertainty were identified for economic modeling, including 

stochastic uncertainty (random variability in outcomes between identical simulated 

individuals), parameter uncertainty (the uncertainty in estimation of the parameter of 

interest), heterogeneity (the variability between simulated individuals that can be attributed 

to their characteristics) and structural uncertainty (the assumptions inherent in the decision 

model)39. The value of a model-based analysis lies, not only in generating a precise point 

estimates for a specific decision, but systematically examining and reporting the 

uncertainty surrounding the outcome(s) of interest. Handling uncertainty in economic 

modeling can help assess the robustness of model results in face of uncertainty and 

enhance our confidence in a chosen course of action. We can also estimate the value of 

collecting additional information to reduce decision uncertainty39. 

1.4.1. Model calibration 

Model calibration refers to the process of matching model outcomes with observed 

outcomes by adjusting uncertain model parameters and establishing plausible ranges that 

provide the best fit to available data59,60. This process is composed of several stages that 

each require decisions on the potential methods to be used. No best practice guidelines 

exist to guide the specific choices at each stage61, making model calibration a complex 

task that is often not standardized and may involve subjectivity62,63. Vanni et al.61 provided 

guidance on the process of model calibration with a seven-step approach: (1) choosing 



11 

parameters to include in the calibration; (2) selection of calibration targets; (3) goodness-

of-fit (GoF) measures; (4) parameter search strategies/ algorithms; (5) 

convergence/acceptance criteria; (6) stopping rules; and (7) integrating the results of the 

calibration and the economic parameters. Previous modeling studies often presented 

subjective choices at some critical steps along the process of calibration, e.g. the selection 

of parameters for calibration61,64, and determination of the summary measure of model fit 

when multiple targets are used10,11,36. This may introduce uncertainty that might 

poetentially affect model results. In Chapter 3, we provide a more detailed description for 

each of the seven steps and our justification in choosing the appropriate methods at each 

step. One notable trend for calibration is the increasing use of Bayesian approaches, 

which use Bayes' theorem to combine information about the distribution of prior model 

parameters, structural assumptions of the model and a likelihood function created from 

the calibration data65. The Markov Chain Monte Carlo then estimates a joint set of posterior 

distributions for the input parameters based on the likelihood function. However, this 

approach is more often used in models with relatively simple structures, as computational 

challenges arise in more complex structures.  

1.4.2. Sensitivity analysis 

It is necessary for a modeling study to include sensitivity analyses on key model 

parameters. Sensitivity analysis establishes the sensitivity of results to changes in the 

underlying parameters (parameter uncertainty) and structure (structural uncertainty) of a 

model. Sensitivity analysis provides information to ascertain the robustness of model 

results, enabling decision makers to gauge confidence in a decision, and help identify 

targets for future research/data collection60. There are several ways of undertaking 

sensitivity analysis (depending on the number of parameters to vary at a time), each 

equipped with different techniques for presenting uncertainty results. 

One-way sensitivity analysis is the simplest form of sensitivity analysis that 

varies the values of one parameter at a time to estimate its impact on the ICER. Tornado 

diagrams are often used to summarize results from a one-way sensitivity analysis (an 

example is given in Figure 1.1, figure modified from Zang et al.66), in which horizontal bars 

represent the outcome range associated with the range of the specified parameters (in 

many cases, the extreme values for the outcome at the upper and lower bound of the 

uncertainty range for a given parameter) while the vertical axis represents the parameters 
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to be analyzed. The outcome point estimate corresponding to the base-case values is 

indicated by a vertical line in the middle as the origin for each horizontal bar. Threshold 

analysis is another form of one-way sensitivity analysis by estimating the value at which a 

decision would change. Limitations with one-way sensitivity analysis include implicit 

assumption of parameter independence and inability to account for the joint effect of 

multiple parameters.  

 

Figure 1.1. Example of a tornado diagram for one-way sensitivity analysis 

 

Multi-way sensitivity analysis is an extension of one-way sensitivity analysis by 

changing the values of two or more parameters at the same time to estimate their 

combined effect on results. However, result presentation becomes more sophisticated as 

the number of parameters involved increases. In performing multi-way sensitivity analysis, 

sometimes parameter correlations have to be explicitly considered, requiring a joint 

distribution to be fit where multiple parameters are drawn from. One specific form of multi-

way sensitivity analysis is scenario analysis where extreme cases (‘best/worst’ or 

‘optimist/pessimistic’) are constructed for the selected parameters and simulations will be 

performed on these sets of extreme values and compared with the base case. Figure 1.2 

(figure modified from Krebs et al.67) shows an example of a two-way sensitivity analysis 

on the incremental QALYs, costs and infections averted by varying both the intervention 

sustainment period and scale of delivery for an ART initiation intervention. 
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Figure 1.2. Example figure for two-way sensitivity analysis 

Probabilistic sensitivity analysis (PSA) involves specifying probability 

distributions for all input parameters in the model and employing Monte Carlo simulation 

to randomly sample from these distributions simultaneously, allowing the joint effect of 

parameter uncertainty to be assessed. This sensitivity analysis method can provide a more 

complete assessment of the uncertainty associated with all inputs in a model. Cautions 

need to be taken when performing PSA. For example, the distributions chosen should 

follow standard statistical methods, e.g. beta distributions for binomial data, gamma or log-

normal distributions for positive right-skewed parameters and log-normal distributions for 

relative risks or hazard ratios. Furthermore, the correlation between parameters should be 

incorporated if dependencies exist for some parameters. Goldhaber-Fiebert et al. 

developed a practical method to establish joint uncertainty distributions for potentially 

correlated parameters from their marginal distributions and the rank ordering within these 

parameters68. The outputs from a PSA may provide several different types of outputs: (1) 

credible intervals surrounding ICER estimates; (2) cost-effectiveness planes (showing the 

scatter plots for the distribution of cost and effect of the evaluated intervention in the 



14 

analyzed samples), as exemplified in Figure 1.3 (figure modified from Nosyk et al.)69; (3) 

cost-effectiveness acceptability curves (showing the probability of being cost-effective for 

alternative strategies under different cost-effectiveness thresholds), as exemplified in 

Figure 1.4 (figure created for illustration purpose only); and (4) value of information 

analysis, as elaborated upon in Section 1.4.4. 
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Figure 1.3. Example figure for a cost-effectiveness plane 

 

 

Figure 1.4. Example figure for a cost-effectiveness acceptability curve 

 

1.4.3. Value of information analysis 

Value of information (VoI) analysis is another type of uncertainty analysis that 

quantifies the opportunity cost of making suboptimal decisions due to parameter 

uncertainty and helps guide efforts to ensure the limited resources available for data 

collection or future research are focused on the most influential parameters for decision-

making70. VoI analysis requires PSA outputs generated from Monte Carlo simulation. 

Decisions in this analysis are made by choosing the strategy with the highest net monetary 

benefit (NMB), as estimated by: 

𝑁𝑀𝐵 = 𝑄𝐴𝐿𝑌 × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝐶𝑜𝑠𝑡 

The expected value of perfect information (EVPI) can be interpreted as the cost of 

decision uncertainty, as measured by the difference between the expected NMB given 

perfect information and the expected NMB with the current information, placing a upper 
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bound on the returns to further research71. EVPI represents the maximum a decision 

maker should be willing to pay to eliminate uncertainty from all model parameters. For a 

decision made between t alternative interventions, with unknown input parameter set θ, 

Monte Carlo simulation takes K samples from the joint distribution of θ (and K sets of net 

benefits for each intervention), while the EVPI is calculated by: 

𝐸𝑉𝑃𝐼 =  𝐸𝜃 [max
𝑡

𝑁𝑀𝐵𝑡(𝜃)] −  max
𝑡

𝐸𝜃[𝑁𝑀𝐵𝑡(𝜃)] 

Given the existing evidence, the optimal decision is the intervention that generates the 

maximum expected net-benefit (across the K samples): max
𝑡

𝐸𝜃[𝑁𝑀𝐵𝑡(𝜃)]. With perfect 

information, the optimal decision is the intervention that maximizes the NMB given a 

particular value of θ: max
𝑡

𝑁𝑀𝐵𝑡(𝜃). However, the true value of θ is unknown and thus the 

expected value of a decision taken with perfect information is found by averaging the 

maximum net monetary benefit over the K samples: 𝐸𝜃 [max
𝑡

𝑁𝑀𝐵𝑡(𝜃)]. 

The expected value of partial perfect information (EVPPI) provides an estimate of 

the value of eliminating uncertainty for a specific parameter or group of parameters and is 

calculated by the difference between the expected NMB with perfect information about the 

parameters of interest and the expected value with current information71. EVPPI reflects 

the maximum value of additional information on the value of the given (group of) 

parameter(s) and may help decide whether certain research to find better information on 

the parameters is worth the cost72. EVPPI can help prioritize future research on the 

subsets of parameters with the highest decision value. Specifically, for a decision made 

between t alternative interventions, with unknown input parameter set θ that is composed 

of 𝜙 (uncertain parameters of our interest) and 𝜓 (other uncertain parameters), a nested 

Monte Carlo simulation is performed:  

• Inner loop: one set of value for 𝜙 is randomly sampled from pre-defined 

distribution and held fixed, run PSA on all other uncertain parameters 𝜓  

• Outer loop: after completion, another set of value for 𝜙 is randomly sampled 

and held fixed, run PSA on all other uncertain parameters 𝜓. Repeat this 
procedure until we have sampled sufficiently from the (joint) distribution of 𝜙 

The EVPPI is then calculated by:   
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𝐸𝑉𝑃𝑃𝐼(𝜙) =  𝐸𝜙 [max
𝑡

𝐸𝜃|𝜙[𝑁𝑀𝐵𝑡(𝜃)]] −  max
𝑡

𝐸𝜃[𝑁𝑀𝐵𝑡(𝜃)] 

Given the existing evidence, the optimal decision is the intervention that generates the 

maximum expected NMB: max
𝑡

𝐸𝜃[𝑁𝑀𝐵𝑡(𝜃)]. With perfect information about 𝜙, the optimal 

decision is the intervention with the maximum expected NMB where the expected NMBs 

are averaged over the other uncertain parameters 𝜓: max
𝑡

𝐸𝜃|𝜙[𝑁𝑀𝐵𝑡(𝜃)]. The expected 

value of a decision taken with perfect information for 𝜙 is found by averaging the maximum 

expected NMBs over the distribution of 𝜙: 𝐸𝜙 [max
𝑡

𝐸𝜃|𝜙[𝑁𝑀𝐵𝑡(𝜃)]]. 

The expected value of sample information (EVSI) is a measure for the expected 

value of sample information (imperfect information) from an additional study of a known 

sample size, which can be used to inform research design. The estimation for EVSI is very 

similar to EVPPI that also requires a nested Monte Carlo simulation. Assuming X are new 

potential data from the proposed study for 𝜙, EVSI is calculated as the difference between 

the expected maximum benefit given new potential data X and the maximum benefit with 

current information: 

𝐸𝑉𝑆𝐼(𝜙) =  𝐸𝜙 [max
𝑡

𝐸𝜃|𝑋[𝑁𝑀𝐵𝑡(𝜃)]] −  max
𝑡

𝐸𝜃[𝑁𝑀𝐵𝑡(𝜃)] 

The major difference from EVPPI is that with sampled information X for 𝜙, the expected 

NMB for each intervention, based on which the optimal decision is made, is informed by a 

Bayesian update of 𝜙  given the conditional distribution of 𝜙|𝑋 . The uncertainty of 𝜙 

decreases as the sample size of the proposed study increases. 

Notwithstanding its importance, VoI analysis to inform research decisions has not 

been widely used. In addition to the lack of a straightforward interpretation of the VoI 

results, the major barrier lies in the computational challenges associated with the 

conventional approach using a nested Monte Carlo procedure, particularly in assessing 

EVPPI and EVSI for complex models73. To address this computational burden, several 

modern approaches have been developed, including approximation methods, which 

require further assumptions of the model or are applicable only to single parameters, as 

well as more recent metamodeling approaches73.  
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Metamodels are a model of a model that simplifies and extracts the mathematical 

relationship between the inputs and outputs of a simulation model74, which have been 

increasingly used as an alternative method to expedite the estimation of EVPPI and EVSI. 

Through directly regressing model outputs on inputs, the fitted metamodel can be used to 

approximate the input and output functions, as a replacement of the original simulation 

model, to expedite the VoI estimation. A previous application of the metamodeling 

approach has substantially shortened the computation time for EVPPI from weeks to 

minutes, while consistently yielding similar estimates75. Various regression approaches 

have been employed in VoI metamodeling applications to allow for more flexible functions 

between NMB results and uncertain parameters of interest, such as linear models76, 

generalized additive models (GAM)77 and Gaussian Processes (GP)78. This metamodeling 

approach will help establish a streamlined approach to prioritize future research and data 

collection efforts based on economic value. However, applications of this method for VoI 

have rarely been implemented in dynamic transmission models79, and there is a lack of 

studies on how this approach can be applied in evaluations involving many competing 

strategies and parameters with a high level of dimensionality.  

1.5. Model validation 

Model validation refers to the process of evaluating a model’s accuracy in making 

relevant projections80. It entails a comprehensive evaluation of how well the model 

performs, from the problem construct to the credibility of model results, against a variety 

of internal and external inputs, including expert opinions, clinical knowledge, and empirical 

evidence. Four main types of validation are commonly recommended in modeling 

exercises81-84: 

Face validation refers to the subjective review of the model evidence, structure, 

problem formation or results by individuals with clinical and epidemiologic expertise in a 

given disease area. Evaluation is performed regarding the following questions: whether 

best available evidence is used; whether key aspects of reality in relating to medical 

science are explicitly modelled; whether model settings, population, interventions, 

outcomes, assumptions, etc. correspond to the question of interest; and whether model 

results match experts’ expectations. Face validation ensures the appropriateness of input 
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evidence, structural design and model specifications, and helps enhance the credibility of 

model results. 

Internal validation investigates and verifies the accuracy and consistency of all 

mathematical equations and program coding. Commonly used techniques of internal 

validation may include: (1) documentation of model equations and code; (2) program 

“walk-throughs” with non-programmers; (3) “double coding” for key model components; 

(4) extreme scenario analysis or other forms of sensitivity analysis; (5) tracing plots for 

intermediate results. Internal validation can help avoid errors in computation and program 

coding. 

External validation entails comparison of model projections to external estimates 

of key clinical and epidemiological data, preferably not used in the model. External 

validation is the most desired form of validation in literature and provides another tool to 

enhance model credibility. 

Cross validation involves comparing model outputs against other independent 

modeling results about the same question. This validation can help increase our 

confidence in a finding or conclusion if similar results are derived from different models, 

while also providing insights into the differences in model evidence, structure, 

assumptions, specifications, etc. and their implications if discordant results are found. 

However, this validation is sometimes limited by the availability of other modeling studies 

with comparable results. 

Despite the importance of model validation for establishing the credibility of model 

results, this process has not been ubiquitously implemented, or at least reported, in 

previous modeling studies85. Some common challenges may include the unavailability of 

validation target data and difficulties in establishing explicit criteria for assessing the 

validity of a model. 

1.6. Thesis background 

This thesis project is an integrated component of a parent grant entitled “Localized 

economic modeling to optimize public health strategies for HIV treatment and prevention”, 

funded by National Institute on Drug Abuse (R01-DA041747).  This grant aims to develop 
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a novel economic modeling framework to define an optimized set of HIV care interventions 

to ensure scarce resources are focused on interventions that can provide the greatest 

value for money in a given microepidemic. The economic model developed in this thesis 

has been used to provide public health decision makers at a city level with information 

about expected returns for incremental investments in interventions to prevent, diagnose 

and treat HIV/AIDS. To date, 13 related manuscripts have been published (or accepted), 

with an additional two manuscripts under review (one in 2nd review), and four manuscripts 

for submission by the end of 2019. These studies included a comprehensive evidence 

synthesis of available data sources on the spatiotemporal course of the HIV and drug use 

epidemics in each of the demonstration cities, health resource use of people living with 

HIV, and evidence on the costs and effectiveness of implementation of interventions in 

HIV treatment and prevention. Informed by the evidence synthesis and selection of best-

available evidence for interventions and implementation modeling, model calibration and 

validation, city-level HIV microepidemics were replicated with current access to HIV 

treatment, care and prevention services. We further determined the cost-effectiveness of 

combinations of HIV treatment and prevention interventions offered at feasible levels of 

scale and sustainment for each city. Finally, leveraging these data, we projected long-term 

HIV incidence with city-specific optimal combination implementation strategies, 

highlighting targeted-context-specific combination implementation strategies are required 

to ‘End the Epidemic’ by 2030. 

1.7. Thesis aims and objectives 

The overall objective of this thesis is to provide methodological advances in 

decision-analytic modeling in HIV/AIDS, with a focus on model design, the quality of 

supporting evidence, calibration, validation and analysis of uncertainty. These advances 

have centered on an applied project designed to inform resource allocation decisions to 

reduce the economic and public health burden of HIV/AIDS in six US cities69. The first 

objective of the study was to improve model structural design and evidence quality through 

an in-depth comparative review of HIV transmission models focusing on these two 

fundamental components. The second objective was to calibrate and validate a dynamic 

compartmental model of HIV transmission to help solve complex combination 

implementation decisions within localized microepidemics in six US cities. The third 

objective of the study was to examine the decision uncertainty underlying the combination 
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implementation decisions using a value of information analysis to quantify the monetary 

value of collecting additional information to reduce decision uncertainty. 

In this thesis, the scientific aims and general approaches to meeting the thesis 

aims are outlined below: 

Aim 1 – Modeling review: to execute a narrative review to synthesize and compare a 

selection of peer-reviewed dynamic HIV transmission models used to facilitate healthcare 

decision making, assessing the structural design and the quality of evidence used to 

support each model parameter.  

Aim 2 – Model calibration/validation: to adapt, calibrate and validate a dynamic 

compartmental model of HIV transmission for six US cities. Building on the evidence 

synthesis published separately, this project aims to document the process for model 

development, a six-step model calibration and an extensive model validation (internal, 

external and face validation) to maximize its transparency and credibility. The resulting 

model projections will serve as status quo treatment scenario in each city to identify 

optimal combination implementation strategies for HIV treatment and prevention. 

Aim 3 – Value of information analysis: to quantify the value of gathering additional data 

to reduce decision uncertainty regarding the cost-effectiveness of HIV combination 

implementation strategies in 6 US cities. Using a metamodeling approach with advanced 

regression techniques, this study also aims to identify future data collection priorities 

through EVPPI analysis on key groups of uncertain parameters.  

This thesis is composed of five chapters, addressing each of the aims in order. 

This first chapter provides a brief introduction to the epidemiology of HIV/AIDS, health 

economic evaluation, decision-analytical modeling, model calibration and validation, and 

handling uncertainty in economic models. Chapters two through four provide the contents 

of the research conducted to fulfill each of the above aims. These chapters, along with 

appendix A-C, are each stand-alone manuscripts, which have either been published, in 

press, or under review by a peer-reviewed journal. The final chapter provides a summary 

of the research findings, limitations of the studies, the unique contributions and 

implications of the findings of these studies, as well as research plans laid out for future 

work. 
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Chapter 2.  
 
Structural Design and Data Requirements for Simulation 
Modelling in HIV/AIDS: A Narrative Review 

Borne out of a necessity for fiscal sustainability, simulation modeling is playing an 

increasingly prominent role in setting priorities for combination implementation strategies 

for HIV treatment and prevention globally. The design of a model and the data inputted 

into it are central factors in ensuring credible inferences. We executed a narrative review 

of a set of dynamic HIV transmission models to comprehensively synthesize and compare 

the structural design and the quality of evidence used to support each model. We included 

nineteen models representing both generalized and concentrated epidemics, classified as 

compartmental, agent-based, individual-based microsimulation or hybrid in our review. We 

focused on four structural components (population construction; model entry, exit and HIV 

care engagement; HIV disease progression; and the force of HIV infection), and two 

analytical components (model calibration/validation; and health economic evaluation, 

including uncertainty analysis). While the models we reviewed focused on a variety of 

individual interventions and their combinations, their structural designs were relatively 

homogenous across three of the four focal components, with key structural elements 

influenced by model type and epidemiological context. In contrast, model entry, exit and 

HIV care engagement tended to differ most across models, with some health system 

interactions –particularly HIV testing– not modeled explicitly in many contexts. The quality 

of data used in the models, and the transparency with which the data were presented 

differed substantially across model components. Representative and high-quality data on 

health service delivery was most commonly not accessed or unavailable. The structure of 

an HIV model should ideally fit its epidemiological context and be able to capture all 

efficacious treatment and prevention services relevant to a robust combination 

implementation strategy. Developing standardized guidelines on evidence syntheses for 

health economic evaluation would improve transparency and help prioritize data collection 

to reduce decision uncertainty. 
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2.1. Introduction 

Despite substantial investments in the global response to HIV, inadequate and 

plateauing funding levels86,87 increasingly require decision makers to prioritize the 

allocation of resources available for HIV treatment and prevention. With a number of 

efficacious behavioural, biomedical and structural interventions available, a combination 

implementation strategy (the application of multiple treatment and prevention interventions 

to maximize population-level impact88), has been proposed to reduce the public health 

burden of HIV/AIDS11,88. Simulation models can provide a unified framework to quantify 

the health and economic value of different strategies to address the HIV/AIDS epidemic 

while accounting for the synergistic effects of different combinations of public health 

interventions34,35,89. More than ever before, simulation modeling is playing a critical role in 

priority setting for HIV treatment and prevention90. 

Simulation models are simplifications of reality, designed to capture the ‘essence’ 

of a problem with a minimally sufficient level of complexity81, synthesizing evidence from 

multiple sources and extrapolating outcomes that may be unavailable, unobservable or 

unethical to collect35. Two key aspects of constructing a model are settling on a structure 

and gathering evidence to populate it36,81. Determining the structure of a model, including 

the choice of model type (e.g. compartmental model, agent-based model), how the 

disease process is characterized, and other underlying assumptions should be guided by 

the decision problem and context91.  

A key challenge in constructing simulation models is the extensive evidence 

synthesis required to parameterize them. The quality of the evidence used in a model will 

impact the degree of uncertainty of its outcomes and ultimately the credibility of its 

inferences. Coyle et al. demonstrated the extent of bias on model outcomes propagated 

by the use of different underlying data sources within the same modeling framework92. HIV 

simulation models are particularly data intensive due to the need to model both infected 

and susceptible populations, and the mechanism underlying the force of HIV infection42,93. 

Local epidemiological and structural factors are also critical in capturing the heterogeneity 

across regional microepidemics, and ultimately assessing targeted, locally-oriented 

strategies that are essential to allocate resources effectively and efficiently.  
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Previous model comparison studies or reviews have focused primarily on 

differences in model outcomes, aiming to examine whether consistent and robust 

conclusions can be reproduced across models for a given intervention, with limited 

discussion on structural characteristics and data quality differences as an explanation for 

variation in outputs94-98. Two recent HIV model comparison studies56,57 have gone beyond 

simply comparing model predictions, by providing discussion on the differences in several 

structural attributes that might explain differences in long-term projections. However, as 

the global public health response moves towards localized combination implementation 

strategies to combat HIV/AIDS10-13,99, modellers require more careful consideration of not 

only the appropriateness of the underlying structural assumptions, but also the quality and 

context-specificity of the data entering models designed to simulate regional contexts.   

We executed a narrative review to synthesize and compare a selection of peer-

reviewed dynamic HIV transmission models used to facilitate healthcare decision making. 

Although systematic reviews are often preferred in generating quantitative answers to 

specific, often narrow, clinical questions of interest (e.g., comparing modeling studies 

evaluating a given intervention), narrative reviews are useful for obtaining a broader 

perspective on a topic100. We comprehensively assessed the full breadth of each model’s 

structural design and the quality of evidence used to support each model parameter. We 

then discuss the implications of the choice in model structure and data quality, with the 

goal of clarifying the implications of these choices for model developers and informing 

targets for data collection in the future70.  

2.2. Methods 

2.2.1. Selection of relevant articles 

We conducted a comprehensive comparison of recently published simulation 

models to highlight variation in the structural design and quality of data supporting them. 

Models initially considered for inclusion in our narrative review resulted from a snowball 

literature search using reference tracking101 using Eaton et al.56,57 and Nosyk et al.102 as 

seeds. Simulation modeling studies fulfilling the following selection criteria were included 

in the review: (i) the model focused on HIV/AIDS explicitly—studies characterizing 

HIV/AIDS as a coinfection were excluded; (ii) the model attempted to reconstruct a real-
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world population and was applied in solving real-world health decision problems within a 

dynamic modeling context (thus excluding methodological studies or those focusing on 

hypothetical settings and populations), excluding those focusing on subsets of the 

population, e.g. modeling MSM population exclusively, to ensure the comparability of 

model structure and evidence requirement; (iii) the model was published in the past 10 

years, to ensure the protective benefits of antiretroviral therapy (ART) against HIV 

transmission were captured in the reviewed models; (iv) the publication provided sufficient 

detail (in the manuscript or supporting appendix) to capture the majority of the information 

required for this review. For studies employing the same or similar model, only those with 

the most comprehensive description of model structure and evidence sources for model 

parameters were retained for review. 

Information pertaining to the structural design, underlying assumptions, and data 

sources were extracted for each model. We stratified the selected models according to 

the epidemic context for which the model was developed (generalized or concentrated) 

and the classification of the dynamic model type (i.e., compartmental, individual-based or 

agent-based), (Table 2.1). Data extraction for each component was independently 

performed by at least two reviewers (XZ, EK, and LW) and any differences were resolved 

with at least one other author. 

2.2.2. Assessment of model structure 

We extracted information on four structural components (Appendix Fig. A1), 

representing an exhaustive and mutually exclusive description of the structural elements 

of any HIV simulation models: (1) the population construction, depicting the complexity of 

a model in characterizing the heterogeneity within the study population; (2) model entry, 

exit and HIV care engagement, comprising information about how the transitions into and 

out of the model or any care or treatment programs and associated adverse events were 

characterized within the model; (3) HIV disease progression, describing health states 

pertaining to those infected with HIV/AIDS, and the means by which individuals transition 

between these states; and (4) the force of HIV infection, describing the route(s) of 

transmission, any factors influencing infectivity, risk behaviours, mixing patterns and 

biomedical interventions influencing HIV transmission. We note that for each of the studies 

assessed we focused exclusively on the underlying structure of the model for the reference 
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case, or  comparator strategy, representing the natural state of an HIV epidemic with 

current levels of availability of HIV treatment and prevention services103. 

2.2.3. Assessment of analytical components 

We also extracted information on two analytical components necessary in adhering 

to best practices in health economic modeling81: (1) model calibration/validation, focusing 

on the selected calibration and validation targets and the methodological approach used 

in calibrating and validating the model; (2) health economic evaluation, summarizing 

information relevant to conducting health economic evaluations, including study 

perspective, cost and utility estimation, an assessment of reporting quality, and a review 

of uncertainty analysis, focusing on the forms of sensitivity analysis undertaken 

(deterministic or probabilistic), analyzed parameters and how alternate scenarios to 

assess the uncertainty of the results were constructed. 

2.2.4. Assessment of quality of supporting evidence 

Information relating to the origins of the data used to populate the model was 

extracted if this information was provided. While explicit guidelines for assessing the 

quality of evidence in simulation models have not yet been developed104, we followed 

Cooper et al.105, Zechmeister-Koss et al.106 and Paisley et al.107,108 in defining evidence 

categories and potential hierarchies of data sources for decision models. We developed a 

two-dimensional quality assessment framework for HIV simulation modeling (Table 2.2), 

with considerations given to the internal and external validity of  the input evidence109. 

Model parameters pertinent to the core components were grouped in eight categories 

according to these previous attempts, with extensions to some domains of evidence 

specifically for HIV modeling (e.g. HIV risk behaviors). 

First, the internal validity of each parameter in each of the eight categories was 

assessed and ranked differentially on three levels of quality (best, moderate or lowest) on 

the basis of best possible study design, given the context. Second, for parameters 

requiring setting-specific evidence, an assessment of the external validity of each 

parameter was performed by determining whether the evidence was obtained from a 

representative study setting. More details about the quality ranking criteria can be found 

in Appendix A, Table A1. 
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We classified data whose sources were informal or unreported as the lowest 

quality. In cases where multiple data sources were used for a given parameter, we based 

our rating on the lowest-quality evidence cited, “as with any model, the results are only as 

reliable as the model’s poorest data input”105. We recognized and acknowledged cases 

where sources were only used to justify prior ranges/distributions for calibrated 

parameters, and we noted these cases in the according cell while assessing their quality 

following the same criteria described above. 

2.2.5. Synthesis of model structure and quality of evidence 

We then constructed figures for each of the four structural components (listed in 

section 2.2.2) and two analytical components (list in section 2.2.3), categorizing 

information in a common format and noting additional assumptions or information in the 

footnotes. Within these figures, we colour-coded each cell according to the quality of 

evidence used to inform each design element (Figure 2.1). 

2.3. Results 

Of the 64 manuscripts (based on 45 HIV simulation models) we identified in our 

search, 19 met the selection criteria10,110-127 (see Figure 2.2 for the selection process, 

results in Table 2.3). Of the 19 models assessed, 3 adopted an agent-based model (ABM) 

design, 2 employed an individual-based microsimulation (IBMM) design, 13 were 

deterministic compartmental models (DCM), and 1 was classified as a combination of an 

IBMM and DCM design (definition in Table 2.1). Most models were constructed to 

represent generalized HIV epidemics (13/19), as opposed to concentrated epidemic 

settings (6/19) (definition in Table 2.1). Models representing generalized epidemics 

seemed to favor individual-based designs (i.e. IBMM and ABM, 6/13), which are better 

suited to capturing heterogeneity in HIV risk behaviors and differences in demographics 

across the general population, as opposed to compartmental models, which feature more 

homogeneous behaviors within specified risk groups and thus better suited to 

concentrated epidemic settings (6/6). 

Furthermore, 10 models supported what could be considered a formal economic 

evaluation, comparing both costs and health outcomes of alternative strategies128. Three 

framed their analysis as a constrained optimization problem (including one cost-
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effectiveness analysis), entailing a decision to be made within budgetary constraints. The 

remaining were epidemiological models focusing on generating long-term estimates of the 

epidemiological impact of various public health strategies. The majority of models 

assessed (15/19) considered at least a 10-year time horizon to capture all meaningful 

differences in consequences between alternatives considered81, particularly regarding the 

long-term benefits of public health interventions (e.g. ART effectiveness in extending the 

lives of PLHIV and preventing 2nd- and 3rd-order HIV transmission). 

Models commonly included three types of comparator strategies: (1) the ‘status 

quo’, capturing the observed scale of existing programs using the most recent data on 

service delivery; (2) the ‘standard of care’ whereby health services were characterized 

strictly as being in compliance with current clinical guidelines; and (3) the ‘counterfactual’ 

scenario, assuming the absence of a given intervention. 

2.3.1. Population construction 

Model structure: Among the 19 reviewed models, many explicitly considered 

heterogeneity by transmission risk group (5/19), behavioral risk levels within a risk group 

(7/19), gender (16/19), and age (8/19) in their population construction (Figure 2.3). Age 

was usually only accounted for in models explicitly capturing age-dependent sexual risk 

behavior among heterosexuals (all in generalized epidemic settings in the reviewed 

studies)129-131. Risk groups were typically determined by routes of HIV transmission. 

Explicit categories of men who have sex with men (MSM), people who inject drugs (PWID), 

and female sex workers (FSW), were typically captured in concentrated epidemic settings 

(5/6). Heterogeneity in risk behaviors within a population subgroup is often characterized 

by incorporating multiple risk levels (e.g. high- and low-risk). This design feature was 

adopted only in the reviewed DCMs (n=8). On the contrary, heterogeneity in risk behaviors 

can, to some extent, be reflected by the stochastic nature of simulating individuals in 

IBMMs and ABMs41. 

Once infected, PLHIV progressed through stages of acute infection (12/19), HIV 

diagnosis (10/19), pre-ART care (4/19), and ART (18/19). PLHIV were also differentiated 

by disease progression states. ABMs/IBMMs often parameterized CD4 and/or plasma 

viral load (pVL) continuously while DCMs stratified them in discrete levels. Some models 
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also incorporated separate states pertinent to ART, e.g. multiple regimen types (6/19, 

more often in ABMs/IBMMs, 3/6), adverse events (8/19), and dropout (2/19). 

Quality of evidence: Most of the models assessed used the best-quality evidence 

on population demographics with good external validity, such as a local census database, 

but only half of the models applied best-quality and setting-specific evidence to initialize 

the total population size and its distribution across HIV risk groups. Further, estimates for 

the initial prevalence of the HIV epidemic were mainly populated with local best-quality 

evidence (14/19) such as national or regional surveillance databases. However, the initial 

size or distribution of the infected population across each disease state/compartment was 

often not explicitly reported by the modellers or derived on the basis of seeded simulation, 

and therefore rated as the lowest-quality evidence used. The quality of evidence was 

similar among models characterizing generalized and concentrated epidemic contexts.  

2.3.2. Model entry exit and HIV care engagement 

Model structure: There was considerably less consensus on how to characterize 

model entry, exit and HIV care engagement in the selected models (Figure 2.4). Most 

models (16/19) implemented a dynamic study cohort that allowed the population size to 

change over time, and population entry/maturation was commonly estimated based on the 

fraction of individuals who entered or matured out of the defined age group each year or 

to match the observed population growth or fertility rates. Mortality among the susceptible 

population was most often dependent on age or gender in ABMs/IBMMs (5/6) and 

homogeneous in DCMs (7/13).  

HIV testing was explicitly captured in 10 models, 3 of which included symptom-

based testing in addition to population-based testing, with 6 models also accounting for 

the decrease in HIV risk behavior following diagnosis. Finally, of the 18 models that 

explicitly integrated ART, 10 accounted for both the entry (i.e. initiation) and exit (i.e. drop-

out) of ART, and 10 also accounted for ART-related adverse events explicitly, among 

which treatment failure was most frequently cited (9/10). ART drop-out rates were modeled 

as either constant (4/10), time-dependent (4/10), or dependent on other factors (2/10), and 

half (5/10) also allowed re-initiation after ART dropout. 
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Quality of Evidence: Most models based their estimates for cohort entry and exit 

on the best-quality evidence available locally, such as national or regional census data 

and life tables, with 2 models not clearly stating the evidence source for this domain. Data 

on HIV testing rates were primarily obtained from observational studies based on a sample 

of the target population (moderate-quality), with only 3 models using population-based 

figures from a health system database, such as health registry/administration database 

(best-quality). The quality for data on HIV testing effect on risk behaviours was also far 

from ideal, with half using lowest-quality evidence.  

Finally, less than half of the models used ART initiation and drop-out rates derived 

from what would be considered best-quality data in this context – a local population-level 

administrative database or registry- with 4 basing their estimates on RCTs or observational 

studies conducted within the target population. The evidence source was of low-quality for 

6/10 studies capturing ART-related adverse events (including failure, resistance and 

toxicity). 

2.3.3. HIV Disease progression 

Model structure: HIV disease progression was most commonly measured by CD4 

cell count (15/19), followed by pVL (7/19) and disease stage, which generally considered 

acute, chronic, symptomatic and AIDS as health states (14/19) (Figure 2.5). Although 

there is no explicit consensus on the superiority of these progression measures, many 

modellers preferred CD4-based HIV progression since it is in alignment with the CD4-

based ART eligibility, entailing more precise characterization of treatment initiation (most 

models were published before the 2015 World Health Organization (WHO) guidelines 

recommending ART initiation at diagnosis). 

Among the 15 models that incorporated CD4-based disease progression, changes 

in CD4 counts were characterized mainly by two methods: (i) by fitting some linear or non-

linear functions of time or pVL (6/15), as found exclusively in ABMs, IBMMs and DCMs 

with a stochastic module; or (ii) by calculating the progression rate as reciprocal to the 

time spent between the previous and subsequent CD4 stratum (7/15). Disease 

progression by change in pVL used explicitly fitted functions in only one model (1/7), 

unspecified functional form in two (2/7), and the rest altered pVL status for PLHIV receiving 

treatment (unsuppressed to suppressed) (4/7). 
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The effect of ART on improving health was captured in 17/19 models, among which 

ART was assumed to either reverse (8/17, i.e. CD4 recovery, pVL decrease or 

suppression), delay (4/17, i.e. longer stage period or reduced transition rate), or stop (8/17, 

i.e. no change in CD4, VL or stage) disease progression. All models accounted for 

increased mortality for PLHIV, by either assuming excess mortality varied by CD4, HIV 

stage, age, opportunistic infections, etc. (10/19) or by assuming increased mortality that 

was restricted to the final stage of disease (e.g. AIDS) (9/19). The direct effect of ART on 

mortality was more commonly considered in DCMs (10/13) than in ABMs/IBMMs (2/6). 

Quality of evidence: Only half of the models (9/19) used best-quality evidence to 

characterize HIV disease progression, and one study132 was consistently cited for 

evidence on the time spent in each CD4 stratum or HIV stage (6/19). Further, none of the 

models applied best-quality evidence for characterizing the effect of ART on HIV 

progression, with many (5/17) deriving this effect from observational studies (moderate-

quality), rather than RCTs. Finally, less than half of the models used best-quality evidence 

for HIV-related mortality and the effect of ART effect on mortality, with sources not clearly 

stated in 5 models. 

2.3.4. The Force of HIV infection 

Model structure: First, the infectivity (or susceptibility for the uninfected) was 

assumed to vary by transmission route (hetero- and homo-sexual, needle/syringe sharing 

and mother to child) and be influenced by demographic cofactors (age (3/19) and gender 

(9/19)), biological factors (CD4 (6/19), pVL (3/19), stage (11/19), the presence of sexually 

transmitted infections other than HIV (4/19)), and other behavioural cofactors (partnership 

type (4/19)) (Figure 2.6). 

Second, HIV transmission was modeled as a function of the number of partners 

(sexual or injecting) or partner change rate (14/19), contact frequency (12/19), and the 

probability of condom use during sexual contacts (9/19). Differences in risk behaviours 

across subgroups were considered in almost all models, commonly by age, gender, risk 

group or risk level, and partnership type. The effects of several biomedical interventions 

were also incorporated in the force of infection equations, including ART (18/19), medical 

male circumcision (MMC, 9/19), pre-exposure prophylaxis (PrEP, 2/19) and condom use 

(8/19). Finally, all but one model that accounted for partnership mixing (n=16) constructed 
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preference-based mixing, reflected by a disproportionate likelihood for an individual to 

select a partner with certain characteristics, such as age (5/16, more in ABMs/IBMMs) and 

risk group/level (6/16). All ABMs/IBMMs considered more than one partnership type, while 

additional non-marital, short-term, casual or commercial partnerships were considered in 

only 4/14 DCMs.  

Quality of evidence: The use of best-quality evidence to inform baseline infectivity 

through different transmission routes was limited. However, the best-quality evidence for 

biological factors influencing HIV infectivity was more commonly cited, and one 

longitudinal study133 was frequently applied to inform the transmission risk by stages of 

infection (8/19). Although many models used best-quality evidence with good external 

validity such as population-based behavioural surveillance to populate behavioural 

parameters, some were obtained strictly through model calibration, where prior ranges 

were based on assumptions (7/19). Similar categories of evidence sources were used to 

inform partnership mixing parameters as with other behavioural parameters, whereas the 

use of lowest-quality evidence was more prevalent. There was also substantial variation 

in the quality of intervention effect size data: the landmark HTPN-052 study7 provided best-

quality evidence of ART efficacy on reducing transmission risk for most models published 

afterwards, while none of the assessed models used best-quality evidence to estimate 

condom efficacy134. 

2.3.5. Model analytical design 

Model calibration/validation: Calibrating uncertain inputs to known 

clinical/epidemiological targets and validating a model against external endpoints provides 

critical tools to enhance readers’ confidence in model outcomes and are both 

recommended by modeling guidelines60,80. Model calibration and validation were both 

performed only in 2/19 models, while 12 models incorporated calibration only, 2 

incorporated validation only, and 3 incorporated neither (Appendix A, Figure A2). 

Epidemiological endpoints, such as HIV prevalence or incidence, were most often used 

for setting targets for calibration and validation (14/16), followed by clinical targets (7/16) 

and demographic targets (4/16). 11/14 models that incorporated calibration reported their 

calibration methods explicitly, where 4 used a random search (e.g. Latin hypercube 

sampling), 3 used a directed search (e.g. Nelder-Mead algorithm), 2 adopted a Bayesian 
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approach, and 1 calibrated parameters manually. We note that model parameters chosen 

for calibration and their evidence quality were explicated in Figure 2.3-2.6. 

Health economic evaluation: As noted earlier, 10/19 reviewed models adopted a 

formal health economic evaluation, with another 2 constrained optimization models that 

incorporated costs (Figure 2.7). Among the 12 models incorporating costs, 2/12 adopted 

the broadest societal perspective, and 7 framed their analysis from the perspective of 

service provider or public health, scrutinizing costs only borne by the health care system, 

whereas 3 models did not explicitly report their perspectives. Further, treating and 

preventing HIV may involve a variety of costs: (1) direct medical costs (e.g. costs for HIV 

testing, HIV care, ART, preventative drugs, treatment to comorbidities), considered in 

12/12 models; (2) direct non-medical costs (e.g. costs for program operation, education, 

capital), considered in 3/12 models; and (3) indirect costs (e.g. productivity loss due to HIV 

infection), considered in no models (including the two stating a societal perspective). 

Finally, 6/10 models supporting a health economic evaluation used quality-adjusted life 

years (QALYs) or disability-adjusted life year (DALYs), as their measures of health 

outcomes. We also provided an assessment of the quality of reporting among these 19 

models by determining whether they met recommendations for each of the CHEERS 

Checklist items135, and we found most models upheld a high level of quality in reporting 

(Appendix A, Figure A4). 

Uncertainty analysis is another recommended component of simulation modeling 

that quantifies the uncertainty of model outputs, enabling decision makers to gauge 

confidence and identify targets for future research/data collection60. However, 5/19 

reviewed models did not report any form of uncertainty (Appendix A, Figure A3). Among 

the 14 models assessing uncertainty, 4 executed more than 1 type of analysis, and most 

models quantified uncertainty deterministically, particularly by one-way sensitivity analysis 

(7/14), while only 4 conducted probabilistic sensitivity analysis.  

Quality of evidence: Only half of the models (6/12) derived costs/resource 

utilization from best-quality evidence (prospectively collected or from reliable databases), 

while the rest based their cost data mainly on other economic evaluation or cost studies. 

Similarly, only 3/6 models used best-quality evidence for health state utility, with 1/3 

prospectively collected and assessed, 1/3 from meta-analysis, and 1/3 from existing utility 

repository. 
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2.4. Discussion 

We have provided a detailed assessment of the structural design and quality of 

evidence supporting 19 HIV/AIDS simulation models. We found consistency in model 

types according to epidemic context (i.e., generalized versus concentrated), but identified 

some key structural differences, particularly in characterizing the level of availability of 

effective HIV treatment and prevention services, a finding which has important implications 

for guiding combination implementation strategies. Otherwise, there was generally less 

consistency in the quality of evidence used to inform models, particularly with respect to 

risk group classification, parameters capturing health system engagement (e.g. HIV 

testing, ART engagement), and several intervention effect sizes (e.g. condom efficacy, 

ART effect on disease progression). The lack of explicit guidelines in data identification 

and quality assessment likely contributed to these inconsistencies; however, our results 

also suggest several key data points are not routinely or systematically collected in many 

jurisdictions.  

A key finding of this review was that HIV testing was not modeled explicitly in 

almost half of the reviewed models. HIV testing initiatives have been shown to be cost-

effective136-138, and explicitly modeling testing provides the opportunity to account for 

changes in risk behaviours following testing139-141, and the odds of subsequent ART 

initiation142,143. Although many of the models we assessed were purpose-built to evaluate 

one or several specific interventions, it is critical to note that individual interventions may 

be enhanced or diminished when delivered in combination with others. For example, while 

the benefits of ART are well-documented, the effect of treatment interventions may only 

be maximized in combination with a sufficient level of HIV testing. There is a growing 

recognition of the critical importance of combination HIV prevention in achieving epidemic 

control88,144. In the context of informing combination implementation strategies, in general, 

focusing on individual interventions or selected combinations may obscure the value of 

other efficacious interventions, and may constrain a model’s capacity to identify the 

highest-valued combination strategies11.  

Another key finding of our review was that the highest-quality local 

administrative/registry data was often unavailable or otherwise not cited. Instead, some 

models based their estimates for elements like the HIV testing rate, ART initiation, and 

retention in care on sample-based observational studies or RCTs. Similarly, while readily 
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available, high-quality census data was used in most models to inform population-level 

demographic parameters, only half of the models used best-quality, setting-specific 

evidence to derive initial values for the size of risk groups or for the distribution of people 

at different levels of risk for HIV infection. Routinely-collected surveillance and 

administrative data can provide reliable, population-based healthcare utilization and 

behavioural data that could enhance a model’s validity. The infrastructure to facilitate this 

level of data collection is however costly to construct and may be infeasible in some 

settings. Sensitivity analysis is recommended by best practices guidelines to address 

concerns regarding parameter uncertainty38,60 and 14/19 of the studies we reviewed 

featured some form of sensitivity analysis. Further, 14/19 of the studies we assessed set 

parameters with the greatest uncertainty as ‘free’ parameters in calibration, which also 

constitutes recommended practice38,60. However it should be clear that better quality 

evidence is preferable even in setting ranges for calibration and sensitivity analysis. Value 

of information analysis145– built on the level and source of uncertainty in cost-effectiveness 

analyses – can guide efforts to ensure the limited resources available for data collection 

are focused on the most influential parameters, thus reducing uncertainty in resource 

allocation decisions to the greatest possible extent70. These features are integral to 

producing valid representations of local contexts and should be a focal point for analysts 

moving forward. 

While the models we assessed generally upheld a high level of transparency in 

their descriptions of model structure, we found more substantial variation in the reporting 

of data sources and their selection, particularly as the evidence dictating the initialization 

of the infected population (at each state) was often underreported. Likewise, in contrast to 

a number of best practice guidelines informing model design, there is less consensus on 

the practical and methodological challenges related to the use of evidence in simulation 

models, including: (1) the definition and identification of ‘relevant’ evidence, (2) the 

assessment of evidence quality, and (3) the synthesis of evidence104. Only one126 of the 

nineteen reviewed models explicitly presented its process of systematic evidence 

gathering, whereas in most models, quality assessment and how evidence was 

synthesized were unclear. Explicitly reporting and assessing the quality of data entered 

into a model can improve its replicability and identify focal points for sensitivity analysis 

and further data collection. The quality assessment framework (Table 2.2) we have 

proposed can contribute to the development of standardized approaches to identifying and 
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assessing the quality of model inputs in the application of model development or critical 

review. For example, this framework can be used to structure and formalize the evidence 

synthesis supporting a modeling study, increasing transparency, rigor and ultimately 

credibility. It can also help identify parameters with the greatest uncertainty, which should 

be targets for calibration, sensitivity analysis or further value of information analysis.  

In deliberations on model complexity and intensity of data requirements, 

researchers need to find the right balance between parsimony and complexity, as every 

additional parameter could introduce new sources of uncertainty and can potentially have 

a counterintuitive effect on model results146. Complex models are not necessarily more 

accurate or reliable than simpler ones that are developed with high-quality data. Rather, 

models should only be sufficiently complex to address the policy question and key 

epidemiological features, with careful consideration of the availability and quality of data. 

Sensitivity analysis on model structure could be used to identify the degree of parsimony 

in a model, by ensuring conclusions and the degree of uncertainty are robust to changes 

in model structure146. We did not attempt to make a judgement on what constitutes a 

sufficient level of complexity for a given context and research question. This qualitative 

description of the models we have selected provides a guide for model developers to 

consider when determining the most appropriate and feasible design. We believe this type 

of review, with explicit focus on structure and data quality can be useful across disease 

areas, particularly those with fewer historical precedents or where data is more sparse.  

This narrative review has several potential limitations. First, the selection of models 

was not systematic. Given the large amount of existing HIV models and the breadth and 

depth of this review, we believe a narrative review was most practical and appropriate for 

our aims. The snowball sampling approach we undertook, which included a majority of 

HIV models in the HIV Modeling Consortium database147, was designed to yield a group 

of highly influential models representing various typologies, geographic and application 

contexts currently used in practice, though they may not be representative of all HIV 

models published within the study timeframe. It was not our intention to exhaustively detail 

the structural design characteristics and their underlying data for all published models in 

HIV, but rather underline areas of consensus and divergence on key aspects of model 

development; we have been careful to avoid sweeping conclusions that would require a 

systematic review. By explicating different structural/analytical designs and 

sources/quality of data in the selected models, we hope this review can provide guidance 
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for model developers in selecting an appropriate model structure, identifying data sources 

and assessing uncertainty, as well as reviewers in critically assessing HIV modeling 

applications. Second, the internal validity of evidence quality was only assessed by study 

design rather than a full investigation of the quality of source study. While there is certainly 

room for greater scrutiny in this domain, we believe even a limited assessment of evidence 

quality can improve the rigor and credibility in simulation modeling. Finally, several aspects 

of modeling were not covered in this review, such as the interventions being evaluated 

and the prognosis of comorbid conditions, as these were beyond the scope of this 

exercise. Rather, we focused on assessing the structural design and quality of evidence 

used in the reference case, whose implications are generalizable to all HIV modeling 

regardless of context or decision problem.  

2.5. Conclusion 

Simulation modeling has become an indispensable tool in evidence-based 

decision making81, particularly in the public health response to HIV/AIDS where significant 

investment still needs to be made to reach international targets. We believe this narrative 

review advances the ability of model developers to critically select and assess the 

appropriate model structure for a given epidemiological context, as well as the 

corresponding data requirements. Formal assessment of the influence of poorer-quality 

data on model inferences should be used to guide decisions to collect more data, in the 

interest of reducing decision uncertainty.  Finally, developing guidelines on evidence 

syntheses supporting decision models, with an emphasis on quality assessment, should 

be a priority in the field.
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Table 2.1. Definitions of the epidemic context and dynamic model types.  

Stratification Types Definition 

Epidemic 

Generalized 
Settings where HIV is firmly established in the general population, e.g. the sub-Sahara 
African countries where the HIV prevalence is as high as 20%148 

Concentrated 
Settings where the HIV epidemic is disproportionally higher within several key subgroups of 
the population, but is not well established in the general population148 

Model 

Deterministic 
Compartmental Model 

(DCM) 

Model that divides the study population into various compartments according to individuals’ 
characteristics and disease statuses, representing their average state, and uses differential 
or difference equations to track the rate of transition of individuals between compartments38 

Individual-based 
microsimulation model 

(IBMM) 

Model that simulates the study population at the individual level, whereby individuals’ 
transitions in disease status or other states are generated using a random process and are 
drawn from probability distributions60 

Agent-based model (ABM) 
A special case of IBMM that explicitly incorporates the interactions between autonomous 
agents and between agents and a simulated environment, capturing dynamic network 
effects41 
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Table 2.2. Data quality assessment criteria used to evaluate supporting evidence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: ‡ in conformity with the section number; ‡‡ also including data whose source is unclear (not explicitly presented in the paper), or derived not directly from evidence-based information sources, such as other modeling study, assumption, 
and calibration with priors based on assumptions; ‡‡‡ generalizable data are those applicable across settings (i.e. outside the context of the source study), in which case context-specific evidence is not required. ^ e.g. the efficacy of antiretroviral 
therapy (ART), medical male circumcision (MMC), pre-exposure prophylaxis (PrEP) and condom use on reducing transmission risk; ^^ e.g. population size, age, gender, race; † i.e. the initial prevalence and population size for each compartment 
among people living with HIV in the baseline year; †† e.g. number of partners, coital frequency, sexual activity, condom use, sex type; * if multiple randomized controlled trials (RCTs) are not available for meta-analysis;  ** if RCTs are infeasible; 
*** e.g. case reports and case series; # e.g. national or regional surveillance; ## e.g. RCTs, cohort studies, non-population-based surveys.   

Evidence category Pertinent parameters in model 
Model 

component‡ 

Internal validity External validity 

Best quality evidence Moderate quality evidence Lowest quality evidence‡‡ Generalizable data‡‡‡ 

Clinical effect size 

HIV testing effect on behavior 3.4 

Systematic synthesis of RCTs, single 
RCTs*, or systematic synthesis of 
cohort studies** 

Observational studies: cohort, 
case control 

Non-analytical studies***, expert 
opinion 

No 

ART effect on HIV progression 3.3 No 

ART effect on mortality 3.3 No 

Preventative intervention effect size^ 3.4 Yes 

Natural history of 
disease 

Disease progression 3.3 Longitudinal cohort studies and case 
series, nationally collected or compiled 
statistics or routinely collected admin 
data, disease registries, or 
epidemiological database 

Data from RCTs Expert opinion 

Yes 

Infectivity (baseline and cofactors) 3.4 Yes 

Opportunistic infections 3.3 Yes 

HIV-related mortality 3.3 Yes 

ART-related adverse 
events and 
complications 

ART failure 3.2 Systematic synthesis of RCTs, single 
RCTs*, or systematic synthesis of 
cohort studies** 

Observational studies: cohort, 
case control 

Non-analytical studies***, expert 
opinion  

No 

ART toxicity 3.2 No 

ART resistance 3.2 No 

Health system 
engagement 

PrEP 3.1 

Case series or analysis of reliable 
admin database 

Old case series, estimates from 
RCTs, or other observational 
studies 

Other modeling studies, expert 
opinion 

No 

HIV testing rate/coverage 3.2 No 

ART initiation/scale-up 3.2 No 

ART retention/drop-out 3.2 No 

Population 
characteristics 

Initial population & demographics^^ 3.1 

Central statistics, health care system 
statistics#, life tables 

Sample-based studies## Expert opinion 

No 

Population change 3.2 No 

Background mortality 3.2 No 

Initial epidemic† 3.1 No 

Medical male circumcision 3.1 No 

Sexually transmitted infections 3.1 No 

Behavioral 

Risk group / risk level stratification 3.1 
Population-based surveys, 
health care system statistics# 

Sample-based studies## Expert opinion 

No 

Risk behaviour intensity†† 3.4 No 

Partnership mixing 3.4 No 

Cost 
Direct medical/non-medical cost 

3.5 
Prospective data collection, reliable 
database 

Other health economic evaluation 
or cost studies 

Personal communications, expert 
opinion 

No 

Indirect cost (e.g. productivity loss) No 

Health state utility 
(HSU) 

Utility for each health state 3.5 
HSU repository, direct utility 
assessment, meta-analysis  

Indirect evidence from 
the literature (CEA/CUA) 

Expert opinion Yes 



40 

Table 2.3. Design characteristics of the selected modeling studies 

Context;  Classification Cycle length; Comparator strategies 
Outcomes^ 

Study population Context  Model Analysis Time horizon Intervention Reference case 

Bershteyn et al. 2013 – EMOD110 
Objective: compare a broad set of structural and parametric modeling assumptions in order to identify a set of possible explanations for the HIV epidemic 

South Africa; 
GP (initial 75,000) 

G ABM Epi 1 day;  
1960-2050 

Epidemic under different structural or parametric 
assumptions 

Incidence 

Smith et al. 2015 – Smith111 
Objective: assess the health effect and cost-effectiveness of a community-based package of home HIV counselling and testing 

KZN, South Africa; 
10,000 adults (>18 y) 

G ABM CEA 1 month;  
10 years 

Home-based screening Status quo: facility-based 
screening (observed)  

Incidence, prevalence, 
morbidity, ICER (DALY) 

Hontelez et al. 2011 – STDSIM112 
Objective: evaluate public health impact, cost-effectiveness, and budget impact of repeated vaccination strategies in combination with ART 

KZN, South Africa; 
GP 

G ABM CEA 1 month;  
20 years 

Vaccine No vaccine Incidence, prevalence, 
ICER (DALY) 

Bendavid et al. 2010 – Bendavid113 
Objective: assess the epidemiologic and health effects of 4 strategies to increase access to ART  

South Africa; 
10,000 people (>15 y) 

G IBMM Epi 1 month;  
10 years 

Universal testing and 
ART, linkage and 
adherence to care 

Status quo (observed) Incidence, life 
expectancy 

Walensky et al. 2013 – CEPAC114 
Objective: project the cost-effectiveness of early ART, as compared with delayed ART, among serodiscordant couples 

South Africa and India; 
Serodiscordant couples 

G IBMM 
DCM* 

CEA 1 month;  
Lifetime 

Early ART Delayed ART (CD4<250) Incidence, survival rate, 
ICER (LY) 

Phillips et al. 2014 – Synthesis115 
Objective: compare the effectiveness and cost-effectiveness of different potential public health responses to substantial levels of transmitted drug resistance 

South Africa; 
100,000 people (>15 y) 

G IBMM CEA 3 months;  
15 years 

Regimen, monitoring SOC (regimen and 
monitoring based on 
current guideline) 

Prevalence, PLHIV 
mortality, % resistance, 
% VL suppression, NB 
(QALY) 

Anderson et al. 2014 – Anderson10 
Objective: examine how a fixed amount of resources for HIV prevention can be used to reduce HIV infections using two forms of resource allocation: uniform and focused approach 

Kenya; 
GP (>15 y) 

G DCM CO 1 year;  
15 years 

Optimal localized health 
production function: 
MMC, behaviour change, 
early ART, PrEP 

Optimal national uniform 
health production function 
under fixed budget 

Incidence 
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Context;  Classification Cycle length; Comparator strategies 
Outcomes^ 

Study population Context  Model Analysis Time horizon Intervention Reference case 

Bärnighausen et al. 2012 – BBH116 
Objective: compare the health effects and costs of different combinations of three interventions: TasP, ART and medical male circumcision 

South Africa; 
GP (>15 y) 

G DCM CEA 1 year;  
10 years 

TasP, ART, MMC Status quo (observed 
coverage) 

Incidence, prevalence, 
PLHIV mortality, ICER 
(incidence) 

Eaton et al. 2014 – Eaton117 
Objective: quantify how the proportion of transmission that comes from persons who have been infected recently affects the impact of treatment scale-up on HIV incidence 

South Africa; 
GP (>15 y) 

G DCM Epi 1 year;  
1990-2020 

Current and projected 
ART scale-up 

Counterfactual no ART Incidence  

Granich et al. 2009 – Granich118 
Objective: examine a strategy of universal voluntary HIV testing and immediate treatment with ART and examine the conditions under which the epidemic could be eliminated 

South Africa; 
GP (>15 y) 

G DCM CCA 1 month;  
42 Years 

Universal testing with 
immediate ART 

SOC (eligibility under 
current guideline) 

Incidence, prevalence, 
PLHIV mortality 

Nichols et al. 2013 – Macha119 
Objective: determine the impact of different PrEP strategies on averting HIV infections, prevalence, drug resistance and cost-effectiveness 

Macha, Zambia; 
Rural population (>12 y), 
fixed as 90,000 

G DCM CEA 1 month;  
10 years 

PrEP Status quo (observed) Incidence, prevalence, 
% resistance, ICER 
(QALY) 

Cori et al. 2014 – PopART120 
Objective: predict the impact of the intervention package that will be delivered during the trial 

Zambia and South Africa; 
GP (>15 y) 

G DCM Epi N/C;  
3 years 

Home-based screening, 
ART, MMC 

SOC (under current 
guideline) 

Incidence  

Johnson et al. 2012 - STI-HIV121 
Objective: assess how much of the change in HIV incidence can be attributed to the impact of previously introduced prevention and treatment programs 

South Africa; 
GP 

G DCM Epi 1 month;  
-8 years 

ART, condom use 
promotion (existed) 

Counterfactual no 
intervention 

Incidence  

Birger et al. 2014 – Birger122 
Objective: assess the impact of interventions along the continuum of care, leading to virologic suppression 

Newark, NJ, USA; 
GP (>15 y) 

C DCM Epi 1 year;  
10 years 

Screening, linkage to care 
and ART  

Status quo (observed) Incidence, PLHIV 
mortality 

Stover et al. 2011 - CD4-HIV123 
Objective: estimate the potential impact and cost of the revised guidelines 

All LMIC and 7 countries; 
HIV+ only 

C DCM CCA 1/10 year;  
6 years 

Early ART SOC (current eligibility: 
CD4<200) 

Incidence, PLHIV 
mortality, LY vs. cost 
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Context;  Classification Cycle length; Comparator strategies 
Outcomes^ 

Study population Context  Model Analysis Time horizon Intervention Reference case 

Mishra et al. 2014 – Mishra124 
Objective: examine the impact of the existing ART program beyond that achieved by existing condom-based interventions & the incremental benefit of multiple ART expanding 
strategies 

3 cities in South India; 
GP (>15 y) 

C DCM Epi N/C;  
-10 years, +10 
years 

Condom use promotion, 
behaviour change 

Past: counterfactual no 
intervention; 
Future: status quo 
(observed) 

Incidence, prevalence 

Long et al. 2010 – Portfolio125 
Objective: evaluate the effects on the U.S. HIV epidemic of expanded ART, HIV screening, or interventions to reduce risk behaviour 

USA;GP (15-64 y) C DCM CEA 1 year;  
20 years 

Screening and ART 
expansion 

Status quo (observed 
scale-up) 

Incidence, ICER 
(QALY) 

Zhang et al. 2013 – Prevtool126 
Objective: estimate the cost-effectiveness and returns on prior investments of HIV prevention programs and identify the optimal allocation of resources across combinations of 
programs 

Vietnam; 
GP (15-49 y) 

C DCM CEA 
CO 

1 year;  
-10 years, +10 
years 

NEP, condom use 
promotion, MMT, 
voluntary testing, STI care 
under current/ optimal 
allocation of funds 

CEA: counterfactual no 
intervention; 
CO: current allocation of 
funds (observed) 

Incidence, PLHIV 
mortality, ICER (DALY) 

Lasry et al. 2011 - US-CDC127 
Objective: optimize the apportionment of prevention resources among interventions and populations so that HIV incidence is minimized, given a budget constraint 

USA; 
GP (13-64 y) 

C DCM CO 1 month;  
5 years 

Optimal allocation of 
funds to: screening, 
behaviour change 

Current allocation of funds 
(observed) 

Incidence  

Legend: ABM: agent-based model; ART: antiretroviral therapy; C: concentrated epidemic; CCA: cost-consequence analysis; CEA: cost-
effectiveness analysis; CO: constrained optimization; DALY: disability-adjusted life year; DCM: deterministic compartmental model; Epi: 
epidemiologic model (no cost estimated); G: generalized epidemic; GP: general population; IBMM: individual-based microsimulation model; ICER: 
incremental cost-effectiveness ratio; LMIC: low- and middle-income countries; MMC: medical male circumcision; NEP: needle exchange program; 
PrEP: Pre-exposure prophylaxis; QALY: quality-adjusted life year; STI: sexually transmitted infection; SOC: standard of care; TasP: treatment as 
prevention; VL: viral load; * CEPAC model were composed of two modules: the International Module (CEPAC-I), IBMM, to simulate the disease 
progression and outcome of disease and the Transmission Module (CEPAC-T), DCM,  to examine the disease transmission and associated clinical 
impacts.
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Figure 2.1. Colour codes of the quality of evidence 
Legend: In each of the following model component figures (Fig. 2.2-2.7), colored cells indicate the 
inclusion of a structural characteristic in each respective model (as opposed to a blank cell 
indicating that the model did not incorporate the structural characteristics), grey cells indicate that 
no data was required for an included structural characteristic, and cells with bold outlines indicate 
that the data required for an included structural characteristic were calibrated 
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Figure 2.2. Flow diagram of the process for model identification 
Legend: Seed articles:56,57,102. * e.g. models focusing exclusively on men who have sex with men 
(MSM), people who inject drugs (PWID), etc.; ^ models failed to provide sufficient detail (in the 
manuscript or supporting appendix) to capture the majority of the information required for this 
review were excluded 
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Figure 2.3. Population construction 
Legend: The color schemes presented reflected the evidence used to inform the initial population 
size of the according compartment or the initial distributions.  

Uppercase letter: AEs: adverse events, including ART failure, resistance and toxicity; ART: 
combination antiretroviral therapy; C: continuous measure of CD4 count or viral load; Ds: 
dichotomous measure of viral load (suppressed or unsuppressed); FSW: female sex workers; 
Hetero: heterosexuals; MMC: medical male circumcision; MSM: men who have sex with men; OI: 
opportunistic infections; PWID: people who inject drugs; STI: other sexually transmitted infections;  

Symbol: # chronic or asymptomatic; * multiple definitions used; ** among female sex workers only; 
*** among heterosexuals only; ^ equivalent to the three HIV stages; ^^ identical compartment; ^^^ 
identical compartment;  

Lowercase letter: a. Fertility; b. Household roles; c. PrEP; d. Sexual activity class; e. Race; f. All 
the attributes were drawn independently from their empirical distributions; g. Entry rate adjusted to 
ensure constant proportions within each sexual risk group; h. Entry rate adjusted to equivalence in 
the number of males and females. i. (1) Age 15-49 sexually active; (2) Age ≥50 sexually inactive; 
(3) Allowing transitions between risk levels; j. Allowing transitions between non-PWID and PWID; 
k. (1) Retired FSW or clients were the same as low-risk individuals; (2) Fixed prevalence of HCV-
2; (3) A proportion of people were sexually inactive; l. Female PWID were not modeled directly; m. 
Homogeneity between the susceptible and the undiagnosed. 
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Figure 2.4. Model entry, exit and HIV care engagement 
Legend:  
Uppercase letter: A: population change was characterized by the estimated rate of aging-in and -
out into or out of the defined study population age range; G: population change was characterized 
to match observed population growth or fertility rate; N/C: not clear; PB: population-based; SB: 
symptom-based;  

Symbol: # risk g/l: risk groups or risk levels; * age-, sex-specific migration rate (in & out); ** among 
50+ only; *** calibrated; ^ the reciprocal of the duration between infection and testing; ^^ meeting 
failure definition (VL, CD4, OI); ^^^ jointly considered with ART drop-out;  

Lowercase letter: a. Infection state, age; b. Infection state (PB), opportunistic infection state (SB); 
c. Opportunistic infection state, age, time-increasing; d. Time-increasing; e. Race; f. Linear time-
increasing; g. Once certain number of years since infection has passed; h. As a Hill function 
increase, with greater rate for CD4>200; i. Estimated number of ART initiations over the annual 
number of new AIDS cases; j. As the reciprocal of the duration between eligibility and treatment; k. 
By the assumed coverage; l. Regimen; m. (1) Adherence profile, (2) Drug supply; n. (1) Repeat 
testing occur ≥1 years for HIV- individuals; (2) Longer wait time and lower initiation rate for higher 
CD4 strata; o. (1) Linear increase in testing rate with stage number; (2) ART Dropout was 
permanent; p. (1) Retesting no sooner than every 3 years; (2) Treatment stops 3 month after loss 
to follow-up; (3) ART monitoring occurs every 3-6 months; (4) Toxicity: rate varied by time since 
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ART, can trigger 2nd-line ART; q. (1) Same efficacy for 1st and 2nd line ART; (2) Toxicity: rate 
varied by regimen, can cause mortality increase; r. (1) Testing rates drawn from lognormal 
distribution; (2) Toxicity: rate varied by regimen, can trigger 2nd-line ART; (3) Resistance: can be 
developed (by adherence and # of active drugs) or acquired (by % of resistance presence in the 
concurrent PLHIV), can reduce number of active drugs; s. (1) Assuming an ART coverage ceiling 
as 90%; (2) Equal scale-up rate across all locations; t. ART provided to CD4≥350 was considered 
as TasP and<350 was considered as treatment; u. Re-initiation rate varied by CD4, and then back 
to the normal track as on ART; v. (1) ART discontinued PLHIV same as untreated; (2) 2nd-line ART 
same as 1st-line except in cost; w. Resistance: homogeneous rate; x. (1) ART failed cases same 
as untreated; (2) No ART initiation for CD4>350; y. Testing sensitivity and specificity also 
considered; z. (1) Same failure rate for 1st and 2nd-line ART; (2) PLHIV who failed 2nd-line ART 
were the same as the untreated; aa. Resource allocation as the sole impetus of testing, and the 
testing coverage was proxied by the resources allocated. 
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Figure 2.5. HIV disease progression 
Legend:  
Uppercase letter: D: characterized by the duration between two stages or strata (i.e. as the 
reciprocal); Ds: characterized by dichotomous measure, suppressed or unsuppressed; F: 
characterized by functions (linear, non-linear), see underlying assumptions; N/C: not clear;  

Symbol: # including CD4 recovery, VL decrease and VL suppression; ## HIV-related mortality 
considered for final stage (e.g. AIDS, CD4<200) only; * calibrated; ** equivalent; *** different 
progression rate by CD4 strata; ^ may return to a higher CD4 stratum after dropout; ^^ Weibull 
distribution;  

Lowercase letter: a. Age; b. Homogeneous; c. OI, toxicity; d. OI; e. Gender, time since infection; f. 
Diagnosis; g. (1) CD4 declines according to a quadratic function with prognosis; (2) Total survival 
time for PLHIV was stochastically sampled from an age-dependent Weibull distribution (with fixed 
duration for acute and AIDS stages); (3) Assuming all new infected cases started with the same 
initial CD4 counts as 594 cells/mm3; h. Linear decrease of CD4 in different stages; i. CD4 modeled 
continuously based on VL, and ART; j. (1) CD4 decrease determined by VL; (2) Progression and 
clinical events were observed periodically at clinical visits or when OIs occur; k. (1) VL changes 
sampled from normal distribution. CD4 changes by declining rate, adjusted by VL and age; (2) Initial 
VL randomly sampled from log normal distribution. Initial CD4: 756 cells/mm3; (3) ART effects on 
progression varied by number of active drugs and adherence level; l. (1) Linear decrease of CD4; 
(2) Survival after infection followed a Weibull distribution (with fixed duration for acute and AIDS 
stages); (3) CD4 decreased by 25% immediately after infection; m. (1) PLHIV may enter any CD4 
strata after acute stage; (2) CD4 during ART represented the stage to which when treatment being 
interrupted; n. The duration for each stage was exponentially distributed; o. (1) Post-ART AIDS 
(treated but unsuppressed) stage is a dead-end: no regimen changes allowed; (2) Treated and 
suppressed stage is a dead-end: no failure allowed; p. % of VL suppression as the multiplication of 
conditional % of linked to care, % retained to care, % linked to treatment and % achieving 
suppression; q. HSV-2 co-infection assumed to have stable prevalence and increase HIV infectivity. 
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Figure 2.6. The force of HIV infection 
Legend:  
Uppercase letter: A: age-dependent; G: gender-dependent; pref.: preference; PT: partnership 
type-dependent; R: risk group or risk level-dependent; 

Symbol: # colors indicate the assessment of evidence used to inform the baseline infectivity of 
different transmission routes; ## number of partners (sexual or injection-sharing), also referred to 
as the rate of partner change in some models; * all transmission routes were jointly modeled in 
one force of infection; ** the effect of ART on reducing transmission was modeled indirectly 
through viral load; ^ proportional mixing;  

Lowercase letter: a. Mother to child (MTC); b. Coital type: only the evidence evaluation for its 
effect on was infectivity shown; the behavioral parameter was based on best quality evidence 
with lowest external validity; c. Years since infection; d. Based on a Spectrum projections 
(exogenous to the model), influenced by the distribution of CD4 strata due to their distinct 
infectivity; e. Probability of needle sharing; f. Reversely estimated by the observed incidence; g. 
(1) Partnership types: transitory, informal, and marital, with different duration (Weibull 
distribution); (2) Assuming exponential distribution of the interval between coital acts; (3) Allowing 
coital dilution for multiple partnerships; h. (1) Partnership mostly within the community; (2) 
Maximum 2 partners (1 long-term) at a time; (3) Allowing external short-term partnership; (4) 
Males tended to be older than females in pairs; i. (1) Partnership type: marital, casual, 
commercial; (2) The rate of sex partner change is determined by a supply and demand 
mechanism (from previous studies) depending on age, sex and marital status; j. (1) Partnership 
type: spousal and non-spousal; (2) The risk of having HIV-positive partner was age- and gender-
specific; k. Partnership type: long-term, short-term; l. (1) No interactions between locations; (2) 
No transmission considered for population aged 50+; m. Partnership type: primary and 
secondary; n. (1) Sexual contact rate reduction followed a logistic function ensuring symmetry 
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around the midpoint of behavior change period; (2) # of sexual contacts geometrically adjusted to 
balance the male and female contacts; o. No sexual activity in final AIDS stage; p. (1) Reduced 
sexual activity in the wound healing period after MMC; (2) 5% of the partnerships formed with 
outside partners; q. (1) Partnership type: marital, casual, commercial; (2) Disease advanced 
PLHIV had reduced sexual behaviors; r. Frequency of needle sharing decayed over time 
according to observed trends; s. Partnership type: occasional commercial, regular commercial, 
and main; t. Partnership type: commercial, casual, and regular; u. Fixed force of infection. 
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Figure 2.7. Health economic evaluation  
Legend:  
Symbol: # also including modified societal; ## e.g. capital cost, program operational cost, 
research cost; * e.g. productivity loss.  

Lowercase letter: a. Approximated by life-years gained. 
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Chapter 3.  
 
Development and calibration of a dynamic HIV 
transmission model for 6 US cities 

Background: Heterogeneity in HIV microepidemics across US cities necessitates 

locally-oriented, combination implementation strategies to prioritize resources. We 

calibrated and validated a dynamic, compartmental HIV transmission model to establish 

a status quo treatment scenario, holding constant current levels of care for six US cities. 

Methods: Built off a comprehensive evidence synthesis, we adapted and extended a 

previously-published model to replicate the transmission, progression and clinical care for 

each microepidemic. We identified a common set of 17 calibration targets between 2012 

and 2015 and used the Morris method to select the most influential free parameters for 

calibration. We then applied the Nelder-Mead algorithm to iteratively calibrate the model 

to generate 2,000 best-fitting parameter sets. Finally, model projections were internally 

validated with a series of robustness checks, externally validated against published 

estimates of HIV incidence, while the face validity of 25-year projections were assessed 

by a Scientific Advisory Committee (SAC). Results: We documented our process for 

model development, calibration and validation to maximize its transparency and 

reproducibility. The projected outcomes demonstrated a good fit to calibration targets, with 

a mean goodness-of-fit ranging from 0.0174 (New York City (NYC)) to 0.0861 (Atlanta). A 

majority of incidence predictions were within the uncertainty range for 5/6 cities (ranging 

from 21% (Miami) to 100% (NYC)), demonstrating good external validity. The face validity 

of the long-term projections were confirmed by our SAC, showing that incidence would 

decrease or remain stable in Atlanta, Los Angeles, NYC and Seattle while increasing in 

Baltimore and Miami. Discussion: This exercise provides a basis for assessing the 

incremental value of further investments in HIV combination implementation strategies 

tailored to urban HIV microepidemics. 

3.1. Introduction 

In the United States (US) and most other countries featuring concentrated HIV 

epidemics, the majority of people living with HIV/AIDS (PLHIV) reside in large urban 

centers and geographic “hotspot” areas18-20, each with distinct underlying epidemiological 



53 

and socio-structural features5. There are also dramatic disparities among minorities, with 

black and Hispanic men who have sex with men (MSM) accounting for over half of 

reported new infections149. Our previous study on six US cities, Atlanta, Baltimore, Los 

Angeles (LA), Miami, New York City (NYC) and Seattle, home to nearly a quarter of US 

PLHIV, found fundamental differences in demographic composition, epidemic 

characteristics and rates of new HIV diagnoses5. Heterogeneity in microepidemics across 

cities necessitates locally-oriented combination implementation strategies to prioritize 

resources according to the greatest public health benefit. This approach, however, 

requires detailed, context-specific information on a range of factors characterizing each 

HIV microepidemic and the level of available health services. 

Mathematical models are simplifications of reality, designed to capture the 

essence of a problem with a minimally acceptable level of complexity and synthesis of 

evidence from multiple sources, to extrapolate outcomes that are unavailable, 

unobservable or unethical to collect. They can provide a unified framework to quantify the 

public health and economic impact of multiple health interventions, accounting for the 

synergistic effects between different interventions. Furthermore, setting-specific models 

can be adapted to capture heterogeneity across settings and are increasingly used to 

provide objective, localized evidence to prioritize resources according to the greatest 

public health benefit.  

Model complexities and uncertainty surrounding key model inputs can diminish the 

confidence of decision makers and raise concerns about the credibility of the model-

generated results. Assessing the validity and representativeness of a model generally 

entails explicitly assessing the quality of input data used for its parameters150, calibrating 

uncertain inputs to observed epidemiological endpoints (calibration targets)60, and 

validating the accuracy of model projections against empirical data on outcomes of 

interest80. Comprehensive and transparent reporting of these development processes can 

not only add confidence to the process, but also establish a basis to determine data 

collection targets to reduce uncertainty in the decisions a model recommends.   

Building on an evidence synthesis we’ve described separately151, our objective 

was to calibrate and validate a dynamic, compartmental model of HIV transmission for six 

US cities. The 25-year projections of the model are designed to serve as a ‘status quo’ 
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comparator in assessing the incremental value of a range of possible combination 

implementation strategies to address the unique HIV microepidemics of each city. 

3.2. Methods 

In this section, we first provide a brief description of the construction of the model, 

followed by a detailed documentation of our calibration and validation process. Model 

calibration is the process by which uncertain model input values or ranges can be 

estimated so that model projections match pre-specified calibration targets63,147.61,152 While 

there is currently no consensus on what constitutes best practice for calibrating a model61, 

recently-published guidelines offer detailed guidance for model validation, which include 

the evaluation of a model’s accuracy by comparing its outputs to external empirical data80.  

3.2.1. Model description 

3.2.1.1. Model construction 

We adapted and extended a previously-published HIV dynamic transmission 

model that was used to estimate the health benefits and costs of HIV prevention and 

treatment interventions in the United States125,153,154, British Columbia, Canada155-157, and 

Guangxi province, China66. We modified the compartmental model both to accommodate 

the distinctive features in HIV microepidemics across US cities5, and to allow for 

assessment of a range of HIV treatment and prevention interventions to be evaluated 

jointly in future applications. For each demonstration city, the adult population aged 15-64 

was partitioned into compartments on the basis of: biological sex; race/ethnicity 

(Black/African American [Black], Hispanic/Latino [Hispanic], and non-Hispanic 

White/others [White]); and HIV risk behavior type (MSM, people who inject drugs [PWID], 

MSM-PWID, and heterosexual [HET]). To account for within-group heterogeneity, MSM, 

MSM-PWID and HET were further partitioned into subgroups based on HIV sexual risk 

behavior intensity (high- vs. low-risk for each of the 3 risk groups), as defined by the 

proportion of MSM reporting condom-less sex with casual partners158 (conforming to the 

CDC recommended indications for PrEP use159) for MSM and MSM-PWID, and by the 

proportion of individuals who had 5 or more sexual partners in the past 12 months160 for 

HET. PWID and MSM-PWID were also classified based on engagement in opioid agonist 

treatment (OAT). 
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Individuals within each of these 42 groups (MSM: 6, MSM-PWID: 12; PWID: 12; 

HET: 12) progressed through health states outlined in Figure 3.1. Susceptible (HIV-

uninfected) individuals could be screened for HIV prior to HIV infection, and high-risk MSM 

(including MSM-PWID) could access pre-exposure prophylaxis (PrEP). Following HIV 

infection, individuals progressed through acute infection (duration=1.7 months, range: 1-

6.8)161 and three CD4 cell count strata (CD4≥500, 200-499, and <200 cells/µL), and were 

classified according to diagnosis and treatment status as those infected but undiagnosed, 

diagnosed but ART-naïve, on ART and off ART. Health state transitions occurred at 

monthly intervals, with mortality a possible transition from each of the health states. 

3.2.1.2. HIV transmission 

HIV transmission occurred through three modes: heterosexual contact, 

homosexual contact, and needle/syringe sharing. We incorporated a mixture of assortative 

and proportional mixing by race/ethnicity and sexual risk behavior intensity162 through 

Newman’s assortativity coefficient, where a value of 0 indicates random mixing, and a 

value of 1 indicates complete assortative mixing163 (see Appendix B Section 1.2 for 

details). The rate of transmission through homo- and heterosexual sex was a function of 

the probability of partnership, the number of sexual partnerships, the probability of condom 

use, and the probability of transmission per sexual partnership at each CD4 stratum. 

Similarly, transmission via needle/syringe sharing was a function of injection frequency, 

the probability of needle/syringe sharing, and transmission per shared needle/syringe at 

each CD4 stratum. These transmission rates were time-dependent, subject to changes in 

the distribution of PLHIV at different stages of disease progression, risk behaviours and 

scale-up of interventions. We assumed ART reduced the risk of sexual transmission by 

91% (range: 79%-96%)7,164, and the risk of transmission via needle/syringe sharing by 

50% (range: 10%-90%)157, while PrEP reduced transmissibility of HIV per unprotected 

sexual partnership and per needle/syringe sharing both by 60% (range: 56.3%-61.9%)165. 

We note that access to PrEP was only modeled among high-risk MSM and MSM-PWID 

population in this study. Furthermore, we also allowed for changes to people’s risk 

behaviours, including following HIV diagnosis (reduction in the number of sexual 

partners)166, OAT receipt (reduction in the frequency of injection drug use),167 and access 

to syringe services programs (SSP) (reduction in the probability of needle/syringe 

sharing)157.  
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3.2.1.3. Model parameters 

All model input parameters were derived by a comprehensive evidence synthesis 

published separately151. We synthesized evidence from 59 peer-reviewed publications, 24 

public health and surveillance reports, and executed primary analyses using 11 data sets 

to inform the 1,667 parameters needed to populate our model. Parameters ranked as best- 

to moderate-quality evidence comprised 47% of the 169 common (non-city-specific) 

parameters. In contrast, 61% to 63% all of all city-specific input parameters were 

populated with at least moderate quality evidence. The parameter grouping, common 

versus city-specific, is based on whether a common prior value and uncertainty 

range/distribution can reasonably be used across cities. For parameters with lower quality 

of evidence, we allowed greater variability, including wider uncertainty ranges or imposing 

more dispersed distributions (uniform or pert distribution). 

3.2.2. Model calibration 

A review of calibration methods by Stout et al. identified five key components, 

including identifying the calibration target variables, goodness-of-fit (GoF) metric, search 

algorithm, acceptance criteria and stopping rule168. An overview of the specifications for 

the calibration process adopted in this paper is presented in Table 3.1 and described in 

more detail below. The calibration routine was applied to each of the six cities separately 

by repeatedly adjusting a set of ‘free’ parameters until model projections matched 

empirical calibration targets. For each city, the model calibration period was set to 2012-

2015 in order to capture at least two data points on both the calibration and validation 

variables. 

3.2.2.1. Calibration targets 

We selected calibration targets that provided the most concrete indicators of the 

course of each city-level microepidemic. Three sets of target data were chosen as our 

calibration targets for each city during the model calibration period 2012-2015: (1) the 

number of diagnosed PLHIV at each year end, stratified by sex, race/ethnicity, and risk 

group; (2) the annual number of new HIV diagnoses, separately for the overall estimate, 

among the Black population, and among MSM (including MSM-PWID), respectively; and 

(3) the annual number of all-cause deaths among diagnosed PLHIV, separately for the 

overall estimate, among Black individuals, and among MSM (including MSM-PWID). 
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These 17 calibration targets were available from city-specific annual surveillance reports 

from each city.  

3.2.2.2. Selection of free parameters  

We identified the most influential set of free parameters by applying the Morris 

method64,169,170, an empirical parameter selection approach that systematically analyzes 

the impacts of variations of each input on model outputs. This method was chosen due to 

its efficiency, flexibility (e.g. no requirement for monotonicity), and capability to examine a 

parameter’s influence at multiple time points64,169,170. All uncertain parameters determining 

model dynamics (thus excluding parameters used to determine initial population sizes) 

were assumed to be candidates for free parameters and were explored in this parameter 

selection process for each city. In the interest of maximizing transparency, we present 

point estimates, prior ranges, and calibrated ranges for these parameters in the 

Supplementary Appendix B. 

3.2.2.3. Goodness-of-fit metric 

A GoF metric serves as the objective function in an optimization procedure, 

measuring the accuracy of the model’s predictions against the targets. While there is no 

consensus on the most appropriate GoF metric61, we utilized an overall weighted GoF 

metric (global criterion), that was computed by a weighted sum of the individual calibration 

target fits, a common practice in addressing multi-objective optimization. The weighting 

factors allow the modellers to place preferences on the set of targets being evaluated171.  

Given the disparate scale and importance of the 17 targets, we used the weighted 

mean percentage deviation as the overall goodness-of-fit metric (shown in the following 

equation), with the calibration objective to minimize this metric by fitting with different sets 

of input parameters.  

𝐺𝑜𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑ 𝑤𝑖 ∗
|𝑝𝑟𝑜𝑗𝑖 − 𝑜𝑏𝑠𝑖|

𝑜𝑏𝑠𝑖
𝑖

 

where 𝑤𝑖 is the weight assigned to the ith target, 𝑝𝑟𝑜𝑗𝑖 is the model-projected result for the 

ith target, and 𝑜𝑏𝑠𝑖 is observed point estimate for the ith target. Smaller values of the GoF 

metric indicate a better fit to the observed data. 
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The weighting factors are usually imposed by assumption on the basis of the 

relative importance as well as the existence of biases of these targets61. We generated 

the weights using a best-worst method (BWM)167,168 to elicit the perceived relative 

importance of each target from our Scientific Advisory Committee (SAC), for which we 

developed a brief questionnaire asking them to rank and compare each target in respect 

of their importance for the model to fit against (see further details and weight vectors in 

the Supplementary Appendix B). 

3.2.2.4. Search algorithm 

The search algorithm determines the best fitting sets of parameter values, drawn 

from their plausible ranges, which optimize the GoF metric such that the model can 

reproduce the observed historical trends. We adopted a mixed calibration approach with 

two distinct steps. Latin hypercube sampling was first applied to draw 10,000 parameter 

sets from predefined distributions as the initial simplexes (starting values), from which the 

Nelder-Mead search algorithm was performed to minimize the overall GoF metric. Latin 

hypercube is a multidimensional grid sampling method enabling the whole parameter 

space to be covered efficiently172. The Nelder-Mead algorithm is an iterative, directed-

search method with high computational efficiency and superior performance over manual 

and random calibration173. We used Latin hypercube sampling to generate 10,000 

simplexes for the Nelder-Mead algorithm to sufficiently explore the parameter space to 

overcome its potential drawback of settling on local, rather than global optima, as well as 

to facilitate uncertainty analysis, as recommended by the ISPOR-SMDM guidelines60.  

3.2.2.5. Acceptance criteria 

Choosing an acceptance criteria entails defining acceptable sets of input 

parameter values by defining either the worst acceptable GoF level or the acceptable 

ranges for the targets or the GoF metric61. With each simplex seeded, the Nelder-Mead 

algorithm seeks to produce one optimal set of input parameter values that locally minimize 

the overall GoF metric, while we only deemed the calibrated parameter sets that best 

minimize GoF (i.e. below 20th percentile) as acceptable. The cutoff of 20th percentile was 

determined by the actual GoF distributions to warrant the inclusion the densest proportion 

to the left of the mode providing the best and most similar GoF. 

3.2.2.6. Stopping rule 
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The stopping rule determines whether the calibration process is complete, usually 

defined by deriving a sufficient number of acceptable input sets61. In this exercise, we 

seeded the Nelder-Mead optimization algorithm with 10,000 simplexes (that varied only 

by starting seed), by repeating the same process, to generate 10,000 calibrated parameter 

sets, from which we selected the 2,000 best-fitting sets with the minimal GoF metric as 

the acceptable samples for subsequent analysis. 

3.2.3.  Model validation 

Model validation refers to the process of evaluating a model’s accuracy in making 

relevant projections80. It entails a comprehensive evaluation of how well the model 

performs, from the problem construct to the credibility of model results, against a variety 

of internal and external inputs, including expert opinions, clinical knowledge, and empirical 

evidence. In accordance with ISPOR-SMDM guidelines80, based on the 2,000 calibrated 

parameter sets, we formally assessed the internal, external and face validity of our model, 

as follows (Table 3.2).  

3.2.3.1 Internal validity 

Internal validation investigates and verifies the accuracy and consistency of all 

mathematical equations and program coding. To secure a high level of internal validity, 

we performed a series of checks:  

(1) Each mathematical equation and program coding script was cross-checked 
by at least one other analyst other than the developer. 

(2) Given its complexity, we performed double programming for the force of 
infection module where two programmers independently coded the functions 
until the results were identical.  

(3) An extensive model walk-through was performed internally wherein detailed 
model structure, underlying assumptions, and corresponding codes were 
presented by the developers and checked by other team members.  

(4) We ran extreme value analyses on several scenarios and assessed model 
predictions against our anticipated outcomes (Supplementary Appendix). 

3.2.3.2 External validity 

External validation entails comparison of city-specific model projections to external 

estimates of key clinical and epidemiological data not used in the model83,84,174. We 
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selected HIV incidence over 2012-2015 as the external validation target, both for the total 

estimates and among the MSM population (including MSM-PWID). Independent, city-level 

annual incidence estimates between 2012-2015 were only reported in NYC and partially 

in LA (2012-2013), while estimates for other cities were otherwise triangulated from annual 

state-level incidence estimated by the CDC174 (triangulation process detailed in the 

evidence synthesis151). We selected these endpoints based on their availability from a 

common, authoritative source, the availability of confidence intervals for each estimate, 

and their importance in decision-making.  

3.2.4. Establishing the status quo scenario in each city 

The status quo scenario for each city was defined by holding treatment and 

prevention service levels (including the proportion of PLHIV being tested, receiving 

treatment and accessing OAT and PrEP) at the most recent year for which data was 

available. In addition, we held constant the proportion of people in high- and low-risk 

strata. To account for heterogeneity in the rate of aging, we used surveillance data to 

derive city-level, PLHIV-specific maturation rates (i.e. PLHIV who are 64 turning 65). 

Finally, we modelled a dynamic cohort allowing model entry and exit (more details in 

Supplementary Appendix B) to match external adult population growth projections 

throughout the study time horizon for each city, accounting for changes in ethnic 

compositions.   

3.2.4.1 Assessing the face validity of longitudinal status quo projections 

Face validation refers to the subjective review of the model projections by 

individuals with clinical and epidemiologic expertise in the disease area. Following each 

of the above steps, we prepared a report for each city detailing 25-year (2016-2040) status 

quo projections on population growth, stratified by race/ethnicity; longitudinal projections 

of the number of people in each of the primary HIV stages of the model; rates of incidence 

and new diagnoses, overall and stratified by race/ethnicity and by risk group; and rates of 

incidence and new diagnoses among MSM, overall and stratified by race/ethnicity. At least 

one clinical/epidemiological expert in our SAC from each city was invited to provide 

qualitative responses on the projections for their city and the modeling team followed-up 

individually with respondents to resolve any discrepancies.  
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3.3. Results 

3.3.1. Model calibration 

We identified 381 independent parameters as candidate free parameters in the 

calibration process, 37 of which were common across cities, 54 capturing sexual risk 

behaviours, 56 characterizing health service delivery, and 234 dictating movement 

between ART states (including from/to death and off ART states). Following application of 

the Morris method, we included 52 unique (176 in total) free parameters in the model 

calibration across all cities (Table 3.3). The set of free parameters selected varied across 

cities, driven in part by variations in race. In cities like Atlanta and NYC where the HIV 

epidemic is mainly concentrated in the Black population, the behavioural parameters for 

this population were more likely to be selected, as compared with cities like LA and Miami 

where parameters determining behaviours for the Hispanic population were more often 

chosen.  

Following calibration, we compared the calibrated values (median and 95% 

credible intervals [CI]) of free parameters against their prior values and ranges 

(Supplementary Appendix Figure A2). Post-calibration values differed across cities. For 

example, the probability of MSM transmission (at CD4 ≥ 500) was calibrated to be higher 

in LA (0.0674, 95% CI: [0.0250-0.1000]) compared to Atlanta (0.0251, 95% CI: [0.0250, 

0.0433]). 

The resulting epidemiological estimates from the 2000 best-fitting calibration runs 

demonstrated a good fit to most targets. Figure 3.2 shows the model projections for the 

number of new HIV diagnoses (total and among MSM) against their corresponding targets 

(two targets deemed most important by our SAC) for each city. The overall mean GoF, 

based on the 2,000 best-fitting parameter sets, differed across cities, ranging from 0.0174 

in NYC (range: 0.0167-0.0176) to 0.0861 in Atlanta (range: 0.0844-0.0868, 

Supplementary Appendix B Figure A3). The bimodal distribution for GoF values observed 

in Atlanta and Miami indicate the presence of local optima at poorer levels of GoF. Model 

calibration results for all 17 targets are presented in Supplementary Appendix B Figure 

A4. While calibration yielded close matches to most targets in most cities, we also 

observed mismatches for some of the mortality targets. In particular, our model 

consistently overestimated the number of all-cause deaths in comparison to the three 
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death-related targets in Atlanta, even with mortality-related free parameters being 

calibrated to the lower ends of their respective ranges, likely due to an underreport of the 

target mortality estimates.  

3.3.2. Model validation 

With the 2,000 calibrated parameter sets, most model projections (2012-2015) fell 

within the confidence interval of the external validity targets. Figure 3.3 shows the model 

projections for the rate of total HIV incidence against the external estimates (after 

transforming the absolute number of infections to rates). The proportion of annual 

incidence projections, total and for MSM, that fit within the confidence interval varied by 

cities, from 100% in NYC to 21% in Miami.  

We assessed the face validity of our model projections via survey distributed to 

our SAC. We performed further evidence collection and reanalysis to resolve any 

discrepancies between model projections and experts’ expectations. Further details 

regarding this process are available in the Supplementary Appendix B.  

Over a 25-year time horizon with all HIV services maintained at their 2015 levels 

(except PrEP, for which we incorporated data up to 2017 to acknowledge its rapid scale-

up), our model predicted that the overall rate of new infections would drop in Atlanta (from 

45 [95% CI: 43-51] to 37 [33-41] cases per 100,000 population), NYC (from 31 [31-32] to 

15 [12-17] cases per 100,000 population) and Seattle (from 15 [14-16] to 10 [8-14] cases 

per 100,000 population, Figure 3.3, Panel A, E and F), while remain relative constant in 

LA at 33-34 [27-38] cases per 100,000 population (Figure 3.3, Panel C). In contrast, the 

rate of new infections was projected to rise slightly in Baltimore (from 27 [26-28] to 33 [27-

35] cases per 100,000 population, Figure 3.3, Panel B). Projections for Miami suggest a 

slight increase in the rate of new infections in the first few years, ultimately stabilizing at 

102 [81-120] cases per 100,000 respectively (Figure 3.3, Panel D). Projections used in 

the face validation process, displaying overall and stratified estimates and credible ranges 

of incidence and new diagnoses, are presented the Supplementary Appendix B. Model 

projections suggest the risk for HIV infection will remain highest among MSM and MSM-

PWID and these two risk groups will continue to contribute the majority of all new incident 

cases across cities: 69.8% [62.3%-76.3%] in Seattle to 90.9% [87.7%-92.0%] in Baltimore 

in 2040. Further, while our model estimated that Black individuals will continue to have the 
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highest rate of HIV incidence across all cities, it also suggests Hispanic MSM will 

contribute most to the increasing rate of HIV incidence in Miami and LA (Appendix B Figure 

A6).  

3.4. Discussion 

We have detailed our process for calibrating and validating a dynamic HIV 

transmission model to six US cities with disparate HIV microepidemics using a systematic 

and empirical approach to determining the most influential parameters necessitating 

calibration. The model provided an excellent fit to the calibration targets across cities, 

particularly to those determined to be of the greatest importance. On the basis of the 2,000 

best-fitting calibrated parameter sets, short-term external validation yielded a majority of 

incidence projections that were within the uncertainty range for 5 of 6 cities, while the face 

validity of the long-term status quo epidemiological projections was confirmed with our 

SAC. 

The status quo projections in the selected cities predict the HIV epidemic will 

stabilize in most urban centers at current service levels, though greater efforts will be 

required if the US is to achieve its goal of ending the HIV epidemic by 2025175. While we 

predicted that incidence would decrease or remain stable in Atlanta, LA, NYC and Seattle, 

we also projected a slight increase in the incidence rate in Baltimore and Miami, driven 

primarily by projected increases in incidence among Black MSM (Baltimore) and Hispanic 

MSM (Miami).  

Disparities in overall incidence correspond to the current features of the distinct 

city-level microepidemics, and the current level of services available for HIV treatment and 

prevention. Most notably, substantial resources have been devoted to the control of HIV 

in NYC and Seattle, which have aggressively combatted incidence in the MSM and PWID 

populations, and have led the nation in the expansion of PrEP, particularly for MSM5.  

From a methodological standpoint, we found that some parameters were 

consistently calibrated to the lower/higher end of prior ranges, implying either: (1) the 

model over-/underestimated these parameters; (2) the underlying evidence for the input 

parameters were biased or inconsistent; or (3) the model simply captured the dynamics in 

question too coarsely. For example, the number of homosexual partners were consistently 
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calibrated towards the lower bound of the empirical estimates for White high-risk MSM 

across all cities, while to the upper bound for Black high-risk MSM. This difficulty in closely 

reproducing the racial disparities in HIV incidence among MSM has also been noted in a 

recent modeling study by Goodreau et al54. Further, sexual risk behaviour parameters 

(such as the number of sexual partners and the probability of condom use) and per-

partnership transmission probabilities were more likely to be selected for calibration. 

Collecting additional information on these parameters may help reduce the potential 

opportunity cost from a suboptimal decision. Value of information analysis70,71 can 

estimate a monetary value for additional research to reduce uncertainty in these critical 

domains, and will serve as an important subsequent step in furthering this argument. 

Despite the importance of validating the accuracy of model projections against 

empirical data on outcomes of interest176, external validation has yet to become a standard 

component of the model development process.177 Best-practice guidelines have noted that 

it may not be possible to establish an absolute criteria to assess the validity of a model, 

and that one of the key impediments to standardizing the validation process is the 

availability of target data not previously used to inform the model. In addition, assessing 

how close a model’s predictions fit the external targets remains mostly subjective177, 

particularly when there is a need to incorporating uncertainty of the validation targets (as 

opposed to trying to fit a target to a point estimate). Specifically, determining HIV incidence 

in city-level microepidemics poses challenges; these estimates are typically generated at 

the state-level, and even estimates generated at a higher level of aggregation are subject 

to limitations178. In each of our cities aside from Miami, a majority of the incidence 

predictions used for external validation were within the externally-estimated uncertainty 

range. In a growing epidemic like Miami, and particularly given its relatively low HIV service 

levels, the discrepancy we found between model projections and short-term incidence 

validation targets may reflect the long delay between HIV infection and diagnosis. 

Nonetheless, experts from our SAC confirmed the validity of our model projections for the 

long-term trend of the epidemic in Miami.  

We aimed for comprehensive and transparent reporting of our calibration and 

validation process to enhance the credibility and reliability of our results, hoping that this 

effort can help inform the standardization of methods for model calibration and validation 

and promote better integration of locally-oriented modelling in decision-making. Despite 

existing guidelines on model calibration and validation, substantial subjectivity remains in 
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the process, particularly in the selection of parameters for calibration61,64 and 

determination of the summary measure of model fit when multiple targets are used10,11,36. 

While we adopted the Morris method169 to establish an objective criteria for free parameter 

selection, the technique also substantially improved the efficiency of the calibration. 

Establishing the weight metric for summary GoF is another common challenge, and we 

used the best-worst method179,180 to synthesize information on the preferences of our SAC 

on each target and solve the weight metric from these preferences. Finally, we also 

leveraged the expertise of our SAC to assess the face validity of our 25-year status quo 

scenario projections. The approach proved useful not only in refining the model and its 

estimates, but also in communicating both the functioning and limitations of our model to 

a multidisciplinary audience. It is possible this approach can be further refined and 

extended to include a broader range of public health practitioners and policymakers. 

Our analysis was not without limitations. First, we imposed a relatively simple 

proportional mixing assumption among needle/syringe-sharing contacts, rather than a 

more complex structure that may better approximate PWID networks181. Also, we 

modelled HIV infectivity indirectly through stages of disease progression based on CD4 

cell counts rather than viral load, a limitation we have previously outlined155. However, 

these approximations were consistent with the precision of available evidence and was 

sufficient in replicating the city-level HIV epidemics with a high degree of precision. 

Second, drug resistance is not explicitly modeled, but it has been accounted for in disease 

progression estimates, though resistance levels are stably low and likely to decrease with 

broader access to new medication regimens182. Third, the model is not age-structured. 

Given the existing complexity of the model, adding age strata would increase the number 

of health states substantially, with limited ability to populate these health states with data 

specific to their description. Instead, we restricted the study population to individuals aged 

15-64 to reduce the impact of age on some risk factors. Fourth, we only explicitly modeled 

PrEP among high-risk MSM. This is in line with current guidelines prioritizing PrEP among 

individuals at high risk of infection and previous evidence that PrEP may not be cost-

effective for other populations183-185. Our future work with this model will explore the cost-

effectiveness of PrEP for other risk groups. Fifth, one difficulty associated with the choice 

of a calibration search algorithm such as the Nelder-Mead algorithm is its possibility to 

converge on local optima. To remedy this potential problem, we randomly drew 10,000 

sets of starting values for the algorithm, ensuring the parameter space was adequately 
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covered by the search strategy and substantially improving the likelihood of capturing the 

global optima. We aim to append the 2,000 best-fitting calibrated parameter sets with 

samples for all other uncalibrated parameters (aside from parameters defining initial 

values in each compartment), drawn from their prior distributions to support probabilistic 

sensitivity analysis of our assessments of combination implementation strategies for each 

city64. Lastly, cross-validating this model to assess its structural uncertainty80, remains a 

topic for future research, as comparable city-level models are developed. 

We provided a comprehensive and transparent description for the calibration and 

validation of a dynamic HIV transmission model to six US cities with diverse HIV 

microepidemics. The resulting model projections will serve as status quo scenarios in each 

city to identify optimal combination implementation strategies for the HIV treatment and 

prevention services we have considered in this model, including HIV testing, treatment, 

SSP, OAT and PrEP. We believe this standardized framework can be applied to diverse 

settings and disease areas, further underlining the potential value of this approach. 
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Table 3.1. Specifications for calibration process 

Key elements61 Calibration specifications 

Target Total number of diagnosed PLHIV (2012-2015) 

 MSM: race/ethnicity  

 PWID: total 

 MSM/PWID: total 

 Heterosexual: gender x race/ethnicity 

Annual number of new HIV diagnoses (2012-2015) 

 Total 

 Black/African American  

 MSM 

Annual number of all-cause deaths among PLHIV (2012-2015) 

 Total 

 Black/African American 

 MSM 

Free parameter The set of free parameters for calibration is selected by Morris 
method: randomized one-factor-at-a-time sensitivity analysis to 
identify parameters leading to the most significant uncertainty in 
target outcomes 

Goodness-of-fit metric 
(GoF)  

Weighted mean percentage deviation: target weights 
determined by collecting and analyzing SAC’s preferences using 
best-worst method 

Search algorithm The Latin hypercube sampling is applied to draw multiple sets of 
parameter values from their predefined distributions as the 
simplexes, from which the Nelder-Mead search algorithm was 
performed to optimize the overall GoF metric 

Acceptance criteria The set of parameter values that minimize the GoF metric with 
each simplex seeded 

Stopping rule The same calibration routine is repeated 10,000 times with each 
simplex seeded to derive 2,000 best-fitting parameter subsets 
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Table 3.2. Specifications for validation process 

 

 

Key elements80 Validation specifications 

Internal Extensive checks and evaluations  

 Cross-check on all codes and equations 

 Double-coding force of infection module 

 Extreme scenario analysis 

 Weekly meeting and updates 

External Validation target – new HIV incidence (range) 

 Total 

 MSM and MSM/PWID 

Face Continuous consultation with SAC 

 Evidence synthesis 

 Model development 

Projection outcomes 

 Population dynamics, by race/ethnicity 

 Rate of new infections, overall, by race/ethnicity and by risk group 

 Rate of new diagnoses, overall, by race/ethnicity and by risk group 

 Rate of new infections among MSM, overall and by race/ethnicity 

 Rate of new diagnoses among MSM, overall and by race/ethnicity 
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Table 3.3. Model parameters selected as free-parameters by Morris method 

Common Parameter ATL BAL LA MIA NYC SEA 

1.3 Population Dynamics - Mortality Rate             

PLHIV (CD4 200-499)             

PLHIV (CD4 <200)             

PLHIV - PWID multiplier (CD4 200-499)             

PLHIV - PWID multiplier (CD4 <200)             

2.1 Sexual Risk Behaviors - Number of Sexual Partner Multipliers             

PWID relative to HET             

Decrease in sexual partners post-diagnosis             

2.2 Injection Risk Behaviors             

Injection frequency             

Decreased probability of injection sharing post-diagnosis             

SSP effect on reducing injection sharing       

2.4 Probability of Transmission (per partnership)             

Sex - Female to Male (CD4 ≥500)             

Sex - Female to Male (CD4 200-499)             

Sex - Female to Male (CD4 <200)             

Sex - Male to Female (CD4 ≥500)             

Sex - Male to Female (CD4 200-499)             

Sex - Male to Female (CD4 <200)             

Sex - Male to Male (CD4 ≥500)             

Sex - Male to Male (CD4 200-499)             

Sex - Male to Male (CD4 <200)             

Shared injection (CD4 ≥500)             

Shared injection (CD4 200-499)       

Shared injection (CD4 <200)       

Transmission probability multiplier (Acute HIV)             

ART effect on reducing transmission - Sexual             

ART effect on reducing transmission - Shared Injection             

Condom effect on reducing transmission - Heterosexual Sex             

Condom effect on reducing transmission - Homosexual Sex             

3.1 HIV Testing - Annual Change in HIV Testing Rate             

3.5 HIV Disease Progression  Transition Rate from Acute to Chronic HIV             

City-Specific Parameter ATL BAL LA MIA NYC SEA 

2.1 Sexual Risk Behaviors - Number of Sexual Partners             
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Heterosexual partners, White, Low-risk MSM             

Heterosexual partners, White, High-risk MSM             

Heterosexual partners, Black, High-risk MSM       

Heterosexual partners, Hispanic, High-risk MSM             

Heterosexual partners, Male, White, High-risk HET       

Heterosexual partners, Male, Black, High-risk HET             

Heterosexual partners, Female, White, High-risk HET       

Heterosexual partners, Female, Black, High-risk HET             

Heterosexual partners, Female, Hispanic, High-risk HET             

Homosexual partners, White, Low-risk MSM             

Homosexual partners, Black, Low-risk MSM             

Homosexual partners, White, High-risk MSM             

Homosexual partners, Black, High-risk MSM             

Homosexual partners, Hispanic, High-risk MSM             

2.1 Sexual Risk Behaviors - Condom Use Probability             

Heterosexual, Male, White, High-risk HET             

Homosexual, Male, White, Low-risk MSM             

Homosexual, Male, Black, Low-risk MSM             

Homosexual, Male, Hispanic, Low-risk MSM             

Homosexual, Male, White, High-risk MSM             

Homosexual, Male, Black, High-risk MSM             

Homosexual, Male, Hispanic, High-risk MSM       

2.1 Assortativeness of Heterosexual Partnership Paring, High-risk Black             

3.2 ART Initiation             

Proportion linked to care post-diagnosis (CD4 ≥500), Male, Black, PWID             

Proportion linked to care post-diagnosis (CD4 ≥500), Female, Black, PWID       

ATL: Atlanta; BAL: Baltimore; LA: Los Angeles; MIA: Miami; NYC: New York City; SEA: Seattle; Shaded cells represent parameters selected for 
calibration.  
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Figure 3.1. Model schematic diagram 
The schematic shows the 19 compartments that constitute each of the 42 population groups in the model. A key for the symbols denoting transitions 
within the model is available in the Supplementary Appendix.  
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Figure 3.2. Model fit of new diagnoses for calibration 
(A) ATL: Atlanta; (B) BAL: Baltimore; (C) LA: Los Angeles; (D) MIA: Miami; (E) NYC: New York City; (F) SEA: Seattle; 95% CI: 95% credible interval. 
MSM: men who have sex with men (excluding MSM-PWID)  
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Figure 3.3. Model external validity and status quo projections for the rate of new incidence 
Year 2012-2015: calibration period; Year 2016-2040: projection period; Year 2021-2040: evaluation period. (A) ATL: Atlanta; (B) BAL: Baltimore; (C) 
LA: Los Angeles; (D) MIA: Miami; (E) NYC: New York City; (F) SEA: Seattle.
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Chapter 4.  
 
Prioritizing additional data collection to reduce decision 
uncertainty in the HIV/AIDS response in 6 US cities: a value 
of information analysis 

Background: The ambitious goals of the US “Ending the HIV Epidemic” will require a 

targeted, context-specific public health response. Model-based economic evaluation provides 

useful guidance for decision-making but is subject to uncertainty. Objectives: To quantify the 

value of collecting additional data to reduce decision uncertainty in selecting combination 

implementation strategies to reduce the public health burden of HIV/AIDS in 6 US cities. 

Methods: We used a dynamic compartmental HIV transmission model developed for 6 US cities 

to evaluate the cost-effectiveness of a range of combination implementation strategies. Using a 

metamodeling approach with nonparametric and deep learning methods, we calculated the 

expected value of perfect information (EVPI), representing the maximum value of further data 

collection to eliminate decision uncertainty, and the expected value of partial perfect information 

(EVPPI) for key groups of parameters that would be collected together in practice. Results: The 

population EVPI ranged from $59,683 (Miami) to $54,108,679 (Los Angeles). The rank ordering 

of EVPPI results on key groups of parameters were largely consistent across cities and highest 

for parameters pertaining to HIV risk behaviors, probability of HIV transmission, health service 

engagement, HIV-related mortality, health utility weights and health care costs.  Los Angeles was 

an exception, where parameters on retention in pre-exposure prophylaxis ranked highest in 

contributing to decision uncertainty. Conclusions: Funding additional data collection on 

HIV/AIDS may be warranted in Baltimore, Los Angeles and New York City. Value of information 

analysis should be embedded into decision making processes on funding future research and 

public health intervention. 
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4.1. Introduction 

Despite over $20B of annual federal funding directed towards the domestic HIV/AIDS 

response, 38,000 new cases were diagnosed in 2017 in the USA186,187. The recently announced 

“Ending the HIV Epidemic: A Plan for America” initiative has set ambitious goals to reduce new 

HIV infections by 75% within 5 years and by 90% within 10 years188. Achieving these goals 

necessitates “an infusion of resources to employ strategic practices in the right places targeted to 

the right people to maximize impact and end the HIV epidemic in America”188. While a range of 

tools to end the HIV epidemic are available, resources – both financial and human – are scarce 

and compete with other priorities outside HIV13.  

As the global public health response moves towards localized combination implementation 

strategies to combat HIV/AIDS11-13,99, economic models are increasingly used to inform health 

decision-making in the care and prevention of HIV/AIDS. They provide a unified framework to 

quantify the health and economic value of different strategies while accounting for their synergistic 

effects34,35,89. Adequately characterizing city-level HIV microepidemics in a simulation modeling 

framework is data-intensive, particularly given the substantial disparities in access to services and 

health outcomes observed across HIV risk and race/ethnic groups in the US189. The inherent 

uncertainty in estimating many of the required parameters, which span population composition 

and dynamics, health service engagement, disease progression, HIV transmission, cost and utility 

weights151,189, may obscure value-based recommendations and lead to potentially suboptimal 

decisions.  

The US has invested in a range of multi-site surveillance studies that provide vital 

information for simulation modeling, including HIV risk behaviors from the National HIV Behavioral 

Surveillance (NHBS); ART surveillance data from Medical Monitoring Project from the US Centers 

for Disease Control and Prevention (CDC) and clinical data from the HIV Research Network151. 

Nonetheless, our previous study found a paucity of representative, high-quality local 

administrative data, particularly on rates of HIV testing and ART engagement151. This is in many 

cases due to structural barriers where data are either not systematically collected or organized in 

isolated silos, creating barriers to access and linkage with other data sources190. The 

infrastructure to facilitate data collection is costly to construct, and not all model parameters will 

impact recommendations equally. Efforts to collect additional data should focus on those with the 

most potential to reduce uncertainty in funding allocation decisions191. 
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Value of information (VoI) analysis quantifies the opportunity cost of acting on suboptimal 

recommendations due to model uncertainty. It also helps guide efforts to ensure the limited 

resources available for data collection are focused on the most influential parameters for a given 

decision70. Expected value of perfect information (EVPI) and expected value of partial perfect 

information (EVPPI) estimate the value of eliminating uncertainty from all parameters jointly and 

from a subset of parameters respectively, providing guidance for setting research priorities. The 

conventional approach to EVPPI is based on a nested Monte Carlo procedure that is 

computationally costly, particularly for a complex model with many competing 

interventions75,192,193. Metamodeling, a tool that simplifies the relationship between the inputs and 

outputs of a simulation model74, has been increasingly used as an alternative method to expedite 

value of information analysis192,194. A previous EVPPI analysis using a metamodeling approach 

shortened the computation time from weeks to minutes while consistently yielding similar 

estimates75. 

On the basis of a comprehensive evidence synthesis151; a systematic model calibration 

and validation195; and an extensive economic evaluation of 16 evidence-based interventions 

individually67 and in combination69 for 6 US cities with diverse HIV microepidemics, we identified 

combination strategies to address the HIV/AIDS epidemic in each city along with uncertainty 

underlying the selection of the optimal (highest-valued) strategy. A decomposition of the sources 

of this uncertainty, coupled with a judgement on the value of eliminating it in each setting, can 

guide future research efforts focused explicitly on reducing decision uncertainty. Our objective is 

to quantify the value of collecting additional data to eliminate decision uncertainty regarding the 

cost-effectiveness of HIV combination implementation strategies in six US cities. We also aimed 

to identify future research priorities through EVPPI analysis on key groups of uncertain 

parameters using a metamodeling approach with advanced regression techniques. 

4.2. Methods 

4.2.1. Model Description 

We adapted a previously published dynamic compartmental HIV transmission 

model156,157,195,196 to simulate the HIV microepidemics in six US cities: Atlanta, GA; Baltimore, MD; 

Los Angeles (LA), CA; Miami, FL; New York City, NY; and Seattle, WA. Each city features distinct 

epidemiological characteristics and public health responses to HIV99. In the model, the adult 

population aged 15-64 in each city was partitioned by biological sex, HIV risk group, race/ethnicity, 
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sexual risk behavior level (high- vs. low-risk), and access to opioid agonist treatment among 

people who inject drugs (42 population groups). Individuals within each group progress through 

19 health states illustrated in Appendix C Figure A1. We considered dynamic HIV transmission 

through heterosexual contact, homosexual contact or needle sharing. The model captured 

heterogeneity in the risk of HIV transmission, maturation, mortality, and accessing health and 

prevention services. Full details about the model are available in prior articles67,69,195. 

The model’s input parameters were grouped in seven categories: (1) Initial population 

estimates and population dynamics [N=1,074]; (2) parameters used to calculate the probability of 

HIV transmission [N=201]; (3) screening, diagnosis, treatment and HIV disease progression 

[N=312]; (4) HIV prevention programs [N=23]; (5) the costs of medical care [N=30]; (6) health 

utility weights [N=26]; and (7) intervention parameters (e.g. effect, scale of delivery and cost) 

[N=184]. The derivations, point estimates, uncertainty distributions and quality of evidence were 

reported for all model parameters in a manuscript detailing the evidence synthesis for this 

project67,151. For parameters with lower quality of evidence, we allowed greater variability, 

including wider uncertainty ranges or imposing more dispersed distributions (e.g. uniform or pert 

distribution)60. Although parameters were assumed to be independent, for potentially correlated 

parameters with an empirically established rank ordering (e.g. quality-adjusted life year (QALY) 

weights, costs for different health states), we used a recently-proposed method68 to establish joint 

uncertainty distributions from parameters’ marginal distributions and their ordinal preferences. 

4.2.2. Cost-effectiveness analysis 

We evaluated the cost-effectiveness of 16 evidence-based HIV interventions and their 

combinations within three domains: HIV prevention, including Syringe Service Program, 

medication for opioid use disorder (MOUD), either buprenorphine or methadone, targeted PrEP 

for high-risk men who have sex with men (MSM); HIV testing, including opt-out testing in the 

hospital emergency room and in primary care, electronic medical record (EMR) testing offer 

reminder, nurse-initiated rapid testing, MOUD initiated rapid testing; and Treatment 

engagement, including case management (ARTAS) for ART initiation, care coordination for ART 

retention, targeted care coordination (CD4<200), EMR ART engagement reminder, RAPID ART 

initiation, enhanced personal contact for ART re-initiation, ART re-linkage program. We 

considered combinations of the 16 interventions for each city, excluding any that would not 

practically be implemented jointly, for a total of 23,040 unique combinations. After identifying 

those that produced the greatest health benefits while remaining cost-effective69, we conducted 
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probabilistic sensitivity analysis by comparing the selected strategies against those producing the 

most proximal value to quantify uncertainty in the recommended strategy. For practical reasons, 

these analyses were based on initially-calibrated parameter sets and did not incorporate 

uncertainty from initial population estimates. 

Consistent with our previous studies, we maintained the same evaluation time horizon of 

20 years (2020-2040) to capture the long-term individual benefits of ART and 2nd-order 

transmission effects. All costs were reported in 2018 US dollars, and we chose a base cost-

effectiveness threshold of $100,000/QALY while varying this threshold in three discrete levels 

($50,000/QALY, $100,000/QALY, and $150,000/QALY) for EVPI analysis. Decisions were made 

by choosing the strategy 𝑖 with the highest net monetary benefit (NMB), as estimated by: 

𝑁𝑀𝐵𝑖 = 𝑄𝐴𝐿𝑌𝑖 × 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝐶𝑜𝑠𝑡𝑖 

4.2.3. Probabilistic Sensitivity Analysis 

The probabilistic sensitivity analysis (PSA) dataset for input parameters was constructed 

by randomly sampling all uncertain parameters (including initial population estimates) 

simultaneously from their prior distributions or fitted joint distributions. The PSA dataset also 

contains the estimated total costs and QALYs associated with each combination implementation 

strategy resulting from each set of the PSA inputs (representing one PSA simulation). As a vast 

majority of the over 23,000 competing strategies we estimated had a zero or near-zero probability 

of being the health-maximizing strategy for a given threshold, we performed PSA only on the 

subset of combination implementation strategies with a non-zero probability of selection. 

4.2.4. Value of Information Analysis 

VoI analysis provides a systematic approach to quantify the value of research in reducing 

decision uncertainty. EVPI represents the maximum a decision maker should be willing to pay to 

eliminate uncertainty from all model parameters. For a given cost-effectiveness threshold, we first 

evaluated and ranked the NMB of all combination strategies keeping all input parameters in their 

point estimates as the base case (deterministic) and identified the 25 combination strategies with 

the highest NMB for each city. We then generated 2,000 sets of PSA model inputs, conducted 

PSA on these 25 highest-valued strategies and estimated their corresponding NMB. We chose 

25 to make the problem tractable given computation limitations and the final number was 
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determined through an iterative process: at each threshold level, we gradually expanded the 

inclusion of top-ranked strategies from 5 to 25 in an increment of 5 while assessing their 

probabilities of being the highest-valued in the 2,000 PSA simulations. We proceeded the process 

until we found that strategies with deterministic NMB ranked below 20 had nearly zero probability 

to be selected as optimal. We then calculated the opportunity loss for a given simulation as the 

difference of NMB between the optimal strategy (i.e. with highest NMB) in a given simulation and 

the overall optimal strategy - the combination strategy with the highest expected NMB across all 

simulations. Finally, EVPI was estimated by averaging the opportunity loss across all simulations. 

Given that our model is developed at the population level, the computed EVPI directly represents 

a population estimate, thus requiring no extrapolation. We also expressed this uncertainty as a 

cost per million residents to clarify relative differences across cities. 

EVPPI provides an estimate of the value of eliminating uncertainty for specific parameters 

or groups of parameters. The value of collecting additional information for particular parameters 

depends on both their influence on the cost-effectiveness of competing strategies and the extent 

of its uncertainty197. Using a metamodeling approach192,194, we modeled the opportunity loss of 

each strategy (same as in EVPI) as a function of the parameters of interest at the base threshold 

of $100,000/QALY. We adopted two advanced metamodeling methods with a generalized 

additive model (GAM) and a deep learning artificial neural network (ANN) model to approximate 

the inner expectation of the conventional nested Monte Carlo approach75,192,193. In simulation 

models like ours where the relationship between opportunity loss and parameters is non-linear, 

these methods provide highly flexible functions requiring no parametric assumptions and are 

found to outperform linear modeling approaches198,199. The GAM is efficient and more 

straightforward to implement with high precision, but is constrained by the size of regression 

parameters because the required PSA sample size increases exponentially192. We therefore used 

GAM for each individual parameter and the ANN model, which can approximate complex, non-

linear relationships in data with high dimensionality, to estimate the full EVPPIs for parameters in 

groups. Given the large number of input parameters, we required a larger number of PSA runs to 

avoid overfitting and achieve more precise EVPPI estimates. The outputs from GAM for each 

individual parameter were used to inform the selection of key groups of parameters for ANN 

metamodel analysis. Following a procedure displayed in Figure 4.1, we expanded the PSA 

samples to 20,000 and performed EVPPI analysis with the two aforementioned methods. We then 

compared the resulting EVPPI estimates to inform targets for prioritizing future data collection. 

We constructed the ANN for each metamodel with 4 hidden layers and 10 hidden nodes per layer 
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to prevent overfitting200. To address the randomness in generating initial weights for the ANN 

algorithm, we repeated each estimation ten times and averaged the results for the final EVPPI 

values. We described the process for result validation and tuning for the ANN model in detail in 

Appendix C.  

4.3. Results 

4.3.1. Uncertainty in cost-effectiveness 

Results from our PSA demonstrate that the optimal combination implementation 

strategies, i.e. the strategies with the highest NMB, varied across cities and at different thresholds 

(Figure 4.2). The number of individual interventions comprising the highest-valued strategies 

increased with threshold levels and were mostly concordant at the highest thresholds. We found 

that the level of uncertainty generally decreased with higher cost-effectiveness thresholds in all 

cities. At the base threshold of $100,000/QALY, the probability of the most probable strategies to 

be highest-valued ranged from 30% (LA) to 56% (Atlanta). This uncertainty may result in 

opportunity costs due to acting on the suboptimal decision and is strongly associated with the 

magnitude of EVPI and EVPPI. 

4.3.2. Expected value of perfect information 

Figure 4.3 shows the EVPI for each city at different cost-effectiveness thresholds. EVPI 

values became smaller with increasing threshold levels when the decision uncertainty was 

reduced, except for LA. The large increase in EVPI for LA from $50,000/QALY to $100,000/QALY 

reflected uncertainty surrounding the inclusion of PrEP in the combination implementation 

strategy (an effective yet very costly strategy) at the higher threshold. At a threshold level of 

$50,000/QALY, the city-level EVPI ranged from $802,370 (Miami) to $ 17,251,221 (New York 

City). When the threshold was $100,000/QALY, the city-level EVPI was found to be small in Miami 

($59,683), Atlanta ($92,684), and Seattle ($340,439) and relatively greater in Baltimore 

($1,348,364), New York City ($7,649,541), and LA ($54,108,679). Per individual EVPI, after 

standardizing with city population size, was highest in LA ($8,009,105 per million residents) and 

lowest in Atlanta ($20,880 per million residents). 
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4.3.3. Expected value of partial perfect information 

We presented in Appendix C Figure A2 the distribution of EVPPI values we estimated at 

a threshold of $100,000/QALY from metamodeling analysis with a GAM on each individual 

parameter for each city. Many parameters were found to have an EVPPI of $0, implying acquiring 

additional information on them is unlikely to impact the allocation decision. We found a high 

degree of consistency across cities on the parameters that were most influential on decision 

uncertainty and we grouped them accordingly: (1) mortality rate estimates for people living with 

HIV (PLHIV), stratified by injection drug use status and ART receipt (N=58); (2) the probability of 

immediate ART engagement (within 1 month of diagnosis) (N=15); (3) the rate of ART initiation 

(N=15); (4) the rate of ART dropout (N=54); (5) the number of sexual partners, both heterosexual 

and homosexual (N=25); (6) HIV transmission probabilities per heterosexual partnership (N=6); 

(7) HIV transmission probabilities per homosexual partnership (N=3); (8) HIV transmission 

probabilities per shared injection contact (N=3); (9) the HIV testing rate across strata (N=30); (10) 

QALY weights (N=11); and (11) health care costs for individuals receiving ART (N=18) (Appendix 

C Table A1). Some additional groups of influential parameters specific to individual cities included 

injection frequency among people who inject drugs and the effectiveness of SSP in reducing the 

probability of shared injection (Atlanta, Baltimore and Miami) and the PrEP retention rate (LA). 

Figure 4.4 compares the EVPPI for these key groups of parameters, showing that the value of 

information associated with reducing parameter uncertainty was highest for the number of sexual 

partners (ranged from $36,695 in Miami to $19,619,277 in LA),  the probability of immediate ART 

engagement (ranged from $32,380 in Miami to $8,660,878 in LA), and HIV testing parameters 

(ranged from $34,094 in Miami to $9,665,386 in LA) except in LA where the EVPPI for PrEP 

retention rate ($22,861,668) exceeded all other parameters. 

4.4. Discussion 

We performed a VoI analysis to determine the potential value of additional data collection 

in reducing decision uncertainty on the cost-effectiveness of localized HIV combination 

implementation strategies in six US cities. The high EVPIs we estimated for Baltimore, New York 

City and LA suggest there is substantial value in further data collection to reduce decision 

uncertainty in these cities. Through an extensive EVPPI analysis, we identified the primary 

contributors to the uncertainty in these decisions and recommended further data collection on HIV 
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risk behaviors, probability of HIV transmission per sexual partnership or shared injection contact, 

health service engagement, HIV-related mortality, health utility weights and health care costs. 

The low EVPI values we estimated for Atlanta, Miami and Seattle at a $100,000/QALY 

threshold were a result of their relatively smaller populations and lower levels of decision 

uncertainty. Although this may suggest that funding further data collection may not be justified, 

these findings should be interpreted with caution as they reflect the current status of a given 

microepidemic (and our knowledge of it) and thus may change over time. For example, the current 

high incidence of HIV in Miami makes most interventions highly cost-effective despite substantial 

uncertainty in expected costs and benefits of implementation. However, if incidence declines in 

the future, the probability of a suboptimal implementation decision – and accordingly, the EVPI, 

will increase. EVPI calculations should thus be updated alongside prospective modeling efforts. 

EVPPI analysis provides insight into the value of reducing uncertainty for model 

parameters that are most influential to decision uncertainty. We identified several key groups of 

parameters that were consistently detected as potential targets across cities for future research, 

including HIV risk behaviors; probability of HIV transmission; health service engagement; HIV-

related mortality; health utility weights; and health care costs (for PLHIV on ART). Many model 

parameters within these groups were also found to be highly influential on epidemiological targets 

in a global sensitivity analysis in our previous model calibration work195. The value of other 

parameters was low or negligible. This does not mean that their uncertainty is unimportant, but 

that gathering more accurate information about these parameters would be unlikely to help us 

reduce decision uncertainty and narrow the ultimate decision. In particular, improving estimates 

on the rate of PrEP retention was valued at over $20 million in LA but was negligible in other 

cities. Though effective in preventing HIV transmission, PrEP is a costly intervention whose value 

is highly dependent on recipients’ persistence201. However, in all cities except LA, this intervention 

had either 100% or 0% probability of entering as a component in the optimal strategy and thus 

had negligible impact on decision uncertainty, resulting in a stark contrast in valuation of EVPPI. 

Collectively, parameters pertaining to the number of sexual partners contributed to a high 

degree of decision uncertainty across all cities. The importance of these behavioural parameters 

has also been noted in many prior modeling studies202,203. Our current model parameter values 

were informed by evidence from NHBS158 and the National Survey of Family Growth (NSFG)160. 

Although these population-based surveillance databases provide the best available evidence on 

this topic, these surveys featured several threats to internal and external validity that could 
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potentially be improved upon with greater investments. For example, NSFG only provided 

regional rather than city-level data while in NHBS, where city-specific data were available, sample 

sizes for some population groups were small, resulting in wide uncertainty ranges. Equally 

importantly, the framing of the survey questions did not always correspond to how the model 

parameters in this particular application were encoded, which may have inevitably introduced 

additional uncertainty from data triangulation. Enhancing behavioural evidence on the basis of 

current surveillance system should focus on subpopulations with high risk behaviours204. An 

ongoing project may provide an example for a multi-site community-engaged study that engages 

a high-coverage sample of MSM recruited using respondent-driven sampling205. Notably, in this 

application researchers also applied standardized adjustment methods to generate population-

representative estimates206. 

Health service engagement was another parameter category found to be influential. Good-

quality evidence for population-level HIV testing rates in the US is sparse. We derived these 

testing parameters from NHBS207,208, the Behavioral Risk Factor Surveillance System209, and 

other sources in the peer-reviewed literature. Further, in the absence of city-specific data, ART 

engagement parameters were derived from corresponding regional HIVRN data210 and 

corresponding primary analysis211. These data, available from sample-based studies in selected 

sites, may have been unrepresentative of the general population. Establishing a centralized public 

health database to systematically collect and combine surveillance and health administrative data 

across different jurisdictions and agencies could substantially reduce the bias and uncertainty of 

population-level evidence. Although CDC is making efforts to enhance the collection, analysis, 

visualization, and dissemination of its surveillance data, challenges exist in coordinating 

information sharing, developing a broader surveillance workforce, and building health information 

systems to integrate data collected from various parties212-214. 

Although several modern methods have been developed to replace the conventional 

nested Monte Carlo procedure in VoI estimation194, few applications using dynamic transmission 

models have been published75. Further, this study presents one of the few examples of applying 

advanced metamodeling approaches, including a deep learning method, in estimating the EVPPI 

for large groups of parameters and many competing strategies. We demonstrated a pragmatic 

approach in applying VoI analysis while maintaining a high level of rigor. We also found limited 

guidance on several critical steps of VoI analysis. One question we encountered was whether to 

include calibrated parameters with their posterior calibrated values or their prior uncertainty 

ranges in the PSA. We chose the latter option as we felt that the calibration process may arbitrarily 
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shrink decision uncertainty attributable to these parameters. We note that this was a departure 

from our prior analysis69, and explains the differences in the PSA results presented herein.  

This analysis has several limitations. First, the procedure we undertook to only perform 

PSA on a subset of the highest-valued combination strategies identified in the deterministic base 

case might inevitably omit several strategies that had very small probabilities of being chosen as 

optimal. We felt these omissions had a negligible impact on the VoI while significantly improving 

computational efficiency in this application. Second, we did not consider potential developments 

in HIV interventions. Emerging evidence, which may comprise longer-acting ART and PrEP 

formulations or substantial cost reductions from the introduction of generic formulations could 

alter the VoI estimates. Third, we did not attempt to calculate the expected value of sample 

information, which can extend the findings of EVPPI analysis to generate a value of reducing the 

uncertainty for a specific study design and sample size. This remains a topic for further inquiry. 

Finally, the structural uncertainty attributable to our model was outside the scope of this VoI 

analysis, which focuses explicitly on parameter uncertainty. As decisions about model structure 

may also influence decision uncertainty, cross-model comparisons can provide a robust validation 

of the recommendations of a given model and highlight additional priorities on the nature of data 

that should be incorporated to reduce decision uncertainty. 

4.5. Conclusion 

We found uncertainty on the combination implementation strategies that would be most 

cost-effective for HIV prevention. This uncertainty is associated with high opportunity cost where 

benefits are highly likely to outweigh the cost of future research to improve parameter precision 

in three out of six cities we considered in this project. To refine decision making for HIV, priority 

should be given to data collection on the identified key groups of parameters. Value of information 

analysis, combined with other information, such as the feasibility, relevance and the cost of future 

research, should be embedded into decision making processes on funding and identifying targets 

for data acquisition efforts.
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Figure 4.1. Flowchart depicting the process of the expected value of partial perfect information analysis 

PSA: probabilistic sensitivity analysis; EVPI: expected value of perfect information; EVPPI: expected value of partial perfect information; 
GAM: generalized additive model; ANN: artificial neural network. * Key groups of parameters were defined by having at least one 
parameter whose EVPPI > (0.05 x EVPI) and groupings were based on parameters’ content and whether the information would likely 
be collected jointly in practice. 
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Figure 4.2. The selected optimal combination implmentation strategies 
(A) The probabilities of competing combination strategies representing the highest value 
at different cost-effectiveness thresholds. QALY: quality-adjusted life year.
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(B) The composition of the optimal combination implementation strategies at different cost-
effectiveness thresholds. MOUD: Medication for opioid use disorder; PrEP: Pre-exposure prophylaxis; 
MSM: Men who have sex with men; ER: Hospital emergency room; EMR: Electronic medical records; 
ART: antiretroviral therapy.
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Figure 4.3. The city-level expected value of perfect information under different cost-effectiveness thresholds 
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Figure 4.4. The city-level expected value of partial perfect information for identified parameter groups 
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Chapter 5.  
 
Conclusion 

This final chapter provides an overview of the research findings and contributions 

to the literature of this thesis, its limitations, as well as methodological and clinical 

implications for model developers, users and policy makers. The chapter concludes by 

identifying areas of future research which could improve, extend, or deepen the research 

presented in this thesis. 

5.1. Overview of thesis findings 

The overarching aim of this thesis was to provide methodological advances in 

decision-analytic modeling in HIV/AIDS, with a focus on model design, the quality of 

supporting evidence, calibration, validation and analysis of uncertainty. Study findings 

provide a tool to assess various HIV interventions and identify targets for future data 

collection efforts. In this thesis, a comparative review of HIV decision analytical models 

used in health decision-making was performed, with a focus on structural designs and 

data quality. Following that, a dynamic compartmental HIV transmission model was 

developed, systematically calibrated and validated to replicate the diverse microepidemics 

across six US cities. This framework can be used to evaluate a variety of HIV interventions 

and their combinations. One application of this model was then demonstrated by an 

extensive value of information analysis to quantify decision uncertainty attributable to all 

uncertain parameters and specific groups of input parameters, results that are most 

informative for setting priority for future research and data collection efforts. 

5.1.1. Chapter 2 – Modeling review 

Various decision analytical models of HIV were built for different purposes, while 

little discussion was found on what constitutes a good model design, and high-quality 

evidence for different components of an HIV model. There is also a paucity of standardized 

guidelines for data identification and quality assessment, with key population-based 

surveillance and health service data not always available in many settings. In Chapter 2, 
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we performed an in-depth methodological review of a selection of 19 HIV models used to 

facilitate healthcare decision making, focusing on the structural design and quality of 

evidence supporting the four fundamental structural components and two analytical 

components of a model. Our goal was to provide explicit discussion on the choice of model 

structure and data quality as well as implications of these choices for model developers 

and to inform targets for data collection. To facilitate evidence quality assessment, we 

developed a two-dimensional quality assessment framework for HIV simulation modeling 

considering both the internal and external validity of input data. This framework can 

contribute to the development of more standardized approaches to identifying and 

assessing the quality of model inputs during model development and critical review. This 

framework has been applied in our current HIV economic modeling project to guide 

evidence synthesis, quantify input data quality distribution and identify key domains for 

uncertainty analysis. The applicability of this framework can also expand beyond HIV 

modeling and is useful for other disease areas too. Our review found consistency in model 

structure but wide disparities in the quality of supporting evidence. Some key findings 

include that HIV testing, an essential HIV control service and strategy, was not explicitly 

modeled in many of the reviewed models, which may constrain a model’s capacity to 

construct effective combination implementation strategies. We also found issues with the 

transparency of data reporting regarding the source and selection (e.g. data used to define 

initial population), as well as the unavailability of heath services data (e.g. HIV testing, 

treatment engagement). We believed that models should only be sufficiently complex to 

address the policy question and key epidemiological features. However, when designing 

a model, careful consideration should also be given to the availability and quality of data. 

From the perspective of evidence quality, we recommended to integrate reporting and 

assessing input data quality in modeling to improve its replicability, which was often absent 

in current CEA modeling studies. Based on that, model developers should also perform 

formal assessment of the influence of poorer-quality data on model inferences.  

Current guidelines on evidence synthesis are primarily limited to RCT data and 

standard meta-analysis techniques to inform the main clinical effects105,215. However, 

decision models are typically built using parameters from a wide range of evidence 

sources where there is less consensus on the hierarchy of evidence and synthesis 

methods105,106. The development of generalized guidelines is feasible and should focus on 

the quality of the data identified for use within the model, the methods used to incorporate 
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the data into the model and the transparency of reporting216. The creation of a 

standardized checklist emulating CHEERS may improve the reporting of evidence 

selection, quality ranking, valuation and synthesis/triangulation to allow detailed 

evaluation and replication of the model. The proposed quality assessment framework can 

be used as a template to design more tailored criteria according to the disease or decision 

question and corresponding input data requirements. 

5.1.2. Chapter 3 – Model calibration and validation 

Based on the implications from Chapter 2 and a comprehensive evidence 

synthesis, we adapted and extended a previously-published model to replicate the 

transmission, progression and clinical care for the six HIV microepidemics in the US. The 

developed model featured the heterogeneity in the risk of HIV infection and access to 

various health services across different population groups (gender, ethnicity, and risk 

behaviour). Nevertheless, models are based on scientific abstraction of reality, simplifying 

assumptions and input data with different levels of uncertainty that entails an assessment 

of the congruence between model results and observational data or expert opinion. 

Despite existing guidelines on model calibration and validation, substantial subjectivity 

remains along many steps in the process. In Chapter 3, in addition to a transparent and 

comprehensive description of our developed model, we detailed our process for calibration 

and validation following methodological guidelines and explicitly provided justifications for 

each methodological decision (e.g. choice of free parameters, GoF measure), with the 

goal to improve the objectivity and replicability of the framework. We made substantial 

efforts to ensure the rigor, comprehensiveness and transparency throughout this study 

that was beyond current standards on many fronts. In particular, in calibration, we found 

sparse guidance on the selection of parameters for calibration and determination of the 

summary GoF when multiple targets are to be fit62,63,171. Two innovative approaches were 

employed to address these challenges: Morris method, an efficient and flexible global 

sensitivity analysis method used to identify the most influential parameters necessitating 

calibration; the best-worst method, an easy-to-implement tool to assign target weighting 

based on experts’ preferences elicited from a brief and intuitive questionnaire. Despite its 

usefulness, robustness and lower requirement for comparison data, challenges existed in 

performing pairwise comparisons of BWM to quantify a qualitative measure of relative 

importance between many targets where no best practice is available. We carefully 
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designed the survey to be well-structured and intuitive and invited multiple experts with 

substantial insight over local epidemics to complete the survey. We then averaged the 

results to generate more reliable and credible target weight vector to guide our calibration 

work. Another practice worth highlighting was the involvement of a Scientific Advisory 

Committee in providing valuable insights throughout the exercise. Our calibrated model 

provided an excellent fit to the calibration targets across cities. Long-term status quo 

epidemiological projections were confirmed by our advisory committee and were designed 

to serve as a ‘status quo’ comparator in assessing the incremental value of combination 

implementation strategies to address the unique HIV microepidemic in each city.   

5.1.3. Chapter 4 – Value of information 

Value of information analysis has been increasingly recommended for analyzing 

model uncertainty to guide decisions on funding future research and data collection 

efforts217. Despite these useful features of VoI analysis, its uptake in health economic 

evaluation remains low. VoI analysis has been hindered by two main factors. First, the 

concept and interpretation of the expected value of information is not straightforward nor 

well-understood and thus is rarely used to inform real-world decision-making218. The 

second barrier comes from the computational challenges in performing VoI analysis, 

particularly in the estimation of EVPPI and EVSI for complex models219,220. Many new 

approaches have emerged to reduce this computational burden and more recent studies 

have used a metamodeling approach to provide good approximation for the value of 

information198. Given the substantial uncertainty underlying model inputs and decision 

regarding the most cost-effective combination strategies in our previous studies, in 

Chapter 4 we performed a VoI analysis calculating both the EVPI and EVPPI to ascertain 

the value and priority for future data collection for each city. The metamodeling approach 

with generalized additive modeling and deep neural network modeling we employed in 

this study has considerably improved the efficiency of our analysis on evaluating more 

than 20,000 different combinations within a complex modeling framework while relaxing 

the assumptions of net monetary benefit normality and model linearity198, otherwise 

required by a linear metamodel. Our VoI analysis demonstrated that, in three out of the 

targeted six cities, decision uncertainty and associated opportunity cost is high where 

benefits of future data collection to improve parameter precision are highly likely to 

outweigh the cost. Priority should be given to data collection on parameters pertaining to 
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HIV risk behaviours, probability of HIV transmission, health service engagement, HIV-

related mortality, QALY weights and health care costs. Questions remain about to what 

extent these VoI results are transferable across settings. For parameters that were based 

on common evidence and generalizable across epidemiological contexts, e.g. 

transmission probabilities, it may be reasonable that the localized EVPPI values should 

be summed to represent the true value of collecting further data on these parameters. 

With the advances in more efficient and accurate methods, we made the case that VoI 

should be embedded into decision making processes on funding future research and 

identifying key areas where data acquisition efforts can be worthwhile. 

5.2. Limitations 

The component studies comprising this thesis had several limitations, the 

implications of which we have considered carefully. First, the review of HIV simulation 

models in Chapter 2 was not systematic. Unlike previous systematic reviews of HIV 

modeling or economic evaluations, our review did not focus on any specific interventions, 

subpopulations or regions, while given the breadth and depth of this review, conducting a 

full systematic review was practically infeasible. We maintain that a narrative review is 

most practical, and appropriate for our aims. Through reviewing a selection of highly 

influential models, representing various typologies, geographic and application contexts 

currently used in practice, our goal was to underline areas of consensus and divergence 

on key aspects of model development. Second, the quality assessment framework we 

developed in the review and used in our own economic modeling can be improved. 

Currently the internal validity of the evidence was only assessed by the study design, 

rather than a full investigation of the quality of source study. Given the potentially large 

number of input parameters in a given model, this limited assessment is most practical 

and can greatly improve the rigor of modeling practice. Nonetheless, when identifying or 

assessing key model inputs, such as intervention effect size, we deem it necessary to 

apply greater scrutiny to the source study (e.g. sample size, existence of bias) according 

to evidence guidelines. 

In chapter 3, we have noted some structural limitations of the dynamic 

compartmental model. We also identified a challenge in the use of models to guide 

prospective decision making, which was not only limited to our model: the projections and 
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cost-effectiveness results of a model only represent our assessment of the intervention 

scenarios based on historical trends and knowledge, while the HIV epidemic is dynamic 

and constantly changing, which may pose challenges and uncertainty for the long-term 

valuation of a given intervention. For example, while HIV transmission among drug users 

had been well controlled in Seattle in the past decade, the recent spike in HIV diagnoses 

among drug users in 2018221 was difficult to capture in our model that was calibrated to 

2012-2015 data. We therefore intend to keep updating the model when new data become 

available to make our analysis as timely and practical as possible, however the lags in 

surveillance data collection is an obstacle for any attempts at forward-looking modeling 

analyses.  

Despite a comprehensive evidence synthesis, some model parameters were 

informed by less-than-ideal evidence, as high-quality data were not always available. This 

issue was particularly prominent in the US, compared to our previous modeling studies in 

British Columbia155-157. Some surveillance and epidemiological data were either 

unavailable (HIV testing numbers), or collected within non-representative samples (e.g. 

behavioral data). This parameter uncertainty may translate into greater uncertainty in the 

ultimate decision. To address this, we employed a systematic approach in model 

calibration and validation to ensure the consistency between model projections and 

observed targets. We also conducted an extensive probabilistic sensitivity analysis in our 

current health economic evaluation (although not presented in this thesis), where we 

combined the 2,000 best-fitting calibrated parameter sets (for the selected free 

parameters) with 2,000 random samples for all other uncalibrated parameters, drawn from 

their prior distributions, to comprehensively explicate result variability from both calibration 

and PSA. In Chapter 4, we also performed a value of information analysis to disentangle 

decision uncertainty and provide implications for further research to improve estimates for 

key groups of parameters.  

Notwithstanding the extensive uncertainty analysis we performed, model structural 

uncertainty, which also often received very little attention in the economic modeling 

literature222,223, was not formally examined in our studies. Quantifying the uncertainty 

underlying a model’s structural assumptions remains a challenging task that may involve 

a redesign or redevelopment of the model39,224. Although in adapting our model to the US 

context, we strived to incorporate the most appropriate design (with all the lessons learned 

from Chapter 2) to capture the core, driving factors in each microepidemic, cross-model 
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comparisons can help improve the robustness and credibility of model inferences. 

Therefore, in our future investigation, we proposed to compare our model with an agent-

based model, the most popular alternative design for a cross-model validation (more 

details given in Section 5.4).  

Meanwhile, we only considered biomedical interventions that have a direct impact 

on HIV-related outcomes, although some behavioural interventions have shown to be 

effective in preventing HIV225. Although this may remain a topic for future investigation, 

little evidence is available to support the characterization of these behavioural 

interventions at the population level, and questions remain whether they are capable of 

widespread effectiveness under real world conditions. 

Finally, in Chapter 4, we identified several key groups of model parameters on 

which further data collection can be worthwhile. However, these results did not probe, for 

each parameter group, whether data collection was feasible nor how to collect the data 

(e.g. design a new epidemiological study, establish new or improve existing data collection 

infrastructure). Future studies on the feasibility and valuation of acquiring information from 

a specific study design and sample size (i.e. the expected value of sample information) 

can provide more direct evidence to guide data collection efforts to reduce decision 

uncertainty in HIV/AIDS responses. Nonetheless, for most model parameters, the data 

acquisition will not be as straightforward as obtaining relative risk from randomized 

controlled trials, while different forms of evidence can be generated with various types of 

data and collection mechanisms. 

5.3. Study implications 

This comprehensive study of health economic modeling in HIV/AIDS will be among 

the few to systematically probe the design of models and provide unique insights regarding 

their dependence on high-quality data to make sound inferences. Findings of this study 

will make substantial methodological and public health contributions, providing meaningful 

implications for health decision-makers and scientists alike.  

From a methodological perspective, the narrative review of a selection of decision-

analytical HIV models in Chapter 2 can provide critical guidance on model design and data 

collection. The evidence quality assessment framework we have proposed can contribute 
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to the development of standardized approaches to identifying and assessing the quality of 

model inputs in HIV and other disease areas. Further, the methods and procedures we 

outlined in building the HIV modeling framework in Chapter 3 may contribute to 

standardizing the process of model calibration and validation, and guiding methodological 

choices at each critical step. The value of information analysis presented in Chapter 4 

demonstrated a pragmatic example of using a novel metamodeling approach with flexible 

regression methods, including an advanced deep learning method, in estimating the 

expected value of partial perfect information for groups of parameters with high 

dimensionality within a dynamic transmission model. To our knowledge, this was the first 

application of ANN metamodeling methods in value of information analysis, which 

provides a powerful tool in establishing complex, non-linear relationships between 

opportunity loss and input parameters with high dimensionality. 

From a public health practice perspective, we provided a transparent and 

comprehensive documentation of our modeling work to improve public health 

implementation. Through detailing all model assumptions and equations, the process of 

calibration and validation, and examining the decision uncertainty, we hope to unpack the 

‘black box’ of the dynamic HIV model to enhance its accountability and replicability as well 

as people’s confidence in model inferences. The evidence-based localized economic 

modeling (Chapter 3) we developed will serve as a means to evaluate various HIV 

prevention and treatment programs and identify the combination intervention strategies 

that maximize public health benefits. Findings of the VoI analysis (Chapter 4) will provide 

informative implications for whether further data collection is worthwhile. In cities where it 

was found to be worthwhile, this analysis may help prioritize future data collection efforts 

to where they can achieve the greatest expected value in reducing decision uncertainty in 

the context of US HIV epidemic. 

Most importantly, once established this whole framework can be applied to diverse 

settings across North America and internationally, as well as to other disease areas, 

further underlining the potential value of this approach. 
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5.4. Future work 

In addition to updating and recalibrating our model when new evidence becomes 

available, we have identified several areas where further research could be built upon the 

work of this thesis: 

Given combination implementation strategies are gaining more interest in the 

public health response to HIV/AIDS, we propose a systematic review of HIV models used 

to evaluate combination implementation strategies. In the review, several aspects of 

modeling will be extracted and compared, including the inclusion of HIV interventions, how 

strategies are combined, the construction of the cost-effectiveness efficiency frontier, the 

evidence used to inform intervention effects and costs, the methods used for decision 

making, and the reporting of uncertainty analyses. 

Using the calibrated model, our current research69 assesses the cost-effectiveness 

of different combination implementation strategies, aiming to identify the highest-valued 

combinations for each demonstration city. In the meanwhile, it is worth looking more 

closely at specific interventions within different populations, e.g. PrEP, to identify optimal 

PrEP delivery strategies. PrEP strategies targeting men who have sex with men at 

different levels of risk behaviour, people who inject drugs and high-risk heterosexuals will 

be assessed individually and in combination. Health production functions, demonstrating 

optimal implementation for a range of investment levels will be estimated to define 

population subgroups for which PrEP should be prioritized within each urban centre.  

We also intend to examine the joint and independent impacts of PrEP and other 

evidence-based interventions at a range of implementation levels on reaching 

benchmarks for epidemiological control, elimination and eradication of HIV/AIDS. Findings 

of this modeling study will have implications globally and provide recommendations for 

future HIV implementation efforts to achieve the greatest health benefits while remaining 

cost-effective. 

Based on a consistent set of model inputs, we propose to develop an agent-based 

model and compare results with our dynamic compartmental model. Population-level 

sexual contact networks will be constructed for the agent-based model, while assortative 

mixing will be applied in the compartmental model. These disparate models will be 

calibrated and validated according to best practice guidelines, and a cross-model 
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validation will be performed to assess the impact of model design and the influence of the 

underlying data on each model’s respective fit to observed epidemiological data. 
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Figure A1. Stylized schematic of the core structural design components of a 
dynamic HIV transmission model 

Legend: structural designs differ among different HIV models and we used a conceptual 
compartmental model as an example to demonstrate what the four core structural components 
refer to. ^also including HIV-free background death; ^^HIV-related death; *including HIV testing, 
HIV care, antiretroviral treatment, etc. 
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Figure A2. Model calibration and validation 

Legend: Reference indexes in the headers are consistent with the manuscript; no colour coding due to no data required. 

Symbol: # e.g. HIV incidence, prevalence, new diagnoses; ## e.g. PLHIV retained in HIV care or antiretroviral treatment, testing positivity rate, 
distribution of CD4 cell counts; * e.g. population composition of age, gender and risk group; ** e.g. Nelder-Mead algorithm, golden section search, 
stochastic linear gradient-descent optimization. 

Lowercase letter: a. Scale-up of male medical circumcision. 
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Figure A3. Uncertainty analysis 

Legend: Reference indexes in the headers are consistent with the manuscript; some studies might have performed multiple uncertainty analyses; 
no colour coding due to no data required. 
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Uppercase letter: L: Latin hypercube sampling; U. A special case assuming uniform distribution for uncertain parameters (no distribution fitted), thus 
samples drawn from prior ranges rather than distributions. 

Symbol: # e.g. optimistic/pessimistic or other hypothetical scenarios; ## Intervention implementation: including intervention reach, duration, 
frequency, scale-up, eligibility, etc.; * values taken from prior range/distribution; ** including optimistic/pessimistic scenarios derived from alternative 
evidence. 

Lowercase letter: a. A formal probabilistic sensitivity analysis varying all uncertain parameters; b. Calibrated parameters, performed alongside model 
calibration; c. One-factor-at-a-time. 
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Figure A4. Assessment of model reporting against CHEERS checklist 
Legend: ‘‘1”: meets the assessment criteria; ‘‘0”: does not fully conform to the assessment criteria.
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 Table A1. Evidence quality ranking criteria 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Legend: this table presents the criteria used for defining the evidence quality ranking (Table 2.2), i.e. the hierarchy of evidence for internal validity, whether evidence can be generalizable; * corresponding model component and section number in 
the manuscript.

Evidence category Pertinent parameters in model Model component* Quality ranking criteria 

Clinical effect size 

HIV testing effect on behavior 3.4 The force of HIV infection Broad agreement suggested the randomized control trials (RCTs) and their systematic syntheses 
to be the gold-standard data sources for clinical effect size estimates106,109,226. Data obtained 
from observational studies have downsides in limited control for confounding and certain types of 
bias106,226. In circumstances where RCTs are infeasible (e.g. condom efficacy on sexually 
transmitted HIV), systematic synthesis of cohort studies is deemed best-quality. Some 
intervention effects (e.g. HIV testing on behaviors) are dependent on local clinical practice and 
supporting care, in which case the external validity assessment is also required226 

ART effect on HIV progression 
3.3 HIV disease progression 

ART effect on mortality 

Preventative intervention effect size 3.4 The force of HIV infection 

Natural history of 
disease 

Disease progression 3.3 HIV disease progression Natural history of disease (in normal clinical practice) might not be well-captured in a setting of 
clinical trial, and thus preference is given to observational study (e.g. longitudinal cohort study), 
disease registry, or epidemiological database, also avoiding potential selection bias106,109. 
Disease natural history can vary by geographical and political areas because of many factors 
(e.g. level of healthcare, genetic predisposition) and thus setting-specific evidence is preferred109 

Infectivity (baseline and cofactors) 3.4 The force of HIV infection 

Opportunistic infections 
3.3 HIV disease progression 

HIV-related mortality 

ART-related adverse 
events and 
complications 

ART failure 
3.2 Model entry, exit and HIV care 
engagement 

Same criteria with clinical effect size105,108 ART toxicity 

ART resistance 

Health system 
engagement 

PrEP 3.1 Population construction 
Health system engagement differ by geographic setting are directly and reliably derivable from 
local administrative database that involve a minimal level of uncertainty 227. On the contrary, 
sample-based RCTs and observational studies might incur uncertain program uptake estimates 
and selection bias 

HIV testing rate/coverage 
3.2 Model entry, exit and HIV care 
engagement 

ART initiation/scale-up 

ART retention/drop-out 

Population 
characteristics 

Initial population & demographics 3.1 Population construction 

Population characteristics differ by location and require evidence representing a broader 
population, and therefore population-based studies or databases for the same locale are 
preferable to sample-based studies106, e.g.  population demographics can be estimated from 
local census data, mortality from life tables, and the prevalence of HIV or STI from national or 
regional surveillance data 

Population change 3.2 Model entry, exit and HIV care 
engagement Background mortality 

Initial epidemic 

3.1 Population construction Medical male circumcision 

Sexually transmitted infections 

Behavioral 

Risk group / risk level stratification 3.1 Population construction 
Same criteria with population characteristics data106, i.e. behavioral information is better derived 
from population-based surveys or surveillance reports on a truly representative population 

Risk behaviour intensity 
3.4 The force of HIV infection 

Partnership mixing 

Cost Direct/indirect cost: medical / non-medical 3.5 Health economic component 

Cost/resource use data differ by geographic setting, population and time, and thus are best 
informed by prospective data collection or a retrospective analysis of existing data 
sets/administrative databases on the same location as an alternative solution. Bias and 
subjectivity would be carried if other types of evidence are used105,228.  

Health state utility DALY/QALY estimate 3.5 Health economic component 

The evidence hierarchy places direct evidence collected for the specific study above indirect 
evidence from the literature since it is hard to ascertain how estimates from originating utilities 
sources have been derived and incorporated108. Publicly available repositories of health state 
utility values for a variety of health conditions are also a very useful data source105,228. 
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Supplementary Material for Chapter 3 
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1. Model description 

The adult population aged 15-64 in the model was partitioned into compartments on the basis of: sex; race/ethnicity 

(Black/African American (B), Hispanic/Latino (H), and White and other (W)); and HIV risk behavior type (men who 

have sex with men (MSM), people who inject drugs (PWID), MSM-PWID, and heterosexual (HET)). MSM, MSM-PWID 

and HET were further partitioned into subgroups based on HIV sexual risk behavior intensity (high- vs. low-risk). High-

risk MSM and MSM-PWID were categorized based on whether they were receiving pre-exposure prophylaxis (PrEP) 

and PWID and MSM-PWID were categorized based on whether they were receiving opioid agonist treatment (OAT). 

Individuals in the model are thus partitioned within each of these 42 groups (MSM: 6 groups, MSM-PWID: 12 groups; 

PWID: 12 groups; HET: 12 groups). 

1.1 Differential equations 

We constructed the following system of nonlinear ordinary differential equations (ODEs), capturing movement between 

19 base model states for each of the 42 population groups considered in our model. The complete model is thus comprised 

of 798 equations (42 population groups ×19 states). We denote Si, Ii, Di, Ti and Oi to represent model states capturing 

individuals susceptible to HIV infection (S1, unscreened for HIV; S2, screened for HIV; Sp, receiving PrEP), HIV infected, 

diagnosed, on antiretroviral treatment (on ART) and ART discontinued (off ART) respectively, in the acute stage (i.e. IA, 

DA) and each CD4-based stage of HIV progression i = [1: CD4≥500µL; 2: 200≤CD4<499; 3: CD4<200] for Ii, Di, Ti and 

Oi. We also note additional states for Ii in which PrEP is ascribed (i.e. IAP, I1P). We let 𝑋𝑗 denote 𝑋𝑗𝑡, representing number 

of people in compartment j at time t. 

ODEs for MSM and Heterosexual HIV risk groups: 

1. 
𝑑𝑋𝑆1

𝑑𝑡
= 𝜌 ∑ 𝑋𝑖∀𝑖 + 𝜔𝑆𝑋𝑆2

− 𝜂𝑡𝑋𝑆1
− 𝜓𝑋𝑆1

− (∑ 𝜆𝑆1,𝑗(𝑡)𝑗≠𝑆, )𝑋𝑆1
 − 𝜇𝑆𝑋𝑆1

− 𝜌𝑚 ∑ 𝑋𝑖𝑖≠𝑆  

2. 
𝑑𝑋𝑆2

𝑑𝑡
= 𝜓𝑋𝑆1

+ 𝜔𝑝𝑋𝑆𝑃
− 𝜔𝑆𝑋𝑆2

− 𝜂𝑡𝑋𝑆2
 − (∑ 𝜆𝑆2,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆2

 − 𝜇𝑆𝑋𝑆2
 

3. 
𝑑𝑋𝑆𝑃

𝑑𝑡
= 𝜂𝑡(𝑋𝑆1

+ 𝑋𝑆2
) − 𝜔𝑝𝑋𝑆𝑃

 − (∑ 𝜆𝑆𝑃,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆𝑃
 − 𝜇𝑆𝑋𝑆𝑃

 

4. 
𝑑𝑋𝐼𝐴

𝑑𝑡
= (∑ 𝜆𝑆1,𝑗(𝑡)𝑗≠𝑆, )𝑋𝑆1

+ (∑ 𝜆𝑆2,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆2
−  𝜓𝑋𝐼𝐴

− 𝜃𝑇𝐴
𝑋𝐼𝐴

− 𝜇𝑇𝐴
𝑋𝐼𝐴

+ 𝜌𝑚𝑋𝐼𝐴
 

5. 
𝑑𝑋𝐼1

𝑑𝑡
= 𝜃𝑇𝐴𝐼

𝑋𝐼𝐴
− 𝜓𝑋𝐼1

− 𝜃𝑇1
𝑋𝐼1

− 𝜇𝑇1
𝑋𝐼1

+ 𝜌𝑚𝑋𝐼1
 

6. 
𝑑𝑋𝐼2

𝑑𝑡
= 𝜃𝑇1

𝑋𝐼1
− (𝜓 + 𝜐2)𝑋𝐼2

− 𝜃𝑇2
𝑋𝐼2

−  𝜇𝑇2
𝑋𝐼2

+ 𝜌𝑚𝑋𝐼2
 

7. 
𝑑𝑋𝐼3

𝑑𝑡
= 𝜃𝑇2

𝑋𝐼2
− (𝜓 + 𝜐3)𝑋𝐼3

− 𝜇𝑇3
𝑋𝐼3

+ 𝜌𝑚𝑋𝐼3
 

8. 
𝑑𝑋𝐼𝐴𝑃

𝑑𝑡
= (∑ 𝜆𝑆𝑃,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆𝑃

−  𝜓𝑃𝑋𝐼𝐴𝑃
− 𝜃𝑇𝐴

𝑋𝐼𝐴𝑃
−  𝜇𝑇𝐴

𝑋𝐼𝐴𝑃
+ 𝜌𝑚𝑋𝐼𝐴𝑃

 

9. 
𝑑𝑋𝐼1𝑃

𝑑𝑡
= 𝜃𝑇𝐴𝐼

𝑋𝐼𝐴𝑃
− 𝜓𝑃𝑋𝐼1𝑃

−  𝜇𝑇1
𝑋𝐼1𝑃

+ 𝜌𝑚𝑋𝐼𝑃
 

10. 
𝑑𝑋𝐷𝐴

𝑑𝑡
= 𝜓𝑋𝐼𝐴

+ 𝜓𝑃𝑋𝐼𝐴𝑃
− 𝜃𝑇𝐴

𝑋𝐷𝐴
−  𝜇𝑇𝐴

𝑋𝐷𝐴
+ 𝜌𝑚𝑋𝐷𝐴

 

11. 
𝑑𝑋𝐷1

𝑑𝑡
= 𝜃𝑇𝐴𝐷

𝑋𝐷𝐴
+  𝜓(1 − 𝜑1)𝑋𝐼1

+ 𝜓𝑃𝑋𝐼1𝑃
 − 𝜃𝑇1

𝑋𝐷1
−  𝛼1𝑋𝐷1

− 𝜇𝑇1
𝑋𝐷1

+ 𝜌𝑚𝑋𝐷1
 

12. 
𝑑𝑋𝐷2

𝑑𝑡
= 𝜃𝑇1

𝑋𝐷1
+ (𝜓 + 𝜐2)(1 − 𝜑2)𝑋𝐼2

 − 𝜃𝑇2
𝑋𝐷2

− 𝛼2𝑋𝐷2
− 𝜇𝑇2

𝑋𝐷2
+ 𝜌𝑚𝑋𝐷2

 

13. 
𝑑𝑋𝐷3

𝑑𝑡
= 𝜃𝑇2

𝑋𝐷2
+ (𝜓 + 𝜐3)(1 − 𝜑3)𝑋𝐼3

 − 𝛼3𝑋𝐷3
− 𝜇𝑇3

𝑋𝐷3
+ 𝜌𝑚𝑋𝐷3

 

14. 
𝑑𝑋𝑇1

𝑑𝑡
= ∑ 𝜃𝑇𝑗,𝑇1(𝑡)𝑋𝑇𝑗𝑗≠1 + 𝛼1𝑋𝐷1

+ 𝛼′1𝑋𝑂1
+ 𝜓𝜑1𝑋𝐼1

−  ∑ 𝜃𝑇1,𝑇𝑗(𝑡)𝑋𝑇1𝑗≠1 − 𝜃𝑇1,𝑂1(𝑡)𝑋𝑇1
− 𝜇𝑇1

𝑋𝑇1
+ 𝜌𝑚𝑋𝑇1
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15. 
𝑑𝑋𝑇2

𝑑𝑡
= ∑ 𝜃𝑇𝑗,𝑇2(𝑡)𝑋𝑇𝑗𝑗≠2 + 𝛼2𝑋𝐷2

+ 𝛼′2𝑋𝑂2
+ (𝜓 + 𝜐2)𝜑2𝑋𝐼2

−  ∑ 𝜃𝑇2,𝑇𝑗(𝑡)𝑋𝑇2𝑗≠2 − 𝜃𝑇2,𝑂2(𝑡)𝑋𝑇2
− 𝜇𝑇2

𝑋𝑇2
+ 𝜌𝑚𝑋𝑇2

 

16. 
𝑑𝑋𝑇3

𝑑𝑡
= ∑ 𝜃𝑇𝑗,𝑇3(𝑡)𝑋𝑇𝑗𝑗≠3 + 𝛼3𝑋𝐷3

+ 𝛼′3𝑋𝑂3
+ (𝜓 + 𝜐3)𝜑3𝑋𝐼3

−  ∑ 𝜃𝑇3,𝑇𝑗(𝑡)𝑋𝑇3𝑗≠3 − 𝜃𝑇3,𝑂3(𝑡)𝑋𝑇3
− 𝜇𝑇3

𝑋𝑇3
+ 𝜌𝑚𝑋𝑇3

 

17. 
𝑑𝑋𝑂1

𝑑𝑡
= 𝜃𝑇1,𝑂1(𝑡)𝑋𝑇1

− 𝛼′1𝑋𝑂1
− 𝜃𝑇1

𝑋𝑂1
−  𝜇𝑇1

𝑋𝑂1
+ 𝜌𝑚𝑋𝑂1

 

18. 
𝑑𝑋𝑂2

𝑑𝑡
= 𝜃𝑇2,𝑂2(𝑡)𝑋𝑇2

+ 𝜃𝑇1
𝑋𝑂1

− 𝛼′2𝑋𝑂2
− 𝜃𝑇2

𝑋𝑂2
− 𝜇𝑇2

𝑋𝑂2
+ 𝜌𝑚𝑋𝑂2

 

19. 
𝑑𝑋𝑂3

𝑑𝑡
= 𝜃𝑇3,𝑂3(𝑡)𝑋𝑇3

+ 𝜃𝑇2
𝑋𝑂2

− 𝛼′3𝑋𝑂3
− 𝜇𝑇3

𝑋𝑂3
+ 𝜌𝑚𝑋𝑂3

 

 

ODEs for PWID and MSM-PWID receiving OAT: 

1. 
𝑑𝑋𝑆1

𝑑𝑡
= 𝜌 ∑ 𝑋𝑖∀𝑖 + 𝜔𝑆𝑋𝑆2

− 𝜓𝑋𝑆1
− 𝜂𝑡𝑋𝑆1

− (∑ 𝜆𝑆1,𝑗(𝑡)𝑗≠𝑆, )𝑋𝑆1
 − 𝜇𝑆𝑋𝑆1

− 𝜌𝑚 ∑ 𝑋𝑖𝑖≠𝑆 + 𝜋𝑋𝑆1

𝑜𝑓𝑓
− 𝜋̅𝑋𝑆1

 

2. 
𝑑𝑋𝑆2

𝑑𝑡
= 𝜓𝑋𝑆1

+ 𝜔𝑝𝑋𝑆𝑃
− 𝜔𝑆𝑋𝑆2

− 𝜂𝑡𝑋𝑆2
 − (∑ 𝜆𝑆2,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆2

 − 𝜇𝑆𝑋𝑆2
+ 𝜋𝑋𝑆2

𝑜𝑓𝑓
− 𝜋̅𝑋𝑆2

 

3. 
𝑑𝑋𝑆𝑃

𝑑𝑡
= 𝜂𝑡(𝑋𝑆1

+ 𝑋𝑆1
) − 𝜔𝑝𝑋𝑆𝑃

 − (∑ 𝜆𝑆𝑃,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆𝑃
 − 𝜇𝑆𝑋𝑆𝑃

+ 𝜋𝑋𝑆𝑝

𝑜𝑓𝑓
− 𝜋̅𝑋𝑆𝑝

 

4. 
𝑑𝑋𝐼𝐴

𝑑𝑡
= (∑ 𝜆𝑆1,𝑗(𝑡)𝑗≠𝑆, )𝑋𝑆1

+ (∑ 𝜆𝑆2,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆2
−  𝜓𝑋𝐼𝐴

− 𝜃𝑇𝐴
𝑋𝐼𝐴

− 𝜇𝑇𝐴
𝑋𝐼𝐴

+ 𝜌𝑚𝑋𝐼𝐴
+ 𝜋𝑋𝐼𝐴

𝑜𝑓𝑓
− 𝜋̅𝑋𝐼𝐴

 

5. 
𝑑𝑋𝐼1

𝑑𝑡
= 𝜃𝑇𝐴𝐼

𝑋𝐼𝐴
− 𝜓𝑋𝐼1

− 𝜃𝑇1
𝑋𝐼1

− 𝜇𝑇1
𝑋𝐼1

+ 𝜌𝑚𝑋𝐼1
+ 𝜋𝑋𝐼1

𝑜𝑓𝑓
− 𝜋̅𝑋𝐼1

 

6. 
𝑑𝑋𝐼2

𝑑𝑡
= 𝜃𝑇1

𝑋𝐼1
− (𝜓 + 𝜐2)𝑋𝐼2

− 𝜃𝑇2
𝑋𝐼2

−  𝜇𝑇2
𝑋𝐼2

+ 𝜌𝑚𝑋𝐼2
+ 𝜋𝑋𝐼2

𝑜𝑓𝑓
− 𝜋̅𝑋𝐼2

 

7. 
𝑑𝑋𝐼3

𝑑𝑡
= 𝜃𝑇2

𝑋𝐼2
− (𝜓 + 𝜐3)𝑋𝐼3

− 𝜇𝑇3
𝑋𝐼3

+ 𝜌𝑚𝑋𝐼3
+ 𝜋𝑋𝐼3

𝑜𝑓𝑓
− 𝜋̅𝑋𝐼3

 

8. 
𝑑𝑋𝐼𝐴𝑃

𝑑𝑡
= (∑ 𝜆𝑆𝑃,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆𝑃

−  𝜓𝑃𝑋𝐼𝐴𝑃
− 𝜃𝑇𝐴

𝑋𝐼𝐴𝑃
−  𝜇𝑇𝐴

𝑋𝐼𝐴𝑃
+ 𝜌𝑚𝑋𝐼𝐴𝑃

+ 𝜋𝑋𝐼𝐴𝑃

𝑜𝑓𝑓
− 𝜋̅𝑋𝐼𝐴𝑃

 

9. 
𝑑𝑋𝐼1𝑃

𝑑𝑡
= 𝜃𝑇𝐴𝐼

𝑋𝐼𝐴𝑃
− 𝜓𝑃𝑋𝐼1𝑃

−  𝜇𝑇1
𝑋𝐼1𝑃

+ 𝜌𝑚𝑋𝐼𝑃
+ 𝜋𝑋𝐼1𝑝

𝑜𝑓𝑓
− 𝜋̅𝑋𝐼1𝑝

 

10. 
𝑑𝑋𝐷𝐴

𝑑𝑡
= 𝜓𝑋𝐼𝐴

+ 𝜓𝑃𝑋𝐼𝐴𝑃
− 𝜃𝑇𝐴

𝑋𝐷𝐴
−  𝜇𝑇𝐴

𝑋𝐷𝐴
+ 𝜌𝑚𝑋𝐷𝐴

+ 𝜋𝑋𝐷𝐴

𝑜𝑓𝑓
− 𝜋̅𝑋𝐷𝐴

 

11. 
𝑑𝑋𝐷1

𝑑𝑡
= 𝜃𝑇𝐴𝐷

𝑋𝐷𝐴
+  𝜓(1 − 𝜑1)𝑋𝐼1

+ 𝜓𝑃𝑋𝐼1𝑃
 − 𝜃𝑇1

𝑋𝐷1
−  𝛼1𝑋𝐷1

− 𝜇𝑇1
𝑋𝐷1

+ 𝜌𝑚𝑋𝐷1
+ 𝜋𝑋𝐷1

𝑜𝑓𝑓
− 𝜋̅𝑋𝐷1

 

12. 
𝑑𝑋𝐷2

𝑑𝑡
= 𝜃𝑇1

𝑋𝐷1
+ (𝜓 + 𝜐2)(1 − 𝜑2)𝑋𝐼2

 − 𝜃𝑇2
𝑋𝐷2

− 𝛼2𝑋𝐷2
− 𝜇𝑇2

𝑋𝐷2
+ 𝜌𝑚𝑋𝐷2

+ 𝜋𝑋𝐷2

𝑜𝑓𝑓
− 𝜋̅𝑋𝐷2

 

13. 
𝑑𝑋𝐷3

𝑑𝑡
= 𝜃𝑇2

𝑋𝐷2
+ (𝜓 + 𝜐3)(1 − 𝜑3)𝑋𝐼3

 − 𝛼3𝑋𝐷3
− 𝜇𝑇3

𝑋𝐷3
+ 𝜌𝑚𝑋𝐷3

+ 𝜋𝑋𝐷3

𝑜𝑓𝑓
− 𝜋̅𝑋𝐷3

 

14. 
𝑑𝑋𝑇1

𝑑𝑡
= ∑ 𝜃𝑇𝑗,𝑇1(𝑡)𝑋𝑇𝑗𝑗≠1 + 𝛼1𝑋𝐷1

+ 𝛼′1𝑋𝑂1
+ 𝜓𝜑1𝑋𝐼1

−  ∑ 𝜃𝑇1,𝑇𝑗(𝑡)𝑋𝑇1𝑗≠1 − 𝜃𝑇1,𝑂1(𝑡)𝑋𝑇1
− 𝜇𝑇1

𝑋𝑇1
+ 𝜌𝑚𝑋𝑇1

+ 𝜋𝑋𝑇1

𝑜𝑓𝑓
− 𝜋̅𝑋𝑇1

 

15. 
𝑑𝑋𝑇2

𝑑𝑡
= ∑ 𝜃𝑇𝑗,𝑇2(𝑡)𝑋𝑇𝑗𝑗≠2 + 𝛼2𝑋𝐷2

+ 𝛼′2𝑋𝑂2
+ (𝜓 + 𝜐2)𝜑2𝑋𝐼2

−  ∑ 𝜃𝑇2,𝑇𝑗(𝑡)𝑋𝑇2𝑗≠2 − 𝜃𝑇2,𝑂2(𝑡)𝑋𝑇2
− 𝜇𝑇2

𝑋𝑇2
+ 𝜌𝑚𝑋𝑇2

+ 𝜋𝑋𝑇2

𝑜𝑓𝑓
− 𝜋̅𝑋𝑇2

 

16. 
𝑑𝑋𝑇3

𝑑𝑡
= ∑ 𝜃𝑇𝑗,𝑇3(𝑡)𝑋𝑇𝑗𝑗≠3 + 𝛼3𝑋𝐷3

+ 𝛼′3𝑋𝑂3
+ (𝜓 + 𝜐3)𝜑3𝑋𝐼3

−  ∑ 𝜃𝑇3,𝑇𝑗(𝑡)𝑋𝑇3𝑗≠3 − 𝜃𝑇3,𝑂3(𝑡)𝑋𝑇3
− 𝜇𝑇3

𝑋𝑇3
+ 𝜌𝑚𝑋𝑇3

+ 𝜋𝑋𝑇3

𝑜𝑓𝑓
− 𝜋̅𝑋𝑇3

 

17. 
𝑑𝑋𝑂1

𝑑𝑡
= 𝜃𝑇1,𝑂1(𝑡)𝑋𝑇1

− 𝛼′1𝑋𝑂1
− 𝜃𝑇1

𝑋𝑂1
−  𝜇𝑇1

𝑋𝑂1
+ 𝜌𝑚𝑋𝑂1

+ 𝜋𝑋𝑂1

𝑜𝑓𝑓
− 𝜋̅𝑋𝑂1

 

18. 
𝑑𝑋𝑂2

𝑑𝑡
= 𝜃𝑇2,𝑂2(𝑡)𝑋𝑇2

+ 𝜃𝑇1
𝑋𝑂1

− 𝛼′2𝑋𝑂2
− 𝜃𝑇2

𝑋𝑂2
− 𝜇𝑇2

𝑋𝑂2
+ 𝜌𝑚𝑋𝑂2

+ 𝜋𝑋𝑂2

𝑜𝑓𝑓
− 𝜋̅𝑋𝑂2

 

19. 
𝑑𝑋𝑂3

𝑑𝑡
= 𝜃𝑇3,𝑂3(𝑡)𝑋𝑇3

+ 𝜃𝑇2
𝑋𝑂2

− 𝛼′3𝑋𝑂3
− 𝜇𝑇3

𝑋𝑂3
+ 𝜌𝑚𝑋𝑂3

+ 𝜋𝑋𝑂3

𝑜𝑓𝑓
− 𝜋̅𝑋𝑂3

 

 

ODEs for PWID and MSM-PWID not receiving OAT: 

1. 
𝑑𝑋𝑆1

𝑑𝑡
= 𝜌 ∑ 𝑋𝑖∀𝑖 + 𝜔𝑆𝑋𝑆2

− 𝜓𝑋𝑆1
− 𝜂𝑡𝑋𝑆1

− (∑ 𝜆𝑆1,𝑗(𝑡)𝑗≠𝑆, )𝑋𝑆1
 − 𝜇𝑆𝑋𝑆1

− 𝜌𝑚 ∑ 𝑋𝑖𝑖≠𝑆 + 𝜋̅𝑋𝑆1

𝑜𝑛 − 𝜋𝑋𝑆1
 

2. 
𝑑𝑋𝑆2

𝑑𝑡
= 𝜓𝑋𝑆1

+ 𝜔𝑝𝑋𝑆𝑃
− 𝜔𝑆𝑋𝑆2

− 𝜂𝑡𝑋𝑆2
 − (∑ 𝜆𝑆2,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆2

 − 𝜇𝑆𝑋𝑆2
+ 𝜋̅𝑋𝑆2

𝑜𝑛 − 𝜋𝑋𝑆2
 

3. 
𝑑𝑋𝑆𝑃

𝑑𝑡
= 𝜂𝑡(𝑋𝑆1

+ 𝑋𝑆2
) − 𝜔𝑝𝑋𝑆𝑃

 − (∑ 𝜆𝑆𝑃,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆𝑃
 − 𝜇𝑆𝑋𝑆𝑃

+ 𝜋̅𝑋𝑆𝑝

𝑜𝑛 − 𝜋𝑋𝑆𝑝
 

4. 
𝑑𝑋𝐼𝐴

𝑑𝑡
= (∑ 𝜆𝑆1,𝑗(𝑡)𝑗≠𝑆, )𝑋𝑆1

+ (∑ 𝜆𝑆2,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆2
−  𝜓𝑋𝐼𝐴

− 𝜃𝑇𝐴
𝑋𝐼𝐴

− 𝜇𝑇𝐴
𝑋𝐼𝐴

+ 𝜌𝑚𝑋𝐼𝐴
+ 𝜋̅𝑋𝐼𝐴

𝑜𝑛 − 𝜋𝑋𝐼𝐴
 

5. 
𝑑𝑋𝐼1

𝑑𝑡
= 𝜃𝑇𝐴𝐼

𝑋𝐼𝐴
− 𝜓𝑋𝐼1

− 𝜃𝑇1
𝑋𝐼1

− 𝜇𝑇1
𝑋𝐼1

+ 𝜌𝑚𝑋𝐼1
+ 𝜋̅𝑋𝐼1

𝑜𝑛 − 𝜋𝑋𝐼1
 

6. 
𝑑𝑋𝐼2

𝑑𝑡
= 𝜃𝑇1

𝑋𝐼1
− (𝜓 + 𝜐2)𝑋𝐼2

− 𝜃𝑇2
𝑋𝐼2

−  𝜇𝑇2
𝑋𝐼2

+ 𝜌𝑚𝑋𝐼2
+ 𝜋̅𝑋𝐼2

𝑜𝑛 − 𝜋𝑋𝐼2
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7. 
𝑑𝑋𝐼3

𝑑𝑡
= 𝜃𝑇2

𝑋𝐼2
− (𝜓 + 𝜐3)𝑋𝐼3

− 𝜇𝑇3
𝑋𝐼3

+ 𝜌𝑚𝑋𝐼3
+ 𝜋̅𝑋𝐼3

𝑜𝑛 − 𝜋𝑋𝐼3
 

8. 
𝑑𝑋𝐼𝐴𝑃

𝑑𝑡
= (∑ 𝜆𝑆𝑃,𝑗(𝑡)𝑗≠𝑆 )𝑋𝑆𝑃

−  𝜓𝑃𝑋𝐼𝐴𝑃
− 𝜃𝑇𝐴

𝑋𝐼𝐴𝑃
−  𝜇𝑇𝐴

𝑋𝐼𝐴𝑃
+ 𝜌𝑚𝑋𝐼𝐴𝑃

+ 𝜋̅𝑋𝐼𝐴𝑃

𝑜𝑛 − 𝜋𝑋𝐼𝐴𝑃
 

9. 
𝑑𝑋𝐼1𝑃

𝑑𝑡
= 𝜃𝑇𝐴𝐼

𝑋𝐼𝐴𝑃
− 𝜓𝑃𝑋𝐼1𝑃

−  𝜇𝑇1
𝑋𝐼1𝑃

+ 𝜌𝑚𝑋𝐼𝑃
+ 𝜋̅𝑋𝐼1𝑝

𝑜𝑛 − 𝜋𝑋𝐼1𝑝
 

10. 
𝑑𝑋𝐷𝐴

𝑑𝑡
= 𝜓𝑋𝐼𝐴

+ 𝜓𝑃𝑋𝐼𝐴𝑃
− 𝜃𝑇𝐴

𝑋𝐷𝐴
−  𝜇𝑇𝐴

𝑋𝐷𝐴
+ 𝜌𝑚𝑋𝐷𝐴

+ 𝜋̅𝑋𝐷𝐴

𝑜𝑛 − 𝜋𝑋𝐷𝐴
 

11. 
𝑑𝑋𝐷1

𝑑𝑡
= 𝜃𝑇𝐴𝐷

𝑋𝐷𝐴
+  𝜓(1 − 𝜑1)𝑋𝐼1

+ 𝜓𝑃𝑋𝐼1𝑃
 − 𝜃𝑇1

𝑋𝐷1
−  𝛼1𝑋𝐷1

− 𝜇𝑇1
𝑋𝐷1

+ 𝜌𝑚𝑋𝐷1
+ 𝜋̅𝑋𝐷1

𝑜𝑛 − 𝜋𝑋𝐷1
 

12. 
𝑑𝑋𝐷2

𝑑𝑡
= 𝜃𝑇1

𝑋𝐷1
+ (𝜓 + 𝜐2)(1 − 𝜑2)𝑋𝐼2

 − 𝜃𝑇2
𝑋𝐷2

− 𝛼2𝑋𝐷2
− 𝜇𝑇2

𝑋𝐷2
+ 𝜌𝑚𝑋𝐷2

+ 𝜋̅𝑋𝐷2

𝑜𝑛 − 𝜋𝑋𝐷2
 

13. 
𝑑𝑋𝐷3

𝑑𝑡
= 𝜃𝑇2

𝑋𝐷2
+ (𝜓 + 𝜐3)(1 − 𝜑3)𝑋𝐼3

 − 𝛼3𝑋𝐷3
− 𝜇𝑇3

𝑋𝐷3
+ 𝜌𝑚𝑋𝐷3

+ 𝜋̅𝑋𝐷3

𝑜𝑛 − 𝜋𝑋𝐷3
 

14. 
𝑑𝑋𝑇1

𝑑𝑡
= ∑ 𝜃𝑇𝑗,𝑇1(𝑡)𝑋𝑇𝑗𝑗≠1 + 𝛼1𝑋𝐷1

+ 𝛼′1𝑋𝑂1
+ 𝜓𝜑1𝑋𝐼1

−  ∑ 𝜃𝑇1,𝑇𝑗(𝑡)𝑋𝑇1𝑗≠1 − 𝜃𝑇1,𝑂1(𝑡)𝑋𝑇1
− 𝜇𝑇1

𝑋𝑇1
+ 𝜌𝑚𝑋𝑇1

+ 𝜋̅𝑋𝑇1

𝑜𝑛 − 𝜋𝑋𝑇1
 

15. 
𝑑𝑋𝑇2

𝑑𝑡
= ∑ 𝜃𝑇𝑗,𝑇2(𝑡)𝑋𝑇𝑗𝑗≠2 + 𝛼2𝑋𝐷2

+ 𝛼′2𝑋𝑂2
+ (𝜓 + 𝜐2)𝜑2𝑋𝐼2

−  ∑ 𝜃𝑇2,𝑇𝑗(𝑡)𝑋𝑇2𝑗≠2 − 𝜃𝑇2,𝑂2(𝑡)𝑋𝑇2
− 𝜇𝑇2

𝑋𝑇2
+ 𝜌𝑚𝑋𝑇2

+ 𝜋̅𝑋𝑇2

𝑜𝑛 − 𝜋𝑋𝑇2
 

16. 
𝑑𝑋𝑇3

𝑑𝑡
= ∑ 𝜃𝑇𝑗,𝑇3(𝑡)𝑋𝑇𝑗𝑗≠3 + 𝛼3𝑋𝐷3

+ 𝛼′3𝑋𝑂3
+ (𝜓 + 𝜐3)𝜑3𝑋𝐼3

−  ∑ 𝜃𝑇3,𝑇𝑗(𝑡)𝑋𝑇3𝑗≠3 − 𝜃𝑇3,𝑂3(𝑡)𝑋𝑇3
− 𝜇𝑇3

𝑋𝑇3
+ 𝜌𝑚𝑋𝑇3

+ 𝜋̅𝑋𝑇3

𝑜𝑛 − 𝜋𝑋𝑇3
 

17. 
𝑑𝑋𝑂1

𝑑𝑡
= 𝜃𝑇1,𝑂1(𝑡)𝑋𝑇1

− 𝛼′1𝑋𝑂1
− 𝜃𝑇1

𝑋𝑂1
−  𝜇𝑇1

𝑋𝑂1
+ 𝜌𝑚𝑋𝑂1

+ 𝜋̅𝑋𝑂1

𝑜𝑛 − 𝜋𝑋𝑂1
 

18. 
𝑑𝑋𝑂2

𝑑𝑡
= 𝜃𝑇2,𝑂2(𝑡)𝑋𝑇2

+ 𝜃𝑇1
𝑋𝑂1

− 𝛼′2𝑋𝑂2
− 𝜃𝑇2

𝑋𝑂2
− 𝜇𝑇2

𝑋𝑂2
+ 𝜌𝑚𝑋𝑂2

+ 𝜋̅𝑋𝑂2

𝑜𝑛 − 𝜋𝑋𝑂2
 

19. 
𝑑𝑋𝑂3

𝑑𝑡
= 𝜃𝑇3,𝑂3(𝑡)𝑋𝑇3

+ 𝜃𝑇2
𝑋𝑂2

− 𝛼′3𝑋𝑂3
− 𝜇𝑇3

𝑋𝑂3
+ 𝜌𝑚𝑋𝑂3

+ 𝜋̅𝑋𝑂3

𝑜𝑛 − 𝜋𝑋𝑂3
 

A schematic representation of the model is shown in Figure A1. Boxes in the diagram represent cohorts of individuals, 

stratified by HIV status, HIV screening status, PrEP status, as well as HIV progression stages, diagnosis and ART status 

if infected. Arrows represent possible transitions between compartments. Individuals can move from susceptible 

(unscreened, screened or on PrEP) to infected health states following HIV infection as determined through the total 

contact rate, or force of infection (𝜆𝑖𝑗(𝑡)), between susceptible individuals in state i, from infected individuals in state j at 

time t (HIV transmission is described further in Section 1.2 below). Individuals can also move from infected states to 

diagnosed states through screening (𝜓) or case finding (𝑣𝑖) (i = 2 for 200≤CD4<499, 3 for CD4<200) (Section 1.4); from 

diagnosed to on ART according to the probability of ART initiation (𝛼𝑖) (Section 1.5); from on ART to off-ART according 

to the observed rate of ART drop-out (𝜃𝑇𝑖,𝑂𝑖
) (Section 1.5). Furthermore, a proportion of newly diagnosed individuals 

transition directly from infected states to on ART (𝜑𝑖). Transitions from off-ART back to on ART (𝛼′𝑖) are also allowed 

in the model (Section 1.5). Untreated people living with HIV (PLHIV) (including 𝐼𝑖 , 𝐷𝑖  and 𝑂𝑖) followed the empirically 

estimated natural history of disease progression (𝜃𝑇𝑖
) (Section 2.1). Once on ART, individuals could transition to any of 

the other ART states 𝑗 ≠ 𝑖 (∑ 𝜃𝑇𝑖,𝑇𝑗(𝑡)𝑗≠𝑖 ), or drop out of ART while staying at the same CD4 level (𝜃𝑇𝑖,𝑂𝑖(𝑡)) (Section 

2.1). We explicitly modeled the receipt of PrEP and its effect among high-risk MSM (including MSM-PWID) with the 

time-varying PrEP entry rate 𝜂𝑡  (Section 2.6). Although not shown, individuals may also leave each compartment 

according to the mortality and/or maturation rate (𝜇𝑖) (Section 1.3). In addition, to account for the potential in-/out-

migration, particularly among PLHIV, in each targeted city, we also incorporated an in-migration rate (𝜌𝑚) for the 

infected population, as subtracted from 𝑆1  population (Section 2.5). The terms that link the PWID and MSM-PWID 

receiving opioid agonist therapy (OAT) (𝑋𝑖
𝑜𝑛) and not receiving OAT (𝑋𝑖

𝑜𝑓𝑓
) are the OAT entry (𝜋) and exit (𝜋̅) rates 

(Section 2.7). Descriptions, valuations and prior distributions and ranges of the key parameters for calibration are 

presented in Table A1. The full list of parameters, their sources and quality rankings were reported separately229. 

1.2 HIV transmission 
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The dynamic model captures HIV transmission via three modes: heterosexual contact, homosexual contact, and needle-

sharing.  Table A2 shows the possible modes of transmission between any two risk groups. Consistent with prior 

studies155-157,230, we allowed men who have sex with men (MSM) to potentially have heterosexual contact with women.  

For each risk group we assumed one average value for the number of same-sex and opposite-sex partners, adjusting for 

known HIV-infection status, which reduces their number of sexual partners due to screening. Annualized figures were 

adjusted to represent monthly figures using the following formula: (1 - (1 - p)1/12). 

The transmission between uninfected and infected individuals is represented as a matrix, λ = 𝜆𝑖𝑗, representing the total 

sufficient contact rate between members of (uninfected) compartment i and members of (infected) compartment j. We 

calculated the total sufficient contact rate, 𝜆𝑖𝑗 , as the sum of the three different modes of sufficient contact rates: needle-

sharing (𝛾𝑖𝑗(𝑡)), heterosexual contact (𝛽𝑖𝑗(𝑡)
𝑜 ), and homosexual contact (𝛽𝑖𝑗(𝑡)

𝑠 ). The total sufficient contact rate was 

calculated by first converting the monthly transmission probability, according to the formula: 𝑟𝑎𝑡𝑒 = {−𝑙𝑛(1 − 𝑝)}/𝑡 

and then summed over the three modes of transmission: needle-sharing, heterosexual contact, and homosexual contact. 

The total sufficient contact rate at time t between individuals in compartments i and j, 𝜆𝑖𝑗(𝑡), is: 

𝜆𝑖𝑗(𝑡) = 𝛾𝑖𝑗(𝑡) + 𝛽𝑖𝑗(𝑡)
𝑜 + 𝛽𝑖𝑗(𝑡)

𝑠  

Most parameters used to estimate HIV transmission within and between risk groups was presented in Table A1 while the 

full set is available in the our previous evidence synthesis supplementary materials229.  

 

In order to adequately characterize changes in the number of shared drug injections, we used data on syringe distribution 

from syringe service programs (SSP) for PWID to adjust the monthly number of shared injections231-233, which is 

calculated by multiplying the number of injections per month with the proportion of injections that are shared. The 

resulting time-varying monthly number of shared injections (𝑑𝑠𝑡) at time t is: 

𝑑𝑠𝑡 = 𝑑𝑠0 ∗ (1 − 𝐶𝑆𝑆𝑃𝑡)(1 − ∆𝑑
𝑆𝑆𝑃) 

Where 𝑑𝑠0 denotes the monthly number of shared injections in 2011 and 𝐶𝑆𝑆𝑃𝑡 denotes the coverage of SSP at time t, as 

estimated by the volume of syringes being distributed through SSP (assuming proportional distribution across 

race/ethnicity among PWID) over the total injection demands among each PWID group at time t.  

For PWID groups receiving opioid agonist treatment (OAT), the adjusted number of shared injections, 𝑑𝑠𝑡, is estimated 

by:  

𝑑𝑠𝑡 = 𝑑𝑠0 ∗ (1 − 𝐶𝑆𝑆𝑃𝑡)(1 − ∆𝑑
𝑆𝑆𝑃) ∗ (1 − ∆𝑑

𝑂𝐴𝑇) 

 

Where, 𝐶𝑆𝑆𝑃𝑡 =
𝑉𝑡 

𝐷𝑡
=

𝑉𝑡

𝑃𝑃𝑊𝐼𝐷𝑡∗𝑑∗12
 

 𝐶𝑆𝑆𝑃𝑡 denotes coverage of SSP in year t; 
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 ∆𝑑
𝑆𝑆𝑃 denotes percentage reduction in injection sharing due to SSP; 

 ∆𝑑
𝑂𝐴𝑇  denotes percentage reduction in injection sharing due to OAT; 

 𝑉𝑡 denotes total volume of needles being distributed through SSP in year t; 

 𝐷𝑡  denotes total injection demands for PWID population in year t; 

 𝑃𝑃𝑊𝐼𝐷𝑡 denotes population of PWID in year t; 

 𝑑 denotes monthly number of injections per PWID who doesn’t receive OAT. 

  

1.2.1 Transmission via needle-sharing: The needle-sharing sufficient contact rate between uninfected individuals in 

compartment i and infected individuals in compartment j at time t is: 

𝛾𝑖𝑗𝑡
𝑜 =  −𝑑𝑖𝑠𝑖 ln (1 −

𝑋𝑗𝑡𝑑𝑗𝑠𝑗

∑ 𝑋𝑘𝑡𝑑𝑘𝑠𝑘𝑘
𝜏𝑗), 

Where i, j, k correspond to compartments of PWIDs. The term in brackets, [
𝑋𝑗𝑡𝑑𝑗𝑠𝑗

∑ 𝑋𝑘𝑡𝑑𝑘𝑠𝑘𝑘
], corresponds to the probability of 

selecting a needle-sharing partner in compartment j, based on a proportional mixing assumption (i.e. individuals who 

share many injection are more likely to select a partner who also shares many injection). 𝜏𝑗 represents the probability of 

transmission per shared injection, stratified by the CD4 stratum of the infected PWID. We note that the probability of 

transmission is reduced by 50% (𝛿𝐼, range: 10%-90%) when the partner in compartment j is on ART157,234.  

1.2.2 Transmission via heterosexual contact: The sufficient contact rate between uninfected heterosexuals in compartment 

i and infected individuals in compartment j is: 

𝛽𝑖𝑗𝑡
𝑜 = −𝑛𝑖

𝑜(1 − 𝑢𝑖
𝑜𝜅) ln (1 − 𝑚𝑟,𝑟′

𝑜
𝑋𝑗𝑡

∑ 𝑋𝑘𝑡𝑘∈𝑟′

𝜎𝑗) , 𝑖 ∈ 𝑟, 𝑗 ∈ 𝑟′ 

Where i is male and j,k are female, or vice versa. We considered a mixture of assortative and proportional partnership 

mixing that is controlled by 𝑚𝑟,𝑟′
𝑜 230,235, the mixing matrix between group 𝑟 and 𝑟′. Assortative mixing was considered to 

account for the preferential mixing where individuals are more likely to form partnerships with others in the same class 

(e.g. race/ethnicity, high-/low-risk), while the proportional mixing (i.e. individuals with many partners are more likely to 

select a partner who also has many partners) was used to distribute the partnerships (after sorted by assortative mixing) 

within the same class. Groups 𝑟 and 𝑟′ represent opposite sexes and are defined according to race/ethnicity (Black/African 

American, Hispanic/Latino, and White/other) and sexual intensity level (high, low), resulting in a 6 x 6 mixing matrix 

𝑚𝑟,𝑟′
𝑜  (Table A3) that is estimated by: 

𝑚𝑟,𝑟′
𝑜 = 𝜀𝑟

𝑜𝛿𝑟,𝑟′ + (1 − 𝜀𝑟
𝑜)

∑ (1 − 𝜀𝑟′
𝑜 )𝑋𝑘𝑡𝑛𝑘

𝑜(1 − 𝑢𝑘
𝑜𝜅)𝑘∈𝑟′

∑ (1 − 𝜀𝑟𝑘
𝑜 )𝑋𝑘𝑡𝑛𝑘

𝑜
∀𝑘 (1 − 𝑢𝑘

𝑜𝜅)
   

A proportion of sexual contacts are to be formed within the same group 𝑟, according to an assortative coefficient 𝜀𝑟
𝑜, and 

the remaining (1 − 𝜀𝑟
𝑜 ) proportion of partnerships is formed randomly across all groups.  If 𝜀𝑟

𝑜 is equal to 1, mixing is 
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fully assortative, and if 𝜀𝑟
𝑜 is equal to 0, mixing is random. 𝛿𝑟,𝑟′ is the Kronecker delta, which is equal to one if 𝑟 and 𝑟′ 

are equivalent and equal to zero otherwise. No preference is given to choosing a partner in other groups other than the 

relative proportion of total sexual partnerships with members of each compartment.  

In determining the mixing matrix, we categorized high-risk heterosexuals, MSM, MSM-PWID and PWID as the high-

risk group in heterosexual mixing, and the rest as the low-risk group. Once the mixing matrix was determined, we further 

calculated the mixing probability between group r and each subgroup in 𝑟′ (e.g. black high-risk heterosexuals, black 

PWID, black MSM, and black MSM-PWID if 𝑟′ represents the high-risk black group) assuming proportional mixing, 

that individuals with many partners are more likely to select a partner who also has many partners. More specifically, the 

mixing probability between group 𝑟 and subgroup 𝑙 (of group 𝑟’) is estimated by: 

𝑚𝑟,𝑙
𝑜 = 𝜀𝑟

𝑜
𝑋𝑙𝑡𝑛𝑙

𝑜(1 − 𝑢𝑙
𝑜𝜅)

∑ 𝑋𝑘𝑡𝑛𝑘
𝑜(1 − 𝑢𝑘

𝑜𝜅)𝑘∈𝑟′
𝛿𝑟,𝑟′ + (1 − 𝜀𝑟

𝑜)
(1 − 𝜀𝑟′

𝑜 )𝑋𝑙𝑡𝑛𝑙
𝑜(1 − 𝑢𝑙

𝑜𝜅)

∑ (1 − 𝜀𝑟𝑘
𝑜 )𝑋𝑘𝑡𝑛𝑘

𝑜
∀𝑘 (1 − 𝑢𝑘

𝑜𝜅)
, 𝑙 ∈ 𝑟′ 

such that ∑ 𝑚𝑟,𝑙
𝑜

𝑙∈𝑟′ = 𝑚𝑟,𝑟′
𝑜 .  

To avoid over-mixing between the high- and low-risk population (which may cause an overestimation of heterosexual 

transmission), we restricted the mixing probability between high- and low-risk individuals to 1% of partnerships formed. 

More specifically, for each row of 𝑚𝑟,𝑟′
𝑜  (for group r), we standardized the previously estimated mixing probabilities 

within or between the high- and low-risk groups to a total of 99% and 1% respectively, e.g. for low-risk white/other HET, 

the mixing probabilities with other low-risk HET will be augmented proportionally to a sum of 99% (ratio between 

probabilities with each subgroup remain the same), while the mixing probabilities with high-risk HET will be reduced 

proportionally to a sum of 1%. 

The mixing matrix is then adjusted so that the number of partnerships formed between men and women balance for each 

pair of groups. The imbalance 𝑉𝑟,𝑟′ is calculated as: 

𝑉𝑟,𝑟′ =
𝑚𝑟′,𝑟

𝑜 (∑ 𝑋𝑘𝑡𝑛𝑘
𝑜(1 − 𝑢𝑘

𝑜𝜅)𝑘∈𝑟′ )

𝑚𝑟,𝑟′
𝑜 (∑ 𝑋𝑘𝑡𝑛𝑘

𝑜(1 − 𝑢𝑘
𝑜𝜅)𝑘∈𝑟 )

 

The mixing matrix is then adjusted by this degree of imbalance V for each pair: 

𝑚𝑟,𝑟′
𝑜 → 𝑚𝑟,𝑟′

𝑜 𝑉𝑟,𝑟′
𝜃 

𝑚𝑟′,𝑟
𝑜 → 𝑚𝑟′,𝑟

𝑜 𝑉𝑟,𝑟′
(𝜃−1) 

The parameter θ describes the degree of compromise between the two sexes and is set to 0.5 to equalize the compromise 

between males and females10.  
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We note that the number of sexual partners of individuals in compartment 𝐷𝑗 , 𝑇𝑗  or 𝑂𝑗  is reduced by 68% (ε, range: 59%-

76%) following diagnosis236-239, and the probability of transmission is reduced by 91% (𝛿𝑠𝑒𝑥, range: 79%-96%) when the 

partner is in compartment 𝑇𝑗 receiving ART7,164.  

1.2.3 Transmission via homosexual contact: The sufficient contact rate between uninfected MSMs in compartment i and 

infected MSMs in compartment j is:  

𝛽𝑖𝑗𝑡
𝑠 = −𝑛𝑖

𝑠(1 − 𝑢𝑖
𝑠𝜅) ln (1 − 𝑚𝑟,𝑟′

𝑠
𝑋𝑗𝑡

∑ 𝑋𝑘𝑡𝑘∈𝑟′
𝜎𝑗) , 𝑖 ∈ 𝑟, 𝑗 ∈ 𝑟′ 

Where i, j, k correspond to compartments of MSM (including MSM-PWID). Similarly, the partnership mixing between 

MSM is controlled by the mixing matrix 𝑚𝑟,𝑟′
𝑠  where 𝑟 and 𝑟′ are both subgroups of MSM that are also defined by 

race/ethnicity and risk level (Table A4). 

𝑚𝑟,𝑟′
𝑠 = 𝜀𝑟

𝑠𝛿𝑟,𝑟′ + (1 − 𝜀𝑟
𝑠)

∑ (1 − 𝜀𝑟′
𝑠 )𝑋𝑘𝑡𝑛𝑘

𝑠 (1 − 𝑢𝑘
𝑠 𝜅)𝑘∈𝑟′

∑ (1 − 𝜀𝑟𝑘
𝑠 )𝑋𝑘𝑡𝑛𝑘

𝑠
∀𝑘 (1 − 𝑢𝑘

𝑠 𝜅)
 

We redistributed the mixing matrix among each subgroups in 𝑟′ assuming the same proportional mixing described above, 

and also restricted mixing between high- and low-risk MSM to 1%. No adjustment is made to balance partnerships among 

MSM. 

We note that the number of sexual partners of individuals in compartment 𝐷𝑗 , 𝑇𝑗  or 𝑂𝑗  is reduced by 68% (ε, range: 59%-

76%) following diagnosis236-239, and the probability of transmission is reduced by 91% (𝛿𝑠𝑒𝑥, range: 79%-96%) when the 

partner is in compartment 𝑇𝑗  receiving ART7,164. Furthermore, we also adjusted the probability of transmission per 

partnership 𝜎𝑗 for high-risk MSM and MSM-PWID who are receiving PrEP by 60% (𝛿𝑃𝑟𝐸𝑃, range: 56.3% - 61.9%)240,241. 

1.3 Population proportion adjustment 

Given (i) potential individual behaviour change, i.e. transitions between risk group/risk level, despite no available data to 

track these transitions; and (ii) heterogeneous fluctuations in the proportion of risk group/risk level due to disparate 

population dynamics and risk of HIV infection, we maintained a constant proportion of each of the four risk groups (i.e. 

PWID, MSM, MSM-PWID, HET) among the susceptible (𝑆1) population.  We adjusted these proportions among males 

and females at each time step while allowing for projected dynamics in population demographics according to 

race/ethnicity and sex. Furthermore, we also maintained the proportion of people in high- and low-risk strata constant 

among MSM (including MSM-PWID) and HET in both the susceptible and PLHIV groups respectively, with adjustment 

made between high- and low-risk group10. 

2. Model Parameterization 
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The primary basis for the development of the model was a comprehensive and extensive evidence synthesis that has been 

described elsewhere229. In the evidence synthesis, required data to populate the model were grouped in six categories: (i) 

initial susceptible and HIV-infected population estimates; (ii) parameters used to calculate the force of HIV infection; 

(iii) screening, diagnosis, treatment and HIV disease progression; (iv) HIV prevention programs, including SSP, OAT, 

and PrEP; (v) the costs of medical care for susceptible and HIV-infected individuals; and (vi) quality-adjusted life year 

(QALY) weights for each stage of HIV disease progression. Model parameters were also identified as those that should 

be consistent across, and those requiring context-specific data (e.g. HIV risk behaviours, population proportions). We 

identified the best possible data sources for each domain and explicitly ranked every piece of evidence entering the model 

on the basis of study design, study quality and recency, with additional data verification performed by our scientific 

advisory committee for some less than ideal data. Data for parameter estimates, as well as their ranges and prior 

distributions fitted, were collected and transparently reported using various search strategies from numerous data sources, 

including 59 peer-reviewed publications, 24 public health and surveillance reports and primary analyses using 11 data 

sets. Details on methods used to instantiate model and estimate disease progression are provided below. 

2.1 Model instantiation 

We simulated the HIV epidemic by first instantiating the population group size and HIV epidemic levels in each city 

based on 2011 data and population numbers derived from census data, surveillance reports and other data sources. Initial 

population estimates for each city capture overall population numbers (aged 15-64) stratified by sex, race/ethnicity risk 

group, high/low sexual risk among HET, MSM, MSM-PWID, and OAT status among PWID/MSM-PWID, resulting in 

42 population subgroups. We distributed these 42 subgroups among 19 health states, including susceptible (HIV-negative) 

(screened and unscreened), infected (undiagnosed) (3 CD4 cell count strata and acute HIV), diagnosed (untreated) (3 

CD4 strata and acute HIV), on-ART and off-ART (3 CD4 strata each). We also included PrEP states for HIV-susceptible, 

acute and asymptomatic HIV (CD4≥500) among infected but undiagnosed PLHIV (3 PrEP strata), although PrEP was 

modelled only among high-risk MSM and high-risk MSM-PWID. This resulted in 798 initial population values (42 

subgroups x 19 health states).  

While the basic demographic stratifications for the initial population estimates (i.e. sex and race/ethnicity) are directly 

available from cross-tabulated census data, risk group stratification was derived according to the corresponding 

proportions among the general population, as identified from population-level survey or surveillance studies208,242-244. In 

particular, we derived the MSM-PWID initial population by two means: (1) according to the proportion of MSM that 

inject drugs and (2) according to the proportion of male PWID that have sex with men, and then took the average of the 

two estimated population size. The initial numbers of PLHIV were a subset of the total population numbers. Derivations 

for sex, race/ethnicity and risk group stratified number of identified/diagnosed PLHIV (including D i, Ti, and Oi), as well 

as the proportions currently on ART and ever on ART (off-ART proportion was then the difference), were rather 

complicated, with some available from surveillance database at the city level (i.e. Di) while the rest triangulated from 

HIV Research Network (HIVRN) data245, as detailed in the evidence synthesis paper229. With the supplement of the 

estimated proportion of PLHIV aware of their HIV status from surveillance, we were able to ascertain the initial number 
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of PLHIV that are infected but undiagnosed (Ii) by: 
𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑃𝐿𝐻𝐼𝑉

% 𝑎𝑤𝑎𝑟𝑒 𝑜𝑓 𝐻𝐼𝑉 𝑠𝑡𝑎𝑡𝑢𝑠
− 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑃𝐿𝐻𝐼𝑉. We further stratified the 

initial population of PLHIV by HIV stages (acute HIV and 3 CD4 strata) according to the estimated CD4 count 

distribution from HIVRN data245  (for diagnosed PLHIV) and the literature (for undiagnosed PLHIV), assuming a 1% 

(range: 0%-5%) of acute stage among Ii and Di. The distribution of OAT recipients (stratified by sex and race/ethnicity 

in source data) across each health state was assumed proportional to the number of PWID in these states.  

Proportions of individuals with high- and low-risk sexual intensity among susceptible HET was determined using 

behavioural surveys and surveillance data on individuals with 5 or more sexual partners in the past 12 months160. In 

contrast, the proportion of high- and low-risk Susceptible MSM and MSM-PWID were determined according to the 

proportion that are indicated for PrEP (25%) in accordance with CDC guidelines208. For HIV-infected HET, MSM and 

MSM-PWID, we used proportions of PLHIV individuals with STDs as a proxy for high-risk behavior based on literature 

sources246,247. Initial values for PrEP compartments were all set as 0 due to unavailability of PrEP in 2011. Data used to 

instantiate model can be found in our evidence synthesis paper published elsewhere229 and Table A5 presents the resulting 

initial population estimates for each of the 798 model compartments in 2011.  

2.2 Entry, maturation and mortality 

We calculated entry, maturation and mortality rates for each of the study risk groups according to the numbers of 

individuals who enter or mature out of the model population each month, as well as published mortality estimates for 

non-PWID and PWID. The entry probability was the proportion of the 15 year-olds within the study population 

(population aged 15-64), and converted to a rate, incorporating growth in this proportion during the study period 

(projected population dynamics for each city were detailed in our evidence synthesis). The maturation probability was 

the proportion of 65 year-olds within the study population, and converted to a rate, incorporating mortality, as baseline 

mortality drawn from life tables for each city. Both baseline entry and maturation rates were derived from the United 

States Census Bureau. Entry rates were confined to S1 state, while maturation and mortality rates were applied all states. 

Mortality rates for PLHIV were differentiated by HIV progression stages (acute and three CD4 levels) and whether the 

individual is on ART. We note that complete data on all-cause mortality was incorporated into the model (See section 

2.1).  

𝐸𝑛𝑡𝑟𝑦 𝑟𝑎𝑡𝑒:  𝜌 = −𝑙𝑛(1 −
15 𝑦𝑒𝑎𝑟 𝑜𝑙𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

15 − 64 𝑦𝑒𝑎𝑟 𝑜𝑙𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)/12 + 𝑔𝑟𝑜𝑤𝑡ℎ  

𝑀𝑢𝑡𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒:  𝜇 = −𝑙𝑛(1 −
64 𝑦𝑒𝑎𝑟 𝑜𝑙𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

15 − 64 𝑦𝑒𝑎𝑟 𝑜𝑙𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)/12 + 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 

2.3 HIV Testing and Symptom-based Case-finding Rates 

The best available evidence for the percentage of individuals in each subgroup receiving an HIV test in the past 12 months 

identified in our evidence synthesis, necessary to determine monthly testing rates, were derived from sample-based 

studies, including National HIV Behavioral Surveillance (NHBS)208,244,248, Behavioral Risk Factor Surveillance System 
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(BRFSS)209 and the New York City Community Health Survey (NYC-CHS)249. However, selection bias inherent to 

sample-based studies resulted in testing rates that were likely overestimated and provided a very poor fit during calibration 

of our model to the observed number of new diagnoses in each city. In the absence of alternative high-quality sources for 

population-level HIV testing rate estimates, we applied a preliminary model calibration using the same Nelder-Mead 

algorithm to back-calculate baseline testing rates against the observed number of new diagnoses for each population group 

in 2012 229. We back-calculated testing rates for each population group in the low-risk category as well as a testing rate 

ratio for individuals with high sexual intensity (compared to low-risk) and symptom-based case finding rates for PLHIV 

with more advanced HIV stages (200≤CD4<499, CD4<200). Screening rates for the unscreened susceptible individuals 

(S1) were assumed equal to the infected of the same population group. Monthly testing rates for individuals on PrEP were 

assumed to be 0.333 (the reciprocal of 3 months), consistent with the PrEP prescription guidelines159.  

In this preliminary testing rate calibration, we informed all other parameters with their point estimate and calibrated only 

against the first year’s new diagnoses in order to reduce the influences of uncertainty from other parameters. Only one 

set of baseline testing and symptom-based case-finding rates was derived from this process and was held fixed in the later 

formal model calibration and validation. The prior values for the baseline testing rates were back-calculated according to 

the initial size of the infected but undiagnosed compartments (Ii, Section 2.1) and the observed new diagnoses in 2012, 

and we assumed a prior of 2.6 (range: 1-5) testing rate ratio for individuals with high sexual intensity level156,196, while 

the priors for the symptom-based case finding rates were derived from the published literature250. Due to the small number 

of new diagnoses for some subgroups in some cities, e.g. female Hispanic HET in Seattle, and the associated estimation 

uncertainty, we adjusted extreme values of back-calculated testing rate estimates to maintain all testing rates within a 

reasonable range: (1) for PWID and low-risk MSM-PWID, subgroups whose average duration between tests (calculated 

by 1/testing_rate/12) greater than 15 years or shorter than 1 year were adjusted to a level of 15 years and 1 year 

respectively (rate = 1/duration/12); (2) for low-risk HET, male subgroups whose average duration between tests greater 

than 20 years (16 for female) or shorter than 6 years (5 for female) were adjusted to a level of 20 years (16 for female) 

and 6 years (5 for female) respectively; (3) corresponding high-risk subgroups were adjusted according to their 

counterparts in the low-risk and the testing rate ratio. These adjustments were based on a CDC analysis of national health 

data surveys251 a national health survey for the ratio between male and female HET251 and on a published modeling study 

in US252. Although these adjustments had minimal impact on model calibration/validation in this study, we believe they 

were still necessary to ensure face validity. Resulted annual probability of testing for each population group and symptom-

based case finding, as transformed from their monthly rates, as well as the testing rate ratio between high-risk and low-

risk subgroup of the same kind are presented in Table A6. To further validate these testing rate estimates, we also 

calculated the total number of HIV tests conducted in 2015 (including tests given to both HIV positive and negative 

individuals) from our model and compare it with a few externally estimates based on some plausible scenarios (Table 

A7).  

In order to reflect potential changes in health services delivery, we also allowed for an annual change in the HIV testing 

rate,  𝜓𝑠𝑙𝑜𝑝𝑒  , assuming a prior of 0.05 (range: 0-0.1), that was subject to calibration, i.e.  𝜓𝑡 =  𝜓0 ∗ (1 +  𝜓𝑠𝑙𝑜𝑝𝑒)𝑡 , 

where  𝜓𝑡 denotes the resulted testing rate in year t and  𝜓0 denotes the baseline testing rate derived from the preliminary 
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testing rate calibration. This annual change was only applied in the calibration period (2012-2015) and testing rates 

remained constant in the prospective projections (2016 and onwards). 

2.4 ART initiation, re-initiation and dropout rates 

ART initiation, re-initiation and dropout from ART were mainly estimated from nationwide collaborative longitudinal 

HIV cohort data (HIV Research Network, HIVRN)245 (estimation methods described in Section 2.5). For ART initiation, 

we differentiated individuals who initiated ART within 30 days of HIV diagnosis and individuals initiating ART more 

than 30-days post-diagnosis. Given that HIVRN only contains data for a selected PLHIV cohort that are receiving HIV 

care, and to obtain ART initiation rates applicable to general PLHIV, we adjusted initiation rates using the proportion of 

PLHIV linked to HIV care following diagnosis (𝑝1), as derived from city-/state-level surveillance database253-258. The 

proportion of immediate ART initiators (𝜑𝑖 , i for different CD4 levels, denoted as 𝜑  in this section), stratified by sex, 

race/ethnicity, risk group and CD4 level, was estimated by multiplying the proportion of immediate ART initiation (within 

30 days of diagnosis) among newly diagnosed PLHIV on HIV care (𝜑′) with 𝑝1. Similarly, ART initiation rates for PLHIV 

excluding those who immediately started ART (𝛼𝑖, denoted as 𝛼 in this section), also stratified by sex, race/ethnicity, risk 

group and CD4 level, were the product of two parts: ART initiation rate among diagnosed PLHIV on HIV care (𝛼′) and 

the proportion of diagnosed but untreated PLHIV (i.e. 𝐷𝑖) that are linked to care (𝑝2). We derived 𝛼′ by dividing observed 

number of ART initiations in the cohort by the total person-months of ART-eligible PLHIV in the diagnosed but untreated 

state. Specifically, 

𝜑 = 𝜑′ ∗ 𝑝1 

𝛼 = 𝛼′ ∗ 𝑝2 

𝑝2 =
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑙𝑖𝑛𝑘𝑒𝑑 𝑡𝑜 𝑐𝑎𝑟𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑑𝑖𝑎𝑔𝑜𝑠𝑖𝑠 (𝑏𝑢𝑡 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑏𝑢𝑡 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑢𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑑𝑖𝑎𝑔𝑜𝑠𝑖𝑠
=

𝑝1(1 − 𝜑′)

1 − 𝑝1𝜑′
 

 

ART dropout rates and re-initiation rates, all stratified by sex, race/ethnicity and risk group, were derived from HIVRN 

data and were estimated using a continuous-time multi-state Markov model, along with the derivation of disease 

progression rates (Section 2.1). Full details on the model and estimations are described elsewhere259,260. As HIVRN data 

for CD4 count measurements were not always available for those not on ART, we only differentiated the rates of ART 

dropout by CD4 category. In addition, we accounted for increased ART adherence associated with OAT receipt by 

reducing the ART dropout rate for PWID (including MSM-PWID) receiving OAT261.  

2.5 In-migration rates 

The number of diagnosed PLHIV migrating into a given city was derived by reconciling the difference between the total 

number of diagnosed PLHIV reported in surveillance reports and the estimated counterpart according to the reported  
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number of new diagnoses and all-cause deaths for each year between 2012-2015. Specifically, the estimated diagnosed 

PLHIV in year t 𝐷𝑖𝑎𝑔𝑡
𝑒𝑠𝑡  was calculated by: 

𝐷𝑖𝑎𝑔𝑡
𝑒𝑠𝑡 = 𝐷𝑖𝑎𝑔𝑡−1

𝑟𝑒𝑝
+ 𝑁𝑒𝑤_𝑑𝑖𝑎𝑔𝑡

𝑟𝑒𝑝
− 𝐷𝑒𝑎𝑡ℎ𝑠𝑡

𝑟𝑒𝑝
− 𝐷𝑖𝑎𝑔𝑡−1

𝑟𝑒𝑝
∗ 𝑀𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

Where, 𝐷𝑖𝑎𝑔𝑡
𝑟𝑒𝑝

 denotes the number of reported diagnosed PLHIV in year t 

             𝑁𝑒𝑤_𝑑𝑖𝑎𝑔𝑡
𝑟𝑒𝑝

 denotes the number of reported new diagnoses in year t 

             𝐷𝑒𝑎𝑡ℎ𝑠𝑡
𝑟𝑒𝑝

 denotes the number of reported all-cause deaths among PLHIV in year t 

The in-migration rate, which was applied to both diagnosed and undiagnosed PLHIV, was then derived by estimating the 

average of the proportion of the in-migration population among total observed cases and transforming the yearly 

probability into corresponding monthly rate. The in-migration rate 𝜌𝑚 is estimated by:  

𝜌𝑚 = {− ln (1 − 𝑚𝑒𝑎𝑛(
𝐷𝑖𝑎𝑔𝑡

𝑟𝑒𝑝 − 𝐷𝑖𝑎𝑔𝑡
𝑒𝑠𝑡

𝐷𝑖𝑎𝑔𝑡
𝑜𝑏𝑠

))}/12 

The in-migration rates were set to 0 during the projection period (2016-2040) due to a lack of supporting evidence. 

2.6 PrEP entry and exit rates 

We allowed for growth in PrEP uptake among high-risk MSM and MSM-PWID following the Food and Drug 

Administration (FDA)’s approval of Truvada for use as PrEP in July 2012262, before which entry rates were set to 0. 

Time-varying PrEP entry rates were determined according to the total number of unique PrEP users who had at least one 

day of PrEP in a year from 2012 to 2015 in each jurisdiction263, as well as its stratification by race/ethnicity to account 

for ethnic disparities in PrEP prescriptions264,265, and we converted this annual probability to a monthly entry rate. The 

PrEP exit rates, on the other hand, were estimated as the reciprocal of the average duration that individuals remain on 

PrEP (20.6 months, range: 13.1-49.6)159. 

2.7 OAT entry and exit rates 

OAT was available to all PWID and MSM-PWID. The OAT exit rate (one common rate across cities, sex and 

race/ethnicity) was derived from a systematic review on OAT retention266 while the entry rates (𝜋) among each PWID 

and MSM-PWID group were back-calculated according to the exit rate (𝜋̅) and the initial coverage of OAT among each 

group assuming the number of OAT entries to equalize exits: 

𝑁𝑃𝑊𝐼𝐷 𝑛𝑜𝑡 𝑜𝑛 𝑂𝐴𝑇 ∗ 𝜋 = 𝑁𝑃𝑊𝐼𝐷 𝑜𝑛 𝑂𝐴𝑇 ∗ 𝜋̅ 

Such that  

𝜋 =
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑂𝐴𝑇

1 − 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 
𝑂𝐴𝑇

∗ 𝜋̅, 𝑤ℎ𝑒𝑟𝑒, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 
𝑂𝐴𝑇

=
𝑁𝑃𝑊𝐼𝐷 𝑜𝑛 𝑂𝐴𝑇

𝑁𝑃𝑊𝐼𝐷 𝑜𝑛 𝑂𝐴𝑇 + 𝑁𝑃𝑊𝐼𝐷 𝑛𝑜𝑡 𝑜𝑛 𝑂𝐴𝑇
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2.8 Disease progression 

Region-specific rates of transitioning between on-ART health states were estimated from a parametric, continuous-time, 

Multi-state Markov model using HIVRN cohort data, and corresponding regional estimates were used for each city. We 

estimated the impact of prognostic factors on CD4 disease progression and simultaneously estimated CD4 state transition 

probabilities during treatment over time, as well as mortality, ART dropout, and ART re-initiation rates. The estimation 

was operationalized by a matrix with 14 possible instantaneous transitions among 5 states (3 CD4 strata, off ART and 

death). Sex, race/ethnicity and risk group have all been accounted for as confounding factors in estimating these transition 

probabilities. Markov chains constitute a common way of modeling the progression of a chronic disease through various 

severity states. For these models, a transition matrix with the probabilities of moving from one state to another for a 

specific time interval is usually estimated from observational cohort data. The time between CD4 measurements is 

inherently controlled for in this methodology. These models efficiently handle heavily censored data, such as when the 

exact time of disease onset is unknown or when a subject is observed over a portion of his/her disease history267-272. This 

work has been detailed in a prior publication259,260, and was used to derive monthly transition probabilities between CD4 

states, as well as ART dropout and re-initiation rates and mortality. We note that due to a lack of CD4 count records for 

ART-discontinued PLHIV, estimation for ART re-initiation rates was not stratified by CD4 strata. 

 

We estimated off-ART disease progression (assuming equivalent for any PLHIV not on ART, i.e. 𝐼𝑖 , 𝐷𝑖  and 𝑂𝑖) from 

other sources250,273-275. Particularly, the disease progression rate for acute stage (from acute to CD4>500 stratum) was 

calculated as the reciprocal of the estimated mean duration of the acute stage (1.7 months, range: 1-6.8 months161). We 

assumed equivalent mortality rates between HIV-susceptible and untreated PLHIV in acute stage or with CD4 count ≥ 

500. For untreated PLHIV in the remaining CD4 strata (200≤CD4<499 and CD4<200), we fitted the model with two 

baseline mortality rates for non-PWID individuals, as well as two mortality rate multipliers for PWID/MSM-PWID 

groups (estimates based on HIVRN analysis), one for each CD4 stratum respectively, all constituting candidates for model 

calibration. In addition, given the protective effect of OAT in reducing overdose and other injected-related risk of death276, 

we also allowed for a reduced mortality rate for PWID receiving OAT. 

 

3. Model calibration and validation 

3.1 Model calibration 

Calibration of model inputs to observed epidemiological endpoints ensures the credibility of model results and thus 

strengthens our confidence in model inferences. In this study, we adopted a direct-search algorithm, Nelder-Mead 

algorithm (using R package ‘dfoptim’277), to iteratively calibrate key uncertain parameters against three sets of observed 

calibration endpoints for each city. A total of 17 individual targets composed the three sets of calibration endpoint, 

including the number of diagnosed PLHIV at each year end (stratified by sex, race/ethnicity and risk group), the annual 
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number of new HIV diagnoses (separately for the overall estimate, African/American (Black) population, and MSM), 

and the annual number of all-cause mortality deaths among PLHIV (separately for the overall estimate, African/American 

(Black) population, and MSM). Specifications for the model calibration process can be found in the manuscript and 

conformed with methodological guidelines61, including those for the selection of calibration targets, free parameters, 

Goodness-of-fit (GoF) metric, search algorithm, acceptance criteria and stopping rule. Our calibration computations 

(10,000 iterations for each city) was performed on the platform of Compute Canada WestGrid HPC Cluster infrastructure 

(www.computecanada.ca). The selection of initial free parameters for calibration and the determination of target weight 

for a multi-target GoF metric are two fundamental components in model calibration; however, this selection has typically 

been based on subjective decisions in previous modeling studies61. In the following sections, we present two methods we 

adopted to determine the set of calibration parameters and target weights to reduce such subjectivity. The full breadth of 

model calibration results are presented in Figure A2. 

3.1.1 Morris method and parameter selection 

The list of free parameters were determined by adopting a one-at-a-time (OAT) factor screening approach - Morris 

method169. Given the high dimensionality of data space, calibrating all of them are computationally infeasible, entailing 

a screening process throughout the uncertain parameter space prior to model calibration278. Morris method employs 

individually randomized one-factor-at-a-time experiments to characterize the impact of the change in an input parameter 

on a model output, i.e. elementary effect169, intending to isolate the parameters that have either biggest linear (additive) 

effects, or non-linear (interaction) effects on the model outcomes (calibration targets)279. All 140 parameters (𝑿 =

𝑥1, 𝑥2, 𝑥𝑖 , … , 𝑥140 ) determining model dynamics were identified to enter the parameter selection process, and their 

plausible ranges were specified in Table A1. Detailed process for the Morris method is presented below: 

Before proceeding, the parameter space 𝑿 is discretized into a p-level grid Ω such that 𝑥𝑖 can only take values from the 

set 𝑥𝑖
𝑚𝑖𝑛 + {0,

1

p−1
,

2

p−1
, … , 1}(𝑥𝑖

𝑚𝑎𝑥 − 𝑥𝑖
𝑚𝑖𝑛), where 𝑥𝑖

𝑚𝑎𝑥  and 𝑥𝑖
𝑚𝑖𝑛  denote the minimum and maximum possible 

values for parameter 𝑥𝑖, resulting in a 140-dimensional p-level grid.  

The Morris design starts by randomly selecting a ‘base’ value 𝒙∗ for the vector 𝑿 such that each component is sampled 

from Ω . The first sampling point 𝒙(𝟏)  is derived from 𝒙∗  by increasing one or more components by Δ  while 𝒙(𝟏) 

remaining in Ω, where Δ is a predetermined multiple of 1/(p − 1) assuming each 𝑥𝑖 is scaled to the interval [0, 1]. The 

second sampling point 𝒙(𝟐) = (𝒙(𝟏) ± 𝒆𝒊Δ), whichever remains in Ω, where 𝒆𝒊 is a vector of zeros but with a unit as its 

𝑖𝑡ℎ  component (i is randomly selected from {1, 2, …, k}). The third sampling point 𝒙(𝟑) = (𝒙(𝟐) ± 𝒆𝒋Δ), whichever 

remains in Ω, where j is randomly selected from the remaining {1, 2, …, k} that 𝑗 ≠ 𝑖. This procedure proceeds until all 

the components have been changed once, producing a succession of k+1 sampling points, with two consecutive points 

differ in only one component by the same Δ. This process will be repeated r times, each with a new set of randomly 

generated ‘base’ value, to create (𝑘 + 1)𝑟 sampling points (excluding the ‘base’ set) on which model was evaluated.  
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A convenient choice for the parameter 𝑝 and Δ is that 𝑝 is even and Δ equals to 𝑝/[2(𝑝 − 1)]169,280. We chose 𝑝 = 8 (and 

thus Δ = 4/7) and 𝑟 = 10. 

The elementary effect associated with the parameter 𝑥𝑖 (assuming 𝑥𝑖 as the component in which current sampling point 

differs from the previous) in the 𝑗𝑡ℎ iteration on target t is estimated by: 

𝑑𝑗
𝑡(𝑥𝑖) =

𝑦𝑡(𝑥1+𝑥2+⋯+𝑥𝑖−1+𝑥𝑖+Δ+𝑥𝑖+1…+𝑥𝑘)−𝑦𝑡(𝑥1+𝑥2+⋯+𝑥𝑘)

Δ
, if 𝑥𝑖 has been increase by Δ, or 

𝑑𝑗
𝑡(𝑥𝑖) =

𝑦𝑡(𝑥1+𝑥2+⋯+𝑥𝑘)−𝑦𝑡(𝑥1+𝑥2+⋯+𝑥𝑖−1+𝑥𝑖+Δ+𝑥𝑖+1…+𝑥𝑘)

Δ
, if 𝑥𝑖 has been decrease by Δ. 

where 𝑦𝑡(𝑿) denotes the model outcome (in respect of calibration target t) by inputting 𝑿. 

The sensitivity measures, 𝜇 and 𝜎, are respectively the mean and standard deviation of the distribution of elementary 

effects and are estimated by: 

𝝁𝒊
𝒕 = ∑ 𝑑𝑗

𝑡(𝑥𝑖)/𝑟

𝑟

𝑗=1

 

𝝈𝒊
𝒕 = √∑(𝑑𝑗

𝑡(𝑥𝑖) − 𝝁𝒊
𝒕)2/𝑟

𝑟

𝑗=1

 

Campolongo et al. recommended the use of 𝝁𝒊
𝒕∗

= |𝝁𝒊
𝒕| as to reduce the Type II error279. A higher 𝜇∗ indicates a larger 

overall elementary (or first-order) effect (linear effect) on the output. A larger standard deviation 𝜎 implies possible 

interaction effects (non-linear effects) with other parameters on the output. While there’s no explicit guidelines for the 

cutoff values278, we classified parameters with either 𝜇∗ or 𝜎 greater than 7.5% of any calibration targets as influential 

and included them in the subsequent model calibration. Table A1 presented results of the selected key uncertain 

parameters for each city from the Morris method, together with their prior and post-calibration values before/after 

calibration.  

3.1.2 Best-worst method and target weight determination 

To estimate the weights for each target in the overall weighted ‘goodness of fit’, we adopted a novel best-worst method 

(BWM)179,180 that has been applied in the field of operations research281-284. BWM is a multi-criteria decision-making 

method that relies on structured pairwise comparison to identify optimal weight for each decision criterion (i.e. calibration 

target) according to the preferences (i.e. relative importance) between each criterion with the best and worst criterion. 

This approach possesses advantages in requiring less comparison data than a full pairwise comparison matrix and 

generating more consistent results281. BWM requires decision makers to first select the best criterion that has the most 

important role in decision making, and the worst criterion (least important) and then place their preferences of the best 

criterion over each of the other criteria and also preferences of each of the other criteria over the worst criterion using a 
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number from a predefined scale (e.g. 1 to 9). These two sets of pairwise comparison results are then used to determine 

the optimal weight for each criterion by solving: 

Minimize 𝜉𝐿 , such that 

|𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗| ≤ 𝜉𝐿 , for all j 

|𝑤𝑗 − 𝑎𝑗𝑊𝑤𝑊| ≤ 𝜉𝐿, for all j 

∑ 𝑤𝑗 = 1

𝑗

 

𝑤𝑗 ≥ 0, for all j 

where,  𝑤𝐵 and 𝑤𝑊: the weight for the best and worst criterion respectively 

 𝑤𝑗: the weight for criterion j (i.e. jth target) 

 𝑎𝐵𝑗: the preference of the best criterion over criterion j 

 𝑎𝑗𝑊: the preference of criterion j over the worst criterion 

We designed a brief survey for our SAC members according to the essential steps of BWM. Specifically, each SAC 

member was asked to provide responses in choosing the calibration target they think is most important (Best) and the 

target that is least important (Worst) for the model to accurately reproduce. Pairwise comparisons were then performed 

to rate their preferences (interpreted as relative importance for calibration) of each target against the most and the least 

important target on a scale of 1-9 in integers. The optimization problem was solved by using R package ‘nloptr’285. The 

ultimate weight for each target was then determined by averaging the weight derived from each SAC member’s survey 

result. Figure A3 shows an example of the survey we distributed among our SAC members. Table A8 shows the resulted 

weight vector. The three targets with the highest weights (i.e. greatest importance), as selected by our SAC, were (1) 

Annual number of new HIV diagnoses (Total); (2) Annual number of new HIV diagnoses (MSM); (3) Annual number of 

new HIV diagnoses (Black). Adjustments to weights were made for cities with unique microepidemics or missing target 

data (see more details in the legend of Table A8). 

3.2 Model Validation 

Model validation is another tool to ensure the accuracy of a model in making relevant predictions. We performed model 

validation to assess the face, internal and external validity of the model. In particular, model projections (on the basis of 

calibrated parameter sets) were externally validated against the empirically estimated annual number of HIV incident 

cases (separately for the overall estimate and MSM population) between 2012-2015 and evaluated according to the 

proportion of projections fallen within the confidence intervals. More details about the process of model validation can 

be found in the manuscript and the external validation results are available in Figure A4. To assess the internal validity 
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of our model, we performed extreme value analyses on a few hypothetical extreme scenarios to help us determine whether 

the model performed as expected. Table A9 presents these scenarios in comparison with our anticipated results.  

For face validation, we provided a survey to our Scientific Advisory Committee with 25-year status quo projections 

(2016-2040) for each microepidemic assuming no changes in HIV treatment, care and prevention service provision from 

2015 levels (except PrEP up until 2017 levels). In the survey, we detailed our projections for each city on (1) population 

dynamics, stratified by race/ethnicity; (2) cascades of HIV care; (3) rate of new incidence, overall and stratified by 

race/ethnicity and risk group; (4) rate of new diagnoses, overall and stratified by race/ethnicity and risk group; (5) and 

rate of new incidence and new diagnoses among MSM, overall and stratified by race/ethnicity. We distributed the survey 

and performed individual follow-up with our SAC members to gather their expert opinion on the face validity of our 

model outcomes for each city. While most of the feedback we received was consistent with on our projections, two major 

concerns were raised during the consultation. The first concern was a general concern regarding the scale-up of PrEP 

during the first few years of projection period: new evidence came out showing that most cities were undergoing rapid 

growth in PrEP uptake in more recent years, while our previous modeling protocol only allowed PrEP growth up until 

2015 and remained fixed at that level from 2016 and onwards. The important difference of PrEP uptake between 2015 

and 2017 could lead to an overestimation of the projected epidemic during this period and thus result in an overly 

optimistic evaluation for the cost-effectiveness of further PrEP expansion. To address this concern, we modified our 

modeling protocol to incorporate the new PrEP data (up to 2017) for our status quo scenario. The second major concern 

was raised by our local experts from Seattle where our projected epidemic exceeded their expectations/known figures. 

We reviewed our model and evidence inputted for Seattle and identified two factors that might have caused the 

discrepancy. First, data from HIVRN that were used to inform ART initiation, re-initiation and dropout rates for Seattle 

may not have been representative given that HIVRN data for the western region did not include any study sites from 

Washington state. We hypothesized that this may have resulted in a projected cascade of HIV care that did not accurately 

represent local epidemiological data. We collected additional information from Seattle’s annual surveillance reports and 

conducted further back-calculation for the new ART engagement estimates. Second, we also noticed a change in Seattle’s 

latest surveillance report with respect to the definition of the counts of new diagnoses - now excluding people who had 

been diagnosed elsewhere286. While Seattle experts’ judgement was based on the estimates in their new report, our model 

was calibrated to the old targets from previous surveillance reports (which were significantly higher). We updated our 

target data with the new estimates and recalibrated our model to this new set of targets. With the above modifications, 

our model yielded outcomes that were confirmed by our Seattle SAC members (MG, JD). Figure A4 presents figures we 

included in the face validation survey following the conclusion of the face validation process. 
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Table A1. Free parameters for calibration 

COMMON PARAMETERS - Prior: point estimates (range); Post-calibration: median (95% credible interval) 

CITY Atlanta Baltimore Los Angeles Miami New York City Seattle 

Monthly mortality rate for PLHIV (CD4: 200-499), except PWID 

Prior 6.00E-4 (3.06E-4, 4.7E-3) 

Post 3.06E-4 (3.06E-4, 3.06E-4) 3.11E-4 (3.06E-4, 1.22E-3) 3.06E-4 (3.06E-4, 3.07E-4) 4.57E-4 (3.06E-4, 1.31E-3) 3.45E-4 (3.06E-4, 4.96E-4) 3.06E-4 (3.06E-4, 3.08E-4) 

Monthly mortality rate for PLHIV (CD4<200), except PWID 

Prior 0.0072 (0.0038, 0.0128) 

Post 0.0038 (0.0038, 0.0038) 0.0101 (0.0084, 0.0104) 0.0038 (0.0038, 0.0038) 0.0046 (0.0038, 0.0059) 0.0038 (0.0038, 0.0042) 0.0038 (0.0038, 0.0038) 

Multiplier of mortality rate for PLHIV that inject drugs (CD4: 200-499) 

Prior 1.59 (1.18, 6.10) 

Post 1.18 (1.18, 1.20) 1.18 (1.18, 1.21) 1.18 (1.18, 1.54) 2.12 (1.18, 6.10) 5.77 (1.18, 6.10) 1.18 (1.18, 1.29) 

Multiplier of mortality rate for PLHIV that inject drugs (CD4<200) 

Prior 1.59 (1.18, 6.10) 

Post 1.18 (1.18, 1.18) 1.18 (1.18, 1.18) 1.18 (1.18, 1.22) 1.43 (1.18, 3.29) 5.41 (4.75, 6.10) 1.18 (1.18, 1.20) 

Multiplier for number of sexual partners for PWID, relative to HET* 

Prior 0.4 (0.1, 2) 

Post 0.102 (0.100, 2.00)   0.101 (0.100, 0.207)     0.154 (0.100, 2.00) 

Decreased number of sexual partners post-diagnosis 

Prior 68% (59%, 76%) 

Post 76.0% (75.2%, 76.0%) 76.0% (75.8%, 76.0%) 74.5% (59.0%, 76.0%) 73.1% (59.0%, 76.0%) 75.1% (69.2%, 76.0%) 59.3% (59.0%, 71.6%) 

Injection frequency per month 

Prior 30 (15, 60) 

Post   15.0 (15.0, 15.33) 41.7 (21.9, 60.0)   15.8 (15.0, 59.4) 29.3 (15.1, 59.9) 

Decreased probability of injection sharing post-diagnosis 

Prior 50% (10%, 90%) 

Post   90.0% (89.4%, 90.0%) 57.9% (10.0%, 76.7%)   89.1% (51.8%, 90.0%) 26.9% (10.0%, 89.9%) 

SSP effect on reducing injection sharing 

Prior 42% (22%, 81%) 

Post           30.8% (22.0%, 81.0%) 

Probability of transmission per heterosexual partnership (CD4≥500), female to male 

Prior 0.015 (0.005, 0.07) 
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Post 0.0050 (0.0050, 0.012)   0.0050 (0.0050, 0.0056) 0.0055 (0.0050, 0.0293) 0.0078 (0.0050, 0.0329) 0.0698 (0.0361, 0.070) 

Probability of transmission per heterosexual partnership (CD4: 200-499), female to male 

Prior 0.025 (0.005, 0.07) 

Post 0.0593 (0.0050, 0.070)           

Probability of transmission per heterosexual partnership (CD4<200), female to male 

Prior 0.05 (0.0125, 0.14) 

Post 0.0376 (0.0125, 0.140)     0.0545 (0.0125, 0.140)     

Probability of transmission per heterosexual partnership (CD4≥500), male to female 

Prior 0.03 (0.02, 0.07) 

Post 0.0201 (0.020, 0.070) 0.0200 (0.20, 0.0204) 0.0211 (0.020, 0.070) 0.0695 (0.0454, 0.070) 0.0202 (0.020, 0.0315) 0.0641 (0.020, 0.070) 

Probability of transmission per heterosexual partnership (CD4:200-499), male to female 

Prior 0.05 (0.02, 0.07) 

Post 0.0222 (0.20, 0.070)           

Probability of transmission per heterosexual partnership (CD4<200), male to female 

Prior 0.1 (0.05, 0.14) 

Post 0.0501 (0.0500, 0.140)           

Probability of transmission per homosexual partnership (CD4≥500) 

Prior 0.045 (0.025, 0.1) 

Post 0.0251 (0.0250, 0.0433) 0.0477 (0.0250, 0.100) 0.0674 (0.0250, 0.100) 0.0582 (0.0253, 0.100) 0.0635 (0.0251, 0.100) 0.0352 (0.0250, 0.0995) 

Probability of transmission per homosexual partnership (CD4: 200-499) 

Prior 0.065 (0.025, 0.1) 

Post 0.0483 (0.0250, 0.0710) 0.100 (0.0254, 0.100) 0.0996 (0.0741, 0.100) 0.0990 (0.0444, 0.100) 0.0935 (0.0285, 0.100) 0.0629 (0.0250, 0.100) 

Probability of transmission per homosexual partnership (CD4<200) 

Prior 0.125 (0.05, 0.2) 

Post 0.0500 (0.050, 0.0524) 0.050 (0.050, 0.0557) 0.137 (0.050, 0.200) 0.0504 (0.050, 0.143) 0.103 (0.0561, 0.177) 0.1697 (0.0501, 0.200) 

Probability of transmission per shared injection (CD4≥500) 

Prior 0.003 (0.0014, 0.0092) 

Post 0.0092 (0.0091, 0.0092) 0.0014 (0.0014, 0.0092)   0.0092 (0.0014, 0.0092)   0.0082 (0.0014, 0.0092) 

Probability of transmission per shared injection (CD4: 200-499) 

Prior 0.004 (0.0014, 0.0092) 

Post   0.0014 (0.0014, 0.0092)         

Probability of transmission per shared injection (CD4<200) 

Prior 0.006 (0.0041, 0.020) 
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Post   0.0041 (0.0041, 0.0045)         

Multiplier of transmission probability for acute stage 

Prior 5.3 (0.79, 10) 

Post 2.39 (0.790, 9.06) 1.04 (0.790, 4.12) 0.838 (0.790, 2.637) 9.34 (4.35, 10.0) 2.55 (0.790, 9.95) 1.24 (0.790, 5.08) 

ART effect in reducing probability of sexual transmission 

Prior 91% (79%, 96%) 

Post   96.0% (79.0%, 96.0%) 91.7% (79.0%, 96.0%) 80.4% (79.0%, 96.0%) 94.8% (84.7%, 96.0%) 79.4% (79.0%, 90.7%) 

ART effect in reducing probability of injection-sharing transmission 

Prior 50% (10%, 90%) 

Post   90.0% (10.0%, 90.0%)         

Condom effectiveness in reducing heterosexual transmission 

Prior 80% (57%, 91%) 

Post 90.4% (57.0%, 91.0%)   89.8% (57.0%, 91.0%)     57.4% (57.0%, 91.0%) 

Condom effectiveness in reducing homosexual transmission 

Prior 70.5% (58.2%, 79.2%) 

Post 79.1% (58.2%, 79.2%) 77.4% (58.2%, 79.2%) 66.9% (58.2%, 79.2%) 68.7% (58.2%, 79.2%) 75.3% (58.3%, 79.2%) 65.2% (58.2%, 79.2%) 

Annual change in HIV testing rate* 

Prior 0.05 (0, 0.1) 

Post 0.100 (0.0933, 0.100) 0.00 (0.00, 0.00057) 0.00 (0.00, 0.010) 0.0814 (0.0001, 0.100) 0.100 (0.0859, 0.100) 0.0008 (0.00, 0.0220) 

Transition rate from acute to chronic HIV (1 / acute stage duration) 

Prior 0.588 (0.147, 1) 

Post 0.147 (0.147, 0.197) 0.147 (0.147, 0.185) 0.150 (0.147, 0.998) 0.148 (0.147, 0.223) 0.797 (0.159, 1.00) 0.162 (0.147, 1.00) 

CITY-SPECIFIC PARAMETERS - Prior: point estimates (range); Post: median (95% credible interval) 

CITY Atlanta Baltimore Los Angeles Miami New York City Seattle 

Monthly number of heterosexual partners for White, low-risk MSM 

Prior 0.0219 (0.0143, 0.0298)           

Post 0.0143 (0.0143, 0.0152)           

Monthly number of heterosexual partners for White, high-risk MSM 

Prior       0.0264 (0.0094, 0.0595)   0.0419 (0.0086, 0.0663) 

Post       0.0183 (0.0094, 0.0595)   0.00866 (0.0086, 0.0632) 

Monthly number of heterosexual partners for Black, high-risk MSM 

Prior 0.0795 (0.0150, 0.150)          
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Post 0.149 (0.0150, 0.150)           

Monthly number of heterosexual partners for Hispanic, high-risk MSM 

Prior       0.0719 (0.0123, 0.160)     

Post       0.159 (0.0962, 0.160)     

Monthly number of heterosexual partners for male, White, high-risk HET 

Prior 0.670 (0.549, 0.791)           

Post 0.553 (0.549, 0.791)           

Monthly number of heterosexual partners for male, Black, high-risk HET 

Prior 0.633 (0.213, 1.05)   0.814 (0.486, 1.14)      

Post 1.048 (0.213, 1.05)   0.491 (0.486, 1.14)       

Monthly number of heterosexual partners for female, White, high-risk HET 

Prior 0.657 (0.567, 0.747)       0.581 (0.402, 0.760)   

Post 0.567 (0.567, 0.747)       0.408 (0.402, 0.760)   

Monthly number of heterosexual partners for female, Black, high-risk HET 

Prior 0.545 (0.0750, 1.02)           

Post 1.018 (0.999, 1.02)           

Monthly number of heterosexual partners for female, Hispanic, high-risk HET 

Prior     0.626 (0.485, 0.767)     0.626 (0.485, 0.767) 

Post     0.767 (0.486, 0.767)     0.767 (0.488, 0.767) 

Monthly number of homosexual partners for White, low-risk MSM 

Prior   0.174 (0.144, 0.203)       0.174 (0.144, 0.203) 

Post   0.145 (0.144, 0.203)       0.151 (0.144, 0.203) 

Monthly number of homosexual partners for Black, low-risk MSM 

Prior   0.213 (0.132, 0.294) 0.213 (0.132, 0.294)   0.213 (0.132, 0.294)   

Post   0.132 (0.132, 0.294) 0.292 (0.167, 0.294)   0.291 (0.145, 0.294)   

Monthly number of homosexual partners for White, high-risk MSM 

Prior 0.802 (0.203, 1.80) 0.904 (0.203, 3.02) 0.857 (0.203, 1.87) 1.30 (0.203, 3.02) 0.907 (0.203, 2.08) 0.669 (0.203, 1.49) 

Post 0.203 (0.203, 0.204) 0.203 (0.203, 0.230) 0.226 (0.203, 0.325) 0.207 (0.203, 0.322) 0.212 (0.203, 0.319) 0.220 (0.203, 0.656) 

Monthly number of homosexual partners for Black, high-risk MSM 

Prior 0.457 (0.294, 1.80) 0.665 (0.294, 1.50) 0.633 (0.294, 1.52) 1.06 (0.294, 2.30) 0.603 (0.294, 1.49) 0.558 (0.294, 1.67) 

Post 1.800 (1.40, 1.80) 1.49 (1.39, 1.49) 1.50 (1.08, 1.52) 0.753 (0.316, 1.25) 1.44 (0.986, 1.49) 0.517 (0.295, 1.22) 

Monthly number of homosexual partners for Hispanic, high-risk MSM 

Prior 0.720 (0.208, 1.67) 0.932 (0.208, 1.67) 0.725 (0.208, 1.45) 1.04 (0.208, 2.46) 0.817 (0.208, 1.67) 0.757 (0.208, 1.82) 
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Post 0.475 (0.208, 0.498) 0.362 (0.263, 0.540) 0.392 (0.208, 0.528) 0.528 (0.222, 0.950) 0.925 (0.544, 1.25) 0.694 (0.470, 1.47) 

Condom use probability in heterosexual partnership for male, White, high-risk HET 

Prior 0.315  (0.128, 0.502)           

Post 0.501 (0.128, 0.502)           

Condom use probability in homosexual partnership for White, low-risk MSM 

Prior          0.333  (0.229, 0.437) 

Post           0.392 (0.229, 0.437) 

Condom use probability in homosexual partnership for Black, low-risk MSM 

Prior  0.574  (0.230, 0.919) 0.574  (0.230, 0.919) 0.574  (0.230, 0.919) 0.574  (0.230, 0.919)  

Post   0.917 (0.230, 0.919) 0.238 (0.230, 0.918) 0.331 (0.230, 0.918) 0.351 (0.230, 0.914)   

Condom use probability in homosexual partnership for Hispanic, low-risk MSM 

Prior    0.642 (0.396, 0.888) 0.642  (0.396, 0.888) 0.642  (0.396, 0.888)   

Post     0.580 (0.396, 0.888) 0.398 (0.396, 0.817) 0.696 (0.396, 0.888)   

Condom use probability in homosexual partnership for White, high-risk MSM 

Prior  0.435  (0.350, 0.519) 0.366  (0.321, 0.411) 0.435  (0.350, 0.520) 0.466  (0.418, 0.513) 0.318  (0.281, 0.355) 

Post   0.519 (0.350, 0.519) 0.399 (0.321, 0.411) 0.487 (0.350, 0.520) 0.505 (0.419, 0.513) 0.336 (0.281, 0.355) 

Condom use probability in homosexual partnership for Black, high-risk MSM 

Prior  0.472  (0.360, 0.583)   0.477 (0.411, 0.543) 0.543 (0.466, 0.619) 0.466  (0.351, 0.580) 

Post   0.360 (0.360, 0.583)   0.509 (0.411, 0.543) 0.542 (0.466, 0.619) 0.499 (0.351, 0.580) 

Condom use probability in homosexual partnership for Hispanic, high-risk MSM 

Prior  0.379  (0.250, 0.508)  0.377  (0.339, 0.416) 0.412 (0.361, 0.462) 0.289  (0.211, 0.368) 

Post   0.428 (0.250, 0.508)   0.388 (0.339, 0.416) 0.443 (0.361, 0.462) 0.318 (0.211, 0.368) 

Assortativeness of heterosexual partnership paring for high-risk Black 

Prior 0.668  (0.560, 0.775)           

Post 0.775 (0.771, 0.775)           

Proportion of PLHIV linked to HIV care following diagnosis (CD4≥500) for male, Black PWID 

Prior        0.560  (0.226, 0.848)   

Post         0.241 (0.226, 0.329)   

Proportion of PLHIV linked to HIV care following diagnosis (CD4≥500) for female, Black PWID 

Prior  0.610 (0.273, 0.867)        

Post   0.867 (0.856, 0.867)         

Table for complete model parameters and the evidence sources for the above selected parameters can be found in the previously published evidence synthesis paper229. * 

Data prior values (range/distribution) based on assumptions.    
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Table A2. Assumptions regarding HIV contact between HIV-infected and uninfected individuals, by risk group 

  MSM MSM/PWID PWID HETERO 

    M* F* M* F* 

MSM  Homosexual sex Homosexual sex  Heterosexual sex  Heterosexual sex 

MSM/PWID  Homosexual sex 
Needle sharing, 

Homosexual sex 
Needle sharing 

Needle sharing, 

Heterosexual sex 
 Heterosexual sex 

PWID 

M*  Needle sharing Needle sharing 
Needle sharing, 

Heterosexual sex 
 Heterosexual sex 

F* Heterosexual sex 
Needle sharing, 

Heterosexual sex 
Needle sharing, 

Heterosexual sex 
Needle sharing Heterosexual sex  

HETERO 

M*    Heterosexual sex  Heterosexual sex 

F* Heterosexual sex Heterosexual sex Heterosexual sex  Heterosexual sex  

MSM: Men who have sex with men; PWID: injection drug users; HETERO: heterosexual individuals (non-injection drug users).  *In 

the model, we differentiated males and females (denoted as M and F respectively) to take into account their distinct HIV contacts with 

other risk group. Corresponding to the sex distribution among PWID and HETERO group, the ratio of proportion of male to female 

was assumed to be 1:1 among heterosexual group and 2:1 among PWID group.
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Table A3. Assortative mixing matrix for heterosexual partnership 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Northeast region, including Baltimore (BAL) and New York City (NYC); Southeast region, including Atlanta (ATL) and Miami (MIA); West region, including Los Angeles (LA) 

and Seattle (SEA). PE: point estimate 

 

 

 

  

Region 

PE (range) Risk level for r’ Low-risk High-risk 

Risk level for r Ethnicity White Black Hispanic White Black Hispanic 

Northeast:  

BAL 

NYC 

 White 0.72 (0.65, 0.78)      

Low-risk Black  0.64 (0.54, 0.73)     

 Hispanic   0.51 (0.41, 0.60)    

 White    0.48 (0.25, 0.72)   

High-risk Black     0.74 (0.53, 0.96)  

 Hispanic      0.36 (0.08, 0.64) 

Southeast: 

ATL 

MIA 

 White 0.69 (0.65, 0.73)      

Low-risk Black  0.76 (0.73, 0.80)     

 Hispanic   0.62 (0.55, 0.68)    

 White    0.54 (0.42, 0.66)   

High-risk Black     0.67 (0.56, 0.78)  

 Hispanic      0.49 (0.31, 0.67) 

West: 

LA 

SEA 

 White 0.54 (0.48, 0.60)      

Low-risk Black  0.63 (0.52, 0.73)     

 Hispanic   0.53 (0.47, 0.59)    

 White    0.54 (0.35, 0.73)   

High-risk Black     0.63 (0.52, 0.73)  

 Hispanic      0.57 (0.38, 0.76) 
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Table A4. Assortative mixing matrix for homosexual partnership 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Northeast region, including Baltimore (BAL) and New York City (NYC); Southeast region, including Atlanta (ATL) and Miami (MIA); West region, including Los Angeles (LA) 

and Seattle (SEA). PE: point estimate

Region 

PE (range) Risk level for r’ Low-risk High-risk 

Risk level for r Ethnicity White Black Hispanic White Black Hispanic 

Northeast:  

BAL 

NYC 

 White 0.35 (0.32, 0.38)      

Low-risk Black  0.50 (0.46, 0.53)     

 Hispanic   0.06 (0.02, 0.10)    

 White    0.35 (0.32, 0.38)   

High-risk Black     0.50 (0.46, 0.53)  

 Hispanic      0.06 (0.02, 0.10) 

Southeast: 

ATL 

MIA 

 White 0.35 (0.32, 0.38)      

Low-risk Black  0.50 (0.46, 0.53)     

 Hispanic   0.06 (0.02, 0.10)    

 White    0.35 (0.32, 0.38)   

High-risk Black     0.50 (0.46, 0.53)  

 Hispanic      0.06 (0.02, 0.10) 

West: 

LA 

SEA 

 White 0.11 (0.07, 0.15)      

Low-risk Black  0.23 (0.17, 0.28)     

 Hispanic   0.06 (0.02, 0.09)    

 White    0.11 (0.07, 0.15)   

High-risk Black     0.23 (0.17, 0.28)  

 Hispanic      0.06 (0.02, 0.09) 
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Table A5. Initial values for population subgroups used to instantiate the model 

Atlanta 
 Susceptible Infected Diagnosed On-ART Off-ART 

 S1 S2 Sp IA I1 I2 I3 IAP I1P DA D1 D2 D3 T1 T2 T3 O1 O2 O3 

MSM 

Low-risk 

White 31861 4584 0 13 510 204 548 0 0 16 495 643 463 943 754 206 530 382 206 

Black 8616 2821 0 26 1028 411 1105 0 0 38 1040 1795 886 1622 1408 497 785 831 456 

Hispanic 4435 3097 0 2 90 36 97 0 0 3 82 146 113 136 134 27 64 82 29 

High-risk 

White 3774 8375 0 5 189 75 203 0 0 6 183 238 171 349 279 76 196 141 76 

Black 982 2830 0 10 380 152 409 0 0 14 385 664 328 600 521 184 290 307 169 

Hispanic 1358 1152 0 1 33 13 36 0 0 1 30 54 42 50 50 10 24 30 11 

MSM-

PWID 

Low-

risk 

Off-

OAT 

White 2556 368 0 0 17 7 18 0 0 2 73 55 40 65 59 21 29 34 21 

Black 433 142 0 1 27 11 29 0 0 3 131 98 72 97 88 31 43 51 32 

Hispanic 211 148 0 0 3 1 3 0 0 0 12 9 7 9 8 3 4 5 3 

On-

OAT 

White 303 672 0 0 7 3 8 0 0 1 31 23 17 28 25 9 12 15 9 

Black 49 142 0 0 12 5 13 0 0 1 56 42 31 42 38 13 19 22 14 

Hispanic 65 55 0 0 1 0 1 0 0 0 5 4 3 4 3 1 2 2 1 

High-

risk 

Off-

OAT 

White 105 15 0 0 1 0 1 0 0 0 3 2 2 3 2 1 1 1 1 

Black 7 2 0 0 0 0 0 0 0 0 2 2 1 2 1 0 1 1 1 

Hispanic 7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

On-

OAT 

White 12 28 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 

Black 1 2 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 

Hispanic 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Male 

Off-

OAT 

White 4558 2486 0 0 9 4 10 0 0 1 36 36 46 36 32 11 16 19 12 

PWID 

Black 6160 7150 0 1 52 21 56 0 0 7 217 213 275 181 163 57 81 95 59 

Hispanic 1049 1049 0 0 3 1 3 0 0 0 12 12 15 9 8 3 4 5 3 

On-

OAT 

White 188 102 0 0 0 0 0 0 0 0 1 1 2 1 1 0 1 1 0 

Black 98 114 0 0 1 0 1 0 0 0 3 3 4 3 3 1 1 2 1 

Hispanic 37 37 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Female 

Off-

OAT 

White 2817 2504 0 0 10 4 10 0 0 1 42 41 53 45 41 14 20 24 15 

Black 3152 3796 0 1 32 13 35 0 0 5 153 151 194 139 126 44 62 73 46 

Hispanic 632 632 0 0 2 1 2 0 0 0 10 10 13 9 8 3 4 5 3 

On-

OAT 

White 217 193 0 0 1 0 1 0 0 0 3 3 4 3 3 1 2 2 1 

Black 109 132 0 0 1 0 1 0 0 0 5 5 7 5 4 2 2 3 2 

Hispanic 33 33 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

HET 

Low-

risk 

Male 

White 778225 111972 0 0 12 5 12 0 0 0 4 10 17 18 15 3 12 7 2 

Black 333174 109066 0 3 113 45 122 0 0 4 64 134 150 138 133 57 44 86 62 

Hispanic 101669 70990 0 0 12 5 13 0 0 0 5 11 24 13 17 5 6 8 6 

Female 

White 10633 31899 0 0 1 0 1 0 0 0 0 1 2 2 1 0 1 1 0 

Black 29941 22882 0 1 31 12 33 0 0 1 17 36 41 38 36 16 12 23 17 

Hispanic 7730 1933 0 0 1 1 2 0 0 0 1 1 3 2 2 1 1 1 1 

High-

risk 

Male 

White 929822 69926 0 1 35 14 37 0 0 1 45 53 32 101 59 15 55 36 12 

Black 498796 128307 0 9 359 143 385 0 0 16 492 580 504 918 561 190 445 380 155 

Hispanic 157276 4569 0 1 23 9 24 0 0 1 27 43 35 60 35 7 25 23 11 

Female 

White 10188 6792 0 0 1 0 1 0 0 0 2 2 1 3 2 1 2 1 0 

Black 7723 5467 0 0 15 6 17 0 0 1 21 25 22 39 24 8 19 16 7 

Hispanic 713 1070 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 
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 Baltimore 
  Susceptible Infected Diagnosed On-ART Off-ART 

  S1 S2 Sp IA I1 I2 I3 IAP I1P DA D1 D2 D3 T1 T2 T3 O1 O2 O3 

MSM 

Low-risk 

White 21581 1781 0 1 57 23 61 0 0 1 27 23 9 183 91 9 101 59 17 

Black 5478 1536 0 5 205 82 221 0 0 4 131 169 60 484 368 74 241 235 104 

Hispanic 1550 306 0 0 9 4 10 0 0 0 5 7 2 22 17 3 14 10 2 

High-risk 

White 2476 5311 0 1 21 8 23 0 0 0 10 8 3 68 34 3 37 22 6 

Black 743 1594 0 2 76 30 82 0 0 1 49 62 22 179 136 27 89 87 39 

Hispanic 197 422 0 0 3 1 4 0 0 0 2 3 1 8 6 1 5 4 1 

MSM-

PWID 

Low-

risk 

Off-

OAT 

White 2143 177 0 0 3 1 3 0 0 0 5 4 3 14 13 4 7 8 5 

Black 737 207 0 0 11 4 11 0 0 1 28 21 15 51 46 16 24 29 18 

Hispanic 87 17 0 0 0 0 0 0 0 0 1 1 1 2 2 1 1 1 1 

On-

OAT 

White 246 527 0 0 1 0 1 0 0 0 2 2 1 6 5 2 3 3 2 

Black 100 214 0 0 5 2 5 0 0 0 12 9 7 22 20 7 10 12 8 

Hispanic 11 24 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 

High-

risk 

Off-

OAT 

White 336 28 0 0 0 0 0 0 0 0 1 1 0 2 2 1 1 1 1 

Black 28 8 0 0 0 0 0 0 0 0 1 1 1 2 2 1 1 1 1 

Hispanic 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

On-

OAT 

White 39 83 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 

Black 4 8 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

Hispanic 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PWID 

Male 

Off-

OAT 

White 2740 6185 0 0 19 8 21 0 0 1 39 39 50 104 94 33 49 58 36 

Black 4612 10410 0 2 78 31 84 0 0 7 200 196 253 377 341 120 180 212 132 

Hispanic 189 426 0 0 3 1 4 0 0 0 8 8 10 16 15 5 8 9 6 

On-

OAT 

White 430 970 0 0 3 1 3 0 0 0 6 6 8 16 15 5 8 9 6 

Black 177 400 0 0 3 1 3 0 0 0 8 8 10 14 13 5 7 8 5 

Hispanic 14 32 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 

Female 

Off-

OAT 

White 2874 5704 0 0 6 2 6 0 0 1 18 18 23 34 30 11 16 19 12 

Black 4011 7963 0 1 50 20 54 0 0 6 183 179 231 259 234 82 124 146 91 

Hispanic 190 377 0 0 1 0 1 0 0 0 4 4 5 6 5 2 3 3 2 

On-

OAT 

White 585 1160 0 0 1 0 1 0 0 0 4 4 5 7 6 2 3 4 2 

Black 146 290 0 0 2 1 2 0 0 0 7 7 8 9 9 3 4 5 3 

Hispanic 20 41 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 

HET 

Low-

risk 

Male 

White 499979 41272 0 2 79 32 85 0 0 2 80 84 24 130 85 41 88 41 31 

Black 147219 41271 0 6 245 98 264 0 0 7 234 283 190 331 272 120 161 172 120 

Hispanic 34959 6910 0 0 12 5 13 0 0 0 9 13 11 18 15 3 10 9 4 

Female 

White 14947 10913 0 0 8 3 9 0 0 0 8 8 2 13 9 4 9 4 3 

Black 13013 9501 0 2 67 27 72 0 0 2 64 77 51 90 74 33 44 47 33 

Hispanic 1354 989 0 0 1 1 2 0 0 0 1 2 1 2 2 0 1 1 1 

High-

risk 

Male 

White 558900 49667 0 1 38 15 41 0 0 1 40 24 11 156 66 5 72 37 33 

Black 191943 76075 0 7 272 109 293 0 0 8 280 314 193 875 461 158 489 286 160 

Hispanic 32741 6972 0 0 7 3 7 0 0 0 7 6 4 20 12 4 10 9 4 

Female 

White 4868 5468 0 0 1 1 1 0 0 0 1 1 0 5 2 0 2 1 1 

Black 2655 2982 0 0 12 5 13 0 0 0 12 13 8 38 20 7 21 12 7 

Hispanic 206 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

  



153 

Los Angeles 
 Susceptible Infected Diagnosed On-ART Off-ART 
 S1 S2 Sp IA I1 I2 I3 IAP I1P DA D1 D2 D3 T1 T2 T3 O1 O2 O3 

MSM 

Low-risk 

White 55457 4582 0 15 613 245 659 0 0 16 641 596 326 3758 2331 590 858 750 375 

Black 6689 1514 0 6 250 100 269 0 0 14 438 649 341 993 830 282 214 264 148 

Hispanic 62557 5851 0 15 586 235 630 0 0 16 360 662 539 3235 2353 745 627 861 393 

High-risk 

White 5298 14715 0 6 227 91 244 0 0 6 237 220 121 1390 862 218 317 278 139 

Black 377 2357 0 2 92 37 99 0 0 5 162 240 126 367 307 104 79 98 55 

Hispanic 6421 16381 0 5 217 87 233 0 0 6 133 245 200 1197 870 276 232 318 145 

MSM-

PWID 

Low-

risk 

Off-

OAT 

White 3431 283 0 0 18 7 20 0 0 2 72 54 40 201 179 64 45 53 33 

Black 183 41 0 0 11 5 12 0 0 2 79 60 44 96 86 31 22 26 16 

Hispanic 2582 242 0 0 16 6 17 0 0 2 65 49 36 175 156 56 39 46 29 

On-

OAT 

White 328 910 0 0 8 3 8 0 0 1 31 23 17 86 77 27 19 23 14 

Black 10 65 0 0 5 2 5 0 0 1 34 26 19 41 37 13 9 11 7 

Hispanic 265 676 0 0 7 3 7 0 0 1 28 21 15 75 67 24 17 20 12 

High-

risk 

Off-

OAT 

White 771 64 0 0 4 2 4 0 0 0 16 12 9 45 40 14 10 12 7 

Black 9 2 0 0 1 0 1 0 0 0 4 3 2 5 4 1 1 1 1 

Hispanic 280 26 0 0 2 1 2 0 0 0 7 5 4 19 17 6 4 5 3 

On-

OAT 

White 74 205 0 0 2 1 2 0 0 0 7 5 4 19 17 6 4 5 3 

Black 0 3 0 0 0 0 0 0 0 0 2 1 1 2 2 1 0 1 0 

Hispanic 29 73 0 0 1 0 1 0 0 0 3 2 2 8 7 3 2 2 1 

PWID 

Male 

Off-

OAT 

White 4350 2900 0 0 8 3 8 0 0 0 14 14 18 101 90 32 23 27 17 

Black 3642 4270 0 0 10 4 11 0 0 2 46 46 59 106 95 34 24 28 18 

Hispanic 8207 8549 0 0 9 4 10 0 0 1 19 18 23 125 111 40 28 33 21 

On-

OAT 

White 978 652 0 0 2 1 2 0 0 0 3 3 4 23 20 7 5 6 4 

Black 174 203 0 0 0 0 1 0 0 0 2 2 3 5 5 2 1 1 1 

Hispanic 889 927 0 0 1 0 1 0 0 0 2 2 3 14 12 4 3 4 2 

Female 

Off-

OAT 

White 2702 1564 0 0 5 2 5 0 0 0 14 14 18 67 59 21 15 18 11 

Black 1114 2088 0 0 7 3 8 0 0 1 43 42 54 82 73 26 18 22 14 

Hispanic 3962 4267 0 0 7 3 7 0 0 1 21 21 27 98 87 31 22 26 16 

On-

OAT 

White 1246 721 0 0 2 1 2 0 0 0 6 6 8 31 27 10 7 8 5 

Black 86 162 0 0 1 0 1 0 0 0 3 3 4 6 6 2 1 2 1 

Hispanic 452 486 0 0 1 0 1 0 0 0 2 2 3 11 10 4 3 3 2 

HET 

Low-

risk 

Male 

White 1255794 103758 0 0 13 5 14 0 0 0 5 19 13 50 47 17 15 12 6 

Black 189088 42790 0 1 23 9 25 0 0 1 20 61 44 60 75 23 10 24 13 

Hispanic 1311463 122653 0 1 34 14 37 0 0 1 9 26 66 92 140 68 20 31 38 

Female 

White 31770 5957 0 0 1 0 1 0 0 0 0 1 1 3 3 1 1 1 0 

Black 7199 3600 0 0 2 1 2 0 0 0 2 6 4 6 7 2 1 2 1 

Hispanic 55026 10352 0 0 3 1 4 0 0 0 1 3 6 9 13 7 2 3 4 

High-

risk 

Male 

White 1396789 94702 0 1 31 13 34 0 0 2 35 75 55 252 107 24 48 33 33 

Black 236339 58895 0 1 59 23 63 0 0 5 121 217 181 306 188 63 98 58 9 

Hispanic 1373279 196660 0 2 87 35 93 0 0 5 156 122 191 578 400 74 132 126 54 

Female 

White 7868 17309 0 0 1 0 1 0 0 0 1 3 2 9 4 1 2 1 1 

Black 2702 1673 0 0 2 1 2 0 0 0 4 7 5 9 6 2 3 2 0 

Hispanic 20580 7221 0 0 3 1 3 0 0 0 6 4 7 21 14 3 5 5 2 
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Miami 
 Susceptible Infected Diagnosed On-ART Off-ART 

 S1 S2 Sp IA I1 I2 I3 IAP I1P DA D1 D2 D3 T1 T2 T3 O1 O2 O3 

MSM 

Low-risk 

White 4936 373 0 2 87 35 94 0 0 4 126 164 118 235 188 51 200 144 78 

Black 2550 329 0 5 197 79 212 0 0 10 271 468 231 479 416 147 352 372 204 

Hispanic 16207 3363 0 8 301 121 324 0 0 14 322 576 443 767 756 151 545 697 248 

High-risk 

White 688 1082 0 1 32 13 35 0 0 2 47 61 44 87 69 19 74 53 29 

Black 299 661 0 2 73 29 78 0 0 4 100 173 86 177 154 54 130 138 76 

Hispanic 2500 4023 0 3 111 45 120 0 0 5 119 213 164 284 280 56 202 258 92 

MSM-

PWID 

Low-

risk 

Off-

OAT 

White 433 33 0 0 2 1 2 0 0 0 11 8 6 11 10 3 7 9 5 

Black 152 20 0 0 4 2 5 0 0 1 26 19 14 24 22 8 16 19 12 

Hispanic 884 183 0 0 7 3 7 0 0 1 35 27 20 38 34 12 26 30 19 

On-

OAT 

White 60 95 0 0 1 0 1 0 0 0 5 3 2 5 4 1 3 4 2 

Black 18 39 0 0 2 1 2 0 0 0 11 8 6 10 9 3 7 8 5 

Hispanic 136 219 0 0 3 1 3 0 0 0 15 11 8 16 15 5 11 13 8 

High-

risk 

Off-

OAT 

White 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Black 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hispanic 24 5 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 

On-

OAT 

White 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Black 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hispanic 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PWID 

Male 

Off-

OAT 

White 518 477 0 0 3 1 3 0 0 1 16 15 20 18 17 6 12 15 9 

Black 1221 2341 0 0 7 3 8 0 0 1 38 37 47 41 37 13 28 33 21 

Hispanic 2877 3940 0 0 11 4 12 0 0 2 53 52 67 65 59 21 44 52 33 

On-

OAT 

White 19 18 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 

Black 18 34 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 

Hispanic 77 105 0 0 0 0 0 0 0 0 1 1 2 2 2 1 1 1 1 

Female 

Off-

OAT 

White 215 537 0 0 1 0 1 0 0 0 5 5 6 6 5 2 4 5 3 

Black 369 983 0 0 11 4 12 0 0 2 66 65 83 70 63 22 48 56 35 

Hispanic 1597 2129 0 0 3 1 4 0 0 1 20 19 25 24 21 8 16 19 12 

On-

OAT 

White 15 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Black 12 32 0 0 0 0 0 0 0 0 2 2 3 2 2 1 2 2 1 

Hispanic 93 124 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 

HET 

Low-

risk 

Male 

White 130698 9887 0 1 36 15 39 0 0 1 19 49 80 85 68 15 86 47 16 

Black 103185 13310 0 2 71 28 76 0 0 3 56 118 131 135 129 56 65 127 92 

Hispanic 406584 84381 0 3 123 49 133 0 0 5 57 131 293 216 279 88 152 210 157 

Female 

White 2239 4478 0 0 4 1 4 0 0 0 2 5 8 8 7 2 9 5 2 

Black 7917 5998 0 0 19 8 21 0 0 1 15 32 36 37 35 15 18 35 25 

Hispanic 18318 9159 0 0 15 6 16 0 0 1 7 15 35 26 33 10 18 25 19 

High-

risk 

Male 

White 134437 8590 0 0 18 7 19 0 0 1 38 45 27 69 40 10 57 37 13 

Black 113984 34947 0 5 211 85 227 0 0 14 432 509 442 769 469 159 565 482 197 

Hispanic 521646 49930 0 2 71 28 76 0 0 4 107 173 142 292 167 33 185 170 83 

Female 

White 810 1619 0 0 1 0 1 0 0 0 1 2 1 2 1 0 2 1 0 

Black 1748 1385 0 0 9 4 10 0 0 1 19 22 19 33 20 7 24 21 8 

Hispanic 3937 2362 0 0 2 1 2 0 0 0 2 4 3 7 4 1 4 4 2 
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New York City 
 Susceptible Infected Diagnosed On-ART Off-ART 

 S1 S2 Sp IA I1 I2 I3 IAP I1P DA D1 D2 D3 T1 T2 T3 O1 O2 O3 

MSM 

Low-risk 

White 40069 18264 0 10 417 167 448 0 0 33 1481 1268 477 5330 2657 270 100 59 17 

Black 14540 7218 0 8 308 123 331 0 0 25 907 1164 412 3039 2311 462 136 132 59 

Hispanic 20411 11242 0 7 291 117 313 0 0 20 738 987 294 3057 2405 412 136 105 21 

High-risk 

White 4065 15380 0 4 154 62 166 0 0 12 548 469 176 1971 983 100 37 22 6 

Black 2152 5101 0 3 114 46 123 0 0 9 336 430 152 1124 855 171 50 49 22 

Hispanic 2157 8394 0 3 108 43 116 0 0 8 273 365 109 1131 889 152 50 39 8 

MSM-

PWID 

Low-

risk 

Off-

OAT 

White 2727 1243 0 0 5 2 5 0 0 1 49 37 27 98 88 31 2 2 1 

Black 658 327 0 0 10 4 10 0 0 2 95 71 52 175 158 56 7 9 6 

Hispanic 2049 1128 0 0 10 4 11 0 0 2 89 67 49 196 177 62 7 8 5 

On-

OAT 

White 277 1047 0 0 2 1 2 0 0 0 21 16 12 42 38 13 1 1 0 

Black 97 231 0 0 4 2 4 0 0 1 41 31 22 75 68 24 3 4 2 

Hispanic 216 843 0 0 4 2 5 0 0 1 38 29 21 84 76 27 3 3 2 

High-

risk 

Off-

OAT 

White 633 289 0 0 1 0 1 0 0 0 11 9 6 23 20 7 0 0 0 

Black 22 11 0 0 0 0 0 0 0 0 3 2 2 6 5 2 0 0 0 

Hispanic 194 107 0 0 1 0 1 0 0 0 8 6 5 19 17 6 1 1 0 

On-

OAT 

White 64 243 0 0 1 0 1 0 0 0 5 4 3 10 9 3 0 0 0 

Black 3 8 0 0 0 0 0 0 0 0 1 1 1 2 2 1 0 0 0 

Hispanic 21 80 0 0 0 0 0 0 0 0 4 3 2 8 7 3 0 0 0 

PWID 

Male 

Off-

OAT 

White 2059 3088 0 0 15 6 16 0 0 5 143 140 181 263 238 84 4 5 3 

Black 4437 9367 0 2 60 24 65 0 0 19 586 575 741 1042 941 331 45 53 33 

Hispanic 6426 19401 0 2 66 26 71 0 0 21 640 628 809 1151 1039 365 39 46 29 

On-

OAT 

White 478 718 0 0 3 1 4 0 0 1 33 33 42 61 55 19 1 1 1 

Black 145 306 0 0 2 1 2 0 0 1 19 19 24 34 31 11 1 2 1 

Hispanic 608 1836 0 0 6 2 7 0 0 2 61 59 77 109 98 35 4 4 3 

Female 

Off-

OAT 

White 201 904 0 0 3 1 3 0 0 1 30 29 38 61 55 19 1 1 1 

Black 584 1753 0 1 29 12 31 0 0 10 313 307 395 613 553 195 26 31 19 

Hispanic 1496 5022 0 1 23 9 25 0 0 8 248 244 314 492 445 156 17 20 12 

On-

OAT 

White 361 1625 0 0 5 2 5 0 0 2 54 53 68 109 99 35 2 2 1 

Black 63 190 0 0 3 1 3 0 0 1 34 33 43 66 60 21 3 3 2 

Hispanic 259 870 0 0 4 2 4 0 0 1 43 42 54 85 77 27 3 3 2 

HET 

Low-

risk 

Male 

White 833582 379955 0 4 146 58 157 0 0 9 391 410 117 1306 857 408 30 14 11 

Black 306604 152204 0 10 409 164 440 0 0 26 854 1030 692 3194 2626 1156 139 149 104 

Hispanic 398711 219604 0 6 239 96 257 0 0 15 416 594 495 2019 1716 387 81 69 34 

Female 

White 15891 31783 0 0 12 5 13 0 0 1 32 34 10 107 70 33 2 1 1 

Black 29770 28563 0 3 119 48 128 0 0 8 249 300 202 930 765 337 41 43 30 

Hispanic 45216 41986 0 2 79 31 84 0 0 5 137 195 163 663 564 127 27 23 11 

High-

risk 

Male 

White 1040706 376642 0 2 60 24 65 0 0 5 280 168 75 1066 451 36 17 9 8 

Black 456509 243159 0 11 438 175 471 0 0 39 1360 1524 938 6422 3382 1159 322 189 105 

Hispanic 462112 291407 0 5 190 76 205 0 0 17 697 563 402 2620 1617 582 92 87 36 

Female 

White 4579 9159 0 0 1 0 1 0 0 0 5 3 1 21 9 1 0 0 0 

Black 3647 3064 0 0 8 3 9 0 0 1 26 30 18 124 66 22 6 4 2 

Hispanic 34507 36664 0 1 40 16 43 0 0 4 145 117 84 547 337 121 19 18 8 
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Seattle 
 Susceptible Infected Diagnosed On-ART Off-ART 

 S1 S2 Sp IA I1 I2 I3 IAP I1P DA D1 D2 D3 T1 T2 T3 O1 O2 O3 

MSM 

Low-risk 

White 27964 2014 0 4 180 72 193 0 0 3 137 127 70 1221 757 192 93 81 41 

Black 1658 496 0 0 18 7 20 0 0 0 11 17 9 103 86 29 7 9 5 

Hispanic 3134 151 0 1 22 9 24 0 0 1 12 22 18 132 96 30 9 12 5 

High-risk 

White 3562 6430 0 2 67 27 72 0 0 1 51 47 26 452 280 71 34 30 15 

Black 359 359 0 0 7 3 7 0 0 0 4 6 3 38 32 11 3 3 2 

Hispanic 373 722 0 0 8 3 9 0 0 0 4 8 7 49 35 11 3 4 2 

MSM-

PWID 

Low-

risk 

Off-

OAT 

White 2048 148 0 0 8 3 9 0 0 1 25 19 14 98 87 31 7 9 5 

Black 127 38 0 0 1 0 1 0 0 0 2 2 1 9 8 3 1 1 0 

Hispanic 129 6 0 0 1 0 1 0 0 0 3 2 2 9 8 3 1 1 1 

On-

OAT 

White 261 471 0 0 3 1 4 0 0 0 11 8 6 42 37 13 3 4 2 

Black 28 28 0 0 0 0 0 0 0 0 1 1 1 4 3 1 0 0 0 

Hispanic 15 30 0 0 0 0 0 0 0 0 1 1 1 4 4 1 0 0 0 

High-

risk 

Off-

OAT 

White 222 16 0 0 1 0 1 0 0 0 3 2 2 11 9 3 1 1 1 

Black 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hispanic 9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

On-

OAT 

White 28 51 0 0 0 0 0 0 0 0 1 1 1 5 4 1 0 0 0 

Black 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hispanic 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PWID 

Male 

Off-

OAT 

White 2746 2863 0 0 3 1 3 0 0 0 9 9 11 32 29 10 2 3 2 

Black 1413 983 0 0 1 1 1 0 0 0 5 5 6 17 15 5 1 1 1 

Hispanic 424 349 0 0 1 0 1 0 0 0 3 3 3 9 8 3 1 1 0 

On-

OAT 

White 298 311 0 0 0 0 0 0 0 0 1 1 1 4 3 1 0 0 0 

Black 59 41 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

Hispanic 31 26 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

Female 

Off-

OAT 

White 2734 2161 0 0 1 1 1 0 0 0 6 6 7 19 17 6 1 2 1 

Black 700 840 0 0 1 0 1 0 0 0 3 3 4 9 8 3 1 1 0 

Hispanic 370 208 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

On-

OAT 

White 506 400 0 0 0 0 0 0 0 0 1 1 1 3 3 1 0 0 0 

Black 34 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hispanic 39 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

HET 

Low-

risk 

Male 

White 494313 35597 0 0 16 6 17 0 0 0 2 7 5 75 71 25 8 6 3 

Black 28143 8419 0 0 20 8 21 0 0 0 3 10 7 81 101 31 4 11 6 

Hispanic 53064 2550 0 0 7 3 7 0 0 0 1 2 6 22 33 16 2 2 3 

Female 

White 12137 2567 0 0 1 0 1 0 0 0 0 0 0 4 4 1 0 0 0 

Black 1329 374 0 0 2 1 2 0 0 0 0 1 1 8 10 3 0 1 1 

Hispanic 1950 585 0 0 1 0 1 0 0 0 0 0 1 2 3 2 0 0 0 

High-

risk 

Male 

White 546932 33868 0 0 11 4 12 0 0 0 4 9 6 114 48 11 7 5 5 

Black 32757 5765 0 0 16 6 17 0 0 0 7 13 11 136 83 28 15 9 1 

Hispanic 48260 5563 0 0 2 1 3 0 0 0 2 1 2 20 14 3 2 1 1 

Female 

White 5650 4154 0 0 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 

Black 378 193 0 0 0 0 1 0 0 0 0 0 0 4 3 1 0 0 0 

Hispanic 635 318 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
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Table A6. HIV testing rates estimated from back-calculation following adjustment 
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Table A7. Validation for HIV testing rate estimates 

City 
Number of new 

diagnoses (2015) 
Population size 

Externally estimated Model estimated 

Publicly funded testing scenario* Positivity rate scenario^ Number of 

tests in 2015 

Percentage 

tested in 2015 Reported # Lower Upper 0.1% 0.2% 0.5% 

Atlanta 1,842 3,586,253 42,506 91,027 153,798  1,841,696   920,848   368,339  590,058 16.5% 

Baltimore 529 1,871,812 53,730 62,492 197,459  529,203   264,601   105,841  133,725 7.1% 

Los Angeles 1,984 6,850,378 126,733 199,713 292,031  1,984,000   992,000   396,800  789,880 11.5% 

Miami 1,314 1,756,032 332,649 143,823 328,245  1,314,364   657,182   262,873  285,175 16.2% 

New York 2,407 5,787,014 121,284 295,803 501,646  2,407,226   1,203,613   481,445  1,123,533 19.4% 

Seattle 228 1,401,600 13,382 24,024 40,681  228,000   114,000   45,600  200,638 14.1% 

* Public funded test scenario was triangulated from the reported number of public-funded tests in each city or state287 (data was only available at the state-level for Miami (Florida) 

and Seattle (Washington)) multiplying the ratio between the total number of new diagnoses in 2015 over the reported number of new HIV cases diagnosed through public-funded 

testing services. ^Positivity rate scenario were constructed by back-calculating the number of tests according to the number of new diagnoses and three different levels for the 

positivity rate, 0.1%, 0.2% and 0.5%.
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Table A8. Target weights derived from the BWM survey 

 

 

 

 

 

 

 

 

 

 

 

 

White: white/other. * Due to a much smaller proportion of HIV epidemics among black population, the weight for Annual number of new HIV diagnoses (Black) in Seattle was 

reassigned by the proportion of black PLHIV over total and the reduced weight was redistributed proportionally to other targets. ^ Since target data for Annual number of all-cause 

deaths among PLHIV (MSM) was unavailable in Miami, we redistributed its weight proportionally to other targets. 

 

Target Other cities Seattle* Miami^ 

Total number diagnosed PLHIV (White MSM) 0.0576 0.0643 0.0597 

Total number diagnosed PLHIV (Black MSM) 0.0713 0.0796 0.0739 

Total number diagnosed PLHIV (Hispanic MSM) 0.0716 0.0800 0.0743 

Total number diagnosed PLHIV (PWID) 0.0495 0.0553 0.0513 

Total number diagnosed PLHIV (MSM/PWID) 0.0644 0.0720 0.0668 

Total number diagnosed PLHIV (White male heterosexual) 0.0290 0.0324 0.0301 

Total number diagnosed PLHIV (Black male heterosexual) 0.0344 0.0385 0.0357 

Total number diagnosed PLHIV (Hispanic male heterosexual) 0.0234 0.0262 0.0243 

Total number diagnosed PLHIV (White female heterosexual) 0.0307 0.0343 0.0319 

Total number diagnosed PLHIV (Black female heterosexual) 0.0344 0.0385 0.0357 

Total number diagnosed PLHIV (Hispanic female heterosexual) 0.0408 0.0456 0.0423 

Annual number of new HIV diagnoses (Total) 0.1424 0.1591 0.1476 

Annual number of new HIV diagnoses (Black) 0.1140 0.0363 0.1182 

Annual number of new HIV diagnoses (MSM) 0.1313 0.1467 0.1362 

Annual number of all-cause deaths among PLHIV (Total) 0.0372 0.0415 0.0385 

Annual number of all-cause deaths among PLHIV (Black) 0.0325 0.0100 0.0336 

Annual number of all-cause deaths among PLHIV (MSM) 0.0355 0.0397  
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Table A9. Extreme scenario analysis 

Extreme scenarios 

Anticipated results Check 

HIV incident cases HIV prevalence  

Initial MSM population = 0 0 among MSM 0 among MSM ✓ 

Probability of transmission per heterosexual partnership = 0 0 among HET Constant decrease among HET ✓ 

Probability of transmission per homosexual partnership = 0 
0 among MSM 

Decrease among MSM/PWID 
Constant decrease among MSM ✓ 

Probability of transmission per shared injection = 0 
0 among PWID 

Decrease among MSM/PWID 
Constant decrease among PWID ✓ 

Probability of transmission of all transmission routes = 0 0 among all risk groups Constant decrease among all risk groups ✓ 

ART efficacy on sexual infectivity = 0 Slight increase among HET, MSM, MSM-PWID  Slight increase among HET, MSM, MSM-PWID  ✓ 

ART efficacy on shared injection infectivity = 0 Increase among PWID Increase among PWID ✓ 

HIV testing rates among all population = 0 Increase among all risk groups Increase among all risk groups ✓ 

Number of shared injections = 0 ≈ 0 among PWID Constant decrease among PWID ✓ 

Probability of condom use for homosexual contacts = 100% ≈ 0 among MSM, MSM-PWID Decrease among MSM, MSM-PWID ✓ 

Probability of condom use for heterosexual contacts = 100% ≈ 0 among HET Decrease among HET ✓ 
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Figure A1. Model schematic diagram 

 

The schematic shows the 19 compartments that constitute each of the 42 population groups in the model. 



162 

Figure A2. Selected results for parameter values post calibration versus their prior values  

 

ATL: Atlanta; BAL: Baltimore; LA: Los Angeles; MIA: Miami; NYC: New York City; SEA: Seattle. PE: point estimate; 95% CI: 95% credible interval; post: post-calibration. 𝜀: Decrease 

in sexual partners post-diagnosis; 𝜇𝐼2: monthly mortality rate for PLHIV (CD4 200-499); 𝜉: transmission probability multiplier for acute stage; 𝜎𝑀1: probability of transmission - male to 

male (CD4 ≥500); 𝑛𝑤, 𝑀𝑆𝑀,ℎ𝑖𝑔ℎ
𝑀 : number of homosexual partners - White, high-risk MSM; 𝑛𝑏, 𝑀𝑆𝑀,ℎ𝑖𝑔ℎ

𝑀 : number of homosexual partners - Black, high-risk MSM; 𝑛ℎ, 𝑀𝑆𝑀,ℎ𝑖𝑔ℎ
𝑀 : number of 

homosexual partners - Hispanic, high-risk MSM  
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Figure A3. Distribution of goodness-of-fit following calibration  

 

This histogram presents distribution of GOF in each city for all 10,000 calibration runs where the acceptable set was selected only for the 2,000 subsets with the smallest GOF. Vertical solid 

line represents the cut-off point (20th percentile). 
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Figure A4. Results for model calibration and external validation 
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PANEL A: Results for model calibration; PANEL B: Results for model external validation; PE: point estimate; 95% CI: 95% credible 

interval.
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Figure A5. Sample BWM survey for determining weight vector 
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Your name: City: Miami

Task 1: In the following list of calibration targets, which one do you think is most important for the model to accurately reproduce?

Your answer: 12 ← please give your answer with this pull-down menu

Index Calibration targets

1 Total number diagnosed PLHIV (White MSM*)

2 Total number diagnosed PLHIV (Black MSM)

3 Total number diagnosed PLHIV (Hispanic MSM)

4 Total number diagnosed PLHIV (PWID)

5 Total number diagnosed PLHIV (MSM/PWID)

6 Total number diagnosed PLHIV (White male heterosexual*)

7 Total number diagnosed PLHIV (Black male heterosexual)

8 Total number diagnosed PLHIV (Hispanic male heterosexual)

9 Total number diagnosed PLHIV (White female heterosexual*)

10 Total number diagnosed PLHIV (Black female heterosexual)

11 Total number diagnosed PLHIV (Hispanic female heterosexual)

12 Annual number of new HIV diagnoses (Total)

13 Annual number of new HIV diagnoses (Black)

14 Annual number of new HIV diagnoses (MSM)

15 Annual number of all-cause deaths among PLHIV (Total)

16 Annual number of all-cause deaths among PLHIV (Black)

17 Annual number of all-cause deaths among PLHIV (MSM)

*White: Non-hispanic white and other races

Task 2: In the following list of calibration targets, which one do you think is least important for the model to accurately reproduce?

Your answer: 6 ← please give your answer with this pull-down menu

Index Calibration targets

1 Total number diagnosed PLHIV (White MSM*)

2 Total number diagnosed PLHIV (Black MSM)

3 Total number diagnosed PLHIV (Hispanic MSM)

4 Total number diagnosed PLHIV (PWID)

5 Total number diagnosed PLHIV (MSM/PWID)

6 Total number diagnosed PLHIV (White male heterosexual*)

7 Total number diagnosed PLHIV (Black male heterosexual)

8 Total number diagnosed PLHIV (Hispanic male heterosexual)

9 Total number diagnosed PLHIV (White female heterosexual*)

10 Total number diagnosed PLHIV (Black female heterosexual)

11 Total number diagnosed PLHIV (Hispanic female heterosexual)

12 Annual number of new HIV diagnoses (Total)

13 Annual number of new HIV diagnoses (Black)

14 Annual number of new HIV diagnoses (MSM)

15 Annual number of all-cause deaths among PLHIV (Total)

16 Annual number of all-cause deaths among PLHIV (Black)

17 Annual number of all-cause deaths among PLHIV (MSM)

*White: Non-hispanic white and other races
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Filled answers present one example of responses we received from SAC 

Task 3: Pairwise comparison against the most important target

Please rate the relative importance of the most important target (also bolded) compared to each of the other  16 targets, on a 

scale of 1 (equally important) to 9 (much less important).

Comparison Relative importance of Over Your answer:

1 Total number diagnosed PLHIV (White MSM*) 5

2 Total number diagnosed PLHIV (Black MSM) 2

3 Total number diagnosed PLHIV (Hispanic MSM) 2

4 Total number diagnosed PLHIV (PWID) 4

5 Total number diagnosed PLHIV (MSM/PWID) 3

6 Total number diagnosed PLHIV (White male heterosexual*) 9

7 Total number diagnosed PLHIV (Black male heterosexual) 7

8 Total number diagnosed PLHIV (Hispanic male heterosexual) 7

9 Total number diagnosed PLHIV (White female heterosexual*) 8

10 Total number diagnosed PLHIV (Black female heterosexual) 6

11 Total number diagnosed PLHIV (Hispanic female heterosexual) 6

12 Annual number of new HIV diagnoses (Total) 1

13 Annual number of new HIV diagnoses (Black) 1

14 Annual number of new HIV diagnoses (MSM) 1

15 Annual number of all-cause deaths among PLHIV (Total) 5

16 Annual number of all-cause deaths among PLHIV (Black) 5

17 Annual number of all-cause deaths among PLHIV (MSM) 5

Annual number of new HIV 

diagnoses (Total)

Task 4: Pairwise comparison against the least important target

Please rate the relative importance of the least important target (bolded) compared to each of the other  16 targets, on a 

scale of 1 (equally important) to 9 (much more important).

Comparison Relative importance of Over Your answer:

1 Total number diagnosed PLHIV (White MSM*) 4

2 Total number diagnosed PLHIV (Black MSM) 9

3 Total number diagnosed PLHIV (Hispanic MSM) 9

4 Total number diagnosed PLHIV (PWID) 6

5 Total number diagnosed PLHIV (MSM/PWID) 7

6 Total number diagnosed PLHIV (White male heterosexual*) 1

7 Total number diagnosed PLHIV (Black male heterosexual) 4

8 Total number diagnosed PLHIV (Hispanic male heterosexual) 4

9 Total number diagnosed PLHIV (White female heterosexual*) 2

10 Total number diagnosed PLHIV (Black female heterosexual) 5

11 Total number diagnosed PLHIV (Hispanic female heterosexual) 5

12 Annual number of new HIV diagnoses (Total) 9

13 Annual number of new HIV diagnoses (Black) 8

14 Annual number of new HIV diagnoses (MSM) 8

15 Annual number of all-cause deaths among PLHIV (Total) 3

16 Annual number of all-cause deaths among PLHIV (Black) 5

17 Annual number of all-cause deaths among PLHIV (MSM) 4

Thank you for taking the time to complete this survey!

Total number diagnosed 

PLHIV (White male 

heterosexual*)
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Figure A6. Model status quo scenario projections presented for qualitative face validity assessments 

PANEL A. Atlanta 
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PANEL B. Baltimore 
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PANEL C. Los Angeles 
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PANEL D. Miami 
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PANEL E. New York City 
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PANEL F. Seattle 
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Appendix C.   
 
Supplementary Material for Chapter 4 

 

 

This supplementary appendix presents the process of result validation and model tuning 

for the ANN model, as well as three additional figures and one table in supplementing the 

manuscript:  

 Figure A1 presents the schematic diagram for the structure of the dynamic 

compartmental HIV transmission model we applied in this value of information 

analysis. It shows the 19 health states that individuals progress through in the 

model.  

 Figure A2 shows the distribution of the expected value of partial perfect information 

(EVPPI) estimated for each individual model parameter using the generalized 

additive model at a threshold of $100,000/QALY. We then ranked these values 

accordingly and identified and grouped those with the greatest EVPPI as key 

groups of model parameters for further metamodel analysis with artificial neural 

network model.  

 Figure A3 shows the validation result comparing the EVPPI estimates for the 

parameter group of HIV transmission probabilities per homosexual partnership 

using ANN model with GAM model and the two bounds.  

 Table A1 presents the description, values and uncertainty distributions for the key 

groups of model parameters that were found most influential on decision 

uncertainty for each city. 
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Result validation and model tuning 

Given the novelty of the ANN metamodel, we performed several checks to ensure the 

validity of its estimates of EVPPI for the key groups of parameters. First, given the 

extensive evidence for the precision and validation of the GAM approach, we treated the 

EVPPI estimates from the GAM as “gold standard” and compared the estimated EVPPI 

for HIV transmission probabilities per homosexual partnership (three parameters in the 

group) based on both the ANN and GAM approach. Second, we defined the lower bound 

of the EVPPI for a given parameter group as the maximum EVPPI value estimated for 

each single parameter (using GAM) within that group, while the upper bound was defined 

as the city-level EVPI which measured the decision uncertainty from all model parameters 

jointly. We compared the ANN metamodel results to ensure the EVPPI estimates for all 

the identified key groups of parameters fell within these bounds. Third, the variance of 

model predictions and resulting EVPPI from the ten repeated estimations can be a good 

sign of model fitting, i.e. large variance indicates poor fitting. We hand-tuned the model by 

varying the number of hidden layers and hidden nodes until the repeated estimated results 

were within a reasonable range while inside the two bounds. Figure A3 shows the result 

validation for the parameter group of HIV transmission probabilities per homosexual 

partnership.
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Fig. A1 – Model schematic diagram
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Fig. A2 – Distribution of expected value of partial perfect information (EVPPI) for individual parameters 
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Fig. A3 – Result validation for the parameter group of HIV transmission probabilities per homosexual partnership 

The error bars represent the mean ± 1.96 * standard deviation of the estimated values from the ten repeated estimations; two dashed 

lines represent the corresponding lower and upper bounds. ANN: artificial neural network; GAM: generalized additive model.
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Table A1. Key groups of model parameters influential on decision uncertainty 

CITY Atlanta Baltimore Los Angeles Miami New York City Seattle 

MORTALITY RATES FOR PLHIV 

Monthly mortality rate for PLHIV (CD4: 200-499), except PWID 

PE 6.39E-04 6.39E-04 6.39E-04 6.39E-04 6.39E-04 6.39E-04 

Distribution Pert(1.13, 4.02) Pert(1.13, 4.02) Pert (1.13, 4.02) Pert (1.13, 4.02) Pert (1.13, 4.02) Pert (1.13, 4.02) 

Monthly mortality rate for PLHIV (CD4<200), except PWID 

PE 0.0072 0.0072 0.0072 0.0072 0.0072 0.0072 

Distribution Pert (3.21, 4.53) Pert (3.21, 4.53) Pert (3.21, 4.53) Pert (3.21, 4.53) Pert (3.21, 4.53) Pert (3.21, 4.53) 

Multiplier of mortality rate for PLHIV that inject drugs (CD4: 200-499) 

PE 1.59 1.59 1.59 1.59 1.59 1.59 

Distribution Pert (1.16, 4.06) Pert (1.16, 4.06) Pert (1.16, 4.06) Pert (1.16, 4.06) Pert (1.16, 4.06) Pert (1.16, 4.06) 

Multiplier of mortality rate for PLHIV that inject drugs (CD4<200) 

PE 1.59 1.59 1.59 1.59 1.59 1.59 

Distribution Pert (1.16, 4.06) Pert (1.16, 4.06) Pert (1.16, 4.06) Pert (1.16, 4.06) Pert (1.16, 4.06) Pert (1.16, 4.06) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male White PWID 

PE 0.000868 0.000798 0.000786 0.000868 0.000798 0.000748 

Distribution ln (-7.13, 0.246) ln (-7.13, 0.246) ln (-7.15, 0.288) ln (-7.13, 0.246) ln (-7.13, 0.246) ln (-7.20, 0.316) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male White MSM 

PE 0.000303 0.000277 0.000273 0.000303 0.000277 0.000259 

Distribution ln (-8.10, 0.184) ln (-8.19, 0.167) ln (-8.21, 0.196) ln (-8.10, 0.184) ln (-8.19, 0.167) ln (-8.26, 0.236) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male White MWID 

PE 0.000693 0.000636 0.000625 0.000693 0.000636 0.000617 

Distribution ln (-7.27, 0.237) ln (-7.36, 0.221) ln (-7.38, 0.241) ln (-7.27, 0.237) ln (-7.36, 0.221) ln (-7.39, 0.29) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male White HET 

PE 0.000380 0.000348 0.000343 0.000380 0.000348 0.000314 

Distribution ln (-7.88, 0.234) ln (-7.96, 0.236) ln (-7.98, 0.279) ln (-7.88, 0.234) ln (-7.96, 0.236) ln (-8.07, 0.304) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male Black PWID 

PE 0.000759 0.000699 0.000688 0.000759 0.000699 0.000630 

Distribution ln (-7.18, 0.204) ln (-7.27, 0.204) ln (-7.28, 0.27) ln (-7.18, 0.204) ln (-7.27, 0.204) ln (-7.37, 0.3) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male Black MSM 

PE 0.000265 0.000242 0.000239 0.000265 0.000242 0.000218 

Distribution ln (-8.24, 0.198) ln (-8.32, 0.193) ln (-8.34, 0.244) ln (-8.24, 0.198) ln (-8.32, 0.193) ln (-8.43, 0.287) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male Black MWID 

PE 0.000606 0.000556 0.000548 0.000606 0.000556 0.000519 

Distribution ln (-7.41, 0.248) ln (-7.49, 0.243) ln (-7.51, 0.277) ln (-7.41, 0.248) ln (-7.49, 0.243) ln (-7.56, 0.338) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male Black HET 

PE 0.000332 0.000305 0.000301 0.000332 0.000305 0.000264 

Distribution ln (-8.01, 0.207) ln (-8.10, 0.204) ln (-8.11, 0.257) ln (-8.01, 0.207) ln (-8.10, 0.204) ln (-8.24, 0.303) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male Hispanic PWID 
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PE 0.000439 0.000403 0.000398 0.000439 0.000403 0.000376 

Distribution ln (-7.73, 0.272) ln (-7.82, 0.274) ln (-7.83, 0.292) ln (-7.73, 0.272) ln (-7.82, 0.274) ln (-7.89, 0.351) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male Hispanic MSM 

PE 0.000153 0.000140 0.000138 0.000153 0.000140 0.000130 

Distribution ln (-8.78, 0.265) ln (-8.87, 0.228) ln (-8.89, 0.292) ln (-8.78, 0.265) ln (-8.87, 0.228) ln (-8.95, 0.307) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male Hispanic MWID 

PE 0.000351 0.000321 0.000316 0.000351 0.000321 0.000310 

Distribution ln (-7.96, 0.315) ln (-8.04, 0.294) ln (-8.06, 0.34) ln (-7.96, 0.315) ln (-8.04, 0.294) ln (-8.08, 0.372) 

Monthly mortality rate for PLHIV on ART (CD4>500), Male Hispanic HET 

PE 0.000192 0.000176 0.000174 0.000192 0.000176 0.000158 

Distribution ln (-8.56, 0.295) ln (-8.65, 0.266) ln (-8.66, 0.327) ln (-8.56, 0.295) ln (-8.65, 0.266) ln (-8.75, 0.333) 

Monthly mortality rate for PLHIV on ART (CD4>500), Female White PWID 

PE 0.000673 0.000616 0.000606 0.000673 0.000616 0.000597 

Distribution ln (-7.30, 0.267) ln (-7.39, 0.241) ln (-7.41, 0.288) ln (-7.30, 0.267) ln (-7.39, 0.241) ln (-7.42, 0.307) 

Monthly mortality rate for PLHIV on ART (CD4>500), Female White HET 

PE 0.000294 0.000269 0.000264 0.000294 0.000269 0.000250 

Distribution ln (-8.13, 0.232) ln (-8.22, 0.228) ln (-8.24, 0.263) ln (-8.13, 0.232) ln (-8.22, 0.228) ln (-8.29, 0.294) 

Monthly mortality rate for PLHIV on ART (CD4>500), Female Black PWID 

PE 0.000587 0.000539 0.000531 0.000587 0.000539 0.000502 

Distribution ln (-7.44, 0.217) ln (-7.53, 0.226) ln (-7.54, 0.282) ln (-7.44, 0.217) ln (-7.53, 0.226) ln (-7.6, 0.309) 

Monthly mortality rate for PLHIV on ART (CD4>500), Female Black HET 

PE 0.000257 0.000235 0.000232 0.000257 0.000235 0.000211 

Distribution ln (-8.27, 0.182) ln (-8.36, 0.19) ln (-8.37, 0.265) ln (-8.27, 0.182) ln (-8.36, 0.19) ln (-8.46, 0.297) 

Monthly mortality rate for PLHIV on ART (CD4>500), Female Hispanic PWID 

PE 0.000341 0.000311 0.000307 0.000341 0.000311 0.000300 

Distribution ln (-7.98, 0.289) ln (-8.07, 0.286) ln (-8.09, 0.318) ln (-7.98, 0.289) ln (-8.07, 0.286) ln (-8.11, 0.356) 

Monthly mortality rate for PLHIV on ART (CD4>500), Female Hispanic HET 

PE 0.000149 0.000136 0.000134 0.000149 0.000136 0.000126 

Distribution ln (-8.81, 0.274) ln (-8.90, 0.251) ln (-8.92, 0.302) ln (-8.81, 0.274) ln (-8.90, 0.251) ln (-8.98, 0.328) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male White PWID 

PE 0.00132 0.00140 0.00165 0.00132 0.00140 0.00137 

Distribution ln (-6.63, 0.191) ln (-6.57, 0.186) ln (-6.41, 0.204) ln (-6.63, 0.191) ln (-6.57, 0.186) ln (-6.6, 0.223) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male White MSM 

PE 0.000595 0.000628 0.000739 0.000595 0.000628 0.000613 

Distribution ln (-7.43, 0.14) ln (-7.37, 0.151) ln (-7.21, 0.145) ln (-7.43, 0.14) ln (-7.37, 0.151) ln (-7.4, 0.183) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male White MWID 

PE 0.000936 0.000985 0.001158 0.000936 0.000985 0.000951 

Distribution ln (-6.97, 0.198) ln (-6.92, 0.187) ln (-6.76, 0.192) ln (-6.97, 0.198) ln (-6.92, 0.187) ln (-6.96, 0.23) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male White HET 

PE 0.000844 0.000896 0.001054 0.000844 0.000896 0.000882 

Distribution ln (-7.08, 0.179) ln (-7.02, 0.186) ln (-6.85, 0.208) ln (-7.08, 0.179) ln (-7.02, 0.186) ln (-7.03, 0.203) 
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Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male Black PWID 

PE 0.00107 0.00113 0.00133 0.00107 0.00113 0.00104 

Distribution ln (-6.84, 0.158) ln (-6.78, 0.16) ln (-6.62, 0.192) ln (-6.84, 0.158) ln (-6.78, 0.16) ln (-6.86, 0.226) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male Black MSM 

PE 0.000481 0.000507 0.000597 0.000481 0.000507 0.000469 

Distribution ln (-7.64, 0.155) ln (-7.59, 0.163) ln (-7.42, 0.172) ln (-7.64, 0.155) ln (-7.59, 0.163) ln (-7.67, 0.21) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male Black MWID 

PE 0.000758 0.000796 0.000936 0.000758 0.000796 0.000728 

Distribution ln (-7.18, 0.206) ln (-7.14, 0.193) ln (-6.97, 0.223) ln (-7.18, 0.206) ln (-7.14, 0.193) ln (-7.22, 0.266) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male Black HET 

PE 0.000682 0.000723 0.000851 0.000682 0.000723 0.000674 

Distribution ln (-7.29, 0.14) ln (-7.23, 0.158) ln (-7.07, 0.196) ln (-7.29, 0.14) ln (-7.23, 0.158) ln (-7.3, 0.205) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male Hispanic PWID 

PE 0.000730 0.000768 0.000904 0.000730 0.000768 0.000733 

Distribution ln (-7.22, 0.196) ln (-7.17, 0.185) ln (-7.01, 0.213) ln (-7.22, 0.196) ln (-7.17, 0.185) ln (-7.22, 0.256) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male Hispanic MSM 

PE 0.000328 0.000344 0.000405 0.000328 0.000344 0.000329 

Distribution ln (-8.02, 0.195) ln (-7.98, 0.177) ln (-7.81, 0.191) ln (-8.02, 0.195) ln (-7.98, 0.177) ln (-8.02, 0.226) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male Hispanic MWID 

PE 0.000518 0.000540 0.000636 0.000518 0.000540 0.000512 

Distribution ln (-7.57, 0.239) ln (-7.52, 0.219) ln (-7.36, 0.25) ln (-7.57, 0.239) ln (-7.52, 0.219) ln (-7.58, 0.261) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Male Hispanic HET 

PE 0.000464 0.000490 0.000577 0.000464 0.000490 0.000473 

Distribution ln (-7.68, 0.188) ln (-7.62, 0.179) ln (-7.46, 0.196) ln (-7.68, 0.188) ln (-7.62, 0.179) ln (-7.66, 0.229) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Female White PWID 

PE 0.00135 0.00142 0.00167 0.00135 0.00142 0.00140 

Distribution ln (-6.61, 0.198) ln (-6.56, 0.205) ln (-6.39, 0.238) ln (-6.61, 0.198) ln (-6.56, 0.205) ln (-6.57, 0.249) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Female White HET 

PE 0.000858 0.000908 0.001068 0.000858 0.000908 0.000903 

Distribution ln (-7.06, 0.187) ln (-7.00, 0.193) ln (-6.84, 0.194) ln (-7.06, 0.187) ln (-7.00, 0.193) ln (-7.01, 0.224) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Female Black PWID 

PE 0.00109 0.00115 0.00135 0.00109 0.00115 0.00107 

Distribution ln (-6.82, 0.169) ln (-6.77, 0.182) ln (-6.61, 0.213) ln (-6.82, 0.169) ln (-6.77, 0.182) ln (-6.84, 0.243) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Female Black HET 

PE 0.000694 0.000732 0.000862 0.000694 0.000732 0.000690 

Distribution ln (-7.27, 0.159) ln (-7.22, 0.159) ln (-7.06, 0.196) ln (-7.27, 0.159) ln (-7.22, 0.159) ln (-7.28, 0.216) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Female Hispanic PWID 

PE 0.000745 0.000780 0.000917 0.000745 0.000780 0.000752 

Distribution ln (-7.2, 0.215) ln (-7.16, 0.206) ln (-6.99, 0.236) ln (-7.2, 0.215) ln (-7.16, 0.206) ln (-7.19, 0.26) 

Monthly mortality rate for PLHIV on ART (CD4: 200-499), Female Hispanic HET 

PE 0.000473 0.000497 0.000585 0.000473 0.000497 0.000485 

Distribution ln (-7.66, 0.194) ln (-7.61, 0.183) ln (-7.44, 0.215) ln (-7.66, 0.194) ln (-7.61, 0.183) ln (-7.63, 0.24) 
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Monthly mortality rate for PLHIV on ART (CD4<200), Male White PWID 

PE 0.00798 0.00426 0.00566 0.00798 0.00426 0.00575 

Distribution ln (-4.83, 0.15) ln (-5.46, 0.156) ln (-5.17, 0.168) ln (-4.83, 0.15) ln (-5.46, 0.156) ln (-5.16, 0.196) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male White MSM 

PE 0.00556 0.00295 0.00393 0.00556 0.00295 0.00409 

Distribution ln (-5.19, 0.117) ln (-5.82, 0.138) ln (-5.54, 0.125) ln (-5.19, 0.117) ln (-5.82, 0.138) ln (-5.5, 0.154) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male White MWID 

PE 0.00891 0.00475 0.00632 0.00891 0.00475 0.00649 

Distribution ln (-4.72, 0.148) ln (-5.35, 0.148) ln (-5.06, 0.148) ln (-4.72, 0.148) ln (-5.35, 0.148) ln (-5.04, 0.181) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male White HET 

PE 0.00498 0.00265 0.00353 0.00498 0.00265 0.00363 

Distribution ln (-5.3, 0.136) ln (-5.93, 0.15) ln (-5.65, 0.16) ln (-5.3, 0.136) ln (-5.93, 0.15) ln (-5.62, 0.169) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male Black PWID 

PE 0.00718 0.00384 0.00510 0.00718 0.00384 0.00504 

Distribution ln (-4.94, 0.117) ln (-5.56, 0.137) ln (-5.28, 0.168) ln (-4.94, 0.117) ln (-5.56, 0.137) ln (-5.29, 0.191) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male Black MSM 

PE 0.00500 0.00266 0.00355 0.00500 0.00266 0.00359 

Distribution ln (-5.3, 0.107) ln (-5.93, 0.129) ln (-5.64, 0.14) ln (-5.3, 0.107) ln (-5.93, 0.129) ln (-5.63, 0.166) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male Black MWID 

PE 0.00802 0.00428 0.00569 0.00802 0.00428 0.00569 

Distribution ln (-4.83, 0.146) ln (-5.45, 0.162) ln (-5.17, 0.167) ln (-4.83, 0.146) ln (-5.45, 0.162) ln (-5.17, 0.198) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male Black HET 

PE 0.00449 0.00239 0.00318 0.00449 0.00239 0.00318 

Distribution ln (-5.41, 0.102) ln (-6.04, 0.122) ln (-5.75, 0.156) ln (-5.41, 0.102) ln (-6.04, 0.122) ln (-5.75, 0.168) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male Hispanic PWID 

PE 0.00616 0.00328 0.00437 0.00616 0.00328 0.00430 

Distribution ln (-5.09, 0.149) ln (-5.72, 0.16) ln (-5.43, 0.178) ln (-5.09, 0.149) ln (-5.72, 0.16) ln (-5.45, 0.192) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male Hispanic MSM 

PE 0.00429 0.00228 0.00303 0.00429 0.00228 0.00306 

Distribution ln (-5.45, 0.125) ln (-6.09, 0.145) ln (-5.8, 0.164) ln (-5.45, 0.125) ln (-6.09, 0.145) ln (-5.79, 0.174) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male Hispanic MWID 

PE 0.00688 0.00366 0.00487 0.00688 0.00366 0.00486 

Distribution ln (-4.98, 0.163) ln (-5.61, 0.172) ln (-5.32, 0.193) ln (-4.98, 0.163) ln (-5.61, 0.172) ln (-5.33, 0.204) 

Monthly mortality rate for PLHIV on ART (CD4<200), Male Hispanic HET 

PE 0.00384 0.00204 0.00272 0.00384 0.00204 0.00271 

Distribution ln (-5.56, 0.135) ln (-6.19, 0.149) ln (-5.91, 0.166) ln (-5.56, 0.135) ln (-6.19, 0.149) ln (-5.91, 0.177) 

Monthly mortality rate for PLHIV on ART (CD4<200), Female White PWID 

PE 0.00856 0.00457 0.00608 0.00856 0.00457 0.00612 

Distribution ln (-4.76, 0.166) ln (-5.39, 0.169) ln (-5.1, 0.181) ln (-4.76, 0.166) ln (-5.39, 0.169) ln (-5.1, 0.208) 

Monthly mortality rate for PLHIV on ART (CD4<200), Female White HET 

PE 0.00534 0.00284 0.00378 0.00534 0.00284 0.00386 

Distribution ln (-5.23, 0.142) ln (-5.86, 0.167) ln (-5.58, 0.172) ln (-5.23, 0.142) ln (-5.86, 0.167) ln (-5.56, 0.189) 
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Monthly mortality rate for PLHIV on ART (CD4<200), Female Black PWID 

PE 0.00770 0.00412 0.00547 0.00770 0.00412 0.00537 

Distribution ln (-4.87, 0.132) ln (-5.49, 0.149) ln (-5.21, 0.178) ln (-4.87, 0.132) ln (-5.49, 0.149) ln (-5.23, 0.196) 

Monthly mortality rate for PLHIV on ART (CD4<200), Female Black HET 

PE 0.00481 0.00256 0.00341 0.00481 0.00256 0.00339 

Distribution ln (-5.34, 0.112) ln (-5.97, 0.138) ln (-5.68, 0.161) ln (-5.34, 0.112) ln (-5.97, 0.138) ln (-5.69, 0.179) 

Monthly mortality rate for PLHIV on ART (CD4<200), Female Hispanic PWID 

PE 0.00661 0.00352 0.00468 0.00661 0.00352 0.00458 

Distribution ln (-5.02, 0.173) ln (-5.65, 0.177) ln (-5.36, 0.199) ln (-5.02, 0.173) ln (-5.65, 0.177) ln (-5.39, 0.204) 

Monthly mortality rate for PLHIV on ART (CD4<200), Female Hispanic HET 

PE 0.00412 0.00219 0.00292 0.00412 0.00219 0.00289 

Distribution ln (-5.49, 0.15) ln (-6.12, 0.159) ln (-5.84, 0.177) ln (-5.49, 0.15) ln (-6.12, 0.159) ln (-5.85, 0.196) 

IMMEDIATE ART ENGAGEMENT 

Probability of direct ART engagement following diagnosis (CD4>500), PWID 

PE 0.226 0.226 0.226 0.226 0.226 0.226 

Distribution Beta (12, 41) Beta (12, 41) Beta (12, 41) Beta (12, 41) Beta (12, 41) Beta (12, 41) 

Probability of direct ART engagement following diagnosis (CD4>500), MWID 

PE 0.200 0.200 0.200 0.200 0.200 0.200 

Distribution Beta (8, 32) Beta (8, 32) Beta (8, 32) Beta (8, 32) Beta (8, 32) Beta (8, 32) 

Probability of direct ART engagement following diagnosis (CD4>500), MSM 

PE 0.146 0.349 0.251 0.146 0.349 0.349 

Distribution Beta (66, 387) Beta (176, 329) Beta (44, 131) Beta (66, 387) Beta (176, 329) Beta (176, 329) 

Probability of direct ART engagement following diagnosis (CD4>500), Male, HET 

PE 0.0893 0.421 0.105 0.0893 0.421 0.421 

Distribution Beta (10, 102) Beta (40, 55) Beta (2, 17) Beta (10, 102) Beta (40, 55) Beta (40, 55) 

Probability of direct ART engagement following diagnosis (CD4>500), Female, HET 

PE 0.165 0.281 0.269 0.165 0.281 0.281 

Distribution Beta (36, 182) Beta (27, 69) Beta (7, 19) Beta (36, 182) Beta (27, 69) Beta (27, 69) 

Probability of direct ART engagement following diagnosis (CD4: 200-499), PWID 

PE 0.294 0.294 0.294 0.294 0.294 0.294 

Distribution Beta (15, 36) Beta (15, 36) Beta (15, 36) Beta (15, 36) Beta (15, 36) Beta (15, 36) 

Probability of direct ART engagement following diagnosis (CD4: 200-499), MWID 

PE 0.333 0.333 0.333 0.333 0.333 0.333 

Distribution Beta (10, 20) Beta (10, 20) Beta (10, 20) Beta (10, 20) Beta (10, 20) Beta (10, 20) 

Probability of direct ART engagement following diagnosis (CD4: 200-499), MSM 

PE 0.265 0.435 0.321 0.265 0.435 0.435 

Distribution Beta (198, 550) Beta (237, 308) Beta (69, 146) Beta (198, 550) Beta (237, 308) Beta (237, 308) 

Probability of direct ART engagement following diagnosis (CD4: 200-499), Male, HET 

PE 0.349 0.297 0.246 0.349 0.297 0.297 

Distribution Beta (84, 157) Beta (35, 83) Beta (15, 46) Beta (84, 157) Beta (35, 83) Beta (35, 83) 

Probability of direct ART engagement following diagnosis (CD4: 200-499), Female, HET 

PE 0.295 0.424 0.425 0.295 0.424 0.424 
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Distribution Beta (80, 191) Beta (39, 53) Beta (17, 23) Beta (80, 191) Beta (39, 53) Beta (39, 53) 

Probability of direct ART engagement following diagnosis (CD4<200), PWID 

PE 0.515 0.515 0.515 0.515 0.515 0.515 

Distribution Beta (34, 32) Beta (34, 32) Beta (34, 32) Beta (34, 32) Beta (34, 32) Beta (34, 32) 

Probability of direct ART engagement following diagnosis (CD4<200), MWID 

PE 0.545 0.545 0.545 0.545 0.545 0.545 

Distribution Beta (12, 10) Beta (12, 10) Beta (12, 10) Beta (12, 10) Beta (12, 10) Beta (12, 10) 

Probability of direct ART engagement following diagnosis (CD4<200), MSM 

PE 0.526 0.596 0.644 0.526 0.596 0.596 

Distribution Beta (242, 218) Beta (115, 78) Beta (87, 48) Beta (242, 218) Beta (115, 78) Beta (115, 78) 

Probability of direct ART engagement following diagnosis (CD4<200), Male, HET 

PE 0.460 0.577 0.701 0.460 0.577 0.577 

Distribution Beta (159, 187) Beta (45, 33) Beta (47, 20) Beta (159, 187) Beta (45, 33) Beta (45, 33) 

Probability of direct ART engagement following diagnosis (CD4<200), Female, HET 

PE 0.457 0.475 0.486 0.457 0.475 0.475 

Distribution Beta (100, 119) Beta (28, 31) Beta (18, 19) Beta (100, 119) Beta (28, 31) Beta (28, 31) 

ART ENGAGEMENT: INITIATION 

Monthly ART initiation rate (CD4>500), PWID 

PE 0.0292 0.0292 0.0292 0.0292 0.0292 0.0292 

Distribution Poisson (23) / 789.01 Poisson (23) / 789.01 Poisson (23) / 789.01 Poisson (23) / 789.01 Poisson (23) / 789.01 Poisson (23) / 789.01 

Monthly ART initiation rate (CD4>500), MSM 

PE 0.0556 0.0662 0.0853 0.0556 0.0662 0.0662 

Distribution 
Poisson (280) / 

5039.22 
Poisson (259) / 

3914.6 
Poisson (107) / 

1254.01 
Poisson (280) / 

5039.22 
Poisson (259) / 

3914.6 
Poisson (259) / 

3914.6 

Monthly ART initiation rate (CD4>500), MWID 

PE 0.0690 0.0690 0.0690 0.0690 0.0690 0.0690 

Distribution Poisson (23) / 333.49 Poisson (23) / 333.49 Poisson (23) / 333.49 Poisson (23) / 333.49 Poisson (23) / 333.49 Poisson (23) / 333.49 

Monthly ART initiation rate (CD4>500), Male, HET 

PE 0.0425 0.0782 0.0800 0.0425 0.0782 0.0782 

Distribution 
Poisson (65) / 

1529.89 
Poisson (38) / 486.15 Poisson (14) / 174.99 

Poisson (65) / 
1529.89 

Poisson (38) / 486.15 Poisson (38) / 486.15 

Monthly ART initiation rate (CD4>500), Female, HET 

PE 0.0398 0.0551 0.0866 0.0398 0.0551 0.0551 

Distribution 
Poisson (120) / 

3011.48 
Poisson (46) / 834.31 Poisson (17) / 196.37 

Poisson (120) / 
3011.48 

Poisson (46) / 834.31 Poisson (46) / 834.31 

Monthly ART initiation rate (CD4: 200-499), PWID 

PE 0.108 0.108 0.108 0.108 0.108 0.108 

Distribution Poisson (30) / 277.24 Poisson (30) / 277.24 Poisson (30) / 277.24 Poisson (30) / 277.24 Poisson (30) / 277.24 Poisson (30) / 277.24 

Monthly ART initiation rate (CD4: 200-499), MSM 

PE 0.145 0.149 0.184 0.145 0.149 0.149 

Distribution 
Poisson (490) / 

3375.28 
Poisson (271) / 

1823.46 
Poisson (131) / 

710.62 
Poisson (490) / 

3375.28 
Poisson (271) / 

1823.46 
Poisson (271) / 

1823.46 

Monthly ART initiation rate (CD4: 200-499), MWID 

PE 0.0573 0.0573 0.0573 0.0573 0.0573 0.0573 

Distribution Poisson (14) / 244.44 Poisson (14) / 244.44 Poisson (14) / 244.44 Poisson (14) / 244.44 Poisson (14) / 244.44 Poisson (14) / 244.44 
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Monthly ART initiation rate (CD4: 200-499), Male, HET 

PE 0.118 0.189 0.134 0.118 0.189 0.189 

Distribution 
Poisson (134) / 

1135.85 
Poisson (74) / 390.83 Poisson (42) / 312.92 

Poisson (134) / 
1135.85 

Poisson (74) / 390.83 Poisson (74) / 390.83 

Monthly ART initiation rate (CD4: 200-499), Female, HET 

PE 0.142 0.125 0.149 0.142 0.125 0.125 

Distribution 
Poisson (175) / 

1231.67 
Poisson (46) / 368.53 Poisson (21) / 141.34 

Poisson (175) / 
1231.67 

Poisson (46) / 368.53 Poisson (46) / 368.53 

Monthly ART initiation rate (CD4<200), PWID 

PE 0.314 0.314 0.314 0.314 0.314 0.314 

Distribution Poisson (31) / 98.84 Poisson (31) / 98.84 Poisson (31) / 98.84 Poisson (31) / 98.84 Poisson (31) / 98.84 Poisson (31) / 98.84 

Monthly ART initiation rate (CD4<200), MSM 

PE 0.282 0.257 0.190 0.282 0.257 0.257 

Distribution 
Poisson (206) / 

730.76 
Poisson (74) / 287.61 Poisson (43) / 226.7 

Poisson (206) / 
730.76 

Poisson (74) / 287.61 Poisson (74) / 287.61 

Monthly ART initiation rate (CD4<200), MWID 

PE 0.240 0.240 0.240 0.240 0.240 0.240 

Distribution Poisson (9) / 37.45 Poisson (9) / 37.45 Poisson (9) / 37.45 Poisson (9) / 37.45 Poisson (9) / 37.45 Poisson (9) / 37.45 

Monthly ART initiation rate (CD4<200), Male, HET 

PE 0.262 0.230 0.182 0.262 0.230 0.230 

Distribution 
Poisson (180) / 

686.23 
Poisson (28) / 121.9 Poisson (18) / 98.92 

Poisson (180) / 
686.23 

Poisson (28) / 121.9 Poisson (28) / 121.9 

Monthly ART initiation rate (CD4<200), Female, HET 

PE 0.296 0.113 0.294 0.296 0.113 0.113 

Distribution 
Poisson (112) / 

378.97 
Poisson (24) / 212.4 Poisson (19) / 64.72 

Poisson (112) / 
378.97 

Poisson (24) / 212.4 Poisson (24) / 212.4 

ART ENGAGEMENT: RETENTION 

Monthly ART dropout rate (CD4>500), Male White PWID 

PE 0.0191 0.00725 0.00970 0.0191 0.00725 0.00427 

Distribution ln (-3.96, 0.0689) ln (-4.93, 0.098) ln (-4.64, 0.1369) ln (-3.96, 0.0689) ln (-4.93, 0.098) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4>500), Male White MSM 

PE 0.0132 0.00398 0.00920 0.0132 0.00398 0.00340 

Distribution ln (-4.33, 0.0428) ln (-5.53, 0.0551) ln (-4.69, 0.0503) ln (-4.33, 0.0428) ln (-5.53, 0.0551) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4>500), Male White MWID 

PE 0.0189 0.00442 0.0114 0.0189 0.00442 0.00340 

Distribution ln (-3.97, 0.0644) ln (-5.42, 0.0995) ln (-4.48, 0.1018) ln (-3.97, 0.0644) ln (-5.42, 0.0995) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4>500), Male White HET 

PE 0.0133 0.00654 0.00784 0.0133 0.00654 0.00516 

Distribution ln (-4.32, 0.0587) ln (-5.03, 0.0905) ln (-4.85, 0.1122) ln (-4.32, 0.0587) ln (-5.03, 0.0905) Unif (0.0041, 0.0062) 

Monthly ART dropout rate (CD4>500), Male Black PWID 

PE 0.0182 0.00725 0.00919 0.0182 0.00725 0.00427 

Distribution ln (-4, 0.0607) ln (-4.93, 0.0901) ln (-4.69, 0.1454) ln (-4, 0.0607) ln (-4.93, 0.0901) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4>500), Male Black MSM 

PE 0.0125 0.00398 0.00871 0.0125 0.00398 0.00703 

Distribution ln (-4.38, 0.0404) ln (-5.53, 0.061) ln (-4.74, 0.0942) ln (-4.38, 0.0404) ln (-5.53, 0.061) Unif (0.0056, 0.0084) 

Monthly ART dropout rate (CD4>500), Male Black MWID 
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PE 0.0180 0.00442 0.0108 0.0180 0.00442 0.00571 

Distribution ln (-4.02, 0.0622) ln (-5.42, 0.1008) ln (-4.53, 0.1372) ln (-4.02, 0.0622) ln (-5.42, 0.1008) Unif (0.0046, 0.0069) 

Monthly ART dropout rate (CD4>500), Male Black HET 

PE 0.0127 0.00654 0.00743 0.0127 0.00654 0.00516 

Distribution ln (-4.37, 0.0453) ln (-5.03, 0.0689) ln (-4.9, 0.1276) ln (-4.37, 0.0453) ln (-5.03, 0.0689) Unif (0.0041, 0.0062) 

Monthly ART dropout rate (CD4>500), Male Hispanic PWID 

PE 0.0109 0.00744 0.00595 0.0109 0.00744 0.00475 

Distribution ln (-4.52, 0.0802) ln (-4.9, 0.0928) ln (-5.12, 0.1507) ln (-4.52, 0.0802) ln (-4.9, 0.0928) Unif (0.0038, 0.0057) 

Monthly ART dropout rate (CD4>500), Male Hispanic MSM 

PE 0.0075 0.00408 0.00564 0.0075 0.00408 0.00340 

Distribution ln (-4.9, 0.0625) ln (-5.5, 0.0624) ln (-5.18, 0.0912) ln (-4.9, 0.0625) ln (-5.5, 0.0624) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4>500), Male Hispanic MWID 

PE 0.0107 0.00453 0.00698 0.0107 0.00453 0.00340 

Distribution ln (-4.53, 0.0832) ln (-5.4, 0.1066) ln (-4.96, 0.1318) ln (-4.53, 0.0832) ln (-5.4, 0.1066) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4>500), Male Hispanic HET 

PE 0.0076 0.00670 0.00481 0.0076 0.00670 0.00516 

Distribution ln (-4.89, 0.0696) ln (-5.01, 0.0727) ln (-5.34, 0.1294) ln (-4.89, 0.0696) ln (-5.01, 0.0727) Unif (0.0041, 0.0062) 

Monthly ART dropout rate (CD4>500), Female White PWID 

PE 0.0191 0.00725 0.00970 0.0191 0.00725 0.00427 

Distribution ln (-3.96, 0.0695) ln (-4.93, 0.0993) ln (-4.64, 0.1272) ln (-3.96, 0.0695) ln (-4.93, 0.0993) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4>500), Female White HET 

PE 0.0133 0.00654 0.00784 0.0133 0.00654 0.00340 

Distribution ln (-4.32, 0.0601) ln (-5.03, 0.0889) ln (-4.85, 0.1169) ln (-4.32, 0.0601) ln (-5.03, 0.0889) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4>500), Female Black PWID 

PE 0.0182 0.00725 0.00919 0.0182 0.00725 0.00427 

Distribution ln (-4, 0.055) ln (-4.93, 0.0924) ln (-4.69, 0.1437) ln (-4, 0.055) ln (-4.93, 0.0924) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4>500), Female Black HET 

PE 0.0127 0.00654 0.00743 0.0127 0.00654 0.00340 

Distribution ln (-4.37, 0.0444) ln (-5.03, 0.0713) ln (-4.9, 0.1333) ln (-4.37, 0.0444) ln (-5.03, 0.0713) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4>500), Female Hispanic PWID 

PE 0.0109 0.00744 0.00595 0.0109 0.00744 0.00427 

Distribution ln (-4.52, 0.0789) ln (-4.9, 0.0933) ln (-5.12, 0.1518) ln (-4.52, 0.0789) ln (-4.9, 0.0933) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4>500), Female Hispanic HET 

PE 0.0076 0.00670 0.00481 0.0076 0.00670 0.00340 

Distribution ln (-4.89, 0.0662) ln (-5.01, 0.075) ln (-5.34, 0.1309) ln (-4.89, 0.0662) ln (-5.01, 0.075) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4: 200-499), Male White PWID 

PE 0.0262 0.00925 0.0128 0.0262 0.00925 0.00427 

Distribution ln (-3.64, 0.0669) ln (-4.68, 0.1123) ln (-4.36, 0.1218) ln (-3.64, 0.0669) ln (-4.68, 0.1123) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4: 200-499), Male White MSM 

PE 0.0141 0.00661 0.0110 0.0141 0.00661 0.00340 

Distribution ln (-4.26, 0.0449) ln (-5.02, 0.063) ln (-4.51, 0.0601) ln (-4.26, 0.0449) ln (-5.02, 0.063) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4: 200-499), Male White MWID 
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PE 0.0235 0.00703 0.0134 0.0235 0.00703 0.00340 

Distribution ln (-3.75, 0.0691) ln (-4.96, 0.1073) ln (-4.31, 0.1129) ln (-3.75, 0.0691) ln (-4.96, 0.1073) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4: 200-499), Male White HET 

PE 0.0157 0.00871 0.0105 0.0157 0.00871 0.00516 

Distribution ln (-4.16, 0.0583) ln (-4.74, 0.0937) ln (-4.56, 0.1137) ln (-4.16, 0.0583) ln (-4.74, 0.0937) Unif (0.0041, 0.0062) 

Monthly ART dropout rate (CD4: 200-499), Male Black PWID 

PE 0.0296 0.00939 0.0143 0.0296 0.00939 0.00427 

Distribution ln (-3.52, 0.054) ln (-4.67, 0.0893) ln (-4.25, 0.1435) ln (-3.52, 0.054) ln (-4.67, 0.0893) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4: 200-499), Male Black MSM 

PE 0.0159 0.00671 0.0123 0.0159 0.00671 0.00703 

Distribution ln (-4.14, 0.0407) ln (-5, 0.0679) ln (-4.4, 0.0986) ln (-4.14, 0.0407) ln (-5, 0.0679) Unif (0.0056, 0.0084) 

Monthly ART dropout rate (CD4: 200-499), Male Black MWID 

PE 0.0266 0.00713 0.0150 0.0266 0.00713 0.00571 

Distribution ln (-3.63, 0.0605) ln (-4.94, 0.1093) ln (-4.2, 0.1381) ln (-3.63, 0.0605) ln (-4.94, 0.1093) Unif (0.0046, 0.0069) 

Monthly ART dropout rate (CD4: 200-499), Male Black HET 

PE 0.0177 0.00884 0.0117 0.0177 0.00884 0.00516 

Distribution ln (-4.03, 0.0401) ln (-4.73, 0.0707) ln (-4.45, 0.1183) ln (-4.03, 0.0401) ln (-4.73, 0.0707) Unif (0.0041, 0.0062) 

Monthly ART dropout rate (CD4: 200-499), Male Hispanic PWID 

PE 0.0208 0.01032 0.0107 0.0208 0.01032 0.00475 

Distribution ln (-3.87, 0.0685) ln (-4.57, 0.0891) ln (-4.54, 0.1428) ln (-3.87, 0.0685) ln (-4.57, 0.0891) Unif (0.0038, 0.0057) 

Monthly ART dropout rate (CD4: 200-499), Male Hispanic MSM 

PE 0.0111 0.00737 0.0092 0.0111 0.00737 0.00340 

Distribution ln (-4.5, 0.0544) ln (-4.91, 0.0678) ln (-4.69, 0.0816) ln (-4.5, 0.0544) ln (-4.91, 0.0678) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4: 200-499), Male Hispanic MWID 

PE 0.0187 0.00784 0.0112 0.0187 0.00784 0.00340 

Distribution ln (-3.98, 0.0759) ln (-4.85, 0.1083) ln (-4.49, 0.1306) ln (-3.98, 0.0759) ln (-4.85, 0.1083) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4: 200-499), Male Hispanic HET 

PE 0.0124 0.00971 0.00875 0.0124 0.00971 0.00516 

Distribution ln (-4.39, 0.0587) ln (-4.63, 0.0718) ln (-4.74, 0.1205) ln (-4.39, 0.0587) ln (-4.63, 0.0718) Unif (0.0041, 0.0062) 

Monthly ART dropout rate (CD4: 200-499), Female White PWID 

PE 0.0262 0.00925 0.0128 0.0262 0.00925 0.00427 

Distribution ln (-3.64, 0.0704) ln (-4.68, 0.1067) ln (-4.36, 0.1317) ln (-3.64, 0.0704) ln (-4.68, 0.1067) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4: 200-499), Female White HET 

PE 0.0157 0.00871 0.0105 0.0157 0.00871 0.00340 

Distribution ln (-4.16, 0.0577) ln (-4.74, 0.0937) ln (-4.56, 0.1042) ln (-4.16, 0.0577) ln (-4.74, 0.0937) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4: 200-499), Female Black PWID 

PE 0.0296 0.00939 0.0143 0.0296 0.00939 0.00427 

Distribution ln (-3.52, 0.0501) ln (-4.67, 0.0894) ln (-4.25, 0.1317) ln (-3.52, 0.0501) ln (-4.67, 0.0894) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4: 200-499), Female Black HET 

PE 0.0177 0.00884 0.0117 0.0177 0.00884 0.00340 

Distribution ln (-4.03, 0.0404) ln (-4.73, 0.072) ln (-4.45, 0.1165) ln (-4.03, 0.0404) ln (-4.73, 0.072) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4: 200-499), Female Hispanic PWID 
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PE 0.0208 0.0103 0.0107 0.0208 0.0103 0.00427 

Distribution ln (-3.87, 0.0698) ln (-4.57, 0.0885) ln (-4.54, 0.1485) ln (-3.87, 0.0698) ln (-4.57, 0.0885) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4: 200-499), Female Hispanic HET 

PE 0.0124 0.0097 0.00875 0.0124 0.0097 0.00340 

Distribution ln (-4.39, 0.0606) ln (-4.63, 0.0712) ln (-4.74, 0.1153) ln (-4.39, 0.0606) ln (-4.63, 0.0712) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4<200), Male White PWID 

PE 0.0314 0.0129 0.0241 0.0314 0.0129 0.00427 

Distribution ln (-3.46, 0.0993) ln (-4.35, 0.1465) ln (-3.73, 0.1711) ln (-3.46, 0.0993) ln (-4.35, 0.1465) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4<200), Male White MSM 

PE 0.0188 0.0113 0.0141 0.0188 0.0113 0.00340 

Distribution ln (-3.97, 0.0799) ln (-4.49, 0.1252) ln (-4.26, 0.1152) ln (-3.97, 0.0799) ln (-4.49, 0.1252) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4<200), Male White MWID 

PE 0.0281 0.0137 0.0208 0.0281 0.0137 0.00340 

Distribution ln (-3.57, 0.0987) ln (-4.29, 0.1621) ln (-3.88, 0.1642) ln (-3.57, 0.0987) ln (-4.29, 0.1621) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4<200), Male White HET 

PE 0.0210 0.0106 0.0164 0.0210 0.0106 0.00516 

Distribution ln (-3.86, 0.0894) ln (-4.55, 0.1473) ln (-4.11, 0.1571) ln (-3.86, 0.0894) ln (-4.55, 0.1473) Unif (0.0041, 0.0062) 

Monthly ART dropout rate (CD4<200), Male Black PWID 

PE 0.0405 0.0156 0.0259 0.0405 0.0156 0.00427 

Distribution ln (-3.21, 0.0774) ln (-4.16, 0.1202) ln (-3.65, 0.1763) ln (-3.21, 0.0774) ln (-4.16, 0.1202) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4<200), Male Black MSM 

PE 0.0243 0.0136 0.0152 0.0243 0.0136 0.00703 

Distribution ln (-3.72, 0.0645) ln (-4.3, 0.1014) ln (-4.18, 0.1406) ln (-3.72, 0.0645) ln (-4.3, 0.1014) Unif (0.0056, 0.0084) 

Monthly ART dropout rate (CD4<200), Male Black MWID 

PE 0.0363 0.0166 0.0224 0.0363 0.0166 0.00571 

Distribution ln (-3.32, 0.0958) ln (-4.1, 0.1409) ln (-3.8, 0.1828) ln (-3.32, 0.0958) ln (-4.1, 0.1409) Unif (0.0046, 0.0069) 

Monthly ART dropout rate (CD4<200), Male Black HET 

PE 0.0272 0.0128 0.0177 0.0272 0.0128 0.00516 

Distribution ln (-3.61, 0.0606) ln (-4.36, 0.1077) ln (-4.04, 0.1541) ln (-3.61, 0.0606) ln (-4.36, 0.1077) Unif (0.0041, 0.0062) 

Monthly ART dropout rate (CD4<200), Male Hispanic PWID 

PE 0.0240 0.0170 0.0176 0.0240 0.0170 0.00475 

Distribution ln (-3.73, 0.1086) ln (-4.07, 0.1252) ln (-4.04, 0.2068) ln (-3.73, 0.1086) ln (-4.07, 0.1252) Unif (0.0038, 0.0057) 

Monthly ART dropout rate (CD4<200), Male Hispanic MSM 

PE 0.0144 0.0148 0.0103 0.0144 0.0148 0.00340 

Distribution ln (-4.24, 0.0903) ln (-4.21, 0.1143) ln (-4.57, 0.1468) ln (-4.24, 0.0903) ln (-4.21, 0.1143) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4<200), Male Hispanic MWID 

PE 0.0215 0.0181 0.0152 0.0215 0.0181 0.00340 

Distribution ln (-3.84, 0.1193) ln (-4.01, 0.1516) ln (-4.19, 0.2084) ln (-3.84, 0.1193) ln (-4.01, 0.1516) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4<200), Male Hispanic HET 

PE 0.0161 0.0139 0.0120 0.0161 0.0139 0.00516 

Distribution ln (-4.13, 0.0931) ln (-4.27, 0.1027) ln (-4.43, 0.1747) ln (-4.13, 0.0931) ln (-4.27, 0.1027) Unif (0.0041, 0.0062) 

Monthly ART dropout rate (CD4<200), Female White PWID 
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PE 0.0314 0.0129 0.0241 0.0314 0.0129 0.00427 

Distribution ln (-3.46, 0.0987) ln (-4.35, 0.149) ln (-3.73, 0.177) ln (-3.46, 0.0987) ln (-4.35, 0.149) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4<200), Female White HET 

PE 0.0210 0.0106 0.0164 0.0210 0.0106 0.00340 

Distribution ln (-3.86, 0.0895) ln (-4.55, 0.1348) ln (-4.11, 0.1504) ln (-3.86, 0.0895) ln (-4.55, 0.1348) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4<200), Female Black PWID 

PE 0.0405 0.0156 0.0259 0.0405 0.0156 0.00427 

Distribution ln (-3.21, 0.0761) ln (-4.16, 0.1174) ln (-3.65, 0.1839) ln (-3.21, 0.0761) ln (-4.16, 0.1174) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4<200), Female Black HET 

PE 0.0272 0.0128 0.0177 0.0272 0.0128 0.00340 

Distribution ln (-3.61, 0.0581) ln (-4.36, 0.0961) ln (-4.04, 0.1538) ln (-3.61, 0.0581) ln (-4.36, 0.0961) Unif (0.0027, 0.0041) 

Monthly ART dropout rate (CD4<200), Female Hispanic PWID 

PE 0.0240 0.0170 0.0176 0.0240 0.0170 0.00427 

Distribution ln (-3.73, 0.1041) ln (-4.07, 0.1338) ln (-4.04, 0.2026) ln (-3.73, 0.1041) ln (-4.07, 0.1338) Unif (0.0034, 0.0051) 

Monthly ART dropout rate (CD4<200), Female Hispanic HET 

PE 0.0161 0.0139 0.0120 0.0161 0.0139 0.00340 

Distribution ln (-4.13, 0.0953) ln (-4.27, 0.1026) ln (-4.43, 0.1754) ln (-4.13, 0.0953) ln (-4.27, 0.1026) Unif (0.0027, 0.0041) 

NUMBER OF SEXUAL PARTNERS 

Monthly number of homosexual partners: White, low-risk MSM 

PE 0.174 0.174 0.174 0.174 0.174 0.174 

Distribution 
Gamma (133, 

0.00131) 
Gamma (133, 

0.00131) 
Gamma (133, 

0.00131) 
Gamma (133, 

0.00131) 
Gamma (133, 

0.00131) 
Gamma (133, 

0.00131) 

Monthly number of homosexual partners: Black low-risk MSM 

PE 0.213 0.213 0.213 0.213 0.213 0.213 

Distribution 
Gamma (26.5, 

0.00806) 

Gamma (26.5, 

0.00806) 

Gamma (26.5, 

0.00806) 

Gamma (26.5, 

0.00806) 

Gamma (26.5, 

0.00806) 

Gamma (26.5, 

0.00806) 

Monthly number of homosexual partners: Hispanic low-risk MSM 

PE 0.158 0.158 0.158 0.158 0.158 0.158 

Distribution 
Gamma (39.2, 

0.00404) 
Gamma (39.2, 

0.00404) 
Gamma (39.2, 

0.00404) 
Gamma (39.2, 

0.00404) 
Gamma (39.2, 

0.00404) 
Gamma (39.2, 

0.00404) 

Monthly number of homosexual partners: White, high-risk MSM 

PE  0.802 0.904 0.857 1.30 0.907 0.669 

Distribution Pert (3.23, 4.52) Pert (2.55, 4.67) Pert (3.35, 4.47) Pert (3.32, 4.48) Pert (3.23, 4.52) Pert (3.14, 4.55) 

Monthly number of homosexual partners: Black, high-risk MSM 

PE 0.457 0.665 0.633 1.06 0.603 0.558 

Distribution Pert (1.51, 4.37) Pert (3.48, 4.40) Pert (2.52, 4.67) Pert (3.27, 4.50) Pert (2.38, 4.67) Pert (1.91, 4.57) 

Monthly number of homosexual partners: Hispanic, high-risk MSM 

PE 0.72 0.932 0.725 1.04 0.817 0.757 

Distribution Pert (3.06, 4.58) Pert (3.11, 4.57) Pert (3.50, 4.38) Pert (3.19, 4.54) Pert (3.51, 4.38) Pert (2.98, 4.61) 

Monthly number of heterosexual partners: Male, White, low-risk MSM and MWID 

PE 0.0219 0.0219 0.0219 0.0219 0.0219 0.0219 

Distribution 
Gamma (31, 

0.00071) 
Gamma (31, 

0.00071) 
Gamma (31, 

0.00071) 
Gamma (31, 

0.00071) 
Gamma (31, 

0.00071) 
Gamma (31, 

0.00071) 

Monthly number of heterosexual partners: Male, White, low-risk HET 

PE 0.0883 0.0883 0.0800 0.0883 0.0883 0.0800 
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Distribution 
Gamma (1248, 

0.00007) 
Gamma (1248, 

0.00007) 
Gamma (490, 

0.00016) 
Gamma (1248, 

0.00007) 
Gamma (1248, 

0.00007) 
Gamma (490, 

0.00016) 

Monthly number of heterosexual partners: Male, Black, low-risk MSM and MWID 

PE 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 

Distribution 
Gamma (13, 

0.00176) 
Gamma (13, 

0.00176) 
Gamma (13, 

0.00176) 
Gamma (13, 

0.00176) 
Gamma (13, 

0.00176) 
Gamma (13, 

0.00176) 

Monthly number of heterosexual partners: Male, Black, low-risk HET 

PE 0.110 0.110 0.105 0.110 0.108 0.105 

Distribution 
Gamma (697, 

0.00016) 
Gamma (697, 

0.00016) 
Gamma (68, 

0.00155) 
Gamma (697, 

0.00016) 
Gamma (152, 

0.00071) 
Gamma (68, 

0.00155) 

Monthly number of heterosexual partners: Male, Hispanic, low-risk MSM and MWID 

PE 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 

Distribution Gamma (6, 0.00282) Gamma (6, 0.00282) Gamma (6, 0.00282) Gamma (6, 0.00282) Gamma (6, 0.00282) Gamma (6, 0.00282) 

Monthly number of heterosexual partners: Male, Hispanic, low-risk HET 

PE 0.0842 0.0842 0.0867 0.0842 0.0908 0.0867 

Distribution 
Gamma (638, 

0.00013) 
Gamma (638, 

0.00013) 
Gamma (513, 

0.00017) 
Gamma (638, 

0.00013) 
Gamma (317, 

0.00029) 
Gamma (513, 

0.00017) 

Monthly number of heterosexual partners: Female, White, low-risk HET 

PE 0.0825 0.0825 0.0825 0.0825 0.0925 0.0825 

Distribution 
Gamma (1089, 

0.00008) 
Gamma (1089, 

0.00008) 
Gamma (1046, 

0.00008) 
Gamma (1089, 

0.00008) 
Gamma (740, 

0.00013) 
Gamma (1046, 

0.00008) 

Monthly number of heterosexual partners: Female, Black, low-risk HET 

PE 0.0875 0.0875 0.0925 0.0875 0.0992 0.0925 

Distribution 
Gamma (689, 

0.00013) 
Gamma (689, 

0.00013) 
Gamma (174, 

0.00053) 
Gamma (689, 

0.00013) 
Gamma (44, 

0.00223) 
Gamma (174, 

0.00053) 

Monthly number of heterosexual partners: Female, Hispanic, low-risk HET 

PE 0.0850 0.0850 0.0808 0.0850 0.0858 0.0808 

Distribution 
Gamma (1156, 

0.00007) 
Gamma (1156, 

0.00007) 
Gamma (643, 

0.00013) 
Gamma (1156, 

0.00007) 
Gamma (261, 

0.00033) 
Gamma (643, 

0.00013) 

Monthly number of heterosexual partners: Male, White, high-risk MSM and MWID 

PE 0.0149 0.0191 0.0125 0.0264 0.0212 0.0419 

Distribution Pert (3.42, 4.43) Pert (3.03, 4.59) Pert (2.97, 4.61) Pert (2.99, 4.6) Pert (2.84, 4.64) Pert (4.37, 3.53) 

Monthly number of heterosexual partners: Male, White, high-risk HET 

PE 0.670 0.6700 0.623 0.6700 0.591 0.6225 

Distribution 
Gamma (121, 

0.00552) 
Gamma (121, 

0.00552) 
Gamma (253, 

0.00246) 
Gamma (121, 

0.00552) 
Gamma (66, 0.009) 

Gamma (253, 
0.00246) 

Monthly number of heterosexual partners: Male, Black, high-risk MSM and MWID 

PE 0.0795 0.0631 0.0321 0.0595 0.0285 0.0357 

Distribution Pert (3.88, 4.11) Pert (3.8, 4.18) Pert (2.23, 4.65) Pert (3.64, 4.3) Pert (3.4, 4.44) Pert (2.72, 4.66) 

Monthly number of heterosexual partners: Male, Black, high-risk HET 

PE 0.633 0.633 0.814 0.633 0.990 0.814 

Distribution 
Gamma (327, 

0.00193) 
Gamma (327, 

0.00193) 
Gamma (24, 

0.03447) 
Gamma (327, 

0.00193) 
Gamma (43, 

0.02282) 
Gamma (24, 

0.03447) 

Monthly number of heterosexual partners: Male, Hispanic, high-risk MSM and MWID 

PE 0.0371 0.0535 0.0263 0.0719 0.0263 0.0471 

Distribution Pert (1.71, 4.49) Pert (3.04, 4.59) Pert (1.85, 4.55) Pert (3.43, 4.43) Pert (2.59, 4.67) Pert (3.62, 4.31) 

Monthly number of heterosexual partners: Male, Hispanic, high-risk HET 

PE 0.579 0.579 0.722 0.579 0.703 0.722 

Distribution 
Gamma (302, 

0.00192) 
Gamma (302, 

0.00192) 
Gamma (541, 

0.00133) 
Gamma (302, 

0.00192) 
Gamma (55, 

0.01274) 
Gamma (541, 

0.00133) 

Monthly number of heterosexual partners: Female, White, high-risk HET 
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PE 0.657 0.657 0.666 0.657 0.581 0.666 

Distribution 
Gamma (213, 

0.00308) 
Gamma (213, 

0.00308) 
Gamma (460, 

0.00145) 
Gamma (213, 

0.00308) 
Gamma (40, 

0.01439) 
Gamma (460, 

0.00145) 

Monthly number of heterosexual partners: Female, Black, high-risk HET 

PE 0.545 0.545 0.533 0.545 0.672 0.533 

Distribution 
Gamma (85, 

0.00642) 
Gamma (85, 

0.00642) 
Gamma (201, 

0.00265) 
Gamma (85, 

0.00642) 
Gamma (305, 

0.0022) 
Gamma (201, 

0.00265) 

Monthly number of heterosexual partners: Female, Hispanic, high-risk HET 

PE 0.474 0.474 0.626 0.474 0.608 0.626 

Distribution 
Gamma (193, 

0.00246) 
Gamma (193, 

0.00246) 
Gamma (76, 

0.00825) 
Gamma (193, 

0.00246) 
Gamma (167, 

0.00363) 
Gamma (76, 

0.00825) 

Monthly number of heterosexual partner multiplier: PWID to HET 

PE 0.400 0.400 0.400 0.400 0.400 0.400 

Distribution Unif (0.1, 2) Unif (0.1, 2) Unif (0.1, 2) Unif (0.1, 2) Unif (0.1, 2) Unif (0.1, 2) 

TRANSMISSION PROBABILITY PER HETEROSEXUAL PARTNERSHIP 

Transmission probability (CD4>500): Female to Male 

PE 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 

Distribution Pert (1.638, 4.445) Pert (1.638, 4.445) Pert (1.638, 4.445) Pert (1.638, 4.445) Pert (1.638, 4.445) Pert (1.638, 4.445) 

Transmission probability (CD4: 200-499): Female to Male 

PE 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 

Distribution Pert (2.754, 4.654) Pert (2.754, 4.654) Pert (2.754, 4.654) Pert (2.754, 4.654) Pert (2.754, 4.654) Pert (2.754, 4.654) 

Transmission probability (CD4<200): Female to Male 

PE 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 

Distribution Pert (2.656, 4.666) Pert (2.656, 4.666) Pert (2.656, 4.666) Pert (2.656, 4.666) Pert (2.656, 4.666) Pert (2.656, 4.666) 

Transmission probability (CD4>500): Male to Female 

PE 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 

Distribution Pert (1.968, 4.592) Pert (1.968, 4.592) Pert (1.968, 4.592) Pert (1.968, 4.592) Pert (1.968, 4.592) Pert (1.968, 4.592) 

Transmission probability (CD4: 200-499): Male to Female 

PE 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 

Distribution Pert (4.443, 3.397) Pert (4.443, 3.397) Pert (4.443, 3.397) Pert (4.443, 3.397) Pert (4.443, 3.397) Pert (4.443, 3.397) 

Transmission probability (CD4<200): Male to Female 

PE 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 

Distribution Pert (4.27, 3.681) Pert (4.27, 3.681) Pert (4.27, 3.681) Pert (4.27, 3.681) Pert (4.27, 3.681) Pert (4.27, 3.681) 

TRANSMISSION PROBABILITY PER HOMOSEXUAL PARTNERSHIP 

Transmission probability (CD4>500) 

PE 0.045 0.045 0.045 0.045 0.045 0.045 

Distribution Pert (2.456, 4.673) Pert (2.456, 4.673) Pert (2.456, 4.673) Pert (2.456, 4.673) Pert (2.456, 4.673) Pert (2.456, 4.673) 

Transmission probability (CD4: 200-499) 

PE 0.065 0.065 0.065 0.065 0.065 0.065 

Distribution Pert (4.168, 3.814) Pert (4.168, 3.814) Pert (4.168, 3.814) Pert (4.168, 3.814) Pert (4.168, 3.814) Pert (4.168, 3.814) 

Transmission probability (CD4<200) 

PE 0.125 0.125 0.125 0.125 0.125 0.125 

Distribution Pert (4, 4) Pert (4, 4) Pert (4, 4) Pert (4, 4) Pert (4, 4) Pert (4, 4) 

TRANSMISSION PROBABILITY PER SHARED INJECTION 
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Transmission probability (CD4>500) 

PE 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 

Distribution Pert (2.005, 4.604) Pert (2.005, 4.604) Pert (2.005, 4.604) Pert (2.005, 4.604) Pert (2.005, 4.604) Pert (2.005, 4.604) 

Transmission probability (CD4: 200-499) 

PE 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 

Distribution Pert (2.938, 4.617) Pert (2.938, 4.617) Pert (2.938, 4.617) Pert (2.938, 4.617) Pert (2.938, 4.617) Pert (2.938, 4.617) 

Transmission probability (CD4<200) 

PE 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 

Distribution Pert (1.4, 4.283) Pert (1.4, 4.283) Pert (1.4, 4.283) Pert (1.4, 4.283) Pert (1.4, 4.283) Pert (1.4, 4.283) 

HIV TESTING 

Monthly rate of symptom-based case finding (CD4: 200-499) 

PE 0.00874 0.00874 0.00874 0.00874 0.00874 0.00874 

Distribution Pert (3.86, 4.13) Pert (3.86, 4.13) Pert (3.86, 4.13) Pert (3.86, 4.13) Pert (3.86, 4.13) Pert (3.86, 4.13) 

Monthly rate of symptom-based case finding (CD4<200) 

PE 0.0184 0.0184 0.0184 0.0184 0.0184 0.0184 

Distribution Pert (3.84, 4.15) Pert (3.84, 4.15) Pert (3.84, 4.15) Pert (3.84, 4.15) Pert (3.84, 4.15) Pert (3.84, 4.15) 

Monthly rate of HIV testing/screening: Male White PWID 

PE 0.0363 0.0984 0.0426 0.0544 0.0764 0.0595 

Distribution Beta (35.7, 65.4) Beta (45, 20) Beta (99.1, 148.6) Beta (109, 118) Beta (154, 103) Beta (194, 187) 

Monthly rate of HIV testing/screening: Male White low-risk MSM 

PE 0.0112 0.0066 0.0066 0.0061 0.0313 0.0058 

Distribution Beta (18.2, 127) Beta (13.1, 158.7) Beta (133.7, 1618.2) Beta (68.3, 903) Beta (102, 225) Beta (93, 1292) 

Monthly rate of HIV testing/screening: Male White high-risk MSM 

PE 0.0974 0.0955 0.1108 0.0787 0.1304 0.0860 

Distribution Beta (59.8, 26.9) Beta (52.3, 24.4) Beta (131, 47.2) Beta (119, 75.6) Beta (129, 34.2) Beta (103, 57.1) 

Monthly rate of HIV testing/screening: Male White MWID 

PE 0.0363 0.0984 0.0426 0.0544 0.0764 0.0595 

Distribution Beta (35.7, 65.4) Beta (45, 20) Beta (99.1, 149) Beta (108.7, 118) Beta (154, 103) Beta (194, 187) 

Monthly rate of HIV testing/screening: Male White low-risk HET 

PE 0.0112 0.0066 0.0066 0.0061 0.0313 0.0058 

Distribution Beta (18.2, 127) Beta (13.1, 158.7) Beta (134, 1618) Beta (68.3, 903) Beta (102, 225) Beta (93, 1292) 

Monthly rate of HIV testing/screening: Male White high-risk HET 

PE 0.116 0.0457 0.0143 0.2496 0.0916 0.0160 

Distribution Beta (53.7, 17.9) Beta (13.2, 18) Beta (19.3, 103.1) Beta (348, 18.3) Beta (125, 62.4) Beta (24.4, 115) 

Monthly rate of HIV testing/screening: Male Black PWID 

PE 0.0642 0.0984 0.0647 0.0892 0.0946 0.0440 

Distribution Beta (17.8, 15.3) Beta (12.5, 5.5) Beta (3.9, 3.4) Beta (13.6, 7.1) Beta (12.6, 5.99) Beta (1.8, 2.7) 

Monthly rate of HIV testing/screening: Male Black low-risk MSM 

PE 0.0236 0.0206 0.0170 0.0101 0.0336 0.0218 

Distribution Beta (19.1, 58.4) Beta (27.8, 99) Beta (22.1, 97.7) Beta (17.7, 137) Beta (113, 228) Beta (12.2, 40.8) 

Monthly rate of HIV testing/screening: Male Black high-risk MSM 

PE 0.113 0.0955 0.1651 0.0971 0.101 0.0578 
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Distribution Beta (17.1, 5.9) Beta (14.5, 6.8) Beta (6.1, 0.97) Beta (12.1, 5.5) Beta (11.5, 4.9) Beta (1.6, 1.6) 

Monthly rate of HIV testing/screening: Male Black MWID 

PE 0.0642 0.0984 0.0647 0.0892 0.0946 0.0440 

Distribution Beta (17.8, 15.3) Beta (12.5, 5.5) Beta (3.9, 3.4) Beta (13.6, 7.1) Beta (12.6, 5.99) Beta (1.8, 2.7) 

Monthly rate of HIV testing/screening: Male Black low-risk HET 

PE 0.0236 0.0206 0.0170 0.0101 0.0336 0.0218 

Distribution Beta (19.1, 58.4) Beta (27.8, 99) Beta (22.1, 97.7) Beta (17.7, 137) Beta (113, 228) Beta (12.2, 40.8) 

Monthly rate of HIV testing/screening: Male Black high-risk HET 

PE 0.0473 0.0457 0.0338 0.0470 0.0561 0.0207 

Distribution Beta (12.2, 16) Beta (3.5, 4.8) Beta (2.2, 4.4) Beta (9.8, 12.9) Beta (8.2, 8.5) Beta (0.84, 2.98) 

Monthly rate of HIV testing/screening: Male Hispanic PWID 

PE 0.0578 0.0984 0.0595 0.0719 0.116 0.0501 

Distribution Beta (1.6, 1.6) Beta (4, 1.8) Beta (58.1, 55.8) Beta (5.3, 3.9) Beta (9.1, 3.03) Beta (22.1, 26.8) 

Monthly rate of HIV testing/screening: Male Hispanic low-risk MSM 

PE 0.0441 0.0150 0.0075 0.0157 0.0366 0.0039 

Distribution Beta (5.3, 7.6) Beta (4, 20) Beta (73.4, 785) Beta (16.5, 79.6) Beta (123, 223) Beta (4.98, 104) 

Monthly rate of HIV testing/screening: Male Hispanic high-risk MSM 

PE 0.0512 0.0955 0.106 0.0799 0.132 0.0897 

Distribution Beta (1.4, 1.7) Beta (4.2, 2) Beta (58.7, 23) Beta (4.9, 3) Beta (9.9, 2.5) Beta (13, 6.7) 

Monthly rate of HIV testing/screening: Male Hispanic MWID 

PE 0.0578 0.0984 0.0595 0.0719 0.116 0.0501 

Distribution Beta (1.6, 1.6) Beta (4, 1.8) Beta (58.1, 55.8) Beta (5.3, 3.9) Beta (9.1, 3.03) Beta (22.1, 26.8) 

Monthly rate of HIV testing/screening: Male Hispanic low-risk HET 

PE 0.0441 0.0150 0.0075 0.0157 0.0366 0.0039 

Distribution Beta (5.3, 7.6) Beta (4, 20) Beta (73.4, 785) Beta (16.5, 79.6) Beta (123, 223) Beta (4.98, 104) 

Monthly rate of HIV testing/screening: Male Hispanic high-risk HET 

PE 0.0186 0.0457 0.0144 0.0338 0.0547 0.0219 

Distribution Beta (0.8, 3) Beta (1.3, 1.8) Beta (8.5, 45.4) Beta (2.8, 5.6) Beta (5.9, 6.4) Beta (5.03, 16.8) 

Monthly rate of HIV testing/screening: Female White PWID 

PE 0.0530 0.0911 0.0381 0.104 0.142 0.0485 

Distribution Beta (191, 214) Beta (60, 30) Beta (122, 210) Beta (241, 96) Beta (184, 41) Beta (263, 333) 

Monthly rate of HIV testing/screening: Female White low-risk HET 

PE 0.0060 0.0071 0.0055 0.0052 0.0257 0.0050 

Distribution Beta (21.7, 289) Beta (42.6, 479) Beta (130, 1916) Beta (91.7, 1434) Beta (133.9, 370) Beta (112.3, 1814) 

Monthly rate of HIV testing/screening: Female White high-risk HET 

PE 0.0426 0.0627 0.0969 0.0916 0.0916 0.0459 

Distribution Beta (135, 203) Beta (58, 52) Beta (189, 86) Beta (247, 123) Beta (176, 88) Beta (160, 217) 

Monthly rate of HIV testing/screening: Female Black PWID 

PE 0.0659 0.0911 0.0880 0.1083 0.116 0.0657 

Distribution Beta (53.2, 44.1) Beta (8.5, 4.3) Beta (6, 3.2) Beta (8.1, 3.03) Beta (20.8, 6.9) Beta (2.96, 2.5) 

Monthly rate of HIV testing/screening: Female Black low-risk HET 

PE 0.0191 0.0278 0.0185 0.0223 0.0356 0.0135 
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Distribution Beta (40, 156) Beta (61.4, 155) Beta (34.2, 137) Beta (43.1, 140) Beta (190, 358) Beta (6.7, 38) 

Monthly rate of HIV testing/screening: Female Black high-risk HET 

PE 0.0446 0.0627 0.0402 0.0486 0.0508 0.0343 

Distribution Beta (34.2, 48.2) Beta (8.2, 7.3) Beta (3.2, 5.2) Beta (6.4, 8.1) Beta (13.2, 15.8) Beta (1.5, 2.9) 

Monthly rate of HIV testing/screening: Female Hispanic PWID 

PE 0.0034 0.0911 0.0609 0.0706 0.123 0.0372 

Distribution Beta (8, 192.7) Beta (2.8, 1.4) Beta (60.1, 55.8) Beta (23, 17.2) Beta (16.4, 4.9) Beta (11.6, 20.6) 

Monthly rate of HIV testing/screening: Female Hispanic low-risk HET 

PE 0.0024 0.0161 0.0112 0.0076 0.0407 0.0091 

Distribution Beta (1.2, 40) Beta (6.5, 30.5) Beta (154.5, 1078.8) Beta (18.6, 194) Beta (225, 357) Beta (19.4, 168) 

Monthly rate of HIV testing/screening: Female Hispanic high-risk HET 

PE 0.0764 0.0627 0.0251 0.0392 0.0603 0.0338 

Distribution Beta (86.7, 57.8) Beta (1.8, 1.6) Beta (20.7, 59) Beta (14.6, 24.3) Beta (12.2, 11.5) Beta (6.5, 12.9) 

Annual change in HIV testing rate 

PE 0.05 0.05 0.05 0.05 0.05 0.05 

Distribution Unif (0, 0.1) Unif (0, 0.1) Unif (0, 0.1) Unif (0, 0.1) Unif (0, 0.1) Unif (0, 0.1) 

QUALITY-ADJUSTED LIFE-YEAR WEIGHTS  

QALY weight for infected PLHIV (CD4>500) 

PE 0.91 0.91 0.91 0.91 0.91 0.91 

Distribution Pert (4.44, 3.4) Pert (4.44, 3.4) Pert (4.44, 3.4) Pert (4.44, 3.4) Pert (4.44, 3.4) Pert (4.44, 3.4) 

QALY weight for infected PLHIV (CD4: 200-499) 

PE 0.79 0.79 0.79 0.79 0.79 0.79 

Distribution Pert (4.17, 1.27) Pert (4.17, 1.27) Pert (4.17, 1.27) Pert (4.17, 1.27) Pert (4.17, 1.27) Pert (4.17, 1.27) 

QALY weight for infected PLHIV (CD4<200) 

PE 0.72 0.72 0.72 0.72 0.72 0.72 

Distribution Pert (4.59, 1.97) Pert (4.59, 1.97) Pert (4.59, 1.97) Pert (4.59, 1.97) Pert (4.59, 1.97) Pert (4.59, 1.97) 

QALY weight for diagnosed PLHIV (CD4>500) 

PE 0.865 0.865 0.865 0.865 0.865 0.865 

Distribution Pert (1.61, 4.43) Pert (1.61, 4.43) Pert (1.61, 4.43) Pert (1.61, 4.43) Pert (1.61, 4.43) Pert (1.61, 4.43) 

QALY weight for diagnosed PLHIV (CD4: 200-499) 

PE 0.72 0.72 0.72 0.72 0.72 0.72 

Distribution Pert (1.97, 4.59) Pert (1.97, 4.59) Pert (1.97, 4.59) Pert (1.97, 4.59) Pert (1.97, 4.59) Pert (1.97, 4.59) 

QALY weight for diagnosed PLHIV (CD4<200) 

PE 0.72 0.72 0.72 0.72 0.72 0.72 

Distribution Pert (4.59, 1.97) Pert (4.59, 1.97) Pert (4.59, 1.97) Pert (4.59, 1.97) Pert (4.59, 1.97) Pert (4.59, 1.97) 

QALY weight for treated PLHIV (CD4>500) 

PE 0.865 0.865 0.865 0.865 0.865 0.865 

Distribution Pert (1.611, 4.429) Pert (1.611, 4.429) Pert (1.611, 4.429) Pert (1.611, 4.429) Pert (1.611, 4.429) Pert (1.611, 4.429) 

QALY weight for treated PLHIV (CD4: 200-499) 

PE 0.83 0.83 0.83 0.83 0.83 0.83 

Distribution Pert (1.97, 4.59) Pert (1.97, 4.59) Pert (1.97, 4.59) Pert (1.97, 4.59) Pert (1.97, 4.59) Pert (1.97, 4.59) 

QALY weight for treated PLHIV (CD4<200) 
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PE 0.82 0.82 0.82 0.82 0.82 0.82 

Distribution Pert (0.667, 3.33) Pert (0.667, 3.33) Pert (0.667, 3.33) Pert (0.667, 3.33) Pert (0.667, 3.33) Pert (0.667, 3.33) 

QALY weight adjusted for PWID 

PE 0.174 0.174 0.174 0.174 0.174 0.174 

Distribution Pert (4, 4) Pert (4, 4) Pert (4, 4) Pert (4, 4) Pert (4, 4) Pert (4, 4) 

QALY weight adjusted for opioid agonist therapy recipients 

PE 0.213 0.213 0.213 0.213 0.213 0.213 

Distribution Pert (3.7, 4.25) Pert (3.7, 4.25) Pert (3.7, 4.25) Pert (3.7, 4.25) Pert (3.7, 4.25) Pert (3.7, 4.25) 

HEALTH CARE COSTS FOR PLHIV RECEIVING ART  

Health care cost (CD4>500): Male PWID 

PE 4559 4219 4604 4559 4219 4604 

Distribution Gamma (6301, 2.17) Gamma (6511, 1.94) Gamma (5048, 2.74) Gamma (6301, 2.17) Gamma (6511, 1.94) Gamma (5048, 2.74) 

Health care cost (CD4>500): Male MSM 

PE 3784 3503 3821 3784 3503 3821 

Distribution 
Gamma (24395, 

0.47) 
Gamma (28851, 

0.36) 
Gamma (15423, 

0.74) 
Gamma (24395, 

0.47) 
Gamma (28851, 

0.36) 
Gamma (15423, 

0.74) 

Health care cost (CD4>500): Male MWID 

PE 4173 3862 4214 4173 3862 4214 

Distribution Gamma (3013, 4.15) Gamma (3027, 3.83) Gamma (2989, 4.23) Gamma (3013, 4.15) Gamma (3027, 3.83) Gamma (2989, 4.23) 

Health care cost (CD4>500): Male HET 

PE 3951 3657 3990 3951 3657 3990 

Distribution 
Gamma (14940, 

0.79) 
Gamma (14297, 

0.77) 
Gamma (9092, 1.32) 

Gamma (14940, 
0.79) 

Gamma (14297, 
0.77) 

Gamma (9092, 1.32) 

Health care cost (CD4>500): Female PWID 

PE 4781 4425 4828 4781 4425 4828 

Distribution Gamma (3594, 3.99) Gamma (3615, 3.67) Gamma (3142, 4.61) Gamma (3594, 3.99) Gamma (3615, 3.67) Gamma (3142, 4.61) 

Health care cost (CD4>500): Female HET 

PE 4090 3786 4130 4090 3786 4130 

Distribution 
Gamma (17345, 

0.71) 
Gamma (16692, 

0.68) 
Gamma (9559, 1.3) 

Gamma (17345, 
0.71) 

Gamma (16692, 
0.68) 

Gamma (9559, 1.3) 

Health care cost (CD4: 200-499): Male PWID 

PE 4620 4277 4666 4620 4277 4666 

Distribution Gamma (6362, 2.18) Gamma (6526, 1.97) Gamma (5072, 2.76) Gamma (6362, 2.18) Gamma (6526, 1.97) Gamma (5072, 2.76) 

Health care cost (CD4: 200-499): Male MSM 

PE 3835 3550 3873 3835 3550 3873 

Distribution 
Gamma (24477, 

0.47) 
Gamma (28010, 

0.38) 
Gamma (15325, 

0.76) 
Gamma (24477, 

0.47) 
Gamma (28010, 

0.38) 
Gamma (15325, 

0.76) 

Health care cost (CD4: 200-499): Male MWID 

PE 4229 3914 4271 4229 3914 4271 

Distribution Gamma (3020, 4.2) Gamma (3024, 3.88) Gamma (2991, 4.28) Gamma (3020, 4.2) Gamma (3024, 3.88) Gamma (2991, 4.28) 

Health care cost (CD4: 200-499): Male HET 

PE 4004 3706 4044 4004 3706 4044 

Distribution 
Gamma (15199, 

0.79) 
Gamma (14288, 

0.78) 
Gamma (9140, 1.33) 

Gamma (15199, 
0.79) 

Gamma (14288, 
0.78) 

Gamma (9140, 1.33) 

Health care cost (CD4: 200-499): Female PWID 

PE 4845 4485 4893 4845 4485 4893 
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Distribution Gamma (3595, 4.04) Gamma (3602, 3.74) Gamma (3137, 4.68) Gamma (3595, 4.04) Gamma (3602, 3.74) Gamma (3137, 4.68) 

Health care cost (CD4: 200-499): Female HET 

PE 4145 3837 4186 4145 3837 4186 

Distribution 
Gamma (17205, 

0.72) 
Gamma (16243, 

0.71) 
Gamma (9466, 1.33) 

Gamma (17205, 
0.72) 

Gamma (16243, 
0.71) 

Gamma (9466, 1.33) 

Health care cost (CD4<200): Male PWID 

PE 4928 4561 4977 4928 4561 4977 

Distribution Gamma (5983, 2.47) Gamma (6089, 2.25) Gamma (4815, 3.1) Gamma (5983, 2.47) Gamma (6089, 2.25) Gamma (4815, 3.1) 

Health care cost (CD4<200): Male MSM 

PE 4091 3786 4131 4091 3786 4131 

Distribution 
Gamma (18905, 

0.65) 
Gamma (20517, 

0.55) 
Gamma (12845, 

0.96) 
Gamma (18905, 

0.65) 
Gamma (20517, 

0.55) 
Gamma (12845, 

0.96) 

Health care cost (CD4<200): Male MWID 

PE 4511 4175 4555 4511 4175 4555 

Distribution Gamma (2921, 4.63) Gamma (2916, 4.3) Gamma (2889, 4.73) Gamma (2921, 4.63) Gamma (2916, 4.3) Gamma (2889, 4.73) 

Health care cost (CD4<200): Male HET 

PE 4271 3953 4313 4271 3953 4313 

Distribution 
Gamma (13136, 

0.98) 
Gamma (12299, 

0.96) 
Gamma (8314, 1.56) 

Gamma (13136, 
0.98) 

Gamma (12299, 
0.96) 

Gamma (8314, 1.56) 

Health care cost (CD4<200): Female PWID 

PE 5168 4783 5219 5168 4783 5219 

Distribution Gamma (3455, 4.49) Gamma (3449, 4.16) Gamma (3025, 5.18) Gamma (3455, 4.49) Gamma (3449, 4.16) Gamma (3025, 5.18) 

Health care cost (CD4<200): Female HET 

PE 4421 4092 4465 4421 4092 4465 

Distribution 
Gamma (14313, 

0.93) 
Gamma (13461, 

0.91) 
Gamma (8481, 1.58) 

Gamma (14313, 
0.93) 

Gamma (13461, 
0.91) 

Gamma (8481, 1.58) 

PE: point estimate; PLHIV: people living with HIV; PWID: people who inject drugs; MSM: 
men who have sex with men; MWID: men who are both MSM and PWID; HET: 
heterosexual; ln: lognormal; Unif: uniform; QALY: quality-adjusted life year. 

 


