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Abstract 

Sleep is a vital part of every humans daily circadian rhythm. People can rest and recover 

their body and mind and live a more active and alert life with an appropriate amount of 

sleep. The current gold standard method for sleep analysis is polysomnography, but due 

to the complexity, it is not convenient to perform it regularly and it disrupts the normal 

sleep environment of the patient. This thesis presents a method of integrating two 

alternative measurements of sleep analysis for an improved analysis. Combining the 

motion detection of actigraphy and the cardiac parameters of ballistocardiography, a novel 

algorithm was developed to analyze sleep and wake states without interfering with the 

natural sleep cycle of the participant. Without interfering with the natural sleep 

environment, this system can be implemented for continuous monitoring and be used to 

evaluate daily sleep patterns to assess overall sleep quality and health over time. The 

experimental results demonstrate the effectiveness of the novel proposed algorithm in 

comparison with each device used separately in improving the sleep classification. 
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Chapter 1.  
 
Introduction 

1.1. Overview 

Sleep is an important part of a healthy human life and can make up a quarter of 

the total life span [1]. Sleep is vital for recovery and resting the brain and human body that 

benefits in an increased awareness and productivity throughout the day. Excessive lack 

of sleep can be the result of various sleep disorders such as obstructive sleep apnea 

syndrome, narcolepsy, idiopathic hypersomnia, and periodic limb movement disorder 

which can also be related to other medical, neurological and psychiatric disorders [2]. In 

addition, the U.S. National Highway Traffic Safety Administration estimates that a lack of 

sleep while driving has caused 100,000 car accidents resulting in over 1500 deaths, 

70,000 injuries and 12 billion dollars in financial losses per year [2]. Maintaining the 

appropriate amount of quality sleep is very important for ones well being by promoting 

awareness and productivity throughout the day. As a result, it has become increasingly 

popular for the general public to monitor and measure their sleep quality [3]. 

     As more people have access to smart phones and tablets, applications are 

being developed to track and log sleep cycles and create personal trends to manage one’s 

sleep quality. As well as integrating wearable technology with the connectivity of smart 

devices, people can measure various parameters during activities of daily living (ADL) in 

addition to sleep quality [3]. Commercially available devices such as the FitBit wearable 

band and the Beddit sleep tracker, which is a sensor placed on the bed, are both devices 

that can measure sleep quality conveniently in a person’s own home [4],[5]. However, 

most of these devices are not considered medical devices and are only used to help users 

be more mindful of their sleeping activity and adjusting their daily patterns accordingly. 

Therefore, the accuracy is not as good as medical devices designed to monitor sleep but 

can be used as a convenient way to have a rough idea of one’s sleep quality. The 

alternative to measuring the sleep quality during a night cycle is to visit a sleep clinic and 

undergo professional medical assessment. This would establish the best assessment of 

sleep quality because professional medical grade equipment would gather related 

information accurately and the measurement will be monitored by a medical doctor or 
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technician trained in sleep scoring. The main drawbacks of a sleep clinic, however, are 

the financial expenses and the intrusiveness as the patient usually sleeps in the clinic 

(away from their natural sleeping environment) with multiple sensors directly attached to 

the body [6]. Therefore, users might prefer more convenient methods for measuring sleep 

quality and researchers are exploring alternatives for effectively measuring sleep quality 

without heavily impacting a person during the sleep cycle. 

1.2. Literature Survey 

The gold standard for measuring sleep quality is the sleep analysis system known 

as polysomnography (PSG) as it can measure many physiological signals such as brain 

waves, eye movements, heart rate and body position and diagnose sleep disorders [7]. 

Each sleep related parameter is measured by attaching electrodes directly to specific 

locations of the body [9]. A sleep study is usually performed by having the patient attend 

a sleep clinic to have the PSG device attached to the patient’s body before sleeping. 

Usually, the patient would spend the night at the clinic to be monitored by medical 

professionals. For some instances, the patient is given the PSG device to take home and 

instructed on how to apply each of the sensors for the specific data collection and returned 

to the clinic for evaluation by trained sleep technologists or doctors [10]. Evaluating a 

patient’s sleep quality through PSG has been criticized to be intrusive and disrupt the 

natural environment of the patient by relocating them to a new location and attaching many 

devices directly to their body [7]. As a result, the data collected may not represent the best  

data to diagnose the participant properly because of all the sensors and electrodes 

attached directly to their body. The American Academy of Sleep Medicine (AASM) 

considers PSG as the gold standard due to the sleep-related body functions that are 

measured and the combinations of these parameters can be observed to diagnose sleep 

disorders specifically [8].  

Each signal collected from the PSG unit needs to be analyzed by trained 

personnel, which is typically done by visually inspecting the signal over the night cycle. 

The process of visually analyzing each signal and scoring sleep is time-consuming and 

can be inaccurate and expensive; and thus developments have begun on automated sleep 

scoring software packages [11]. In 1968, Alan Rechtschaffen and Anthony Kales had 

developed a manual for techniques, terminology and scoring system for sleep stages that 

has been well accepted and used throughout the world for analyzing sleep [12],[13]. This 
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manual defined sleep scores by separating sleep into 4 non rapid eye movement sleep 

(NREM) and rapid eye movement (REM) stages. Their technique included electrodes and 

measurement device placement on the patient’s body and head to obtain vital 

physiological signals. The Rechtschaffen and Kales sleep staging criteria define stage 1 

and stage 4 to be light and deep NREM sleep, respectively, and the REM sleep stage was 

defined when a person is dreaming with rapid eye movements as if the dream is being 

observed while sleeping [14]. However, over the years the AASM has released a 

comprehensive manual for scoring sleep stages and continually updates it based on 

numerous inquires and interpretations of the scoring rules [15]. As a result of the changes 

to the standards of scoring sleep stages, reliability among experienced sleep experts 

would vary when scoring the same sleep cycles. The AASM developed a program to 

measure inter-scorer reliability (ISR) to asses the validity of new updates and how each 

trained scorer interprets them [16]. The ISR in 2013 was 82.6% agreement for 9 sleep 

fragments and scored by roughly 2500 technologists and physicians [17].  

As previously mentioned, PSG is considered the gold standard but inconvenient 

to use for the general public to measure sleep quality. Therefore, less intrusive methods 

such as actigraphy have been proposed to measure sleep quality continuously without 

interfering with the natural sleep environment. Actigraphy is the method of scoring sleep 

and wakefulness with a high degree of accuracy by using the motion data from a wrist-

mounted device including an accelerometer as shown by Mullaney et al. [18]. This method 

was further expanded on in Cole et al. [19] and Kripke et al. [20] by developing automatic 

scoring systems for actigraphy and general algorithms that could be used with any 

actigraphic instruments. Based on published literature, the predicted values for sleep 

could be up to 90% when comparing actigraphy with PSG [21]. However, this high 

accuracy can be credited to overestimating sleep. During the night, people are usually 

sleeping more than being awake which leads to a higher accuracy for some instances. 

The convenience and inexpensiveness compared to PSG makes actigraphy very useful 

for researchers to obtain unobtrusive sleep measurements in many circumstances and 

locations over a period of days [22]. However, one drawback of actigraphy is being able 

to only focus on detecting sleep and wake states and not diagnosing some sleep disorders 

such as respiratory related disorders.  

Balistocardiography (BCG) is a method of observing and measuring ballistic forces 

exerted on the human body by the equal but opposite forces of circulating blood [23]. This 
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phenomenon was first observed by Gordon, J.W. in 1877 by measuring small motions in 

sync with heart rate pulses described in [24]. The modern ballistocardiogram is based on 

the work present by Starr et al. [25] and started an era for investigating BCG and the 

benefits it could have [24]. One of the parameters that PSG measures to sleep stages is 

heart rate through electrocardiography (ECG) and BCG has therefore been used in place 

of an ECG in a nonintrusive manner. As PSG requires multiple electrodes attached to the 

body to gather signals, BCG on the other hand can gather similar signals through a sensor 

placed on the bed to measure vibrations throughout the night [26]. In addition to heart rate, 

heart rate variability (HRV) has become an important factor for measuring sleep stages as 

it relates to the autonomic nervous system whose regulation changes during sleep and 

transitions between sleep stages [27]. Heart rate is the number of heart beats in a minute 

while HRV is the fluctuations of time intervals between heartbeats [28]. The variability of 

heart rate is not perfectly on beat and can be chaotic to adjust for the constant changing 

environment that a human will experience, as can be witness between sound sleep and 

actively waking [29].  

An initial investigation was performed in [46] to relate cardiorespiratory signals with 

actigraphy. This paper concluded that there is an improvement from a combination of both 

methods and a viable choice to detecting sleep states. However, they used a PSG with 

ECG leads and respiratory effort belts to collect cardiorespiratory signals to compare with 

actigraphy to analyze the sleep states. There was brief mention on using BCG for 

cardiorespiratory analysis with actigraphy to create a truly unobtrusive sleep state analysis 

method. Therefore, this thesis aims to observe the effects of a novel combination of BCG 

and actigraphy to measure sleep states with minimal disturbances to the participant. 

1.3. Objective 

The main objective of this thesis was to develop an algorithm combining a wrist-

worn 3-axis accelerometer for actigraphy and a BCG bed sensor to properly score 

sleep/wake states compared to a full PSG device. Creating a sleep scoring system utilizing 

actigraphy and BCG only would be more convenient for researchers and patients by 

collecting vital sleep data over multiple sleep cycles without disturbing the regular sleep 

environment. This would provide more natural sleep data for scoring sleep stages and 

help diagnose sleep related problems. For example, older adults or people with a chronic 

illness that require constant monitoring may like to still have some independence by not 
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constantly being interrupted by a medical professional or caregiver checking up on them. 

A system like this could be monitored by a nurse remotely to observe their daily sleep 

quality and pattern for continuous assessment of their health. In addition, sleep disorders 

could potentially be diagnosed if they are not sleeping properly and would let the patient 

sleep naturally without physical nightly check ups. 

In this work, PSG is to be used for verification purposes and should be scored 

properly to have a gold standard comparison for the developed algorithm. The 

accelerometer data from a 3-axis accelerometer designed for motion capture are to be 

used as an actigraphic device. The actigraphy algorithm could be deployed to a variety of 

commercially available smart watch devices and integrated into a wide variety of systems. 

In addition, the small size of the accelerometer would not only be convenient but simulate 

the size and weight of a wrist worn smart watch device. The BCG algorithm would take 

cardiologic measurements from a BCG bed sensor placed on the mattress while a person 

sleeps to score sleep stages. The sensors inside of the BCG device would be sensitive 

enough to detect accurately measure heart rate and heart rate variability. Also, the small 

size of the BCG sensor should be unobtrusive in the person’s bed while they sleep. The 

combination of actigraphic and BCG devices together should not interrupt the natural 

sleep environment and the signals obtained and improve the sleep scoring overall as 

compared to being separate.  

1.4. Contributions 

The main contribution of this work is the proposed combination of actigraphy and 

BCG specifically to improve the detection of sleep/wake states. Each sensor individually 

can be used as a non-intrusive method for detecting states during the sleep cycle, and the 

hypothesis was that the combination would improve sleep scoring, while maintaining a 

comfortable sleep environment. A research grade 3-axis accelerometer in an inertial 

measurement unit (IMU) was used to create actigraphic analysis for accurate sleep/wake 

detection. A commercially-available BCG device was used gather cardiological signals 

and low pass filtering with Bollinger bands was applied; to output sleep/wake states as 

well. Once each sensor outputs their respective sleep states, the proposed algorithm 

would combine both results to output an improved sleep score over the night compared to 

the sensors individually. The sensors outputs were compared to the gold standard scores 

from PSG to validate the effectiveness. Experiments on human subjects showed improved 
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results with full sensor setup with PSG comparison. The experiment was performed over 

multiple days to have more verification from each participant by observing unique sets of 

sleeping data. 

1.5. Thesis Overview 

This thesis is divided into the following five chapters: 1) Introduction, 2) 

Background, 3) Experimental procedure and setup and 4) Results and Discussion and 5) 

Conclusion. In Chapter 2, fundamental information about each method and sensor is 

presented as well as describing how the PSG readings were scored, actigraphy was 

developed with the IMU and the cardiological signals measured from the BCG device were 

analyzed for sleep scoring. Chapter 3 describes the experimental setup including the 

participant selection, how the equipment was used and experimental procedure for data 

collection. Chapter 4 describes the results and discussion. Chapter 5 concludes the thesis 

and provides recommendations for future research related to sleep analysis with 

actigraphy and BCG. 
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Chapter 2.  
 
Background 

2.1. Polysomnography 

2.1.1. Introduction 

PSG is the gold standard when it comes to measuring the quality of sleep [7]. A 

PSG device measures sleep functions by directly attaching electrodes and sensors to the 

body such as: electroencephalography (EEG), electro-oculogram (EOG), electromyogram 

(EMG), nasal or mouth airflow, chest, abdominal and leg movements, snoring, body 

position and pulse oximetry [9], [30]. Over the last century, many studies investigated the 

related physiology of sleep. For example, Macwilliams demonstrated blood pressure 

fluctuations during sleep periods of sleep, Loomis et al. showed EEG changes in NREM 

stages and Aserinsky and Kleitman demonstrated REM sleep [9]. Rechtschaffen and 

Kales created a manual for which were known as the R and K rules and were used until 

2007, when the AASM updated the sleep scoring rules known as the AASM scoring 

manual [31]. The former R and K rules segregated sleep into five stages, from stage 1 to 

stage 4 and a REM stage while the updated AASM rules combined stage 3 and 4 into a 

single stage for deep sleep. The sleep scoring rules are meant to be used as a guide for 

interpreting sleep stages and create uniform standards that can be referred to as opposed 

to a hard framework [31]. As a result, the AASM often verifies the ISR to measure how 

well the sleep score rules are being interpreted and revises them accordingly if problems 

arise [16], [17]. 

2.1.2. Polysomnography Parameters 

The PSG device itself, houses many sensors that are attached directly to the 

human body via electrodes and can be customized to measure specific regions of the 

body for scoring sleep and diagnosing sleep disorders. As summarized in Table 1 obtained 

from [32] with permission, PSG assessment can be classified into four levels based on the 

intensity of data collection and patient observations. Level 1 is the standard PSG with the  
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Table 1. Assessment levels of PSG studies [32] 

 
Level 1  

Standard 

Polysomnography 

Level 2 Comprehensive 

Portable 

Polysomnography 

Level 3  

Modified Portable Sleep 

Apnea testing 

Level 4  

Continuous Single or 

Dual-bioparameter 

recording 

Parameters 

Minimum of seven, 

including EEG (C4-A1 or 

C3-A2), EOG, chin EMG, 

ECG, airflow, respiratory 

effort, oxygen saturation 

Minimum of seven, 

including EEG (C4-A1 or 

C3-A2), EOG, chin 

EMG, ECG or heart rate, 

airflow, respiratory effort, 

oxygen saturation 

Minimum of four, 

including ventilation (at 

least two channels  of 

respiratory movement  

and airflow), heart rate 

or ECG, oxygen 

saturation 

Minimum of one 

Body 

Position 

Documented or 

objectively measured 

May be objectively 

measured 

May be objectively 

measured 
Not measured 

Leg 

Movement 

EMG or motion sensor 

desirable but optional 

EMG or motion sensor 

desirable but optional 
May be recorded Not recorded 

Personnel In constant attendance Not in attendance Not in attendance Not in attendance 

Intervention Possible Not possible Not possible Not possible 

Abbreviat ions: electroencephalogram –  EEG, electro-oculogram –  EOG, electromyogram –  EMG, 
electrocardiogram –  ECG 

most sensors analyzed and usually done in a sleep clinic with observation from trained 

technicians, while levels 2 through 4 being less intrusive and portable to allow the patient 

to sleep outside of a clinic [32]. In addition, certain sleep disorders would only require 

specific sensors to diagnose and therefore, a higher level of PSG unit would be used for 

the specific analysis. EEG measures electrical activity from the brain by attaching sensor 

electrodes to the surface of the scalp. The internationally accepted method for electrode 

placement is known as the 10-20 system. The name refers to placing the electrodes 10-

20% distance between landmarks on the head and the reason to use percentages instead 

of distances is to compensate for varying head sizes. The landmarks on the head are: 

indents between forehead and nose (naison), ridge behind the skull (inion) and two 

preauricular points that are indentations above the tragus cartilage or ear. In addition, 

each electrode site placement location is named with the following nomenclature: F = 

frontal, P = parietal, T = temporal, C = central, O = occipital and A = auricular; with 
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numerical subscripts given for locating the right (even) and left (odd) side of the head such 

as C3/A2 or C4/A1 which is one of the common electrode placement locations for sleep 

scoring. The voltages measured from the scalp are usually too small and need to be 

amplified, which is known as gain, for suitable interpretations [30]. EOG measures eye 

movements by placing an electrode around the eyes in the outer canthus area (ROC – 

right outer canthus and LOC – left outer canthus). Placing the electrodes above and below 

each eye can produce an out of phase deflection for eye movements and helps distinguish 

artifacts from the EOG from other channels on the PSG. The EOG measures the electro 

potential difference between the front and back of the eye such as, the recording will be a 

positive deflection when the eye moves towards the electrode and a negative deflection 

when the eye moves away [30]. EMG measures the chin muscles and some limbs, most 

commonly the legs or anterior tibialis muscles. The electrodes are placed about 1-2 cm 

apart on the left and right side of the chin and about 2-4 cm apart on any of the limbs. The 

measure is obtained bipolarly among the combinations of electrodes attached. If the 

electrodes are attached to any of the limbs, usually this is to diagnose periodic limb 

movements (PLM) during sleep [30]. ECG measures the electrical pulses around the heart 

to obtain heart rate and cardiological signals. The heart rate is represented by beats per 

minute where each beat obtained is from the QRS-complex in Figure 1, with R being the 

spike and beat pulse. Traditionally, heart rate is not used for scoring sleep stages but is 

useful for diagnosing health disorders related to the heart such as abnormal heart beats 

during sleep [33]. 

 

Figure 1: Heart rate QRS-complex obtained from ECG with R-R interval 
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Respiratory effort measures the airflow from a person breathing while they sleep. 

There are many methods to detect airflow such as thermistor or thermocouples, nasal 

cannulas and respiratory effort belts. Thermistors or thermocouples sense the 

temperature difference between breathes and is measured as a change of resistance and 

electromotive forces. Nasal cannulas detect pressure change with tubes inserted in the 

nose. Airflow estimates pressure decrease with inspiration and increase with expiration. 

An issue with nasal cannula is that it only detects airflow from the nose and does not detect 

oral airflow if the person breathes through their mouth however, newer cannulas have 

been designed to incorporate oral airflows [30]. 

Pulse oximetry measures oxygen levels by transmitting two wavelengths of light 

through the skin. Usually it is attached to the finger but can be attached to the ear lobe or 

nose as well. The infrared lights are used to measure the exchange of oxygen and CO2 

validate adequate ventilation. However, issues arise with pulse oximeter because the 

sensor depends on a clean connection to the skin and motion, skin pigment and fingernail 

discoloration can provide false reading. Also, the infrared light may heat the skin and 

become uncomfortable to the user [9].   

2.1.3. Sleep Stages and Scoring 

Each vital parameter measured with PSG is scored in accordance with the R and 

K rules developed by Rechtschaffen and Kales and further expanded on by the AASM 

over the years. Sleep scoring is primarily done by a trained sleep technician or doctor, 

visually examining the vital signals from the EEG, EMG and EOG outputs by the PSG [14]. 

The R and K rules recommended to view each epoch in 30 second intervals because at 

the time, the non digital polygraph paper speeds would output each trace at 10mm/s and 

30 seconds was a convenient portion of time to observe [34]. Each epoch is viewed and 

given a score based on the scorer’s interpretation of the R and K rules and if an epoch 

appears to have more than 1 potential stage it could be scored, the greatest portion of the 

score is assigned to the epoch [34]. As a result, this makes sleep scoring with automatic 

software difficult because many of the epochs exhibit mixed sleep stages and even if a 

small number of misclassified epochs can substantially affect the overall diagnosis. In 

addition, the electrodes attached directly to the body can produce artifacts and fragments 

from movement and electrodes coming off the body [34]. Table 3 summarizes the rules 

for manual scoring sleep [30], [33], [34] and Table 4 summarizes the differences from the 
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original sleep scoring rules developed by Rechtschaffen and Kales compared to the new 

scoring rules updated by the AASM described by [31] with permission. EEG is one of the 

main methods to measure sleep stages by observing the specific frequencies of brain 

waves with other vital parameters used to help further distinguish differences between 

stages throughout a sleeping cycle [9]. When scoring sleep, the observer should initially 

quickly scroll through the whole sleep cycle to see specific shapes of the waveforms as 

each person has a unique pattern to their brain waves, eye and body movements signals 

[30]. Table 2 shows each of the frequency rhythms in Hz acquired from the EEG parameter 

and a brief explanation (brief) of each stage is obtained from [30]. 

The wake stage is the first stage recorded as a person usually enters the bed and 

begins the process of falling asleep. The EEG will score more than 50% of each epoch as 

alpha waves with some mixed alpha and beta waves as the eyes are closing and opening 

throughout the wake stage. EMG will show high muscle activity as the person moves in 

the bed and adjusts to a comfortable sleeping position and EOG will show little eye 

movements unless responding to external stimuli before becoming drowsy from closed 

eyes. Muscle tones and eye movements will reduce as person comes closer to stage 1 

sleep and may alternate between stage 1 and wake before fully entering stage 1 sleep 

[30]. 

 

Table 2: EEG Frequency Rhythms 

Rhythms Frequency (Hz) 

β ≥ 14 

α 8-13 

θ 4-7 

δ < 4 
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Table 3: Summary of manual sleep scoring stages 

Stage EEG Readings EOG Readings EMG readings ECG readings 

Wake Mixed beta and alpha 
waves with 50% alpha 
usually 

Little eye movement 
unless stimulated or 
blinking 

High muscle tones and 
contractions and 
movement artifacts 

Heart rate like daily 
rate  

Stage N1 
More than 50% theta 
waves with mix of alpha 
and beta waves 

Signs of slow eye 
movements 

Less activity than wake 
usually 

Heart rate 
regularizes and 
blood pressure 
drops 

Stage N2 Mostly theta waves with 
some delta waves, sleep 
spindles and K complexes 
present 

Slow eye movements 
like stage N1 

Low muscle tones and 
activity like stage N1 

Heart rate and blood 
pressure continue to 
decrease 

Stage N3 Slow wave sleep 
dominated by theta waves 

Very low or no eye 
movements 

Muscle tones and 
activity further reduced 
from stage N2 

Heart rate 
decreases and 
slows down 

Stage REM Low amplitude, mixed 
frequency theta with alpha 
waves mixed in, no K 
complexes or sleep 
spindles 

Rapid eye movements Very low muscle activity Heart rate and blood 
pressure fluctuates 
and increases 

 

 

Table 4: Differences of R and K manual with AASM scoring manual from 2007 [31] 

Difference R and K manual AASM manual 

EEG electrodes Score sleep stages using central (C3, C4) leads  Score using frontal, central and 
occipital 

Major Body movements  Movement time can be scored even if more than 
half of epoch is obscured  

Only stage N3 recognized with delta 
wave measured with frontal leads 

Slow wave sleep Consists of both stage 3 and stage 4 with delta 
wave amplitude measured using central leads 

No movement time staging 

Terminology of stages Stage 1, stage 2, stage 3, stage 4, and stage 
REM sleep 

Stage N1, stage N2, stage N3, and 
stage R sleep 

Reference electrode Left and right ear or mastoid called A1 or A2 Left and right ear or mastoid, termed 
M1 or M2 

stage 2 sleep scoring 3-minute rule that states if greater than 3 
minutes pass between spindles or K complexes, 
then score stage 1 sleep 

No 3-minute rule exists 
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Stage 1 sleep is a light sleep or a short transitional stage from wake to a deeper 

stage of sleep. The EEG patterns may be fast with low voltage amplitude making it difficult 

to interpret. Stage 1 is scored when more than half of the epoch contains theta waves (4-

7Hz) with some low amplitude beta waves (≥ 14Hz) replacing the alpha waves (8-13Hz). 

Sharp vertex shaped waves may occur towards the end of stage 1 but sleep spindles and 

K-complexes are not present. In addition, EMG shows less activity and EOG may show 

signs of slow eye movements. If an arousal activity occurs between 3 to 15 seconds, the 

epoch is scored as wake instead. A person’s breathing becomes shallow, heart rate 

becomes regular, blood pressure falls and minimum movement is observed. When 

sleeping in stage 1, the sleeper may be easily awakened and may feel like they haven’t 

fallen asleep yet [30]. 

Stage 2 sleep is observed for most of the sleep cycle by PSG (up to 50%) that is 

dominated by theta waves (4-7 Hz) with some occasional quick bursts of EEG activity. 

EOG signals may mirror EEG signals and EMG activity is very low. Slow wave sleep 

occurs in this stage but only when 20% of an epoch is delta waves. Sleep spindles and k 

complexes are observed as well. K complexes are sharp, monophasic slow EEG wave 

with a sharp negative deflection followed by a slow positive deflection. There are no 

minimum amplitude criteria but must last for at least 0.5 seconds and are enough to score 

an epoch as stage 2 even without sleep spindles. They may be triggered with or without 

external stimuli such as a sudden sound. K complexes without external stimuli are referred 

to as spontaneous and be the result of endogenous brain activity. Sleep spindles are 12-

14Hz sinusoidal EEG waves that appear like an unweaving spindle and are generated by 

the midline thalamic nuclei and represent inhibitory activity. They represent synchrony and 

symmetry between the two brain hemispheres and can attach to the tail end of a k 

complex. Some examples of k complexes and sleep spindles are shown in Figure 2. EOG 

and EMG have no specific criteria in stage 2 but an arousal may result in scoring of wake 

or stage 1. During stage 2 sleep blood pressure, brain metabolism, gastrointestinal 

secretion and cardiac activity decrease and descends deeper into sleep and difficult to 

wake up [30].  

Stage 3 sleep also known as slow wave sleep (SWS) or deep sleep that is 

distinguished by high-amplitude slow wave EEG readings. No EOG or EMG rules are 

specified for stage 3 but generally each one is further reduced. Physiologically during a 

stage 3 sleep, a person has the highest threshold for arousals and parasomnias may  
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Figure 2: EEG waveform with examples of sleep spindles and k complexes 

 

manifest such as sleep terrors and sleepwalking. K complexes and sleep 

spindles may appear in stage 3 and no EOG or EMG readings are specified but can be 

very low or stop entirely. Waking from stage 3, the person may appear confused or 

dazed that is known as ‘sleep inertia’ or ‘sleep drunkenness’ and may take several 

minutes to function normally [30]. 

Stage REM sleep is referred to rapid eye movement during sleep that are observed 

from the EOG sensors and usually occurs about 90-120 minutes into sleep onset. It is 

characterized by low amplitude and mixed frequency EEG waves with some alpha waves. 

Physiologically, blood pressure and heart rate may increase and breathing becomes 

irregular and body temperature fluctuates and usually dreaming occurs. EMG muscle 

tones are also very low as during REM sleep, the body suppresses muscle activity to not 

act out the dreams, however the eyes move around rapidly as if reacting to the image 

visualized in the dream. REM sleep is characterized with sawtooth EEG waves that are 2-

6 HZ and evenly formed. REM stage will continue to be scored until another stage criteria 

is met for example, high EMG tones with no k complexes or sleep spindles present. If k 

complexes or sleep spindles appear in the first half of the next epoch without any rapid 

eye movements, then the epoch will be scored as stage 2. If the k complexes and sleep 

spindles occur in the second half, then the next epoch will continue to be scored REM and 

the following epoch will be scored stage 2. Arousal or major body movement also can end 

the REM stage however, if the EMG chin tone and rapid eye movements continue, then 

REM stage will continue to be scored [30]. 
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2.2. Actigraphy 

2.2.1. Introduction 

Actigraphy is used for sleep and circadian rhythm research through a wearable 

device that measures motions of the body [34]. Actigraphy measures sleep through 

movement by assuming no movement to be sleep and movement to be wake. Many 

algorithms have been developed to distinguish wake from sleep by observing rest-activity 

patterns [34].Typically, actigraphy is a wrist worn device about the size of a smart watch 

but can be worn on any limb or the waist [35]. Many devices incorporate a 3-axis 

accelerometer for measurements, especially devices designed for athletes and fitness 

tracking throughout the day. A popular device used by the general public and clinical 

researchers is FitBit as it provides a low cost, field based and user-friendly experience 

that mostly monitors fitness statistics but also recently has been able to monitor quality of 

sleep [4], [36]. A more clinical device is known as the Actiwatch is a dedicated actigraphy 

wearable device that can be used up to 14 days on a full charge and can provide raw data 

on sleep, rest, activity and light exposure [35]. Actigraphy is a popular method for gathering 

sleep due to its non invasive nature. However, a drawback to using actigraphy is that it is 

not possible to diagnose many sleep disorders besides periodic limb movement disorder 

as it only measures sleep/wake states through movement. In addition, each sleep stage 

can not be measured with actigraphy alone and would require extra sensors to distinguish 

between stages.  

2.2.2. Algorithm 

Mullaney et al. [37] showed that possibility of data obtained from wrist-mounted 

movement could be scored manually to distinguish sleep from wake. However, the manual 

scoring process was laborious and reduced the practicality of the using actigraphy for 

regular use [39]. Webster et al. [38] developed a method for automatically scoring sleep 

and wake states with actigraphy. However, the method they developed was only optimized 

for their wrist activity device only and was uncertain if their method would work generally 

for any other device available commercially [39]. Therefore, Cole et al. in [39], and further 

expanded in [40] with Kripke et al., discussed and validated a more general algorithm that 

could be implemented in a wide variety of wrist worn actigraphy devices. The algorithm 
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for estimating sleep/wake states with actigraphy is a weighted sums equation that is based 

on a moving average window, i.e.: 

𝐷 = 𝑃(𝑊−4𝐴−4 + 𝑊−3𝐴−3 + 𝑊−2𝐴−2 + 𝑊−1𝐴−1 + 𝑊0𝐴0 + 𝑊1𝐴1 + 𝑊2𝐴2)  (1) 

where the A0 value represents the activity scores from the current epoch being evaluated 

while the negative subscripts represent epochs in the past and positive epochs in the 

future. The W values represent the weighting factors for each epoch and is adjusted to 

acquire the best sleep/wake estimation. The P value is the scale factor to adjust the entire 

equation as needed for better estimations. The total equation is summed together to get 

a D sleep score value which is used to estimate sleep (D < 1) and wake (D ≥ 1) [39]. Each 

A value is obtained from the actigraphic device performing a zero-crossing method to 

generate the raw signals for motion [41]. In addition, each A value can vary in real time 

length for example, a 10 second epoch would have all actigraphy movements recorded 

over 10 seconds in a single A value epoch. Cole et al. [39] had tested many epoch lengths 

in seconds such as 2, 6, 10, 20, 30, 60 [39] and found that 10 seconds provided the best 

results. However, in [40] a 30 second epoch length was used to easily match the PSG 

epoch lengths and many actigraphy devices report activity in 30 second- or 1-minute 

lengths.  Since actigraphy only estimates sleep or wake based on movement, including 

the future and past epochs is very important to improve the estimation as movements 

around the current epoch can be related and help estimate sleep or wake movements. 

For example, if a person is laying still but awake and move within a few minutes of each 

movement. Then it is likely that they are still awake during the epochs that they lie still as 

the Cole-Kripke actigraphy algorithm would misscore sleep 3.5 times more than wake. 

Five rescoring rules have been developed by Webster et al. [40] to mitigate the problem 

of misscoring[39]. The rescoring rules would process the sleep score again by checking 

how many sleep or wake epochs were around the current epoch. For example, a short 

wake epoch surrounded by long sleep epochs would be rescored to sleep and the 

opposite for short sleep epochs between long wake epochs.  The combination of all these 

rules in [39] claimed to reduce the ratio of false sleep and false wakes from 3.5 to 2.5. 

Therefore, actigraphy is a useful method for estimating sleep and wake states throughout 

multiple nights and having very little impact on sleep quality which can allow for a more 

natural sleep and better data gathering as a result. 
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2.3. Ballistocardiography 

2.3.1. Introduction 

Ballistocardiography is a non-invasive method to measure ballistic forces produced by the 

body as a result of the circulation of blood from the cardiac cycle [41]. BCG was first 

observed by Gordon, J.W. in 1877 by measuring small motions in sync with heart rate 

pulses described in [24] but began to fade away from relevancy after the 1980s as a result 

of lack of understanding and standards and guidelines for interpreting the BCG results. 

However, due to recent advances in sensor technology with the development of more 

sophisticated and sensitive sensors, BCG has seen a resurgence in the medical field for 

long term non-invasive sleep assessment [42]. The BCG measures the reactions of the 

body from cardiac ejections of the blood [42]. The functions of the heart and movement of 

blood causes a counter force in the opposite direction and this recoiled force visualized 

by a BCG is shown in Figure 3 [33]. Starr et al. [43] set the ground work for standards to 

be used with BCG by focusing on longitudinal, head to toe analysis. Starr designated a 

pattern ranging from H to N with the H to L being the dominant waves and H-K being 

systolic which corresponds to contractions in the heart and L-N being diastolic that 

corresponds to relaxation from the heart [23]. However, the L-N waves are uncertain and 

believed to be the cause of blood flow directional changes [33]. The I-J complex has the 

greatest amplitudes during inspiration [23]. The baseline represents the body in a neutral 

state when it is motionless as presented by the red line in Figure 3 and any movement 

from the body would produce artefacts that can corrupt the signal during the movement 

[44].  

 
Figure 3: H-I waveform obtained from raw BCG reading 
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2.3.2. Cardiac Parameters 

Through BCG, the cardiac parameters can be devised such as heart rate, heart 

rate variability and respiration rate that are required to estimate sleep stages like an ECG. 

In Figure 3, the H wave is a head-ward deflection is at the beginning at the near beginning 

of the R wave obtained from an ECG [44]. The J wave from BCG is the largest wave and 

occurs at the end of the systole, therefore it is used as the beat to beat values or R-R 

intervals for heart rate and heart rate variability as shown in Figure 1. In the BCG case, it 

is referred to J-J intervals [45]. Changes to the autonomic nervous system can be related 

to different stages of sleep and can be indirectly monitored by measuring heart rate and 

respiration [45]. Heart rate is a measure of how many pumps occur in 1 minute known as 

beats per minute (BPM). The respiration cycle consists of inhalation followed by exhalation 

and the respiration rate can be measure by the amount of breaths in a minute [33]. In 

addition, the respiration rate variability is the variation in respiratory time intervals and the 

respiration depth (Rdepth) is the amount of volume passing into the lungs during a single 

respiratory cycle [33]. Generally, body activity during sleep such as heart rate and 

respiration rate, decrease over the sleep cycle while does tend to become more irregular 

during REM sleep [23], [47].  

In relation to heart rate, the heart rate variability is a very important parameter 

related to measuring sleep quality because of the relation to the autonomic nervous 

system and respiratory rhythms [48]. HRV is the fluctuations of time intervals between 

adjacent heart beat [49]. In addition, HRV constitutes as a marker for vagal modulation 

related to the parasympathetic (PNS) and sympathetic (SNS) nervous systems and a 

relationship exists between the two characterizing a Sympothavagal balance [48]. The 

SNS relates to the bodies fight or flight system and is active during stress or physical 

activity. In addition, SNS will compensate the active performance by increasing the 

circulation of blood and oxygen supply to organs, heart rate will increase in the heart and 

respiratory airways will expand to increase volume in the lungs [33]. The PNS is active 

during the resting and digesting times so the body can recover and works oppositely the 

SNS by decreasing the heart rate and respiratory rate to enhance recovery [33]. The 

sympathovagal balance describes the opposing SNS and PNS effects on the body but, 

the relationship between SNS and PNS is complex and can’t be described zero sum 

system [49], [50]. Increasing the PNS does not directly decrease the SNS and vice versa, 

instead the opposite system may increase, decrease or not change at all [49]. An example 
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of both systems engaged is when someone experiences high level of stress but breathes 

slowly [49]. Therefore, HRV has emerged as a prevalent method to measure the 

sympathovagal balance by observing the variation of heart rate R-R intervals during 

different activities and each of the sleep stages [50]. HRV is usually measured in time 

domain or frequency domain. Time domain measures the variation of time periods 

between each successive beat known as interbeat intervals (IBI) [49]. The standard 

deviation of normal sinus beats (SDNN) measures the standard deviation of successive 

R-R intervals and can be related to ultra-low-frequency (ULF), very-low-frequency (VLF) 

and low-frequency (LF) band powers and recommended to be recorded for 24 hours [49]. 

Percent of adjacent normal intervals (pNN50) is a measure of adjacent intervals that differ 

by more than 50 ms and can be correlated to PNS activity and HF band power [49]. The 

root mean square of successive differences (RMSSD) is calculated by obtaining 

successive time differences in heart beats and each value is squared and averaged before 

the total result is square rooted [49]. RMSSD measures the beat-to-beat variance in heart 

rate and vagally mediated changes in HRV and correlated to high-frequency (HF) power 

[49]. Frequency measures HRV the absolute or relative power in four frequency bands 

such as ULF (≤0.003 Hz), VLF (0.0033-0.04 Hz), LF (0.04-0.15 Hz) and HF (0.15-0.4 Hz) 

bands [49]. The frequency can be divided into low frequency (LF) bands that is related to 

sympathetic activity and stress and high frequency (HF) that is related to parasympathetic 

activity and relaxation [33], [49]. The ratio LF/HF can be used to estimate the activity 

between the SNS and PNS with a low ratio is seen when the body is conserving energy 

and a high ratio occurs when an active fight or flight behavior is happening [49]. Therefore, 

HRV is an important vital measuring the PNS and SNS to observe the transitions between 

each of the sleep stages [51]. 
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Chapter 3.  
 
Experimental Procedure and Setup 

3.1. Experimental Study 

The experimental protocol involving human subjects was approved by SFU Office of 

Research Ethics (study number 2017s0629). The experimental procedure consisted of 

recruiting willing and consenting participants through word of mouth and a follow up email 

for more information. All participant information was made anonymous and was only 

known by the author and senior supervisor, otherwise any personal information was not 

included in any of the analysis. The purpose of the human experiments was to gather 

natural sleep data from healthy adults ranging between the ages of 19-65 with actigraphy 

and BCG. Each of the participants considered themselves healthy without any known 

sleep disorders or illnesses. All participants were neither overweight or underweight and 

had a consistent BMI. None of the participants took any medication that could affect sleep 

and were also instructed not to drink any coffee at least 8 hours before the experiment or 

alcohol for 24 hours before the experiment. Each participant was instructed to try to sleep 

for at least 6 hours for each night but could sleep for any amount if they had to. All the 

participants slept for more than 6 hours. PSG and a video camera was also used but only 

for a gold standard validation for data analysis. However, the video camera was optional 

as some participants could feel uncomfortable with the recording. Once the participant 

had consented and filled out their agreement to participate in the study, they were briefed 

by the author on the setup and management of each piece of equipment. The briefing 

lasted for about 30 minutes and included how to setup each device in the participants 

sleeping environment. As the PSG was quite complicated with many electrodes that 

needed to be attached directly to the body, a detailed explanation of proper attachment 

procedure was performed, and an instruction manual was provided for the PSG in case 

the participant wanted to familiarize themselves with the PSG. The experiment would last 

3 nights (didn’t have to be consecutive) in the participants own home as this would provide 

a natural sleep environment and the BCG would calibrate and potentially improve the data 

by creating personal calibration values for each participant. The author provided each of 

the devices as well as a laptop to connect the actigraphy and BCG devices for data 

collection. Upon successful completion of the sleep study after each night, the participant 
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would return the PSG for data downloading and was given another PSG to use for the 

following night. The actigraphy and BCG data was stored locally on the laptop provided 

and returned to the author at the end of the study with the rest of the equipment. Ten 

participants were recruited for this study with nine being male and one female. An initial 

sample size and power test was performed to estimate how many participants should be 

included. The initial estimated accuracy of sleep state matches was observed to be about 

75% from some pilot studies. The sample size was analyzed to get an improvement of 

90% accuracy with a statistically significant power of 0.80, and it was determined that ten 

participants would be a sufficient participant size for this study and the inclusion of three 

nights of measurement per participant would further help in improving the accuracy. The 

Two participants had to be excluded from the study as one participants data was corrupted 

and could not be used and the other participant requested to not participate in the study 

after an initial run. The corrupted data resulted due to disconnection with some of the 

devices. As the laptop provided did not supply constant power to the USB ports, a subtle 

dip in power would result in one of the device disconnecting in the middle of the study. As 

the participant was asleep, they were unaware of the power loss and unable to fix the 

connection until they woke up the next morning. To rectify the problem, a USB hub with a 

separate power supply was provided to prevent the disconnection during the night. Due 

to scheduling conflicts the participants data was not able to be re-collected for a second 

time and had to be excluded from the results. Figure 4 show a closeup of the experimental 

setup with each device. 

 

 

Figure 4: Close up of experimental setup with each device 
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3.2. Experimental Method 

 

Figure 5: PSG setup worn by the author with all electrodes attached 

 

The PSG device used for the experiment was the Embletta X100 by Natus Medical 

Incorporated. The Embletta PSG was used as a gold standard indicator for measuring 

sleep scores and the device is shown in Figure 5. The Embletta PSG was setup to 

measure sleep quality and ECG parameters according to the manual provided. The 

following parameters were measured during the study by the PSG: EEG, EOG, two chin 

EMG, two ECG, lower and upper torso respiratory effort belt, pulse oximetry, nasal canula 

and body position that is shown in Figure 5. Each of the electrodes were attached through 

sticky disposable electrode leads directly to the skin. This has been done for all electrodes 

except for the EEG that was located at the C4/A1 or slightly off center to the right location 

on the head and was attached with a conductive cup electrode with a conductive adhesive 

paste attached directly to the scalp. This electrode was unique because the hair on the 

head would prevent a proper connection with the disposable sticker; however, the reading 

would be the same regardless of the electrode used by the participant and it was up to the 

participants discretion which electrode type they wished to use. The Embletta PSG 

contained an event button that let the participant mark times throughout the night of excess 

activity and could be easily scored as wake because the participant was conscious. This 

event button was used to synchronize each of the sensors as it signified when the 
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participant laid in bed to finally sleep. Leaving the bed to go the bathroom for example 

would have the participant pressing the event when they left the bed initially and again 

upon returning to the bed. The data collected from the PSG was downloaded to a 

computer with the Remlogic software also by Natus Medical Incorporated that is included 

with the PSG device. A useful feature of the Remlogic software was automatic scoring to 

automatically determine sleep stages. According to [52], automated sleep scoring 

software can yield similar results to manual visual scoring by a trained sleep technician. 

But the automatic system may still need manual editing because any artifacts or patterns 

that may be scored intuitively by a human can be missed by a computer and scored 

incorrectly. As was the case for this study and the initial automated scores had to be 

manually edited and visually scored to have cleaner results as shown by the difference in 

hypnograms in Figures 6 and 7. This was also confirmed by a sleep expert (Professor 

Gerald Klosch) who after visually going through some of the sleep data mentioned that 

many instances would need to be edited from the automated scores. Each of the traces 

obtained were measured based on R and K rules described earlier in Chapter 2 with a 

focus on EEG, ECG and EOG. As an example, Figure 8 shows a section of stage 3 sleep 

because of the slow theta waves of EEG and lack of EMG and EOG activity and slower 

intervals between heart beats from the ECG. In addition to visually scoring each sleep 

stage from the software, a video camera with night vision was used to verify sleep states 

as well. As mentioned in [34], video recordings are a powerful and relatively cheap tool for 

assessing arousals and apneic events are real or the result of movement artifacts. The 

video analysis was also helpful as some of the scoring can be prone to error due to the 

participant attaching the sensor incorrectly or the sensor would detach during the night. 

This could corrupt portions of the data and make it difficult to score manually or 

automatically. Once a full sleep cycle was scored, it was exported as a text file detailing 

each 30 second epoch as a sleep stage. The sleep scores were then imported into Matlab 

to be used as a gold standard validation for the actigraphy and BCG algorithm.  
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Figure 6: Automatically scored sleep stages by software 

 

 

Figure 7: Manual visual score by human 

 

Figure 8: Stage 3 sleep score traces observed from Remlogic software 

The next device used in the experiment was the Xsens Mtw Awinda wireless 

motion tracker developed by Xsens Technologies B.V. The Xsens Mtw Awinda is a 

wireless 9-DOF (IMU) with 3-axis accelerometer, 3-axis magnetometer and 3-axis 

gyroscope and can be easily attached to the body due to its small size [53]. The 

convenience of the small size and wireless motion tracking was an ideal solution for 

actigraphy because the 3-axis acceleration output could be processed to estimate sleep 

stages like a dedicated actigraph. The Xsens was attached directly to the participants non-

dominant wrist by hook and loop straps but could be attached the dominant wrist if the 

participant wished too. The reason for this location was to have a benchmark with 

experiments done with Cole et al. [39] and Kripke et al. [40]. Figure 9 shows a close-up 

image of the Xsens MTw device and wireless transceiver while Figure 4 shows the Xsens  
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Figure 9: (Right) Xsens MTw Awinda, (Left) USB transceiver on left 

 

MTw attached to the non-dominant wrist during an experiment. Software is readily 

available on the Xsens website that lets one record the motion activity in real time. 

However, an issue arose during the initial testing stages of the Xsens MTw was losing 

connection during the night and being unable to reconnect because the participant was 

sleeping and would be unaware the device had disconnected until they woke up. This was 

a major issue, as each test could only be done once per day during the natural sleep cycle 

and the issue caused many scheduling conflicts due to re-testing. With further 

investigation, it was determined that the issue was with the laptop as it did not provide a 

steady rate of power to the USB connection and would disconnect the device briefly. To 

remedy this, a USB hub was used with an external power supply to prevent any further 

disconnections. The parameters obtained and used from the Xsens MTw was the 3-axis 

acceleration values (x, y and z). Each of the acceleration axis signals needed to be 

normalized to obtain the vector magnitude using the following equation [41]: 

𝑉 =  √𝑥2 + 𝑦2 + 𝑧2      (2) 

Figure 10 shows the raw acceleration signals obtained and the normalized signals. 

Furthermore, the signals had to be converted into 30 second epochs to be comparable to 

the PSG epochs. The zero-crossing method was used to determine how many times the 
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normalized signal would cross zero for each 30 second epoch and tallied up shown in 

Figure 11. Each of these summed acceleration epochs were used as the A values for 

weighted sums equation shown in Equation 1 with the populated values shown in Equation 

3 and is referred to as the Cole-Kripke equation. The Cole-Kripke equation is based on a 

moving average window that uses acceleration epochs in the past and future to score 

each epoch as sleep or wake. 

 

𝐷 = 0.0001(11𝐴−5 + 28𝐴−4 + 16𝐴−3 + 28𝐴−2 + 28𝐴−1 + 33𝐴0 + 29𝐴1 + 23𝐴2)  (3) 

 

Figure 11 shows the corresponding Cole-Kripke algorithm output and the sleep 

scores are determined by applying a threshold. Wake is considered when the value is 

above 1 and less than 1 is scored as sleep. The idea is that not all movements are 

considered as wake during the night. Sometimes a person can move slightly while they 

sleep and not wake up and the algorithm would reflect that by differentiating between the 

movement states. Each of the weights and number of epochs used in past or present can 

be determined by trial and error or optimization techniques. Figure 12 shows the final 

output of scored epochs as sleep or wake compared to PSG. Genetic algorithms were 

employed to optimize the algorithm and validated by reducing the error from matching the  

 

  

Figure 10: (Left) raw acceleration signals; (Right) normalized vector signal 
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Figure 11: (Left) Zero crossing method summed acceleration signals; (Right) 
Corresponding Cole-Kripke algorithm results 

 

Figure 12: Actigraphy sleep states compared with PSG sleep states 

 

PSG and the actigraphy sleep states; thus, increasing the accuracy of correctly matched 

epochs. Genetic algorithms were chosen to find a good solution for this population as it 

was relatively small and all participants were young adults with no sleep disorders and no 

abnormal sleeping patterns. However, when more diverse groups of people are introduced 

into the system, machine learning algorithms can be used to begin detecting patterns in 

different sleep disorders as well as more active sleepers and classify a more sensitive 

“Cole-Kripke” equation for people with more movement during their sleep. 
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Figure 13: BCG bed occupancy calibration 

 

Another device that used was the Murata Contactless Bed Sensor SCA11H as the 

BCG device developed by Murata Manufacturing Co., LTD. The Murata bed sensor was 

designed uses ultralow noise MEMS accelerometers with a noise density below 150 

µm/s2/Hz1/2 that claims to be 5 times better than other industrial MEMS accelerometers 

and 20 times better than consumer grade BCG sensors [54]. In addition, the small size of 

the sensor, made it non-intrusive to the participant while they slept. The Murata bed sensor 

was placed on top of the mattress and clamped between the bed sheet with a magnet to 

prevent it from moving around during the night. Murata provides a GUI that can be used 

on a personal computer or Android device that connected to the bed sensor through Wi-

Fi and collected data in real time. The laptop provided to the participant had the software 

installed and the participant had to sync the bed sensor with their home modem over Wi-

Fi to start the data collection process. The Murata bed sensor also had an intelligent 

calibration feature that would calibrate the sensor for each night the participant slept in 

their bed. Initially, the participant would lay in the bed for 1 minute and then left the bed 

empty for 1 minute so the bed sensor could calibrate the difference between empty and 

occupied bed status for the participants mattress. But each night the participant slept, the 

occupancy data could be uploaded to the calibration GUI to improve the detection of bed 

occupancy [55]. Three nights were chosen for the study because according to Murata, the 

bed sensor calibrations would be at its best after three sleeps of calibration [56]. The bed 

occupancy of one night from the Murata GUI can be seen in Figure 13 with the calibration 
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parameters with at least one hour of empty bed required in the beginning to measure 

between occupied and empty. The Murata bed sensor outputs the following data at a 

frequency of 1 Hz in a text file that was used for analysis with Matlab: timestamp, Heart 

Rate, Respiration Rate, Stroke Volume (SV), Heart Rate Variability, Status, beat to beat, 

beat to beat prime, beat to beat double prime) [54].The values that were used for this 

experiment were the heart rate, heart rate variability and the respiration rate. Previously 

extensive clinical trials and validation for each vital signal and sleep stage state estimation 

were performed at the Turku University as referenced in [33]. Correlation between the 

Murata bed sensor and PSG values obtained by [33] were as followed: HR (r=0.97), low 

frequency heart rate variability (LFHRV) (r=0.71), high frequency heart rate variability 

(HFHRV) (r=0.71), respiration rate (RR) (r=0.54) and respiration rate variability (RRV) 

(r=0.49). An r value of 1 would indicate perfect correlation and a 0 value would indicate no 

correlation. Even though the RR and RRV correlation was lower and not as good as the 

cardiological parameters, the typical difference was not significant from the BCG with 

PSG. Examples were provided in breathes per minute for RR and ms for RRV comparing 

the BCG to the PSG. The BCG estimation of respiration events still followed a similar trend 

but offset from the PSG and could still be viable for estimating significant changes in the 

respiratory cycle. Therefore, the BCG sensor developed by Murata is a viable option to 

get good correlation from a gold standard PSG device. Conveniently the clinical studies 

done at the Turku University used the same Embletta X100 PSG device to validate all the 

vital signs as the PSG device in this study; thus, making the Murata bed sensor a confident 

choice to use as a BCG sensor.  

The algorithm developed to measure sleep stages used many recommendations from [33] 

to setup the BCG sensor and analyze each of the vital signals. The raw output from the 

Murata bed sensor produced vital signals with the following units in Table 5. The raw 

outputs of each of each vital sign were very noisy and had to be filtered by an infinite 

impulse response (IIR) low pass (lp) filter as shown in Figure 14. Specifically, the lp filter 

was an exponential moving average filter presented by the following equation:  

𝑦(𝑡) = (1 − 𝑘) ∙ 𝑦(𝑡 − 1) + 𝑘 ∙ 𝑥(𝑡)     (4) 

where k is the filtered constant, x(t) is the original unfiltered value input, t is the time or 

epoch count, y(t) is the filtered value and y(t-1) is the previous filtered value.  
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Table 5: BCG outputs and relative units of measurement 

BCG Signal Unit 

Heart Rate Beats per minute 

Heart Rate Variability ms 

Respiration Rate Beats per minute 

Respiration Rate Variability ms 

 

The low pass filter was done again in reverse for each parameter in order to avoid the 

initial delay created by the first low pass filter. Since the filter requires a previous value, 

the first value (y(1) = x(t)) was taken as the raw value and filtered from there. Performing 

the filter in reverse as in starting from the last value and filtering back to the first value 

would help remove the weight from the initial unfiltered value. Each of the reverse low 

pass filters used k=1/512 for each of the filtering constants. The following equations were 

derived from [33] to measure each of the specific vital signs: 

𝐻𝐹𝐻𝑅𝑉 = 𝑙𝑝(|𝑏2𝑏 − 𝑏2𝑏𝑎𝑣𝑔|, 𝑘)     (5) 

Where the absolute difference of the original beat to beat (b2b) and the filtered beat to 

beat (b2bavg) with k=1/2 to obtain the HFHRV [33]. 

 𝐿𝐹𝐻𝑅𝑉 = |
60000

𝐻𝑅
−

60000

𝑙𝑝(𝐻𝑅,𝑘)
|     (6) 

where the HR is converted into ms for HRV by dividing the HR by 60000 and then obtaining 

the absolute difference between the raw HR and filtered HR and k=1/512 for the LFHRV 

[33]. 

𝑅𝑑𝑒𝑝𝑡ℎ =
|𝑆𝑉−𝑙𝑝(𝑆𝑉,𝑘)|

𝑆𝑉
     (7) 
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Figure 14: (Left) Raw HRV signal; (Right) Low pass filtered HRV signal 

 

where the respiration depth (Rdepth) is the relative volume of air that passes through the 

lungs in one respiratory cycle (inhalation and exhalation) [33]. The Rdepth is calculated 

by the absolute difference of the SV and filtered SV and divided over SV with k=1/16 [33].  

𝐻𝑅𝑉 =  
𝐻𝐹𝐻𝑅𝑉

𝐿𝐹𝐻𝑅𝑉×𝑅𝑑𝑒𝑝𝑡ℎ
     (8) 

where the HRV is obtained by combining the HF and LF HRV components and scaled 

with the Rdepth. Discussed earlier in this chapter with cardiac parameters, it was 

mentioned that the frequency ratio of LF/HF HRV was important for observing the activity 

between PNS and SNS. However, the bed sensor by Murata does the opposite by 

calculating the HF/LF ratio. The reason for this is to have a more positive number 

represent a more relaxation and recovery. In addition, Rdepth is included in Equation 7 

because the HF component is related to respiration and in the event of a hypoxia event, 

the breathing will get deeper and indicate higher relaxation. But the opposite would be in 

effect as the participant would be waking briefly from the event [57]. The Murata bed 

sensor outputs the HRV component as the value from Equation 8 [33].  

𝑅𝑅𝑉 = |
60000

𝑅𝑅
−

60000

𝑙𝑝(𝑅𝑅,𝑘)
|     (9) 

where the RRV is calculated in a similar way as the LFHRV in Equation 5 and k=1/512 

[33]. 
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Murata has outlined sleep states for each of the vital parameters measured by the 

BCG bed sensor in [54]. According to Murata, REM sleep and wakefulness is difficult to 

distinguish as both have a similar profile except for a slight difference between RRV 

readings. In [33], movement and bed occupancy in the bed is used to distinguish the 

difference between REM and wake. In this study, movement from an actigraphy is used 

to distinguish between REM and wake. Also, bed occupancy is included for extra 

verification that the participant is awake as usually if a participant leaves the bed, it can 

be assumed that they are awake. To measure each of the vital signals whether they are 

increasing, decreasing or relatively stable, Bollinger bands were used. Bollinger bands 

were invented by John Bollinger in 1983 for detecting trends in the stock market [58]. They 

measure volatility of a time series data set by generating a moving average and lower and 

upper moving average offset by the standard deviation. Table 6 shows how the sleep 

states are determined with changes from the Bollinger bands and recommendations from 

[54]. The standard lag time for moving averages with Bollinger bands is 20 days when 

used for technical trading in the stock market. 20 epochs were also used as the lag time 

with the BCG data as the first 50 epochs (25 minutes) were assumed to be awake and 

usually had a lot of fluctuations as the participants would climb into bed and move around 

before falling asleep or would lie still but awake initially. Figure 14 shows an example of 

the HRV signal with Bollinger bands. Volatility is measured by calculating the band width 

between of the upper and lower bands. 

Table 6: BCG Bed Sensor sleep stages 

 Sleep REM Sleep Wake 

HR Decreasing or 

significant HR 

decrease 

Increasing or 

significant HR 

increase 

Increasing or 

significant HR 

increase 

HRV Increasing Decreasing Decreasing 

RRV Decreased 

and stable 

Increasing Increased and 

stable 

Rdepth Decreasing Increasing Increasing 
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If the upper and lower bands are close together, then the graph is considered stable and 

when the bands are far apart, they graph is volatile and unstable [59]. 

Equation 10 shows the calculation for measuring bandwidth: 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =  
𝑈𝑝𝑝𝑒𝑟𝑏𝑎𝑛𝑑−𝐿𝑜𝑤𝑒𝑟𝑏𝑎𝑛𝑑

𝑀𝑖𝑑𝑑𝑙𝑒𝑏𝑎𝑛𝑑
∙ 100    (10) 

To measure the increase or decrease, the %B is calculated in Equation 11 with x(t) being 

the signal and t being the time and showed where the signal is between the lower or upper 

band as a percentage. The signal would be increasing when it is between the middle and 

upper band and decrease between the lower and middle band [60]. The signal may have 

small hills and valleys but generally still trending up or down and using Bollinger bands 

would show this hard increase or decrease.  

%𝐵 =  
𝑥(𝑡)−𝐿𝑜𝑤𝑒𝑟𝑏𝑎𝑛𝑑

𝑈𝑝𝑝𝑒𝑟𝑏𝑎𝑛𝑑−𝐿𝑜𝑤𝑒𝑟𝑏𝑎𝑛𝑑
      (11) 

Knowing when the vital signals are increasing, or decreasing is important to determining 

sleep stages as a heart rate decrease would signify sleep or resting. In addition, an 

increase or decrease of the heart rate by 5-10 bpm could be considered falling asleep or 

waking up respectively [54]. Based on the analysis in [33], it was observed that HRV was 

at its lowest during wake and highest during sleep and RRV was lowest during sleep and 

highest at wake. If any of these parameters were stable at an excessive value, sleep or 

wake would be assumed until a significant %B value would increase or decrease the 

signal. Figure 15 shows a flowchart of the combined sleep scoring algorithm with both 

devices. The actigraphy sleep and wake states are compared with the BCG states by 

seeing if there is excessive movement during a REM or wake BCG epoch. The actigraphy 

is used to distinguish between wake and REM primarily with movements during a REM 

stage being scored as wake. Excessive movements with the actigraphy are considered 

wake and leaving the bed is also considered wake. However, during idle sleep in the bed, 

the sleep stages are primarily scored from the BCG because of the cardiac properties 

measured. Without any movement from the actigraphy, any changes to heart rate, HRV 

and RRV would be used primarily to determine sleep stages. Significant changes in heart 

rate would be a clear indicator of a sleep or wake state and a consistent rate would help 

identify how long the stage would last.  
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Figure 15: Proposed algorithm flowchart combining BCG and IMU (actigraphy) 
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Chapter 4.  
 
Results and Discussion 

4.1. Results 

The actigraphy and the BCG were both compared to the PSG to measure accuracy 

by matching the correct epochs over a sleep cycle. A true positive match was considered 

when the PSG and algorithm scored wake and true negative when both scored sleep, 

presented in Table 7.  

Table 7: True/False classification table 

True Positive 

PSG: Wake 

Algorithm: Wake 

False Positive: 

PSG: Sleep 

Algorithm: Wake 

False Negative 

PSG: Wake 

Algorithm: Sleep 

True Negative: 

PSG: Sleep 

Algorithm: Sleep 

 

The sensitivity and specificity were determined to measure how many correct matches 

there were between the algorithm and the PSG. Sensitivity relates to correct wake 

classification and specificity relates to correct sleep classifications presented in the 

following equations. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (12) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    (13) 
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In Figure 16, the black line indicated the sleep state obtained from the PSG and the red 

lines are the sleep states scored from the respective device. REM sleeps were also scored 

as sleep for accuracy measurement as the participant should be sleeping and have 

extremely minimal movements. The standard deviation measures the spread of all the 

participants sleep cycles together to see which method was more consistent. 

 

  

(a) (b) 

 

(c) 

Figure 16:Sleep scored epochs throughout the night, (a) is just the actigraphy IMU, (b) 
is the BCG bed sensor and (c) is the combination algorithm with actigraphy and BCG 
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Table 8: Accuracy, sensitivity, specificity, standard deviation, kappa and chi squared P-
value of each device compared to PSG 

Method 
Accuracy 

% 
Sensitivity Specificity Std Kappa 

P-
Value 

Actigraphy 80.4 18.4 98.8 8.80 0.22 0.51 

BCG 81.6 27.2 98.9 9.44 0.33 0.34 

Actigraphy/BCG 86.2 66.4 90.5 6.60 0.58 0.97 

 

The sensitivity and specificity variation are visually presented in Figure 17. Each method 

would estimate sleep states differently and would lean to wake or sleep exclusively and 

will be discussed further in the next section. Table 9 shows the total amount of epochs 

collected and the average total sleep and wake times (TST and TWT, respectively) as well 

as the sleep efficiency (SE) for each method compared to PSG. 

 

 

Figure 17: Visual representation of the sensitivity and specificity 
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Table 9: Total sleep and wake time in 30s epochs for each method 

 PSG Actigraphy BCG Actigraphy/BCG 

Total Epochs 17828    

Total TST 

(epochs) 
13618 16804 16678 13592 

Average TST 

(epochs) 
592.09 730.61 725.13 590.96 

Total TWT 

(epochs) 
4210 1024 1150 4236 

Average TWT 

(epochs) 
183.04 44.52 50 184.17 

Average SE 

(percent) 
76.55 94.55 93.43 76.66 

 

Each of the units on Table 9 are in 30 second epochs. The total epochs are the total 

amount of epochs collected for every night and participant. TST and TWT are the total 

amount of sleep and wake epochs counted for every night and the average amount of 

epochs for each criterion. SE is calculated by dividing the TST by the total time of the 

sleep cycle and represents how much sleep a person gets over their total time in bed. The 

higher the SE, the more time a person spends sleeping in bed rather than staying awake 

in bed. A higher SE will improve daily life and performance by providing more rest from 

sleeping more efficiently [61]. The appendix shows the individual participant results and 

most participants were consistent with the population. Only the actigraphy results showed 

some outliers as some participants had very subtle or minimal movements during the 

night. Examples of these outliers are discussed in the next section. Table 10 and Figure 

22 show each of the nights for the BCG sensor and the calibration performed for each 

successive night generally improved the accuracy. Some of the nights were slightly 

calibrated by maintaining a steady trend. Each participant used the BCG sensor in their 

own bed and each mattress was different and likely influence the calibrations depending  
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Table 10: BCG accuracy improvements from sensor calibrations each night 

 P1 P2 P3 P4 P5 P6 P7 P8 

Night 1 64.0% 76.4% 89.7% 71.1% 64.0% 74.3% 84.7% 85.4% 

Night 2 62.3% 83.7% 93.9% 68.7% 75.7% 89.7% 78.2% 89.5% 

Night 3 79.6% 89.7% 92.0% 81.7% 91.0% 85.1% N/A 84.9% 

R2 0.67 0.99 0.29 0.59 0.99 0.47 0.81 0.01 

 

 

Figure 18:Visual presentation of calibration accuracy over each night 

 

on how well the BCG would measure signals from the mattress. With the techniques 

recommended by [33], the BCG was set up to detect sleep with heart and respiratory 

variables. Bland-Altman plots were generated to observe the agreement between each of 

the methods compared to PSG. The agreement between sleep efficiency was compared 



40 

for each device by measuring the mean difference to evaluate a bias [62]. However, only 

the intervals of agreement are defined but does not necessarily mean that the limits are 

acceptable and a priori must be defined to evaluate the significance of the plots [62]. The 

y-axis is the difference between methods and the x-axis is the mean of both methods. The 

yellow line in Figures 18-20 represents the bias and shows how closely both methods 

measure results with a large offset from zero could swing the bias more towards one 

methods agreement. In this case, an agreement between PSG and the devices should be 

close as each method is trying to replicate the sleep/wake instances of the gold standard 

PSG. The orange lines represent the limits of agreement as a range where 95% of the 

data points should fall into [62]. The limits are calculated based on the means d and 

standard deviation s, with the associated 95% confidence interval of 1.96: 

𝑈𝑝𝑝𝑒𝑟 𝐿𝑂𝐴 = 𝑑 + 1.96𝑠     (14) 

𝐿𝑜𝑤𝑒𝑟 𝐿𝑂𝐴 = 𝑑 − 1.96𝑠     (15) 

 

 

Figure 19: Bland-Altman plot for actigraphy and PSG 
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Figure 20: Bland-Altman plot for BCG and PSG 

 

 

Figure 21: Bland-Altman plot for actigraphy/BCG algorithm and PSG 

 

4.2. Discussion 

Each participant used all three devices over the three nights of sleeping to gather 

a data set that could be used to estimate sleep states. Roughly 23 individual participant 

sleeps cycles with at least five hours for each individual sleep was collected. Each of the 

devices were compared to the gold standard PSG sleep states scored manually. One 

participant had the actigraphy IMU and the BCG bed sensor disconnect prematurely 

before they woke up and had to have their measurements disqualified and another 
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participant lost a single night to similar reasons, but the two previous data sets were used 

for analysis. Synchronizing each of the devices was deemed vital to get an accurate 

measurement of all the epochs lining up. The PSG was synced by having the participant 

press the event button to signal when they were getting into bed. The BCG bed sensor 

was synced by detecting bed occupancy when the participant first enters the bed. As part 

of the calibration procedure, the Murata bed sensor required at least one hour of empty 

bed before the participant went to sleep and the first occupied bed time was used to sync 

the BCG sensor. The actigraphy IMU synced by having the participant stand still initially 

facing the bed and the motion of entering the bed was many movements in quick 

succession. In addition, the video camera and PSG tracked the real time, and this was 

used to verify synchronization as close as possible. However, some error may still arise 

between each of the devices, as they could not be electronically synced due to each 

device being from a different manufacture and not directly compatible.  

Measuring sleep states with an actigraphy device is very convenient as it has very 

little impact on the participants natural sleep cycle due to the small size of it. Therefore, a 

natural quality sleep should be measured but the only parameters that are measured are 

motion of one or more limbs. As shown in Figure 16 (a), only sleep or wake states can be 

measured from the motion data. As a result, many papers such as [10] and [19] have 

mentioned that actigraphy usually over-estimates sleep than wake. The results obtained 

from this study show similar findings. Upon first inspection, the matched accuracy is about 

80% correctly matched epochs. However, people usually do not move very much during 

the night as they are sleeping or trying to get to sleep by laying still until they fall asleep. 

Only when people are restless or uncomfortable would they move extensively, and this 

activity would be captured by actigraphy. In this study, the actigraphy IMU was only placed 

on the non-dominant wrist which means that if, for example, they would scratch their nose 

with their dominant hand the actigraphy IMU would not capture this as wake and continue 

to score it as sleep. In Figure 21, the participant had carefully entered their bed without 

any motion and laid very still throughout the night. The accuracy between the actigraphy 

and PSG was around 92% correctly matched epochs because of all the scored sleep 

epochs. Watching their sleep cycle from the camera playback showed that they had 

opened their eyes a few times during the night and mostly moved their head and torso 

slightly; while the non-dominant wrist did not see enough motion to score wake instances.  
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Figure 22: Sleep cycle with very low activity, every epoch scored as sleep 

 

During this study, by the third night many of the participants would become familiar with 

the whole sleep setup and would get comfortable quicker and having a more natural sleep 

without invasiveness of the PSG affecting them much. Figure 17 compares each of the 

sensitivities and specificities among the methods with actigraphy having the widest spread 

with a very low sensitivity (wakes) and very high specificity (sleeps). In addition, Figure 18 

shows an agreement between the PSG and the actigraphy with a negative bias meaning 

that the results are skewed towards one method. This shows how actigraphy 

measurements overestimate sleep and would score a much higher SE and does not reflect 

the participant’s actual SE throughout the night. The data points create a linearly 

increasing trend that can confirm the overestimation of sleep by the inflated SE values. 

The signals from actigraphy would still be helpful for combining with BCG as the activity 

detection would help separate wake from REM situations. 

The Murata bed sensor was used to measure the cardiac effects while the 

participant sleeps without being intrusive. By measuring the vibrations recoiled from the 

body to evaluate HR, HRV and RRV, it was very sensitive to any movement the participant 

made during the night and would cause motion artifacts that are convenient for estimating 

wake times during the night. The BCG had a higher sensitivity to detect wake epochs 

because more variables could be measured to score each sleep stage. The change in 

heart rate was vital to see when a person is resting or active as a lower heart rate would 
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likely signify sleep. But a higher heart rate while laying still would signify wake as the 

participant was still awake. In addition, HRV has become an important measure for 

estimating sleep by measuring the ratio between the SNS and PNS and incorporated with 

the respiratory system. Each participant claimed to be a healthy individual with no known 

sleep problems and should have a normal respiratory cycle when sleeping with no apneic 

events. Figure 19 shows a very similar pattern to Figure 18 with just actigraphy compared 

to PSG agreement. With a large bias towards the BCG device as sleep was also 

overestimated due to the similarities to wake and REM. The accuracy results and 

agreement were like the actigraphy value with a very similar standard deviation but with 

the influence of detecting more wake instances rather than overestimating sleep like 

actigraphy.  

Combining both devices to detect sleep showed an improvement in accuracy and 

a more consistent deviation detecting sleep and wake states compared to the PSG. Figure 

17 showed a much better spread between specificity and sensitivity by using both sensors. 

In addition, Figure 20 showed a much better agreement between the PSG and the 

combined devices. The bias was very close to zero (-0.11) showing the agreement 

between SE measurements. One of the values fell outside of the limits of agreement that 

could be the result of the actigraphy overestimating sleep like in Figure 21 and affecting 

the overall agreement. However, 95% of the data points fall within the range of the limits 

of agreement and 5% of the data is expected to be outside due to a chance situation. The 

kappa values obtained from each of the device methods was significantly increased by 

the combination by about double, verifying the interrater reliability with the PSG. The Chi- 

square test p-values are all above the null hypothesis of 5% alpha and makes each of the 

methods statistically significant for analysis. The combined method shows the highest p-

values and less differences occurs between the PSG and combination. In comparison, 

however, as the p-values are lower for the separate devices, there is a greater difference 

between each separate device and the PSG as actigraphy and BCG separately would 

generally overestimate sleeps. The results obtained in these experiments with the 

combined devices are comparable to other studies done with actigraphy or BCG 

separately. For example, actigraphy was used in [10] to obtain an overall accuracy of 

about 86% with two dedicated wrist-worn actigraphic devices and compared with PSG. 

While the accuracy results were good, the actigraphy devices in their study still 

overestimated sleep as is expected from estimating sleep states with only actigraphy. The 
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study in [26] used BCG to estimate sleep stages by placing load cells on each of the bed 

legs and a polyvinylidenefluoride strip on the mattress to measure the BCG cardiac 

parameters. The overall accuracy they reported was about 77% correct sleep stage 

detections but also good estimation of wake and REM sleeps from the use of heart rate 

and HRV. The overall accuracy of the combined devices was about 86% and very similar 

to the actigraphy by itself. However, the detection of wakes compared to sleep was much 

better with both devices as inclusion of cardiorespiratory signals can help distinguish 

between each stage. As both devices are non-intrusive and this specific setup, the 

sleeping person would sleep as if they only had the wrist worn actigraphy device attached 

because the BCG sensor would lay in their bed. Therefore, it would be just as comfortable 

for the participant to sleep with just actigraphy but include BCG signals to better analyze 

sleeping data for a more accurate assessment. In this data set, the participants had the 

PSG device attached with multiple electrodes and wires throughout their body. Therefore, 

each participant would experience more discomfort than usual and have a harder time 

falling asleep. This was confirmed by questioning each participant after the experiment on 

how their sleep was. Most of them described it as uncomfortable initially and required 

getting used to. Also, with the added sensors and devices on their body, they moved slowly 

while in bed to prevent anything from detaching and could be why some of the actigraphy 

readings had detected very few wake instances. As the actigraphy device was on the non-

dominant hand, most people would use their dominant hand when adjusting anything in 

the bed and would result in the non-dominant hand not moving while they were awake.  

But with the inclusion of BCG to detect cardiac signals, the slower movements could still 

be compared to the changes in HR, HRV and RRV to better estimate if the movement is 

related to wake or still sleep. One participant likes to sleep on their stomach and found 

with the PSG it was difficult to find a comfortable position to sleep like that. As a result, 

they had to adjust the PSG device more to their side as opposed how it is shown in Figure 

5 on the torso and took more time to fall asleep in the new position for them. The 

participants were generally more awake than usual due to the discomfort and this was 

detected by the combined actigraphy and BCG sensors. Once they were familiar with each 

device, specifically the PSG, it did not affect their sleep as much. By the final night, they 

could put on all the devices relatively quickly and knew what to expect which would likely 

result from a more natural sleep cycle with the gold standard validation. The participants 

would likely have a more comfortable sleep without a PSG as both the sensors are non-

invasive and could perform a much better sleep analysis with the sensors.  
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Chapter 5.  
 
Conclusion 

5.1. Conclusion 

Sleep is a very vital component of the human life for resting our bodies to be alert 

and active for the following days. Many people have trouble sleeping due to sleep 

disorders or other health problems and as a result, these health problems can be detected 

based on one’s circadian rhythm and sleep cycle. Therefore, effectively detecting sleep 

has emerged as an important topic to study in both the medical and engineering fields. 

The gold standard for detecting sleep is PSG that is used in clinical settings to measure 

individual sleep stages and diagnose sleep disorders. However, PSG is not very 

convenient and usually only done for a single night. Research has been done to find 

alternatives for sleep analysis that are convenient for both the clinician and the patient 

over multiple nights. Actigraphy has been considered a non-intrusive method for sleep 

analysis by using an accelerometer IMU to detect and analyse limb movements during the 

sleep cycle. Another non-intrusive method to for sleep analysis is BCG that includes an 

accelerometer sensor placed in the bed with the sleeping participant, to detect recoiling 

effects from their cardiorespiratory system to estimate cardiac related vitals and used to 

estimate sleep states. The BCG used in this project was developed by Murata 

Manufacturing Co. and had undergone clinical tests to verify each of the detectable 

parameters with acceptable results. This provided good confidence to use this BCG 

sensor for the study presented in this thesis. In addition, a light and sound sensor could 

be incorporated into the system to detect lights ON/OFF times and snoring. The light 

sensor would begin scoring the sleep stages without the participant requiring to manually 

set the system for sleep scoring even if the participant would forget to start the scoring. 

Also, a sound sensor would allow the system to listen to any snoring or respiratory events 

to help asses when the participant is sleeping. Any talking or loud noises that could wake 

someone could be compared with changing movement or cardiorespiratory events to add 

an extra layer to the analysis. The BCG works through Wi-Fi and is compatible with 

Android devices. Therefore, an Android smart watch can be used for actigraphy to directly 

integrate with the BCG over a network to directly sync the measurements for accurate 

epoch by epoch analysis. As only healthy participants were used during this study, another 
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group of participants who have different sleeping patterns would need to be evaluated; for 

example, older adults who are more likely to have illnesses and sleeping disorders that 

would affect their sleep. Also, older adults are not as active as young adults and would 

likely not move in their sleep as much as a younger adult. Therefore, the algorithm would 

need to be more sensitive to detect subtle movements as well as have specific 

cardiorespiratory events accounted for illnesses or sleep disorders that can affect the 

heart. A person with a heart condition would likely need to be monitored much closer than 

a healthy person to make sure there is no emergency response required. The objective of 

this thesis was to combine both sensors to develop a method for analyzing sleep more 

effectively while maintaining a non-intrusive sleeping environment to measure a natural 

sleep cycle.  

An experimental study was performed for 10 healthy participants while they slept 

in their own home. Eight participants were used in the end for natural sleep cycle analysis 

with both the combined use of the actigraphy and BCG. PSG was used as a gold standard 

verification for each of the devices. An initial general algorithm was developed for the 

accelerometer IMU to be used for actigraphic sleep analysis by measuring non-dominant 

arm movements and relating them to sleep or wake states. The algorithm also interpreted 

the BCG measurements to further improve the sleep analysis by including the cardiac 

parameters offered such as HR, HRV and RRV. The algorithm combined both sensors to 

improve sleep analysis results as shown in the results section of this thesis. The actigraphy 

and BCG sensors separately detected about 80% of correct sleep states while the 

combined method accuracy improved to 86% with more consistent standard deviation 

between participants. In addition, using both sensors scored more wake states 

appropriately than each of the separate sensors by themselves. As actigraphy specifically 

has been known to overestimate sleep states, the combined system shows great 

improvement by having an improved 70% wake detection compared to the actigraphy’s 

20%. Using both an actigraphy and BCG device combined would provide valuable sleep 

analysis as together they do not interfere with a patient while they sleep and would 

measure natural sleep over multiple days.  

5.2. Future Work 

For future research, it would be recommended to have a larger sample size to 

further validate the combined use of both devices. Also, a more diverse group would be 
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beneficial such as seniors and younger children and people with sleep disorders. Having 

a diverse group would expand the results by observing trends among different sleep 

disorders and sleeping patterns such as people who move around during their sleep or 

time in bed frequently. The activity throughout the night would help distinguish between 

wake and sleeping movements to help separate each sleep state. This study is designed 

to be convenient in any sleeping environment; therefore, it is recommended to obtain sleep 

analysis from a wide variety of sleeping environments by measuring BCG data on different 

mattresses. Obtaining accurate results with varying bed and environment conditions would 

make this method more acceptable to the general public and clinicians by making the test 

more portable. Also, to test the algorithm with various devices such as smart watches for 

actigraphic measurements. Having access to any compatible accelerometer device would 

meet specific participant or researcher requirements to analyze natural sleep and flexibility 

for system integration. In addition, commercially available smart watches are relatively 

inexpensive and can easily be integrated with many systems. Having actigraphy 

measurements obtained from a smart watch would be very convenient for future 

expansions as well to improve any quality of life features. Adding any device or sensor 

should not impact the participants sleep environment and therefore, any additional 

sensors being included would likely not touch the participant. For example, a light or noise 

sensor being built into the smart watch would be a convenient way to potentially improve 

the analysis without any impact on the participants natural sleep. Each of the devices 

should be synchronized to capture accurate analysis as an out of sync analysis could 

incorrectly score the entire sleep cycle. Using an actigraphy and BCG that could be 

processed together through a hub or receiver that would match the frequencies precisely 

and would be a very beneficial future step. Most of the future considerations are related 

to improving the comfort for the participant as this would improve the sleep quality for them 

and provide good quality sleep data for analysis. 
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Appendix C: Participant Data 

The following tables show the averaged results collected for each participant over 

the three nights. Each table shows the matched averages, sensitivity and specificity, total 

sleep and wake times, sleep efficiency and the Cohen Kappa relation. Each method was 

compared with the same PSG outputs. 

Table A 1: Actigraphy averaged results for each participant 

 Acc. Sens. Spec. TST TWT SE Kappa 

P1 71.26 25.22 97.76 702.66 87 89.01 0.26 

P2 84.17 3.65 99.87 642 9 98.81 0.05 

P3 87.75 16.36 100 798.67 21.33 97.73 0.23 

P4 71.5 26.34 95.89 781.33 93.33 89.34 0.27 

P5 81.29 26.98 98.09 706.67 58.33 92.71 0.31 

P6 82.72 15.23 99.85 676 21.33 96.83 0.21 

P7 78.98 8.96 99.55 763 18.5 97.61 0.12 

P8 84.78 21.33 99.48 785.33 38.67 95.41 0.28 
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Table A 2: BCG averaged results for each participant 

 Acc. Sens. Spec. TST TWT SE Kappa 

P1 68.63 17.22 99.52 739.67 50 93.66 0.20 

P2 83.255 25.74 95.72 601 50 92.23 0.23 

P3 91.72 43.49 100 770 50 93.75 0.56 

P4 71.34 17.19 99.77 824.67 50 94.19 0.21 

P5 83.76 31.06 100 715 50 93.39 0.41 

P6 83.05 26.71 97.72 647.33 50 92.81 0.30 

P7 81.78 23.78 98.58 731.5 50 93.60 0.30 

P8 86.61 31.14 99.68 774 50 93.90 0.42 
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Table A 3: BCG/actigraphy averaged results for each participant 

 Acc. Sens. Spec. TST TWT SE Kappa 

P1 84.51 78.88 86.07 484.67 305 61.57 0.66 

P2 88.10 49.01 93.01 536.67 114.33 83.69 0.42 

P3 93.36 69.74 97.2 715.33 104.67 87.43 0.72 

P4 72.68 71.96 73.32 514.67 360 58.42 0.42 

P5 86.54 72.50 90.95 584 181 76.41 0.61 

P6 88.56 65.69 90.91 545.333 152 77.52 0.55 

P7 87.60 53.14 97.60 673 108.5 86.02 0.59 

P8 91.41 65.73 97.32 701.33 122.67 85.33 0.69 
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Appendix D: Preliminary Actigraphy Analysis 

 Initially, a few methods were implemented to improve the actigraphy beyond just 

adjusting the Cole-Kripke algorithm weights. First a rescoring method was devised to try 

to filter out any unnecessary movement events and collect excessive movement activity 

into one long wake instance. Next, orientation was considered to potentially improve the 

sleep scoring by trying to relate sleep/wake instances to common positions that the 

participants would sleep with.  

 First, the rescoring was implemented into the algorithm by attempting to observe 

continuous patterns of sleep and wake. For example, if there was a short wake instance 

surrounded by long sleep, the short wake would be rescored into sleep. If there were many 

wake instances within proximity, then the short sleep instances would be rescored to wake 

instances. The details for the rescoring are outlined in the following rules. 

1. 90 seconds of continuous wake would always be considered wake 

2. 330 seconds or more of continuous sleep before and after a wake instance 

would rescore the wake into sleep 

3. Less than 330 seconds of sleep between wake instances would rescore the 

sleep instance into wake 

The idea was to observe consecutive sleep or wake instances and rescore them 

accordingly by combining many wake instances together into a single wake as a 

participant would move around frequently over a short period of time would likely be 

awake. However, if the participant was idle for a consecutively long time, they would likely 

be considered asleep and any short movements would likely be the result of slightly 

adjusting their body but not actually waking up. Therefore, only significant movement 

would be considered as wake instead of each individual small movement activity. The 

issue that arose was that each participant had a different sleeping pattern and a universal 

ruleset was difficult to create for everyone. Table A4 shows the results for a single 

participant over multiple nights and Table A5 shows different participants being evaluated. 

The participant in Table A4 was the author and multiple nights were performed to asses 

the algorithm and logistics of deploying the device to each participant in the future. 
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Table A 4: Actigraphy percent correct matches of normal scoring, normal scoring with 
rescoring and orientation rotation rescoring included 

 N1 N2 N3 N4 N5 N6 N7 N8 N9 Avg STD 

Calculated 88.8 81.1 71.5 80.3 71.7 83.8 77.0 61.9 71.6 76.4 7.6 

Rescoring 88.6 84.0 76.1 88.6 73.6 86.1 79.8 63.2 75.1 79.5 7.9 

Rotation 
Rescore 

97.1 85.5 N/A 83.2 45.4 83.2 50.8 47.4 45.4 67.2 20.4 

 

Table A 5: Actigraphy percent correct matches for normal scoring and rescoring 

 

Table A4 shows that the accuracy had increased for all the nights for the single participant. 

However, the increase was only about a 3% increase and this is a similar comparison to 

other literature with a rescoring method. However, the overall accuracy decreased when 

the rescoring rules were used for each of the other participants. This is likely due to each 

participant having a different sleeping pattern and locking down rescoring rules for each 

of them would be difficult. In Figures A1 and A2, the rescoring would remove a lot of the 

wake instances if there was not much movement and would likely be the reason for the 

lower accuracy. Therefore, it rescoring was not used in the experiments. 

 
Figure A 1: Normal Scoring 

 
Figure A 2: Rescoring 

 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg STD 

Calculated 96.1 96.9 94.5 90.9 92.0 90.2 79.7 87.1 96.1 70.2 89.4 8.5 

Rescoring 97.3 95.0 5.7 94.1 92.6 89.0 81.2 73.4 97.32 95.6 82.2 28.0 
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 Next, orientation scoring was attempted to improve the accuracy by observing the 

position they would sleep in and for how long. The idea was to see if they would sleep on 

their back, front or sides and for how long at a time. The participants would report what 

they believed was their most common sleeping position and the algorithm would try to 

improve the accuracy by assuming more sleep would occur during their favored position. 

The Xsens mTW sensor included a gyroscope and could be used to calculate the roll, 

pitch and yaw throughout the night. In addition, the amount of aggressive rotation was 

considered into the sleep or wake states. For example, if someone is tossing or turning 

throughout the night, they would likely be turning from side to side and this would signify 

a wake instance more likely than moving the arm a little. Shown in Figures A3 and A4, the 

orientation would significantly over estimate wake instances as the person would lay in 

positions they normally would not sleep in and be considered awake. Also, the inclusion 

of orientation would increase the wake detection as the inclusion of rotation would add an 

extra layer in motion activity. However, the issues related to using a single sensor on the 

wrist and would be difficult to distinguish between all the sleep positions. Since the wrist 

could be orientated in multiple directions while the torso faces another direction. For 

example, if the torso is facing towards the ceiling, the wrist could be orientated to either 

face the ceiling or to the side away from the torso and could be viewed as a different 

orientation. As well as laying on the side, the wrist could be facing the ceiling and resulting 

in a sleeping on back position instead of a side sleeping position. If more sensors were 

 

Figure A 3: Normally scored sleep 

 

Figure A 4: Orientation scored sleep 
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used to map the full arm, then it would likely increase the orientation likelihood of 

estimating the correct position. For example, if a sensor was placed on the wrist, elbow 

and shoulder, then it would be easier to determine the sleep position because the whole 

arm can only move so much while laying in each position. However, more sensors were 

not used as this would create a more invasive sleep monitor by attaching more sensors to 

the body during the night. The single Xsens sensor on the wrist was chosen as it was 

supposed to simulate a smart watch that could be used to measure actigraphic 

movements. Therefore, orientation was removed from the algorithm as it did not provide 

any benefit to assessing sleep accuracy with this specific setup.  

 The final algorithm used only the normal scoring for actigraphy without rescoring 

or orientations. Rescoring could likely be effective with this system but would need to be 

tuned significantly before it could be used to rescore the states correctly. An alterative 

solution is to have different rescoring rules for different groups of people. Such as people 

who move very little during the night such as older people, the rules would be different 

from more active or younger sleepers. Then each person could use their own specific type 

of algorithm to help detect each of the sleep states much better. As for orientation, it does 

not seem viable to score sleeping positions in the current setup with only one actigraphy 

sensor attached to the wrist. More sensors or a different location for the sensor would be 

recommended to improve the orientations but this would likely reduce the convenience of 

the system and would not be used. Therefore, the current setup with one wrist sensor and 

one BCG is used and continually improved in the software to obtain the best sleep 

assessment. 

  


