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Abstract

As autonomous robots become pervasive in daily life, it is important to ensure they successfully

accomplish the task while being safe from collisions. These desired behaviours require both per-

ception of the environment and robust control of the robot. Traditional optimal control method

Hamilton-Jacobi (HJ) Reachability can formally verify the safety of the robot, but requires an a priori

known map and is computationally intractable for high dimensional systems. Machine learning is

widely used in machine perception, and recently, End-to-End method has been proposed to bridge the

perception and control for robotics. However, it suffers from data inefficiency and lack of robustness

when applied to robotics tasks.

To address the above challenges, firstly we propose a theoretical improvement on approximating HJ

Reachability. Our novel system decomposition technique largely reduces the computation complexity

without introducing much conservatism. Both formal mathematical proof and numerical examples

are provided to demonstrate its efficiency and guaranteed-safe property. We also present the first HJ

Reachability analysis on 6D bicycle model that is previously considered intractable.

Secondly, we apply HJ Reachability to learning-based visual navigation in indoor office environment,

where a convolutional neural network (CNN) processes the visual input and predicts waypoint that

leads to the goal. We propose a novel cost function for waypoint evaluation and generation based

on HJ Reachability analysis, and uses disturbances in dynamics to model CNN’s prediction error.

Compared to state-of-the-art, our method shows more robust behaviours when navigating in narrow

spaces demonstrated in both the simulation and hardware experiment in SFU buildings.

Keywords: Hamilton-Jacobi Reachability, machine learning, visual navigation, optimal control
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Chapter 1

Introduction

Recently, autonomous systems including self-driving cars, unmanned aerial vehicles (UAV), service

robot and etc., started to gain popularity in our daily life. As there will be more robot-to-robot and

robot-to-human interaction, safety becomes an important topic when these robots are applied to the

real world. For safe-critical systems like drones, any collision can bring huge damage to humans and

the environment. For multi-agent systems, a team of robot can work together effectively only when

they won’t collide with each other. Therefore, robust algorithms are urgently need for autonomous

systems to safely operate in the physical world.

Hamilton-Jacobi (HJ) Reachability is a formal verification tool widely used in robotic safety

analysis for controlled nonlinear systems experiencing adversarial disturbances [16]. Given a target

set that represents a set of unsafe states or goal states, the Backward Reachable Tube (BRT) specifies

the states from which a system is guaranteed to enter the target under the worst-case disturbance.

Nonetheless, computing BRTs requires state space discretization, which suffers from exponential

computational time and space complexity with respect to the state space dimension, known as “curse

of dimensionality”. In addition, full observation of the environment is a necessary input to the BRT

computation, which may be hard to obtain accurately in reality.

Deep learning is widely used in robot perception of the environment. In visual navigation tasks,

end-to-end (E2E) method learns to directly map the current image to the control signal of the

robot [25, 61]. In [8], waypoint navigation (WayPtNav) is proposed, where a Convolutional Neural

Network (CNN) predicts a waypoint that is used by the dynamics model for planning and tracking a

trajectory to the waypoint.

However, the CNN inevitably makes prediction errors, ultimately leading to collisions, especially

when the robot is navigating through cluttered and tight spaces. In addition, it is often inefficient to

collect large amount of training data for real robots.

In Chapter 2, we focus on addressing “curse of dimensionality” in HJ Reachability method. We

first propose a State Dependency Graph to represent the system dynamics, and then decompose the

full system in a way that only dependent states are included in each subsystem, and “missing” states

are treated as bounded disturbance. Thus for a large variety of dynamics in robotics, BRTs can be

quickly approximated in lower-dimensional chained subsystems, while conservatism is preserved in
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the right direction to guarantee safety. We demonstrate our method with numerical experiments on

the 4D Quadruple Integrator, and the 6D Bicycle, an important car model that has been intractable to

analyze to the best of our knowledge.

In Chapter 3, we propose a novel visual navigation framework using a hybrid approach based

on [8], where a CNN processes the current image observation to predict a waypoint, and HJ reach-

ability generates robust supervision. Specifically, by modeling the prediction error of the CNN as

disturbances in dynamics, the proposed method generates waypoints that are robust to these distur-

bances, and consequently to the prediction errors. Moreover, using globally optimal HJ reachability

analysis leads to predicting waypoints that are time-efficient and do not exhibit greedy behavior.

Through simulations and experiments on a hardware testbed, we demonstrate the advantages of the

proposed approach for navigation tasks where the robot needs to navigate through cluttered, narrow

indoor environments.

In Chapter 4, we summarize the work in this thesis.
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Chapter 2

Guaranteed-Safe Approximate
Reachability via State
Dependency-Based Decomposition

As the popularity of mobile autonomous systems rapidly grows in daily life, the importance of safety

of these systems substantially increases as well. Especially for safe-critical systems like self-driving

cars, drones, and etc., collision avoidance is indispensable, since any crash can lead to serious damage

to human, other autonomous agents and the environment. Thus, formal verification is urgently needed

to analyze safety properties of these systems.

Optimal control and differential game theory are well-studied for safe-critical systems [9, 10,

40, 45]. These methods are ideal for analyzing controlled nonlinear systems under the influence of

adversarial disturbances. One powerful tool for safety verification is reachability analysis, which

not only characterizes the safe states of the systems, but also provides safety controllers [2, 22, 34].

It has been widely used in trajectory planning [26, 35, 50, 55], air traffic management [13, 14], and

multi-agent collision avoidance [15, 18].

In HJ Reachability, by computing Backward Reachable Tube (BRT), one can easily quantify

the states and controls that guarantee safety [16]. In a collision avoidance scenario, given system

dynamics and the unsafe states, the BRT represents the states from which reaching the unsafe states

is inevitable within a specified time horizon under the worst-case disturbance.

There is a variety of reachability analysis methods. [3, 22] focus on analytic solutions, which

are fast to compute, but require specific types of targets, e.g. polytopes or hyperplanes. Some other

techniques have strong assumptions such as linear dynamics [34,39], or dynamics that do not include

any control and disturbance [17]. HJ reachability is the most flexible method that accommodates

nonlinear dynamics and arbitrary shapes of target sets; however, such flexibility requires level set

methods [42, 48], in which value functions are stored on grid points in the discretized state space.

Such an approach suffers from the curse of dimensionality.

Previously, several approaches have been proposed to reduce the computation burden for HJ

reachability. Projection methods have been investigated to approximate BRTs in lower-dimension
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(a)

(b)

Figure 2.1. (a) The State Dependency Graph for 4D Integrator. (b) A decomposed State Dependency Graph for 4D
Integrator. The light blue vertices and edges indicate the missing states and their dependencies. Our system method
approximates the BRT of the full-dimensional system in Fig. 2.1(a) by concurrently computing a sequence of BRTs for the
subsystems in Fig. 2.1(b).

spaces [46], but it can be difficult to choose which dimensions to project to, and the results can be

overly conservative at times. Integrator structures have been analyzed in [44] to reduce dimensionalilty

by one. The state decoupling disturbances method [11] treats certain states as disturbance, thus

subsystems can be decoupled and computed on lower-dimensional for goal-reaching problems. An

exact system decomposition method [12] has also been used for reducing computation burden without

incurring approximation errors. However, this approach is only applicable if there exist self-contained

systems, which can sometimes be restrictive.

In this chapter, we propose a novel system decomposition method that exploits state dependency

information in the system dynamics in a more sophisticated, multi-layered manner compared to

previous works. Our approach involves representing the system dynamics using a directed dependency

graph, and decomposing the full system into subsystems based on this graph. This is done in a way

that allows computation of BRT over-approximations to be tractable yet not overly conservative. A

set of lower-dimensional BRTs is computed concurrently: “missing” states in each subsystem are

treated as disturbances, the range of which are bounded by the other BRT approximations being

computed.

Our method is applicable to a large variety of system dynamics, especially those with a loosely

coupled, “chained” structure. It is easy to combine our method with other decomposition techniques

to achieve even more dimensionality reduction. Beyond that, our method also offers a flexible way of

adjusting the trade-off between computational complexity and degree of conservatism. This means

that our method is adaptable and relevant regardless of the amount of computational resources

available.

Organization:

• In Section 2.1, we introduce the background on HJ reachability and projection operations of

value functions.

4



• In Section 2.2, we first present how our method decomposes dynamical systems into several

smaller subsystems. Then, we discuss how BRT over-approximations can be computed given

these subsystems. Finally, we present a proof of correctness, computation complexity analysis,

and a discussion on target set selection.

• In Section 2.3, we present numerical results for the 4D Quadruple Integrator and 6D Bicycle.

• In Section 2.4, we make brief concluding remarks and suggest future research directions.

2.1 Background

HJ reachability is a powerful tool for guaranteed-safety analysis of nonlinear system dynamics,

compatible with arbitrary shapes of target sets, which represent the safe or unsafe states. Given a

target set, minimal BRTs can be used to specify the states that will inevitably lead to collision; safety

is guaranteed for all states outside of the BRT. In this section, we present the necessary setup for HJ

reachability computation, and introduce the projection operations used in our method.

2.1.1 System Dynamics

Let z ∈ Rn represent the state and s represent time. The system dynamics is described by the

following ODE:

ż = dz
ds = f(z, u, d), s ∈ [s0, 0], s0 ≤ 0

u ∈ U , d ∈ D (2.1)

The u(·) and d(·) denote the control function and disturbance function. For any fixed u and d,

the dynamics f : Rn ×U ×D → Rn is assumed to be uniformly continuous, bounded and Lipschitz

continuous with respect to all arguments; thus, a unique solution to (2.1) exists given u and d.

The solution for (2.1), or trajectory, is denoted as ζ(s; z, s0, u(·), d(·)) : [s0, 0] → Rn, which

starts from state z at time s0 under control u and disturbance d. ζ satisfies (2.1) almost everywhere

with initial condition:

d
dsζ(s; z, s0, u(·), d(·)) = f(ζ(s; z, s0, u(·), d(·)), u(s), d(s)),

ζ(s0; z, s0, u(·), d(·)) = z. (2.2)

The control and disturbance have opposing objectives, and are modeled as opposing players in a

differential game. Following [45], we let d(·) = γ[u](·) , where γ is drawn from only nonanticipative

strategies.
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Figure 2.2. An example of a target and its BRT. To avoid the target, the agent should stay outside of the BRT.

2.1.2 Hamilton-Jacobi Reachability

Given a target T to avoid, the BRT is the set of states from which there exists a disturbance such that

entering the target during the time horizon of duration |s0| is inevitable despite the best control. This

is illustrated in Fig. 2.2.

Therefore, agents can remain safe for some time horizon by staying outside of the BRT of the

corresponding duration. The definition of the minimal BRT Ā(s) is as follows:

Ā(s) = {z : ∃d(·) ∈ D,∀u(·) ∈ U, ∃s ∈ [s0, 0],

ζ(s; z, s0, u(·)) ∈ T } (2.3)

In the HJ formulation, the target set is represented as the sub-level set of some function l(z),

where z ∈ T ⇔ l(z) ≤ 0. Then, the HJ formulation of the reachability problem becomes the

differential game problem below:

V (z, s) := min
d(·)

max
u(·)

min
s∈[s0,0]

l(ζ(0; z, s, u(·), d(·))) (2.4)

The value function V (z, s) can be obtained as the viscosity solution of the following HJ partial

differential equation: (2.4):

min{DsV (z, s) +H(z,∇V (z, s)), V (z, 0)− V (z, s)} = 0,

V (z, 0) = l(z), s ∈ [s0, 0]
(2.5)

where

H(z,∇V (z, s)) = min
d(·)

max
u(·)
∇V (z, s)>f(z, u) (2.6)

The level set method [42] is a computation tool to solve (2.5) in the discretized state space.

Recently, toolboxes [43, 57] have been developed to take pre-defined system dynamics and target

sets as input, and numerically compute BRTs using the level set method.
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2.1.3 Projection

We present two kinds of projection operations that are used to manipulate value functions of BRTs

between high dimension spaces and their low dimension subspaces. Let V (x, y) : Rnx+ny → R be a

value function in nx + ny dimension space, where x ∈ Rnx and y ∈ Rny .

Given a BRT represented by V (x, y), we define the projected BRT in its nx dimension subspace

by the value W (x) : Rnx → R, where

W (x) = min
y
V (x, y) (2.7)

Given W (x) in nx-dimensional space, we define the value function V (x, y) representing the

back projected BRT as

V (x, y) = W (x), ∀y ∈ Rny . (2.8)

2.2 Methodology

Reachability analysis relies on an accurate model of the robotic system under consideration, but

accurate models tend to be high-dimensional. This often makes HJ reachability intractable due to the

curse of dimensionality.

In this section, we first present a novel method to decompose the dynamical system in (2.1) into

several coupled subsystems, based on a State Dependency Graph. Then, we provide an algorithm for

computing BRTs with these subsystems. Finally, we provide the proof of correctness of our method,

analyze its computational time and space complexity, and discuss the constraints for target sets.

2.2.1 System decomposition

State Dependency Graph

Let S be the set of states, S = {zi}ni=1. We first define the notion of “state dependency”: for some

states zi, zj ∈ S, zi depends on zj in f(z, s) means dzi
ds is a function of zj .

In order to clarify these dependency relationships between each state of S in system dynamics

f(z, s), we define a directed State Dependency Graph G = (S,E) based on the system dynamics.

The set of vertices is denoted S, and contains all state variables. If some state component zi ∈ S
depends on zj in f(z, s), then the graph G would have a directed edge from zi to zj , (zi, zj) ∈ E.

Often, high-dimensional dynamics contain chains of integrators. Thus, we consider a running

example: 4D Quadruple Integrator, whose states z = (z1, z2, z3, z4) ∈ R4. The dynamics are as

follows: 
ż1

ż2

ż3

ż4

 =


z2 + d

z3

z4

u

 , u ∈ U , d ∈ D, (2.9)
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where u and d denote the control and disturbance. For the system in (2.9), S = {z1, z2, z3, z4},
E = {(z1, z2), (z2, z3), (z3, z4)}, and its State Dependency Graph G = (V,E) is shown in Fig.

2.1(a).

Choosing coupled subsystems

Given the State Dependency Graph G and the computational space constraint that each subsystem

can be at most p-dimensional, we can decompose the full system S with state z into several coupled

subsystems S1, S2, . . . , Sm with subsystem states denoted as x1, x2, . . . , xm respectively, with the

following properties:

• In every subsystem, each state should depend on or be depended on by at least one other state.

• Every subsystem should include no more than p states.

• Subsystems should be chained: each subsystem should share at least one state with another

subsystem.

As a result, the decomposed system is represented by connected subgraphs ofG each representing

a subsystem. Let Si be the set of state variables included in the ith subsystem, and let Sci be the set

of states that are not included in ith subsystem, i.e. ∀i, Sci = S \ Si.
For example, suppose that one requires the maximum dimensionality of subsystems to be two,

p = 2. We can decompose the 4D Quadruple Integrator into 3 subsystems with S1 = {z1, z2}, S2 =
{z2, z3}, S3 = {z3, z4}. In terms of the subsystem state variables, we have x1 = (z1, z2), x2 =
(z2, z3), and x3 = (z3, z4). The result of the decomposition is shown in Eq. (2.10), and the corre-

sponding State Dependency Graph representing subsystems is illustrated in Fig. 2.1(b).

S1 : ẋ1 =
[
ż1

ż2

]
=
[
z2 + d

z3

]
, d ∈ D, z3(s) ∈ Rz3(z2, s)

S2 : ẋ2 =
[
ż2

ż3

]
=
[
z3

z4

]
, z4(s) ∈ Rz4(z3, s)

S3 : ẋ3 =
[
ż3

ż4

]
=
[
z4

u

]
, u ∈ U

(2.10)

In each subsystem, there may be zero or more missing state components. For the 4D Quadruple

Integrator, the missing state of S1 is z3 since z3 /∈ S1. To guarantee safety, we assume the worst case

for the missing states by treating them as virtual disturbances, which leads to an over-approximated

BRT that is conservative in the right direction [46].

To avoid excessive conservatism, the virtual disturbances are not drawn from the whole com-

putation range. Instead, we will compute the value functions of all the subsystems concurrently to

able to access the up-to-date approximate BRTs of other subsystems. Since all the subsystems are
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chained, one can determine the bounds of virtual disturbances by searching the value functions of

other subsystems that contain the corresponding state.

Formally, consider some subsystem Si, and let Rzj (xi, s) denote the range of the missing state

zj /∈ Si. Suppose zj ∈ Sk with Sk being chained with Si, Sk ∩ Si 6= ∅. Note that k is not unique, as

zj may be a state of many different subsystems. Furthermore, let Wk(xk, s) be the value function for

the subsystem Sk at the time s. Then, Rzj (xi, s) is determined from Wk(xk, s) as follows:

Rzj (xi, s) = {zj |Wk(xk, s) ≤ 0, ∀k such that zj ∈ Sk ∧ Sk ∩ Si 6= ∅} (2.11)

Besides reducing dimensionality, our method also provides a simple way to adjust the trade off

between computational burden and degree of conservatism. Depending on different requirements

for computational time, computational space, and approximation accuracy, one can easily switch

between having higher-dimensional subsystems for which BRTs are slower to compute but more

accurate, and having lower-dimension subsystems for which BRTs are faster to compute but more

conservative.

Table 2.1. Decomposition suggestions for 5D Car and 6D Planar Quadrotor

System configuration System dynamics State Dependency Graph Decomposed State Dependency Graph Time and space
5D Car
(x, y)-position
θ - heading
v - speed
ω - turn rate
ua - accel. control
uα - ang. accel. control


ẋ
ẏ

θ̇
v̇
ω̇

 =


v cos θ
v sin θ
ω
ua
uα


Ground truth:
both O(k5)

Decomposition:
O(k4) and O(k3)

6D Planar Quadrotor
(x, y)-position
(vx, vz) - velocity
θ - pitch
ω - pitch rate
uT - thrust control
uτ - ang.accel.control



ẋ
ż
v̇x
v̇z
θ̇
ω̇


=



vx
vz

−uT sin θ
uT cos θ − g

ω
uτ


Ground truth:
both O(k6)

Decomposition:
O(k4) and O(k3)

Algorithm 1 Approximating full-dimensional BRTs with chained subsystems

Require: System dynamics f(z, u, d) described as (2.1) and a function l(z) representing the target
set T

1: Initialize the full-dimensional final time value function V (z, 0) as (2.5)
2: Decompose the entire system into chained subsystems S1, S2, S3, ...Sn, based on Section 2.2.1
3: Initialize the final time value functions Wi(xi, 0) for each subsystem Si based on (2.12)
4: for (s = 0; s ≥ s0; s = s−∆s) do
5: for each subsystem Si

6: Find the range Rzj (xi, s) of the missing states zj based on (2.11)
7: Obtain Wi(xi, s) by solving the HJ equation in (2.13)
8: end for
9: Obtain the approximated V (z, s0) based on (2.15)

10: Obtain the approximated full-dimensional BRT from the zero sub-level set of V (z, s0)
11: For any time s, obtain the optimal controller as (2.16) and (2.17)

9



Although in general it may not be possible to decompose arbitrary dynamical systems in the form

of (2.1) in a way that saves computation time, our approach is very flexible and can often successfully

decompose many realistic system dynamics. We demonstrate the method by decomposing the high-

dimensional, tightly coupled 6D Bicycle in Section 2.3.2. We also present decomposition suggestions

for two other common system dynamics, 5D car [51] and 6D planar quadrotor [55], in TABLE 2.1.

2.2.2 Backward Reachable Tube Computation

We now present the procedure for over-approximating BRTs with low-dimensional chained subsys-

tems S1, . . . , Sm. Given the target set T and the corresponding final condition to the HJ PDE (2.5),

l(z) = V (z, 0), we project the full-dimensional BRT onto the subspace of each subsystem Si, and

initialize the final time value function Wi(xi, 0) for the subsystem Si using the projection operation

in (2.7) as follows:

Wi(xi, 0) = min
zi∈Sc

i

V (z, 0) (2.12)

Then, given Wi(xi, t) for some t, we compute the value function Wi(xi, s) backwards in time

for each subsystem following standard HJ PDE theory and level-set methods, while treating missing

variables as virtual disturbances with appropriate bounds. For each time step s ∈ [t−∆s, t],Wi(xi, s)
is the viscosity solution of the following HJ partial differential equation:

min{DsWi(xi, s) +H(xi,∇Wi(xi, s)),

Wi(xi, 0)−Wi(xi, s)} = 0,
(2.13)

The Hamiltonian is given by

H(xi,∇Wi(xi, s)) = min
d∈D

zk∈Rzk
(xi,s),

∀zk∈Sc
i

max
u∈U

∑
zj∈Si

∂Wi(xi, s)
∂zj

· ∂zj
∂s

(2.14)

where Rzi(xi, s) is the range of missing states {zk} given in (2.11).

This procedure starts at t = −∆s, and finishes when Wi(xi, s0) is obtained. Finally, we take

the maximum of all the Wi(xi, s0) as the over-approximation of the full-dimensional initial time

V (z, s0):

V (z, s0) = max
i

Wi(xi, s0) (2.15)

In general for any time s, we also have

V (z, s) = max
i

Wi(xi, s). (2.16)

The optimal controller is given by

u∗(s) = argmax
u

∇V (z, s)>f(z, u). (2.17)

10



Figure 2.3. Searching missing states for 4D Quadruple Integrator. Left: a BRT described by W1(x1, s) for subsystem S1.
Right: a BRT described by W2(x2, s) for subsystem S2. When solving on the grid point of (z1, z2) = (a, b) in subsystem
S1 at time s, we find the range of missing state Rz3 (z2, s) inside the BRT from subsystem S2.

The computation process is summarized in Algorithm 1.

Consider our running example, the 4D Quadruple Integrator in (2.9) and its subsystems in (2.10).

In particular, consider the BRT computation for subsystem S1 = {z1, z2}. At the time s, the HJ

equation in (2.13) for subsystem S1 becomes

min
{
∂W1(x1, s)

∂s
+ min
z3∈Rz3 (z2,s)

(∂W1(x1, s)
∂z1

z2 +∂W1(x1, s)
∂z2

z3),W1(x1, 0)−W1(x1, s)
}

= 0

(2.18)

Here for the subsystem S1 in (2.10), given z2, we are able to find the range of z3 in the subsystem

S2. Let W2(x2, s) be the value function for the subsystem S2 at the time s, the range of z3 given z2

will be defined as Rz3(z2, s):

Rz3(z2, s) := {z3|W2(x2, s) ≤ 0} (2.19)

A graphical interpretation of (2.19) is in Fig. 2.3. For a specific grid point of (z1, z2) = (a, b) ∈
R2 in the subsystem S1, the range of the missing state Rz3(z2, s) can be drawn from the subsystem

S2 with the corresponding z2 = b.

2.2.3 Proof and Discussions

Proof of Correctness

In this section, we show that the BRT generated from our method is an over-approximation of the true

BRT obtained from (2.5). Let Vi(z, s) denote the full-dimensional value function that back projected

from Wi(xi, s) at the time s, based on the projection operation in (2.8):

Vi(z, s) = Wi(xi, s),∀zi ∈ Sci (2.20)
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Because at any time s, we maximize over Wi(xi, s) to obtain the over-approximation, to prove

the following Theorem 1 is sufficient to prove that each approximate value function Vi is no larger

than the true value function V .

Theorem 1. For any subsystem Si at any time step s ∈ [t−∆s, t], Vi(z, s) ≤ V (z, s)

Proof. We prove this by mathematical induction. For any subsystem Si, we first show that the

Theorem at final time s = 0 is true. Then we prove that for any time step s ∈ [t − ∆s, t], if

Vi(z, t) ≤ V (z, t), we will have Vi(z, t−∆s) ≤ V (z, t−∆s).

At the final time s = 0, Wi(xi, 0) is initialized as (2.12) and Vi(z, s) is initialized as (2.20), thus

trivially we have

Vi(z, 0) ≤ V (z, 0). (2.21)

For any time step s ∈ [t−∆s, t], V (z, s) is the viscosity solution of (2.5) with final value V (z, t).

Let Ṽi(z, t−∆s) be the viscosity solution of (2.5) with final value Vi(z, t). Since Vi(z, t) ≤ V (z, t),

we have

Ṽi(z, t−∆s) ≤ V (z, t−∆s) (2.22)

LetWi(xi, s) be the viscosity solution of (2.13) at s ∈ [t−∆s, t] with final valueWi(xi, t). When

solving Wi(xi, t−∆s), the Hamiltonian H(xi,∇Wi(xi, s)) is computed as (2.14). For comparison,

when solving Ṽi(z, t−∆s), the Hamiltonian H(z,∇Ṽi(z, s)) is computed as (2.6).

Because Vi(z, t) is back projected fromWi(xi, t) as (2.20), inH(z,∇Vi(z, s)) we have ∂Vi(z,t)
∂zi

=
0,∀zi ∈ Sci . In addition, missing states are treated as disturbances in H(xi,∇Wi(xi, s)), so

H(xi,∇Wi(xi, s)) = min∀zi∈Sc
i
H(z,∇Ṽi(z, s)). Therefore,

H(xi,∇Wi(xi, s)) ≤ H(z,∇Ṽi(z, s)),∀zi ∈ Sci . (2.23)

Thus we obtain

Wi(xi, t−∆s) ≤ Ṽi(z, t−∆s), ∀zi ∈ Sci . (2.24)

Because Vi(z, t−∆s) is back projected from Wi(xi, t−∆s) as (2.20), we have

Vi(z, t−∆s) ≤ Ṽi(z, t−∆s). (2.25)

Finally, for any time step s ∈ [t, t−∆s], we combine (2.22) and (2.25) and obtain

Vi(z, t−∆s) ≤ V (z, t−∆s). (2.26)
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Figure 2.4. Comparison of ground truth BRTs (blue) and our approximated BRTs (green) for 4D Quadruple Integrator
at s = −1. From top left, top right to bottom are 3D slices at z4 = −2, z1 = 2.6, z2 = −4.2. There are few numerical
errors.

Computation complexity

Let k be the number of grid points in each dimension for the numerical computation. The computa-

tional space complexity is determined by the largest dimension of subsystems. If each subsystem

Si has Ni states, kmaxi Ni grid points are needed to store the value function. Overall, the space

complexity is O(kmaxi Ni).

For computation time, there are two non-trivial parts: solving the HJ PDE and searching the

missing states. The HJ PDE is solved on a grid with O(kNi) grid points. If this search is done

over an Mi-dimensional grid for subsystem Si, then these nested loops have a time complexity of

O(kNi+Mi). Overall, the upper limit of the computation time will be the longest time among all

subsystems, O(kmaxi{Ni+Mi}). The computational complexity of specific numerical examples can

be found in Section 2.3.

Target sets

Our decomposition technique has two constraints of the target sets. First, for each subsystem,

there should be a clear boundary of the target, so that the subsystem value function can provide a

virtual disturbance bound to other subsystems. Second, due to shared controls and disturbances in
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subsystems, the entire target should be the intersections of all targets from each subsystem to ensure

the conservative approximation of BRT, according to [12].

2.3 Numerical Experiments

We demonstrate our method on the running example, 4D Quadruple Integrator, and on the higher-

dimensional, heavily coupled 6D Bicycle model [55]. For the 4D Quadruple Integrator, we com-

pare the approximate BRT computed using our method to ground truth BRT obtained from the

full-dimensional computation, showing that our method maintains the safety guarantee without

introducing much conservatism. For 6D Bicycle, we present for the first time a conservative but

still practically useful BRT in a realistic simulated autonomous driving scenario. To the best of our

knowledge, this was previously intractable. All the experiment are implemented on an AMD Ryzen

9 3900X 12-Core Processor with ToolboxLS [43] and helperOC toolbox.

2.3.1 4D Quadruple Integrator

The system dynamics of the 4D Quadruple Integrator is given in (2.9). Using our method, we

decompose the system into subsystems shown in (2.10). Starting from the target set T in (2.27), we

compute the approximate BRT for a time horizon of 1.0 second,

T := {(z1, z2, z3, z4) | − 6 < z1 < 6, z2 < −4, z3 < −2} (2.27)

In Fig. 2.4, we visualize the 4D BRT through 3D slices at the initial time s = −1.0. From top left,

top right to bottom, our approximated BRTs (green) and the ground truth BRTs (blue) are shown, at

the slices of z4 = −2, z1 = 2.6, and z2 = −4.2 respectively. The results show that our approximated

BRTs are similar in shape to the ground truth BRT while being a little bigger, which indicates that

our results are conservative in the right direction: if a state is outside of the approximate BRT, it is

guaranteed to be safe. There are few exceptions due to numerical errors.

For the 4D Quadruple Integrator, the largest subsystem has two states, so the computation space

is O(k2). When solving subsystems S1 and S2, for any fixed z1 and z2, we should search the missing

state z2 and z3 from the BRT of subsystem S2 and S3. Thus, the computation time is O(k3). To

compare, computing ground truth BRTs for 4D Quadruple Integrator in the full dimension space will

cost O(k4) both on space and time.

In our experiment, it takes 2.5 seconds to compute approximation from decomposition, while it

takes 420 seconds to compute the ground truth in full dimension.

2.3.2 6D Bicycle

We now examine the proposed decomposition method on a practical example involving the 6D

Bicycle model, and illustrate the utility of our method on decomposing high-dimensional system and

heavily coupled systems. To the best of our knowledge, this is the first practically usable minimal
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BRT computation for 6D Bicycle, a model widely used to approximate the behaviour of four-wheeled

vehicles such as autonomous cars.

Problem Setup

The system dynamics is given in (2.28). X and Y denote position in the global frame, ψ denotes the

orientation angle with respect to the X axis 1, vx and vy denote the longitudinal and lateral velocities,

and ω denotes the angular speed. The controls are δf and ax, which represent the steering angle and

longitudinal acceleration, respectively.

Ẋ

Ẏ

ψ̇

v̇x

v̇y

ω̇


=



vx cosψ − vy sinψ
vx sinψ + vy cosψ

ω

ωvy + ax

−ωvx + 2
m(Fc,f cos δf + Fc,r)

2
Iz

(lfFc,f − lrFc,r)


(2.28)

To decompose 6D Bicycle, we hope to achieve the best accuracy within the current computation

resources, hence we set the space and time limits to be O(k4). Based on the State Dependency

Graph for 6D Bicycle in Fig. 2.5(a), we choose the subsystems in (2.29) with the corresponding

decomposed State Dependency Graph shown in Fig. 2.5(b), which requires O(k3) space and O(k4)
time complexity.

x1 = (X, vx, vy), x2 = (Y, vx, vy), x3 = (X,ψ),

x4 = (Y, ψ), x5 = (vx, vy, ω), x6 = (ψ, ω)
(2.29)

We design the target set T with respect to X , Y , ψ and vx in (2.30). This situation can be

represented as a one way road surrounded by an open area in a parking lot as Fig. 2.6. In the one way

road, only a positive forward speed and a forward orientation range is allowed 2.

T := {(X,Y, ψ, vx, vy, ω) | − 6 < X < 6,−2 < Y < 2, ψ < 7π/4, vx < 0} (2.30)

We compute the BRT for a time horizon of 2 seconds.

BRT Result

To visualize the 6D BRT at t = −2.0, we present several 3D slices in Fig. 2.7 and Fig. 2.8.

Fig. 2.7 shows the BRT at the slice of ψ = π/4, ω = −1.1, vy = 0 (left) and 18 (right),

indicating the range of vx to avoid for different X and Y . As shown, the farther from the area

1Computation bound for ψ is [π/4, 9π/4]

2Combined with the computation bound, the safe orientation range are [−π/4, π/4]
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(a)

(b)

Figure 2.5. (a) The State Dependency Graph for 6D Bicycle. (b) A decomposed State Dependency Graph for 6D Bicycle.
The light blue vertices and edges indicate the missing states and their dependency.

Figure 2.6. A target set example for 6D Bicycle. Inside a parking lot, there is a one-way road surrounded by open areas,
where only a positive forward speed and a forward orientation range are allowed.
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Figure 2.7. 3D slices of (X,Y, vx) from 6D BRT at s = −2. Left: slice at ψ = π/4, ω = −1.1, vy = 0. Right: slice at
ψ = π/4, ω = −1.1, vy = 18

Figure 2.8. 3D slices of (X,Y, ω) from 6D BRT at s = −2. Left: slice at ψ = π/4, vx = 18, vy = 3. Right: slice at
ψ = π/4, vx = 18, vy = 18

{(x, y)| − 6 < x < 6,−2 < y < 2)}, the smaller set of vx needs to be avoided to maintain safety.

This is because if the agent is far from the unsafe positions, it has more time and space to slow down

and adjust vx. In comparison, in the right plot, the agent has a larger vy = 18, and thus has a larger

BRT in vx to avoid, especially in the Y direction.

Fig. 2.8 shows the BRTs at the slice of ψ = π/4, vx = 18, vy = 3 (left) and 18 (right), indicating

the range for ω to avoid on the computation area of X and Y . We get similar results as above: the

farther from the target area {(x, y)| − 6 < x < 6,−2 < y < 2)}, the smaller sets of ω one needs

to avoid, due to more time and space for adjustment. In the right plot, vy = 18, a larger value; thus

more distance is needed to adjust ψ. As a result, the BRT is larger.

In our experiment, it takes 17 minutes to compute the approximated BRT with the decomposition

method.
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Safety-Preserving Trajectories

In Figs. 2.9 and 2.10, we present the evolution of the BRT over time, and illustrate that trajectories

synthesized using Eq. (2.17) are guaranteed safe when starting outside the approximated BRTs, and

may enter the targets when starting inside the approximated BRTs.

Figure 2.9. Comparison of a safe trajectory (blue) and an unsafe trajectory (black) of 6D Bicycle in (X,Y, ψ) space
within the time horizon of 2s. The safe trajectory starts from outside the BRT (green), and successfully avoids all BRTs
and the targets (red) within 2s. The unsafe trajectory starts from inside the BRT and finally hits the target from bottom.

In Fig. 2.7, we present the trajectories in (X,Y, ψ) space. The safe initial condition (blue)

starts from outside the BRT (green), while the unsafe one (black) starts inside. The initial states of

(vx, vy, ω) = (−10, 1, 0.8) are the same for both agents. As time moves forward, the blue trajectory

can always stay outside of the BRT at the corresponding time, and avoids the target (red) during the

time horizon of two seconds. However, the unsafe trajectory enters the target from the bottom of the

plot at s = −0.8 (the ψ dimension is periodic).

In Fig. 2.8, we present the trajectories in (ω, ψ) space. The initial states of (X,Y, vx, vy) =
(10, 0,−6, 1) are the same for both agents. In the same setting, the safe trajectory (blue) can stay

outside the BRT (green) and the target (red) within time horizon of two seconds, but the unsafe

trajectory (black) enters the target from right side at s = −0.2.
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Figure 2.10. Comparison of a safe trajectory (blue) and an unsafe trajectory (black) of 6D Bicycle in (ω, ψ) space within
the time horizon of 2s. The safe trajectory starts from outside of the BRT (green), and successfully avoids all BRTs and the
obstacle (red) within two seconds. The unsafe trajectory starts from inside the BRT and finally hits the target from the right
side.

2.4 Conclusion

We propose a decomposition method that largely alleviates the computation complexity for approxi-

mating minimal BRTs, without introducing much conservatism. Our method has a superior advantage

of solving sparse, high-dimensional integrator, and is able to handle a large variety of nonlinear

system dynamics. We also provide a simple way of making trade-off between computation space,

speed and performance, which will benefit when more computation resources are gained.

In the future, we are interested in investigating techniques that allow under-approximation of

BRTs, so that maximal BRT, where the targets are goal states to reach, can be approximated by taking

the union of BRTs from subsystems. Besides, we hope to explore more techniques such as in [37] to

overcome the constraints for target sets when computing minimal BRTs.
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Chapter 3

Generating Robust Supervision for
Learning-Based Visual Navigation Using
Hamilton-Jacobi Reachability

Autonomous navigation is fundamental to control and robotics. Following the success of deep

learning, visual navigation has gained popularity. One appeal of visual navigation – which involves

using one or more cameras and computer vision to perceive the environment to reach navigational

goals – is that cameras are cheap, light weight, and ubiquitous.

Typically, a geometric map of the environment is used for navigation [23, 36, 58]; however, real-

time map generation can be challenging in texture-less environments or in the presence of transparent,

shiny objects, or strong ambient lighting [1]. In contrast, end-to-end (E2E) learning approaches have

been used for locomotion [24, 28, 29, 54] and goal-point navigation [25, 32, 33, 49, 61] that side-step

this explicit map estimation step, but suffer from data inefficiency and lack of robustness [52].

Consequently, a number of papers seek to combine the best of learning with optimal control for

high-speed navigation [6, 27, 38, 41, 47, 53], race-track driving [19, 20], and drone racing [30, 31]. In

particular, [8] combines ideas from optimal control and computer vision by having a convolutional

neural network (CNN) predict waypoints instead of control signals, and using optimal control to

obtain the control for reaching the waypoints. This hybrid approach greatly improved generalizability:

a CNN trained in simulation could be successfully deployed on a real robot without additional training

or tuning. However, the inevitable errors in waypoint predictions during the test time could lead to

unintended robot trajectories, ultimately resulting in collisions with the obstacles. This is particularly

problematic when the robot needs to navigate through cluttered environments or narrow openings, as

the error margin in such scenarios is often small.

Contributions: In this chapter, we build on the framework in [8] and propose a novel reachability-

based method to generate robust waypoints for supervising the CNN. Our key insight is to model

the CNN prediction error as “disturbance” in the system dynamics and generate waypoints that are

optimal under the worst-case disturbances, ensuring robustness despite the prediction errors. In the

context of other work in the safe learning literature such as [21] and [5], which wrap reachability-
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Figure 3.1. Hardware experiment 1. On the left, 3rd and 1st person views of the Turtlebot2 testbed are shown along
with a trajectory (red) to the goal (green). On the right, a birds-eye view of the environment is displayed. The Turtlebot’s
starting location is shown as a blue circle.

based safety controllers around policies being learned, we provide an alternative that pre-emptively

uses disturbances when generating training data to alleviate the effect of CNN prediction errors.

Unlike [8], which relies on distance-based heuristics, our method involves computing value

functions by solving static Hamilton-Jacobi (HJ) [7] partial differential equations (PDEs). The

value functions represent the time until goal-reaching and time until collision despite the worst-

case disturbances, given system dynamics and a known environment. These value functions are

combined into a cost map that precisely quantifies the quality of waypoints and considers all possible

combinations of states by construction. This leads to less greedy navigation behavior and significant

improvement in the success rate during the test time.

Overall, our approach leads to less greedy navigation behaviors that are robust to CNN prediction

errors. Through simulations and real-world experiments we demonstrate that practical scenarios such

as safely moving through narrow doorways become possible with the proposed approach.

3.1 Problem Setup

We consider the problem of autonomous navigation in a priori unknown static environment. Starting

from an initial position, the robot needs to reach a goal position p∗ = (x∗, y∗). We model our ground

vehicle as a four-dimensional (4D) system with the following dynamics:

ẋ = v cosψ, ẏ = v sinψ, v̇ = a, ψ̇ = ω , (3.1)
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Figure 3.2. LB-WayPtNav framework from [8].

where the state z(t) at time t consists of the position (x(t), y(t)), speed v(t), and heading ψ(t). The

control is acceleration and turn rate, u(t) := (a(t), ω(t)). The robot is equipped with a forward-

facing, monocular RGB camera mounted at a fixed height and oriented at a fixed pitch. At time t, the

robot receives an RGB image of the environment E , I(t) = I(E , z(t)), the state z(t), and the target

position p∗ = (x∗, y∗). The objective is to obtain a control policy that uses these inputs to guide the

robot to within a certain distance of p∗.

3.2 Background

We build upon the learning-based waypoint approach to navigation (LB-WayPtNav) proposed in [8].

However, unlike LB-WayPtNav, we use a HJ Reachability-based framework to generate supervision

data. We now provide a brief overview of LB-WayPtNav and HJ reachability.

3.2.1 LB-WayPtNav

LB-WayPtNav combines a learning-based perception module with a dynamics model-based planning

and control module for navigation in a priori unknown environments (see Fig. 3.2).

Perception module. The perception module is implemented as a CNN that takes as input a 224×224
pixel RGB image, I(t), captured from the onboard camera, the target position, p∗, specified in the

vehicle’s current coordinate frame, and vehicle’s current linear and angular speed, (v(t), ω(t)), and

outputs the desired state or a waypoint ŵ(t) := (x̂(t), ŷ(t), ψ̂(t)).

Planning and control module. Given a waypoint ŵ(t), the system dynamics in Eqn. (3.1) are used

to plan a spline-based trajectory to ŵ(t), starting from the current state of the vehicle. This leads

to a smooth, dynamically feasible, and computationally efficient trajectory to the waypoint. An

LQR-based feedback controller tracks the trajectory. The commands generated by the LQR controller
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are executed on the system forH seconds, and then a new image is used to generate another waypoint

and trajectory. This process is repeated until the robot is within a certain distance of p∗.

3.2.2 The Time-to-Reach Problem in Reachability Analysis

Consider a dynamical system described by ż (t) = f (z(t), u(t), d (t)) , z (0) = z0, where z ∈ Rn is

the state, and u ∈ U , d ∈ D are the control and disturbance respectively. In this chapter, the control

represents the actions a robot can take to change its state, and the disturbance primarily models CNN

prediction errors. Following [60] and [56], we define the time-to-reach (TTR) value function denoted

VR(z), which represents the minimum time required to drive the system to the goal set ΓG while

avoiding the obstacle set ΓO, despite disturbances. The control minimizes this time and disturbance

maximizes: VR (z) = maxd(·)∈D minu(·)∈U min{t|z(t) ∈ ΓG ∧ ∀s ∈ [0, t], z(s) /∈ ΓO}. We also

define the time-to-collision (TTC) value function, VC(z), which represents the maximum time until

collision with the obstacle set ΓO assuming that the control is optimally avoiding obstacles under

the worst-case disturbance: VC(z) = mind(·)∈D maxu∈U min{t|z(t) ∈ ΓO}. Applying the dynamic

programming principle, we can obtain VR(·) and VC(z) respectively as the viscosity solution for the

following stationary HJ PDEs:

VR(z) = 0 in ΓG, VR(z) =∞ in ΓO, max
u∈U

min
d∈D
{−∇VR(z)>f(z, u, d)− 1} = 0 otherwise

VC (z) = 0 in ΓO, min
u∈U

max
d∈D

{
−∇VC (z)> f (z, u, d)− 1

}
= 0 otherwise (3.2)

3.3 Reachability-based Supervision for Waypoints

In the perception module presented in Fig. 3.2, from the start position, the robot sequentially observes

the image I(t), linear speed v(t) and angular speed ω(t) at time t to predict a waypoint ŵ with a

CNN. This waypoint prediction is conducted at a fixed replan frequency until the robot reaches the

goal ΓG, defined to be positions within certain distance to p∗.

To generate supervision for safe and efficient waypoints, we propose a novel reachability expert

to autonomously navigate in simulation and collect training data. Specifically, given an obstacle map

Mobs and a goal area ΓG, one can compute corresponding TTR and TTC value maps, which are

integrated in the cost function of a model predictive control (MPC) optimization problem. By solving

this MPC problem, the optimal waypoint ŵ is obtained, and at time t, the image I(t) is rendered, and

linear and angular speed {v(t), ω(t)} are measured in simulation environment. Finally, we repeat

the above procedure in different navigation tasks until sufficient data-label pairs {(I, v, ω), ŵ} are

obtained for the training dataset. The entire procedure is illustrated in Fig. 3.3.

23



Figure 3.3. Workflow of training data generation using reachability expert.

3.3.1 TTR and TTC Computations

We add disturbances to Eqn. (3.1) to describe the expert’s system dynamics

ẋ = v cosψ + dx, ẏ = v sinψ + dy, v̇ = a, ψ̇ = ω + dψ, (3.3)

v ∈ [0, v̄], a ∈ [−ā, ā], ω ∈ [−ω̄, ω̄], d2
x + d2

y ≤ d̄2
xy, dψ ∈ [−d̄ψ, d̄ψ] (3.4)

with states z = (x, y, v, ψ), controls u = (a, ω) and disturbances d = (dx, dy, dψ). Also, ā, ω̄, and

d̄ψ are upper bounds for acceleration, angular speed and disturbances in turn rate, and d̄xy is the

circular upper bound for disturbances in x and y components of speed.

For every navigation task, we initialize a goal position p∗ on an known obstacle map Mobs. We

define the goal area ΓG to be ΓG = {(x, y, ψ, v) :
√

(x− p∗)2 + (y − p∗)2 ≤ c}, and the map

Mobs as ΓO. VR(z) and VC(z) are then computed based on Eqn. (3.2). VR(z) and VC(z) guide the

reachability expert in a 4D state space for goal reaching and collision avoidance.

Incorporating worst-case disturbances leads to VR(z) and VC(z) having more conservative values,

which results in less greedy expert trajectories in a nuanced manner. Greediness often makes the

robot incapable of going around obstacles and having a view of the environment that informs the

robot about possible routes to the goal. Crucially, the conservatively safe trajectories address the

prediction errors from neural networks, since a minor deviation will not lead to collision. Note that

Mobs is assumed to be known only during training; no such assumption is made during the test time,

during which the robot only relies on onboard sensors for navigation.

3.3.2 Waypoint Supervision Generation

We use an MPC framework to generate waypoints and expert trajectories. To achieve efficient and

safe navigation, we trade off between reaching the goal faster and staying further from obstacles.

Thus we design a novel cost function, ReachabilityCost J , to be a combination of TTR and TTC:

J(z) = VR(z) + α(V̄C − VC(z)), (3.5)

where V̄C is the computational upper bound for TTC, and α is the scale factor.

The expert uses MPC to plan, in a receding horizon manner, a trajectory of time horizon H until

the goal is reached. Starting from t = 0, in every MPC optimization problem, we discretize the time

horizon [t, t+H] to be {ti|t+ i∆t, i ∈ {0, 1, ..., N}}. At any time index i , we denote z[i] := z(ti)

24



and J [i] := J(ti). Then the following MPC problem is sequentially solved in [t, t+H]:

minimize
z

[0]
, ..., z

[N]
,

u
[0]

, ..., u
[N]

N∑
i=0

J [i](z[i])

subject to x[i+1] = x[i] + ∆tv[i] cosψ[i], y[i+1] = y[i] + ∆tv[i] sinψ[i], ψ[i+1] = ψ[i] + ∆tw[i],

v[i+1] = v[i] + ∆ta[i], v[i] ∈ [0, v̄], ω[i] ∈ [−ω̄, ω̄],

z[0] = z(t), z[N ] = z(t+H), u[0] = u(t), u[N ] = u(t+H) (3.6)

To solve Eqn. (3.6) in [t, t + H], the reachability expert first samples a local waypoint grid

ŵ in the heading direction as possible final states z[N ]: ŵ := (x̂[N ], ŷ[N ], ψ̂[N ]), and compute

dynamically feasible spline trajectories to each waypoint using differential flatness of Eqn. (3.3)

( [59]). Next, the expert filters out the invalid waypoints whose trajectory violates control constraints.

Finally, the solution trajectory z with the minimum cost is chosen, and the corresponding waypoint

ŵ = (x̂[N ], ŷ[N ], ψ̂[N ]) is added to the training data set along with the image I(t) and speeds

v(t), ω(t) at time t. By solving the MPC problem many times, we obtain the expert dataset S =
{(Ik(t), vk(t), ωk(t)), (x̂

[N ]
k , ŷ

[N ]
k , ψ̂

[N ]
k )}Mk=1, where k is the index of the MPC problem, and M is

the total number of data points (and the total number of MPC problems solved).

3.4 Summary of Simulation Results

With the generated expert dataset S, we train a CNN that implicitly learns how to predict good

waypoints given the current input image and robot’s system dynamics. Then, we test our model in a

novel environment in simulation without an a priori known map.

Dataset: We use Stanford large-scale 3D Indoor Spaces dataset [4] as our simulation environment,

which are 3D scans of real world buildings. Two buildings are used for data generation and training;

the 3rd held-out building is used as the test environment, which has significant differences in the

object appearance and layout. For navigation tasks in training and testing, we sample various start

and goal positions that require the robot to go through narrow openings.

Implementation details: We train the CNN in Fig. 3.2 with 150k data points from the reachability

expert, M = 150k. The mean squared error loss is used and optimized using the Adaptive Moment

Estimation (ADAM) algorithm with a learning rate of 10−4 and weight decay of 10−6.

Metrics: We use both statistics and trajectory plots to present the test results. For statistics, we use

success rate, average time to reach the goal area (for successful tasks), acceleration and jerk to

measure the quality of trajectories. With trajectory plots, we analyze the robot’s specific behaviors.

Baselines: We compare our approach with the HeuristicsCost designed in [8] for the MPC framework:

Jheuristic(z) := (max{0, λ1 − dobs(x, y)})3 + λ2(dgoal(x, y))2 (3.7)
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Table 3.1. Quantitative Comparisons in Simulation: We compute four metrics-success rate, average time to reach the
goal, acceleration and jerk-on 200 navigation tasks with a replan frequency of 4Hz. The proposed method, WayPtNav-
ReachabilityCost, is most successful at completing novel navigation tasks. Without the disturbances incorporated in
the dynamics, ReachabilityCost takes the shortest time to reach the goal, but the success rate largely drops because of
prediction errors. For E2E learning, the success rate is generally lower and the trajectories are less smooth (indicated by
high average jerk).

Agent Success (%) Time taken (s) Acceleration (m/s2) Jerk (m/s3)

WayPtNav-ReachabilityCost 63.82 21.00 ±8.00 0.06 ±0.01 0.94 ±0.13
WayPtNav-HeuristicsCost 52.26 18.82 ±5.66 0.07 ±0.02 1.06 ±0.15
WayPtNav-ReachabilityCost-NoDstb 49.24 16.19 ±4.8 0.07 ±0.01 0.98 ±0.16

E2E-ReachabilityCost 8.04 19.55 ±4.72 0.07 ±0.01 2.16 ±0.30
E2E-HeuristicsCost 31.66 25.56 ±9.85 0.26 ±0.06 9.06 ±1.94

where dobs(x, y) is the distance to the nearest obstacle, dgoal(x, y) is the distance to the goal, and λ1

and λ2 are scaling factors. We compare our ReachabilityCost in Eqn. (3.5) to the HeuristicsCost in

Eqn. (3.7) for two different navigation frameworks: waypoint navigation (WayPtNav) and end-to-end

(E2E) learning, resulting in a total of 4 methods. WayPtNav maps the current image and controls

inputs to the waypoint (as in Fig. 3.2), where E2E learning directly outputs the control commands

given the same inputs. We also compare against an additional baseline, ReachabilityCost-NoDstb,

that does not incorporate disturbances in the system dynamics during the data generation.

3.4.1 Expert Performance

We select v̄ = 0.6 m/s, ω̄ = 1.1 rad/s, and ā = 0.4 m/s2 to match the specifications of the Turtlebot 2

used in the hardware experiments (Sec. 3.6). We set d̄xy = 0.05 m/s and d̄ψ = 0.15 rad/s to account

for prediction errors, and α = 30 to prioritize collision avoidance. All expert trajectories are generated

according to Section 3.3.2, where the replanning is done every 1.5s to collect training data. In Fig. 3.6

(a) to (c), we compare the expert trajectories obtained by HeuristicsCost and ReachabilityCost. The

reachability expert uses the full system dynamics for optimizing waypoints. As a result, it maintains

an appropriate orientation and speed when going through the narrow openings. Moreover, due to

the presence of disturbances, it takes a conservative path, always staying near the middle of narrow

openings, resulting in collision-free trajetcories even when there is prediction error. In contrast,

HeuristicsCost takes a greedier path to approach the goal. To address CNN prediction error, [8] use

an obstacle padding which makes narrow openings impossible to enter.

3.4.2 Test Results

We compare the different methods in Table 3.1. WayPtNav-ReachabilityCost achieves the highest

success rate and least acceleration and jerk. WayPtNav-ReachabilityCost-NoDstb takes the shortest

time to reach the goal, but experiences a notable drop on the success rate.

E2E learning results in lower success rate and more jerky trajectories for both methods. Notably,

ReachabilityCost has a significant lower success rate with E2E learning compared to WayPtNav.
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Figure 3.4. Success rate in tasks of different difficulties. Difficulties are assessed according to minimum distance to
obstacles dmin along trajectories, divided into Hard (dmin < 0.2 m, 242 tasks), Medium (0.2 m ≤ dmin ≤ 0.3 m, 155
tasks) and Easy (dmin > 0.3 m, 102 tasks). ReachabilityCost has significant advantage in Hard tasks.

3.5 Analysis of Simulation Results

3.5.1 Comparison with WayPtNav-HeuristicsCost

As discussed in Sec. 3.4.1, the reachability expert is less greedy and more robust, which enables it to

navigate through cluttered environments and narrow openings. This results in a higher success rate

during test time, as shown in Fig. 3.4, where we compare the two methods on 500 navigation tasks

with varying difficulties. Here, we measure the difficulty of a task by the opening size that the robot

must navigate through on its way to the goal. ReachabilityCost has much higher success rate on the

“Hard” level, indicating that it makes robot more adept at maneuvering in narrow environments.

3.5.2 Effect of Replanning Frequency

Replanning frequency represents how often the robot predicts new waypoints. Fig. 3.5 shows the

success rate on 200 navigation tasks for 5 different replanning frequencies: 0.67 Hz, 1 Hz, 2 Hz, 4

Hz and 6.67 Hz. As we increase the frequency, the success rate improves and reaches the peak at 4

Hz for both experts. Above 4 Hz, the success rate drops dramatically.

In general, a higher replanning frequency helps the learning system react faster to the unknown

environment; however, if it is too high, the lack of visual memory in the WayPtNav framework results

in myopic decisions, leading to a drop in the success rate. ReachabilityCost benefits more from the

higher replanning frequencies compared to HeuristicsCost, as the greedy behaviors from the latter

tend to drive the robot to cut corners, often leading to situations that are hard to recover from.
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Figure 3.5. Success rates improve for both methods as the replanning frequency is increased (up to 4 Hz). ReachabilityCost
benefits considerably more with higher replanning frequencies.

3.5.3 Effect of Adding Disturbances

Adding disturbances in the dynamics is crucial for improving test performance: it not only accounts

for dynamics uncertainties, but also models neural network prediction errors. Without disturbances,

trajectory can be “too optimal” so that a little deviation of robot’s state or minor errors from the CNN

results in collision. This is evident from Table 3.1, where the success rate drops from 63.82% to

49.24% in the absence of disturbances.

We examine reachability expert trajectories with and without the disturbances in Fig. 3.6 (b) and

(c). Without disturbances, the expert chooses a path close to the obstacles, while with disturbances,

the expert stays near the middle of the road. Although both experts succeed in reaching the goal,

disturbances lead to more robust trajectories, which translate to test time as shown in Fig. 3.6 (d) and

(e)). Without disturbances, the robot tries to avoid the wall but fails, while with disturbances, the

robot is able to stay in the middle of the opening, and pass through a very narrow doorway.

3.5.4 Comparison with E2E Learning

Our conclusions here are consistent with the findings in [8] – the model-based approach (WayPtNav)

leads to a higher success rate and significantly smoother trajectories. The success rate of E2E learning

declines further for the reachability expert as the control profiles are even more nuanced, making it

challenging to learn them.

3.5.5 Failure Cases

Since we do not construct a map or have any visual memory in this framework, the robot struggles

in the navigation scenarios where it needs to “backtrack”. In addition, when the room layout is too

different from the training time, the CNN fails to predict good waypoints.
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Figure 3.6. Trajectory comparison. (a), (b), and (c) are expert trajectories; (d) and (e) are test trajectories. In (a), the
baseline expert starts with a greedier path and fails to enter the narrow opening due to hard obstacle padding (medium grey)
used during waypoint optimization. Comparing (b) and (c), the reachability expert can safely go through the openings, but
is more likely to stay in the middle of the road with disturbances incorporated in dynamics. This ability is transferred to
test times in (d) and (e), where the robot with disturbances added is more resistant to the prediction errors from the neural
network and manages to take a collision free path to the goal.

3.6 Hardware Experiments

We tested our framework on a Turtlebot 2 hardware testbed (Fig. 3.1), using monocular RGB images

from the onboard camera for navigation. We tested the ReachabilityCost and HeuristicsCost CNNs

directly on the Turtlebot without any additional training or fine-tuning.

Experiments were carried out in 3 separate areas of Simon Fraser University, each of which were

absent from the training set. An outline of each experiment and the trajectories taken by the Turtlebot

with each CNN are shown in Figures 3.1 and 3.7. Video footage of all experiments can be found at

https://www.youtube.com/playlist?list=PLUBop1d3Zm2uDGGfGrjWiSjrSlzo5vWMs.

Each scenario required the Turtlebot to traverse narrow spaces and doorways, both of which

have shown a low success rate for the HeuristicsCost CNN. For the first scenario, the Turtlebot

maneuvered through a narrow doorway, and then around the nook behind the door to reach the goal

(Fig. 3.1). The second and third scenarios required the Turtlebot to move from an open room into a

narrow corridor and from a cluttered environment into a hallway, respectively (Fig. 3.7).

For each scenario, the HeuristicsCost CNN was unable to maneuver through the doorways, and

collided with the wall at full speed, while the ReachabilityCost CNN successfully navigated through

the doors and reached the goal. The ability to navigate through narrow environments and doorways

is a key improvement seen in the ReachabilityCost CNN. For both methods, the neural networks

trained using end-to-end learning were unable to reach the goal.

3.7 Conclusion

In this chapter, we present a novel method to generate training data for waypoint prediction in visual

navigation, using reachability analysis. Our method helps the neural network to learn to predict

efficient and safe waypoints given system dynamics and observations of the environment. We also

use disturbances in dynamics to model neural network prediction errors and greatly enhance its

robustness. Simulation and real robot experiments demonstrate higher success rate and smoother
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Figure 3.7. Experimental scenarios 2 (top) and 3 (bottom), shown in 3rd and 1st person along with birds-eye view. The
goal is marked in green, and the trajectory taken by the ReachabilityCost CNN to the goal is shown in red. The Turtlebot’s
starting location is shown as a blue circle.
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trajectories in navigation tasks with our method, which crucially enables the robot to pass through

narrow passages such as doorways. Immediate future work includes adding memory in our navigation

framework, investigating the data mismatch between training and test scenarios to better transfer the

expert performance in test time, and incorporating human agents.
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Chapter 4

Conclusion

To enable safe operation of autonomous systems in the real world, one often requires both effective

perception of the environment and robust control of the robot. Hamilton-Jacobi Reachability is a

widely used optimal control tool to verify robotic safety. In this thesis, we first work on improving

HJ Reachability theory to address the “curse of dimensionality” via state dependency-based system

decomposition. Then we apply the HJ Reachability theory to learning-based visual navigation and

obtain robust and safe control for robots despite CNN’s prediction errors.

In the first work, we propose a novel system decomposition techniques to reduce the computation

complexity of HJ Reachability. By exploiting state dependency information in dynamics and treating

missing states as disturbances in subsystems, the approximate reachability maintains the guaranteed-

safe property without introducing much conservatism. Both formal mathematical proof and numerical

examples are provided for the correctness and efficiency of our method. We also provide the first HJ

Reachability analysis of 6D bicycle model which was previously considered intractable.

In the second work, we propose a novel reachability-based method to generate waypoint supervi-

sion that better considers system dynamics information than [8]. A novel cost function is designed

for waypoint evaluation that combines time-to-reach and time-to-collision functions via solving HJ

partial differential equations. By adding disturbances to the robot’s dynamics to address CNN’s

prediction error, we enhance the robustness of the learning framework and ensure safe navigation of

robot in narrow spaces.

Disturbances play significant roles in both work, but in different ways. In the first work, robot

safety is guaranteed via considering worst-case disturbances in system dynamics. In addition, missing

states are treated as disturbance to secure the over-approximation of BRT. In the second work,

we model the disturbances in system dynamics as CNN’s prediction error, which results in more

conservative behaviours in training data, e.g. staying in the middle of the road, and thus leads to

robust control in test time.

In summary, this thesis investigates HJ Reachability-based method for robotic safety. The

proposed work reduces the computation complexity in HJ Reachability theory, and combines HJ

Reachability with deep learning to enable robust visual navigation on real robots.
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