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Abstract

Phylogenetic trees are frequently used in biology to study the relationships among several
species or organisms. The shape of a phylogenetic tree contains useful information about
patterns of speciation and extinction, so powerful tools are needed to investigate the shape
of a phylogenetic tree. Tree shape statistics are a common approach to quantify the shape of
a phylogenetic tree by encoding it with a single number. Tree shape statistics such as the
Sackin and Colless indices have been used in a variety of contexts. Their applications start
from differentiating between trees conforming to different stochastic evolution models to
more recent developments in phylodynamics, where the tree structures are used to predict
short-term growth and fitness. In contrast to the vast application range of tree shape
statistics, existing statistics often do not suffice to distinguish between essential scenarios
such as trees corresponding to different viral pathogens or different geographical scales for
the same pathogen.
In this dissertation, we study tree shape statistics from different aspects. First, we propose a
new resolution function to evaluate the power of different tree shape statistics to distinguish
between dissimilar trees. Second, we propose two classes of new tree shape statistics. For
the first one, we use network science, a well-developed branch of data science, to inspire five
novel tree shape statistics. For the second one, we introduce a linear combination of two
existing statistics that are optimal with respect to a resolution function and show evidence
that the statistics in this class converge to a limiting linear combination as the size of the
tree increases. Lastly, we investigate the problem of using tree shape statistics and machine
learning tools applied to phylogenetic trees to predict the success of individual influenza
virus subtrees.
Furthermore, we study the distribution of the Robinson-Foulds metric. We modify the
dynamic programming algorithm for computing the distribution of the Robinson-Foulds
distance for a given tree by leveraging the Number-Theoretic Transform (NTT ), and improve
the running time from O(n5) to O(n3 logn), where n is the number of tips of the tree.

Keywords: Phylogeny; Tree Shape Statistic; Resolution; Network Science; Influenza; Ma-
chine Learning; Prediction
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Chapter 1

Introduction

With the exponential growth of genome databases, the importance of phylogenetics has
increased dramatically over the past years. Studying phylogenetic trees enables us not only
to understand how genes, genomes, and species evolve but also helps us predict how they
might change in the future. This thesis studies phylogenetic trees with a focus on the shape
of the trees.

In this chapter, we introduce phylogenetic trees and some terminologies related to them,
including evolutionary models of phylogenetic trees, tree comparison metrics, and tree shape
statistics.

1.1 Preliminaries

A phylogenetic tree is a connected acyclic graph T = (V,E) with vertex set V (V (T )) and
edge set E (E(T )). Given a phylogenetic tree T , a leaf (also called an external node or tip)
of T is a node of degree one. An internal node of T is any non-leaf node of the tree. Herein,
I represents the set of all internal nodes of a tree and L denotes the set of all leaves (or
external nodes). A phylogenetic tree is called a labeled phylogenetic tree if the tip labels
are considered; otherwise, it is called an unlabeled phylogenetic tree. A phylogenetic tree is
weighted if there is a function w : E → R that assigns a weight w(uv) to each edge uv ∈ E.
The weight w(e) of an edge e = uv of a tree is also called its branch length. Throughout
this thesis, we do not consider the branch lengths of a phylogenetic tree except in Chapter
5, which the branch lengths represent the time distance between the branching events. The
shape of a phylogenetic tree is the structure or topology of a phylogenetic tree without
considering tip labels and branch lengths. The shape of a phylogeny tells the story of an
evolutionary history going back through time to the most recent common ancestor at the
root of the tree.

A phylogenetic tree can be rooted or unrooted. A rooted phylogenetic tree is a tree
in which a particular internal node called the root is distinguished from the others; it is
postulated to be the ancestor of all the other nodes in the tree. In a rooted phylogenetic
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tree T , the parent of a node i is the node following it on the unique path from the node to
the root r of T ; all nodes of T except its root r have a parent. A child of a node i is any
node whose parent is i.

Given a node i of T , an ancestor node of i is a node on the unique path from i to the
root of T . The descendants of i are all the nodes of T that have i as an ancestor node. In a
rooted phylogenetic tree T , the set of all descendants of a node u including u itself forms a
subtree; we say that u subtends this subtree.

A rooted phylogenetic tree is binary (bifurcating) if all its internal nodes have exactly
two children. In this thesis, we mostly consider rooted binary trees with n leaves, and since
then, by a phylogenetic tree (or simply a tree) T , we mean a binary tree (it can be rooted or
unrooted and labeled or unlabeled and we emphasis on that whenever is needed). One can
easily prove that a rooted phylogenetic tree with n leaves has exactly (n− 1) internal nodes
and a total of N = 2n− 1 nodes [50]. The number nT of unlabeled rooted phylogenetic trees
on n leaves grows exponentially with n – asymptotically, nT ∼ bnn−3/2, where b ≈ 2.483
[115]. The number of labeled rooted and labeled unrooted phylogenetic trees with n tips
are Tn = (2n − 3)!! and b(n) = (2n − 5)!! respectively. Briefly, throughout this thesis, we
use these different type of trees and we mention which type of trees we would use at the
beginning of each section .

• Phylogenetic tree (or tree): a binary tree that can be rooted or unrooted and labeled
or unlabeled.

• Unlabeled phylogenetic tree: a binary tree without tip labels.

• Labeled phylogenetic tree: a binary tree with tip labels.

• Unlabeled rooted phylogenetic tree: a rooted binary tree without tip labels.

• Unrooted labeled phylogenetic tree: an unrooted binary tree with tip labels.

The depth of a node i in a rooted phylogenetic tree T is the number of edges on the
unique path from the root of T to i; the root is the only node at depth 0. The height of i
is the number of edges on the longest path from i to a leaf of the subtree rooted at i. The
height of a rooted phylogenetic tree is the height of its root. The subtree of T rooted at i is
the tree induced by i and all of its descendants in T .

A rooted caterpillar (or the completely asymmetric tree) is the unique rooted phylogenetic
tree T such that all the internal nodes of T have a leaf child, see Figure 1.1 (a). If i is an
internal node in a rooted phylogenetic tree T , the balance value of i is balT (i) = |ri − si|,
where ri and si are the number of tips in the left and right subtrees of the subtree rooted at
i. An internal node of T is balanced if balT (i) ≤ 1. T is maximally balanced (completely
symmetric) if all of its internal nodes are balanced, and there is a unique maximally balanced
phylogenetic tree with n leaves, up to isomorphism, see Figure 1.1 (b).
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Figure 1.1: (a) shows the caterpillar (completely asymmetric tree or completely unbalanced
tree) on 7 leaves, and (b) shows the maximally balanced tree (completely symmetric tree or
completely balanced tree) on 7 leaves.

1.2 Evolutionary Models of Phylogenetic Trees

One of the most critical problems in population and evolutionary biology is to find some
mathematically simple and biologically plausible stochastic models for rooted phylogenetic
trees [124, 6]. Macroevolutionary hypotheses are commonly tested by comparing the shape
indices of inferred phylogenetic trees from real data with those predicted by the null models
[201, 176, 93]. Several null models have been proposed for phylogenetic trees: the equal
rate Markov model (ERM or Yule), the proportional-to-distinguishable arrangements model
(PDA), the Aldous branching (AB) model, and the equiprobable model. These models predict
the distribution of tree shapes and can be used for hypothesis testing of an estimated phy-
logenetic tree [124]. The following sections describe the null models mentioned above in detail.

1.2.1 Equal-rates Markov Model

The Equal-rates Markov Model [124] is one of the simplest and most-often postulated among
the null models for phylogenetic tree shapes. This model is based on the diversification pro-
cess of the Yule model [204]. Under this model, each extant lineage has the same probability
of speciation in the interval (t, t+ ∆t). The probability of each distinct tree shape with n
leaves under the ERM model is different. The ERM model does not directly consider the
extinction rate and is a pure birth process. In order to involve the effect of extinction rate,
the rate of diversification (the actual rate of specification minus the rate of extinction) is
used in the ERM [124]. To illustrate the equal-rates Markov model, consider a rooted labeled
phylogenetic tree with 4 tips, which is the result of three speciation events. The last branching
event produces three rooted labeled phylogenetic trees with equal probabilities such that two
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of them have the same shape, so the probabilities of the balanced and imbalanced rooted
phylogenetic trees are 1

3 and 2
3 respectively, see Figure 1.2. Studies on the estimated rooted

labeled phylogenetic trees show that even small estimated rooted labeled phylogenetic trees
are significantly more imbalanced than expected under the ERM model, which is a proof for
the existence of variation in speciation and extinction rates among lineages of a phylogenetic
tree [17].

A B CD B D A C A B D C

CBA

Figure 1.2: There are three possible options to convert a rooted labeled phylogenetic tree
with 3 tips to a tree with 4 tips through speciation of one lineage. The two left trees have
the same shape [124].

1.2.2 Coalescent Model

Another widely used evolutionary model is the Coalescent model [92]. The probability
distribution of the coalescent model and the ERM model are the same for the shape of a
phylogenetic tree. The coalescent model traces the ancestral lineages, which are the series of
ancestors of the tips, back through time. A set of n tips comprises n− 1 coalescent events.
Each coalescent event decreases the number of ancestral lineages by one. At each coalescent
event, two of the lineages merge into one common-ancestral lineage. Consider n lineages at
the present time, and then the number of lineages decreases from n to n− 1, then from n− 1
to n− 2, etc., and finally from two to one through a series of steps. At the final step, there
is one single lineage, which is the most recent common ancestor (MRCA) of all tips. [6].

1.2.3 Proportional-to-Distinguishable-Arrangements Model

Under the proportional-to-distinguishable-arrangements model (PDA )[124, 159] there is no
particular model of growing trees, and each possible rooted labeled phylogenetic tree with n
leaves has the same probability. The frequency of each shape (tree shape without considering
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the tip labels) with n leaves is proportional to the number of different phylogenetic trees
that share this phylogeny [124]. For example for a set of phylogenetic trees with 4 leaves,
there are two possible shapes; The frequencies of imbalanced and balanced phylogenetic
trees under the PDA are 0.8 and 0.2, respectively. Therefore, the PDA model produces more
imbalanced trees than the ERM model [124]. For real data, the imbalance of the inferred
trees falls somewhere between the value predicted by the ERM model and those predicted
by the PDA model [6, 144].

1.2.4 Equiprobable Model

Under the equiprobable type model (EPT), each possible shape with n leaves has the same
probability. For instance, for a set of rooted labeled trees with 4 leaves, the probability of each
possible shape is 0.5 [124]. The EPT model usually produces rooted trees which are more bal-
anced than ERM expectation. There is no plausible model to support the equiprobable model
as there is for the Markovian. Therefore, this model is usually discarded in phylogenetics [176].

1.2.5 Beta-splitting Family of Distributions on Cladograms

Both the ERM and the PDA models can be considered as branching Markov processes [17].
These processes are discrete recursive structures defined by symmetric split distribution.
If P (i|n) denotes the probability distribution of the left sister size (i) given the size of
the parent clade (n) then under the ERM model, the probability that the left sister clade
contains i tips is equal to:

P (i|n) = 1
n− 1

Under the PDA model, the split distribution is defined as follows:

P (i|n) = 1
2

(
n

i

)
TiTn−i
Tn

, 1 ≤ i ≤ n− 1,

where Tn = (2n−3)!! is the number of labeled rooted phylogenetic trees with n tips. Aldous’s
branching (AB) model is defined by the following distribution:

P (i|n) = 1
2hn−1

n

i(n− 1) , 1 ≤ i ≤ n− 1,

where hn is the nth harmonic number and is defined as:

hn =
n∑
i=1

1
i
, n ≥ 2
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ERM, PDA, and AB are particular cases of a one-parameter beta-splitting family of
distributions on cladograms which is formulated as:

P (i|n) = 1
an(β)

Γ(β + i+ 1)Γ(β + n− i+ 1)
Γ(i+ 1)Γ(n− i+ 1) , 1 ≤ i ≤ n− 1,

where Γ(z) is the Gamma function [3] and an(β) is a normalizing factor [5]. β varies over the
range −2 < β ≤ ∞, and ERM, PDA, and AB correspond to β = 0, β = −1.5, and β = −1
respectively and a larger β leads to a more balanced rooted tree [5, 6, 17].

1.3 Tree Comparison

One of the most important problems in phylogenetics is to compute the distance between two
phylogenetic trees. Tree comparisons are used for different purposes, ranging from checking
the consistency between different tree reconstruction algorithms to deciphering evolutionary
associations among organisms and geographical areas [45].

Different methods have been proposed to quantify the similarity between two topologies
[27, 40, 41, 84, 85, 156, 157, 178]. These methods can be broadly categorized into two
different groups. The first type of metrics counts the minimum number of operations required
to transform T1 into T2. Two well-known distances in this group are the nearest neighbor
interchange (NNI) [41, 42, 97, 107] and subtree-prune-regraft (SPR) [178] distances, which
both are NP-hard to compute [77, 97]. The second type of distances represents the two trees
as the sets of simpler structures, such as bipartitions, quartets, or clusters, and then computes
various measures of similarity between the sets. The Robinson-Foulds (RF) distance [157]
and the Quartet distance [27] are two distances from this group. These metrics can be
computed in O(n) and O(n log2 n) time, respectively, where n is the number of tips. Thus,
the RF distance can be computed quickly, which makes it especially popular.

1.3.1 Nearest Neighbor Interchange Metric

A single NNI operation in a labeled phylogenetic tree swaps two subtrees that are separated
by an internal edge (an edge is internal if neither of its endpoints is a leaf). The two possible
NNI moves are depicted in Fig 1.3. A labeled phylogenetic tree with n leaves has O(n)
neighbors that can be obtained from it via an NNI operation. The NNI distance from one
tree to another is defined as the minimum number of NNI operations required to transform
one tree into the other [115, 41].

1.3.2 Subtree Prune Regraft Metric

The Subtree Prune Regraft operation is a type of tree rearrangement operation which is
useful for studying the changes of the shape of a tree due to recombination [7]. An SPR
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Figure 1.3: Two possible configurations for an NNI move on a rooted tree.

move on a labeled phylogenetic tree T involves cutting an edge from a tree T, which results
in pruning a subtree t from T , and then “regrafting” t onto an arbitrary location in the
remaining part of T [178]. The SPR distance between two labeled phylogenetic trees is the
minimal number of SPR moves needed to change one tree into another.

1.3.3 Robinson-Foulds Metric

Given an unrooted labeled phylogenetic tree T with n tips, consider an edge e ∈ E. Removing
e from the tree induces a bipartition on the set of the tips of the tree V = {1, 2, ..., n}, each
part of which corresponds to the labels of the tips of the two connected components obtained
after removing e. Let us denote by c(T ) the set of all bipartitions producible by removing an
edge of T . Since in an unrooted binary tree with n tips there are (2n− 3) edges, we conclude
that |c(T )| = 2n− 3.

Consider two unrooted labeled phylogenetic trees T1 and T2. The RF distance is defined
as the size of the symmetric difference between their bipartitions:

dRF (T1, T2) = |c(T1)4 c(T2)| = |c(T1)|+ |c(T2)| − 2|c(T1) ∩ c(T2)|.

The RF distance between two unrooted labeled trees is always an even number since
|c(T1)| = |c(T2)| = 2n − 3. The maximum value of RF distance is given by the number
of internal edges of the trees. Since the number of internal edges in an unrooted labeled
phylogenetic tree is (n− 3), the maximum value of RF distance is 2(n− 3). One can also
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define a normalized RF distance by dividing dRF by its maximum value, 2(n− 3). However,
we focus on the regular (unnormalized) RF distance in this thesis.
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E
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C
T1 T2

Figure 1.4: This figure shows two binary unrooted phylogenetic trees with 5 tips. The
Robinson-Foulds distance between these two trees is 4.

1.3.4 Quartet Metric

The quartet metric compares two unrooted labeled trees based on the configurations of
the quartets of nodes in each tree. The possible quartet configuration of four species in an
unrooted labeled phylogenetic tree are shown in Figure 1.5.

B
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Figure 1.5: The three possible quartet topologies of species A, B, C, and D.

There are
(n

4
)
groups of four taxa in an unrooted labeled tree with n tips; for each of

these groups, one of the three trees in Figure 1.5 will be consistent with a given tree. It is
well-known that the complete set of quartet configurations is unique for a given tree and that
the tree can be uniquely recovered from its set of quartet configurations in polynomial time
[28]. This time is reduced to O(n log(n)) for binary trees [110]. Given two evolutionary trees
on the same set of n species, the quartet distance between them is the number of sets of four
species for which the quartet topologies differ in the two trees. Brodal et al. [23] proposed
an algorithm for computing the quartet distance between two binary trees in O(n log2(n))
time, which is the fastest algorithm for computing this metric so far.

1.4 Phylogenetic Reconstruction Methods

There are different methods to infer phylogenetic trees from multiple sequence alignments
[192, 120, 166, 57, 64, 177, 53]. These methods are generally classified in two groups: character-
based methods and distance-based methods. The first methods directly use the individual
columns of aligned nucleotides or amino acids, while the other methods use measures of the
overall differences between all pairs of sequences in the alignment (represented as a matrix
of pairwise genetic distances). Each method has its own advantages and disadvantages, and
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the choice of a particular method depends primarily on a trade-off between the accuracy of
the reconstruction and the time complexity of the method [44].

1.4.1 Distance-Based Methods

The most common algorithms in this group are: the unweighted pair grouping with arithmetic
mean (UPGMA) [120], least squares (LS, also called minimum evolution) [57], neighbor-
joining (NJ ) [166]. The primary advantage of such distance-based methods is their computa-
tional speed, so they can handle large numbers of sequences (they also only require O(n2)
space to store all pairs of distances, which n is the number of sequences). These methods
are more practical in initial analysis of evolutionary relationships between sequences in a
dataset. They are model-based, so assumptions are clearer. In contrast to their utility, one
of the disadvantages of distance-based methods is to lose much of the potentially evolution-
ary informative information within an alignment by compressing it into sets of pairwise
evolutionary distances [54, 44].

1.4.2 Character-Based Methods

One of the advantages of character-based methods over the distance-based methods is
that the latter methods use all the information available in sequences at each homologous
site. The most common methods in this group are the maximum parsimony (MP) [177],
maximum likelihood (ML) methods [53], and Bayesian methods [78]. The main difference
between likelihood-based methods (maximum likelihood methods or Bayesian methods)
versus distance-based methods is that likelihood-based methods can estimate the molecular
evolutionary model, whereas distance-based methods have to just assume it. Distance-based
methods could use a highly complex model but would not be able to estimate the evolutionary
parameters such as transition and transversion rates, rate heterogeneity across sites, strict
or relaxed molecular clock and so on.

The Maximum Parsimony Method

In this method, the phylogeny of a group of species is inferred to be the branching pattern
requiring the smallest number of evolutionary changes. A major issue regarding the maximum
parsimony method is that there will usually be multiple equally parsimonious trees. This
model also shows a statistical inconsistency in which it produces long branches in comparison
with nearby branches. Maximum parsimony method generally implicitly considers a very
simple model of evolution in which all possible nucleotide substitutions are equally probable.
In this method, there is no need to search for branch lengths, so it is reasonably fast in
comparison with other character-based methods. The result of maximum parsimony is
reliable if the data is well structured and the number of nucleotide changes is small since
this method can not account for multiple changes on the same branch. [177, 86].
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The Maximum Likelihood Method

Maximum likelihood is a more complicated character-based method that reconstructs a
phylogenetic tree that has the highest likelihood of being the correct representation of the
phylogenetic relationships among the sequences. The primary advantage of the maximum
likelihood method is that it is able to apply a wide variety of explicit evolutionary models.
In particular different sites can have different substitution rates (which is also possible in
distance-based methods), and these rates and other aspects of the molecular evolutionary
model can be estimated along with the tree. The maximum likelihood method also tends to
be robust to evolutionary model violation [188]. Another advantage of this method is that it
evaluates different tree topologies. This method can be very computationally expensive for
large datasets since it needs to enumerate of all the tree topologies. It is usually necessary
to use approximate tree searching methods that find trees with high likelihoods, but will not
always find the tree with the maximum likelihood. Another disadvantage of this method
is that the result is dependent on the model of evolution that is used [53, 203]. Various
software tools are available for phylogeny reconstruction using maximum likelihood which
include RAxML [181], FastTree [148], IQtree [135], phyml [70].

The Bayesian Method

The Bayesian method is a statistical inference methodology to produce the most likely
phylogenetic tree for a given data. It produces a sample from a distribution over all possible
phylogenetic trees, where the probability of any given tree is given by the prior times the
likelihood under the specified model. The Bayesian approach is a widely used method for
tree reconstruction due to the advances in computing power, the integration of Markov chain
Monte Carlo (MCMC ) algorithms, and the availability of user-friendly software implementing
sophisticated models of evolution. The advantages of the Bayesian approach over the tradi-
tional methods are that it gives the probability of the result, is able to incorporate complex
models of evolution and can handle sources of uncertainty. The choice of the substitution
model and the priors are the challenging parts in this method [78, 80].

“Finding a correct and accurate phylogenetic tree is generally an extremely difficult task”
[143] and briefly there are the following sources of uncertainty in a phylogeny reconstruction:

• Choosing the right molecular markers. Both nucleotide and protein sequences can
be used for reconstructing a phylogenetic tree, but the reconstructed tree from each
of the options could be quite different. It is common to use nucleotide sequences for
inferring the tree from very closely related organisms since they tend to evolve more
rapidly than proteins. On the other hand, for more diverse groups of organisms, protein
sequences are used for reconstructing the tree.
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• Performing multiple sequence alignment. Multiple sequence alignment is used to
identify regions of similarity that may indicate functional, structural or evolutionary
relationships between a set of sequences. The aligned positions are assumed to be
genealogically related. A low-quality alignment could introduce additional variation in
phylogeny reconstruction (causing long branch lengths and muddying the relatedness
signal). It also could miss true variation (causing short branch lengths and missing
informative data that could resolve branches in the tree).

• Choosing a model of evolution. Evolutionary models are mathematical models used to
describe the rates at which one nucleotide replaces another during evolution. A number
of different evolutionary models have been proposed. Choosing the wrong model would
give wrong likelihoods to proposed trees and can be misleading in representing the
true evolution.

• Determining a tree reconstruction method. There are basically two types of phylogenetic
methods, character-based methods and distance-based methods. Finding an appropriate
method depends primarily on a trade-off between the accuracy of the reconstruction
and the time complexity of the method.

1.5 Tree Shape Statistic

Phylogenetic trees are most often used in biology to study the historical relationship between
a number of species or organisms. These trees contain both branch lengths and information
in the form of the tree shape. In these trees, the leaves represent extant species, while the
internal branches indicate hypothesized speciation events [183]. The shape of a phylogenetic
tree reveals useful information about its growth process and can be used to infer the rates
of species formation and extinction. Therefore, one of the main applications of phylogenetic
trees is to study cladogenesis [149]. Measuring the degree of imbalance or asymmetry of a
tree shape can provide support for the hypothesis that species have different potential for
speciation [16]. Tree shape statistics are commonly used to quantify, with a single number,
aspects of the phylogenetic relationships among a group of species or organisms. Primarily,
tree shape statistics measure the degree of balance or imbalance of an unlabeled phylogenetic
tree.

Three factors affect the degree of balance of an inferred tree. First, all evolutionary models
include stochasticity, so the random fluctuations could produce balance patterns deviating
from what is expected. Second, the accuracy of the method used to estimate the tree would
affect balance. Third, the degree of balance or imbalance of a tree has some information
about the macroevolutionary processes that produced it. In other words, variation among
extant lineages in speciation and extinction rates results in phylogenetic trees that are less
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balanced than those produced from evolutionary models in which each extant species has
the same probability of extinction or speciation [124].

Many different indices have been proposed in the literature so far to measure the degree
of imbalance of a tree, and they differ in the calculation and to some minor extent in behavior
[6, 17, 31, 93, 124, 145, 173, 185]. Among tree shape statistics, two of the most commonly
used ones are the Sackin index [163, 173] and the Colless index [34]. The Sackin index is the
average path length from a leaf to the root of the tree [16]. The Colless index is the sum of
absolute values |r − s| for all internal nodes, where r and s are the numbers of leaves on the
left and right subtree of a node, respectively [16]. McKenzie and Steel [118] have proposed
the use of the number of cherries, i.e. the number of nodes with two leaf descendants, as a
tree shape statistic. We provide a list of the commonly used tree shape statistics in Table
5.1.

These indices have some properties in common, including that they summarize the
shape of a tree in a single number and they ignore the branch length and just consider the
distribution of tips across nodes [124]. The power of some imbalance statistics has been
evaluated [75, 93, 115]. The studies concluded that the Sackin and Colless statistics are two
of the most potent statistics in distinguishing between distributions on tree shapes.

Tree shape statistics have been used as tools to test stochastic models of evolution
[124]. They also can be used in detecting mass extinction, adaptive radiations, measuring
continuous variation in speciation, and extinction rates and associate changes in these rates
with ecological and biological rates [124]. Tree shape statistics have also found applications
in Phylodynamics, where recent research shows that tree structures are used to predict short-
term growth and fitness and can help resolve disease transmission patterns [31, 103, 145, 60].

1.6 Organization of this Thesis

In chapter 2, we briefly review the literature around the four problems discussed in this
thesis: evaluating the power of tree shape statistics, introducing new tree shape statistics,
applications of tree shape statistics and methods for computing the distribution of Robinson-
Foulds distance.

In chapter 3, we introduce a new resolution function based on the Laplacian matrix to
evaluate the power of different tree shape statistics to distinguish between dissimilar trees.
We show that the new resolution function requires less time and space in comparison with
the previously proposed resolution function for tree shape statistics.

In chapter 4, we introduce two classes of tree shape statistics. The first one is the optimal
linear combination of two existing statistics with respect to a resolution function. The other
class of proposed statistics is inspired by network science. We propose tree shape summaries
that are complementary to both asymmetry and the frequencies of small configurations
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using tools from network science, including diameter, average path length, and betweenness,
closeness, and eigenvector centrality.

In chapter 5, we investigate the application of tree shape statistics in predicting the
successful influenza strains that persist in the next year’s influenza outbreak. We use
longitudinally sampled phylogenetic trees based on hemagglutinin sequences from human
influenza viruses, together with counts of epitope site polymorphisms in hemagglutinin, to
predict which influenza virus strains are likely to be successful. We extract small groups of
taxa (subtrees) and use a suite of features of these subtrees as key inputs to the machine
learning tools. Using a range of training and testing strategies, including training on H3N2
and testing on H1N1, we find that successful prediction of future expansion of small subtrees
is possible from these data.

In chapter 6, we modify the dynamic programming algorithm for computing the dis-
tribution of Robinson-Foulds distance for a given tree (the fastest known algorithm for
computing this distribution) by leveraging the Number-Theoretic Transform (NTT). We
improve the running time from O(n5) to O(n3 logn), where n is the number of tips of the
tree. In addition to its practical usefulness, our method represents a theoretical novelty, as it
is, to our knowledge, one of the rare applications of the Number-Theoretic Transform for
solving a computational biology problem.

Chapter 7 summarizes the introduced methods and results. We conclude the thesis by a
discussion of our methods and findings and possible directions for future work.
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Chapter 2

Literature Review

In this chapter, we review the existing methods related to each of the problems considered
in this thesis: Evaluating the power of tree shape statistics, introducing new tree shape
statistics, applications of tree shape statistics and finally computing the distribution of the
Robinson-Foulds distance from a given tree.

2.1 Evaluating the Power of Tree Shape Statistics

The power of eight tree shape statistics: Sackin (S), δ2
n, Colless (I), B1, B2,

∑
I ′, Mean I ′ ,

Mean I ′10 in detecting nonrandom diversification was evaluated by Agapow et al. [4]. The
first five of these statistics are studied well in the literature (see section 2.2), and the rest
are introduced and discussed in [4, 62, 150, 152]. The imbalance of each internal node I ′ is
defined as the ratio between the deviation of the bigger branch from the minimum value of
its range, and the amplitude of that range:

I ′ = B −m
M −m

,

where m is the minimum value that B can take, and M is the maximum one [62]. Based
on this definition three measures are introduced: ∑ I ′ which is the sum of I ′ over all nodes;
Mean I ′ is the mean of I ′ over all nodes, and Mean I ′10 is mean of I ′ over the 10 oldest nodes
in a tree. In order to evaluate the power of these eight statistics, Agapow et al. [4] simulated
two phylogenetic trees under two non-ERM models. In the first model, rates depend upon
the value of an evolving trait, and in the second model a lineage’s rate declines with time
since the last speciation event it experienced. The distribution of these eight statistics under
the ERM model was calculated for phylogenetic trees of sizes 8, 16, 32, 64 and used as a
reference to compare with the distribution of these statistics under age-dependent rates and
trait-dependent rates. The result shows that the rank ordering of the different measures in
terms of power varies with tree size and, more notably, with the process used to generate
imbalance. The reason is that the two scenarios simulated by Agapow et al. [4] leave different
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imbalance signatures, and the various measures are most sensitive to imbalance in different
parts of the tree. When rates are based on age, imbalance is spread quite uniformly between
basal (nodes adjacent or close to the root) and distal nodes (nodes far away from the root)
in the tree. When rates are based on trait values, however, imbalance is concentrated toward
the root of the tree. Agapow et al. [4] showed that S and I are the most powerful tools
to detect the deviation from the ERM model generally, but they were less powerful when
applied to the age-dependent rates model. Mean I ′ has a reasonable power and it can be
easily apply to non-binary trees. Another approach is suggested by Kirkpatrick et al. for
testing the evolutionary hypothesis [93]. They suggested to consider two measures that are
most sensitive to imbalance in different parts of a tree in conjunction with each other (S
and I can be used in conjunction with either B1 and ∑ I ′ ).

M. Blum et al. [16] evaluated the power of Sackin (S), D, and the frequency of subtrees
(fn(z)) (see section 2.2.2 for the definitions of D and fn(z)) in rejecting the ERM model.
The biased speciation model that they used assumed that the speciation rate of a lineage is
equal to r, and when this node splits, one of its descendants is given the rate pr, and the
other one is given (1− p)r where p is fixed for the entire tree. They simulated this model for
a different number of species n = 30, 100, 200 and different values of p. The result shows that
fn(z) performs poorly, and this statistic is not recommended for hypothesis testing, while S
and D perform well in rejecting the ERM model against the considered scenario [16].

Matsen [115] proposed a geometric approach to evaluate the power of a set of tree shape
statistics: I, S, δ2, B1, B2, I2 (see section 2.2 for the definition of these indices). Their ap-
proach is based on the intuition that the value of a good statistic should be similar for similar
trees, and different for trees with different shape. The geometric approach is completely dif-
ferent from other approaches for evaluating the power of tree shape statistics. The resolution
function presented in [115] quantifies the ability of a statistic to differentiate between similar
and different trees based on a given distance matrix, while the previous methods tested the
discriminative power of statistics to distinguish among different macroevolutionary models.
The resolution function introduced by Matsen [115] is defined as:

RD(f) = −1
2 x′fDsxf (2.1)

The vector xf is the centered normalized vector of a statistic f for the set of nT phylogenetic
trees (the set of all binary rooted trees with n leaves), and Ds represents the component-wise
matrix square of the distance matrix D. The geometric approach to evaluate the power
of tree shape statistics is motivated by the statistical method of multidimensional scaling
(MDS). The goal of MDS is to find a set of n points in k-dimensional Euclidean space in
which the distance between each pair of objects with respect to a distance metric is well
approximated by the Euclidean distance between the corresponding points. Let H denote
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the nT × nT “centering matrix”, defined by:

H := I − n−1
T 11t.

Here, 1 is a vector with every entry equal to one, and 1t is the transpose of this vector.
According to the Rayleigh quotient, RD(f) has an upper bound and lower bound which are
the maximum and minimum eigenvalues of XD, defined as:

XD := −1
2 HDsH (2.2)

The results show that the value of scaled resolution for Sackin and Colless is very close to
one, which is the upper limit, and the scaled resolution of I2 is substantially lower than the
other statistics. These results are consistent with Agapow and Purvis’s results which show
that Sackin and Colless are the most powerful statistics [4].

2.2 Tree Shape Statistics

2.2.1 Classical Tree Shape Statistics

One of the most widely used tree shape statistics is Colless imbalance I (we use In to
emphasize the value of I for a phylogenetic tree with n leaves) [34]. The Colless index is the
sum of absolute values |r− s| for all internal nodes, where r and s are the numbers of leaves
in the left and right subtree of a node, respectively.

I =
∑
i∈I
|ri − si|

Because the value of I is highly dependent on the size of a tree, usually the normalized
version is used:

I = 1(n−1
2
) ∑
i∈I
|ri − si|

The Colless index gives more weight to the older nodes (nodes close to the root) because
the value of |r − s| is larger for those nodes [93]. It is possible to construct an alternative
version of Colless which weights all nodes equally:

I2 =
∑
i∈I,j>2

|ri−si|
j−2

n− 2

where j is the number of tips subtended by each internal node [124].
Rogers [159] investigated the properties of Colless index. The minimum value of I is zero

achieved only by completely balanced trees. The maximum value of I is ∑n−2
i=1 i = (n−1)(n−2)

2 ,
which corresponds to the completely unbalanced tree (caterpillar) with n tips (see Figure 1.1
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and section 1.1 for the definitions of the completely balanced and the completely unbalanced
trees with n tips).

Using the recursions proposed by Slowinski [176] for computing probabilities of phy-
logenetic trees under the ERM and the PDA models, Rogers [159, 160] developed a set
of recursion equations to compute the expected value, variance, skewness, and complete
probability distribution of I under the these two models.

Assume that all tree shapes are ordered and numbered consecutively from 1 to nT (the
number of rooted unlabeled phylogenetic trees with n tips), so ni corresponds to the ith

shape with n tips. The probability of the phylogenetic tree ni under the ERM (equations
2.3 and 2.4) and the PDA (equations 2.5 and 2.6) can be computed recursively from the
probabilities of two lower order shapes rj and (n− r)k of which it is composed [176]. Under
the ERM model:

P (ni) = 2
n− 1P (rj)P ((n− r)k) (2.3)

if rj and (n− r)k do not have the same shape, or

P (ni) = 1
n− 1P (rj)2 (2.4)

if rj and (n− r)k are the same and P (11) = 1. Under the PDA model, the recursions are
as follows:

P (ni) =
(
n

r

)
TrTn−r
Tn

P (rj)P ((n− r)k) (2.5)

if rj and (n− r)k do not have the same shape, or

P (ni) =
(
n

r

)
T 2
r

2Tn
P (rj)2 (2.6)

if rj and (n− r)k are the same tree and P (11) = 1 and Tn = ∏n−1
i=1 (2i− 1) is the number of

rooted labeled phylogenetic trees with n tips.
Assume that P (ni) is the probability of the ith tree shape among all possible trees with

n number of leaves, then E(Imn ), the mth moments of I for a phylogenetic tree with n leaves,
can be calculated from equation 2.7:

E(Imn ) =
nT∑
i=1

Imi P (ni), (2.7)

where nT is the number of shapes with n leaves and m can be any positive integer [141]. The
value of Colless index for the shape ni (Ini) can be computed recursively from the values of
the two major subtrees rj and (n− r)k that form it:

Ini = Irj + I(n−r)k + |n− 2r| (2.8)
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Combining equations 2.3− 2.7 with equation 2.8 would result in a recursion equation
for computing the moments of In under the ERM and the PDA (equations 2.9 and 2.10
respectively):

E(Imn ) = 1
n− 1

n−1∑
r=1

nr∑
j=1

nn−r∑
k=1

P (rj)P ((n− r)k)(Irj + I(n−r)k + |n− 2r|m) (2.9)

E(Imn ) = 1
2

n−1∑
r=1

nr∑
j=1

nn−r∑
k=1

(
n

r

)
TrTn−r
Tn

P (rj)P ((n− r)k)(Irj + I(n−r)k + |n− 2r|m) (2.10)

The first moment of In is the expected value or mean of In. The variance and the
skewness of In can be calculated from the first two moments and the first three moments of
In respectively. The equations for computing the mean, variance, and skewness using the
moments for In and two other statistics are discussed later in this section. The recursion
equations for computing the first moment (expected value), second and third moments
of In under the ERM model are defined in equations 2.11 − 2.13, and these recursions
for computing the moments under the PDA model are defined in equations 2.14 − 2.16
respectively [159, 160].
Under the ERM :

E(In) = Īn = 1
n− 1

n−1∑
r=1

(2Īr + |n− 2r|) (2.11)

E(I2
n) = 1

n− 1

n−1∑
r=1

(2E(I2
r ) + 2E(Ir)E(In−r) + 4|n− 2r|E(Ir) + |n− 2r|2) (2.12)

E(I3
n) = 1

n− 1

n−1∑
r=1

(2E(I3
r ) + 6E(I2

r )E(In−r) + 6|n− 2r|(E(I2
r )+

E(Ir)E(In−r)) + 6|n− 2r|2E(Ir) + |n− 2r|3)
(2.13)

Under the PDE :

E(In) = Īn = n!
2Tn

n−1∑
r=1

TrTn−r
r!(n− r)! (2Īr + |n− 2r|) (2.14)

E(I2
n) = n!

2Tn

n−1∑
r=1

TrTn−r
r!(n− r)! (2E(I2

r ) + 2E(Ir)E(In−r) + 4|n− 2r|E(Ir) + |n− 2r|2) (2.15)
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E(I3
n) = n!

2Tn

n−1∑
r=1

TrTn−r
r!(n− r)! (2E(I3

r ) + 6E(I2
r )E(In−r)+

6|n− 2r|(E(I2
r ) + E(Ir)E(In−r)) + 6|n− 2r|2E(Ir) + |n− 2r|3)

(2.16)

The complete probability distribution of I is computed by combining the probabilities of the
lower order I values. Any value of Colless index i for a tree with n tips can be computed
recursively from the Colless values of its two major subtrees with r and n − r tips [160].
Assuming the Colless values of these subtrees are j and k respectively, we have:

i = j + k + |r − (n− r)| = j + k + |n− 2r| (2.17)

Let P (i|n) denotes the probability of imbalance value i for a tree with n leaves. It can
be computed by summing the products of all pairs of lower order imbalance values that
satisfy equation 2.17 and then normalizing the sum such that ∑P (i|n) = 1. The probability
distribution of I for the ERM and the PDA models are shown in equations 2.18 and 2.19
respectively:

P (i|n) = 1
n− 1

n−1∑
r=1

a∑
j=0

P (j|r)P (k|n− r), (2.18)

for a = i− |n− 2r| ≥ 0.

P (i|n) = n!
2Tn

n−1∑
r=1

TrTn−r
r!(n− r)!

a∑
j=0

P (j|r)P (k|n− r), (2.19)

for a = i− |n− 2r| ≥ 0.

The probability distributions and the expected values of I under the null models give us
references to compare the degree of balance of a given tree [160].

Rogers [160] computed the moments of I under the ERM and the PDA models for
simulated trees of size 4− 100 and shows that the mean and the standard deviation of I
decreases rapidly as the number of tips increases. The skewness is initially negative but
becomes positive quickly under both models. These results also show that under both models,
the shape of a phylogenetic tree tends to go towards symmetric trees rather than asymmetric
ones as the number of tips increases.

Another well studied tree shape statistics is Sackin index S (we use Sn in some cases to
emphasize on the size of the tree). The Sackin index is defined as follows:

S =
n∑
j=1

Nj ,
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where Nj is the number of internal nodes in the unique path from tip j to the root of the
tree. Usually, the normalized version of Sackin (S̄) is used:

S̄ = 1
n

n∑
j=1

Nj

An equivalent equation of Sackin’ index is by computing the number of leaves under
each internal node:

S =
n−1∑
i=1

Ni,

where Ni is the number of leaves under the subtree rooted at internal node i. The values of the
Sackin index for the set of trees with n tips vary from O(n log(n)) to O(n2). The minimum
value is obtained by the completely balanced tree, and the maximum value corresponds to
the completely unbalanced tree. Kirkpatrick and Slatkin [93, 18] showed that the expected
value of S for a phylogenetic tree with n leaves can be computed as follows:

µ(S) = E(S) = 2n
n∑
i=2

1
i

The value of S for more asymmetric trees is larger than its expected value under a null
model, while the lower values imply the converse.

The variance of S̄ (δ2
n) is also used as a tree shape statistic and is defined as follows [93]:

δ2
n = 1

n

n∑
j=1

(Nj − S̄)2

The expectation of δ2
n is not known analytically, but its minimum value equals to zero in the

completely symmetric tree with n tips, and it reaches its maximum value in the completely
asymmetric tree with n tips.

Rogers [161] suggested using the number of unbalanced nodes U in a tree as a tree shape
statistics:

U =
n−1∑
i=1

[1− δ(ri, si)], (2.20)

where δ(x, y) = 1 if x = y and is 0 otherwise. ri and si are the numbers of tips of two
subtrees arising from internal node i of the tree. U and I are similar in terms of considering
the number of tips of subtrees arising from internal nodes, but these two indices capture
different aspects of a tree shape. So as mentioned in [161] the joint distribution of I and U
can be used to test ERM hypothesis.

The method of using a recursion equation to compute the mean, variance, skewness and
complete probability distribution [160] is extended in [161] to compute the moments and
the probability distribution of Sackin index and the number of unbalanced nodes on a tree
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U under the ERM and the PDA models. Recursion methods for computing the moments
and probability distribution of individual variables can be used for any tree shape statistics
that can be written recursively. Any value i of I, U , and S for a phylogenetic tree with n
tips can be computed recursively from the lower order values j and k for lower tree shapes
with r and n− r tips, respectively:

i = j + k + g(r), (2.21)

where g(r) = |n − 2r|, 1 − δ(r, n − r), n for I, U and S respectively. The probability
distribution of S and U can be computed recursively using this recursion as mentioned for
the Colless index:

P (i|n) =
n−1∑
r=1

w(r)
∞∑
j=0

P (j|r)P (k|n− r), (2.22)

where P (i|n) represents the probability of imbalance value i for a phylogenetic tree with n
tips, and w(r) is a normalizing function to make ∑P (i|n) = 1 (note that equation 2.22 is
the generalization of equation 2.18 and 2.19) [161].

Let Z represents I, S, and U for a phylogenetic tree with n tips. In order to compute the
moments and the probability distribution of Z, Rogers [161] defined the moment generating
function using the definition of probability distribution in equation 2.22.

F (x|n) =
∞∑
a=0

P (a|n)eax (2.23)

F (x|n) can be computed recursively by using equations 2.22 and 2.23:

F (x|n) =
n−1∑
r=1

w(r)F (x|r)F (x|n− r)eg(r)x, F (x|1) ≡ 1 (2.24)

All of the moments of an imbalance index can be computed from the derivatives of this
generating function at x = 0.

E(Zm) = dm

dxm
F (0|n) (2.25)

The expectation or mean (µ), variance δ2, and standardized skewness G1 of Z can be
computed as follows:

µ(Z) = E(Z) (2.26)

δ2(Z) = E(Z2)− E(Z)2 (2.27)

G1(Z) = E(Z3)− 3E(Z2)E(Z) + 2E(Z)3

δ2(Z)3/2 (2.28)
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The moments of Z can be computed using equations 2.11− 2.16. The mean, variance,
standard deviation, and skewness for I, S and, U are computed using these recursion
equations under the ERM and the PDA models for simulated trees of 4 − 50 tips [161].
Comparisons between the moments of these imbalance indexes show that Colless and Sackin
are highly correlated but U behave differently. A recursion equation for computing the joint
distribution and moments of any pair of imbalance coefficients is introduced in [161]. The
results of investigating the joint distribution between the pairs of statistics (I, S), (S,U),
and (I, U) for trees of size 4 − 50 indicate that the correlations of I and U and S and U
decrease as the number of tips increases under both the ERM and the PDA models. In
contrast, the correlation of I and S increases continuously. The results of computing the joint
distribution of I and U also show that this distribution is highly informative for assessing
the degree of imbalance of a tree and discriminating among different non-ERM models of
macroevolution [161].

The Sackin index can also be normalized using its expected value:

S̃ = S − E[S]
n

The distribution of the normalized Sackin index S̃ and the number of subtrees of given
sizes are investigated in [16]. M. Blum et al. used the one to one correspondence between
binary search trees and the Yule trees [5] to find the precise description of the limiting
distribution of the Sackin index and the number of subtrees under the ERM model. The
limiting distribution of the Sackin index for a large n is non-Gaussian (in contrast with the
result by Slatkin et al. [93]) and can be defined as the solution of a functional fixed-point
equation. Computing the variance of the Sackin index is complicated, but it can be estimated
by exploiting the fact that each Yule tree uniquely corresponds to a binary search tree.
Using this fact, the Sackin statistic is equal to the number of comparisons used by quick
sort algorithm to sort a random input [16]. A comparison between the expected value of the
Sackin index and the average running time of quick sort algorithm is a simple proof that
quick-sort takes O(n log(n)) time on average.

The mean, variance, and covariance of the Sackin and Colless indices and their limiting
joint distribution for large phylogenies under the ERM and PDA models have been computed
asymptotically [16, 18, 93]. Blum et al. took advantage of the recursive structure of a
phylogenetic tree and used the fixed-point method [82] for their analysis under the ERM
model. Under the PDA model, the results are based on the connection between the uniform
trees and Bernoulli excursions [187]. Under the ERM model, the expectation and the variance
of Sackin and Colless index and the covariance of these two statistics for a phylogenetic tree
with n leaves are shown in the following equations respectively [16, 18, 93]:

E(Sn) = 2n logn+ (2γ − 2)n+O(n) (2.29)

22



V ar(Sn) ∼ (7− 2π2/3)n2 (2.30)

E(In) = n logn+ (γ − 1− log 2)n+O(n) (2.31)

V ar(In) ∼ (3− π2/6− log 2)n2 (2.32)

Cor[Sn, In] ∼ 27− 2π2 − 6 log 2√
2(18− π2 − 6 log 2)(21− 2π2)

≈ 0.98, (2.33)

where γ ≈ 0.577 is Euler’s constant.
Under the PDA model of phylogenetic trees, the mean, variance, and covariance of the

Sackin and the Colless indices are shown in the following equations respectively [18]:

E(Sn) ∼
√
πn3/2 (2.34)

V ar(Sn) ∼ (10/3− π)n3 (2.35)

E(In) ∼
√
πn3/2 (2.36)

V ar(In) ∼ (10− 3π
3 )n3 (2.37)

Cor[Sn, In] ∼ 1 (2.38)

The exact formula for the expected value of the Sackin index under the PDA model is also
computed by Mitter et al. for the first time [121]. It was computed before for the limiting
distribution of the Sackin index [18]:

E(Sn) = n((2n− 2)!!
(2n− 3)!! )− 1

McKenzie and Steel [118] proposed a simple tree shape statistic: the number of cherries
of a tree (a cherry is a pair of leaves that are adjacent to a common ancestor node). They
studied the distribution of this statistic (Chn) under the ERM model [118], and showed
that the mean and the variance of Chn are as follows:

E[Chn] = n

3
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V ar[Chn] = 2n
45

The distribution of Chn is asymptotically normal as the number of leaves goes to infinity
[16, 118].

Chn − n/3√
2n/45

→ N(0, 1)

Two measures B1 and B2 were introduced by Shao and Sokal [173]. B1 explores the
internal nodes of a tree, excluding the root and B2 explores the external nodes. Let Mi

represent the height of the subtree rooted at an internal node i and Nj represent the number
of internal nodes on the unique path from tip j and the root of the tree, then B1 and B2

are defined as follows:
B1 =

∑
i∈I

M−1
i

B2 =
∑
j∈L

Nj

2Nj

Page [139] suggested another tree shape statistic R, which inspired by the scheme
introduced by Furnas [61] for numbering the tree topologies: “left-right rooted ranking”.
This scheme assigns a unique integer to each of the distinct topologies of trees with n tips,
in which the completely unbalanced tree (caterpillar) has the smallest value, 1, and the
most balanced tree would be assigned the largest possible value nT (equal to the number
of distinct tree topologies with n tips). The suggested statistic R is simply the position of
the tree in the “left-right rooted ranking” order [139]. Kirkpatrick and Slatckin introduced a
recursion to compute the value of R [93]:

R(T ) =


∑s−1
i=1 iT (n− i)T + [R(TL)− 1]rT +R(TR) if r > s∑s−1
i=1 iT (n− i)T − sT +R(TL)[sT − 1

2R(TL) + 1
2 ] +R(TR) if r = s,

where iT is equal to the number of unlabeled rooted trees with i tips and can be computed
recursively:

iT =
bi/2c∑
j=1

jT (i− j)T + 1
2( i2)T [( i2)T + 1]

where 1T = 2T ≡ 1 and xT = 0 for non-integer x. TR and TL are the subtrees with r and s
tips respectively and descending from the root.

2.2.2 Recently Proposed Tree Shape Statistics

Blum et al. [16] proposed a new statistic based on the comparison of the theoretical and
empirical distributions of the number of subtrees of a tree under the ERM model. Let
Xn denote the distribution of the number of leaves under a randomly chosen node in a
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phylogenetic tree T with n leaves under the ERM model and let fn(x) and Pn(x) denote
the frequency of subtrees of size x in T and the probability of Xn = x respectively. The new
statistic D is defined as follows:

D =
n∑
x=2

x|fn(x)− Pn(x)|

M Blum et al. [16] estimated the quantiles of the distributions of this new statistic D
using experimental design.

Matsen [116] introduced a practical genetic algorithm to optimize over a class of tree
shape statistics called binary recursive tree shape statistics (BRTSS). The value of this
group of statistics for a given tree can be computed recursively from its two main subtrees
(the two subtrees emerged from the root). Let ρ define this recursion and λ be the base case:

s(T ) =

ρ(s(X), s(Y )) if T = XY

λ if T is a leaf
(2.39)

where XY represents X and Y as the two subtrees of T . For example, the number of leaves
of a tree can be written as a recursive tree shape statistics with λ = 0 and ρ(x, y) = x+ y.
Generally, a BRTSS of length n on a tree is an ordered pair (λ, ρ) where λ ∈ Rn and ρ is an
n - vector of Symm2(Rn) → R. Here, Symm2(Rn) denotes the symmetric product of Rn

with itself.

si(T ) =

ρi(s1(X), ..., sn(X), s1(Y ), ..., sn(Y )) if T = XY

λi if T is a leaf
(2.40)

Using this definition Colless index can be written as a BRTSS of length 2 with the base
cases λ1 = 0 and λ2 = 1 and the recursions:

ρ1(x1, x2, y1, y2) = x1 + y1 + |x2 − y2|

ρ2(x1, x2, y1, y2) = x2 + y2

The optimization method then will be applied on a set of BRTSS and modify λ and ρ

through mutation and crossover to find the optimum statistics. A remarkable number of
well known statistics are definable using expressions in the BRTSS. Matesn [116] showed
the application of his proposed method by finding a new powerful statistic which works
better than some of the classical statistics to distinguish between a set of trees from Aldous
branching distribution [6] and a sample of trees from TreeBASE dataset (ERM-solved trees)
[17]. The method proposed by Matsen [116] can be used to find a customized tree shape
statistic for a certain application.
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Arnau Mir et al. [121] introduced a new statistic called total cophenetic index Φ which is
the sum of the cophenetic values of all pairs of different leaves (the cophenetic value of a
pair of leaves i and j in a phylogenetic tree T is defined as the depth of their lowest common
ancestor):

Φ(T ) =
∑

1≤i<j≤n
φT (i, j)

This statistic has several advantages including that it can be used for an arbitrary tree
(not just binary trees), can be computed in linear time and it has a broader range of values
(up to O(n3) compare to O(n2) for Sackin and Colless imbalance). The higher resolution
power of Φ in comparison with the Sackin and the Colless indices makes it a better candidate
for evolutionary hypotheses testing. They[121] also computed its maximum and minimum
values for arbitrary trees and binary trees as well as the exact formula for its expected value
for binary trees under the ERM and PDA models. The maximum value of Φ for a set of
trees with n leaves is obtained by the most unbalanced tree (caterpillar), and the minimum
value for arbitrary trees and binary trees are reached at the star trees and the most balanced
tree, respectively. The expected value of Φ under the ERM (EY (Φ)) and the PDA (EU (Φ))
models are given in equations 2.41 and 2.42.

EY (Φ) = n(n− 1)− 2n(hn − 1) = O(n2) (2.41)

Where hn is the nth harmonic number:

hn =
n∑
i=1

1
i
, n ≥ 2

EU (Φ) ∼
√
π

4 n5/2 (2.42)

Another approach to study the imbalance of a tree was proposed by Aldous [6]. They
represented a binary tree by a set of splits:

(m, i) = (size of parent clade, size of the smaller daughter clade),

which can be simply plotted as a scatter diagram. Given a phylogenetic tree, the proposed
method is to estimate the median size of the smaller clade as a function of the size of the
parent clade using some nonlinear regression. This function can be used to describe the
degree of imbalance of a tree. Figure 2.1 is a log-log plot which illustrates the splits of a
real dataset [6]. The plot also shows some lines giving the approximate median of the size of
the smaller daughter clade predicted by the beta-splitting model for several values: β = 0
(Markov model), β = −1.5 (PDA model), β = −1, and β = −∞ . The model that best
fits the data is the line in which about half of the points are above it, and the other half
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are below the line. Using this approach makes it possible to compare trees with a different
number of leaves, which is not possible when simply using numerical summary statistics [6].

Figure 2.1: Log-log scale plot of the splits of a tree from a real dataset, and approximate
median lines for the beta splitting model[6].
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The list of commonly used tree shape statistics is provided in table 2.1.

Name Description Short form Reference
Statistics inspired by network science
Betweenness centrality # of shortest paths through node between [30]
Closeness centrality total distance to all other nodes closeness [30]
Eigenvector centrality value in Perron-Frobenius vector eigen [30]
Diameter largest distance between 2 nodes diameter [30]
WienerIndex sum of all distances between 2 nodes Wiener [30]
Numbers of small configurations
Cherry number # of nodes with 2 tip children cherries [118]
Double cherries # of nodes with 2 cherry children doubcherries [30]
Pitchforks # of nodes with 3 tip descendants pitchforks [162]
Clades of size x # of nodes with x tip descendants numx [162]
4-caterpillar # of caterpillars with 4 tips fourprong [162]
Tree-wide summaries
Colless imbalance ∑

i∈I |ri − si| colless [34]
Sackin imbalance mean path length from tip to root sackin [163]
Maximum height max # of steps from the root maxheight [31]
Maximum width max # of nodes at the same depth maxwidth [31]
Stairs1 the portion of imbalanced node stairs1 [31]
Stairs2 the average of min(ri,si)

max(ri,si) over the inter-
nal nodes.

stairs2 [31]

Max difference in widths maxi(ni+1 − ni) delW [31]
Variance variance of internal nodes depth σ2

n

I2
∑
j∈I

⋃
{r}

ri+si>2

|ri−si|
|ri+si−2| I2 [115]

B1 ∑
i∈IM

−1
i B1 [115]

B2 ∑
i∈L

Ni
2Ni B2 [115]

ILnumber # of internal nodes with a single tip
child

ILnumber [31]

Table 2.1: Brief definition for tree shape statistics. Here ri and si are the number of tips
of the left and right subtrees of an internal node respectively. n is the number of tips of a
subtree. ni is the number of nodes at depth i, Mi represents the height of the subtree rooted
at an internal node i, and Ni is equal to the depth of tip i. A ladder in a tree is a set of
consecutive nodes with one tip child. We represent the set of all internal nodes of a tree by I,
the set of all tips (or external nodes) by L. The tree shape statistics induced by betweenness
centrality, closeness centrality and eigenvector centrality are defined as the maximum values
of each centrality over all the nodes of a tree, and distances are in units of number of edges
(without branch lengths). We introduce the network statistics in chapter 4 of this thesis.
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2.3 Applications of Tree Shape Statistics

We study the applications of tree shape statistics in two fields: the applications in testing
the evolutionary hypotheses and the applications in phylodynamics.

2.3.1 Testing Evolutionary Hypotheses

Kirkpatrick and Slatkin [93] generated a large number of random trees with different numbers
of tips and calculated the distribution of Sackin index, Colless index, σ2

n, R, B1, and B2
for these trees under the ERM model. The first three of these statistics have larger values
for more asymmetric trees. On the contrary, the last three ones have smaller values for
more asymmetric trees. They then used these distributions to estimate the expected values
of each statistic and their 95% confidence limits. Using this statistical method, one can
identify a nonrandom pattern in a given phylogenetic tree of arbitrary size. Kirkpatrick
and Slatkin [93] applied their method on two published phylogenies for groups of leaf
beetles: Ophraella taken from Futuyma and McCafferty [63] and Phyllobrotica form Farrell
and Mitter’s [122]. Comparing the distribution of these six statistics inferred form these
phylogenies against those under the random branching model shows that the Phyllobrotica
phylogeny is significantly asymmetric by all of the six measures except B1. The results also
show that Ophraella phylogeny is significantly asymmetric by B1 and is not significantly
different from the random model by considering the other measures. These results show that
different tree shape statistics measure different aspects of a tree shape, and a significant
deviation from the confidence interval of one of the measures suggests a departure from
random branching.

Blum et al. [17] used a tree shape statistics, Fn, to study the imbalance of a set of
phylogenetic trees from the TreeBase dataset [199]:

Fn =
n−1∑
i=1

log(Ni − 1),

where Ni represents the number of leaves of the subtree rooted at node i. They showed
that the statistical test based on Fn is the most powerful test for rejecting the ERM model
against the PDA and conversely [17]. They performed maximum likelihood parameter
estimation under beta-splitting model for three sets of trees: fully resolved, ERM -solved
(solving polytomies by replacing non-binary nodes with ERM -like subtrees), PDA-solved
(solving polytomies by replacing non-binary nodes with PDA-like subtrees). Their results
showed that the AB model corresponds to β = −1 best fits the TreeBase data.

Some research has been conducted in order to design evolutionary models that can
simulate trees with the same variation in diversification rate as real trees in the literature
[124]. There are some reasons for the variation in speciation rates among lineages, including
refractory periods after speciation, adaptive radiations, selective extinctions, and fluctuations
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in the environment causing differences in the selection pressures [185]. From a biological
point of view, in balanced trees, all the clades have the same probability of speciating, while
in unbalanced trees, species from a highly branching clade are more prone to speciate in the
future. This memory of past success would be diminished due to the effect of the mutation
during the time. Mutation would destroy the correlations between the properties of the
distant species [185].

Stich et al. [185] analyzed the topological properties of phylogenetic trees generated by
different models of evolving population (population of RNA sequences and a simple model
with mutation and inheritance) and compared them with trees generated from a class of
ERM model (Coalescent). Their approach was biologically motivated and differed from
many models that have an algorithmic nature. In their model, the distance from each RNA
secondary structure to a target secondary structure determines its ability to replicate. Two
measures are used by Stich et al. [185] to quantify the shape of a tree: the subtree size and the
cumulative branch size. For each node i in a tree the subtree size Ai is the number of nodes
of the subtree rooted at i and the cumulative branch size Ci is defined: Ci = ∑

j Aj , where j
runs over all nodes of the subtree rooted at i. For a given tree the probability distribution of
A and C may demonstrate power law tails, P (A) ∼ Aα and P (C) ∼ Cγ . There is a one to
one relationship between A and C of the scaling type: C ∼ Aµ, with µ = (1− α)/(1− γ).
The value of the exponents determines the degree of imbalance of a tree. For example, for
a completely unbalanced tree, the value of α, γ and µ are 0, 1/2 and 2 respectively and
for a completely balanced tree, these values are 2, 2 and 1 respectively. Their results show
that the evolutionary parameters such as mutation rate or selection pressure do not have a
significant effect on the scaling behavior of the trees, while the size of the trees profoundly
affects the scaling exponents of the trees. They also showed that the shape of the trees
generated from the biologically motivated models discussed in their work asymptotically
agree with the completely balanced tree [185].

2.3.2 Applications in Phylodynamics

In addition to their evolutionary insights, recently, tree shape statistics have found application
in Phylodaynamic. Phylodynamics is a new field which is at the intersection of phylogenetics
and epidemic dynamics of viruses. Leventhal et al. [103] investigated the problem of whether
the shape of a phylogenetic tree inferred from a pathogen population depends on the host
contact structure underlying that tree. Three different contact structures are considered in
their study. First, the Erdös-Renyi (ER) random graph [52]; in this model, individuals are
connected with probability q. This model results in a graph with a Poisson degree distribution.
Second, the Barabási-Albert (BA) graph [8]; in this model, each node is sequentially added
to the graph and attached to k neighbors, where nodes that already have many neighbors
have a higher probability of being connected to the new node. This model results in a degree
distribution with a power law tail. Third, the Watts-Strogatz (WS) graph [198]; in this
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model, every node is connected to its k nearest neighbors. Each link is then updated with
probability p in such a way that one end of the link is rewired to a randomly chosen node.
Thus the degree of a node that loses the link decreases by one and the degree of a node that
the link is rewired to increases by one. This process introduces shortcuts in the graph (i.e.
decreases the mean shortest path). For p = 0 the graph has strongly connected communities.
For p = 1 all links are randomly assigned and the graph is similar to the ER graph with
the same mean number of neighbors (equal number of edges). For intermediate values of p,
the graphs often display both strong community structure and short path lengths, which
are characteristics of small-world graphs. Leventhal et al. [103] showed that simulations
of epidemics on networks with non-random contact structure would result in transmission
trees with topologies that exhibit significant differences from tree topologies that would
be obtained under the assumption of random mixing. They also showed that quantitative
measurements of tree shape such as the Sackin index can be used to differentiate between
different classes of contact structures. The Sackin index can also be used to test whether the
contact structure significantly deviates from what would be expected under random mixing.

Pompei et al. [145] investigated another application of the tree shape statistics in
Phylodynamics. Different selective pressures of the host immune system cause the coexisting
strains to have different fitness, which induces a different shape of reconstructed trees of
RNA viruses [145]. They reconstructed and analyzed the phylogenetic trees of six RNA
viruses: Human Flu H3N2 virus, the Avian Flu H5N1 virus, the Swine Flu H1N1, the Measles
virus, the HIV-1 virus, both at the Intra-host and Inter-host level. Since tree shape statistics
are highly dependent on the size of a tree, extracting information from the value of statistics
of each tree can be misleading, and a ranking for the imbalance level of the six phylogenetic
trees does not clearly emerge from the values of statistics. Pompei et al. [145] proposed a
new methodology that deals with the dependency of tree shape statistics on the size of a
tree. For each tree, they randomly select k independent sets of size n′ and for all possible
2 ≤ n′ ≤ n and extract the subtrees induced on these sets. For each set of subtrees with the
same size they compute the value of three statistics. M : The mean topological distance [163]

M = 1
n

∑
j∈L

Nj ,

where the sum runs over the n leaves of the tree, and Nj is the number of nodes between
the leaf and the root of the tree (note that M is a normalized Sackin index).
D: The mean depth [145]

D = 1
N

∑
i∈(L∪I)

Ni,

which is the mean topological distance of each node (internal nodes and leaves) from the
root of the tree, and N = 2n− 1 (total number of internal nodes and leaves).
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I”: The Asymmetry metrics [145]

I” = 1
n− 1

∑
j∈I

(max(rj , sj)−mj)

This index inspired by the Colless index, and rj and sj defined the same as in the Colless
index and mj is the smallest integer not smaller than (rj +sj)/2. They then take the mean of
the values of these three statistics for all subtrees of each tree. With this approach, they could
investigate the dependence of the imbalance metrics on the size of the considered subtrees.
The sampling of many subtrees with the same size allows for a better statistical analysis of
their imbalance level and reduce the effect of noise and fluctuations. This procedure results
in a plot with a different trend for different phylogenetic trees and gives us a clear ranking
of the imbalance of each tree. They also extracted subtrees corresponded to a different time
interval and computed the value of each statistic. Their results indicated that these statistics
can differentiate the trees that have temporal properties like influenza trees [145].

Another problem in Phylodynamics is investigated by Frost et al. [60]; They consider
how population structure affects the shape and the structure of a viral phylogeny in the
absence of strong selection at the population level. They used the viral phylogeny of HIV-1
and developed a deterministic approximation to compute the number of tips, number of
lineages, number of cherries and the Sackin index of the phylogeny over evolutionary time
under two transmission models:

Simple model of HIV infection:

dS(t)
dt

= Λ− βcS(t) I(t)
N(t) − µS(t)

dI(t)
dt

= βcS(t) I(t)
N(t) − (µ+ γ)I(t),

where S denotes the number of susceptible individuals and I denotes the number of infected
individuals, N(t) = S(t) + I(t), β is the probability of infection per contact, c is the contact
rate, µ is the natural mortality rate, γ represents the excess mortality caused by infection
and Λ denotes the rate of immigration or birth of new susceptibles.

Models which include heterogeneity between individual:
The simple model of HIV infection described above, only considered one type of infected
and susceptible individuals. There are more complicated models that include heterogeneity.
Different kinds of heterogeneity include differences in infectivity at different times since
infection, differences between hosts in contact rates, and geographical heterogeneity. Such
heterogeneity can highly affect the transmission dynamics. Frost et al. [60] studied the
behavior of transmission dynamics of the viral phylogeny of HIV-1 under two heterogeneous
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models in infectiousness and a model with risk structure. The first model is Acute and
chronic HIV infection which infectiousness of HIV-1 is much higher in acute infection than
chronic infection. The second model is A model with risk structure which they considered
two groups of individuals with different contact rates and two assumptions for a fraction of
contact between these two groups: the proportionate mixing and the preferred mixing.

Their results [60] show that the values of the considered statistics follow a different trend
over time under these different models of HIV-1. Assortativity (a measure that captures how
different types of individual cluster together on a tree) increased with higher infectiousness of
acute infection. Sackin index showed the highest degree of imbalance for intermediate values
of relative infectiousness of acute infection. In contrast, high sample fraction, asymmetry
captured by the low number of cherries, was the greatest for high infectiousness during acute
infection.

The host contact network structure has a significant influence on the dynamics of an
outbreak. Colijn et al. [31] investigated the problem of whether the topological structures
of phylogenetic trees contain information about the transmission patterns underlying an
outbreak. Identifying the type of transmission patterns driving an outbreak can be very
useful in controlling strategies and outbreak management. Three kinds of transmission
patterns were investigated by Colijn et al. [31]: homogeneous transmission, transmission
with a super-spreader, and chains of transmission. Different contact network patterns cause
pathogen genomes to accrue mutations in different patterns, which results in observably
different phylogenetic tree shapes. Colijn et al. [31] used a combination of a set of tree shape
statistics to classify trees according to different transmission patterns underlying the trees.
Their results demonstrate that phylogenetic tree structure can reveal transmission dynamics.
They simulated disease transmission networks with three different underlying transmission
patterns: homogeneous transmission, transmission with a super-spreader, and chains of
transmission. Each simulation started with a single infectious host who infects a random
number of secondary cases over his or her infectious period; each secondary case infects
others, and so on until the desired maximum number of cases is reached. They then trained
k-nearest-neighbor (KNN) classifiers to classify trees based on their transmission pattern.
They also used a 10-fold cross-validation SVM to resolve differences between homogeneous
transmission versus super-spreader networks. They applied their method on data from two
real-world outbreaks and their results in prediction of transmission patterns were consistent
with known epidemiology [31].

2.4 Computing the Distribution of the Robinson-Foulds Dis-
tance

Hickey et al. and Steel et al. [76, 182] propose a method for computing the distribution of
the RF distance between a given tree T and all the trees on the same number of tips and
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having the same labels, using generating functions. For a given unrooted binary phylogenetic
tree T with n leaves, let bm(T ) denotes the number of unrooted binary phylogenetic trees
which are at a distance m from T . The generating function of bm(T ) is defined as follows
[76]:

B(T, x) :=
∑
m≥0

bm(T )xm (2.43)

A recursive formula for the generating function B(T, x) is given in [76]:

B(T, x) = xB(T/e, x) + (1− x2)B(T1, x)B(T2, x)

Here, e can be any internal edge, T/e represents the tree after contracting e, and T1 and
T2 are the maximal subtrees of T with e as a pendant edge. The exponential number of
subcases in the above recursion implies a non-polynomial time algorithm to compute the
distribution of the RF distance [26, 76].

Bryant and Steel [26], whose work serves as the basis of our approach in chapter 6 of this
thesis, have proposed a polynomial-time algorithm via a dynamic programming approach for
computing the distribution of the RF distance from a given tree T [26]. They also showed
that a Poisson distribution whose parameter depends on the number of cherries of T can
approximate it well when n is large.

In chapter 6, we modify the dynamic programming algorithm proposed by Bryant and
Steel [26] and improve the running time from O(n5) to O(n3 log(n)) by leveraging the
Number-Theoretic Transform (NTT ).
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Chapter 3

Evaluating the Power of Tree
Shape Statistics

Tree shape statistics are summary measures used to quantify some aspect of the shape of a
phylogenetic tree. Several statistics have been proposed for measuring the level of asymmetry
of an unlabeled rooted tree in the literature. Tree shape statistics differ in the way they
are calculated, and, to some extent, in behaviour [4, 6, 17, 34, 93, 124, 145, 173, 185, 163,
173, 150, 152]. These statistics only depend on the shape of the tree, so leaf labels and
branch lengths are ignored in their study. It is commonly believed that the evolutionary
processes that have produced a phylogenetic tree are reflected in the shape of the tree [54].
Among imbalance-based statistics, two of the most commonly used ones are the Sackin index
[163, 173] and the Colless index [34]. The Sackin index is the average path length from a
leaf to the root of the tree [16]. The Colless index is the sum of absolute values |r − s| for
all internal nodes, where r and s are the number of leaves in the left and right subtree of a
node, respectively [16].

The power of eight tree shape statistics, including the Sackin and the Colless indices, in
detecting nonrandom diversification has been evaluated by Agapow et al. [4]. They simulated
phylogenetic trees under two models. In the first model, evolution rates depended on the
value of an evolving trait, and in the second model, a lineage’s rate decreased as a function
of the time since the last speciation event it experienced. The distributions of these eight
statistics under the ERM model were calculated and used as a reference to compare with
the distribution of these statistics under age-dependent rates and trait-dependent rates. The
result shows that the rank ordering of the different measures in terms of discriminatory
power varies with tree size and, more markedly, with the process used to generate imbalance.
Indeed, the two scenarios simulated by Agapow et al. [4] leave different imbalance signatures,
and different measures are more sensitive to imbalance in different parts of the tree. When
the rates are based on age, the imbalance is spread fairly evenly between nodes close to the
root and far away from the root. When the rates are based on trait values, however, the
imbalance is concentrated around the root of the tree.
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Blum et al. [16] evaluated the power of the Sackin index, the frequency of subtrees fn(z),
and a statistic called D, based on the frequency of subtrees, in rejecting the ERM model.
They used a biased speciation model with a fixed parameter p: given a lineage with speciation
rate r that splits, one of the descendants gets the rate pr, and the other one (1− p)r. They
simulated this model for a different number of species and different values of p. The result
shows that fn(z) performs poorly, while the Sackin and D statistics are very powerful [16].

Matsen [115] proposed a geometric approach to evaluate the power of eight tree shape
statistics: Ic, Sc, δ2, B1, B2, I2, A1, and A2. His approach was based on the intuition that
the value of a good statistic should be similar for similar trees, and different for trees with
different shape. His approach quantifies the ability of a statistic to differentiate between
similar and different trees based on a given distance matrix. Our work builds on ideas from
Matsen [115] for evaluating the power of a tree shape statistic.

The resolution is the operational definition of performance for tree shape statistics, and
it measures the discriminatory power of a tree shape statistic. In this chapter, we propose
a new resolution function based on the Laplacian matrix instead of the distance matrix.
Since computing the Laplacian matrix is faster than computing the distance matrix of a
graph, the overall time complexity is reduced in comparison with previous methods while
producing comparable results. The lower time and space complexity of the new resolution
function enables us to easily explore the space of trees with more leaves.

3.1 Problem Definition

Considering the wide range of tree shape statistics, there is a need to evaluate the discrimi-
natory power of these different statistics in a systematic way. A geometric method for this
purpose was introduced by Matsen [115], based on a matrix of pairwise distances between
a set of trees with a given size. Here we are proposing a different approach, based on the
closely related, but computationally more tractable Laplacian matrix. In this chapter, we
only consider unlabeled rooted phylogenetic trees.

3.2 Methods

We evaluate the power of previously published statistics by using two different resolution
functions, RD and RL, which we describe in this section.

3.2.1 Geometric Approach

A geometric resolution function has been proposed by Matsen for evaluating different tree
shape statistics [115]. This resolution function is based on the intuition that the value of a
good statistic should be similar for similar trees, and different for trees with different shape.
This intuition is summarized in Figure 3.1. In this figure, two statistics are used to evaluate
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the space of trees with 9 tips. We embedded the set of rooted unlabeled trees with 9 tips
on the two dimensional space using a multidimensional scaling (MDS) [98] and the nearest
neighbor interchange (NNI ) distances between them (we use a version of NNI distance that
defined for unlabeled trees). We then colored the points according to the values of the Sackin
and I2 statistics. The clustering pattern induced by the values of the Sackin index in the
top figure indicates that the Sackin index can distinguish between distant trees well. On the
other hand, the bottom figure indicates that the values of the I2 statistic are not necessarily
different for different trees, and so it induces a random-looking color pattern on the set of
trees with 9 tips.

3.2.2 NNI Metric for Unlabeled Trees

We used the NNI metric introduced in [115] which is defined for unlabeled trees. We use a
specific numbering scheme [106] for numbering the unlabeled rooted phylogenetic trees to
account for tree isomorphism (two trees are isomorphic if one of them can be obtained from
other by a series of flips, i.e. by swapping left and right subtrees of a number of nodes). This
scheme assigns a unique integer to each of the unlabeled rooted phylogenetic trees with n
tips of which the completely unbalanced tree (caterpillar) has the smallest value, 1, and the
most balanced tree would be assigned the largest possible value nT (equal to the number of
distinct unlabeled rooted tree with n tips). Unique integers are assigned to the canonical
form of the tree shapes (the canonical form of an unlabeled rooted tree represents the tree
in a way that the size of the left subtree is always less than or equal the size of the right
subtree for all internal nodes and whenever the two subtrees are of the same size, the left
subtree is always the lower-numbered one). A full description of the numbering scheme for a
tree in canonical form is below.

We create a total order on the nT trees on n tips by arranging them as follows:

1. If the left subtree of T1 has fewer tips than the left subtree of T2, then T1 < T2.

2. If the left subtree of T1 has the same number of tips as the left subtree of T2 but is
not identical to it, then the comparison is determined by the comparison of the left
subtrees in their corresponding orders.

3. If the left subtree of T1 is the same as the left subtree of T2, the comparison is
determined by the comparison of the right subtrees in their corresponding orders.

The number of a tree T in canonical form is then simply the position of T in this total order.
In order to implement the unlabeled NNI metric, we used the nni function in the R

statistical computing language [154]. For each given unlabeled rooted phylogenetic tree T
with n tips, this function returns the set of all labeled rooted phylogenetic trees, SL, which
are a single NNI move apart from T . In order to extract the set of all unique unlabeled
rooted phylogenetic trees, S, from the result of the nni function, we first compute the
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Figure 3.1: The geometric perspective of a good and bad tree shape statistic. From a
geometric perspective, a good statistic can discriminate between different trees, and place
similar trees together. In theses two figures, we embedded the set of trees with 9 tips using
multidimensional scaling (MDS) and the NNI distance between the trees. The points in the
top and bottom plots are colored based on their Sackin and I2 values respectively. The green,
blue and red points correspond to the upper quartile, lower quartile, and the inter-quartile
interval of the distribution of the statistics, respectively. The clustering pattern in the top
figure indicates that the Sackin index can separate the trees into groups in a way consistent
with the NNI distances, while the I2 index is unable to do so. This can also be seen in Table
3.1 using the resolution function for these two statistics.
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canonical form of each tree in SL. We then compute the labels of the canonical trees in
SL using the numbering scheme which results in a set of numbers. Finally we remove the
duplicate numbers which results in a set of unique numbers representing the set of all unique
unlabeled rooted phylogenetic trees that are at distance one from the given tree.

Note that the input phyolgenetic tree is unlabeled and the nni function assigns a random
labeling to the tip set. We need to prove that a different labeling for the input tree would not
affect the NNI distance between two unlabeled phylogenetic trees. Consider two phylogenetic
trees with a single shape and two different sets of tip labels: T1 and T2. Assume that the tip
labels of T2 are a random permutation of the tip labels of T1. Considering the definition of a
single nni move (see Figure 1.3), the set of trees obtained from the nni function on T2 is
precisely the set of trees obtained from the nni function on T1 but with the permutation
applied to the tip labels. Since the numbering scheme ignores the tip labels and just considers
the shape of a tree, applying the numbering scheme to both sets results in the same set of
numbers (see Figure 3.2).

In the next step, we create the NNI graph such that each node is an unlabeled rooted
phylogenetic tree with n tips and two trees are connected if they are in a distance one from
each other (in the previous step, for each node, we found the set of all unique unlabeled
rooted trees that are in distance one from the tree). The NNI distance between each pair
of unlabeled trees with n tips is defined as the length of the shortest path between the
corresponding nodes of the graph. We use Djikstra’s well-known algorithm to calculate these
shortest paths (Figure 3.3).

Lemma 1. The NNI metric defined above for unlabeled trees satisfies the distance metric
properties.

Proof. A metric g is a non-negative and real-valued function on pairs of objects in a collection
(called a metric space) M such that three constraints are met:

1. Identity: g(x, y) = 0 if and only if x = y

2. Symmetry: g(x, y) = g(y, x) for all x, y ∈M

3. Triangle inequality: g(x, y) + g(y, z) ≥ g(x, z) for all x, y, z ∈M

The unlabeled NNI distance is a special case of the shortest-path metric on a graph and
therefore it satisfies the above conditions.

3.2.3 Resolution of Tree Shape Statistics Based on a Distance Matrix

Let n denote the number of leaves, let nT denote the number of possible trees on n leaves, let
dij denote the unlabeled NNI distance between trees i and j, and let H denote the nT × nT
“centering matrix”, defined by:

H := I − 1
nT

11t.
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Figure 3.2: This figure shows that the initial random tip labels assigned by the nni function
would not affect the NNI distance between two unlabeled trees. Consider a single tree shape
with two sets of tip labels. Each column shows the set of all labeled rooted trees that are
at distance one from the corresponding tree. Each tree shape is assigned a unique number
using a numbering scheme. Since the numbering scheme ignores the tip labels, the assigned
numbers in these two sets are exactly the same. The set of all unique unlabeled rooted trees
which are at distance one from the given tree is computed by removing the duplicates from
the set of numbers. 40



Figure 3.3: This figure depicts the definition of unlabeled NNI metric. Each node is a binary
unlabeled rooted tree with 6 tips. Two trees are connected with an edge if they are one
single NNI move apart. (Figure is taken from [115])

Here, 1 is a vector with every entry equal to one and 1t is the transpose of this vector. The
application of the centering matrix to a vector results in subtracting the mean from every
component of the vector.

Assume that we are given a tree shape statistic f , and let yf be a vector of size nT whose
ith component is the value of the statistic f for the ith tree. Assume that f is not constant
on all the trees so that we can define the centered normalized vector of statistics xf for the
nT trees as follows:

xf := Hyf/‖Hyf‖

The resolution of the statistic f with respect to a distance matrix D = (dij) (any metric
defined on the set of unlabeled rooted trees such as NNI or SPR distances) is defined in
equation (3.1) [115]:

RD(f) := 1
2
∑
i,j

−dij2(xf )i(xf )j = −1
2x

t
fDsxf (3.1)

Here Ds represents the component-wise matrix square of D, so that the ij-th component
of Ds is dij2. The higher the resolution value of a statistic, the more powerful it is from
the geometric perspective. The goal is to maximize RD(f). It is easy to see that each term
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−dij2(xf )i(xf )j is maximized when xf i is very negative and xf j is very positive, or vice
versa, which means the value of a good statistic is similar for similar trees and different for
different trees. This summation is also weighted by the distance, which means that pairs of
trees that are a large distance apart contribute more than pairs of trees that are a small
distance apart [115].

The geometric resolution is motivated by the statistical method of multidimensional
scaling (MDS) [98]. The MDS method looks for a set of points p1, ..., pnT in K-dimensional
Euclidean space that minimize the discrepancy between the true distances and the Euclidean
distances: [∑

i<j

(dij − |pi − pj |)2
]1/2

where dij is the distance between tree i and tree j in the given metric. The Euclidean
distance between this set of points approximates the distance between the trees. To find the
optimal points in K-dimensional Euclidean space, the eigenvectors corresponding to the top
K eigenvalues of XD = −1

2HDsH are used [98, 115].

3.2.4 Resolution of Tree Shape Statistics Based on the Laplacian Matrix

In this section, we propose a new resolution function based on the Laplacian matrix instead
of the distance matrix. Since computing the Laplacian matrix is faster than computing the
distance matrix of a graph, the overall time complexity is reduced compared to the previous
method.

The Laplacian matrix (L) is a matrix representation of a graph and is defined as follows:

L(i, j) =


deg(vi) if i = j

−1 if vi is adjacent to vj
0 otherwise

For a given statistics vector f and the Laplacian matrix L of the graph on all trees with
edges between trees at a distance of 1, we define our new resolution function in equation
(3.2):

RL(f) = xtfLxf (3.2)

Analogously to the previous section, xf is the centered normalized vector of the given statistic
vector yf .

In contrast with the previous resolution function, for which a higher resolution value
indicates a better statistic, here a good statistic has a lower resolution value. As follows from
the definition of RL(f), we consider only pairs of trees which are adjacent when computing
it. Since adjacent trees have similar topologies, a good statistic should assign similar values
to them, so the value of the resolution for this statistic should be small.
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An alternative interpretation of the Laplacian resolution is based on the idea of energy
minimization, inspired by the use of the Laplacian for graph embedding [69]. It follows from
the definition of L that, for any vector x,

RL(x) = xtLx

xtx
= 1
xtx

∑
i∼j

(xi − xj)2, (3.3)

where i ∼ j means that i and j are neighbors in the graph. If we think of each tree i
as being located on the real line according to the value xi of its statistic, and of each pair
of neighboring trees as being connected by an elastic spring with unit spring constant, the
total energy of this spring is given by the resolution’s numerator.

Noting that xtLx does not change if x is replaced by x + c for any constant c, we
can assume that x is a vector with mean 0. If x is such a vector, we also have xtx =
nE[x2] = E[x2]− E[x]2 = nVar(x), where V ar denotes the variance. Furthermore, in this
case, ∑i,j(xi − xj)2 = 2∑i x

2
i − 2∑i xi

∑
j xj = 2xtx. Thus, the Laplacian resolution of a

statistic measures, up to a scalar factor, the fraction of the total energy of the statistic (or
variance, if the statistic is transformed to have mean 0) that gets allocated to neighboring
trees. A statistic that places similar trees nearby will have low energy (and low variance),
and hence, a low resolution value.

3.2.5 The Upper and Lower Bounds

We now need to transform the resolution function in order to ensure it is always in the
interval [0, 1], for comparison purposes. Following Matsen’s original work [115], we use the
Rayleigh quotient to compute the extreme values of the resolution. For a given symmetric
matrix M and nonzero vector x, the Rayleigh quotient R(M,x) is defined as:

R(M,x) = xtMx

xtx
(3.4)

It follows from the Courant-Fischer theorem [67] that the minimum and the maximum values
of Rayleigh quotient are equal to the smallest and largest eigenvalues of M , respectively.

It follows that RD(f) has an upper bound and lower bound which are the maximum
and minimum eigenvalues of XD, defined as:

XD := −1
2HDsH (3.5)

The upper bound for RL(f) is equal to the largest eigenvalue of L. We note that the
smallest eigenvalue of L is zero and occurs only for constant vectors x = x11 since the Cayley
graph is a connected graph, according to equation 3.3; furthermore, by the symmetry of L,
any other eigenvectors are orthogonal to the constant vector 1. Therefore, the lower bound
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is equal to the second smallest eigenvalue of L, also known as the Fiedler value of the Cayley
graph [56].

Having determined the extreme values min and max for the resolution function, we
transform the value of the resolution for all statistics to the [0, 1] interval by using the linear
transformation x→ x−min

max−min ; the resulting value is referred to as the scaled resolution.

3.3 Results

The superiority of our resolution over the previous one is the lower time and space complexity
of its evaluation, so we can easily explore the space of the unlabeled rooted trees up to 25
leaves; this could only be done for the space of unlabeled rooted trees up to 17 leaves with
the previous method [115]. It takes O(nT lognT ) time and space to compute the Laplacian
matrix of the Cayley graph of the set of nT trees with n leaves for the NNI distance (since
n ∈ O(lognT ) and the number of non-zero entries in each row of the Laplacian matrix is the
degree of the corresponding vertex, which is the number of trees that are within distance 1
from the given tree). On the other hand, computing the distance matrix for the same set of
trees takes O(nT 2) time and space. Given the exponential growth in the set of trees with a
fixed number of leaves [73], we are able to go further by decreasing the running time and
space complexity (see Figure 3.4).

Computing the NNI metric is NP-hard [41], and we have only computed it for the space
of trees with at most 17 leaves. To compute the NNI distance between each pair of trees
on n leaves, we use the nni command of the phangorn package [169] in the R statistical
computing language [154], which produces the list of all trees at NNI distance 1 from a
specified tree. We then create the Cayley graph using the igraph package [38]. This Cayley
graph has a vertex for every tree on n leaves, and an edge connecting any two trees at
distance 1 (i.e. a single NNI move apart). Finally, we compute the NNI distance between
every pair of trees on n leaves by using an all-pairs shortest paths algorithm on the Cayley
graph [24, 20, 153, 29, 140].
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n I S σ2
n I2 B1 B2

7 0.0984 0.0933 0.1082 0.1115 0.1179 0.0989
8 0.0808 0.0955 0.1110 0.0893 0.1164 0.0965
9 0.0507 0.0566 0.0662 0.0680 0.0797 0.0653
10 0.0327 0.0379 0.0471 0.0535 0.0629 0.0451
11 0.0222 0.0255 0.0326 0.0458 0.0511 0.0348
12 0.0183 0.0217 0.0282 0.0429 0.0473 0.0304
13 0.0160 0.0185 0.0238 0.0413 0.0441 0.0283
14 0.0147 0.0170 0.0217 0.0400 0.0421 0.0265
15 0.0137 0.0157 0.0197 0.0390 0.0404 0.0256
16 0.0130 0.0148 0.0184 0.0380 0.0389 0.0246
17 0.0123 0.0140 0.0170 0.0370 0.0375 0.0238
18 0.0117 0.0132 0.0160 0.0358 0.0361 0.0229
19 0.0112 0.0126 0.0150 0.0349 0.0349 0.0222
20 0.0107 0.0120 0.0141 0.0339 0.0338 0.0216
21 0.0102 0.0114 0.0133 0.0329 0.0327 0.0209
22 0.0098 0.0109 0.0126 0.0319 0.0316 0.0203
23 0.0094 0.0105 0.0120 0.0311 0.0306 0.0197
24 0.0090 0.0100 0.0114 0.0302 0.0297 0.0192
25 0.0086 0.0096 0.0108 0.0294 0.0288 0.0186

Table 3.1: Scaled resolution scores for the classical tree shape statistics based on our resolution
function. n is the number of leaves. The best classical statistic is the Colless index and the
worst ones are B1 and I2 (the same ranking as for the previous resolution function). The
highlighted values correspond to the best statistics in each row.
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Figure 3.4: This plot shows the running time of computing the Laplacian matrix (dashed
line) and the distance matrix (solid line) as well as the growth of the number of trees by
increasing the number of leaves (dot line). To compute the geometric resolution one must
compute the distance matrix; however, to compute our proposed resolution one needs only
compute the Laplacian matrix. The left axis shows the time on a log scale. The bottom axis
shows the number of leaves, and the right axis shows the number of trees with a specific
number of leaves. The base unit for time is the second and a base-10 log scale is used for the
left and right axis. A comparison between the slopes of the dashed line and the solid line in
the plot shows that the running time of our proposed resolution is much faster that that of
the previous method. The computational experiments were conducted on an Intel Core i7
with 2.4 GHz 64-bit processor, 16.0 GB of RAM and macOS Sierra 64-bit as the Operating
System.
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Chapter 4

New Tree Shape Statistics

Tree shape statistics are commonly used to quantify, with a single number, aspects of
the phylogenetic relationships among a group of species or organisms. There has been
considerable interest over the years in comparing the shapes of phylogenetic trees in order
to understand evolutionary processes [180, 176, 71, 151, 93, 124, 17, 201]. A tree’s shape
specifies its connectivity structure. The lengths of its branches typically reflect either the time
or genetic distance between branching events. Following the observation that reconstructed
evolutionary trees are more asymmetric than random models predict [5], there have been
efforts to summarise tree asymmetry in trees reconstructed from data and relate it to predicted
asymmetry in evolutionary and ecological models [93, 62, 6, 145, 185, 124, 17, 151, 113].
There is also interest in establishing whether taxa from two phylogenies might correspond to
each other, for example in the context of parasites and hosts or fossils of different origins [66],
and in comparing simulated trees with trees from data in epidemiology, for example using
Approximate Bayesian Computation [146, 167]. These applications require quantitative tools
to compare phylogenetic trees with different taxa, and they require summary features that
are informative of the evolution or epidemiology being studied. .

Summaries of tree shape have often focused on either asymmetry, or the frequency of
various configurations such as cherries or ladders [162]. Well-known measures of asymmetry
include the Colless and Sackin imbalance [35, 163]. Asymmetry measures tend to be correlated
with each other, and do not fully capture the shape of a tree [66, 115], leading to an interest in
exploring other statistics, comparisons tools and metrics for this task [79, 147, 105, 66, 33, 167].
Some metric approaches directly find a distance (or similarity) measure between unlabelled
phylogenies; others seek an optimal labelling for two unlabelled trees and use metrics for
labelled trees, but this is not feasible for large trees. Metric approaches also do not lend
themselves to interpretable descriptions of trees that can easily be connected with generative
models of evolution or epidemiology.

In one particularly important application of tree shape statistics, namely, Approximate
Bayesian Computation, one seeks simulation parameters that produce trees that are similar
enough to data-derived trees [39]. This leaves a need for new statistics to quickly provide a
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good summary of tree shape. Matsen used optimization over binary recursive tree shape
statistics to find statistics that distinguish between sets of trees [115]. This set the stage for
broadening the set of quantities used to describe trees, and gives rise to natural questions
like why a particular recursive statistic separates two groups, whether it only happens to
separate those specific trees or acts as a good way to distinguish between trees that are
meaningfully similar to those in the two groups. The binary recursive class may furthermore
exclude features that capture global information about a tree, such as features derived
from its eigenvalues when viewed as a graph, known as spectral features. As the size of
datasets and range of applications increases, it is reasonable to assume that inference will be
improved by expanding upon the tools available to summarize tree topologies [115, 167]. In
applications like Approximate Bayesian Computation, as well as other related attempts at
summarizing tree shapes, one does not necessarily seek to relate summaries to evolutionary
mechanisms. Rather, the key objective is to distinguish between trees in different categories
or scenarios in an efficient way by computing simple statistics.

Different tree shape statistics can capture different aspects of the structure of a tree.
This implies that the linear combination of pairs of different statistics can provide more
information about the structure of the tree and results in a more powerful statistic than
each single statistic. We investigate the optimal linear combination of the classical tree
shape statistics, including the Sackin index, the Colless index, B1 and B2 with respect to a
geometric resolution function. We evaluate the power of our suggested statistics and show
that they perform better than the traditional statistics in distinguishing between different
trees.

Network science has become an important paradigm for describing structural (topological)
features of networks and using them to understand complex systems, ranging from protein
interactions to social systems [104, 134]. Network science is thus a potential source of many
novel ways to characterize tree shape since a phylogeny can be interpreted as a simple type
of network or graph – specifically, a connected acyclic undirected graph. Network science
offers many network features that can be adapted to describe shape. Here, we tailor tools
from network science to summarize phylogenetic tree topologies. We thereby develop tree
shape summaries that are complementary to both asymmetry and the frequencies of small
configurations. These new statistics are fast to compute and will scale well to describe the
topologies of large trees. They can additionally be easily adapted to take branch lengths
into account. In order to evaluate the power of our proposed network statistics, We apply
these statistics, alongside some conventional tree statistics, to phylogenetic trees from three
very different viruses (HIV, dengue fever and measles), from the same virus in different
epidemiological scenarios (influenza A and HIV) and from simulation models known to
produce trees with different shapes. Using supervised learning algorithms, we find that
the statistics adapted from network science perform as well as or better than conventional
statistics.
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4.1 Problem Definition

In contrast to the wide application range of tree shape statistics, existing statistics often
do not suffice to distinguish between important scenarios, such as trees corresponding to
different viral pathogens or different geographical scales for the same pathogen. In this
chapter, we seek to fill in this gap by proposing two classes of tree shape statistics. First, we
introduce a new class of tree shape statistics, which are linear combinations of two existing
statistics that are optimal with respect to a resolution function. Second, we use network
science, a well-developed branch of data science, to inspire 5 novel classes of tree shape
statistics: 2 tree-wide ones (diameter and mean path length between two nodes), and 3
node-specific ones (betweenness, closeness, and eigenvector centrality). In this chapter, we
only consider unlabeled rooted phylogenetic trees

4.2 Methods

4.2.1 Linear Combination of the Classical Tree Shape Statistics

In this section we propose a new class of tree shape statistics which is a meta-statistic
obtained by finding the linear combination of existing statistics that results in the optimal
resolution.

Here we focus on the linear combination of the Sackin and Colless indices, which we call
the Saless index: Saless = λS + I.

We choose the value of λ to maximize the geometric resolution, and is different for trees
with different numbers of leaves. Our experiments suggest (though we have not formally
proven it) that λ will converge to a limiting value as the number of leaves goes to infinity.

The optimal value of λ is the argmaxλ(RD(Saless)) defined as follows:

RD(Saless) = (λS + I)tDs(λS + I)
(λS + I)t(λS + I) (4.1)

Here, D = (dij) is the NNI distance matrix introduced for unlabeled phylogenetic trees
(see Section 3.2.2 for more details), and Ds represents the component-wise matrix square of
D, so that the ij-th component of Ds is dij2. If we call the numerator of the resolution f
and the denominator g, the problem reduces to finding λ for which f ′

g = g′
f . This condition

simplifies to a quadratic equation, and by solving that equation we find the value of λ for
trees with up to 17 leaves. In Appendix A, we show that the optimal value of λ is always
real; it can sometimes be negative, though in the case of the Saless statistic (with respect
to the geometric resolution) it always appears to be positive. These values are shown in
Table 4.1.

Table 4.1 and Figure 4.1 suggest that the value of λ may converge to a limit as the
number of leaves goes to infinity. However, we were unable to verify the plausibility of this
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n 7 8 9 10 11 12 13 14 15 16 17
λ 5.77 0.11 2.38 0.92 1.07 1.21 1.43 1.26 1.3 1.27 1.32
RD 0.931 0.926 0.923 0.943 0.955 0.956 0.957 0.957 0.957 0.956 0.956

Table 4.1: The value of λ and the resulting resolution RD for trees with different number of
leaves.

behavior by going beyond n = 17, as the number of trees, which is the size of the dense
distance matrix Ds, grows exponentially with the number of leaves.
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Figure 4.1: The value of λ appears to converge as the number of leaves grows.

In another experiment, we evaluated the combination of different pairs of statistics based
on our new resolution function. We can show that the optimal coefficient λ gives the linear
combination of the two statistics a better resolution than each individual statistic. This
linear combination does not always result in an interpretable statistic, since the optimal λ is
negative for some combinations. We also note that linear combination of statistics perform
differently with different resolution functions. The results of these experiments are shown in
Table 4.3.

4.2.2 Tree shape Summaries Based on Network Science

Network science, broadly defined as the study of complex networks, has produced a number
of tools that have been applied in a variety of contexts [104, 134], including degree sequence,
degree assortativity, density, diameter, and a number of node centrality measures. Only some
of these apply naturally and informatively to phylogenies. Here we discuss those network
science-inspired features that are informative for phylogenetic trees.
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Diameter, Average Shortest Path and Wiener Index

The diameter (the maximum length of a shortest path between nodes) is a useful summary
statistic. For general trees with N nodes (total internal and external nodes), it can be
calculated in linear time using a “folklore” dynamic programming algorithm, and its value
can vary between 2 for the star and N − 1 for the path of length N . For phylogenetic trees
with n tips and N = 2n− 1 nodes, the range is from 2 log(n) to n.

The average shortest path length of a tree may also be informative. Unlike for general
graphs, it can be calculated in linear time in a tree with N nodes using dynamic programming
[123]. The sum of all shortest path lengths between pairs of nodes in a tree is known as the
tree’s Wiener index, and equals (2n− 1)(n− 1) times the average shortest path length. The
Wiener index for general trees with N nodes is always contained between (N−1)2 and

(N+1
3
)
,

values which are attained by the star and the path, respectively [51]. For phylogenetic trees,
the range of the Wiener index is substantially narrower (O(n2 log(n) and O(n3))[51]. Note
that both the diameter and Wiener index generalize naturally to trees with arbitrary positive
branch lengths. The distributions of these indices for small phylogenetic trees, indicates that
trees with a diameter or a Wiener index much smaller than the mean are similar to complete
binary trees, and those with a diameter or a Wiener index much larger than the mean are
similar to caterpillars or double caterpillars, respectively.

Betweenness Centrality

Betweenness centrality associates to each node v in a graph the number of pairs u,w ∈ V −{v}
such that the shortest u− w path passes through v; in other words,

CB(v) :=
∣∣{(u,w) ∈ V − {v} | d(u,w) = d(u, v) + d(v, w)}

∣∣.
Betweenness centrality can be normalized by the number

(N−1
2
)
of all pairs u,w ∈ V − {v},

but we choose not to use this normalization here. In a tree T , there is a unique shortest
path between every pair of nodes, and the shortest u− w path passes through v if and only
if u and w are in clades subtended by different children of v when T is rerooted at v. Hence,
the betweenness centrality of an internal node v is simply Πi<jninj , where n1, . . . , nk are
the sizes of the clades subtended by the k children of v when T is rerooted at v, and k is
the degree of v in T . This implies that the betweenness centrality of all the nodes in a tree
can be computed in linear time, a result that, while not surprising, does not seem to have
been mentioned in the literature until now.

In a phylogenetic tree, the degree is 1 for a tip, 2 for the root and 3 for internal nodes,
so the betweenness centrality is respectively 0, n1n2 or n0n1 + n0n2 + n1n2 in those cases,
where n1 and n2 are the sizes of the left and right subtrees of the node and n0 is the number
of nodes outside the subtree rooted at this node. This can easily seen to be maximal when
n0 = n1 = n2, a situation that does not occur in every tree, but is only possible in those with
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N ≡ n ≡ 1 mod 3. The betweenness centralities are shown for all the nodes of an example
tree in Figure 4.2b. Trees with high maximum betweenness centrality are those which have
a node whose left subtree, right subtree, and “outside subtree” (what remains of the tree
after removing the subtree rooted at the node), are all close in size - a kind of three-way
symmetry, as opposed to the two-way (left-right) symmetry measured by classical statistics

Closeness Centrality

Closeness centrality associates to each node v in a graph the inverse of the sum of its
distances to all the other nodes in the graph. In other words,

CC(v) := 1∑
u d(u, v) .

The definition means that closeness centrality is inversely proportional to farness, the sum
of distances from a node to all the other nodes in the graph; hence, it will be small for
centrally located nodes and large for remote ones. While this quantity generally requires
at least O(NM) time to be computed for a graph with N nodes and M edges [15], this
can be reduced to linear time for a tree, an observation that does not seem to have been
published previously, although a distributed algorithm for performing this computation has
been proposed [195].

Indeed, if we consider an internal node u with a child v, we have d(v, x) = d(u, x)− 1
for every node x in the clade of T that v subtends, and d(v, y) = d(u, y) + 1 for every node
y outside this clade. Hence, by computing the height (distance to the root) of each node
and the sizes of the left and right subtrees of each node in a bottom-up traversal of the tree,
we can also find the closeness centrality in linear time for all the nodes in the tree. This is
illustrated on our example tree in Figure 4.2c.

Eigenvector Centrality

The Eigenvector centrality e(v) of a node v in a connected weighted graph is defined such
that: ∑

u∼v
w(uv)e(u) = λe(v)

holds for all nodes simultaneously with the largest possible λ. It can be easily seen
from this definition that ~e is the eigenvector corresponds to the largest eigenvalue of the
graph’s adjacency matrix. Using the largest eigenvalue guarantees that the entries of the
corresponding eigenvector would be positive. The Eigenvector centrality of all nodes of a
phylogenetic tree can be computed in O(n) time since the adjacency matrix of a phylogenetic
tree contains exactly 4n− 4 non-zero entries.

In particular, betweenness centrality, closeness centrality and eigenvector centrality are
quantities derived from network science that can be computed in linear time for a tree with
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N nodes and can capture aspects of tree shape not captured by mere asymmetry. The tree
shape statistics induced by Betweenness centrality, Closeness centrality, and Eigenvector
centrality are defined as the maximum values of each centrality over all the nodes of a
phylogenetic tree, but using other derived statistics (the minimum, mean, median or variance)
could also be an option. Figure 4.2 shows a sample phylogeny with the values of its network
statistics.

4.2.3 Spectral Properties Derived from the Distance Laplacian Matrix

In a recent paper, Lewitus and Morlon [105] used the spectra of the distance Laplacian
matrix, obtained by subtracting the distance matrix from a diagonal matrix formed by its
row sums, to characterize and compare trees. They found promising results and tentatively
stated that these spectra were likely to distinguish trees from one another.

We use the four summary statistics proposed by the authors [105] - namely, the maximum
eigenvalue, and the asymmetry, kurtosis, and maximum density of the eigenvalue distribution
(obtained via smoothing with a Gaussian kernel), as implemented in the RPANDA [125]
package in R [154]. We note that, unlike the network statistics, these ones require a number
of operations proportional to n3, where n is the number of tips, and thus take substantially
longer to compute.

4.2.4 Data and Simulations

In order to evaluate the power of network statistics in distinguishing between trees, we
applied them along with conventional tree statistics to phylogenetic trees simulated using
different parameters and reconstructed from different viruses.

HIV/Dengue/Measles We obtained Newick tree strings corresponding to phylogenies
inferred from human and zoonotic RNA viruses from a previous study. Specifically, we
retrieved tree strings reconstructed from genetic sequences of HIV-1 subtype B, Measles
virus, and Dengue virus serotype 4. The HIV sequence data (corresponding to the gene
encoding the Nef protein) were obtained from the LANL HIV Sequence database [59],
through the web site at http://www.hiv.lanl.gov, and screened for recombinants using the
SCUEAL algorithm [96]. The remaining virus sequences were obtained from GenBank [12].

Phylogenies were reconstructed from random samples of 100 sequences by maximum
likelihood using RAxML [181] under a general time-reversible model of nucleotide substitution
and rate variation among sites approximated by the GTRCAT model. HIV-1 subtype B
phylogenies were rooted using a subtype D sequence as an outgroup. Dengue virus serotype 4
phylogenies were rooted on an outgroup sequence isolated in the Philippines in 1956. Finally,
measles virus phylogenies were rooted using a genotype D6 sequence as the outgroup. The
GenBank [12] accession numbers for all outgroups can be found in Table A.1.

HIV in three settings We obtained HIV-1 sequence data from three published studies.
The Wolf et al. [200] data set corresponds to samples from a concentrated epidemic of HIV-1
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Figure 4.2: A sample phylogenetic tree with the associated centrality values at each node. (a)
An example tree. In the epidemiological context, tips (a− g) would correspond to pathogen
sequences and internal nodes (A− F ) to their inferred common ancestors. Node D subtends
a “cherry” configuration, and node C subtends two cherries (a “double cherry”). The heights
of the internal nodes are 1 (E,F ), 2 (C,D), 4 (B) and 8 (A), so the diameter is 16 and
the Wiener index is 484, for a mean path length of 6.21. (b) Same tree with betweenness
centrality values at each node (note that branch lengths do not change them). The tree
has betwenness centrality 45. (c) Same tree with farness (reciprocal of closeness centrality)
values at each node. The tree has closeness centrality 1/48. (d) Same tree with eigenvector
centrality values (scaled to have a minimum of 1) at each node, rounded to 3 significant
figures. Here, the leading eigenvalue is λ = 9.05. By our definition, the tree has eigenvector
centrality 714/1023 = 0.698 (here, 10232 is the sum of the squared values).
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subtype B in populations of predominantly men who have sex with men in Seattle, USA. The
Novitsky et al. [137] data set corresponds to samples from a generalized epidemic of HIV-1
subtype C infections in Mochudi, Botswana, a village with an estimated HIV-1 prevalence of
about 20% in the adult population. Similarly, the Hunt et al. [81] data set represents samples
from a national survey of the generalized epidemic of HIV-1 subtype C in South Africa.
Thus, these studies represent a range of geographic scales and epidemiological contexts.

Influenza in three settings We compared the topologies of a single virus (human
influenza A) sampled to reflect different epidemiology: (1) samples over a five-year period;
(2) global samples over a 12-year period and (3) samples from 2012-2013 from the USA only.
We downloaded full-length hemagglutinin (HA) sequences of human H3N2 flu from NCBI
and aligned sequences from each group with MAFFT [88]. For each sample, we chose 120
sequences uniformly at random from the alignment, and inferred a tree with these sequences
as tips using IQtree [191] with the pll (phylogenetic likelihood library) option [58] and the
GTR+G model. Using the date information from NCBI, we rooted the trees using the root
to tip (rtt) function in the ape package [140] in R [154].

Simulated tree models We simulated trees from four random processes: a Yule process
(pure birth trees), a “biased” model of Kirkpatric and Slatkin [93] in which speciation rates
are unevenly assigned to a node’s descendants with a bias (here 0.3), and a two constant
rate birth-death processes, with the basic reproduction number (mean of the offspring
distribution) equal to 1.5 and 3. We created sets of 100 trees with 100 tips and separately
with 300 tips. The apTreeshape package was used to simulate the Yule and biased models;
tree shapes were converted to phylogenetic trees using the as.phylo function. We used
the TreeSim package for the birth-death models. Because in sim.bd.taxa (in TreeSim) the
simulations are conditioned on having a fixed number of extant tips, we created trees with
300 or 600 extant tips and randomly pruned taxa to leave a tree of 100 or 300 tips, modelling
partial sampling over time.

As some scenarios can be distinguished simply by comparing the branch lengths of the
corresponding trees, we normalized the time scales so that each of our trees has a mean
branch length of 1. This ensures that any differences we observe between the summary
statistics in different classes are not simply due to scaling. We did not, however, modify the
variances of the branch length distribution, as those may contain some of the signal picked
up by summary statistics.

In total, there are 5 scenarios in which we compare trees: HIV/Dengue/Measles (HDM),
influenza (2-year USA, 5-year global, 12-year global), HIV contexts (labeled WNH after
the first author names of the corresponding publications), simulated trees with 100 tips
(“Simulated”) and simulated trees with 300 tips (“Simulated300”). Within each set, we
performed classification with generalized linear models and random forests, using the tree
shape statistics as features. We computed a measure of each feature’s importance for each
classification.
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4.3 Results

In this section, we elaborate the experiments we perform to evaluate the power of our
suggested statistics.

4.3.1 Comparing the Power of Saless with the Classical Statistics

In this part, we experiment with some of the classical statistics introduced in chapter 2 and
our suggested statistic Saless. Table 4.2 represents the scaled resolution scores based on the
distance resolution function for comparison of the various statistics. Each row in the table
contains the resolution for trees with a given number of leaves, while each column contains
the resolution for each statistic.

n I S̄ σ2
n I2 B1 B2 Saless

7 0.925 0.93 0.902 0.884 0.865 0.925 0.931
8 0.926 0.912 0.875 0.861 0.833 0.911 0.926
9 0.918 0.921 0.883 0.854 0.832 0.907 0.923
10 0.941 0.938 0.898 0.855 0.833 0.908 0.943
11 0.953 0.951 0.91 0.855 0.837 0.913 0.955
12 0.953 0.952 0.909 0.85 0.831 0.904 0.956
13 0.954 0.954 0.908 0.842 0.825 0.899 0.957
14 0.955 0.955 0.907 0.837 0.82 0.89 0.957
15 0.955 0.954 0.905 0.83 0.813 0.883 0.956
16 0.954 0.954 0.903 0.827 0.809 0.874 0.956
17 0.953 0.953 0.901 0.82 0.802 0.868 0.956

Table 4.2: Scaled resolution scores for tree statistics based on the distance resolution function
on the NNI distance matrix. The resolution is between 0 and 1. n is the number of leaves.
The tree shape statistics are described in chapter 2. The highlighted values correspond to
the best statistics in each row.

As this table shows, our proposed statistic has higher resolution than the previously
defined ones.

4.3.2 Linear Combination of the Classical Tree Shape Statistics

We investigate pairwise linear combinations of statistics based on our new resolution function
(Laplacian resolution function). The linear combination of the Colless index and B2 performs
better than all other statistics. Similarly, the linear combination of the Colless and Sackin
indices results in a high resolution. The results of this experiment are summarized in Table
4.3.
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n I −B2 λ B2-B1 λ Saless λ

7 0.0922 -0.08 0.0855 2.89 0.0932 0.08
8 0.0799 -0.28 0.0884 3.43 0.076 -1.2
9 0.0505 -0.53 0.0576 3.2 0.0502 -2.36
10 0.0324 -0.3 0.0405 4.14 0.0323 -2.49
11 0.0221 -0.5 0.0306 4.22 0.0221 -4.3
12 0.0182 -0.49 0.0273 4.91 0.0181 -2.87
13 0.0160 -1.4 0.0256 5.14 0.0159 -3.56
14 0.0147 -3.58 0.0244 5.69 0.0146 -3.19
15 0.0137 1.31 0.0237 6.03 0.0136 -3.17
16 0.0129 0.67 0.0230 6.5 0.0128 -2.8
17 0.0123 0.41 0.0224 6.86 0.0122 -2.69
18 0.0116 0.3 0.0217 7.28 0.0115 -2.52
19 0.0111 0.24 0.0212 7.65 0.0110 -2.4
20 0.0105 0.2 0.0206 8.04 0.0105 -2.27
21 0.0100 0.17 0.0200 8.4 0.0100 -2.17
22 0.0096 0.14 0.0195 8.77 0.0096 -2.08
23 0.0092 0.13 0.0190 9.12 0.0092 -2.00
24 0.0088 0.11 0.0185 9.47 0.0088 -1.94
25 0.0084 0.10 0.0180 9.82 0.0084 -1.88

Table 4.3: Scaled resolution scores for the optimal linear combinations of I −B2, B2-B1, and
Saless based on our new proposed resolution function (Laplacian resolution function). The
corresponding optimal values of λ are shown next to each combination.

4.3.3 Network Statistics Improve Classification of the Trees Reconstructed
From Different Viruses and Epidemiological Scenarios

We computed a range of topological and spectral summary features of the viral phylogenies
(see Table 4.4 for the definitions and references for each one). Our focus here is on some of the
novel tree shape summary statistics, but we also include a number of standard statistics for
comparison. All input trees were binary and rooted, and all branch lengths were non-negative,
although many of the trees had zero-length branches. All comparisons involved trees on the
same number of tips.

For the node properties derived from network science, we focus our discussion on the
maximum value of each type of centrality a node can have within a tree, but using other
derived statistics (the minimum, mean, median or variance) could also have been an option.
For the spectral properties, which also produce a value for each node, we focus on the
maximum value as well as the minimum strictly positive value. Lastly, for the distance
Laplacian spectral properties we use the four derived statistics proposed by Lewitus and
Morlon [105].

We use a generalised linear model and two flavours of random forests to classify trees
within each scenario. For example, we classified trees as HIV, Dengue or Measles; we

57



Name Description Short form Ref.
Numbers of small configurations
Cherry number # of nodes with 2 tip children cherries [118]
Pitchforks # of nodes with 3 tip descendants pitchforks [162]
Double cherries # of nodes with 2 cherry children doubcherries new
4-caterpillar # of caterpillars with 4 tips fourprong [162]
Clades of size x # of nodes with x tip descendants numx [162]
Tree-wide summaries
Colless imbalance Colless imbalance colless [34]
Sackin imbalance Mean path length from tip to root sackin [163]
Maximum height Max # of steps from the root maxheight [32]
Maximum width Max # of nodes at the same depth maxwidth [32]
Stairs Proportion of imbalanced subtrees stairs [136]
Max difference in widths maxi(ni+1 − ni) delW [32]
Node properties from network science
Betweenness centrality # of shortest paths through node between [133]
Weighted betweenness as above, but with weighted edges betweenW [133]
Closeness centrality total distance to all other nodes closeness [133]
Weighted closeness as above, but with weighted edges closenessW [132]
Eigenvector centrality value in Perron-Frobenius vector eigen [133]
Weighted eigenvector as above, but with weighted edges eigenW [132]
Summaries from network science
Diameter largest distance between 2 nodes diameter [19]
Mean pairwise distance average distance between 2 nodes meanpath [123]
Spectral properties
Min adjacency min adjacency matrix eigenvalue > 0 minAdj [65]
Max adjacency max adjacency matrix eigenvalue maxAdj [65]
Min Laplacian min Laplacian matrix eigenvalue > 0 minLap [65]
Max Laplacian max Laplacian matrix eigenvalue maxLap [65]
Distance Laplacian spectral properties
Max eigenvalue largest eigenvalue in the spectrum dLapLambdaMax [105]
Max density location of largest spectral density dLapDensityMax [105]
Asymmetry skewness of the spectral density dLapAsymmetry [105]
Kurtosis peakedness of the spectral density dLapKurtosis [105]

Table 4.4: Summary measures for phylogenetic trees. Here, ni is the number of nodes at
depth i.

classified influenza trees as five-year, global, and USA; we classified simulated trees as biased,
Yule, R0 = 1.5 or 3; and we classified the HIV trees by epidemiological scenario. In each
classification task, we randomly selected 75% of the trees (75 trees from each group) for
training and used the remaining 25 trees from each group for testing, and computed the
classification error of the predictor on the testing set. We report the overall classification
error with and without the features based on network science, as well as with and without
the features based on the distance Laplacian spectrum (abbreviated as “LM” statistics after
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the authors Lewitus and Morlon). The results are shown in Figure 4.3(a). It is clear that
the standard (“basic”) tree shape statistics are not able to get close to perfect classification
on any of the datasets except for the (relatively simple) task of distinguishing three different
viruses. The addition of the costly LM statistics improves the performance, but so does the
addition of the easily computable new network science-based statistics we introduced in this
chapter, with comparable gains in performance relative to the baseline (a larger improvement
on the flu scenarios, and a slightly smaller one on the HIV scenarios and on simulated data).
Interestingly, the addition of network statistics actually increases the error relative to the
baseline on the large simulated trees, an effect that is likely due to the random nature of the
classifier.

Both random forests and the GLM regression additionally provide estimates of the
importance of each feature. For the random forest classifier, the prediction accuracy on the
out-of-bag portion of the data is recorded for each tree, and then the same is done after
randomly permuting each predictor variable. The differences between the two accuracies are
then averaged over all trees, and normalized by the standard error. For the GLM regression,
the absolute value of the t-statistic for each model parameter is used as the importance
measure. We used the caret package [99] in R [154] to compute these for all the classifiers.
For each classification task in each scenario, we then ranked the features by importance. We
show the rank data in Figure 4.3(b). It is apparent that weighted closeness centrality is the
feature with the highest importance (lowest rank) across all scenarios, on average, with the
much costlier to compute distance Laplacian-based features coming close behind.
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Figure 4.3: (a) Accuracy of classification with and without network science features, as well
as with and without the distance Laplacian spectral features. (b) Feature importance in
multi-class classification across all scenarios, ordered by the median. Each point is the rank
of the corresponding feature in one of the classification tasks. Low ranks correspond to the
most important features (i.e. the top-ranked feature has rank 1, and so on).
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Chapter 5

An Application of Tree Shape
Statistics

Human influenza A virus remains a substantial global public health challenge, causing
considerable illness and mortality despite the availability of effective vaccines. Influenza
viruses are categorized according to features of two surface glycoproteins, hemagglutinin (HA)
and neuraminidase (NA), with types such as H3N2 and H1N1 indicating the variant of HA
and NA characterizing the strain. Influenza viruses are prone to variability, both in the form
of so-called antigenic drift (small mutations in the genes of influenza viruses that can lead to
changes in the surface proteins of the virus: HA and NA), and in the form of reassortment
(the process by which influenza viruses swap gene segments) [174]. Reassortments can give
rise to new variants with distinct antigenic properties compared to previous strains; resulting
pandemic influenza virus strains may be highly pathogenic. In contrast to pandemic strains
arising from reassortment, seasonal influenza virus primarily arises through antigenic drift,
as influenza virus has a high propensity for generating antigenic variation [174]. This allows
influenza viruses to evade host population immunity built up through previous exposure. As
a consequence, seasonal influenza virus vaccines need to be regularly updated.

Influenza virus vaccines typically focus on preventing infection by raising antibodies
specific to the hemagglutinin (HA) protein. In order to update a seasonal influenza virus
vaccine, currently-circulating strains must be selected for inclusion. This relies on surveillance
and sequencing of circulating influenza virus genotypes, and on measured antigenic properties
of circulating strains. These data do not, in and of themselves, describe future circulating
strains, and sometimes the strain selection process does not reflect the near-future composition
of the influenza viruses well enough to achieve the desired reductions in illness and mortality.
Predictive models are now being used in conjunction with sequencing and immunological
surveillance in order to improve the strain selection process.

Phylogenetic trees have been used in infectious disease to estimate the basic reproduction
number [179], parameters of transmission models [194], aspects of underlying contact networks
[146, 102, 158, 119] and in densely sampled datasets even person-to-person transmission
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events and timing [46, 94, 9, 202]. It is therefore natural to hypothesize that phylogenetic
tree structures and branching patterns contain information about short-term growth and
fitness. Tree information is central in some predictive models for short-term influenza virus
evolution and models of fitness [131, 43]. However, the mapping between the phylogenetic
tree structure and interpretable biological information can be subtle, [158, 119, 31, 117] and
trees do not directly reveal the short-term evolutionary trajectories of groups of taxa.

Improvements in influenza virus surveillance, sequencing, data sharing and visualization
[129, 72] mean that sequence data over considerable time frames is now available to the
community alongside intuitive and interactive displays showing how the population of
influenza viruses has changed over time. Computational systems to reconstruct large-scale
phylogenetic trees from sequence data have also been developed [181, 21, 25, 148]. Machine
learning models are well-suited to systematically explore subtle relationships between a suite
of features and an outcome. These together present the opportunity to integrate information
from different sources to improve short-term influenza virus predictions, using phylogenetic
trees as a framework. Here, we use a convolution-like approach to identify small subtrees
within a large global H3N2 phylogeny derived from HA sequences sampled between 1980
and May 2018. We fit classification models to detect early signs of growth and hence to
predict the short-term success or failure of these subtrees. We validate the predictions on a
portion of the data not included in the fitting procedure. We relate our predictions to the
WHO defined clades [10, 11] for sequences sampled from 2015-2018. Our approach could
be performed in real time, is computationally efficient and can be continually refined to
improve the quality of predictions as more data are gathered. We suggest that small groups of
closely-related influenza virus sequences and the phylogenetic trees that capture their recent
shared ancestry patterns can complement other approaches to better predict short-term
seasonal influenza virus evolution.

5.1 Problem Definition

Seasonal influenza viruses are constantly changing, and produce a different set of circulating
strains each season. Small genetic changes can accumulate over time and result in antigenically
different viruses; this may prevent the body’s immune system from recognizing those viruses.
Due to rapid mutations, in particular in the hemagglutinin gene, seasonal influenza vaccines
must be updated frequently. This requires choosing strains to include in the updates to
maximize the vaccines’ benefits, according to estimates of which strains will be circulating in
upcoming seasons. This is a challenging prediction task. Here, we use longitudinally sampled
phylogenetic trees based on hemagglutinin sequences from human influenza viruses, together
with counts of epitope site polymorphisms in hemagglutinin, to predict which influenza virus
strains are likely to be successful. In this chapter, we consider labeled rooted phylogenetic
trees.
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5.2 Methods

Our approach is rooted in the hypothesis that fitness – the reproductive rate and capacity
of a group of organisms – affects tree structure and branching patterns (including timing)
and that this information can be extracted using machine learning tools.

5.2.1 Reconstructing Influenza Virus Trees

We collected full-length HA sequences from human H3N2, H1N1 and influenza virus B
from GenBank [13, 168]. We used unique sequences of H3N2-HA from human cases for
years between 1980 and 2018-5 (May 2018), excluding laboratory strains. This results in
approximately 12919 sequences. For influenza virus H1N1 we collected pandemic sequences
from 2009 until 2018-5, giving 10652 unique sequences. For influenza virus B, we used
sequences from 1980 to 2018-5, resulting in 7257 unique sequences. We aligned each set of
sequences using MAFFT [87, 88] and then we used RAxML [181] to reconstruct maximum-
likelihood phylogenetic trees. The reconstructed trees using RAxML are neither rooted nor
dated; in some cases they include very long branches (edges) in comparison with the mean
branch length, which we removed. We rooted trees with the rtt function in the ape package
[140] in R and then converted them to timed trees using the Least Squares Dating (LSD)
software [189].

5.2.2 Subtree Extraction

We use a convolution-style approach to identify subtrees of the global timed phylogeny that
serve as units of analysis. For each internal node i in the tree, we find the tips that occur
within a fixed time window (1.4 years by default) chronologically following i; this is node
i’s “trimmed subtree”. We cannot train machine learning models on the subtree descending
from every internal node in the tree, because these subtrees will overlap substantially. We
use the notion of a node’s “relevant ancestor” (described below) to control the overlap, and
select subtrees in a convolution-like way.

We first initialize each node’s relevant ancestor to be its parent. We traverse the nodes of
the tree in a depth-first search order. If a node’s complete subtree is too small (fewer than
8 nodes by default), we reject the node and all its descendants, as none of the descending
nodes can have a larger subtree than the node itself. If the node’s trimmed subtree is too
small but its complete subtree is large enough, we reject the node but not its descendants,
since they may have subtrees that are large enough. If the node’s trimmed subtree is large
enough, we check the overlap between the node’s subtree and its relevant ancestor’s subtree.
The overlap is the portion of node i’s trimmed subtree that is contained in the relevant
ancestor’s trimmed subtree. If this overlap is not too large (under 80% of the subtree size
by default), the subtree is included in our analysis. If the overlap is too large, we reject
the node, and we set the relevant ancestor of the node’s children to be the node’s relevant
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ancestor. In that way, when we decide whether to accept the subtree of the node’s child, we
will control the correct overlap (see Algorithm 1).

Algorithm 1 takes an influenza tree, minimum accepted size for the subtrees (min_total
_size), minimum accepted size for the trimmed subtrees (min_trim_size), minimum
allowed overlap between the trimmed subtrees (overlap_cutoff), and the time that we trim
the subtrees after that time from the root of the subtrees (time_frame) as inputs. The
algorithm outputs the set of accepted nodes with the tips in the trimmed subtrees. Line
4 computes the number of tips in the input tree and store it in num_tips Line 6 stores
the Depth First Search traversal order of the nodes of the input tree in internal_nodes
array. Line 7 creates an array (relevant_parent) of size equal to the number of internal
nodes. Lines 8 and 9 initialize the relevent parent of each node. Line 10 creates a Boolean
array of size equal to the number of internal nodes in the tree and initiates each element to
False. Line 11 stores the first element of the internal_node as root. Line 12 changes the
corresponding entry of the root in the reject_flag array to True. The for loop of lines
13− 33 is the main part of the algorithm with the following loop invariant:

At the start of each iteration of the for loop current_subtree_root contains the root of
the current subtree under consideration. The variables left_child and right_child contain
the left and right child of current_subtree_root. The variables index_left_child and
index_right_child contain the indices of left_child and right_child in the internal_node
array.

Line 17 checks if the reject_flag of the root of the current subtree is not True. If the
condition satisfies then Line 18 retrieves the relevant parent of the current subtree root from
the releveant_parent array. Line 19 computes the number of tips in the current subtree
under consideration. Line 20 first trims the nodes in the current subtree with depth greater
than time_frame and then computes the number of tips in the trimmed subtree. Line 21
checks if the size of the current subtree is less than minimum allowed size. If this condition
is true, then we ignore this subtree and all of its descendent from future consideration by
making their reject_flag True in Lines 22− 24. Line 25 checks if the size of the current
subtree is greater than the minimum total allowed size and the number of tips in the trimmed
subtree is less than the minimum allowed size of the trimmed subtree. If this condition is
true, then we ignore only the root of the current subtree by making its reject_flag True in
Line 26. Line 27 checks if the size of the current subtree is greater than the minimum total
allowed size and the number of tips in the trimmed subtree is greater than the minimum
allowed size of the trimmed subtree. If this condition is true, then Line 28 computes the
number of tips that share between the the trimmed subtree rooted at current node and the
trimmed subtree rooted at the relevent parent of the node. Line 29 checks if the number of
shared nodes between these two subtrees is greater than the minimum overlap threshold
(defined by overlap_cutoff × num_tips_trimmed) then we ignore the current root by
making its reject_flag True in line 30. It also updates the relevant parent of the children
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of the current root to be the relevant parent of the current root in lines 31− 32. After the
loop of line 13− 32, the algorithm retrieves those nodes with reject_flag equal to False as
the accepted nodes in line 33. Then it outputs these accepted nodes together with the tips
in the trimmed subtree rooted at these accepted nodes in line 34.

In this way, we obtain subtrees containing tips that are within a specified time window
after their originating node, have at least a minimum number of tips, and have a limited
overlap with other subtrees. We varied the minimum size, time interval and permitted overlap
(See Table 5.2). We obtain a total of 396 subtrees in H3N2, and 198 subtrees in H1N1. After
removing subtrees with large size in relation to the average size (approximately greater than
10 times the average size), and recent subtrees with insufficient growth to determine their
outcome, we obtained 329 subtrees for H3N2 and 160 subtrees for H1N1.

5.2.3 Features

We use a set of features defined on subtrees, including both tree shape and patterns in the
branch lengths. The topological features are summarized in Table 5.1. For the H3N2-HA
dataset, we also consider some features derived from the epitope sites of the tips of the
subtree. For each subtree, we consider the mean, median and maximum genetic distances
between the epitope sites of the tips of a subtree and the epitope sites of the sequences with
dates prior to the subtree. We used the locations of known antigenic epitopes as mentioned
in [175], namely 72 sites in the HA1 subunit of HA.

Our features cover a wide range of global and local structures in trees, expanding
considerably over previous approaches which largely focus on tree asymmetry and a few
properties of branch lengths [131, 43]. Previous authors have noted that fitness leaves traces
in genealogical trees [43] by observing in fixed-size populations that increased fitness resulted
in increased asymmetric branching and long terminal branch lengths; Neher and colleagues
used the local branching index (LBI), a measure of the total branch length surrounding
a node, in their predictive model [131]. We significantly expand on the repertoire of tree
features, including asymmetry and measures of local branching but also including features
derived from network science that capture global structure of the subtrees, small shape
frequencies and others – see Table 5.1.

For comparison purposes, we implemented Neher et al.’s local branching index (LBI)
[131], which is a measure of rapid branching near a node in the tree. In doing this, we
noted that there are strong parallels between the LBI and the weighted version of the Katz
centrality, a classic measure from network science [89]. Figure B.2 shows the correspondence.
We performed the main classification task (H3N2) using all our features, only the topological
tree features, only the epitope and LBI, only the epitopes and only the LBI (Figure 5.5(b)).
We found that the combined features gave the best performance, followed by the tree features.
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Algorithm 1 Subtree extraction algorithm
1: Input: tree, min_total_size, min_trim_size , overlap_cutoff , time_frame
2: Output: A list of nodes and the tips in the nodes trimmed subtrees
3: function getSubtrees(tree, min_total_size, min_trim_size, overlap_cutoff ,
time_frame) . the tree should be rooted and timed

4: num_tips← number of tips in the tree
5: num_internal_nodes← num_tips− 1
6: Let internal_nodes be an array storing the internal nodes of the tree in a DFS

traversal (pre-order traversal) of the tree
7: Let relevant_parent be an array of size equal to num_internal_nodes
8: for i in 1: num_internal_nodes do
9: relevant_parent[i] = parent[internal_nodes[i]] . parent of the root node is

itself
10: Let reject_flag be an array of size num_internal_nodes initiated to False
11: root ← internal_nodes[1]
12: reject_flag[root]← True
13: for k in 2: num_internal_nodes do
14: current_subtree_root← internal_nodes[k]
15: left_child, right_child← children(current_subtree_root)
16: Let index_left_child, index_right_child be the indices of the left_child and

right_child in internal_nodes respectively.
17: if reject_flag[k] 6= True then
18: relevant_parent_current_root← relevant_parent[k]
19: num_tips_current_subtree← the number of tips in the subtree rooted at

current_subtree_root
20: num_tips_trimmed← the number of tips in the trimmed subtree rooted at

current_subtree_root (trim the nodes with depth greater than the time_frame)
21: if num_tips_current_subtree < min_total_size then
22: reject_flag[k]← True
23: reject_flag[index_right_child]← True
24: reject_flag[index_left_child]← True
25: else if num_tips_current_subtree ≥ min_total_size and

num_tips_trimmed < min_trim_size then
26: reject_flag[k]← True
27: else if num_tips_current_subtree ≥ min_total_size and

num_tips_trimmed ≥ min_trim_size then
28: intersect ← the number of tips that are shared between the trimmed

subtree rooted at current node and the trimmed subtree rooted at the relevent parent of
the node

29: if intersect > overlap_cutoff × num_tips_trimmed then
30: reject_flag[k]← True
31: relevant_parent[index_left_child]← relevant_parent[k]
32: relevant_parent[index_right_child]← relevant_parent[k]
33: accepted_subtrees← the internal_nodes with reject_flag equal to False
34: return accepted_subtrees and the tips in the trimmed subtrees rooted at

accepted_subtrees
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Name Description Reference
Properties from network science
Betweenness centrality Max number of shortest paths through nodes [133]
Closeness centrality Max total distance to all other nodes [133]
Eigenvector centrality Max value in Perron-Frobenius vector [133]
Diameter Largest distance between 2 nodes [19]
WienerIndex Sum of all distances between 2 nodes [123]
Mean tips pairwise distance Average distance between 2 tips natural
Max tips pairwise distance Max distance between 2 tips (with branch lengths) weighted graph diameter
Numbers of small configurations
Cherry number Number of nodes with 2 tip children [118]
Normalized Pitchforks 3*(Number of nodes with 3 tip descendants ) / n [162]
Tree-wide summaries
Normalized Colless imbalance 1

n3/2
∑
i∈I |ri − si| [35]

Normalized Sackin imbalance 1
n3/2

∑
i∈LNi [163]

Normalized Maximum height The maximum height of tips in the tree. / (n− 1) [91]
Maximum width Max number of nodes at the same depth [31]
Stairs1 The portion of imbalanced subtrees [136]
Stairs2 The average of min(si,ri)

max(si,ri) over all internal nodes [136]
Max difference in widths maxi(ni+1 − ni) [31]
Variance The variance of internal node depth [115]
I2 ∑

i∈I∪{r}
ri+si>2

|ri−si|
|ri+si−2| [115]

B1 ∑
i∈IM

−1
i [115]

B2 ∑
i∈L

Ni
2Ni [115]

Normalized Average ladder The mean size of ladders in the tree / (n− 2) [91]
Normalized ILnumber Number of internal nodes with a single tip child /

(n− 2)
[91]

Branching speed The ratio of the number of tips to the height of the
tree

new

Measures from edge length
Branching next index Mean of indicator: does the next branching event

descend from this node
new

Generalized branching next Number of next two branching events descending
from this node

new

Skewness The skewness of the internal branch lengths natural
Kurtosis The kurtosis of the internal branch lengths natural

Table 5.1: Brief definition for tree shape statistics. Here ri and si are the number of tips
of the left and right subtrees of an internal node respectively. n is the number of tips of a
subtree. ni is the number of nodes at depth i, Mi represents the height of the subtree rooted
at an internal node i, and Ni is equal to the depth of node i. A ladder in a tree is a set of
consecutive nodes with one tip child. We represent the set of all internal nodes of a tree by
I, the set of all tips (or external nodes) by L. In “generalized branching next” we chose
m = 2. Skewness and Kurtosis are two measures to describe the degree of asymmetry of
a distribution [114]. The tree shape statistics induced by betweenness centrality, closeness
centrality and eigenvector centrality are defined as the maximum values of each centrality
over all the nodes of a tree, and distances are in units of number of edges (without branch
lengths). Features called “natural” may not have been used as tree features previously but
are natural extensions of simple features (eg skewness is a natural quantity to compute).
The network science properties were computed in R using the treeCentrality package [101]
and the tree-wide summaries were primarily obtained using the phyloTop package [91]
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5.2.4 Success and Training Approach

We call a subtree of size n “successful” if its root has a total of more than αn tip descendants
in the time frame of 3.4 years from the root of the subtree. The threshold of α = 1.1 results
in a good balance of successful and unsuccessful subtrees, which facilitates training the
machine learning models (see Figure 5.1). We chose to use fractional growth as our outcome
rather than proximity to tips of the following season, because proximity to the following
season fluctuates depending on when in the season the subtree originates, the definition of
the season (i.e. the cutoff dates) and the subtree’s location (tropical vs temperate).

Figure 5.1: Illustration of the formation of trimmed subtrees: (a) the circled clade contains a
subtree; (b) red branches reach tips that occur after the trimming time period and so are
pruned out; (c) the resulting trimmed subtree.

5.2.5 Classification

We use several different binary classification tools, including support vector machines (SVM)
with a range of kernel choices [37]. We use R implementations in the package e1071 [47]. For
all the experiments, we randomly chose 75% of our subtrees for training the model and the
rest for testing. We perform 10-fold cross validation on the training dataset alone; this is to
find the best gamma and cost parameters (the parameters that are utilized in constructing
the SVM) without using all the data to do so (see Figure 5.2). Among different binary

68



classification tools that we used, SVM with a linear kernel had the best performance on
this 75% training set, so we proceeded with this option for the remaining results. Datasets
can have outliers that affect the training process. In order to remove the outliers, we use
the local outlier factor (LOF) algorithm [22] implemented in the DMwR package [190] in R.
Local Outlier Factor is the anomaly score of each data point. It measures the local deviation
of density of a given sample with respect to its neighbors. The reason that it is called local is
that the anomaly score depends on how isolated the object is with respect to the surrounding
neighborhood. More precisely, locality is given by k-nearest neighbors, whose distance is
used to estimate the local density. By comparing the local density of a sample to the local
densities of its neighbors, one can identify samples that have a substantially lower density
than their neighbors. These are considered outliers. For classification on the H3N2 tree,
we removed 5 outliers which were mostly large subtrees, most of whose descending tips
were contained in other subtrees. In the H1N1 tree, we had 198 subtrees; we removed the
largest 11 as outliers, for the classification. For the experiment on the merged H1N1 and
H3N2 subtrees we removed large subtrees of both H3N2 and H1N1 to have a set of subtrees
of approximately the same size. In the experiments on the influenza virus B tree and the
combinations of influenza virus B and other types, we remove large subtrees to obtain a set
of trees of approximately the same size in the training and testing groups. Our training and
testing scheme is illustrated in Figure 5.2.

5.2.6 Time Slices

To ensure that the method does not rely on internal nodes whose existence depends on
the full dataset, we reconstructed the influenza virus H3N2 tree using only the sequences
observed prior to time i (i ∈ {2012− 5, 2013− 5, 2014− 5, 2015− 5, 2016− 5, 2017− 5}); call
this tree Ti. We extracted the subtrees of this tree using the ALT0 parameters (see Table 5.2
for the details of ALT0). Naturally, the Ti tree does not contain the information as to whether
its later-occuring subtrees grow into the following season. To find the remaining success
information, we used the tree reconstructed from the sequences any time up to i+ 1 (Ti+1).
Consider a subtree c in Ti, with tip set Sc and size n. First we find the most recent common
ancestor (MRCA) of Sc in Ti+1. Then, we compare the size of the subtree c (n) with the size
of the subtree rooted at the MRCA of Sc in Ti+1 (m). If m > αn (α ∈ {1.1, 1.2, 1.3, 1.5})
then we say that subtree c is successful (see Figure 5.3). Again we tried different α cutoffs to
obtain a balanced dataset. We randomly choose 75% of the subtrees for training our model
and leave the rest to test the model. In order to find the hyper-parameters of the model we
performed 10 fold cross-validation on the training set. We tried linear, radial and polynomial
kernels for the SVM and, among these, the linear kernel resulted in the best performance
(see Figure 5.7).
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Subtrees without outliers

Train 75%
Test 25%

10-fold cross-validation
Obtain hyperparameters

“General” 
model

10-fold cross-validation
Estimate variability in AUC

(a)

Train on H3N2
(or training type)

Test on H1N1
(or testing type)

10-fold cross-validation
Obtain hyperparameters

Obtain 10 models

All subtrees (without outliers): eg H3N2 to H1N1
and other cross-type comparisons

(b)

Figure 5.2: This figure illustrates our training and testing approach for experiments on
influenza virus H3N2, influenza virus H1N1, influenza virus B and pooling the subtreees .
We divide the subtrees whose outcome is known into training (75%) and testing (25%) data
and choose hyperparameters using 10-fold cross-validation on the training data only. We use
those hyperparameters to train the “general” model and test it on the testing data. (b) The
schematic figure for training on a tree (H3N2) and testing on another tree (H1N1).
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Tree up to time i
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Tree up to time i + 1

t0 t0+ϵ

clade c

MRCA(c)
seq 1

seq 2

seq 3

seq 1
seq 2
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seq 3

Figure 5.3: This figure depicts the definition of a successful subtree in the time slicing
approach. The tree on the left, Ti, represents a tree reconstructed from a set of sequences up
to time i and the tree on the right shows the same tree after one year (Ti+1). We compare
these two trees to predict the successful subtrees in the time slicing approach. For each
subtree c we compare the size of the subtree in Ti (X) with the size of the subtree rooted at
the most recent common ancestor of the tips of subtree c in tree Ti+1 (Y ), in an interval of
3.4 years following the root of the subtree. If Y > αX (α ∈ {1.1, 1.2, 1.3, 1.5}) then we say
subtree c is successful. This overcomes the challenge that Ti+1 does not contain the root of
c; it does contain a node that is the MRCA of the tips in subtree c.

5.3 Results

Briefly, we extract subtrees from the H3N2, H1N1 and B phylogeny. Each subtree corresponds
to an internal node of the tree and the tip descendants that have occurred within a fixed
time frame (1.4 years). The remaining tips occur after the fixed time frame following the
relevant internal node, and help to define whether the subtree has successfully grown into
the future.

The approach results in a total of 396 subtrees, overlapping to some extent, containing
7615 of the 12785 tips in the full phylogeny. We use a wide range of features of the subtrees,
focusing largely on tree structure but also including some branch length features, and the
number of changes in the epitope sites of HA compared to previous sequences. We train
supervised machine learning models to use this information to predict whether subtrees will
succeed. Figure 5.4 shows the H3N2 hemaglutinin phylogeny and highlights in yellow the
tips that belong to at least one subtree.
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Figure 5.4: Phylogenetic tree reconstructed from H3N2 subtype sequences using RAxML,
with tips highlighted. Each yellow tip is in a trimmed subtree (7615 out of 12785 tips); grey
tips are not. The sequences are downloaded from GenBank with dates from 1980 to 2018-5.
Long branches in this timed tree did not appear as long branches in the RAxML tree and
were not removed (though their tips are not in any trimmed subtree). Inset: illustration of
formation of trimmed subtrees: (a) the circled clade contains a subtree; (b) red branches
reach tips that occur after the trimming time period and so are pruned out; (c) the resulting
trimmed subtree.

The trained models successfully predict which subtrees will grow sufficiently, as measured
within 3.4 years of a subtree’s originating node (2 years after the last possible tip in a
subtree). Using support vector machine (SVM) classification with a linear kernel, our overall
10-fold cross validation accuracy in H3N2 (using the HA sequences) was 74%. As the accuracy
of a classifier can be misleading when there are uneven numbers of samples with the different
outcomes, we use the area under the receiver-operator characteristic curve (AUC) to describe
the overall performance of our models. The SMV had an average AUC of 0.82 (range
0.73-0.9); see Figure 5.6. We found an accuracy (portion correctly classified) of 79% and
AUC of 0.89 when training on 75% of the subtrees chosen uniformly at random, and testing
on the rest (Figure 5.5).

Figure 5.5 shows receiver-operator characteristic curves illustrating the trade-off between
sensitivity and specificity. AUC ranges were obtained by training 10 models each on 90% of
the subtrees; see Figure 5.6. We obtained a 79% accuracy and 0.86 AUC when we trained a
linear kernel SVM model on a training portion of the subtrees (75% of the subtrees chosen
uniformly at random) obtained from the H1N1 phylogeny, reconstructed using sequences
from 2009 to 2018-05 (we did not use epitope features in any H1N1 analyses as the HA
protein differs in H1N1). We performed 10-fold cross-validation on H1N1 subtrees, which
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Figure 5.5: (a) ROC showing performance of linear kernel SVM trained and tested on H3N2,
trained and tested on H1N1, trained and tested on B, trained and tested on the merged
subtrees of H3N2 and H1N1 and trained on H3N2 and tested on H1N1. Figure 5.6 shows
variation in these curves and their AUCs over 10 models trained on 90% of the test data for
each case. (b) ROC showing classification performance for restricted sets of features. Top:
tree shape features (no branch lengths). Epi: epitope features. LBI: local branching index.
B.Len: some features include tree branch lengths.
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resulted in 0.76 average AUC (range 0.52-0.95). We also pooled the subtrees of H1N1 and
H3N2 and divided the pooled subtrees into training and test data sets; this resulted in an
accuracy of 75% and an AUC of 0.85 (10-fold cross-validation AUC range 0.75-0.88). We
also applied our method on a phylogenetic tree reconstructed from the HA gene of human
influenza virus B. This results in a 0.82 AUC and 78% accuracy when we train our model
on 75% of the data chosen randomly and test on the rest. For the influenza virus B tree,
we used only the topological features. We also compared classifier performance using only
portions of the data, and find that combining the tree shape features with epitope and local
branching index (LBI) [131] gives the highest quality, with AUC of 0.88 compared to 0.72
for either epitope features [112] or LBI alone, and 0.78 for these combined.

Our subtrees are based on internal nodes in long-time phylogenies, and these nodes
are present as a consequence of the relatedness patterns in all the data that are passed
in to the tree reconstruction algorithm (in particular, including sequences from the entire
time range). In consequence, a node’s existence and local structure may be conditional on
sequences occurring chronologically long after the node. We took several approaches to
ensure that our models were not influenced by some such subtle knowledge of the future.
We trained models on H3N2 HA phylogeny but tested on an H1N1 HA phylogeny (Figure
5.2(b)). We obtained an accuracy of 72% and an AUC of 0.75 (range 0.72-0.75 when training
10 models each on 90% of H3N2 subtrees and testing on H1N1; Figures 5.5 and 5.6). The
reduced accuracy is natural given that the HA proteins differ between the two types. We also
created “time slices” from the H3N2 HA sequences using only tips occurring prior to time
i (i ∈ {2012− 5, 2013− 5, 2014− 5, 2015− 5, 2016− 5, 2017− 5}). We extracted subtrees,
and tested their success using trees reconstructed from all the sequences prior to time i+ 1
respectively (Figure 5.3). This mimics a “real-time” analysis and ensures that subtrees
cannot depend on sequences arising after a set time. This approach performs comparably to
our other tests, with accuracy of 70%− 76% and an AUC of 0.73− 0.86 (Figure 5.7).

5.3.1 Cross-Validation on Different Experiments

To determine how variable the AUC and accuracy figures are for our analyses, we performed
10-fold cross validation for the main prediction on H3N2, the analysis on H1N1 only (trained
on a portion of the H1N1 subtrees), the pooled analysis of H3N2 and H1N1 and the
predictions on H1N1 using a model trained on H3N2. The resulting ROC curves are shown
in Figure 5.6(a-d) respectively. AUC values are consistently above the random classifier’s
expected value of 0.5, with ranges given in the caption of Figure 5.6. It is particularly
encouraging that the test on H1N1, using a model trained on H3N2 (Figure 5.6(d)) has a
highly consistent set of AUC and accuracy values (range of AUC 0.72-0.75) because this
test is in some sense the most challenging; no subtree in the test data (H1N1) ever shares a
tip with a subtree in the training data (all H3N2) and the risk of overfitting is low (also
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note that we did not select a model or method based on this test). The most variable set of
AUCs arises from H1N1 alone, which is likely due to the lower volume of data.
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Figure 5.6: (a) The result of 10-fold cross validation for SVM models trained on the subtrees
whose ancestral nodes occurred pre-2015-1 or which began later but whose outcomes are
known. AUC values range from 0.73 to 0.90 (average 0.82) with 80% of the folds resulting
in more than 0.75 AUC. (b) 10-fold cross-validation on the H1N1 tree using SVM with
linear kernel and a set of topological properties of the clades. AUC values range from 0.52
to 0.95 (average 0.76) with AUC more than 0.75 in 70% of the folds. (c) The result of
10-fold cross-validation on the merged dataset of H3N2 and H1N1 trees. The minimum and
maximum values of AUCs among the folds are 0.75 and 0.88 respectively (average 0.82).
(d) 10-fold cross-validation for training on the H3N2 tree and testing on the H1N1 tree; we
removed 10% of the training data at each fold and evaluated the model on the test data.
AUC values range from 0.72 to 0.75 (average 0.74).
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5.3.2 Results of Time Slices
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Figure 5.7: We classified the subtrees of the influenza virus H3N2 tree reconstructed from
the sequences up to time i by comparing with the tree reconstructed from sequences up to
time i + 1 which i ∈ {2012 − 5, 2013 − 5, 2014 − 5, 2015 − 5, 2016 − 5, 2017 − 5} . In this
figure the result of classification using different ratio between the size of a subtree in time i
and the size of the corresponding subtree in time i+ 1 is shown.
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5.3.3 Model Parameters

Because we have used a fixed time frame to select subtrees, the subtrees vary considerably
in size (since we do not control size). Successful subtrees are larger (median 18) than
unsuccessful ones (median 12). Figure 5.8 shows the sizes of the trimmed subtrees from
H3N2 that were used in the main analysis, with bars shaded to the outcome. We observed
that size alone does not successfully classify the success of subtrees, though it contains some
of the information (AUC 0.63). We chose to control time frame rather than subtree size,
as time frame has a clear biological meaning and the size of subtrees may in fact be useful
information for the classification; trees with rapid branching can achieve more tips in the
fixed time frame. However, size (and apparent rapid branching) may also reflect sampling
differences.

(a) (b)

Figure 5.8: (a) Correlation between the size of trimmed subtrees (x-axis) and the rate of
success (y-axis) for the 391 subtrees from the H3N2-HA dataset. The rate of success is
defined as the number of succesful trees divided by the total number of trees for a certain
range of sizes. The ranges were computed in order to encompass approximately the same
number of subtrees, and the color of the bars represent how many subtrees were taken into
account for the computation of the success rate. The subtrees vary from size 8 up to 460,
but as most of the dataset is composed by small subtrees, we used a log scale to better
visualize the information. The subtree sizes highlighted in yellow are detailed in the bottom
panel. (b) Subtree size distribution for trees up to size 50, which corresponds to 87.4% of
the dataset. For each size, the graph shows how many subtrees were succesful (blue blar)
and unsuccesful (red bar).

We used three sets of parameters to extract the subtrees of influenza virus H3N2. These
three models are summarized in Table 5.2, and the results of prediction using each of these
models are shown in Figure 5.9.

We also explored changing the success threshold, defining a subtree of size n as successful
if its ancestor eventually has at least one more tip, more than 1.1n tips and more than
1.2n tips (ie if size > αn for α = 1, 1.1, 1.2). Figure 5.9 shows the performance under these
variations.
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Model MinTotalSize MinTrimSize OverlapCutoff TimeFrame
ALT0 8 8 0.8 1.4
ALT1 12 12 0.95 2
ALT2 7 7 0.7 1

Table 5.2: Our subtree selection algorithm uses three parameters: a minimum subtree size, a
maximum allowable overlap and the length of the time window (Figure 6.1). We denote our
default as “ALT0” and our alternatives as “ALT1” and “ALT2”. There are natural trade-offs:
a larger minimum size, lower overlap and longer time frame all result in fewer accepted
subtrees. We found good performance for each of these three alternate setups.
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Figure 5.9: The ROC curves from prediction for the H3N2-HA dataset using different models
and different definitions of a successful subtree. In all models, setting the threshold to an
appropriate value allows a balance between successful and unsuccessful outcomes, resulting
in better performance. Among different sets of parameters for extracting the subtrees, ALT0
is the most powerful model resulting in 0.89 AUC. In all of these experiments we used the
topological and epitope features.
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5.3.4 Influenza Virus B

We applied our method to influenza virus B. We used the same approach as for H3N2 and
H1N1 to reconstruct the influenza virus B tree using sequences from 1980 to 2018-05 (for
further details see Section 5.2.1 The results of different experiments on influenza virus B are
shown in Figure 5.10.
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Figure 5.10: We find that a choice of α = 1.2 results in a good balance between successful
and unsuccessful subtrees. Combining H1N1 and B subtrees results in good performance,
suggesting similarities between the link between subtree structure and success between H1N1
and influenza virus B.

5.3.5 Best Features

For robust feature selection we followed the ensemble technique introduced in [164]. They
show that combining multiple (unstable) feature selectors yields more robust feature selection
than using a single selection method. We use 4 models including logistic regression, random
forests, SVM with linear kernel and learning vector quantization (LVQ)[95] to rank the
features based on their contribution in the classification task (see Figure 5.11). In the general
classification of the H3N2 subtrees, the epitope features are among the most important.
However, classification based only on epitope features reduces the AUC from 0.89 to 0.72,
and our classifiers perform well on H1N1 (0.86 AUC, and 0.76 average AUC in the 10-fold
cross validation) despite not having the epitope features. No single feature or small group
of features that we have identified can perform as well as the combined phylogenetic and
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epitope features. We did not attempt to reduce the feature set to obtain a minimal set of
features with the optimal performance.
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Figure 5.11: This figure shows the importance of each feature in the classification task. We
use an ensemble technique to find the importance of each feature. MeanEp, MaxEp, and
MeadianEp are the three features we defined on the epitope sites of the sequences (see
Section 5.2.3 for more details). numberTipsTrimmed is the number of tips in the trimmed
subtrees. The rest of the features are defined in the Table 5.1.

5.3.6 Predictions on the Recent Subtrees

Subtrees originating after January 2015 (here called “recent subtrees”) did not have enough
time to grow into the future, and we do not know whether they are successful, as the
predictions are relative to 3.4 years after the initial node. To accommodate for this, throughout
our analysis, we only trained and tested models on subtrees that originated prior to January
2015. In this second part, our aim is to make predictions for subtrees whose outcomes are
not known. In order to do so, we trained 10 models using 10-fold cross-validation on the
non-recent subtrees, as well as a general model, and used these 11 models for predictions on
the recent subtrees (Figure 5.12).
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All subtrees (n=396)

Pre-2015 (n=276)

Post-2015
(n=120)10-fold cross-validation

Obtain hyperparameters
Obtain 10 models

“General” model

Figure 5.12: For the prediction task, we divide our subtrees into recent (subtrees originating
after 2015-1) and non-recent sets (the rest of the subtrees). We then trained 10 models using
10-fold cross validation together with one general model on the set of non-recent subtrees
and used these 11 models for prediction on the recent subtrees.

The recent subtrees were labeled according to the clades defined by the World Health
Organisation (WHO) (see Figure 5.13(a)). Every recent subtree contributed with 11 predic-
tions to its respective clade. The predicted success of a clade in 2019 is the average success of
all predictions coming from related recent subtrees. The predictions are presented in figures
5.13 and 5.14.

Our recent subtrees originated between 2015-03 and 2017-02, and in this period, contained
tips as shown in Figure 5.13(b), with the majority of tips in clades A1b, A1, A1a, A2 and
A2/re. This reflects the sequences in GenBank, and is likely not globally representative [72].
Clades A3, A1 and A1b/135K and A2/re were most strongly predicted to be successful
by our measure (fraction of the clade’s subtrees predicted as successful), but in A1b/135K
there are only two subtrees on which to base predictions. In clade A3 we predicted 7/8
subtrees as successful, with 5 of those already having shown sufficient growth to meet our
success criterion. A2/re has an intermediate signal overall, but has 12 subtrees predicted to
be successful. Of these, 10 had already shown sufficient growth to pass our success threshold
by the end of our sampling. Indeed the A2/re clade did become very successful, probably
due to a re-assortment event [11]. Our model also predicted that other parts of clade A2
(4 of 7 subtrees in A2 but not in A2/re) may grow. In the time frame we had, there were
relatively few sequences in our GenBank data that were mapped into the A4, A1b/135K
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and A1b/135N clades by the ’augur’ pipeline [72] so these clades have very few subtrees on
which to make predictions.
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Figure 5.13: Summary of predictions for the recent subtrees (for detailed information, see
Figure 5.14). (a) Relations between the clades defined by the World Health Organisation
(WHO), showing the emergence of new clade designations from existing ones; (b) Frequency
of clades through years, based on 3298 H3N2 HA sequences sampled between 2015 and 2018.
Every sequence is associated with a tip of one or more subtrees used in the predictions. The
clade designation of the tips determines the clade designation of the subtrees by majority
rule. (c) Predictions for the recent subtrees. Among the 120 recent subtrees, the outcome
(success/failure) of 63 subtrees is not known. Each subtree was tested on 11 different SVM
models (see Figure 5.12). A rectangle corresponds to the prediction of a clade, and its area
is proportional to the number of subtrees used in the prediction. The number of subtrees
associated with a clade is indicated in parentheses. Color reflect the combined predictions of
the subtrees associated with each clade.

82



Clades

A
1b

/1
35

K

A
3

A
1a

A
2/

re

A
1b

A
1b

/1
35

N

A
2

3c
3.

A

A
1

3c
2.

A

A
4

Prediction for 2019 (rate of success) 1.000 0.875 0.653 0.593 0.591 0.545 0.493 0.487 0.465 0.232 0.182

Nb. of subtrees used in predictions 2 8 11 21 14 4 7 17 26 9 1

D
et

ai
ls

 o
f s

ub
tre

es
 u

se
d 

in
 p

re
di

ct
io

ns

Current growth

Below success 
threshold

Above success 
threshold

Prediction

1 2 5 2 2 1 4 1 4 0 0Successful A

1.4 3.4
Relative time (years)

n

n

S
u
b
tr

e
e
 s

iz
e
 (

n
b
. 
o
f 

ti
p
s)

for 3.4 yrs
Current
state

Prediction

Success

Ground truth
A

1.4 3.4
Relative time (years)

n

n

S
u
b
tr

e
e
 s

iz
e
 (

n
b
. 
o
f 

ti
p
s)

for 3.4 yrs
Current
state

Prediction

Unsuccess

Ground truth
B

1.4 3.4
Relative time (years)

n

n

S
u
b
tr

e
e
 s

iz
e
 (

n
b
. 
o
f 

ti
p
s)

for 3.4 yrs

Current
state

Prediction

Success

Ground truth
C

1.4 3.4
Relative time (years)

n

n

S
u
b
tr

e
e
 s

iz
e
 (

n
b
. 
o
f 

ti
p
s)

for 3.4 yrs

Current
state

Prediction

Unsuccess

Ground truth
D

0 7 5 2 3 5 11 5 0BUnsuccessful

1 5 3 10 6 1 0 7 8 2 0CSuccessful

0 0 1 2 1 0 0 4 3 2 1DUnsuccessful

Likely correct prediction Likely incorrect prediction

21

Figure 5.14: Predictions of the rate of success for the clades defined by the World Health
Organisation (WHO). A column contains the information about one clade, indicated on
the top and following the same color code as Figure 5.13. The columns (clades) are sorted
according to the rate of success, from the most successful (left) to the least successful (right).
The rate of success of a clade is an average of all predictions from subtrees whose majority
of tips contain DNA markers linked to the clade (11 predictions per tree). All subtrees used
in these predictions were extracted between 2015 and 2018 and, thus, have an unknown
outcome, as the actual growth rate in 3.4 years from the initial node is still inaccessible.
The subtrees are classified in four types: (A) subtrees whose prediction is to succeed but
the current growth is still below the threshold considered to be successful; (B) subtrees
whose prediction is to fail and the current growth is below the threshold considered to be
successful; (C) subtrees whose prediction is to succeed and the current growth is above the
threshold considered to be successful (notice that even in this scenario it is not possible to
be certain, since the structure of the tree may change); (D) subtrees whose prediction is to
fail but the current growth is above the threshold considered to be successful. Schematics
for each case are presented on the bottom of the table.
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Chapter 6

Computing the Distribution of the
Robinson-Foulds Distance

One of the crucial aspects of phylogenetics is the comparison of two or more phylogenetic
trees. There are different metrics for computing the dissimilarity between a pair of trees.
The Robinson-Foulds (RF) distance is one of the widely used metrics on the space of labeled
phylogenetic trees. We do not claim that the RF distance is the most practical one in
phylogenetics; indeed this distance may be highly biased [109]. Instead, the aim of this
chapter is to show one of the applications of the DFT in improving the running time of an
existing algorithm. Pattengale et al. [142] introduced a novel randomized approximation
algorithm for computing a high probability approximation of the true RF distance in
sublinear time. However, the best known algorithm for computing its distribution - i.e. the
frequency of each possible value over the space of all possible trees with n tips - requires
O(n5) time, which becomes prohibitively slow even for moderate n.

This distribution arises naturally when one is interested in performing statistical tests.
For instance, one could easily use it to compute the probability of the distance between two
given trees being larger than the distance between the first tree and a tree chosen uniformly
at random (a null model). In other words, this distribution informs us about how likely the
observed distance between two trees is to occur by chance [26, 184]. In [76, 182], the authors
propose a method for computing the distribution of the RF distance between a given tree T0

and all the trees on the same number of tips and having the same labels, using generating
functions. The approach does not result in a polynomial-time algorithm [26]. Bryant and
Steel, whose work serves as the basis of our approach, have proposed a polynomial-time
algorithm via a dynamic programming approach for computing the distribution of the RF
distance from a given T0 [26]. They also showed that a Poisson distribution whose parameter
depends on the number of cherries of T0 can approximate it well when n is large.

Although their algorithm runs in polynomial time, it is quintic in the number of tips.
However, the main bottleneck of their dynamic programming formulation can be expressed
as a matrix convolution [49]. This immediately suggests the use of a fast convolution
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computation, such as the Discrete Fourier Transform (DFT ) or the Fast Fourier Transform
(FFT ) [36], to reduce the running time to essentially cubic, and make the algorithm practical.
Unfortunately, the FFT approach suffers from significant numerical stability issues, and often
produces nonsensical negative values. We thus turn to an alternative, called the Number-
Theoretic transform (NTT) [196], which is the generalization of the FFT to finite fields.
This allows us to keep the running time essentially cubic while completely eliminating all
numerical stability issues. From now on, by DFT we, mean the Discrete Fourier Transform
over the field of complex numbers and by NTT we mean the Number-Theoretic transform,
i.e. the Discrete Fourier Transform over the number field Fp formed by the integers modulo
the prime p.

The DFT has been used in computational biology in the past, to solve problems such
as locally aligning two sequences [127], computing the statistics (such as p-values) of a
pairwise local alignment [55] or multiple alignment [155], as well as solving problems in
mass spectrometry [165] (an area where, incidentally, the term “spectral convolution” has
a different meaning [171]). In these applications, the main use of the DFT is to quickly
compute convolutions between long vectors. However, there has been, to our knowledge, no
computational biology paper using the Number-Theoretic Transform (NTT) since 1990 [14].
We believe that this is a missed opportunity. Our hope is that the reintroduction of the
NTT in the context of phylogenetics will inspire other computational biology researchers to
apply it to solving their problems.

6.1 Problem Definition

The distribution of the RF distance from a given unrooted labeled phylogenetic tree has
been studied before, but the fastest known algorithm for computing this distribution is
a slow, albeit polynomial-time, O(n5) algorithm. We modify the dynamic programming
algorithm for computing the distribution of this distance for a given tree by leveraging
the Number-Theoretic Transform (NTT), and improve the running time from O(n5) to
O(n3 log(n)), where n is the number of tips of the tree. In this chapter, we only consider
labeled phylogenetic trees.

6.2 Methods

We start with a detailed explanation of the method proposed by Bryant and Steel [26] to
compute the distribution of the RF distance from a fixed tree T to all the trees on the
same set of labels. We then introduce our approach for improving the running time of their
algorithm, which makes it practical for moderate to large size trees.

Given a phylogenetic tree T , we distinguish between three types of internal nodes in a
rooted binary tree. Type I nodes are internal nodes with two tip descendants (also called
cherries), type II nodes are internal nodes with one tip and one internal node as descendants,
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and type III nodes are internal nodes with two internal node descendants (Figure 6.1). The
expected number of cherries (type I internal nodes) in a binary rooted tree with n tips under
the equal rate Markov model (ERM or Yule) [73, 204] is n/3 [118]. The expected number of
the other types are given in Lemma 2.

Lemma 2. The expected numbers of type II and type III internal nodes under the Yule
model are n

3 and n
3 − 1, respectively.

Proof. Let N1, N2 and N3 denote the expected number of cherries, type II and type III
internal nodes of the tree under the Yule model respectively. We have 2N1 +N2 = n and
since N1 = n

3 then we have N2 = n
3 . Considering the fact that the number of internal nodes

in a binary rooted phylogenetic tree with n tips is n−1, we can show that N3 = n−1−2n3 =
n
3 − 1.

Figure 6.1: There are three types of internal nodes in a binary rooted tree. X is a type I
node, i.e. an internal node with two tip descendants (cherry). Y is a type II internal node
since it has one tip and one internal node descendants. Z is a type III internal node since it
has two internal node descendants.

6.2.1 Computing the Distribution of the RF Distance

Our method to compute the distribution of the RF distance is based on the simplification
of the dynamic programming approach introduced by Bryant et al. [26]. We use the same
notation and definitions that they do.

For a given unrooted labeled tree T with n tips, let us denote by bm(T ) the number
of unrooted labeled phylogenetic trees which are at a distance m from T . The generating
function of bm(T ) can be computed by the following recursive formula [76]:

B(T, x) = xB(T/e, x) + (1− x2)B(T1, x)B(T2, x),
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where B(T, x) := ∑
m≥0 bm(T )xm. Here, e can be any internal edge, T/e represents the tree

after contracting e, and T1 and T2 are the trees obtained form T after removal of e. The
exponential number of distinct sub-cases in the above recursion precludes a polynomial-time
algorithm to compute the distribution of the RF distance directly based on this recursion
[26, 76].

An internal split is a split which is obtained by removing an internal edge from T . By
qs(T ), we denote the number of unrooted labeled phylogenetic trees with n tips which have
exactly s internal splits in common with T . Bryant and Steel [26] showed that

bm(T ) = q(n−3−m/2)(T ),

where m = 0, 1, . . . , 2(n− 3). Let us define the polynomial with coefficients qs(T ):

q(T, x) =
n−3∑
s=0

qs(T )xs.

Consider a subset of internal edges E ∈ E(T ), and suppose that removing E from T results
in |E|+ 1 connected components T1, T2, ...T|E|+1. By E(Ti), we denote the number of internal
edges of T that are contained in Ti. Define

NE(T ) =
|E|+1∏
i=1
B(|E(Ti)|),

where B(m) is the number of unrooted labeled phylogenetic trees with m internal edges.
From this definition, it is clear that NE(T ) is equal to the number of unrooted labeled
phylogenetic trees that contain the splits induced by the edges in E [26]. It can be easily
seen [170] that B(m) = b(m + 3) = ∏m+3

k=3 (2k − 5), where b(n) is the number of unrooted
labeled binary trees with n tips.

b(n) = (2n− 5)!! =
n∏
k=3

(2k − 5).

Finally, for s ≥ 0, we denote by rs(T ) the sum of NE(T ) over all possible subset of edges
E with |E| = s:

rs(T ) =
∑

E∈E(T ),|E|=s
NE(T ).

Bryant et al. [26] uses a dynamic programming approach to compute the distribution
of the RF distances from a given unrooted labeled phylogenetic tree T with n tips as the
first argument. Denote the node adjacent to tip n in T by v0. Remove tip n, and root the
resulting tree with v0 as the root. We use this rooted labeled tree as the input to the dynamic
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programming algorithm. From now on by T , we mean this new rooted labeled tree, and by
Tv we denote the subtree rooted at an internal node v of T .

For s, k ≥ 0, let A(v, s, k) be the set of all subsets E ∈ E(Tv) such that |E| = s and the
number of internal edges of T in the component of Tv − E containing v equals k. Define

R(v, s, k) :=
∑

E∈A(v,s,k)
NE(Tv).

Figure 6.2 illustrates the computation of R(v, s, k). Note the assumption that T is fully
resolved, and before counting the internal edges of each component, all internal nodes of
degree 2 are removed (since removing a set of edges from T might result in some components
with internal nodes of degree 2).

v

Tv

e2 e3

e1

e4

v0

1 2 3 4 5 6 7

Figure 6.2: This figure is an example of how to compute R(v, s, k). Consider the subtree
rooted at v. For k = 1 and s = 2 there are four options for E: E1 = {e2, e4}, E2 = {e3, e4} ,
E3 = {e1, e2}, and E4 = {e1, e3}. The value of NE(Tv) for each of these sets is B(0)B(1)B(0),
B(1)B(0)B(0), B(0)B(1)B(1) and B(1)B(0)B(1) respectively, so R(v, s, k) = 24

For v = v0, we have the following equation for rs(T ):

rs(T ) =
n−3−s∑
k=0

R(v0, s, k).

We mention in passing that the upper bound for this summation was incorrectly given as s
by Bryant and Steel. The correct bound is n− 3− s since after s internal edges are removed
from T , the component containing v0 contains at most n− 3− s internal edges.

From [182] we have the following equality for the generation function of rs(T ):

R(T, x) :=
∑
s>0

rs(T )xs =⇒ q(T, x) = R(T, x− 1). (6.1)
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Using these definitions, Bryant et al. developed a recursion for computing R(v, s, k). For
every v ∈ I(T ), s, k ≥ 0, this recursion is derived through the following lemmas:

Lemma 3. [26]

R(v, 0, k) =

B(k) if k = E(Tv),

0 otherwise.
(6.2)

Lemma 4. [26]

1. R(v, s, k) = 0, if k > |E(Tv)| or v has no children in I(T ) and s ≥ 1

2. If v has one child in I(T ) say v1

R(v, s, k) =


∑
k1≥0R(v1, s− 1, k1) ifk = 0,

R(v1, s, k − 1)(2k + 1) otherwise.
(6.3)

3. If v has two children in I(T ) say v1 and v2 and k = 0

R(v, s, 0) =
s−2∑
s1=0

(
∑
k1≥0

R(v1, s1, k1))(
∑
k2≥0

R(v2, s− 2− s1, k2)). (6.4)

4. If v has two children in I(T ) say v1 and v2 and k > 1

R(v, s, k) =
s−1∑
s1=0

(
∑
k1≥0

R(v1, s1, k1))R(v2, s− 1− s1, k − 1) B(k)
B(k − 1)

+
s−1∑
s2=0

(
∑
k2≥0

R(v2, s2, k2))R(v1, s− 1− s2, k − 1) B(k)
B(k − 1)

+
s∑

s1=0

k−2∑
k1=0

R(v1, s1, k1)R(v2, s− s1, k − 2− k1) B(k)
B(k1)B(k − 2− k1) .

(6.5)

6.2.2 Computing the Distribution of the RF Distance with the Fast Fourier
Transform

In this dynamic programming algorithm, the most expensive part is computing the two-
dimensional convolution in part 4 of Lemma 4, which takes O(n4) time [26]. The two-
dimensional convolution of two matrices x and y are defined as:

z(i1, i2) =
∑
j1

∑
j2

x(j1, j2)y(n1 − j1, n2 − j2)
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We improve the running time by using the Fast Fourier Transform (FFT) [138, 193]
to compute the two-dimensional convolution, which takes O(n2 log(n)). The FFT is an
algorithm for computing the Discrete Fourier Transform (DFT ) of a matrix, which efficiently
converts it from the time domain to the frequency domain [138, 197]. The convolution
theorem states that multiplication in the frequency domain corresponds to convolution in
the time domain:

F{f ∗ g} = F{f} · F{g},

where F denotes the Discrete Fourier transform and ∗ denotes the convolution oper-
ator [90]. We use the DFT to convert the input matrices from the time domain into the
frequency domain. The discrete Fourier transform transforms a sequence of N numbers
{x0, x1, . . . , xN−1} into another sequence of complex numbers {X0, X1, . . . , XN−1} which is
defined by:

Xk =
N−1∑
j=0

(xje
−2πi
N

kj)

The DFT of a vector of length N can be computed by left-multiplying it by a Fourier
matrix of a suitable dimension.

M =



1 1 1 . 1
1 w w2 . w1·(N−1)

1 w2 w4 . w2·(N−1)

. . . . .

1 w(N−1)·1 w(N−1)·2 . w(N−1)·(N−1)


In the FFT, the unit w is the N th root of unity, e−2πi/N . After transforming the data

into the frequency domain, all the computations happen over the complex numbers. The
procedure for computing the convolution of two vectors using FFT is:

• Compute the DFT of each vector using FFT ;

• Perform the point-wise multiplication of the two preceding results;

• Apply the inverse FFT (using w−1 := e2πi/N instead of w) to this product.

Unfortunately, convolutions via the FFT cannot be performed numerically stably for
large N due to rounding errors. This is overcome by using the Number-Theoretic Transform
(NTT ) instead.

6.2.3 Computing the Distribution of the RF Distance with the Number-
Theoretic Transform

The Number-Theoretic Transform (NTT) [196] is a generalization of the DFT, with the
only difference being that the w is replaced with an N th root of unity modulo a prime p, for
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a transformation of length N . In other words, the transformation is done over the number
field Zp formed by the integers modulo the prime p instead of the complex numbers C. The
first step in NTT is to pick a suitable modulus p = kN + 1 for some integer k, so that
all the elements of the input and output are less than the modulus (for the convolution of
two vectors of length N with maximum value M , the prime p needs to be greater than the
maximum output value M2 ·N). Dirichlet’s theorem [172] guarantees that, for any vector of
length N defined in a finite field, there exists some k that results in a suitable modulus p.
We then compute the transformation matrix by finding a suitable w such that wN = 1. In
order to find such a w, we find a generator r in Zp, i.e. an element such that when x goes
from 1 to p− 1, rx mod p covers all the numbers 1, 2, . . . , (p− 1) in some order. We then
set w := rk mod p. Indeed, wN ≡ rkN ≡ rp−1 ≡ 1 mod p by Fermat’s Little Theorem. The
transformation matrix for computing the NTT is then computed by using this w in the
matrix defined in the previous section.

Similarly to the FFT, replacing w with w−1 mod p results in the inverse transformation
matrix which is used for an inverse NTT. Otherwise, the process is exactly the same as for
the FFT. Since all the numbers in the NTT computation are integers, there is no rounding
error. The NTT can be implemented using an FFT algorithm such as Cooley-Tukey [36]. In
order to do a one dimensional NTT with O(N logN) complexity, the transformation length
N has to be a power of two.

As the size of a tree increases, the input elements become large, and it is challenging to
calculate a suitable modulus p for the convolution using NTT. A possible solution for this
would be to calculate the convolution with multiple NTTs, each with a different modulus
p, and get the final result using the Chinese Remainder Theorem [48]. Another solution is
using the approximation proposed in [26] to compute the approximate distribution of the
RF distance [26].

Since we are computing the distribution of the RF distance from a given tree, the
numbers that are involved in our computations are always less than b(n) (the number of
unrooted labeled phylogenetic trees with n tips):

b(n) = (2n− 5)!!

From the above formula it is clear that these numbers grow exponentially with n. Using
the asymptotic expression of Vaclav Kotesovec for odd numbers, we have this asymptotic
approximation for b(n) and accordingly for the involved numbers [2, 1]:

b(n) ∼
√

2(2n− 5)n−2e−
(2n−5)

2

Having this approximation, the involved numbers can be written in O(n log(n)) bits. So, if
we count the bits, rather than the numbers, the complexity would be increased by a factor
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of O(n log(n)), but it would not affect the whole time complexity since the time complexity
of computing the convolution is O(n2 log(n)).

Theorem 1. Given a binary tree T with n tips, we can compute the coefficients of the
generating function B(T, x) in O(n3 logn) time.

Proof. If v has no children in I(T ), then we can compute R(v, s, k) in constant time based on
Lemmas 3 and 4 (part 1). If v has one child in I(T ), then the dominant term for computing
R(v, s, k) is equation 6.3, which can be computed in O(n2) time for all s, k 6 n− 3. Finally,
if v has two children in I(T ), then the most computationally expensive term for computing
R(v, s, k) is equation 6.5 which we compute it in O(n2 logn) by leveraging FFT or the NTT.
In order to compute all the coefficients rs(T ), we need to compute R(v, s, k) for all the
internal nodes of T ; Hence we can compute all the coefficients rs(T ) in O(n3 logn). Using
equation (6.1) and the relation between bm(T ) and qs(T ), we can compute the qs(T )’s, and
finally the bm(T )’s, in O(n3 logn) time. Note that the time complexity of computing the
convolution using NTT depends on the transformation length (N) and N increases as the
number of tips increase. Since N = O(n), the overall computation depends on n.

6.3 Results

We implemented the dynamic programming approach introduced by Bryant and Steel [26],
as well as our approach, in R [154] and Python. In order to compute the convolution, we
first leveraged the FFT via the convolve command in the stat package in R. The convolve
command performs a one-dimensional convolution using FFT ; however, we have to compute
a two-dimensional convolution on two input matrices. In order to account for this, we convert
our two input matrices into vectors using sufficient zero-padding, apply a one-dimensional
convolution, and remove the padding. We were able to generate the RF distance distribution
for trees with 5 to 22 tips efficiently using FFT.

We were not able to compute the distribution on trees with more than 22 tips due to
the numerical instability of the FFT applied to vectors containing numbers spanning many
orders of magnitude. For example for this random tree with 26 tree tips:

(((((((, ), ((, ), (, ))), ((, ), )), (, )), (((, ), ), )), (((, ((, ), )), ), (((, ), ), ))), (, ))

The range of the entries of R(v, s, k) (v is one of the root’s children) is between 1 to
about 1016. When we apply convolve command on two vectors with large range of entries,
the results are some negative values which is impossible. We thus used the NTT to compute
the convolution instead.

Our implementation in R works efficiently for small trees, up to n = 50 tips; we used
the Cooley-Tukey algorithm [36] to implement the fast NTT. For larger trees, we used the
gmp package [111] in R to perform the computation using large numbers. However, the
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code ran a lot slower when using the gmp package. Therefore, in order to compute the
convolution with larger numbers, we made use of an efficient Python implementation of the
NTT [128]. This enabled us to implement the dynamic programming algorithm [26] and
our proposed algorithm in Python. Figure 6.4 shows the RF distance distribution for the
completely balanced and unbalanced (caterpillar) trees with 8, 16, 32 and 64 tips. Our Python
and R packages are freely available at https://github.com/WGS-TB/RFDistribution and
https://github.com/WGS-TB/RFDistributionR respectively.

We compute the distribution of the Robinson-Foulds distance using our method for two
sets of extreme trees: completely balanced unrooted and completely unbalanced unrooted
trees. Completely balanced unrooted trees can not be described easily because they are
not unique. In this paper, we consider unrooted binary trees with most possible number
of cherries located evenly through the tree as completely balanced unrooted trees (Figure
6.3(a)). The completely unbalanced unrooted tree or so-called unrooted caterpillar is the
unique unrooted binary tree with just two cherries. (Figure 6.3(b))

(a)

(b)

Figure 6.3: (a) shows the maximally balanced (completely balanced unrooted tree) with 8
tips, and (b) shows the unrooted caterpillar (completely unbalanced tree) on 8 tips

Computing a suitable prime for large trees (trees with n ≥ 200) is computationally
expensive, and we cannot use a simple NTT with our currently computed prime moduli
to perform the convolution. A possible solution for this is to use the Chinese Remainder
Theorem (CRT) [83].

We used our Python implementation to compare the algorithm with and without NTT
(Figure 6.5) for a set of trees with 12 to 75 tips, in increments of 3. For each number of
tips n, we only considered the trees with n/3− 1 internal nodes of type III (internal nodes
with two internal children), to ensure that the convolution is called the same number of
times for all trees of the same size. For each n, we randomly generated 10 such trees and
recorded the mean running time. Figure 6.5(a) shows the method’s running time without
NTT ; the slope of the log-log plot of time vs. n is 5.035, close to the expected 5. Figure
6.5(b) shows the method’s running time with NTT. Its slope is close to 3, but jumps when
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Figure 6.4: Log scale plot showing the RF distribution of the completely balanced and the
completely unbalanced labeled trees with 8, 16, 32 and 64 tips. The y-axis represents the
frequency of the distances from a given phylogenetic tree.

the transformation length changes, as the running time of NTT -based convolutions depends
on it linearly (Figure 6.6).
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Figure 6.5: a) log-log plot showing the running time of the algorithm when we do not use
the NTT to compute the convolution. The slope of this plot is 5.035, in agreement with
the O(n5) running time of the algorithm. b) log-log plot showing the running time of the
algorithm when we use NTT to compute the convolution. There are some jumps in the plot,
indicating the points where the transformation length changed. This figure shows that using
NTT to compute the convolution can improve the performance of the computation of the
RF distance distribution.
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Figure 6.6: log-log plot showing the running time of computing the convolution using NTT
vs. transformation length. The running time changes nearly linearly with the transformation
length.
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Chapter 7

Conclusions

Phylogenetic trees are most often used in biology to study the historical relationship between
several species or organisms. These trees contain both branch lengths and information in
the form of the tree topology or shape. A tree’s shape specifies the connectivity of a tree,
while its branch lengths reflect either the time or genetic distance between branching events.
The Colless and Sackin indices are among the most well-known measures of tree shape. Tree
shape statistics have a wide range of applications, from phylogenetic hypothesis testing to
recent applications in phylodynamics. Phylogenetic trees have been used in infectious disease
to estimate the basic reproduction number, parameters of transmission models, aspects
of underlying contact networks, and in densely sampled datasets even person-to-person
transmission events and timing. It is therefore natural to hypothesize that phylogenetic tree
structures and branching patterns contain information about short-term growth and fitness.
In this dissertation, we focus on introducing new tree shape statistics (tools for measuring the
shape of a tree) and evaluating the previously proposed ones. We also investigate the problem
of using machine learning tools and phylogenetic properties of the influenza tree to predict
which influenza strains will persist into the future. Moreover, we improved the running time
of the best known algorithm for computing the distribution of the Robinson-Fould distance
for a given tree.

7.1 Summary

In chapter 1, we introduced phylogenetic trees and briefly explained some definitions and
notations used in phylogenetics. We discussed the stochastic evolutionary models, including
the Yule and the PDA models in this chapter. We also introduced tree shape statistics,
which are tools to measure the degree of imbalance or asymmetry of a tree shape. Moreover,
we had a brief look at methods for tree comparison.

In chapter 2, we reviewed and discussed the classical tree shape statistics and the recently
proposed ones and also the methods proposed for evaluating the discriminatory power of
the existing tree shape statistics. We also reviewed the applications of tree shape statistics
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in evolutionary hypothesis testing and the recent applications in phylodynamics. Finally, we
discussed the methods for computing the distribution of the RF-distance for a given tree.

In chapter 3, we proposed a new resolution function based on the Laplacian matrix to
evaluate different tree shape statistics. This resolution function can rank the statistics in
terms of their power in discriminating all possible phylogenetic trees on the same number of
leaves. Among our new resolution function and the previously proposed ones, the top statistics
are Colless index, Sackin index, and our proposed statistic (their linear combination), and
the worst ones are B1 and I2. The advantage of our new resolution function is to reduce the
time and space complexity of the computation while producing comparable results. Being
able to explore the set of trees with more tips, allows us to ensure that the trends observed
with smaller trees are not artifactual, and remain when we explore larger trees.

In chapter 4, we proposed two classes of tree shape statistics. The first one is the linear
combinations of two existing statistics that are optimal with respect to a resolution function,
and show evidence that the statistics in this class converge to a limiting linear combination as
the size of the tree increases. Using the geometric resolution function introduced in chapter
3, we showed that our proposed tree shape statistics Saless can perform better than classical
tree shape statistics in distinguishing between dissimilar trees. The other class of proposed
tree shape statistics is inspired by network science. We used some concepts from network
science, namely, diameter, average path length, betweenness, closeness, and eigenvector
centrality to define some new tree shape statistics to summarize the shape of a phylogenetic
tree. Using mutual information and supervised learning algorithms, we showed that the
statistics adapted from network science perform as well as or better than conventional
statistics.

In chapter 5, we efficiently predict the success of individual influenza virus subtrees using
machine learning tools applied to phylogenetic trees. Our method allows binary classifiers to
be trained to predict which currently circulating subtrees will persist into the future based
primarily on a suite of phylogenetic features. Our approach is complementary to previous
approaches, including the fitness based model proposed by Łuksza and Lässig [112] and the
tree-centred work of Neher and colleagues [131, 130]. Our approach requires a reconstructed
timed phylogenetic tree, and can accommodate additional data (e.g. we have used epitope
mutations) easily. Other approaches often require additional data such as HI titers and
estimates of the ancestral sequences, introducing experimental and computational costs and
uncertainty. Our approach makes use of the reconstructed phylogeny in two distinct ways.
First, in obtaining the groups of taxa (subtrees) considered together for analysis, and second
in that the tree shape and length features are derived from the phylogeny, and capture
features of the complex branching patterns within subtrees, as opposed to their overall rates.

In chapter 6, we improved the running time of the algorithm introduced by Bryant
and Steel [26] to compute the RF distance distribution of a given tree. Their dynamic
programming algorithm has a time complexity of O(n5), and the dominant term is due to
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computing a two-dimensional matrix convolution, which takes O(n4) per iteration if done
naïvely. Using the Number Theoretic Transform (NTT ) for computing the convolution, we
reduced the running time of the proposed algorithm to O(n3 logn). We implemented their
proposed algorithm and our proposed modification in both R statistical computing language
[154] and Python. We compared the running time of our approach and the algorithm by
Bryant and Steel [26] on a set of trees up to 75 tips and showed that the running time of
the algorithm is in agreement with the theoretical analysis.

7.2 Discussion

In chapter 3, we have implemented our proposed method in the R statistical computing
language [154]. The challenge of implementing the method was in handling large matrices,
as the number of unlabeled trees n grows exponentially with the number of leaves n. Our
implementation needs to allocate a vector of size n2, which is not possible since R holds all
objects in virtual memory, and each object can use a limited amount of memory. One of
the advantages of using the Laplacian matrix in our method is its sparsity, which enables
us to implement it via the Matrix package. We also use a specific numbering scheme for
labeling the phylogenetic trees to account for tree isomorphism, which results in reduced
time and memory requirements. A better implementation would allow us to extend distance
and Laplacian matrix computations to larger tree sizes. An alternative approach is to reach
larger tree sizes by replacing the exact computation that we pursue here with a Monte Carlo
Markov Chain approach, which is feasible because the neighbors of each tree with respect to
a rearrangement distance can be readily produced.

In chapter 5, we proposed a method to predict the successful influenza strains that would
persist in the future outbreak. Influenza virus A can be categorized based on the presence of
different proteins on the surface of the viruses: hemagglutinin (HA) and neuraminidase (NA).
We use trees reconstructed from HA sequences; relatedness in the HA tree corresponds to
similar HA sequences and hence to similar immunity profiles, as antibodies are induced by
HA. Indeed, path lengths in the HA phylogenetic tree provide a good model for antigenic
differences modeled by serological assays [131]. Trees describe the relative number of recent
descendants of a lineage compared to closely-related lineages, the timing and asymmetry in
the descent patterns and the short- and long-term future populations that are related to the
lineages. Our approach allows this information to be included in predictive efforts.

We used RAxML to infer the trees; it uses a maximum likelihood approach and is
considered a state-of-the art reconstruction algorithm [205, 100]. Due to the large num-
bers of isolates, we did not perform Bayesian Markov Chain Monte Carlo (MCMC) tree
reconstruction to accommodate tree uncertainty; in addition to each required MCMC run,
this would also have required exploration of different priors and assumptions, and it is
computationally unfeasible for thousands of tips. In order to check the robustness of our
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approach, we used different training and testing trees, including training on H3N2 but testing
on H1N1, pooling H3N2 and H1N1 and using distinct time slices and consistently obtained
successful predictions.

Tree shape statistics are dependent on the size of a subtree, so in order to have a
more robust comparison between the subtrees, it would be best to select subtrees with
approximately the same size. In our data, the size of a trimmed subtree was a poor predictor
of the fractional growth. Furthermore, constraining the sizes of subtrees reduces both the
number of subtrees and the number of tips that can be included in the analysis, and size may
in fact be a valuable predictor. We chose the approach here to balance these contrasting issues;
the ongoing sampling and sequencing and the natural passing of time will ultimately provide
more data – more years, and more samples per year – such that subtrees of more consistent
size can be used. We anticipate that this will increase the quality of predictions. Another
next logical step will be to model competition or other interactions between major lineages.
We have not explicitly modeled ancestral states, key individual mutations, serological data
or estimates of the fitness of sequences, but our approach could easily integrate results
from models that include these features. Ideally, all relevant sources of information would
be integrated and updated in real time [130, 112]. However, while short-term forecasting
based on various data sources is feasible and is required to update seasonal vaccines, perfect
short-term prediction and accurate long-term prediction are likely not possible because
evolutionary events are fundamentally stochastic.

The potential overlap between subtrees could induce dependence in the outcome variable
(success), i.e., if nodes ni and nj have overlap, and ni is successful, then nj may be more
likely to be successful. Notice that having some tips in common does not mean that overall
subtree features are similar, but we hypothesize that the chance increases as the proportion
of shared tips grows. If ni was in the training data and nj in the test data, and if the two
subtrees had similar features, then correlations in the success of these two subtrees could
result in overfitting the data. Controlling this potential effect is one reason to use a cutoff
of 3.4 years for success (meaning that nj could be unsuccessful with ni successful). In one
of our experiments, we trained on H3N2 and tested on H1N1 (see Figure 5.2(b)) to ensure
that test and training data are completely distinct. We also explored the performance of our
approach on a set of pool subtrees from both H1N1 and H3N2.

Our data are censored, because we cannot observe the future of subtrees beginning in
2018; furthermore, we have limited knowledge of the true success of subtrees beginning in
the most recent 3.4 years of our data (since it takes approximately 2 years following the end
of the trimmed subtree before its success is known). We only know whether a subtree has
been successful if it has already had a sufficient number of tips; other subtrees may yet do
so. Accordingly, we could not train our models using the last few years of data. We used
10-fold cross-validation on the set of subtrees whose ancestral nodes arose before 2015-1. We
refer to this as the set of “non-recent subtrees”. This results in one “out of fold” prediction
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for each such subtree. We trained an additional “general” model on the set of non-recent
subtrees. We then had 10 cross-validation models and one additional model that we could
use to make predictions on the subtrees arising after 2015 (for which the true success is only
partially known).

The structure (and hence internal nodes) of a large phylogeny depends on all tips, not
only the tips prior to the node chronologically. To avoid having the “future” tips affect
the nodes on which we based our analysis, we also used a “time slicing” approach that is
amenable to use in real-time, season by season. Here, we extracted subtrees not from the
full phylogeny but from a tree containing only tips prior to a fixed time. We then assessed
the success of these subtrees with reference to later tips (see Figures 5.3 and 5.7).

Direct comparison of our method with previous approaches is challenging as different
approaches have various definitions of success and use different evaluation metrics. Neher et
al. [131, 130] demonstrate that the shape of the reconstructed phylogenetic trees contains
information about the fitness of the sample sequences and using this information, they
proposed a model to predict the successful strains in the upcoming influenza season, using
the local branching index. The units of prediction in their approach are strains while we use
subtrees. One of the advantages of using subtrees over strains is that strains are typically
observed only in a single season, while subtrees have an evolutionary history. Our tests
have found that at the subtree level, local branching index does not perform as well as our
combined feature sets. Łuksza et al. [112] infer the fitness components of influenza strains:
adaptive epitope changes and deleterious mutations outside the epitopes for the strains
circulating in a given year, using population-genetic data of all previous strains. They then
used the fitness and frequency of each strain to predict the frequency of its descendent
strains in the following year. They used clades as units of prediction, which are close to
our units of prediction (subtrees). However, we put some time restriction on choosing the
subtrees, which enable us to compare subtrees in the same time interval. In order to have
a more balanced dataset and accordingly, a more powerful model, we choose the subtree
growth ratio equal to 1.1 and predict the growth of the subtrees in 2 years. These parameters
are 1 and 1 year, respectively, in the model proposed by Łuksza et al. We do not have strain
frequency data, but a comparison with epitope features as the primary basis of prediction
found that our feature sets performed better.

We did not include information about proximity of strains to current or recent vaccines,
which might have led to false positives in our results, if a subtree showed early signs of
success but was later suppressed by vaccination (but this is unlikey, as only a small portion
of the global population is vaccinated). We also did not explicitly include immunological
assay data, as these are not generally available. We do not have good estimates of the current
frequencies of subtrees or strains - indeed, if up-to-date global frequencies were available
at high resolution it would greatly facilitate short-term prediction. We used epitope sites
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following the approach of [112]; a model reflecting the impact of polymorphisms across more
locations in HA and in other genes, if this were available, might improve predictions.

Recent studies on the viral isolates from vaccinated individuals indicate that they
are significantly distinct from the vaccine strain and are broadly distributed on the tree,
resulting in accelerated antigenic evolution [186]. Researchers have been working to develop
a universal vaccine that would provide broad protection against both seasonal and pandemic
influenza. Recent studies have also indicate that universal vaccines could decelerate the
speed of evolution [126, 186]. If successful, such universal vaccines would eliminate the
need for continual updates to seasonal influenza virus vaccines, but we would suggest that
even so, current efforts to make short-term predictions based on surveillance and sequence
data gathered over time can yield both practical results and broader insights into short-
term patterns of evolution. Our approach indicates that fitness can affect the phylogenetic
properties of a tree reconstructed from influenza viruses and that properties of small subtrees
can be used as a set of predictors to estimate which groups of sequences are showing signs
of success.

In chapter 6, we proposed using Number Theoric Transform (NTT ) to compute a two-
dimensional convulsion. To our knowledge, our method represents one of the rare times that
the NTT is used to solve a computational biology problem, the last example we were able to
find [14] dating to 1990. We believe that many similar applications, where numerical stability
issues make the use of a FFT impractical, can be found. We chose the Robinson-Foulds
(RF) distance since it is one of the most widely used measure of dissimilarity between trees.
One of its main advantages is its time complexity, which can be computed in linear time.
However, the RF distance is overly sensitive to some small changes in the tree. For example,
just moving a leaf at the end of a caterpillar tree to the other end will result in a tree with
the maximum possible RF distance to the original tree. Our results in accordance with the
previous results show that the RF distance between two random binary trees with n tips
has a very skewed distribution in which most values equal n− 3 [108].

7.3 Future Work

In chapter 3, a better implementation would allow us to extend the distance and Laplacian
matrix computations to larger tree sizes. An alternative approach is to reach larger tree
sizes by replacing the exact computation that we pursue here with a Monte Carlo Markov
Chain approach, which is feasible because the neighbors of each tree with respect to a
rearrangement distance can be readily produced.

In chapter 4, we investigated the optimal combination of different pairs of tree shape
statistics. We conjecture that λ values converge for any pair of reasonable statistics. We
cannot make any conclusion based on the small trees we examined so far, since convergence
is a long-term behavior, and we leave the proof of this conjecture for future work. Regarding
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the application of tree shape statistics to phylodynamics, more powerful statistics, such
as the pairwise combinations we introduced, are clearly needed. Tree shape statistics are
used, for instance, as the features in predictive models of short-term influenza evolution and
fitness models [131, 74]. Using more highly resolving features would arguably result in more
accurate predictions. An additional future research direction could then be the extension of
optimal combinations to more than 2 statistics, in which case one would need to optimize
multiple coefficients at once.

In chapter 5, our approach is rooted in the hypothesis that fitness and early success
leave signatures in the branching time and structure of phylogenetic trees, which can be
complemented with additional relevant information such as epitope diversification. With
only slight modifications, our model could be applied to other organisms. We could also
extend the approach and train regression models to predict the number of tips arising from
subtrees. However, a natural limitation of this (and other tree-based approaches) is that it
detects signs of early growth - if an adaptive new mutation arose in the population and was
sampled before that early growth could occur and be sampled, then we could not detect
early signs of growth and would not see the new adaptive mutation. In contrast, a principled
modeling approach based on an understanding of both what makes an influenza virus fit
and on the current composition of population immunity might be able to detect fit novel
mutations without relying on such viruses already have begun to spread.

In chapter 6, in order to compute the RF -distance distribution of a large tree (with
n ∼ 102−104), one would need to use the Chinese Remainder Theorem (CRT), as computing
a suitable prime modulus for computing the RF distance distribution of a larger tree is
computationally expensive. We propose this as a future direction.
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Appendix A

Results Corresponding to Chapter
4

Linear combination of the classical tree shape statistics

Lemma. The optimal λ value for the combination of a pair of statistics is always a real
number.

Proof. Consider linear combinations of the form λS1 +S2, where S1 and S2 are vectors corre-
sponding to two distinct real statistics. Without loss of generality we make two assumptions:

• S1 and S2 are orthogonal; this is because we can always write S2 = αS1 + S3, with
α ∈ R and S3 orthogonal to S1, and the resolution of λS1 + S2 equals the resolution
of (λ+ α)S1 + S3, in which the coefficient λ+ α of S1 is real if and only if λ is real, as
α ∈ R.

• Ds is a real symmetric matrix (true for both resolutions).

Under these two assumptions, the aim is to find the value of λ that maximizes the resolution
of λS1 + S2 when S1 and S2 are orthogonal:

RD(λS1 + S2) = (λS1 + S2)tDs(λS1 + S2)
(λS1 + S2)t(λS1 + S2) (A.1)

Let us call the numerator and denominator of this equation f and g, respectively. The
problem reduces to finding a λ such that the derivative of fg equals 0, which is equivalent to
f ′g = g′f by the quotient rule. We thus have:

2[St1Ds(λS1 + S2)][(λS1 + S2)t(λS1 + S2)] = 2[St1(λS1 + S2)](λS1 + S2)tDs(λS1 + S2)
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After some algebra, the coefficient of λ3 cancels out and we end up with the quadratic
equation:

(St1DsS2S
t
1S1)λ2 + (St2DsS2S

t
1S1 − St1DsS1S

t
2S2)λ− (St1DsS2S

t
2S2) := aλ2 + bλ+ c = 0

The discriminant b2 − 4ac of the quadratic function determines whether its roots are real. In
this case, we note that St1S1 and St2S2 are non-negative real numbers, and we can easily see
that the discriminant of the above equation is always non-negative, since the term −4ac
above is a perfect square and thus non-negative. Therefore, its roots are real, and so is λ.

Tree shape Summaries Based on Network Science

Genbank accession numbers for outgroups

Virus Outgroup Genbank accession number
HIV-1 subtype B a subtype D sequence AY071949

Dengue virus serotype 4 isolate from the Philippines (1956) U18433
Measles virus a genotype D6 sequence AY523581

Table A.1: Accession numbers for outgroups

Tree shape differentiates viruses and epidemiological scenarios

We find that tree shape carries considerable information and differs both between viruses and
between different epidemiological scenarios for the same virus, on real as well as simulated
data. While degree sequence, clustering coefficients and other measures based in network
science are not informative for binary trees, a number of non-standard topological features
differ. Furthermore, there are several features that distinguish well between groups of trees
with the same overall level of asymmetry, highlighting the need to move beyond asymmetry
when using trees to infer evolutionary and epidemiological parameters or to test hypotheses
[68]. Figure A.1 and Figure A.2 illustrate the distributions of all tree statistics considered in
chapter 4.

Most of the statistics do not vary much between the three viruses in Figure A.1 (red
boxplots). Distinguishing the topologies in these groups of trees requires tools going beyond
the traditional symmetry or imbalance metrics; in this case, the only statistically significant
difference are produced by the number of cherries, weighted closeness centrality, maximum
height, and the proportion of imbalanced subtrees (stairs) capture differences that are
not apparent in the imbalance. In contrast, while two of the spectral statistics (maximum
adjacency and maximum Laplacian eigenvalues) show statistically significant differences
among the groups, the vertical scale is very small, and these differences are a small percentage
of the overall value (2% for the maximum adjacency and 1% for the maximum Laplacian).
Furthermore, three of the network statistics - namely, the Wiener index (meanpath) and
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Figure A.1: Tree summaries for the HIV/Dengue/Measles, influenza and simulations of size
100.
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Figure A.2: Tree summaries for HIV in three settings and simulations of size 300
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the weighted closeness and eigenvector centralities - also distinguish the three viruses, as do
three of the four statistics based on the distance Laplacian.
The green boxplots in Figure A.1 show the tree summaries for influenza in three scenarios.
It is well-known that global influenza patterns give rise to highly imbalanced trees, an
observation which in part motivated the growing field of phylodynamics [68]. In our data,
the global five-year and (2-year) USA flu trees have similar, lower, levels of asymmetry. The
only statistics which are able to differentiate all three groups at a statistically significant
level after multiple testing correction are betweenness centrality and the maximum Laplacian
eigenvalue. As with the three viruses, the differences in the latter are not pronounced,
and are very small in relative magnitude. In addition, the LM spectral statistics are quite
discriminating for these scenarios, though none of them is able to do so in a statistically
significant way. Figure A.3 shows a random tree from each group, and differences between
the shapes of the flu trees are not immediately apparent by eye.

Flu 5y Flu Global Flu USA HIV Hunt

HIV Novitsky HIV Wolf Dengue Measles

Biased 100 Yule 100 R0 1.5 100 R0 3 100

Biased 300 Yule 300 R0 1.5 100 R0 3 100

Figure A.3: A randomly sampled tree from each scenario (except HIV in the 3-virus
comparison because HIV is represented in three other trees). To allow for focus on tree shape
rather than on branch lengths, trees have been visualized with branch lengths set to 1.

The blue boxplots in Figure A.1 show the summaries for small trees (100 tips) in the four
simulated settings. This time, only the closeness centrality, the diameter, and the mean path,
as well as the number of cherries, the Sackin and Colless imbalances, the maximum height,
the stairs statistic and the lambdaMax statistic based on the distance Laplacian spectrum,
are able to differentiate every pair of these scenarios in a statistically significant way.
In contrast, the cyan boxplots in Figure A.2 show that large trees in the same simulated
settings can be discriminated by all of these statistics, but also by several other ones,
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including the adjacency and Laplacian eigenvalues as well as the maximum width and the
maximum difference in width (delW). This suggests that it is strictly easier to discriminate
larger trees than it is to discriminate smaller trees.
Lastly, the three epidemiological scenarios (concentrated epidemic, generalized epidemic in a
village, and generalized epidemic in a country) for HIV, shown in the red boxplots in Figure
A.2, appear to be quite difficult to distinguish. Only the weighted and unweighted closeness,
as well as the Sackin and Colless imbalance, the maximum eigenvalues of the adjacency and
the Laplacian, and the asymmetry and kurtosis of the distance Laplacian spectrum, are able
to do so in a statistically significant manner.
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Appendix B

Results Corresponding to Chapter
5
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Figure B.1: Distribution of H3N2-HA sequences between 1980 and 2018. The blue bar
corresponds to sequences assigned to one or more clades, whereas the red bar corresponds
to sequences without clade designation. The rate of unassigned cases drops considerably for
recent sequences (from 2011 on), which encompass most of the analyzed dataset (73.45%).
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Figure B.2: Correlation between Local Branching Index (LBI) and Katz Centrality measures
(weighted version, where the distance between two nodes is defined as the sum of the branch
lengths in the path separating them). (a) Each point corresponds to the LBI and Katz
Centrality measures computed for the root of the 391 subtrees from the H3N2-HA dataset.
Parameters used: τ = 50 (LBI), α = 0.95 (Katz Centrality). (b) Correlation for 10 trees
simulated with a pure birth process. All trees have 500 leaves, and each point corresponds
to the LBI and Katz Centrality measures computed for a node of those trees. Parameters
used: τ = 10 (LBI), α = 0.95 (Katz Centrality).
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