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Abstract

A primordial magnetic field (PMF) present before recombination can leave specific signa-
tures in the cosmic microwave background (CMB) fluctuations. Of particular importance
is its contribution to the B-mode polarization power spectrum. Indeed, vortical modes
sourced by the PMF can dominate the B-mode power spectrum on small scales, as they
survive damping up to a small fraction of the Silk length. Therefore, measurements of
the B-mode polarization at high-`, such as the one recently performed by the South Pole
Telescope (SPT), have the potential to provide stringent constraints on the PMF. We use
the publicly released SPT B-mode polarization spectrum (2015 and 2019), along with the
temperature and polarization data from the Planck satellite, to derive constraints on the
magnitude B1 Mpc, the spectral index nB and the energy scale at which the PMF was gener-
ated. We find that after marginalizing nB, Planck data constrains the magnetic amplitude
to B1 Mpc < 3.3 nG at 95% confidence level (CL), the SPT measurement improves the con-
straint to B1 Mpc < 1.5 nG. The magnetic spectral index, nB, and the time of the generation
of the PMF are unconstrained. For a nearly scale-invariant PMF, predicted by the simplest
inflationary magnetogenesis models, the bound from Planck+SPT is B1 Mpc < 1.2 nG at
95% CL for a non-helical PMF and B1 Mpc < 1.1 nG for a maximally helical PMF. The
bound from Planck data alone is B1 Mpc < 1.7 nG at 95% CL when considering a max-
imally helical field. For a non-helical PMF with a spectral index of nB = 2, expected for
fields generated in post-inflationary phase transitions, the 95% CL bound is B1 Mpc < 0.002
nG, corresponding to the magnetic fraction of the radiation density ΩBγ < 10−3 or the
effective field Beff < 100 nG. We find that accounting for the helicity weakens the CMB
constraints on PMF, allowing to have more magnetic power available on the 1Mpc comoving
scale relevant to the formation of galactic magnetic fields. The patches for the Boltzmann
code CAMB and the Markov Chain Monte Carlo engine CosmoMC, incorporating the
PMF effects on CMB, are made publicly available.
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Chapter 1

Introduction

According to the widely accepted model, the universe experienced a period of inflation,
or accelerated expansion, during which quantum fluctuations of the metric were stretched
beyond the horizon and resulted in the primordial density fluctuations that later seeded the
structures we see around us today. After the inflationary epoch, the universe went through a
period of radiation domination. When the temperature dropped to around 0.3 eV , protons
and electrons started to combine to form hydrogen atoms. This process is called recom-
bination or decoupling epoch. Prior to decoupling, photons are tightly coupled to protons
and electrons through Coulomb scattering, making the plasma opaque to electromagnetic
radiation. After the decoupling, photons begin to free stream and persist until the present
epoch in the form of the cosmic microwave background radiation (CMBR). The fact that
the CMBR is measured to have a nearly perfect black body spectrum [2, 3] provides strong
evidence for the standard cosmology model.

The CMBR is nearly isotropic, with an averaged temperature of 2.725 K, with anisotropies
of the order O(10−5) K first detected by the COBE-DMR experiment in 1992 [4]. Studying
the anisotropies in the CMBR intensity and polarization can help us to study the initial
conditions for the universe, including the primordial fluctuations set by inflation and other
potential contributions, such as the primordial magnetic fields that are the subject of this
thesis. In addition to the primary CMBR anisotropy generated when the photons last inter-
acted with the matter at the time of recombination, secondary anisotropies are produced as
the photons travel to us. This includes the gravitational lensing by the gravitational poten-
tials [5] along the line of sight. The CMB anisotropy also generates a polarized component,
which can be decomposed into even parity (E-mode) and odd parity (B-mode) polariza-
tion. Density perturbations at the last scattering surface generate temperature anisotropies
and E-mode polarization. However, primordial B-mode polarization can only be produced
by parity-odd sources, such as gravitational waves or primordial magnetic fields. After re-
combination, gravitational lensing produces a secondary B-mode by converting some of the
E-mode polarization into B-modes. The precision measurements of the CMB B-mode pro-
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vides a window into parity-violating physics and, as this thesis shows, can help to constrain
the primordial magnetic field.

1.1 Cosmic magnetic fields

Multiple observations have confirmed the existence of magnetic fields in the universe over a
broad range of scales. Micro-Gauss (µG) strength coherent magnetic fields exist in all types
of galaxies, including the Milky Way, and in galaxy clusters and superclusters [6, 7, 8, 9].
Moreover, strong magnetic fields are seen in normal galaxies [10] at higher redshifts, close
to z ≈ 1.3, which indicates that the galactic fields were generated early. Such observations
of magnetic fields in intermediate and high redshift galaxies imply that the time spent by
the galactic dynamo to develop a coherent B-field is relatively short, landing support to the
idea that primordial magnetic fields existed before recombination. The initial seeds would be
amplified by structure formation, adiabatic compression, or magnetohydrodynamic (MHD)
turbulent dynamo instabilities [11, 12, 13]. In order for a successful operation by the galactic
dynamo, the initial seed fields need to have an appropriate coherence scale and strength
[13]. The (comoving) coherence length of the initial B-field must be greater than 10 Kpc.
With different efficiencies of the dynamo amplification, the strength of the required B-field
seed varies between 10−12G and 10−22 G.

Observations show that magnetic fields are common at high redshifts, which favors
the idea that the initial seed fields were generated at early times. There is also evidence
of magnetic fields being present even on truly cosmological scales[14, 15]. A lower limit
10−18-10−15 Gauss on the strength of the intergalactic field, based on cosmic ray data, was
reported in [14, 16, 17]. The evidence and the possible origin of the large scale magnetic
field is still debated. A possible explanation is that of a primordial magnetic field (PMF).

There are various mechanisms of early magnetogenesis with their advantages and short-
comings. Existing proposals include both classical and quantum scenarios[13, 18, 19] within
as well as outside the standard model. The PMF could have been be generated during
inflation[20, 21, 22] or during phase transitions, such as the electroweak or quantum chro-
modynamics (QCD) phase transitions, in which case the magnetic field would likely be
helical [23, 24, 25, 26, 27, 28, 29].

1.2 An overview of CMB bounds on primordial magnetic
fields

Cosmological magnetic fields would leave imprints in CMB temperature and polarization.
Therefore, the CMB is an invaluable source of information for investigating and constrain-
ing the physical properties of PMFs, helping us answer questions about their origin. The
anisotropic stress of the magnetic field can source all types of cosmological perturbations
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(scalar, vector, and tensor perturbations), which have some noticeable differences when
comparing them with the primary perturbations. For example, the PMF induces vector
(vorticity) perturbations sourced by the Lorentz force, which are not expected in the stan-
dard model [30]. The impact of the PMF on the CMB temperature power spectrum is mostly
evident on small angular scales, where the primary CMB is suppressed by Silk damping[21].
Thus, the high-resolution CMB data helps to constrain the PMF.

The PMF is expected to be helical if produced in phase transitions or via parity-violating
processes[23, 26]. The helicity of a magnetic field is a measure of twist and linkage of
magnetic field lines. A helical PMF can lead to parity-violating correlations in CMB, such
as TB and EB, which are predicted to vanish in the standard model. The current bounds
on TB and EB are very weak, although future CMB polarization experiments will produce
much better constraints. Fortunately, helical PMFs also affect the parity even CMB spectra,
measured by current experiments, such as Planck and SPT.

Multiple groups have studied the impact of PMFs on the CMB and derived constraints
from the data. The Planck team derived constraints on the amplitude and the spectral
index of the PMF using their 2015 data [31]. They found that the magnetic field strength
smoothed over 1 Mpc is constrained to be B1Mpc < 4.4 nG at the 95% confidence level (CL),
with the bound being stronger if assuming a particular PMF spectrum. The combination
of the 7-year WMAP data[32] and the high ` temperature anisotropy spectrum from the
South Pole Telescope (SPT)[33] put a bound on the magnetic field, B1Mpc < 3.5 nG at the
95% confidence level (CL)[34]. The Polarbear collaboration[35] with their measurement of
the B-mode polarization spectrum has a comparable bound of B1Mpc < 3.9 nG.

1.3 The overview of the thesis

In this thesis I present a detailed analysis of the PMF contributions to the CMB power
spectra, including the effects of magnetic helicity on the scalar, vector, and tensor modes. I
use the currently available CMB data from Planck and SPT to constrain the amplitude and
the spectral shape of the PMF. Some parts of this thesis are based on my work published
in [35, 36]. The organization of this thesis is as follows. In Chapter 2, I review the basic
properties of magnetic fields in the expanding universe. In Chapter. 3, I review the theory of
cosmological perturbations relevant for the calculation of the CMB spectra. In Chapter. 4,
I present the widely used model of the PMF, and present a calculation of the cosmological
perturbations sourced by the PMF stress-energy. I also develop all the steps required for
calculating the CMB temperature and polarization spectra. I consider both non-helical and
helical PMF and derive the full set of equations for the scalar, vector, and tensor modes. In
Chapter 5, I present my numerical calculation of the PMF sourced CMB power spectra for
both helical and non-helical PMFs. In Chapter 6, I derive constraints on non-helical PMFs
from a combination of Planck and the 2015 SPT data. In Chapter 7, I use Planck and
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the 2019 SPT data to derive constraints on the non-helical and maximally helical PMFs.
Finally, I conclude with a summary and discussion in Chapter 8. In addition, some of the
mathematical tools and the detailed calculations are presented in the Appendix A.

We employ natural units ( ~ = c = kB = 1). Greek indices, such as α, β, µ, ν... run from
0 to 3. Latin indices, such as a, b, i, j... run from 1 to 3. Spatial 3 dimensional vectors are
written in either ~v or v, or v̂, and v̂ means unit vector.
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Chapter 2

Magnetic fields in the expanding
universe

2.1 The Expanding Universe

On large scales, our universe appears to be isotropic (no preferred direction) and homo-
geneous (the same everywhere). There is also overwhelming evidence that the universe is
expanding. Distant galaxies are moving away from each other and we can introduce the
scale factor a as a quantity that is proportional to the increasing distance between them. It
is conventional to take a = 1 at present and we assume a flat universe, in which case it is
related to the redshift (z) as

1 + z ≡ λobs
λemit

= 1
a
, (2.1)

where λobs is the observed wavelength that is larger than the emitted wavelength λemit due
to the expansion of the Universe.

Because of the cosmic expansion, it is useful to measure cosmological distances in co-
moving coordinates. The comoving distance that light travels during time t is

η =
ˆ t

0

dt′

a(t′) , (2.2)

where η is referred to as the conformal time. The longest distance the light can travel to us
is from t = 0 (at the Big Bang) until today, and that distance, η0, is the comoving horizon,
equal to the conformal time today. The comoving distance between us and a distant object
at a scale factor a is

χ(a) =
ˆ t0

t(a)

dt′

a(t′) =
ˆ 1

a

da′

a′2H(a′)
, (2.3)

where the Hubble rate is used to measure how fast the scale factor changes H(t) ≡ da/dt
a .

The present value of the Hubble parameter is often quantified in terms of h, defined as

H0 = 100 h km s−1Mpc−1 = h

0.98× 1010years , (2.4)
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where 1Mpc = 3.0856× 1022 m is the commonly used astronomical length scale of a mega-
parsec and h is measured to be ≈ 0.7.

The Friedmann equation describes the evolution of the scale factor

H2(t) = 8πG
3 ρ(t)− K

a2(t) , (2.5)

1 = 8πG
3H2(t)ρ(t)− K

a2(t)H2(t) ,

where ρ(t) is the sum of energy densities of all components of the universe, ‘0’ denotes the
present value, ρcr ≡ 3H2

8πG is the critical density and G is the Newton’s constant. We can
define the fractional energy density for the species i as

Ωi(a) ≡ ρi(a)
ρcr(a) , (2.6)

to write the Friedmann equation as

∑
i

Ωi(a) + ΩK(a) = 1, (2.7)

where ΩK = −K/(aH)2 is the curvature parameter.K = 8πG(ρ0−ρcr0)/3a0. For a spatially
flat universe, the density of the universe is exactly equal to the critical density and K = 0,
ΩK = 0. The density of non-relativistic matter scales as a−3, while that of radiation scales
as a−4. The total density of the universe at scale factor a can be written as

ρ = ρΛ + ρm0
a3 + ρr0

a4 = ρcr0(ΩΛ + Ωm0
a3 + Ωr0

a4 ), (2.8)

where ρΛ is the constant vacuum energy density responsible for the observed acceleration
of the cosmic expansion. Since the current data is consistent with a spatially flat universe,
we will assume ΩK = 0 in our analysis.

2.2 The Thermal History of the Early Universe

Below we will briefly describe the most remarkable events in the history of the universe:

Inflation. Universe underwent a period of exponentially fast expansion at about 10−35 sec-
onds old. Inflation solves the horizon problem and the flatness problem, and provides the
primordial seeds for structure formation.

Electroweak phase transition. At T ∼ 100 GeV, z ∼ 1015, the electroweak SU(2)
symmetry was spontaneously broken and elementary particles (quarks, leptons and gauge
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Figure 2.1: The Thermal History of the Universe

bosons) received their masses via the Higgs mechanism.

QCD phase transition. When temperature cools below 150 MeV (z ∼ 1012), the quan-
tum chromodynamics (QCD) phase transition took place in which the chiral symmetry was
broken and quarks were confined into hadrons due to the strong interactions between the
quarks and the gluons.

Neutrino decoupling. Neutrinos are kept in thermal equilibrium at early times by inter-
acting with the rest of the primordial plasma through the weak interactions:

νe + ν̄e ↔ e+ + e− (2.9)

e− + ν̄e ↔ e− + ν̄e.

Neutrino decoupling happened at T ∼ 1 MeV, z ∼ 6 × 109, when weak interaction rates
become negligible.
Electron− positron annihilation. Electrons and positrons annihilate shortly after neu-
trino decoupling (T ∼ 500 KeV, z ∼ 2× 109):

e+ + e− → γ + γ. (2.10)

The energy of the electron-positron plasma was transferred to the photons, making the
temperature of the photons slightly greater than the neutrino temperature. The ratio of the
two temperatures is Tν

Tγ
= ( 4

11)1/3.

Big Bang nucleosynthesis. Around 3 minutes after the Big Bang, the universe consists of
relativistic particles (photons, electron and positron) in equilibrium, decoupled relativistic
particles (neutrinos) and nonrelativistic particles (baryons). Light elements were formed via
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the process of Big Bang nucleosynthesis (BBN) at T ∼ 100 KeV, z ∼ 4× 108.

Matter− radiation equality. At this epoch, the energy density of radiation becomes the
same as the density of matter. The density in radiation is

ρr
ρcr
≡ ΩR

a4 = 4.15× 10−5

h2a4 . (2.11)

the total energy density of matter (both baryons and dark matter) is

ρm
ρcr
≡ Ωm

a3 . (2.12)

The scale factor at equality is,

aeq = 4.15× 10−5

Ωmh2 (2.13)

The redshift of equality is,
1 + zeq = 2.1× 104Ωmh

2. (2.14)

Thus, zeq ∼ 3400, T ∼ 0.75 eV at equality.

Recombination. At temperature T � 1 eV, the atoms in the universe are ionized, and
photons are tightly coupled to the baryon fluid through rapid Thompson scattering from the
free electrons e− + γ ↔ e− + γ. Electrons are tightly coupled to protons through Coulomb
scattering. As the temperature drops below 1 eV, electrons and protons combine to form
hydrogen atoms e− + p↔ H + γ. With no electrons to scatter from, photons decouple and
stream freely through the universe starting at z ∼ 1000, T ∼ 0.3 eV. These are the cosmic
microwave background (CMB) photons we observe today. CMB can help us understand the
early universe, since these photons last scattered off electrons at redshift 1100, then travel
almost freely through the space. Before the last scattering, photons interact with electrons
and stay in equilibrium, and they have a nearly perfect blackbody spectrum.

Dark Ages. t ∼ millions of years, z = 1100 ∼ 20. During this time, there were no visible
light photons and the universe was genuinely dark. Nevertheless, it is possible to study Dark
Ages with radio wave photons from the 21 cm spin flip transition line of neutral hydrogen.

Star and galaxy formation and evolution. z ∼ 20. The first star and (small) galaxies
begin to form 100 ∼ 200 million years after the Big Bang.

Reionization. z ∼ 20 ∼ 6. The Epoch of Reionization is the process by which, due to the
emergence of the first luminous sources, the pre-dominantly neutral intergalactic medium
was ionized. Stars, galaxies, quasars, or some combination of them would be the sources of
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ionizing radiation.

Today. T = 2.725 K, t ∼ 13.7 Gyr, baryons and the CMB are entirely decoupled, stars
and galaxies have been around a long time, and clusters of galaxies (gravitationally bound
systems of ∼ 1000s of galaxies) are becoming common.

2.3 The Friedmann-Robertson-Walker universe

The Friedmann-Robertson-Walker (FRW) metric describes an expanding homogeneous and
isotropic universe, where the line element can be written as

ds2 = gµνdx
µdxν = a2(−dη2 + dr2

1−Kr2 + r2dΩ2) , (2.15)

where
K = 0 Zero curvature, flat geometry,
K = 1 Positive curvature, closed geometry,
K = −1 Negative curvature, open geometry.

In the following discussion we will assume the geometry of the universe to be flat. In what
follows, we will use the geodesic equation,

d2xµ

dλ2 = −Γµαβ
dxα

dλ

dxβ

dλ
, (2.16)

describing how a free particle travels through space-time, where λ is a affine parameter
along the particle’s trajectory and Γµαβ are the Christoffel symbols defined as

Γµαβ = gµν

2 [∂gαν
∂xβ

+ ∂gβν
∂xα

− ∂gαβ
∂xν

]. (2.17)

The Einstein field equations (EFE) connect the geometry described by Einstein tensor and
the energy described by the energy-momentum tensor

Gµν + Λgµν = Rµν −
1
2gµνR+ Λgµν = 8πGTµν . (2.18)

where Gµν ≡ Rµν − 1
2gµνR is the Einstein tensor; Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβµα

is the Ricci curvature tensor, where Γαµν,α ≡
∂Γαµν
∂xα ; R ≡ gµνRµν is the scalar curvature, Λ is

the cosmological constant; and Tµν is the energy-momentum tensor.
The physical meaning of the components of Tµν is very important. Components of Tβα

can be regarded as the flux of the β-th component of four-momentum across a surface of
constant xα. T 00 is the time-time component which describes the density of relativistic
mass, equivalently energy density. T 0i = T i0 is the energy flux of relativistic mass across
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the xj surface; T ij is the flux of i-th momentum across the xj surface, T ii (not summed) is
the normal stress, T ij ( i 6= j) is the shear stress.

Tµν =


−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 .

The Bianchi identity, ∇µGµν = 0, leads to the covariant conservation of the total energy-
momentum tensor ∇µTµν = 0. Here, the covariant equation means that the equation takes
the same form in all coordinate systems. The vanishing of the covariant derivative can be
written as

Tµν;µ = ∇µTµν = ∂Tµν
∂xµ

+ Γµ αµTαν − Γα νµTµα, (2.19)

Taking the ν = 0 component of Eq.(2.19) and considering a perfect fluid, we get the fluid
continuity equation in an expanding universe

∂ρ

∂t
+ 3H(1 + w)ρ = 0, (2.20)

where w = P
ρ is the equation of state parameter. The solution of Eq (2.20) is ρ = ρ0a

−3(1+w),
where ρ0 is the density at a = 1. For the cosmological constant wΛ = −1 and the energy
density ρ = Λ/(8πG) remains constant as the universe expands. For non-relativistic matter
with no pressure, wM = 0, and the total mass ρV ∝ ρa3 is conserved, while for radiation
wR = −1/3 and ρ ∝ a−4.

2.3.1 Magnetic fields in a highly conducting plasma

In magnetohydrodynamics (MHD) of a resistive medium, Ohm’s law provides a simple
relation between the current density and the electric field

Ja = ςEa , (2.21)

where ς denotes the electric conductivity of the matter. In highly conducting environments,
the conductivity of the medium is almost infinite ς → ∞, and spatial currents can be
non-zero even when the electric field vanishes, in which case the electric currents keep the
magnetic field frozen in the charged fluid. This is the well known ideal MHD approximation.
On the other hand, if the electrical conductivity is zero ς → 0, the spatial currents always
vanish even the electric field is non-zero.

To show that magnetic fields can become frozen in, let us consider Maxwell’s equations
with c = 1:

∇ ·B = 0 (2.22)
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∇×E + ∂B
∂t

= 0 (2.23)

∇×B = 4πJ. (2.24)

Ohm’s law (2.21) in the rest frame is J′ = ςE′, and E′ = E + v×B in the frame of moving
plasma, where v is the velocity field of plasma, and we get

J = ς(E + v×B). (2.25)

Combining this with Eqs. (2.23) and (2.24), we obtain the induction equation:

∂B
∂t

= −∇×E (2.26)

= ∇×
(

v×B− ∇×B
4πς

)
= ∇× (v×B) + ∇

2B
4πς ,

where v×B is the induction term. We used the relationship ∇× (∇×B) = ∇(∇ ·B)−
∇2B = −∇2B. To show that the magnetic flux remains frozen in the high-conductivity
limit, consider a comoving surface S, bounded by a curve C, moving with the fluid. The
magnetic flux through this surface is Φ =

´
S B ·dS. After a time dt, the surface would move

to a new surface S′. Thus, the change in flux is given by

∆Φ =
ˆ
S′

B(t+ dt) · dS−
ˆ
S

B(t) · dS. (2.27)

A ’tube’-like volume swept up by the moving surface S can be written as
˛
S

B · dS =
ˆ
S′

B(t+ dt) · dS−
ˆ
S

B(t+ dt) · dS +
˛
C

B(t+ dt) · (dl× v)dt, (2.28)

where dl is the line element along C. Due to the divergence theorem,
´
V ∇·BdV =

¸
S B·dS,

and ∇ ·B = 0, we obtain
ˆ
S′

B(t+ dt) · dS =
ˆ
S

B(t+ dt) · dS−
˛
C

B(t+ dt) · (dl× v)dt. (2.29)

Applying this in Eq. (2.27), we have

∆Φ =
ˆ
S

[B(t+ dt)−B(t)] · dS−
˛
C

B(t+ dt) · (dl× v)dt. (2.30)

Applying the limit of dt→ 0, and using the relationship B ·(dl×v) = (v×B) ·dl, we obtain

dΦ
dt

=
ˆ
S

∂B
∂t
· dS−

˛
C

(v×B) · dl (2.31)
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Using the Stoke’s theorem
¸
C(v×B) · dl =

´
S ∇× (v×B) · dS and the induction equation

(2.27), we have

dΦ
dt

=
ˆ
S

∇2B
4πς · dS. (2.32)

In the limit of infinite conductivity ς →∞ ( magnetic resistivity is small enough), dΦ
dt → 0

and so the flux Φ is constant, which proves that the magnetic flux through any loop moving
with the fluid is constant, magnetic field lines are frozen into the fluid. Any magnetic field
is moving together with the fluid. And, in the limit of infinite conductivity equation (2.27)
becomes

∂B
∂t

=∇× (v×B) . (2.33)

Also we can see that, when the peculiar velocities vanish (v = 0), B is constant. As we will
show in the following section, in an expanding universe, the magnetic field strength decays
with the scale factor as B ∝ 1/a2.

2.3.2 Magnetic fields from Inflation

Inflationary magnetogenesis [20, 21, 37, 38] is very popular because it solves the coherence
scale problem by generating the correlations on superhorizon lengths. However, this model
is not perfect if we apply the classical electromagnetic theory and conventional Friedmann
models, the primordial magnetic fields generated during de Sitter inflation is too weak to
sustain the dynamo amplification [21].

During inflation, the exponential expansion of the de Sitter phase is driven by an ap-
proximately constant energy density of the universe. The energy density should scale as a−4

in relativistic fluctuation and is diluted by any massive effects. However, the energy density
scales as a−2 in density perturbations with a coherence length more significant than the
Hubble radius. Therefore, the ratio, ρBργ of the magnetic field energy density in the fluctua-
tion relative to the background density decreases as a−2 during inflation but grows as a2 or
a during the subsequent radiation dominated era and matter dominated era. The magnetic
fields are a relic of inflation. The vacuum fluctuations of the electromagnetic field get ampli-
fied during the era of inflation, and subsequently become classical fluctuations in the later
phases of the evolution of the universe. However, the electromagnetic Lagrangian is confor-
mally invariant, which means that the equations of motion for the fields are not modified
by curvature induced due to a metric that is conformally related to the Minkowski metric.
And FRW metric is conformally related to the Minkowski metric, hence no amplification of
vacuum fluctuations can happen in this situation. Thus, if we want any amplification, we
need to break the conformal invariance of electromagnetism. Ratra [37] proposed a coupling
of the form

√
−ge2αφFµνFµν between the inflation scalar field φ and electromagnetic field
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Fµν with α as a free parameter. Ratra showed that under slow roll inflation conditions, this
breaking of conformal invariance can cause the amplification of fields.

2.3.3 Magnetic fields from early universe phase transitions

Causal processes could generate the seed primordial magnetic field during a series of phase
transitions [23, 26, 39]. For example, during the electroweak phase transition (EWFT) (tem-
perature ∼ 100 GeV) and quantum chromodynamic (QCD) phase transition (temperature
∼ 150 MeV). The useful parameters are temperature T? and the number of relativistic
degrees of freedom g? when the PMF is generated. To preserve the approximate spatial
isotropy, the PMF should be small enough that the energy density can be treated as a first
order term in perturbation theory. The PMF should be lower than the magnetic field ob-
served in galaxies because the structure formation will amplify the PMF. The PMF should
meet the Big Bang Nucleosynthesis (BBN) bound [40] since the energy density of the PMF
contributes to the radiation field.

During the two cosmological phase transitions, there is always a parity violating source,
which generates the non-vanishing helicity in magnetic fields. In other words, if we can
detect the helicity in the PMF, it will be direct evidence of these parity violations in the
early universe. The average energy density and helicity density of the PMF can be related by
the realizability condition. We can constrain the helicity of the PMF by using the parity odd
CMB power spectra (cross correlations ), which should be zero in the standard cosmological
scenario without helical magnetic fields or other parity violating sources.

2.3.4 Magnetic helicity

Magnetic helicity [41, 42] provides an essential measure of the topological structure of the
magnetic field in terms of twist and linkage of magnetic field lines. Magnetic helicity is
defined as a volume integral of the dot product of the vector potential and magnetic field,

H =
ˆ
dV A ·B, (2.34)

where A is the gauge potential and B = ∇×A(x). A can be redefined by a gauge trans-
formation. Apply a gauge transformation A → A + ∇χ, change in magnetic helicity is
∆H =

´
B · ∇χdV =

¸
S χB · dS. If

¸
S B · dS = 0, ∆H = 0, the definition for the magnetic

helicity in Eq.(2.34) is gauge independent.
Since ∂B

∂t = ∇ × ∂A
∂t and ∂B

∂t = −∇ × E, time derivative of vector potential can be
written as ∂A

∂t = −E +∇χ. We can obtain the evolution of the magnetic helicity
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∂H
∂t

=
ˆ
dV

∂A
∂t
·B +

ˆ
dV A · ∂B

∂t
(2.35)

=
ˆ
dV (−E +∇χ) ·B +

ˆ
dV A · (−∇×E)

=
ˆ
dV (−2E ·B) +

ˆ
dV ∇ · (χB + A×E)

=
ˆ
dV 2

(
v×B− ∇×B

4πς

)
·B +

ˆ
dV ∇ · (χB + A×E)

= −
ˆ
dV

(∇×B
2πς

)
·B +

ˆ
dV ∇ · (χB + A×E)

= −
ˆ
dV

(∇×B
2πς

)
·B +

˛
S

(χB + A×E) · dS .

During the derivation, we used relationships A · (−∇×E) =∇ · (A×E)−E · (∇×A) =
∇ · (A×E)−E ·B, and ∇χ ·B =∇ · (χB)− χ∇ ·B =∇ · (χB), and divergence theorem´
V ∇·BdV =

¸
S B ·dS. In the limit of infinite conductivity, the first term is zero. In the case

of no boundary terms, the last terms would not contribute, and we obtain that magnetic
helicity is a conserved quantity.

Consider two simple cases: When the magnetic field lines are all closed curves, the
helicity measures the net linking between all pairs of field lines. We can factor the volume
integral into products of line and surface integral

´
dV =

´
dl
´
dS, the magnetic flux

through surface S is Φ =
´
S B · dS. If there are two linked closed curves, the helicity would

be H = 2LΦ1Φ2 + T1Φ2
1 + T2Φ2

2 [42], where Φ1 and Φ2 are net axial fluxes of the magnetic
flux tubes, T1 and T2 measure the net twisting of field lines within the tubes about their
axes, L is the linking number. When the magnetic field lines extend between parallel planes,
the helicity measures the net twist between all pairs of field lines. If there are two tubes
stretched between parallel planes, the helicity would be H = 2wΦ1Φ2 + T1Φ2

1 + T2Φ2
2 [42],

where w is the winding number.
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Chapter 3

Cosmological perturbations and
the Cosmic Microwave Background

3.1 Cosmological perturbations

The FRW metric describes an isotropic and homogeneous universe. However, we know
that the universe is not perfectly FRW even on cosmological scales and one needs to take
into account perturbations around the FRW metric. The contravariant components of a
perturbed FRW metric can be written as

g00 = −a−2(η) {1− 2A(~x, η)} ,

g0i = −a−2(η)Bi(~x, η) , (3.1)

gij = a−2(η)
{

(1− 2HL(~x, η))δij − 2H ij
T (~x, η)

}
,

with the covariant counterparts given by

g00 = −a2(η) {1 + 2A(~x, η)} ,

g0i = −a2(η)Bi(~x, η) , (3.2)

gij = a2(η) {(1 + 2HL(~x, η))δij + 2HTij(~x, η)} ,

where A is a scalar potential, Bi is a vector shift, HL is the scalar perturbation of the
spatial curvature, and HT ij is a trace-free distortion of the spatial metric. A, Bi, HL and
HT ij provide the 10 functions required to specify the 4(4 + 1)/2) = 10 components of the
symmetric 4× 4 tensor gµν .

Note that not all of the above 10 functions can independently contribute to physical (i.e.
observable) manifestations of the metric, since their definition depends on how one defines
the slices of uniform scale factor. For example, one could choose to work in a coordinate
system in which the scalar potential A vanishes, or with respect to which the dark matter
density fluctuations vanish. This freedom in the choice of coordinates (3 spatial + 1 time),
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known as the “gauge-freedom”, allows one to set 4 out of the 10 metric functions to zero.
We will use the synchronous gauge, defined in Sec. 3.3.1.

The energy-momentum tensor Tµν can be divided into fluid (f) contributions and seed
(s) contributions. The fluid part includes the equilibrated particles and radiation, while
the latter describes the out-of-equilibrium configurations, such as the frozen-in PMF or
topological defects like cosmic strings. The background energy-momentum is assumed to
have a negligible contribution from the seeds,

T 0
0 = −ρf , T 0

i = T i
0 = 0, T ij = pfδ

i
j , (3.3)

while the perturbations of Tµν can be written as

δT 0
0 = −ρs − δρf ,

δT 0
i = (ρf + pf )(vi −Bi) + vsi ,

δT i
0 = −(ρf + pf )vi + vis ,

δT ij = (ps + δps)δij + δpfδ
i
j + pfΠi

j , (3.4)

where δρ is a scalar density perturbation, δp is a scalar pressure perturbation, vi is a vector
velocity, and Πi

j is a tensor anisotropic stress perturbation. Just like in the case of the gµν ,
there is a total of 10 different components of the stress-energy tensor. With the covariant
conservation of energy-momentum, ∇µTµν = 0, providing 4 equations relating them, only
6 out of the 10 components are independent. We will work to linear order in perturbation
theory, which means dropping terms of higher orders, such as δpδρ.

It is convenient to work in Fourier space, with the transformation given as

δρ(~k, η) =
ˆ
δρ(~x, η)e−i~k·~xd3~x (3.5)

Each linear perturbation Fourier mode evolves independently within first order perturba-
tion, allowing us to work with a set a of ordinary differential equations in instead of partial
differential equations. Vectors and tensors can be decomposed into appropriately defined
normal modes. The scalar, vector and tensor mode eigenfunctions of the Laplacian operator
form a complete set of basis functions, i.e.

∇2Q(0) = −k2Q(0) ,

∇2Q(±1) = −k2Q(±1) , (3.6)

∇2Q(±2) = −k2Q(±2).
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Since we consider a flat universe, the eigenmodes are plane waves and can be written as

Q(0) = ei
~k·~x ,

Q
(±1)
i = −i√

2
(ê1 ± iê2)iei

~k·~x , (3.7)

Q
(±2)
ij = −

√
3
8(ê1 ± iê2)i(ê1 ± iê2)jei

~k·~x,

where ê1 and ê2 are unit vectors and orthogonal to k. The vector modes are divergence-less
and represent vorticity, the tensor modes are transverse and traceless and represent the
gravitational waves.

∇iQ(±1)
i = 0, ∇iQ(±2)

ij = 0, .δijQ
(±2)
ij = 0 . (3.8)

The scalar mode vector and tensor functions are obtained by taking derivatives of Q0:

Q
(0)
i = −k−1∇iQ(0) , (3.9)

Q
(0)
ij = (−k−2∇i∇j + 1

3δij)Q
(0) , (3.10)

Q
(±1)
ij = −

∇iQ(±1)
j +∇jQ(±1)

i

2k . (3.11)

The basis functions have the following properties that will be used later;

Q
(±1)
ij Q

(∓1)
ij = 1

2 , Q
(±2)
ij Q

(∓2)
ij = 3

2 , δijQ
(±2)
ij = 0, k̂iQ

(±2)
ij = 0. (3.12)

The scalar metric and energy-momentum variables can be expressed in terms of the normal
modes as

A(~x) = A(k)Q(0), HL(~x) = HL(k)Q(0)

δρ(~x) = δρ(k)Q(0), δp(~x) = δp(k)Q(0) (3.13)

and similarly for other quantities. For vector modes, we have

Bi(~x) =
1∑

m=−1
B(m)(k)Q(m)

i , vi(~x) =
1∑

m=−1
v(m)(k)Q(m)

i . (3.14)

and for tensor modes,

HT ij(~x) =
2∑

m=−2
H

(m)
T (k)Q(m)

ij , Πij(~x) =
2∑

m=−2
Π(m)(k)Q(m)

ij . (3.15)
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3.2 The Boltzmann Equation

The different components of the universe interact with each other and it is generally quite
complicated to solve for their evolution exactly. During the times before recombination,
photons are tightly coupled with electrons and proton by Coulomb interactions. In addition,
both relativistic (photons and neutrinos)and non-relativistic (dark matter and baryons)
particles are affected by gravity (the metric). We will use a system of coupled Boltzmann
and Einstein equations to study evolution of the anisotropies in relativistic components and
inhomogeneities in the matter.

The energy density of species i with a distribution function fi(~x, ~p) and energy E(p) is

ρi = gi

ˆ
d3p

(2π)3 fi(~x, ~p)E(p), (3.16)

where gi is the degeneracy of the species. When particles are in equilibrium at temperature
T , the Bose-Einstein distribution describes the integer spin particles (such as photons)

fBE = 1
e(E−µ)/T − 1

, (3.17)

while the Fermi-Dirac distribution describes fermions such as electrons,

fFD = 1
e(E−µ)/T + 1

(3.18)

where µ is the chemical potential. As the universe is homogeneous and isotropic, the distri-
bution function depends only on the magnitude of the momentum p, and is in independent
on ~x. Applying the Bose-Einstein distribution to photons and there is no chemical potential,
the photon energy density is

ργ = π2

15T
4. (3.19)

The energy density of radiation scales as a−4 and the temperature of CMB photons observed
today is T = 2.725. Thus,

Ωγ(a) = ργ
ρcr

= π2

15(2.725K
a

)4 1
8.098× 10−11 eV4

1
h2 = 2.47× 10−5

h2a4 . (3.20)

The Boltzmann equation can be written as

df

dt
= C[f ] (3.21)

where C[f ] denotes all the collision terms due to interaction of photons with baryons and
electrons.

In the absence of collisions, the phase space density of particles is conserved along a
trajectory, and after applying linear perturbation theory in the unperturbed universe, we

18



can simplify Eq.(3.21) to the Liouville equation

df

dη
= ∂f

∂η
+ ∂f

∂xi
· dx

i

dη
+ ∂f

∂p

dp

dη
+ ∂f

∂p̂i
· dp̂

i

dη
= 0, (3.22)

where ~̂p is a unit vector of ~p. The term ∂f
∂p

dp
dη represents the gravitational red-shifting (or

the Sachs-Wolfe effect) of the photons. We will work in Fourier, since each Fourier mode
evolves independently in linear perturbation theory, and use the conformal time η instead
of t as our basic time variable so that, from now on, the overdot represents ∂/∂η. And to
do the linear perturbation theory, we only need the first-order equations, so we will drop all
high order terms. In the unperturbed universe, ˙̂pi = 0 (the universe is isotropic), so ˙̂pi is a
first order in perturbation theory. But ∂f

∂p̂i
is also a first order, so their product is a second

order. The last term can be dropped. Rearranging them, we obtain for ḟ :

ḟ = −p̂i ∂f
∂xi
− ṗ∂f

∂p
. (3.23)

Using the metric (3.2) and applying the geodesic equation, we can express the momentum
evolution of a massless particle as

ṗ = −(aH + p̂i
∂A

∂xi
+ p̂ip̂j

∂Bi
2∂xj + ḢL + p̂ip̂jḢT ij)p. (3.24)

Eq. (3.23) can then be written as

ḟ(xi, p, p̂i; η) = −p̂i ∂f
∂xi

+ p
∂f

∂p
(aH + p̂i

∂A

∂xi
+ p̂ip̂j

∂Bi
2∂xj + ḢL + p̂ip̂jḢT ij). (3.25)

The zeroth-order photon distribution is simply the Bose-Einstein distribution f (0) = 1
ep/T−1 .

It is convenient to write the perturbed distribution as

f(xi, p, p̂i; η) = {exp p

T (η)[1 + Θ(xi, p̂i, η)] − 1}−1, (3.26)

where the photon perturbation variable is defined as Θ = δT/T . The zeroth-order tem-
perature T (η) scales as a−1, which is independent of space (homogeneous: not depend on
~x; isotropy: not depend on p̂). And we can define the analogous variable for neutrinos,
N (xi, p̂i, η). For non-relativistic components such as dark matter and baryons, we need to
consider the overdensity δ(xi, η) and velocity v(xi, η).

Considering the perturbed Boltzmann equation, we write f as a homogeneous solution
plus a perturbation.

ḟ = ḟ (0) + δḟ = ḟ (0) −ΘṪ ∂

∂T
(∂f

(0)

∂p
p)− ∂f (0)

∂p
pΘ̇. (3.27)
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Using Eqs. (3.25) and (3.27) we can get the full evolution equation for the temperature
perturbation:

Θ̇ = −p̂i ∂Θ
∂xi

+ aHp
∂Θ
∂p
− p̂i ∂A

∂xi
− p̂ip̂j ∂Bi2∂xj − ḢL − p̂ip̂jḢT ij . (3.28)

The full Boltzmann Equation has a collision term on the right hand side, which cannot be
ignored since photons were scattered off the free electrons. Following the common approach
(e.g see [43]), we will treat polarization perturbations in units of temperature, rather than
intensity. We will also ignore the circular polarization Stokes parameter V since the Thom-
son scattering alone cannot lead to circular polarization. Thus, it is sufficient to consider
the three Stokes parameters I, Q and V , combined into a vector

~T =
(
Θ, Q+ iU,Q− iU

)
. (3.29)

The Boltzmann equation gives the evolution of the vector ~T as

d

dη
~T (η, ~x, n̂) = ∂

∂η
~T + ni∇i ~T = ~C[~T ] +G[hµυ], (3.30)

where C[~T ] is the Thomson collision term and G[hµυ] describes the gravitational redshift
in a perturbed metric.

In the total angular momentum representation of [43], the temperature and polarization
fluctuations can be decomposed into normal modes of the spatial and angular distributions
as

Θ(η, ~x, n̂) =
ˆ

d3k

(2π)3

∑
l

∑
m

Θ(m)
l Gml (3.31)

and
(Q± iU)(η, ~x, n̂) =

ˆ
d3k

(2π)3

∑
l

∑
m

(E(m)
l ± iB(m)

l )±2G
m
l , (3.32)

where

±sG
m
l = (−i)l

√
4π

2l + 1±sY
m
l (n̂)e(i~k·~x), (3.33)

0Y
m
l are the ordinary spherical harmonics and ±2Y

m
l are the spin-2 spherical harmonics,

which are related to the ordinary spherical harmonics as

±2Y
m
l =

[
(l−2)!
(l+2)!

]2 [
∂2
θ − cot θ∂θ ± 2i

sin θ (∂θ − cot θ)∂φ − 1
sin2 θ

∂2
φ

]
Y m
l . (3.34)

In particular, spins s = 0 and s = ±2 correspond to the temperature fluctuations and
polarization anisotropies, respectively. The m = 0,m = ±1,m = ±2 modes describe the
scalar, vector and tensor perturbations, respectively. Coefficients E(m)

l have parity (−1)l

and represent the ’electric’ polarization called the E-mode. The B(m)
l ’s have parity (−1)l+1
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and represent the ’magnetic’ polarization called the B-mode. In general, the angular power
spectra of the correlation functions can be calculated as

CXX̃l = 2
π

1
(2l + 1)2

ˆ
k2dk

∑
m

X
(m)∗
l (η0, k)X̃(m)

l (η0, k) (3.35)

where X can be either Θ, E or B.

3.2.1 The temperature-polarization Boltzmann hierarchy and the inte-
gral solution

To put the Boltzmann equation into a form suitable for solving it numerically, we write it
in terms of the normal modes defined in the previous subsection

Θ̇(m)
l = k

[√
l2−m2

2l−1 Θ(m)
l−1 −

√
(l+1)2−m2

2l+3 Θ(m)
l+1

]
− τ̇Θ(m)

l + S
(m)
l , (3.36)

where the gravitational and scattering sources are

S
(m)
l =


τ̇Θ(0)

0 − Ḣ
(0)
L τ̇ v

(0)
b + Ḃ(0) τ̇P (0) − 2

3
√

1− 3K/k2Ḣ
(0)
T

0 τ̇ v
(±1)
b + Ḃ(±1) τ̇P (±1) −

√
3

3
√

1− 2K/k2Ḣ
(±1)
T

0 0 τ̇P (±2) − Ḣ(±2)
T

 , (3.37)

v
(m)
B is the baryon velocity, and the term P (m) is defined as

P (m) = 1
10
[
Θ(m)

2 −
√

6E(m)
2

]
. (3.38)

The analogous equations for the polarization are

Ė
(m)
l = k

[
1

2l−1

√
(l2−m2)(l2−4)

l2 E
(m)
l−1 −

2m
l(l+1)B

(m)
l − 1

2l+3

√
[(l+1)2−m2](l+3)(l−1)

(l+1)2 E
(m)
l+1

]
−τ̇

[
E

(m)
l +

√
6P (m)δl2

]
,

(3.39)

Ḃ
(m)
l = k

[
1

2l−1

√
(l2−m2)(l2−4)

l2 B
(m)
l−1 + 2m

l(l+1)E
(m)
l − 1

2l+3

√
[(l+1)2−m2](l+3)(l−1)

(l+1)2 B
(m)
l+1

]
−τ̇B(m)

l .

(3.40)

The analytical solutions to the above Boltzmann equations can be written as

Θ(m)
l (η0, k) = (2l + 1)

ˆ η0

0
dηe−τ

∑
l′

S
(m)
l′ (η)j(l′m)

l (χ), (3.41)

E
(m)
l (η0, k) = −

√
6(2l + 1)

ˆ η0

0
dηe−τ τ̇ ε

(m)
l (χ)P (m)(η),

B
(m)
l (η0, k) = −

√
6(2l + 1)

ˆ η0

0
dηe−τ τ̇β

(m)
l (χ)P (m)(η),
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where the radial functions j(l′m)
l are related to Gml′ via

Gml′ =
∑
l

(−i)l
√

4π(2l + 1)j(l′m)
l (x)Y m

l (n̂), (3.42)

where the lowest (l′,m) radial functions j(l′m)
l are

j
(00)
l (x) = jl(x) j

(10)
l (x) = jl

′(x) j
(20)
l (x) = 1

2[3jl′′(x) + jl(x)]

j
(11)
l (x) =

√
l(l + 1)

2
jl(x)
x

j
(21)
l (x) =

√
3l(l + 1)

2
jl(x)
x

′

j
(21)
l (x) =

√
3(l + 2)!
8(l − 2)!

jl(x)
x2

(3.43)

and the primes represent derivatives with respect to the variable x. Similarly,

±2G
m
2 =

∑
l

(−i)l
√

4π(2l + 1)[ε(m)
l (x)± iβ(m)

l (x)]±2Y
m
l (n̂), (3.44)

where

ε
(0)
l (x) =

√
3(l + 2)!
8(l − 2)!

jl(x)
x2 ,

ε
(1)
l (x) = 1

2

√
(l − 1)(l + 2)

[
jl(x)
x2 + j′l(x)

x

]
,

ε
(2)
l (x) = 1

4
[
−jl(x) + j′′l (x) + 2 jl(x)

x2 + 4 j
′
l(x)
x

]
,

ε
(m)
l = ε

(−m)
l ,

(3.45)

and

β
(0)
l (x) = 0,

β
(1)
l (x) = 1

2

√
(l − 1)(l + 2)jl(x)

x
,

β
(2)
l (x) = 1

2
[
j′l(x) + 2 jl(x)

x

]
,

β
(m)
l = −β(−m)

l .

(3.46)

The above analytical solutions require knowing the source functions S(m)
l , which them-

selves depend on the first few moments of the temperature and polarization moments. To
solve the system, one can employ the approximate scheme, introduced by Seljak and Zal-
darriaga [44, 45], in which one first solves equations (3.36), truncating the hierarchy at a
finite l ∼ 30, and then substitutes these solutions into the “line-of-sight” integrals 3.41 to
find the moments at all l.
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3.3 Einstein and conservation equations

The covariant Einstein equations for the scalar modes are

(k2 − 3K)[HL + 1
3HT + ȧ

a
(B
k
− ḢT

k2 )] = 4πGa2
[
δρ+ 3 ȧ

a
(ρ+ p)v −B

k

]
,

k2(A+HL + 1
3HT ) +

(
d

dη
+ 2 ȧ

a

)
(kB − ḢT ) = −8πGa2pΠ ,

ȧ

a
A− ḢL −

1
3ḢT −

K

k2 (kB − ḢT ) = 4πGa2(ρ+ p)v −B
k

,[
2 ä
a
− 2

(
ȧ

a

)2
+ ȧ

a

d

dη
− k2

3

]
A−

[
d

dη
+ ȧ

a

]
(ḢL + kB

3 ) = 4πGa2(δp+ 1
3δρ) . (3.47)

The nonrelativistic particles, such as baryons and dark matter, do not contribute to anisotropic
stress. And we obtain the continuity and Navier-Stokes equations by applying the pertur-
bations to the conservation equations.[

d

dη
+ 3 ȧ

a

]
δρ+ 3 ȧ

a
δp = −(ρ+ p)(kv + 3ḢL) , (3.48)[

d

dη
+ 4 ȧ

a

]
(ρ+ p)v −B

k
= δp− 2

3(1− 3K
k2 )pΠ + (ρ+ p)A . (3.49)

The Navier-Stokes equation can be simplified to the Euler equation if there is no anisotropic
stress. These equations remain true for each fluid individually in the absence of momentum
exchange, e.g., for cold dark matter. The baryons have an additional term τ̇

R(Θ(0)
1 − v

(0)
B ) to

the Euler equation due to momentum exchange from Compton scattering with the photons.
For a seed source, the conservation equations become

ρ̇s = −3 ȧ
a

(ρs + ps)− kv(0)
s ,

v̇(0)
s = 3 ȧ

a
v(0)
s + k[ps −

2
3(1− 3K

k2 )π(0)
s ] , (3.50)

which is independent of gauge since the metric fluctuations produce higher order terms.
The covariant vector mode Einstein equations are

(1− 2K
k2 )(kB(±1) − Ḣ(±1)

T ) = 16πGa2(ρ+ p)v
(±1) −B(±1)

k
,[

d

dη
+ 2 ȧ

a

]
(kB(±1) − Ḣ(±1)

T ) = −8πGa2pΠ(±1) , (3.51)

and the vector conservation equations are

[
d

dη
+ 4 ȧ

a

]
(ρ+ p)v

(±1) −B(±1)

k
= −1

2(1− 2K
k2 )pΠ(±1) . (3.52)
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The tensor mode Einstein equation is[
d2

dη2 + 2 ȧ
a

d

dη
+ (k2 + 2K)

]
H

(±2)
T = 8πGa2pΠ(±2) , (3.53)

which is true for all gauges because tensor perturbations are gauge-invariant.

3.3.1 The synchronous gauge equations

To solve the perturbation equations numerically we will be using CAMB, in which equa-
tions are written in the synchronous gauge. The synchronous gauge confines the metric
perturbations to the spatial degrees of freedom

A = B = 0 ,

ηT ≡ −
1
3HT −HL ,

hL = 6HL . (3.54)

The variables ηT and hL form a stable system for numerical solutions and hence the syn-
chronous gauge has been extensively used in numerical solutions. According to Eq.(3.47),
the Einstein equations for a flat universe in synchronous gauge are

η̇T = 4πGa2(ρ+ p)v
k
,

ḧL + ȧ

a
ḣL = −8πGa2(δρ+ 3δp) ,

−k2ηT + 1
2
ȧ

a
ḣL = 4πGa2δρ , (3.55)

while the conservation equations are

δρ̇J + 3 ȧ
a

(δρJ + δpJ) = −(ρJ + pJ)(kvJ + 1
2 ḣ) , (3.56)[

d

dτ
+ 4 ȧ

a

]
(ρJ + pJ)vJ

k
= δpJ −

2
3pJΠJ . (3.57)

Note that the lack of the potential A in the synchronous gauge implies that there are no
gravitational forces in the Navier-Stokes equation. Hence, for stress-free matter like cold
dark matter, zero velocity initially implies zero velocity always.

The vector Einstein equation (3.51) for synchronous gauge and flat universe becomes

Ḧ
(±1)
T + 2 ȧ

a
Ḧ

(±1)
T = −8πGa2(pfΠ(±1)

f + π(±1)
s ), (3.58)
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and the conservation equation is

v̇
(±1)
f = −(1− 3c2

f ) ȧ
a
v

(±1)
f + 1

2k
wf

1 + wf
π

(±1)
f . (3.59)

where c2
f = ṗf

ρ̇p
is the sound speed.

The seed Euler equation is given by

v̇(±1)
s = −4 ȧ

a
v(±1)
s + k[ps −

1
2kπ

(±1)
s ] . (3.60)

The Einstein equation for the tensor modes (3.53) is the same in all gauges, and in a
flat Universe it is

Ḧ
(±2)
T + 2 ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 8πGa2pΠ(±2) . (3.61)
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Chapter 4

Primordial magnetic fields and
CMB Fluctuations induced by
them

The PMF would affect the anisotropy and polarization of the CMB [46, 47] if magnetic
fields were existing at the time of decoupling or soon after. A nearly homogeneous and
very large scale field, which would have a particular direction, would cause an anisotropic
expansion in this direction, resulting in a quadrupole anisotropy in the CMB (for example,
see [48]). This leads to a tight bound of several nG [49] on the strength of a homogeneous
field redshifted to today. The existing primordial magnetogenesis scenarios are more likely
to produce stochastic tangled fields, that are Gaussian distributed and can be described in
terms of their power spectrum. The spectrum is often normalized in terms of a quantity
Bλ, which is the strength of the PMF after smoothing it over a region of size λ ( Eq. 4.11 ),
rescaled to the present epoch, assuming it decreases with the expansion as B = B0/a

2(t).
The magnetic and radiation energy densities both scale with expansion as 1/a4.

The scalar, vector and tensor components of the perturbed stress tensor associated
with the PMF would source the corresponding metric perturbations in CMB, including
gravitational waves. Furthermore, the scalar part of the Lorentz force contributes to the
scalar fluid velocity and associated density perturbations, while its vector part leads to the
vortical (vector) fluid velocity perturbation. In the next chapter, we will see some large
and small angular scale anisotropies in the CMB temperature and polarization due to these
magnetically induced metric and velocity perturbations. Any large-scale helical component
of the magnetic field has a parity violation effect, which would source non-zero parity odd
T-B and E-B cross-correlations, which are not expected in standard inflationary models.

There are other observable effects that the PMF can have on the CMB. The magnetic
field in the intergalactic medium can lead to Faraday rotation of the polarized component of
the CMB, which will generate B-mode signals by rotating the existing inflationary E-mode
signal. Also, the Big Bang Nucleosynthesis (BBN) constrains the radiation fraction at the
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time of nucleosynthesis, limiting the PMF to B . 1011 G at the time of nucleosynthesis
[50], which translates to B . 7× 10−7 G at present [51].

4.1 The Two-Point Correlation of the PMF Energy Momen-
tum Tensor

We assume that the primordial stochastic magnetic field is generated before the radiation-
matter equality, during or before the radiation dominated epoch. Before the time of recombi-
nation, the electric conductivity of the primordial plasma on scales larger than the Silk scale
λS is substantial, allowing us to work in the infinite conductivity limit. Thus, the ’frozen-in’
condition holds, and the infinite conductivity leads to the vanishing of the induced elec-
tric field. In this approximation, all the complications of MHD vanish. On sufficiently large
scales, the PMF evolves like a stiff source and one can neglect the effects of backreaction of
the fluid on the evolution of the magnetic field. The energy density of the field is treated
as a first-order perturbation to the standard FLRW homogeneous cosmological spacetime
model. The time dependence decouples from the spatial structure on sufficiently large scales,
and, due to flux conservation, the magnetic field evolves like Bphys(η,x) = B(η0,x)/a(η)2,
where we use the normalization a(η0) = 1 and a subscript ′0′ denotes today and B(x) is
the comoving field. On small scales, a PMF is damped because of the photon and neutrino
viscosities [52], and we will account for this damping by imposing an ultraviolet cutoff at a
wavelength kD in the magnetic power spectrum.

We consider magnetic fields which are statistically isotropic and homogeneous, since the
magnetic field generated in the early universe undergoes a random and stochastic process.
Generally, as mentioned before, we work in Fourier space. For an inhomogeneous distribution
of a scalar field, with a mean density n̄, the inhomogeneity contrast is δ(~x) = (n(~x)− n̄)/n̄,
and the power spectrum in Fourier space is defined via

〈δ(~k)δ(~k′)〉 = (2π)3P (k)δ3(~k − ~k′), (4.1)

where P (k) has dimensions of k−3 or (length)3. The two point correlation functions of two
random fields A and B in k-space can be written in terms of the dimensionless spectrum
PAB as

〈AkB
∗
k′〉 = 2π2

k3 PAB(k)δ(3)(k− k′).

(4.2)
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If the magnetic fields are Gaussian, then their power spectrum determines all their
statistical properties. We use the Fourier transformation convention

Bj(k) =
ˆ
d3x eik·xBj(x), Bj(x) = 1

(2π)3

ˆ
d3k e−ik·xBj(k) . (4.3)

Also due to the stochastic (random) nature of the field, we take 〈B(x)〉 = 0. The magnetic
field is divergence-free ∇·B = 0 = k ·B(k). And, because the field is real, B(k) = B∗(−k).
The Fourier space correlation function for a magnetic field, which as a vector field, can be
written as [53]

〈Bi(k)B∗j (k′)〉 = (2π)3δ(3)(k− k′)F (B)
ij (k),

= (2π)3δ(3)(k− k′)
[
S(k)Pij(k̂) +A(k)iεijmk̂m

]
, (4.4)

where F (B)
ij (k) = F (B)

ji (−k) = F (B)∗
ij (−k) = F (B)∗

ji (k), which indicates that the parity (mir-
ror) symmetry is violated under parity transformation k → −k and Pij(k̂) =

(
δij − k̂ik̂j

)
is a projection operator onto the plane normal to k. kiPij = 0 indicates a divergence-free
field. S(k) and A(k) are the power spectra of the symmetric and the helical parts, and can
be taken to be power laws:

S(k) =
{
S0 k

nS , for k < kD

0 otherwise ,
(4.5)

and

A(k) =
{
A0 k

nA , for k < kD

0 otherwise ,
(4.6)

where S0, A0 are the normalisation constants, and nS , nA are the spectral indices of the
symmetric and helical parts, respectively. kD is a cutoff wavenumber because radiation
viscosity leads to damping of small scale magnetic fields.

The mean helicity density of the magnetic field is given by

HB = 1
V

ˆ
V
dx3 A(x) ·B(x) = 1

V

ˆ
V
dx3 (curl−1B) ·B(x) = 1

V

ˆ
V
dx3 A(x) · (∇×A(x)),

(4.7)
which is explained in section. 2.3.4. To calculate this quantity, we can learn from an analogy
term called kinetic current helicity, which is given by

1
V

ˆ
V
dx3 B(x) · (∇×B(x)), (4.8)

which is gauge invariant. This form is in analogy to the expression of the kinetic helicity
used in [53, 54, 55]. It describes the (electric) current helicity [56]. To calculate Eq.(4.8), we
can replace 1

V

´
V dx

3 by an ensemble average 〈...〉.
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〈(∇×B(x)) ·B∗(x)〉 = 1
(2π)6

ˆ
d3k

ˆ
d3k′ ei(k

′−k)·x(2π)3δ(3)(k− k′)A(k)
(

2k2
2
k

+ 2k2
3
k

+ 2k2
1
k

)

= 1
(2π)3

ˆ
d3k 2kA(k)

= 1
(2π)3

ˆ
4πk2dk 2kA(k). (4.9)

We find that ∇×B ∼ kB, B = ∇×A ∼ kA, thus A ∼ B/k. In analogy, the asymmetric
power spectrum A(k) can be related to helicity density Eq.(4.7) by

HB = 1
(2π)3

ˆ
4πk2dk 2kA(k)

k2

= 2
(2π)3

ˆ kD

0
4πkdkA(k)

= 8π
(2π)3

A0(kD)nA+2

(nA + 2) . (4.10)

One can define the averaged magnetic field energy density Bλ
2 ≡ 〈B(x) · B(x)〉|λ

smoothed over a comoving scale λ by convolving it with a filter function, f̂λ(k) = exp(−λ2k2/2),
as

B2
λ = 1

(2π)3

ˆ
d3k S(k)f̂λ(k)2 = 2S0

(2π)2
1

λnS+3 Γ
(
nS + 3

2

)
. (4.11)

Subsequently, S0 can be written in terms of B2
λ and kλ = 2π/λ as

S2
0 = 1

4

(2π)2λnS+3B2
λ

Γ
(
nS+3

2

)
2

= 1
4

 (2π)nS+5B2
λ

Γ
(
nS+3

2

)
knS+3
λ

2

= 1
4

(2π)nS+2B2
λ

Γ
(
nS+3

2

)
2

2π6

k2nS+6
λ

. (4.12)

Avoiding the infrared divergence at k → 0 when integrating the magnetic field energy
density and helicity spectra requires nS > −3 and nA > −4, respectively.

On small scales, the interaction between plasma and magnetic field cannot be ignored.
In plasma, ions are affected by the forces provided by magnetic fields, then oscillate to
create a MHD wave called Alfvén wave. We assume that magnetic field damping is due to
the damping of Alfvén waves by the photon viscosity. We model the magnetic field damping
by introducing an ultraviolet cut-off wavenumber kD = 2π/λD[19]. The damping scale can
be expressed in terms of the amplitude and the spectral index of the PMF spectrum as
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[57, 58, 59]
kD

Mpc−1 =
[
5.5× 104h

(
Bλ
nG

)−2( 2π
λ/Mpc

)nB+3 Ωbh
2

0.022

] 1
nS+5

, (4.13)

where Ωb is the baryon density fraction and h is the reduced Hubble constant, H0 =
100h km/(sMpc), and λD � λS . The primordial plasma is a perfect conductor on all scales
larger than the Silk damping wavelength λS (the thickness of the last scattering surface)
set by photon and neutrino diffusion. In what follows, we will take λ = 1Mpc when working
with Bλ.

The averaged magnetic field energy density EB (ρB) is given by

1
2〈Bi(x)B∗i (x)〉 = 1

2
1

(2π)3

ˆ
d3k e−ik·x

1
(2π)3

ˆ
d3k′ e+ik′·x〈Bi(k)B∗i (k′)〉

= 2
2

1
(2π)6

ˆ
d3k

ˆ
d3k′ ei(k

′−k)·x(2π)3δ(3)(k− k′)S(k)

= 1
(2π)3

ˆ
4πk2dk S(k). (4.14)

It can be expressed in terms of Bλ as

EB = 1
2〈|B(x)|2〉 = 4π

(2π)3

ˆ kD

0
k2dkS(k)

= 4π
(2π)3

S0(kD)nS+3

(nS + 3)

= B2
λ(kDλ)nS+3

(nS + 3)Γ
(
nS+3

2

) . (4.15)

The magnetic field correlation length is defined as

ξB = 1
EB

ˆ kD

0
4πkdkS(k) = nS + 3

(nS + 2)kD
. (4.16)

One can also define the effective magnetic field amplitude Beff , related to the energy density
and power spectrum via

Beff ≡ (2EB)1/2 = Bλ(kDλ)
nS+3

2√
Γ
(
nS+5

2

) . (4.17)

When nS = −3 (scale invariant spectrum), Beff = Bλ for all λ.
The induced electromagnetic tensor in covariant form is

− T(ij)EM = 1
a24π

(
EiEj +BiBj −

1
2δij(E

2 +B2)
)
.
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Since E ∼ 0 in perfectly conducting plasma. In Fourier space, the electromagnetic tensor is
given by the convolution of the magnetic field

TB(ij)(k) = 1
4πa4(2π)3 ×

ˆ
d3q

[1
2δijBl(q)Bl(k− q)−Bi(k)Bj(k− q)

]
. (4.18)

In what follows, we will compute the two parts: T (1)
B(ij)(k) = 1

4πa4(2π)3×
´
d3q 1

2δijBl(q)Bl(k−
q) and T (2)

B(ij)(k) = 1
4πa4(2π)3 ×

´
d3q Bi(k)Bj(k− q), separately.

4.1.1 The Realizability Condition

If the magnetic diffusivity is very small, and the conductivity of the plasma in the early
universe is very high, the magnetic helicity is conserved. Which leads to the theorem [60]:

L−|B(x)|2 ≤ (curl−1B) ·B ≤ L+|B(x)|2, (4.19)

where L− and L+ denote the smallest and the largest eigenvalues of the (curl−1B), L− <
0 < L+ and the B field is divergence-free. Equation (4.19) can be simplified as

|(curl−1B) ·B|
|L|

≤ |B(x)|2, (4.20)

where L is the larger magnitude between L− and L+. Considering the ensemble average,
Eq. (4.20) becomes

|HB|
|L|

= |〈(curl
−1B) ·B〉|
|L|

≤ 〈|B(x)|2〉 = 2EB. (4.21)

Assuming that L has an order of the magnetic field correlation length |L| ≤ ξB, we can
obtain the realizability condition

|HB| ≤ 2ξBEB. (4.22)

Combing equations (4.15), (4.10), (4.16), we obtain

|A0k
nA+2
D |

|nA + 2| ≤
|S0k

nS+2
D |

|nS + 2| . (4.23)

Thus, to satisfy the realizability condition [55, 60, 61], which imposes a constraint on the
power spectra, namely, |A(k)| ≤ |S(k)|, which leads to nS ≤ nA. In the limit of maximal
helicity, |S(k)| = |A(k)|, S0 = |A0| and nA = nS .
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4.1.2 The tensor decomposition

Any tenosr Tij can be decomposed into a trace part T and a traceless part consisting of
three pieces, T ‖ij , T⊥ij , and T Tij :

Tij = δij
3 T + T

‖
ij + T⊥ij + T Tij , (4.24)

where T ≡ Tii; T ‖ij can be constructed by some scalar field A and T⊥ij can be wirtten in
terms of some divergenceless vector ~V (∂iVi = 0) as

T
‖
ij =

(
∂i∂j −

1
3δij∇

2
)
A ,

T⊥ij = ∂iVj + ∂jVi . (4.25)

The divergences of T ‖ij , and T⊥ij are longitudinal and transverse, respectively, and T Tij is
transverse,

εijk∂j∂lT
‖
lk = 0 , ∂i∂jT

⊥
ij = 0 , ∂iT

T
ij = 0 . (4.26)

Applying this rule to the stress tensor TB(ij) in Eq.(4.18), we can write the magnetic field
energy density ∆B, along with the scalar, vector and tensor modes of the spatial components
as

TB(ij)
ργ

= δij
3 ∆B + Π(0)

B (k̂ik̂j −
1
3δij) + Π(V )

B(ij) + Π(T )
B(ij), (4.27)

where

∆B = 1
ργ
TB(ii) = 1

ργ
δijTB(ij) , (4.28)

Π(0)
B = 1

ργ

2
3(k̂ik̂j −

1
3δij)TB(ij). (4.29)

The vector component is

Π(V )
B(ij) = 1

ργ
(Pimk̂j k̂n + Pjnk̂ik̂m)TB(mn) ,

L
(V )
i = kΠ(V )

i = kΠ(V )
ij k̂j = 1

ργ
kPimk̂nTB(mn) . (4.30)

In the above, L(V )
i is the Lorentz force vector, which can source the vorticity perturbations.

We shall often use simple properties like

Pij = δij − k̂ik̂j , Pii = PijPij = 2, PijPim = Pjm, Pij k̂i = 0. (4.31)
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The tensor component is

Π(T )
B(ij) = 1

ργ
(PimPjn −

1
2PijPmn)TB(mn), (4.32)

which sources the gravitational wave perturbations.
Following the conventions in [55, 62, 63] when dealing with the perturbations of the

metric (3.8,3.11), the vector and tensor modes can be further decomposed into the normal
modes, which can be written as

e(±1)
i = − i√

2
(ê1
i ± iê2

i ) ,

e(±1)
ij = − 1

2
√

2
[k̂j(ê1

i ± iê2
i ) + k̂i(ê1

j ± iê2
j )] ,

e(±2)
ij = −

√
3
8(ê1 ± iê2)i(ê1 ± iê2)j . (4.33)

where they satisfy e(±2)
ij e(∓2)

ij = 3/2, δije(±2)
ij = 0, k̂ie(±2)

ij = 0, e(±1)
ij e(∓1)

ij = 1/2. In this
basis, the tensor and vector anisotropic stresses can be expressed as

Π(V )
B(ij)(~k) = π

(+1)
B (~k)e(+1)

ij + π
(−1)
B (~k)e(−1)

ij , (4.34)

Π(T )
B(ij)(~k) = π

(+2)
B (~k)e(+2)

ij + π
(−2)
B (~k)e(−2)

ij . (4.35)

To obtain the two point correlation, we calculate the following terms

π
(+1)
B e(+1)

cd e(−1)
cd = 1

2π
(+1)
B = Π(V )

B(cd)e
(−1)
cd

1
2π

(+1)∗
B = Π(V )∗

B(ab)e
(+1)
ab

1
2π

(−1)
B = Π(V )

B(ab)e
(+1)
ab

1
2π

(−1)∗
B = Π(V )∗

B(cd)e
(−1)
cd (4.36)

Hence, the two point correlation can be written as

〈Π(V )
B(ab)(k)Π(V )∗

B(ab)(k
′)〉 = (e(+1)

ab e(−1)
ab )× 〈π(+1)

B (~k)π(+1)∗
B (~k′) + π

(−1)
B (~k)π(−1)∗

B (~k′)〉

= 1
2〈π

(+1)
B (~k)π(+1)∗

B (~k′) + π
(−1)
B (~k)π(−1)∗

B (~k′)〉 (4.37)
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Hence, we obtain

1
4〈π

(+1)
B (k)π(+1)∗

B (k′)〉 = e(+1)
ab e(−1)

cd 〈Π
(V )
B(cd)(k)Π(V )∗

B(ab)(k
′)〉 = (fV (k)− gV (k))δ(3)(k− k′)

1
4〈π

(−1)
B (k)π(−1)∗

B (k′)〉 = e(+1)
ab e(−1)

cd 〈Π
(V )
B(ab)(k)Π(V )∗

B(cd)(k
′)〉 = (fV (k) + gV (k))δ(3)(k− k′)

(4.38)

Considering the symmetry properties of 〈Π(V )
B(ab)Π

(V )∗
B(cd)〉, f

V is the symmetric part under the
exchange of ab with cd in (〈Π(V )

B(cd)Π
(V )∗
B(ab)〉), while g

V is the anti-symmetric part under this
permutation.

1
4〈π

(+1)
B π

(+1)∗
B + π

(−1)
B π

(−1)∗
B 〉 = 2fV (k)δ(3)(k− k′)

1
4〈π

(+1)
B π

(+1)∗
B − π(−1)

B π
(−1)∗
B 〉 = −2gV (k)δ(3)(k− k′) (4.39)

We obtain these two functions by doing a vector projection

〈π(+1)
B (k)π(+1)∗

B (k′) + π
(−1)
B (k)π(−1)∗

B (k′)〉 = 8fV (k)δ(3)(k− k′) = 2〈Π(V )
B(ab)(k)Π(V )∗

B(ab)(k
′)〉

〈π(+1)
B (k)π(+1)∗

B (k′)−Π(−1)
B (k)π(−1)∗

B (k′)〉 = −8gV (k)δ(3)(k− k′). (4.40)

To obtain the two point correlation for tensor modes, we calculate the following terms

π
(+2)
B e(+2)

cd e(−2)
cd = 3

2π
(+2)
B = Π(T )

B(cd)e
(−2)
cd

3
2π

(+2)∗
B = Π(T )∗

B(ab)e
(+2)
ab

3
2π

(−2)
B = Π(T )

B(ab)e
(+2)
ab

3
2π

(−2)∗
B = Π(T )∗

B(cd)e
(−2)
cd . (4.41)

Hence, the two point correlation can be written as

〈Π(T )
B(ab)(k)Π(T )∗

B(ab)(k
′)〉 = (e(+2)

ab e(−2)
ab )× 〈π(+2)

B (~k)π(+2)∗
B (~k′) + π

(−2)
B (~k)π(−2)∗

B (~k′)〉

= 3
2〈π

(+2)
B (~k)π(+2)∗

B (~k′) + π
(−2)
B (~k)π(−2)∗

B (~k′)〉. (4.42)

Thus,

9
4〈π

(+2)
B (k)π(+2)∗

B (k′)〉 = e(+2)
ab (bk)e(−2)

cd (k′)〈Π(T )
B(cd)(k)Π(T )∗

B(ab)(k
′)〉

= (fT (k)− gT (k))δ(3)(k− k′)
9
4〈π

(−2)
B (k)π(−2)∗

B (k′)〉 = e(+2)
ab e(−2)

cd 〈Π
(T )
B(ab)(k)Π(T )∗

B(cd)(k
′)〉

= (fT (k) + gT (k))δ(3)(k− k′) (4.43)
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Simplifying it, we obtain

9
4〈π

(+2)
B (k)π(+2)∗

B (k′) + π
(−2)
B (k)π(−2)∗

B (k′)〉 = 2fT (k)δ(3)(k− k′)
9
4〈π

(+2)
B (k)π(+2)∗

B (k′)− π(−2)
B (k)Π(−2)∗

B (k′)〉 = −2gT (k)δ(3)(k− k′). (4.44)

Rewriting it, we get

〈π(+2)
B (k)π(+2)∗

B (k′) + π
(−2)
B (k)π(−2)∗

B (k′)〉 = 8
9f

T (k)δ(3)(k− k′) = 2
3〈Π

(T )
B(ab)(k)Π(T )∗

B(ab)(k
′)〉

〈π(+2)
B (k)π(+2)∗

B (k′)− π(−2)
B (k)π(−2)∗

B (k′)〉 = −8
9g

T (k)δ(3)(k− k′). (4.45)

4.1.3 Calculations on the two-point correlation functions

To calculate all the two point correlation functions, the first step is to evaluate the two
point correlator of the magnetic field stress energy tensor defined in Equation (4.18):

〈TB(ij)(k)T ∗B(lm)(k
′)〉 = 1

(4π)2
1

(2π)6a8

ˆ
d3p

ˆ
d3q 〈Bi(p)Bj(k− p)Bl(−q)Bm(q − k′)〉

+ · · · δij + · · · δlm , (4.46)

The terms proportional to δij and δlm are not shown, because they are not contributing
to the final results for the tensor and vector perturbation 〈ΠijΠlm〉 after being projected
out. Since the magnetic fields are Gaussian, we can apply Wick’s theorem 〈ABCD〉 =
〈AB〉〈CD〉 + 〈AC〉〈BD〉 + 〈AD〉〈BC〉 to the first term on the right hand side. Then, the
four-point correlators can be written in terms of the two-point ones:

〈Bi(ki)Bj(kj)Bl(kl)Bm(km)〉 = 〈Bi(ki)Bj(kj)〉〈Bl(kl)Bm(km)〉

+ 〈Bi(ki)Bl(kl)〉〈Bj(kj)Bm(km)〉

+ 〈Bi(ki)Bm(km)〉〈Bj(kj)Bl(kl)〉 . (4.47)
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Using this in Equation (4.46), after a long calculation, we can write it as

〈T (2)
B(ij)(k)T (2)∗

B(lm)(k
′)〉 = δ(k− k′)

(4π)2a8

ˆ
d3p ( S(p)S(|k− p|)[(δil − p̂ip̂l)(δjm

−(k̂− p)j(k̂− p)m) + (δim − p̂ip̂m)(δjl − (k̂− p)j(k̂− p)l)]

−A(p)A(|k− p|)[εiltεjmrp̂t(k̂− p)r + εimf εjlgp̂f (k̂− p)g]

+iS(p)A(|k− p|)[εjmr(δil − p̂ip̂l)(k̂− p)r
+εjlg(δim − p̂ip̂m)(k̂− p)g]

+iA(p)S(|k− p|)[εilt(δjm − ̂(k− p)j ̂(k− p)m)p̂t

+εimf (δjl − ̂(k− p)j ̂(k− p)l)p̂f ] }

+ · · · δij + · · · δlm . (4.48)

4.1.4 The scalar projection

The auto-correlation function of the magnetic energy density contrast ( Eq. 4.28) is

〈∆B(k)∆∗B(k′)〉 = 1
4ρ2

γ

δijδlm〈T
(2)
B(ij)(k)T (2)∗

B(lm)(k
′)〉

= 1
4ρ2

γ(4π)2a8 δ
(3)(k− k′)

ˆ
d3p [ S(p)S(|k− p|)2(1 + µ2)

−A(p)A(|k− p|)4µ ]

= (2π)3 2π2

k3 δ
(3)(k− k′)P∆B∆B

(k), (4.49)

where

P∆B∆B
(k) = 1

4
2k3

(ργ,0)24(2π)2(2π)5

ˆ
d3p

× [ S(p)S(|k− p|)2(1 + µ2)−A(p)A(|k− p|)4µ ] . (4.50)

where β = k̂ · ̂(k− p), γ = k̂ · p̂ and µ = p̂ · ̂(k− p). We can express the power spectrum
P∆B∆B

(k) in terms of symbols z = p/k and x = γ. Then it can be split into an integral over z
from 0 to kD

k , and an integral over x = γ from −1 to 1. This follows from d3p = 2πp2dpdx =
2πk3z2dzdx. Thus, β = (1− zx)/

√
1 + z2 − 2zx and µ = (x− z)/

√
1 + z2 − 2zx. We obtain

P∆B∆B
(k) = 1

4
S2

0
(ργ,0)2(2π)6

k2ns+6
ˆ
dzzns+2

×
ˆ
dx
(
1− 2zx+ z2

)ns−2
2 (1 + x2 − 4zx+ 2z2)

−1
2

A2
0

(ργ,0)2(2π)6
k2nA+6

ˆ
dzznA+2 ×

ˆ
dx
(
1− 2zx+ z2

)nA−1
2 (x− z),

(4.51)
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The auto-correlation function of Π(0)
B (see Eq. (4.29)) is

〈Π(0)
B (k)Π(0)∗

B (k′)〉 = (3
2

1
ργ

)2(k̂ik̂j −
1
3δij)(k̂lk̂m −

1
3δlm)〈T (2)

B(ij)(k)T (2)∗
B(lm)(k

′)〉

= 9
4ρ2

γ(4π)2a8 δ
(3)(k− k′)

ˆ
d3p

× [ S(p)S(|k− p|)2
9(9β2γ2 − 6βµγ − 3β2 + µ2 − 3γ2 + 4)

−A(p)A(|k− p|)2
9(6γβ − 4µ) ]

= (2π)3 2π2

k3 δ
(3)(k− k′)PΠ(0)

B Π(0)
B

(k), (4.52)

where

PΠ(0)
B Π(0)

B

(k) = 9
4 ×

2
9

2k3

(ργ,0)24(2π)2(2π)5

ˆ
d3p× [ S(p)S(|k− p|)

(9β2γ2 − 6βµγ − 3β2 + µ2 − 3γ2 + 4)−A(p)A(|k− p|)(6γβ − 4µ) ] .

(4.53)

Rewriting it in terms of x, z gives

PΠ(0)
B Π(0)

B

(k) = 1
4

S2
0

(ργ,0)2(2π)6
k2ns+6

ˆ
dzzns+2

×
ˆ
dx
(
1− 2zx+ z2

)ns−2
2 (9x4z2 − 6zx3 + (−12z2 + 1)x2 + 2zx+ 5z2 + 1)

−1
4

A2
0

(ργ,0)2(2π)6
k2nA+6

ˆ
dzznA+2 ×

ˆ
dx
(
1− 2zx+ z2

)nA−1
2 (−6zx2 + 2x+ 4z).

(4.54)

The cross correlation function of Π(0)
B and ∆B is

〈∆B(k)Π(0)∗
B (k′)〉 = 3

2
1
ργ

1
2ργ

δij(k̂lk̂m −
1
3δlm)〈T (2)

B(ij)(k)T (2)∗
B(lm)(k

′)〉

= 3
4ρ2

γ(4π)2a8 δ
(3)(k− k′)

ˆ
d3p [ S(p)S(|k− p|)2

3(2µ2 − 1− 3µβγ)

−A(p)A(|k− p|)2
3(−3γβ + µ) ]

= (2π)3 2π2

k3 δ
(3)(k− k′)P∆BΠ(0)

B

(k),

(4.55)
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where

P∆BΠ(0)
B

(k) = 3
4 ×

2
3

2k3

(ργ,0)24(2π)2(2π)5

ˆ
d3p

× [ S(p)S(|k− p|)(2µ2 − 1− 3µβγ) +A(p)A(|k− p|)(3γβ − µ) ] . (4.56)

Rewriting it in terms of x and z gives

P∆BΠ(0)
B

(k) = 1
4

S2
0

(ργ,0)2(2π)6
k2ns+6

ˆ
dzzns+2

×
ˆ
dx
(
1− 2zx+ z2

)ns−2
2 (3zx3 + (−3z2 − 1)x2 + zx+ z2 − 1),

+1
4

A2
0

(ργ,0)2(2π)6
k2nA+6

ˆ
dzznA+2 ×

ˆ
dx
(
1− 2zx+ z2

)nA−1
2 (−3zx2 + 2x+ z).

(4.57)

4.1.5 The vector projection

According to Equation (4.40),

〈π(+1)
B (k)π(+1)∗

B (k′) + π
(−1)
B (k)π(−1)∗

B (k′)〉 = 8fV (k)δ(3)(k− k′)

= 2〈Π(V )
B(ab)(k)Π(V )∗

B(ab)(k
′)〉

= (2π)3 2π2

k3 δ
(3)(k− k′)P(+)

Π(V )
B Π(V )

B

(k),

〈π(+1)
B (k)π(+1)∗

B (k′)− π(−1)
B (k)π(−1)∗

B (k′)〉 = −8gV (k)δ(3)(k− k′)

= (2π)3 2π2

k3 δ
(3)(k− k′)P(−)

Π(V )
B Π(V )

B

(k).

(4.58)

The two point correlation function of Π(V )
ij (Eq.4.30) is

〈Π(V )
ab (k)Π(V ∗)

ab (k′)〉 = 1
ρ2
γ

δacδbd(Paik̂bk̂j + Pbj k̂ak̂i)(Pdmk̂ck̂l + Pclk̂dk̂m)

×〈T (2)
B(ij)(k)T (2)∗

B(lm)(k
′)〉

= δ(3)(k− k′)
ρ2
γ(4π)2a8

ˆ
d3p [ S(p)S(|k− p|)2(1− 2γ2β2 + γβµ)

−A(p)A(|k− p|)2(βγ − µ) ] . (4.59)

Remembering that

e(+1)
ab e(−1)

cd 〈Π
(V )
B(ab)Π

(V )∗
B(cd)〉 = (fV (k) + gV (k))δ(3)(k− k′), (4.60)
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where

fV (k) = 1
ρ2
γ(4π)2a8 δ

(3)(k− k′)1
4

ˆ
d3p [ S(p)S(|k− p|)2(1− 2γ2β2 + γβµ)

−A(p)A(|k− p|)2(βγ − µ) ] ,

gV (k) = 1
ρ2
γ(4π)2a8 δ

(3)(k− k′)1
4

ˆ
d3p [ S(p)A(|k− p|)2(β + γµ− 2βγ2)

+A(p)S(|k− p|)2(βµ+ γ − 2γβ2) ] . (4.61)

we obtain

P(+)
Π(V )
B Π(V )

B

(k) = 8× 1
4

2k3

4(2π)2(ργ,0)2(2π)5

ˆ
d3p

× [ S(p)S(|k− p|)2(1− 2γ2β2 + γβµ)−A(p)A(|k− p|)2(βγ − µ) ] .

(4.62)

Rewriting it in terms of x and z gives

P(+)
Π(V )
B Π(V )

B

(k) = 2 S2
0

(ργ,0)2(2π)6k
2ns+6

ˆ
dzzns+2

×
ˆ
dx
(
1− 2zx+ z2

)ns−2
2 (−2z2(x4) + 3z(x3) + (z2 − 1)(x2)− 3zx+ z2 + 1)

−2 A2
0

(ργ,0)2(2π)6k
2nA+6

ˆ
dzznA+3

ˆ
dx(1− 2zx+ z2)

nA−1
2 (1− x2).

(4.63)

We also have

P(−)
Π(V )
B Π(V )

B

(k) = −8× 1
4

2k3

4(2π)2(ργ,0)2(2π)5

ˆ
d3p

× [ S(p)A(|k− p|)2(β − 2γβ2 + γµ) +A(p)S(|k− p|)2(βµ+ γ − 2γβ2) ] ,

(4.64)

which can be rewritten in terms of x and z as

P(−)
Π(V )
B Π(V )

B

(k) = −2 S0A0

(2π)6(ρ0
γ)2k

nA+nS+6

× [
ˆ
dzzns+2

ˆ
dx
(
1− 2zx+ z2

)nA−1
2 (2zx3 − x2 − 2zx+ 1)

−
ˆ
dzznA+3

ˆ
dx(1− 2zx+ z2)

nS−2
2 (2zx3 − x2 − 2zx+ 1) ] .

(4.65)
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4.1.6 The tensor projection

According to Equation (4.45),

〈π(+2)
B (k)π(+2)∗

B (k′) + π
(−2)
B (k)π(−2)∗

B (k′)〉 = 8
9f

T (k)δ(3)(k− k′)

= 2
3〈Π

(T )
B(ab)(k)Π(T )∗

B(ab)(k
′)〉

= (2π)3 2π2

k3 δ
(3)(k− k′)P(+)

Π(T )
B Π(T )

B

(k),

〈π(+2)
B (k)π(+2)∗

B (k′)− π(−2)
B (k)π(−2)∗

B (k′)〉 = −8
9g

T (k)δ(3)(k− k′)

= (2π)3 2π2

k3 δ
(3)(k− k′)P(−)

Π(T )
B Π(T )

B

(k).

(4.66)

The two point correlation function of Π(T )
ij (see Eq. (refpit)) is

〈Π(T )
B(ab)(k)Π(T )∗

B(ab)(k
′)〉 = 1

ρ2
γ

δacδbd(PaiPbj −
1
2PabPij)(PclPdm −

1
2PcdPlm)

×〈T (2)
B(ij)(k)T (2)∗

B(lm)(k
′)〉

= 1
ρ2
γ(4π)2a8 δ

(3)(k− k′)
ˆ
d3p [ S(p)S(|k− p|)

×(1 + γ2)(1 + β2)−A(p)A(|k− p|)(−4γβ) ] .

(4.67)

Remembering that

e(+2)
ab e(−2)

cd 〈Π
(T )
B(ab)Π

(T )∗
B(cd)〉 = (fT (k) + gT (k))δ(3)(k− k′), (4.68)

where

fT (k) = 1
ρ2
γ(4π)2a8 δ

(3)(k− k′)3
4

ˆ
d3p [ S(p)S(|k− p|)(1 + γ2)(1 + β2)

−A(p)A(|k− p|)(−4γβ) ] ,

gT (k) = 1
ρ2
γ(4π)2a8 δ

(3)(k− k′)3
4

ˆ
d3p [ S(p)A(|k− p|)2(1 + γ2)β

+A(p)S(|k− p|)2(1 + β2)γ ] ,

(4.69)
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we obtain

P(+)
Π(T )
B Π(T )

B

(k) = 8
9 ×

3
4

2k3

4(2π)2(ρ0
γ)2(2π)5

ˆ
d3p

× [ S(p)S(|k− p|)(1 + γ2)(1 + β2) +A(p)A(|k− p|)(4γβ) ] .

(4.70)

Rewriting it in terms of x and z gives

P(+)
Π(T )
B Π(T )

B

(k) = 2
3

S2
0

(ργ,0)2(2π)6k
2ns+6

ˆ
dzzns+2

×
ˆ
dx
(
1− 2zx+ z2

)ns−2
2 (1 + x2)(1 + z2/2(1 + x2)− 2zx)

+4
3

A2
0

(ργ,0)2(2π)6k
2nA+6

ˆ
dzznA+2

ˆ
dx(1− 2zx+ z2)

nA−1
2 x(1− zx).

(4.71)

Similarly,

P(−)
Π(T )
B Π(T )

B

(k) = −8
9 ×

3
4

2k3

4(2π)2(ρ0
γ)2(2π)5

ˆ
d3p

× [ S(p)A(|k− p|)2(1 + γ2)β +A(p)S(|k− p|)2(1 + β2)γ ] ,

(4.72)

which, written in terms of x and z becomes

P(−)
Π(T )
B Π(T )

B

(k) = −2
3

S0A0
(ργ,0)2(2π)6k

nA+nS+6 [
ˆ
dzzns+2

×
ˆ
dx
(
1− 2zx+ z2

)nA−1
2 (1 + x2)(1− zx)

+
ˆ
dzznA+2

ˆ
dx(1− 2zx+ z2)

nS−2
2 (2 + z2 − 4zx+ z2x2)x ] .

(4.73)

4.1.7 Integral values with the absence of cutoff

In the above equations (4.51, 4.54, 4.57 , 4.63, 4.65 , 4.71 , 4.73), the integrals can be split
into an integral over z from 0 to kD

k . When kD � k, the integral can be set as
´∞

0 . When
we solve these integral we find that when spectral index n < −2, the results calculated
from

´ kD
k

0 is very close to the approximate values obtained from
´∞

0 . Ignoring the cutoff in
the definitions of SB and AB allows us factor out the k-dependence of the above integrals,
we define the following expressing by dividing the coefficients, hence, the above integrals
will depend only on the spectral index. From table. 4.1, we can see that in most cases the
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contribution of helicity to CMB spectra is small and negative. When n > −2, the above
integrals should be calculated from 0 to kD

k , because the approximate solutions with the

absence of cutoff is quite different from the exact solutions
´ kD

k
0 . In chapter 5 we will see

that the behavior of the integrals are quite different in ranges between −3 < n < −1.5 and
−1.5 < n. In the range −3 < n < −1.5, when we increase the spectral index the absolute
values of the integrals get smaller, while in the range −1.5 < n it is the opposite. This is
because when −3 < n < −1.5 the cutoff effects are not dominant; while −1.5 < n, the
dominant terms are k2n+6

D , increasing n leads to greater amplitudes.

n = −2.9 n = −2.5 n = −2
WS

∆B∆B
13.39 2.7225 1.85025

WA
∆B∆B

0.112 0.444 0.999
WS

∆BΠ(0)
B

−13.025 −2.24275 −0.926
WA

∆BΠ(0)
B

1.575 0.8895 0.50025
WS

Π(0)
B Π(0)

B

14.625 3.68275 2.77525
WA

Π(0)
B Π(0)

B

−3.2625 −2.223 −1.9995

W+S
Π(V )
B Π(V )

B

52.8 10.6762 7.401

W+A
Π(V )
B Π(V )

B

−4.498 −3.556 −3.998

W+S
Π(T )
B Π(T )

B

35.36 6.6914 3.701

W+A
Π(T )
B Π(T )

B

2.7 1.1867 0.00133

W(−)
Π(V )
B Π(V )

B

−47.98 −6.712 −2.668

W(−)
Π(T )
B Π(T )

B

−38.0267 −7.8267 −3.704

Table 4.1: Integral values calculated when kD � k and the cutoff is ignored. ′S′ means the
non-helical parts, ′A′ means the helical parts.
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PS∆B∆B
(k)

S2
0

(ργ,0)2(2π)6k
2ns+6

=WS
∆B∆B

,
PA∆B∆B

(k)
A2

0
(ργ,0)2(2π)6k

2nA+6
=WA

∆B∆B
,

PS
Π(0)
B Π(0)

B

(k)
S2

0
(ργ,0)2(2π)6k

2ns+6
=WS

Π(0)
B Π(0)

B

,
PA

Π(0)
B Π(0)

B

(k)
A2

0
(ργ,0)2(2π)6k

2nA+6
=WS

Π(0)
B Π(0)

B

,

PS
∆BΠ(0)

B

(k)
S2

0
(ργ,0)2(2π)6k

2ns+6
=WS

∆BΠ(0)
B

,
PA

∆BΠ(0)
B

(k)
A2

0
(ργ,0)2(2π)6k

2nA+6
=WA

∆BΠ(0)
B

,

P+S
Π(V )
B Π(V )

B

(k)

S2
0

(ργ,0)2(2π)6k2ns+6
=W+S

Π(V )
B Π(V )

B

,
P+A

Π(V )
B Π(V )

B

(k)

A2
0

(ργ,0)2(2π)6k2nA+6
=W+A

Π(V )
B Π(V )

B

,

P(−)
Π(V )
B Π(V )

B

(k)
S0A0

(2π)6(ρ0
γ)2knA+nS+6 =W(−)

Π(V )
B Π(V )

B

,
P(−)

Π(T )
B Π(T )

B

(k)
S0A0

(ργ,0)2(2π)6knA+nS+6 =W(−)
Π(T )
B Π(T )

B

,

P+S
Π(T )
B Π(T )

B

(k)

S2
0

(ργ,0)2(2π)6k2ns+6
=W+S

Π(T )
B Π(T )

B

,
P+A

Π(T )
B Π(T )

B

(k)

A2
0

(ργ,0)2(2π)6k2nA+6
=W+A

Π(T )
B Π(T )

B

.

(4.74)

4.2 The PMF impact on the CMB anisotropies

In this section we describe how primordial magnetic fields source the Cosmic Microwave
Background (CMB) anisotropies and modify the initial conditions. The subject has already
been studied in detail in [63]. The evolution of metric perturbations is described by the
Einstein equations. These are modified by the presence of PMFs that represent a source
term as follows:

Gµν = 8π(Tµν + TB(µν)) , (4.75)

where TB(µν) represents the PMF.

4.2.1 Scalar modes

Photons (γ), neutrinos (ν), baryons (b), cold dark matter (c) and the magnetic field (B)
contribute to the total energy density perturbation, so that

ρ̄∆ = ργ(∆γ + ∆B) + ρν∆ν + ρc∆c + ρb∆b. (4.76)

The total anisotropic stress are given by

p̄Π = 1
3ργ(πγ + Π(0)

B ) + 1
3ρνπν . (4.77)

There is no pressure or anisotropic stress for the baryons and dark matter.
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The Lorentz force induced on baryons modifies the baryon scalar velocity equation:

v̇b = − ȧ
a
vb + c2

skvb +RneaσT (vγ − vb) + R

4 L
(0) (4.78)

where R = ργ+pγ
ρb+pb = 4ργ

3ρb . ne is the free electron density and σT is the Thomson cross section,
the differential optical depth τ̇ = neaσT describes the collision rate in conformal time. The
scalar mode of Lorentz force is L(0) = k(∆B − 2Π(0)

B ), R = 4
3
ργ
ρb
.

4.2.2 Vector modes

The perturbed vector Einstein equations become

Ḧ
(±1)
T + 2 ȧ

a
Ḧ

(±1)
T = −8πGa2(pfΠ(±1)

f + pγΠ(±1)
B ) (4.79)

The Lorentz force induced on baryons, in analogy with what we found for the scalar case,
modifies the baryon vector velocity equation:

v̇
(±1)
b = − ȧ

a
v

(±1)
b +RneaσT (v(±1)

γ − v(±1)
b )− 3R

8 (kΠ(±1)
B ), (4.80)

where kΠ(±1)
B is the Lorentz force due to the primordial magnetic field.

4.2.3 Tensor modes

The perturbed Einstein equation for the tensor modes is given by

Ḧ
(±2)
T + 2 ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 8πGa2(pfΠ(±2)

f + pγΠ(±1)
B ). (4.81)

4.3 Initial conditions and the magnetic modes

Now that we have the Boltzmann and Einstein equations, to solve them, we need the
appropriate initial conditions for the scalar, vector, and tensor modes. Before neutrino
decoupling, η < ην , the magnetic anisotropic stress is the only source of anisotropic stress
and it cannot be compensated by the free streaming of neutrinos. Current numerical codes
(such as CAMB) set the initial conditions on super-horizon scales kη � 1, long after neutrino
decoupling η > ην , after the neutrinos could develop their anisotropic stress. After neutrino
decoupling, the non vanishing neutrino anisotropic stress cancels the magnetic source. Thus,
there are two types of so-called “modes”, corresponding to the two regimes in which the
PMF sources metric perturbations. The passive mode [63, 64] sources perturbations before
the neutrino decoupling, while the compensated mode [65, 66, 67] sources them after. In
our model-independent approach, we assume that the PMFs could be generated at any
time between the end of inflation and recombination, and consider both the passive and the
compensated modes.
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PMFs source all types of perturbations, scalar and tensor modes have both passive and
compensated initial conditions, vector modes have only compensated initial conditions. As
we will see later from numerical calculations, the dominant contributions come from the
scalar mode, passive tensor mode, and the compensated vector mode. We include the stan-
dard matter species which we generally denote with subscripts: photons (γ), baryons (b),
cold dark matter (c), massless neutrinos (ν). To solve the evolution of the background equa-
tion we solve the Friedmann equations for the scale factor. Following the usual conventions
[63], we use the ratio of the density of species x to the critical density Ωx = ρx/ρcr. We have
radiation Ωr = Ωγ + Ων and matter Ωm = Ωb + Ωc, and it will also be convenient to define
ratios Rγ = Ωγ/Ωr, Rν = Ων/Ωr, Rc = Ωc/Ωm and Rb = Ωb/Ωm.

4.3.1 Compensated modes

The compensated modes are the standard solution of the perturbed Einstein-Boltzmann
equations with the PMF source contributing after neutrino decoupling. These modes are
called ’compensated’ because the PMF stresses are compensated by those of the relativistic
fluids in their contributions to the metric perturbations and the initial conditions. When
solving the Boltzmann and Einstein equations for large wavelengths at early times, the
growing regular mode requires the source terms in the equations for the metric perturbations
to vanish h(0)

T = 0 at the lowest order. Thus, there is compensation between the magnetic
terms ΠB 6= 0 and the perturbed components of the fluid. There are no passive vector
modes because H(±1)

T decays rapidly, and the evolution before neutrino decoupling is not
essential. With a PMF as an active source for the vector part of the Einstein-Boltzmann
equations, the only regular solution is a compensated mode for which the anisotropic stress
Π(±1)
B is compensated by Π(±1)

ν .
The PMF also actively sources the compensated scalar modes after neutrino decoupling.

There are two such modes, sourced by ∆B and Π(0)
B , with power spectra proportional to

the two-point correlations 〈∆∗B∆B〉 and 〈Π(0)∗
B Π(0)

B 〉, and the cross-correlation 〈∆∗BΠ(0)
B 〉.

After neutrino decoupling, the anisotropic stress of the PMF is compensated, leading to the
tensor compensated mode. We will see later that the tensor compensated mode is entirely
negligible compared to other modes and can be safely ignored when deriving the CMB
constraints on the PMF.

4.3.2 Passive modes

When a PMF is generated before neutrino decoupling, there is a passive mode derived from
the homogeneous solutions. Before neutrino decoupling, the universe is dominated by the
radiation fluid with w = 1/3, neutrinos are tightly bound with photons and baryons in the
fluid, and there are no components to compensate for the anisotropic stress of the PMF.
Thus, it leads to a logarithmically growing (in conformal time) metric perturbation mode.
After neutrino decoupling, both passive and compensated modes are suppressed by the neu-
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trino compensation. Such logarithmically growing properties of the passive modes remain
as a constant offset on the amplitude of the inflationary mode, which is the primary cosmo-
logical perturbations of the standard model without PMFs. The existence of this amplitude
offset is also needed to match the initial conditions before and after neutrino decoupling.
Tensor modes have both passive and compensated modes. Before neutrino decoupling, with
all species having zero initial anisotropic stress, Π(±2)

B sources the tensor passive mode pro-
portional to the ratio between the neutrino decoupling time and the generation time of the
PMF (ην/ηB). On superhorizon scales, kη � 1, the solution of Equation (4.81) at the time
of neutrino decoupling ην is approximately H(±2)(ην) ' H(±2)(ηB) + RγΠ(±2)

B β, where we
defined β ≡ ln(ην/ηB), ην is the neutrino decoupling time, ηB is the time of magnetic field
generation, and we assume H(±2)(ηB) = 0 [63, 64].

4.3.3 Scalars

The amplitude of the adiabatic scalar mode is described by the comoving curvature pertur-
bation ζ. Due to the generation of a PMF before neutrino decoupling, there is an additional
contribution to ζ. At the time ην neutrinos decouple, its anisotropic stress rapidly grows to
compensate the PMF anisotropic stress Πν → −Rγ

Rν
ΠB. When the compensation is effective,

ζ stops growing, having reached the final curvature [63].

ζ = ζ(ηB)−RγΠ(0)
B

[
ln(ην/ηB) +

( 5
8Rν

− 1
)]
, (4.82)

where ζ(ηB) is the comoving curvature perturbation at the time ηB, after inflation, at which
the PMF was generated. For the scalar passive mode, all components have zero initial
anisotropic stress and unperturbed densities, and result in adiabatic type perturbations.
Since ζ is proportional to −RγΠ(0)

B β, only 〈Π(0)∗
B Π(0)

B 〉 sources the scalar passive mode.

4.3.4 Tensors

Only the photons and neutrinos can support tensor perturbations to their energy momentum
tensors and at times long before recombination the photon anisotropic stress is negligible.
Thus the species affecting the tensor evolution are the neutrinos, and the magnetic fields.
The passive tensor mode has [63, 64]

H
(±2)
T = 3RγΠ(±2)

B

[
ln(ην/ηB) +

( 5
8Rν

− 1
)]
. (4.83)

For simplicity, it is assumed that H(±2)
T (ηB) = 0. We note that CAMB uses HT , where hij =∑

k± 2HTQ
2
ij in tensor modes, hij is the transverse traceless part of the metric tensor. This

introduces an additional factor of 1/4 into the result for the Cl in terms of Ph. Considering
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this, we have

Ph =
[
6Rγ ln(ην/ηB) +

( 5
8Rν

− 1
)]2
× 〈Π(±2)∗

B Π(±2)
B 〉 . (4.84)

4.4 CMB spectra sourced by the PMF

In general, the angular power spectra of the correlation functions can be calculated from
Equation (3.35). After applying Eqs. (3.41), (3.46) and (3.45), we can obtain CXX̃l written
in terms of the magnetic field sources in relevant modes as

CTTl = 2
π

1
(2l + 1)2

ˆ
k2dk

∑
m

Θ(m)∗
l (η0, k)Θ(m)

l (η0, k)

= C
TT (0)
l + 2

π

ˆ
k2dk

[ˆ η0

0
dηe−τ

∑
l′

S
(1)
l′ (η)j(l′1)

l (χ)

2

×〈π(+1)∗
B π

(+1)
B + π

(−1)∗
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The term
∑
l′ S

(0)
l′ (η)j(l′0)

l (χ) in Eq. (3.41) can be divided into two parts
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(0)
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(4.86)

Similarly, for the E-mode spectrum, we have

CEEl = 2
π

1
(2l + 1)2

ˆ
k2dk
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The P (0)(η) term in Eq. (3.41) can be divided into two parts P (0)(η) = P
(0)
(∆B)∆B +

P
(0)
(Π(0)
B )

Π(0)
B , where P (0)

(∆B) are terms sourced by ∆B and P
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For the TE cross-correlation spectrum, we have
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where
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The B-mode spectrum is
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Finally, we have the parity-odd EB and TB spectra, given by
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and
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4.5 Comparison with results in other papers

There have been several studies [63, 68] of the imprints in the anisotropies of the CMB due
to the large scale magnetic fields. Shaw and Lewis [63] considered only the non-helical part of
magnetic fields, and they made an assumption when calculating the integrals. Namely, they
ignored the cutoff in the definitions of S(k), so that their integrals become dimensionless
and depend only on the spectral index. This approximation makes sense only for close to
scale-invariant spectra, where the nontrivial contributions are from scales much larger than
the damping scale kD. In the following studies, we can still see that when spectral index
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Figure 4.1: The BB angular power spectra for the vector tensor modes for the magnetic
field strength B = 4.1 nG, spectral index of the symmetric part nS = −2.9, ην/ηB = 1012.
Comparison between Shaw and Lewis’s results with ours. Shaw and Lewis’s compensated
vector modes are denoted by red solid lines, Shaw and Lewis’s passive tensor modes are
blue short dashed lines; our compensated vector modes are denoted green short dashed
lines, tensor modes are pink dotted lines.

nB < −1.5, the cutoff becomes largely irrelevant, their modifications of the power spectrum
doesn’t make any obvious effects on the Cls. In their paper [63], they only calculated the
results for a nearly scale invariant power spectrum and showed their impact on CMB by
using their own developed Code, which they made public. Our code was based on theirs.

My results in Eq.(4.52) and Eq.(4.55) do not agree with Eq. (94) and Eq. (95) in their
paper [63], although our results for integrals in Sections (4.1.4, 4.1.5 and 4.1.6) agree with
the integral in their paper [63]. They missed a factor of 2 in their equations for the vector
and tensor modes, coming from having two modes ±1, ±2. For example, the two-point
correlation in vector projection is 〈Π(+1)∗

B (~k)Π(+1)
B (~k′) + Π(−1)∗

B (~k)Π(−1)
B (~k′)〉. We can see

from Fig. (4.1), that Shaw and Lewis’s results for both tensor and vector modes are a factor
of 2 smaller than ours.
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Kunze, in paper [68], derived the two-point correlations in all modes and considered
both non-helical and helical magnetic fields, but they didn’t study the effects of primordial
magnetic fields on CMB. And Kunze used a different window function to model the magnetic
power spectrum. She chose the powers spectra of the form,

PS(k, km, kL) = AB

(
k

kL

)nS
W (k, km) (4.94)

PA(k, km, kL) = AH

(
k

kL

)nA
W (k, km), (4.95)

where AB and AH are the amplitudes and nS and nA are the spectral indices of the symmet-
ric and anti-symmetric parts, respectively. The damping of the magnetic field is determined
by the Alfvén velocity and the Silk damping scale which leads to an estimate of the maximal
wave number given by

km ' 200.694
(
B

nG

)−1
Mpc−1 (4.96)

using the values of the best fit ΛCDM model of WMAP7 Ωb = 0.0227h−2 and h = 0.714
[32]. The window function is assumed to be Gaussian of the form [68]

W (k, km) = π−
3
2k−3
m e−

(
k
km

)2
(4.97)

where the normalization is chosen such that
´
d3kW (k, km) = 1.

Our notation in calculating integrals in sections (4.1.4 4.1.5 4.1.6) is the same as Kunze
did, we compared our results in Section 4.1 with Kunze’s (Equations (3.17) to (3.23)),
which are exactly the same when ignore the differences in coefficient and only compare the
integrals

´
dz
´
dx since we used different window functions.

Planck’s paper [59] studied the constraints on primordial magnetic fields. They have full
two-point correlations considering both non-helical and helical magnetic fields which is the
same results as Paoletti [69], and they have their own code to calculate the effects on CMB
and constrain for both non-helical and helical magnetic fields by using Planck data. When
comparing our calculations on the integrals

´
dz
´
dx in Section 4.1, I find that most of

them agree, but the two-point correlations in vector modes doesn’t agree with each other.
In Paoletti, Finelli and Paci’s paper [69], they applied the following vector projection of
stress tensor in their calculations,

Π(V )
ij = (Pink̂j + Pjnk̂i)k̂mTB(mn), (4.98)

Π(V )
i = Π(V )

ij k̂j = Pink̂mTB(mn), (4.99)
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However, it doesn’t satisfy symmetry for indices m and n and doesn’t satisfy TB(mn) =
Π(S)
B(mn) + Π(T )

B(mn) + Π(V )
B(mn). The vector mode I used is

Π(V )
ij = (Pimk̂j k̂n + Pjnk̂ik̂n)TB(mn), (4.100)

The details are shown in Eq.(4.30). The two-point correlation function of Π(V )
ij (Eq.4.30) is

〈Π(V )
ij (k)Π(V ∗)

ij (k′)〉 = 1
9p2
γ

(Paik̂bk̂j + Pbj k̂ak̂i)(Palk̂bk̂m + Pbmk̂ak̂l)〈TB(ij)(k)T ∗B(mn)(k
′)〉

= 1
9p2
γ

(Pjmk̂ik̂l + Pilk̂mk̂j)〈TB(ij)(k)T ∗B(mn)(k
′)〉 (4.101)

resulting in

(Pjmk̂ik̂l)〈TB(ij)(k)T ∗B(mn)(k
′)〉 ∝

[
(1 + β2)(1− γ2) + γβ(µ− γβ)

]
, (4.102)

(Pilk̂mk̂j)〈TB(ij)(k)T ∗B(mn)(k
′)〉 ∝

[
(1− β2)(1 + γ2) + γβ(µ− γβ)

]
, (4.103)

and our result is the sum of Eq.(4.102) and Eq.(4.103):
[
(1 + β2)(1− γ2) + γβ(µ− γβ)

]
+[

(1− β2)(1 + γ2) + γβ(µ− γβ)
]

= (1 − 2γ2β2 + γβµ) , however, Planck [59] (Eq.10) and
Paoletti [69] only counted Eq.(4.102) in their paper.

In summary, we have derived the full two-point correlations considering both non-helical
and helical magnetic fields with no approximations assumed when evaluating the integrals.
Our equations agree well with those in Kunze’s paper. Our code is based on Shaw and
Lewis’s [63]. The CMB spectra computed using our code generally agree with those in
Planck’s papers [59], despite the difference with their equations mentioned above.
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Chapter 5

Theoretical predictions for the
PMF induced CMB

5.1 Magnetic patches for CAMB and CosmoMC

The are several publicly available codes that solve the Boltzmann equations and calculate the
power spectra for various cosmological observables. We developed a patch1 for the publicly
available Boltzmann code CAMB [70] that allows one to calculate the PMF sourced CMB
spectra. The main features are briefly summarized below.

We introduce the effects of the PMF into the Einstein and Boltzmann equations closely
following the formalism of [63] and the associated code by Shaw and Lewis (SL). Among the
notable improvements with respect to SL are making the code compatible with CosmoMC
and extending the allowed range of the magnetic spectral index to values nS ≥ −1.5.
The latter required recalculating the integrals involved in the correlation functions of the
magnetic perturbations ∆B and Π(0,1,2)

B with the upper integration bound taken to be kD/k
instead of∞. We confirmed that, for −3 < nS < −1.5, the integrals depend weakly on kD/k.
Since the k modes involved in the computation of the CMB power spectra are much smaller
than the damping scale kD, we computed the integrals in the approximate limit kD/k →∞.
For arbitrary nS in that range, we interpolate on a grid of pre-computed integrals. For
nS ≥ −1.5, the integrals depend strongly on the upper integration bound kD/k. Since for
arbitrary nB and k the integrals involve hypergeometric functions, we sampled the integrals
and computed a set of fitting functions for each correlation function as in [71].

We also have extended the latest version of the CosmoMC code [72] to include the
contributions of the scalar, vector and tensor compensated and passive magnetic modes2.

1The patch is publicly available at https://github.com/scalby/MagCAMB

2The patch is publicly available at https://github.com/scalby/MagCOSMOMC
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Figure 5.1: Contributions of relevant ’magnetic’ modes to the CMB temperature and po-
larization power spectra for a non-helical PMF with B1Mpc = 4.5nG and nS = −2.9. For
the passive modes, the time of the generation of the PMF is set at ην/ηB = 1017. The cos-
mological parameters are set to ωb = 0.022383, ωc = 0.12011, TCMB = 2.7255 K, h = 67.32,
As = 2.1× 10−9, ns = 0.96605, r = 0.1, nT = 1.

5.2 Theoretical Results with Non-helical Magnetic field

In Fig. 5.1 we show the contributions of the non-helical magnetic field to the CMB spectra for
a PMF with magnitude B1 Mpc = 4.5 nG, spectral index nS = −2.9 (nearly scale-invariant)
and time ratio ην/ηB = 1017 corresponding to the PMF generation energy scale of 1014

GeV. We consider both passive and compensated initial conditions. This figure shows that
the dominant contributions to the angular power spectra come from the passive scalar and
compensated vector modes, and the passive tensor mode. Compensated tensor modes are
too small to be noticed. Compared to the primary CMB spectra, the dominant contribution
of magnetically-induced modes appears on small angular scales, where the primary CMB
fluctuations are suppressed, because magnetically induced perturbations are not suppressed
by Silk damping. When considering the passive tensor modes, the dominant contribution is
on large angular scales.
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Figure 5.2: Contributions of different different spectral indices on the magnetic field induced
CMB power spectra CTTl . A non-helical PMF with B1Mpc = 4.5 , the time of the generation
of the PMF is set at ην/ηB = 1017 for all plotted cases. The color ’magenta’ lines show
the primary CMB anisotropies. Top left: compensated scalar mode, top right: compensated
vector mode, bottom: passive tensor mode.
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Figure 5.3: The B-mode spectrum from the PMF vector mode and passive tensor mode with
B1 Mpc = 4.5 nG and different values of the spectral indices nS . The time of the generation
of the PMF is set at ην/ηB = 1017. The color ’magenta’ lines show the inflationary tensor
CMB anisotropies with r = 0.1 and lensing contributions. Left: compensated vector mode,
right: passive tensor mode.

In Figs. 5.2 and 5.3 we present spectra for several different values of the spectral index nS .
The PMF energy momentum tensor components enter into the source term and affect the
CMB power spectra. The shape of the magnetically-induced spectra strongly depends on the
PMF spectral index. We can illustrate this dependence on the temperature power spectrum
for scalar, vector and tensor perturbations. The qualitative change happens at nS = −1.5.
When changing the spectral index nS in the range −3 < nS < −1.5, the shape of the CMB
spectra is changing with an increase in nS leading to a shift of power from lower to higher
`. This reduces the CMB anisotropy power on scales within the observational window. In
contrast, for nS > −1.5, CMB spectra become cutoff dominated and scale as white noise,
with the shape being practically independent of nS . When nS > −1.5, increasing the value
of nS leads to more CMB power for the same PMF strength on 1 Mpc scale.

The magnetically-induced passive tensor modes are not only determined by the am-
plitude and spectral index of the PMF but also depend on when the PMF is generated.

Namely, the passive tensor mode sourced metric perturbation Ph =
[
6Rγ ln(ην/ηB)+

(
5

8Rν−

1
)]2
× 〈Π(±2)∗

B Π(±2)
B 〉 depends on the time ratio ην/ηB. Depending on whether the fields

were generated at the grand unification energy scale (GUT) or at a later phase transitions,
this ratio may vary between 1017 and 106. In Fig. 5.4, we show how the time ratio and
spectral index influence the shape and magnitude of the CMB power spectrum sourced by
the passive tensor modes. For its dependence on the time ratio, we show the two extreme
values of the possible range. It is obvious that increasing the time ratio leads to more CMB
power for the same PMF strength on 1 Mpc scale.
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Figure 5.4: Comparison between the two extremes for the time ratio ην/ηB. The PMF
induced B-mode spectrum due to passive tensor modes with B1 Mpc = 4.5 nG and different
values of spectral indices nS are shown. The PMF is generated at the GUT scale (ην/ηB =
1017, solid lines) and late times (ην/ηB = 106, dash-dot lines). The solid ’magenta’ line
shows the primary tensor CMB anisotropies and the dash-dot ’magenta’ line shows the
lensing contributions.

5.3 Theoretical Results with Helical Magnetic field

We consider the maximally helical case, when |S(k)| = |A(k)|, S0 = |A0|, and nA = nS .
The CMB spectra will be the sums of non-helical PMF contributions shown in the previ-
ous section and the contribution from the anti-symmetric part of the magnetic spectrum.
As we will see, in most cases, the additional contributions to the sources due to helicity
is small but negative, which makes the total contributions weaker. Magnetic helicity can
produce the parity odd cross correlations between the E and B polarization anisotropies,
as well as between temperature and B polarization anisotropies. These parity odd cross
correlations are sourced by the mixed terms in the correlation function of the energy mo-
mentum tensor, proportional to 〈π(+1)

B (k)π(+1)∗
B (k′) − π(−1)

B (k)π(−)∗
B (k′)〉 for vector modes

and 〈π(+2)
B (k)π(+2)∗

B (k′) − π(−2)
B (k)π(−2)∗

B (k′)〉 for tensor modes. In Fig. 5.5 we present the
predictions for the PMF induced compensated and passive modes, adding the additional
contributions to the sources due to helicity. We set the magnitude B1 Mpc = 4.5 nG, spectral
index nS = −2.9 (scale invariant) and time ratio ην/ηB = 1017 corresponding to the PMF
generation energy scale of 1014 GeV. We also show the TB and EB spectra for vector modes
and the compensated and passive tensor modes in Fig. 5.6 with spectra index n = −1.

The shape of the magnetically-induced spectra strongly depends on the PMF spectral
index. We show this dependence on TB and EB spectra for vector modes and passive tensor
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Figure 5.5: Contributions of relevant ’magnetic’ modes to the CMB temperature and po-
larization power spectra for a maximum helical PMF with B1Mpc = 4.5nG and nS = nA =
−2.9. For the passive modes, the time of the generation of PMF is set at ην/ηB = 1017.
The cosmological parameters are set to ωb = 0.022383, ωc = 0.12011, TCMB = 2.7255 K,
h = 67.32, As = 2.1 × 10−9, ns = 0.96605, r = 0.1, nT = 1. The parity odd Cls: CTBl and
CTBl due to the helicity of PMF are shown in the bottom.
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modes in Fig. 5.7, since the dependence of other spectra is similar to the case of non-helical
fields. The qualitative change happened at nS = −1.5 as before, which divides it into two
regions. In Fig. 5.8 we show the dependence on the time ratio and PMF spectral index. The
behavior is similar to the non-helical case.
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Figure 5.7: Contributions of different spectral indices on the magnetic field induced CMB
power spectra CTBl . We consider a maximum helical PMF with B1Mpc = 4.5 , and nS =
nA = −2.9, the time of the generation of the PMF is set at ην/ηB = 1017. Left: compensated
vector mode, right: passive tensor mode.
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5.3.1 Comparison between non-helical and helical PMF results

In Figs. 5.9, 5.11, 5.10 and 5.12 we compare the CMB spectra induced by non-helical and
helical PMFs. As a rule, there is no difference in the shape and the slope of the angular power
spectra, but there is a shift in the amplitude. For the spectral index n = −2.9 (Fig. 5.9)
the helical shift is much smaller than that for the spectral index n = 2 (Fig. 5.10).

Generally, as one can see from Fig. 5.12, the helical contribution are small for spectral
indices n < −1.5. As one increases the spectral index, the helical contribution becomes
more pronounced, and always has a negative effect, reducing the overall amplitude.

The compensated tensor modes are subdominant and can be ignored when we constrain
the PMF. For the TT, TE and EE spectra, the dominant contribution comes from the
scalar and vector compensated modes and the passive tensor modes. And scalar passive
mode becomes relevant on large angular scales for the nearly scale-invariant n = −2.9
power spectra. The compensated vector modes dominate at small angular scales, but the
passive tensor modes contribute at low and intermediate multipoles. For BB spectra, the
passive tensor modes together with the compensated vector mode can be well constrained
by the B-mode data.

The current and future CMB experiments capable of detecting the B modes from weak
lensing can put a constraint on the magnetic vector mode contribution to the B mode
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Figure 5.9: Comparison between CMB power spectra due to non-helical PMF and maximum
helical PMF. We consider PMFs with B1Mpc = 4.5nG and nS = nA = −2.9. For the passive
modes, the time of the generation of the PMF is set at ην/ηB = 1017. Solid lines are non-
helical PMFs, dash-dotted lines are maximum helical PMFs. ’Red’ and ’black’ lines are
scalar modes, ’green’ lines are vector modes, ’blue’ lines are tensor modes.
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Figure 5.10: Comparison between CMB power spectra due to non-helical PMF and max-
imum helical PMF. We consider PMFs with B1Mpc = 4.5 nG and nS = nA = 2. For the
passive modes, the time of the generation of the PMF is set at ην/ηB = 1017. Solid lines
are non-helical PMFs, dash-dotted lines are maximum helical PMFs. ’Red’ and ’black’ lines
are scalar modes, ’green’ lines are vector modes, ’blue’ lines are tensor modes.
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Figure 5.11: Comparison between CMB power spectra due to non-helical PMF and max-
imum helical PMF. We consider PMFs with B1Mpc = 4.5 nG and nS = nA = −1. For the
passive modes, the time of the generation of the PMF is set at ην/ηB = 1017. Solid lines
are non-helical PMFs, dash-dotted lines are maximum helical PMFs. ’Red’ and ’black’ lines
are scalar modes, ’green’ lines are vector modes, ’blue’ lines are tensor modes.
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Figure 5.12: The B-mode spectrum from the maximum helical PMF with vector mode and
tensor passive mode. Comparison between non-helical PMF and maximum helical PMF
induced CMB power spectra at different values of spectral indices n. We consider PMFs
with B1 Mpc = 4.5 nG. The time of the generation of the PMF is set at ην/ηB = 1017. The
color ’magenta’ lines show the inflationary tensor r = 0.1 CMB anisotropies and dash-dotted
’magenta’ lines show the lensing contributions. Left: compensated vector mode and passive
tensor mode with two cases (spectral index n = 2 and n = −2.9), right: only passive tensor
mode.

polarization power spectrum. As shown in Fig. 5.13, the large-` measurements of the B-
mode polarization performed by the SPT can place competitive bounds on the amplitude
of the PMF. We show the new SPT bandpowers [1] and add the helical magnetic field with
spectral index n−2.9 (expected from inflation) and n = 2 (expected from phase transitions)
in Fig. 5.14 with different magnitudes of magnetic fields. We plot the sum of the vector
compensated and the tensor passive mode. The PMF vector modes are relevant for large-`,
and the passive PMF tensor modes are relevant at small-`. For the scale-invariant PMF the
B-mode spectrum peaks around l ∼ 1700, but for n = 2 the peak shifts to l ∼ 2750. In the
following section, we will use the SPT B-mode power spectrum data to derive constraint
on the PMF after marginalizing over other parameters.
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Chapter 6

Bounds on non-helical PMF from
current CMB data

In this Chapter, we use the measurements of the CMB anisotropies power spectra by the
Planck satellite [73] and the 2015 CMB B-mode polarization spectra from the SPT [74]
to constrain the amplitude, the spectral index and the generation time of the PMF.

For Planck, we use the joint TT, TE, EE and BB likelihood in the range 2 < ` < 29,
denoted as LowTEB, together with the high-` temperature likelihood in the range 30 <
` < 2508, simply denoted as TT. We also consider the case in which the TT likelihood is
replaced with the joint TT, TE and EE polarization likelihood (denoted as TTTEEE). We
also perform the analysis with and without using the likelihood from the BICEP2/Keck-
Planck (BKP) cross correlation analysis [75].

The 2015 SPT likelihood [74] is a multivariate Gaussian likelihood and uses three band-
powers from the 95GHz× 95GHz, 95GHz× 150GHz and 150GHz× 150GHz spectra. It also
takes into account the contributions to B-modes from the dust emission within our Galaxy
and from the polarized emission from extragalactic sources. The dust emission is modelled
according to Eq. (21) in [74] and is scaled by an overall dust emission amplitude Adust [76].
The extragalactic sources are modelled through a constant Cl term with different ampli-
tudes for each bandpower, APS,95, APS,95×150 and APS,150. These nuisance parameters are
marginalized over using priors shown in Tabel 6.1. We have extended the SPT likelihood
code to include the contributions of the PMF to the CMB B-modes.

Parameter Prior
Adust . . . . . [0.0, 2.5] Gaussian
APS,95 . . . . [0.0, 4.0] flat
APS,95×150 [0.0, 4.0] flat
APS,150 . . . [0.04.0] flat

Table 6.1: Priors on the nuisance parameters used in the 2015 SPT likelihood described in
Sect. 6.2.
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We assume a flat universe and, as in [59]. A non-zero neutrino mass would only enhance
the power on large scales in a magnetic field induced spectrum, where the PMF contribution
is less relevant [63]. Since neutrino mass would not affect the results very much, we restrict
our analysis to three massless neutrinos. We also assume that the primary (inflationary) and
the passive and compensated magnetic modes are uncorrelated, so that their contributions
to the CMB spectra can be calculated separately and simply added as

Ctheor
` = Cprim

` + Cpass
` + Ccomp

` . (6.1)

A scenario with correlated inflationary and magnetic modes has been discussed in [38]
in a context of a specific model. We account for the effect of weak lensing by large scale
structure on the primary mode only, and we marginalize over astrophysical residuals [59, 73].

The pivot Fourier number for the primary primordial spectrum is set to k∗ = 0.05Mpc−1,
while the magnetic smoothing scale is set to λ = 1Mpc. We vary the baryon density ωb =
Ωbh

2, the CDM density ωc = Ωch
2, the reionization optical depth τreion, the ratio of the

sound horizon to the angular diameter distance at decoupling θ, and the amplitude As and
the spectral index ns of the primary primordial spectrum of curvature perturbations. We
also vary the additional magnetic parameters B1Mpc, nS and β = log10(ην/ηB) . The priors
assumed on the parameters are given in Table 6.2.

Parameter Flat Prior
ωb . . . . . . . . . . . . . . [0.005, 0.1]
ωc . . . . . . . . . . . . . . [0.001, 0.99]
τreion . . . . . . . . . . . [0.01, 0.8]
θ . . . . . . . . . . . . . . . [0.5, 10]
ln(1010As) . . . . . . [2, 4]
ns . . . . . . . . . . . . . . [0.8, 1.2]
r . . . . . . . . . . . . . . . [0, 2]
B1Mpc . . . . . . . . . . [0, 10]
log10(B1Mpc/nG) [−5, 1]
log10(ην/ηB) . . . . [4, 17]
nB . . . . . . . . . . . . . . [−2.9, 3]

Table 6.2: Priors on the parameters varied in the MCMC analysis. We performed the
analysis separately with the uniform and logarithmic priors on B1Mpc.

As can be seen from Fig. 5.1, for nearly scale-invariant PMFs, the passive tensor magnetic
mode is similar in shape to the primary (inflationary) tensor mode, with an amplitude that
depends on the time of the generation of the PMF, β = log10(ην/ηB). To address a potential
degeneracy between the tensor-to-scalar ratio r = AT /As and β, we consider the cases with
a fixed r = 0, as well as with co-varying the two parameters.
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Figure 6.1: The probability distribution function for the magnetic amplitude B1 Mpc from
the Planck data sets described in Sect. 6.1. We show only the case with r = 0 since varying
r does not affect the results.

6.1 Constraints from Planck data

To derive constraints on the PMF from Planck, we use the Planck likelihood code de-
scribed in detail in [73]. A thorough analysis has already been conducted by the Planck
collaboration in [59]. Since scalar passive modes are not supposed to contribute significantly
to the magnetic signals in the CMB (as shown in Chapter. 5), the authors of [59] included
them only in the special case of a nearly scale invariant PMF with nB = −2.9. Conversely,
we include scalar passive modes in all of our analysis for the sake of completeness.

Fig. 6.1 shows the marginalized probability distribution function (PDF) for B1 Mpc de-
rived from Planck data. The Figure only shows the case with r = 0, since the PDF in the
case of co-varied r was essentially the same. The 95% CL bounds on B1 Mpc are summarized
in Tab. 6.3, including the case with co-varied r.

Data sets B1 Mpc/nG
LowTEB + TT, r = 0 . . . . . . . . . . . . . . . . < 3.3
LowTEB + TT, r free . . . . . . . . . . . . . . . < 3.3
LowTEB + TTTEEE, r = 0 . . . . . . . . . < 3.2
LowTEB + TTTEEE, r free . . . . . . . . < 3.2
LowTEB + TTTEEE + BKP, r = 0 < 3.3
LowTEB + TTTEEE + BKP, r free < 3.3

Table 6.3: Upper bounds (95% CL) for the PMF amplitude B1 Mpc obtained from the
combination of Planck data sets described in Sect. 6.1. The magnetic spectral index nB
and the PMF generation epoch parameter β are unconstrained.

The magnetic spectral index nB and the PMF generation epoch parameter β are uncon-
strained. We discuss these parameters in more detail in the next subsection.
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6.2 Constraints from Planck combined with the 2015 SPT
B-modes
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Figure 6.2: Left panel: the joint probability for the magnetic amplitude B1 Mpc and the
magnetic index nB using uniform prior on B1 Mpc. Right panel: the joint probability for
B1 Mpc and nB using uniform prior on log10(B1 Mpc/nG). The two shaded regions repre-
sent the 68%C.L. and 95% C.L. respectively. The apparent bound on nB in the left panel
disappears when using the logarithmic prior, as shown in the right panel.
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Figure 6.3: The marginalized PDFs for the magnetic amplitude B1 Mpc from Planck and
the combination of Planck and SPT. We only show the PDFs obtained with r = 0, as
the case with co-varying r is essentially the same. We also show the PDFs for the nearly
scale-invariant case, nB = −2.9.

Combining Planck with the B-mode polarization spectrum from SPT significantly
tightens the bounds on the PMF, because of the contribution of the PMF vector modes,
as illustrated in Fig. 5.13. We perform the analysis using the 2015 SPT likelihood and
the Planck lowTEB and TTTEEE likelihoods, referring to the combination of them as
Planck for simplicity. We do not include the BKP data, after the analysis in the previous
subsection confirmed that it does not affect the bounds on the PMF.
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In Fig. 6.2, we show the joint probability for the magnetic amplitude B1 Mpc and the
magnetic index nB from Planck alone and after combining Planck with SPT. The two
parameters are correlated, with the bound on B1 Mpc becoming weaker with increasing nB
in the −3 < nB < −1.5 range, and stronger for nS > −1.5. This is due the qualitative
change in the dependence of the CMB spectra on the magnetic power spectrum that occurs
at nS = −1.5. Namely, as illustrated in Fig. 5.1, an increase in nB results in a shift of power
from lower to higher `, reducing the CMB power on scales inside the observational window
and thus allowing for larger PMF strengths. In contrast, for nB > −1.5, the shapes of the
CMB spectra are cutoff dominated, with larger nB resulting in more CMB power for the
same PMF strength on 1 Mpc scale, leading to tighter constraints on B1 Mpc.

Fig. 6.2 separately shows the cases with a uniform (left panel) and the logarithmic (right
panel) priors on B1 Mpc. As expected, the apparent upper bound on nB, present in the case
of the uniform prior and also observed in [59], is not physical and disappears in the case of
the logarithmic prior. Indeed, there cannot be a bound on the spectral index of the PMF
spectrum without a positive detection of the amplitude. The PDFs for the amplitude B1 Mpc,
after marginalizing over nB, are shown in Fig. 6.3.

Two values of nB are of particular theoretical interest. The first and simplest models
of inflationary magnetogenesis predict a nearly scale-invariant PMF with nB ≈ −3. The
combined bound from Planck and SPT on the nearly scale-invariant PMF (nB = −2.9)1

is B1 Mpc ≈ Beff < 1.2 nG at 95% CL. The corresponding bound from Planck alone is 2.0
nG, in agreement with [59].

The PMFs generated in post-inflationary phase transitions have small coherence lengths
and are uncorrelated on cosmological scales. Causality forces the spectra of such fields to
have nB = 2 on scales of relevance to CMB anisotropies [61]. For such fields, we find
B1 Mpc < 0.002 nG at 95% CL. However, since most of the power of the causally generated
PMFs is concentrated near the cutoff scale 2π/kD � 1Mpc, using B1 Mpc to quantify their
amplitude can be misleading. Instead, it is more appropriate to use ΩBγ or Beff , which
are representative of the total PMF energy density [26, 77]. The effective magnetic field
amplitude Beff is related to energy density and power spectrum by Beff ≡ (2EB)1/2 =
Bλ(kDλ)

nB+3
2√

Γ
(nB+5

2

) = 3.3×103√ΩBγ nG. And ΩBγ = EB/ργ . We derive ΩBγ < 10−3 or Beff < 100

nG at 95% CL. For reference, the Big Bang Nucleosynthesis constrains the magnetic fraction
to be ΩBγ . 0.1 [40].

Constraints on the PMF strength after marginalizing over nB, as well as for the two special
cases of theoretical interest, are summarized in Table 6.4. With respect to the case where

1To avoid divergent integrals, we restrict our analysis to nB ≥ −2.9. We also note that the dependence
on the smoothing scale disappears and B1 Mpc = Beff for scale-invariant fields.
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B1 Mpc/nG Beff/nG ΩBγ

nB marginalized < 1.5 n/a n/a
nB = −2.9 < 1.2 < 1.2 < 1.4× 10−7

nB = 2 < 0.002 < 100 < 10−3

Table 6.4: Upper bounds (95% CL) on the PMF amplitude B1 Mpc, the effective PMF
strength Beff and the magnetic density fraction ΩBγ obtained from Planck and SPT.

the spectral index is a free variable, the cases with fixed spectral index can put stronger
constraints on the PMF amplitude, because one of the two parameters describing the PMF
is fixed.
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β= log10(τν/τB)

0.00
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Planck+SPT

Figure 6.4: The joint probability for the scalar to tensor ratio r and the time of generation
of the PMF log10(τν/τB). The two shaded regions represent the 68%CL and 95% CL,
respectively.

The joint probabilities for r and β = log10(τν/τB), after marginalizing over other pa-
rameters, are shown in Fig. 6.4. It is evident that there is no degeneracy between them and
that the time of the generation of the PMF is not constrained by data. This is because
the contribution of the passive scalar and tensor modes to TT, TE and EE are too small
even for the maximum allowed value of β = 17. As one can see from Fig. 5.1, the passive
tensor mode is comparable in amplitude to the primary TT at low ` when B1 Mpc = 4.5
nG and β = 17. For smaller values of β, even higher PMF strengths would be required for
the passive tensor mode to be relevant. Such high values of PMF are not allowed because
of the PMF vector mode contribution to TT at high `. Any remaining weak sensitivity to
β is further diluted by degeneracies with As, ns and τreion. Thus, the passive tensor mode
contribution to TT at low ` is irrelevant for the strengths of PMF allowed by TT at high `.
The scalar passive mode is even less irrelevant, as evident from Fig. 5.1. Note that adding
the BPK B-mode data does not make a big difference because of large uncertainties at `
where the contribution from the passive tensor mode is prominent. Adding the SPT data
does not help in constraining β either, because SPT only constrains the vector mode con-
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tribution to BB and does not add information on scales relevant to the passive tensor mode.
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Chapter 7

Bounds on a Helical PMF from
current CMB data

Here we present the constraints from Planck on helical and non-helical PMFs. The set up
used to derive the bound on a helical PMF is the same as the non-helical case, which is
discussed in the previous chapter. We assume a flat universe and, as in [59], restrict our
analysis to three massless neutrinos. The pivot Fourier number for the primary primordial
spectrum is set to k∗ = 0.05Mpc−1, while the magnetic smoothing scale is set to λ = 1Mpc.
We also assume that the primary (inflationary) and the passive and compensated magnetic
modes are uncorrelated, so that their contributions to the CMB spectra can be calculated
separately and simply added as

Ctheor
` = Cprim

` + Cpass scalar
` + +Cpass tensor

` + Ccomp scalar
` + Ccomp vector

` , (7.1)

where we include the passive scalar mode, passive tensor mode, compensated scalar mode
and the compensated vector mode. The compensated tensor mode is ignored because it is
subdominant. According to Figure 3 of [78], the presence of PMFs does not significantly
affect the the marginalized posteriors of the standard ΛCDM parameters. Thus, we fixed
most of the parameters and varied the amplitude As and the spectral index ns of the pri-
mary primordial spectrum of curvature perturbations. We also vary the additional magnetic
parameters B1Mpc, and β = log10(ην/ηB), and consider set discrete values of spectral in-
dices. We assume a maximally helical field with nS = nA = nB. The priors assumed for the
parameters are given in Table 7.1.

7.1 Constraints from Planck data

We use the 2015 Planck likelihood code described in detail in [73] and perform a MCMC
analysis, including the maximally helical contribution. We restrict our analysis to the case
of temperature and polarization with only even cross-correlations. We do not include odd
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Parameter Flat Prior
ωb . . . . . . . . . . 0.0224
ωc . . . . . . . . . . 0.1196
τreion . . . . . . . 0.0535
θ . . . . . . . . . . . 1.04096
ln(1010As) . . [2, 4]
ns . . . . . . . . . . [0.8, 1.2]
r . . . . . . . . . . . 0
B1Mpc . . . . . . [0, 10]
log10(ην/ηB) [4, 17]
nB . . . . . . . . . −2.9, 2.5,−2,−1.5,−1, 0, 1, 2, 3

Table 7.1: Priors on the parameters varied in the MCMC analysis.

parity cross-correlators in our analysis because the odd parity cross-correlations TB and
EB are present only for very low multipoles (large angular scales), where the signal from
helical PMFs is negligible.
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Figure 7.1: The probability distribution function for the magnetic amplitude B1 Mpc from
the Planck data sets described in Sect. 7.1. The magnetic spectral index nB = −2.9. We
show only the case with r = 0 since varying r does not affect the results.

Data sets B1 Mpc/nG
LowTEB + TTTEEE, r = 0 . . . . . . . . < 1.7
LowTEB + TTTEEE + BKP, r = 0 < 1.6

Table 7.2: Upper bounds (95% CL) for the maximal helical PMF amplitude B1 Mpc obtained
from the combination of Planck data sets described in Sect. 7.1. The magnetic spectral
index nB = −2.9, and the PMF generation epoch parameter β are unconstrained.

Fig. 7.1 shows the marginalized probability distribution for B1 Mpc in the case of a
nearly scale-invariant PMF derived from Planck LowTEB, TTTEEE likelihood and
Planck LowTEB, TTTEEE including the BKP data. The 95% CL bounds on B1 Mpc

are summarized in Tab. 7.2, which shows that the inclusion of the BKP data leads to
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Figure 7.2: The probability distribution function for the magnetic amplitude B1 Mpc from
the Planck data sets described in Sect. 7.1. We show only the case with r = 0 since
varying r does not affect the results. For Planck, we use the Planck likelihood LowTEB,
TTTEEE. We show the constraints from different spectral indices. Black lines show the
helical PMF, red dashed lines show the non-helical PMF.
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a slightly stronger constraint than the Planck LowTEB, TTTEEE likelihood alone.
Fig. 7.2 shows the marginalized probability distribution function for B1 Mpc for several fixed
spectral indices (we choose a grid of values covering the full relevant range). This Figure
only shows the case with r = 0, since the PDF in the case of co-varied r was essentially the
same. The PMF generation epoch parameter β are unconstrained. The Figure compares
the bounds on the PMF amplitude B1 Mpc in the maximally helical case and the non-
helical case for each fixed spectral index, with the results summarized in Table. 7.4 and
Table. 7.3. The analysis with the Planck LowTEB, TTTEEE likelihood in the helical case
is in Table. 7.4. We observe that the inclusion of helicity tends to weaken the constraint on
B1 Mpc when comparing with Table. 7.3. As discussed in Chapter. 5 (see Figs. 5.10, 5.11,
5.12) the magnetic fields with a maximal helicity component produce less CMB fluctuations
in both temperature and polarization than non-helical PMFs of the same strength. As a
result of this, the amplitude of a maximally helical magnetic fields are less constrained than
non-helical fields for this Planck 2015 data release. However, this effect is negligible for a
nearly scale-invariant PMF. Namely, for nB = −2.9, the bound is 1.7 nG with a helical
PMF and 1.8 nG with a non-helical PMF. This is the only case when helical PMF has
a stronger constrain than the non-helical case. This can be explained by the Figure. 5.9,
helical passive tensor modes are greater than the corresponding non-helical case, and the
passive tensor modes is the primary magnetic contribution to the CMB power spectra for
a nearly scale-invariant PMF power spectra.

As expected from the spectral index’s impact on the angular power spectrum (Fig-
ure. 5.2), the constraint is weakest for nB = −1.5. The bound on B1 Mpc becomes weaker
with increasing nB in the −3 < nB < −1.5 range, and stronger for nB > −1.5. The trend of
the results with fixed spectral indices is in agreement with the dependence on the spectral
index seen in the plots in Figure. 5.12, which show the qualitative change in the dependence
of the CMB spectra on the magnetic power spectrum that occurs at nB = −1.5. Namely,
as illustrated in Fig. 5.1, an increase in nB results in a shift of power from lower to higher
`, reducing the CMB power on scales inside the observational window and thus allowing
for larger PMF strengths. In contrast, for nB > −1.5, the shapes of the CMB spectra are
cutoff dominated, with larger nB resulting in more CMB power for the same PMF strength
on 1 Mpc scale, leading to tighter constraints on B1 Mpc.

7.2 Constraints from Planck combined with the SPT

Combining Planck with the B-mode polarization spectrum from SPT significantly tightens
the bounds on the PMF, because of the contribution of the PMF vector modes, as illustrated
in Fig. 5.14 and Fig. 7.4. We perform the analysis using the 2015 SPT likelihood and the
Planck lowTEB and TTTEEE likelihoods, referring to the combination of them as
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B1 Mpc/nG (68% limits) B1 Mpc/nG (95% limits) B1 Mpc/nG (99% limits)
nB = −2.9 < 1.0 < 1.8 < 2.2
nB = −2.5 n/a < 2.4 < 2.7
nB = −2 < 1.9 < 3.0 < 3.4
nB = −1.5 < 2.1 < 3.3 < 3.7
nB = −1 < 1.4 < 2.1 < 2.4
nB = 0 < 0.26 < 0.42 < 0.48
nB = 1 < 0.032 < 0.052 < 0.060
nB = 2 < 0.0027 < 0.0046 < 0.0053

Table 7.3: Upper bounds (99% CL, 95% CL, 68% CL) on the non-helical PMF amplitude
B1 Mpc obtained from Planck LowTEB, TTTEEE likelihood.

B1 Mpc/nG (68% limits) B1 Mpc/nG (95% limits) B1 Mpc/nG (99% limits)
nB = −2.9 < 0.99 < 1.7 < 2.1
nB = −2.5 < 1.9 < 2.7 < 3.1
nB = −2 < 2.2 < 3.5 < 4.1
nB = −1.5 n/a < 4.1 < 4.7
nB = −1 < 2.0 < 3.1 < 3.4
nB = 0 < 0.40 < 0.64 < 0.72
nB = 1 < 0.054 < 0.087 < 0.10
nB = 2 < 0.0051 < 0.0085 < 0.0099

Table 7.4: Upper bounds (99% CL, 95% CL, 68% CL) on the helical PMF amplitude B1 Mpc
obtained from Planck LowTEB, TTTEEE likelihood.
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Figure 7.3: The probability distribution function for the magnetic amplitude B1 Mpc from
the combination of Planck and SPT. We show only the case with r = 0 since varying r
does not affect the results. For Planck, we use the Planck likelihood LowTEB, TTTEEE.
We show the constraints from different spectral indices. Black lines show the helical PMF,
red dashed lines show the non-helical PMF.

Parameter Prior
Adust . . . . . [0.0, 2.5] Gaussian
APS,95 . . . . [0.0, 4.0] flat
APS,95×150 [0.0, 4.0] flat
APS,150 . . . [0.04.0] flat

Table 7.5: Priors on the nuisance parameters used in the SPT.
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Figure 7.4: The marginalized PDFs for the magnetic amplitude B1 Mpc from Planck and
the combination of Planck and SPT. We only show the PDFs obtained with r = 0,
as the case with co-varying r is essentially the same. We show the PDFs for the nearly
scale-invariant case, nB = −2.9 for both helical and non-helical PMFs.

Planck for simplicity. The PDFs for the amplitude B1 Mpc, with specific spectral index nB,
are shown in Fig. 7.4 and Fig. 7.3.

We consider two cases of interest, the almost scale invariant fields with nB = −2.9 and
the PMFs generated in post-inflationary phase transitions nB = 2. For nB = −2.9, we
obtain B1 Mpc ≈ Beff < 1.2 nG at 95% CL for a non-helical PMF. Considering a helical
PMF, we obtain a stronger bound B1 Mpc ≈ Beff < 1.1 nG at 95% CL. The corresponding
bound from Planck alone is 1.7 nG, in agreement with [59].

The PMFs generated in post-inflationary phase transitions have small coherence lengths
and are uncorrelated on cosmological scales. Causality forces the spectra of such fields to
have nB = 2 on scales of relevance to CMB anisotropies [61]. For such fields, we find
B1 Mpc < 0.002 nG at 95% CL for a non-helical PMF. However, since most of the power
of the causally generated PMFs is concentrated near the cutoff scale 2π/kD � 1Mpc, us-
ing B1 Mpc to quantify their amplitude can be misleading. Instead, it is more appropriate
to use ΩBγ or Beff , which are representative of the total PMF energy density. We derive
ΩBγ < 10−3 or Beff < 100 nG at 95% CL. When considering helicity, the constraint weak-
ens. we obtain B1 Mpc < 0.009 nG at 95% CL, ΩBγ < 10−3 or Beff < 130 nG at 95% CL. For
reference, the Big Bang Nucleosynthesis constrains the magnetic fraction to be ΩBγ . 0.1
[40]. Constraints on the PMF strength for the two special cases of theoretical interest, are
summarized in Table 7.6.
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B1 Mpc/nG Beff/nG ΩBγ

nB = −2.9 Helical < 1.1 < 1.1 < 1.2× 10−7

nB = −2.9 Non-helical < 1.2 < 1.2 < 1.4× 10−7

nB = 2 Helical < 0.0085 < 130 < 10−3

nB = 2 Non-helical < 0.002 < 84 < 6× 10−4

Table 7.6: Upper bounds (95% CL) on the PMF amplitude B1 Mpc, the effective PMF
strength Beff and the magnetic density fraction ΩBγ obtained from Planck and SPT. We
present the results for both helical and non-helical cases.

Data sets B1 Mpc/nG
LowTEB + TTTEEE, . . . . . . . . . . . . . . . . . < 1.7
LowTEB + TTTEEE + BKP, . . . . . . . . < 1.6
LowTEB + TTTEEE + SPT, . . . . . . . . < 1.1
LowTEB + TTTEEE + BKP + SPT, < 1.1

Table 7.7: Upper bounds (95% CL) for the maximal helical PMF amplitude B1 Mpc ob-
tained from the combination of Planck data sets described in Sect. 7.1 and SPT. The
magnetic spectral index nB = −2.9, r = 0, and the PMF generation epoch parameter β is
unconstrained.

7.3 Constraints from 500 Square Degrees of SPTpol Data

The 2019 SPT likelihood fits the observed CMB B-modes using the following expression:

D` = rDtens
` +AlensD

lens
` + C + P ν1×ν2

L DPoiss
` +AdustS

ν1×ν2
150 Ddust,150

` , (7.2)

where D` = `(` + 1)C`, Dlens
` is the theoretical prediction for the lensing power spectrum

(as calculated by CAMB), Dtens
` is the inflationary B-mode power spectrum, DPoiss

` is the
Poisson noise power spectrum and Ddust,150

` is the galactic dust foreground power spectrum
at the frequency of 150GHz. Alens is a fitting constant that multiplies the lensing power
spectrum, and r is the tensor to scalar ratio. C is a constant term added to the total power
spectrum, P ν1×ν2

L is a frequency dependent constant that multiplies the Poissonian noise
DPoiss
` . Finally, Sν1×ν2

150 is a frequency depende nt constant fixed at 1 for the band 150x150
GHZ, that converts the foreground noise from 150 GHz to the other frequency bands, and
Adust is a multiplicative constant that multiplies the dust foregrounds. The D`s are then
binned in the data bins with D`bin = W ν1×ν2

`bin`
D`/A

ν1×ν2
cal , with W ν1×ν2

`bin`
being the window

function matrix, and then combined with the data points Ddata
`bin

,

∆D`bin = fbeamD`bin −D
data
`bin (7.3)

where fbeam are the beam factors. Finally the SPT log-likelihood is given by:

− logLspt = 1
2[∆D`′C

−1
`′` ∆D` + log|C|]. (7.4)
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We use the priors given in Tabel 7.8 and use the updtaed Python SPT likelihood code[79]
to constrain the PMF with their CMB B-mode bandpowers.

Parameter Prior
ABB . . . . . [0, 100]
Adust . . . . [0, 0.3] Gaussian
Aν1

cal . . . . . [0.8, 1.25] Gaussian
Aν2

cal . . . . . [0.8, 1.25] Gaussian
P 150×150
L . [0, 2]
P 90×150
L . [0, 5]
P 90×90
L . . [0, 10]

Table 7.8: Priors on the nuisance parameters used in the 2019 SPT likelihood.

Adding the magnetic field power spectrum into the 2019 SPT likelihood, we obtain

D` = rDtens
` +AlensD

lens
` +C+P ν1×ν2

L DPoiss
` +AdustS

ν1×ν2
150 Ddust,150

` +APMF(DPMF,V
` +AβDPMF,T

` )
(7.5)

where APMF = (B1Mpc
3nG )

4
, Aβ = ( β17)1.9 [80].

We find that B1 Mpc < 0.06 nG at 68% CL for non-helical PMF with a spectral index
nB = 2, and B1 Mpc < 0.08 nG for a helical PMF with nB = 2. The corresponding marginal-
ized probability distribution functions are shown in Figs. 7.5 and 7.6. The increase in the
upper bound from 0.06 to 0.08 nG is consistent with the factor of ∼ 3 difference in the
PMF sourced vector mode contribution to BB. Since the CMB spectra scale as B4

1Mpc, it
translates into a factor of 31/4 ≈ 1.3 ≈ 0.08/0.06 difference in the bound.
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Figure 7.5: Parameter constraints from 2019 SPT data at 68% CL. We consider a non-
helical PMF with nB = 2.
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Figure 7.6: Parameter constraints from 2019 SPT data at 68% CL. We consider a maximum
helical PMF with nB = 2.
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Chapter 8

Summary and outlook

We have derived the bounds on the strength of the primordial magnetic field (both non-
helical and helical) from the SPT CMB B-mode polarization measurements in combination
with the CMB temperature and polarization data from Planck, as well as the 2015 Planck
data alone, 2019 SPT data alone.

For a nearly scale-invariant helical PMF with nB = −2.9, the bound is 1.7 nG at 95%
CL from the 2015 Planck data alone. This is the only case when a helical PMF is better
constrained than the non-helical one. Usually, adding maximal helicity relaxes the bound
on B1 Mpc, effectively allowing more magnetic energy to be present without violating the
CMB.

Adding the SPT information significantly tightens the bound, as it constrains the PMF
vector mode contribution to B-modes at ` ∼ 1000. Specifically, adding the SPT data reduces
the 95% CL bound on B1 Mpc, after marginalizing over the magnetic spectral index nB,
from 3.3 nG to 1.5 nG. For a nearly scale-invariant PMF with nB = −2.9, the bound is
reduced from 2 nG to 1.2 nG for a non-helical PMF. The effective strength of a PMF
generated in post-inflationary phase transitions, with nB = 2, is constrained to Beff < 100
nG, corresponding to ΩBγ < 10−3, or B1 Mpc < 0.002 nG, at 95% CL for non-helical PMFS.
By adding helicity we obtain a slightly stronger constraint on a nearly scale-invariant PMF,
namely, 1.1 nG when combining Planck with the B-mode polarization spectrum from
SPT. This is the only case where adding the helicity does not weaken the CMB constraints
on PMF.

Our results, as well as those obtained by the POLARBEAR collaboration in [35], demon-
strate that one can extract competitive information about PMFs even from relatively poor
B-mode measurements. Future CMB experiments, in addition to significantly improving
the measurement of the B-mode spectrum at lower `, will eventually provide reliable data
on scales relevant for the inflationary tensor mode. Such data will help to constrain the
passive tensor PMF mode and, thus, the time of the generation of the PMF. Future CMB
experiments will also constrain the parity-odd TB and EB correlations, leading to meaning-
ful bounds on the helical component of the PMF, which has been neglected in the present
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work. They will also tightly constrain the mode-coupling correlations induced by the Fara-
day rotation of CMB polarizations. The Faraday rotation angle is linear in B1 Mpc, while
CMB anisotropies scale as a square of the PMF strength (so that the CMB spectra scale
as B4

1 Mpc), and, with the improved sensitivity and resolution of upcoming experiments, can
reduce the upper bound on B1 Mpc by an order of magnitude.
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Appendix A

Calculations on the integrals in the
two point correlation funcstions

We use a simple law for the PMF EMT spectra with the normalisation constants and
spectral indices for the magnetic field power spectrum given in Eq. (4.6). Since S(k) = 0
and A(k) = 0 for k > kD, two conditions need to be taken into account:

q < kD , |k− q| < kD . (A.1)

Combining the two conditions k-dependence becomes 0 < k < 2kD, the second condition
leads γ to

|k− q|2 < k2
D ,

k2 + q2 − 2kqγ < k2
D ,

γ >
k2 + q2 − k2

D

2kq = 1 + z2 − k̃2
D

2z , (A.2)

where γ = k̂ · q̂ = x, z = q
k , x0 = 1+z2−k̃2

D
2z , k̃D = kD/k. Considering −1 < γ < 1, leading to

x0 < 1, thus, 1− k̃D < z < 1 + k̃D, considering 0 < z < k̃D.

There are two situations,

If

k2 + q2 − k2
D

2kq > −1 ,

q > kD − k ,
z > k̃D − 1 ,
k > kD − q, (A.3)

integral over γ is from x0 to 1.
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If

k2 + q2 − k2
D

2kq < −1 ,

q < kD − k ,
z < k̃D − 1 ,
k < kD − q, (A.4)

integral over γ is from −1 to 1.

Considering these conditions and expressions like |k − q|n in Equations in Sections (4.1.4,
4.1.5,4.1.6), the double integral (over γ and over q) is split into three parts depending on
the the relationship bewteen k and kD. Particular care must be used in the radial integrals.
In particular, the presence of the term |k−q|n in both integrands, needs a further splitting
of the integral domain for odd n:

A sketch of the integration is thus the following:

For odd n:

1) 0 < k <
kD
2 , 2 < k̃D,

ˆ k̃D

k̃D−1
dz

ˆ 1

x0

dx · · ·+
(ˆ k̃D−1

1
dz +

ˆ 1

0
dz

)ˆ 1

−1
dx . . .

≡
ˆ k̃D

k̃D−1
dzIa(p, k) +

(ˆ k̃D−1

1
dz +

ˆ 1

0
dz

)
Ib(p, k),

2) kD
2 < k < kD, 1 < k̃D < 2,(ˆ k̃D

1
dz +

ˆ 1

k̃D−1
dz

) ˆ 1

x0

dx · · ·+
ˆ k̃D−1

0
dz

ˆ 1

−1
dx . . .

≡
(ˆ k̃D

1
dz +

ˆ 1

k̃D−1
dz

)
Ia(p, k) +

ˆ k̃D−1

0
dzIb(p, k),

3) kD < k < 2kD,
1
2 < k̃D < 1,

ˆ k̃D

1−k̃D
dz

ˆ 1

x0

dx · · · ≡
ˆ k̃D

1−k̃D
dzIa(p, k). (A.5)

For even n:

1) 0 < k < kD, 1 < k̃D,ˆ k̃D

k̃D−1
dz

ˆ 1

x0

dx · · ·+
ˆ k̃D−1

0
dz

ˆ 1

−1
dx · · · ≡

ˆ k̃D

k̃D−1
dzIa(p, k) +

ˆ k̃D−1

0
dzIb(p, k),

2) kD < k < 2kD,
1
2 < k̃D < 1,

ˆ k̃D

1−k̃D
dz

ˆ 1

x0

dx · · · ≡
ˆ k̃D

1−k̃D
dzIa(p, k). (A.6)
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A.1 Results for integration over γ

ˆ 1

−1
dx(1 + z2 − 2zx)n = (1 + z)2n+2 − |1− z|2n+2

(2n+ 2)z ,

ˆ 1

−1
dx(1 + z2 − 2zx)nx = −(1 + z)2n+2 + |1− z|2n+2

(2n+ 2)z + (1 + z)2n+4 + |1− z|2n+4

(2n+ 2)(2n+ 4)z2 ,

ˆ 1

−1
dx(1 + z2 − 2zx)nx2 = (1 + z)2n+2 − |1− z|2n+2

(2n+ 2)z −
2
[
(1 + z)2n+4 + |1− z|2n+4

]
(2n+ 2)(2n+ 4)z2

+
2
[
(1 + z)2n+6 − |1− z|2n+6

]
(2n+ 2)(2n+ 4)(2n+ 6)z3 ,

ˆ 1

−1
dx(1 + z2 − 2zx)nx3 = −(1 + z)2n+2 + |1− z|2n+2

(2n+ 2)z +
3
[
(1 + z)2n+4 − |1− z|2n+4

]
(2n+ 2)(2n+ 4)z2

−
6
[
(1 + z)2n+6 + |1− z|2n+6

]
(2n+ 2)(2n+ 4)(2n+ 6)z3

+
6
[
(1 + z)2n+8 − |1− z|2n+8

]
(2n+ 2)(2n+ 4)(2n+ 6)(2n+ 8)z4 ,

ˆ 1

−1
dx(1 + z2 − 2zx)nx4 = (1 + z)2n+2 − |1− z|2n+2

(2n+ 2)z −
4
[
(1 + z)2n+4 + |1− z|2n+4

]
(2n+ 2)(2n+ 4)z2

+
12
[
(1 + z)2n+6 − |1− z|2n+6

]
(2n+ 2)(2n+ 4)(2n+ 6)z3

−
24
[
(1 + z)2n+8 + |1− z|2n+8

]
(2n+ 2)(2n+ 4)(2n+ 6)(2n+ 8)z4

+
24
[
(1 + z)2n+10 − |1− z|2n+10

]
(2n+ 2)(2n+ 4)(2n+ 6)(2n+ 8)(2n+ 10)z5 , (A.7)
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ˆ 1

x0

dx(1 + z2 − 2zx)n = (k̃D)2n+2 − |1− z|2n+2

(2n+ 2)z ,

ˆ 1

x0

dx(1 + z2 − 2zx)nx = x0(k̃D)2n+2 − |1− z|2n+2

(2n+ 2)z + (k̃D)2n+4 − |1− z|2n+4

(2n+ 2)(2n+ 4)z2 ,

ˆ 1

x0

dx(1 + z2 − 2zx)nx2 = x2
0(k̃D)2n+2 − |1− z|2n+2

(2n+ 2)z +
2
[
x0(k̃D)2n+4 − |1− z|2n+4

]
(2n+ 2)(2n+ 4)z2

+
2
[
(k̃D)2n+6 − |1− z|2n+6

]
(2n+ 2)(2n+ 4)(2n+ 6)z3 ,

ˆ 1

x0

dx(1 + z2 − 2zx)nx3 = −x
3
0(k̃D)2n+2 − |1− z|2n+2

(2n+ 2)z +
3
[
x2

0(k̃D)2n+4 − |1− z|2n+4
]

(2n+ 2)(2n+ 4)z2

+
6
[
γ0(k̃D)2n+6 − |1− z|2n+6

]
(2n+ 2)(2n+ 4)(2n+ 6)z3

+
6
[
(k̃D)2n+8 − |1− z|2n+8

]
(2n+ 2)(2n+ 4)(2n+ 6)(2n+ 8)z4 ,

ˆ 1

x0

dx(1 + z2 − 2zx)nx4 = γ4
0(k̃D)2n+2 − |1− z|2n+2

(2n+ 2)z +
4
[
x3

0(k̃D)2n+4 − |1− z|2n+4
]

(2n+ 2)(2n+ 4)z2

+
12
[
x2

0(k̃D)2n+6 − |1− z|2n+6
]

(2n+ 2)(2n+ 4)(2n+ 6)z3

+
24
[
x0(k̃D)2n+8 − |1− z|2n+8

]
(2n+ 2)(2n+ 4)(2n+ 6)(2n+ 8)z4

+
24
[
(k̃D)2n+10 − |1− z|2n+10

]
(2n+ 2)(2n+ 4)(2n+ 6)(2n+ 8)(2n+ 10)z5 , (A.8)

A.2 Results for integration over z

Following the scheme (A.1) we can now perform the integration over z, since k � kD,
we will use the first split equation in (A.5) to calculate integrals. We define the following
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functions to calculate the integrals over z.

1) 0 < z < 1,

W1(n,m, 1, 0) =
ˆ 1

0
dz(1− z)mzn ≡ 2F1(−m,n+ 1;n+ 2, 1)

n+ 1 ,

2) 1 < z,

W2(n,m, k̃D, 1) ≡
ˆ k̃D

1
dz(z − 1)mzn = (k̃D − 1)m+1

2F1(−n,m+ 1;m+ 2, 1− k̃D)
m+ 1 ,

3) for any z,

W3(n,m, k̃D − 1, 0) ≡
ˆ k̃D−1

0
dz(z + 1)mzn = (k̃D − 1)n+1

2F1(−m,n+ 1;n+ 2, 1− k̃D)
n+ 1 ,

4) for any z,

W0(n,A,B) ≡
ˆ A

B
dzzn ,

5) −3 < nS ,

pS(nS , i) ≡ (nS)(nS + 2) . . . (nS + 2i) ,
6) −4 < nA,

pA(nA, i) ≡ (nA + 1)(nA + 3) . . . (nA + 2i+ 1) ,
(A.9)

where pFq(a1, . . . ap; b1, . . . bq; z) are generalized hypergeometric functions.

The Pochhammer symbol for n ≥ 0

(x)n ≡ Γ(x+ n)
Γ(n)

= x(x+ 1)(x+ 2)...(x+ n) (A.10)

The Pochhammer symbol satisfies

(−x)n = (−)n(x− n+ 1)n (A.11)

A.3 Correlators Exact Solutions

Our exact results are given for particular values of nS and nA. The amplitudes:

S2
0 = 1

4

(2π)2λnS+3B2
λ

Γ
(
nS+3

2

)
2

= 1
4

 (2π)nS+5B2
λ

Γ
(
nS+3

2

)
knS+3
λ

2

= 1
4

(2π)nS+2B2
λ

Γ
(
nS+3

2

)
2

2π6

k2nS+6
λ

,

|A0|2 = 1
4

(2π)2λnA+3B2
λ

Γ
(
nA+4

2

)
2

= 1
4

 (2π)nA+5B2
λ

Γ
(
nS+4

2

)
knA+3
λ

2

= 1
4

(2π)nA+2B2
λ

Γ
(
nA+4

2

)
2

2π6

k2nA+6
λ

.

(A.12)
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S2
0k

2nS+6

(2π)6(ργ,0)2 = S2
0

(2π)6(ργ,0)2k
2nS+6
D k̃

−(2nS+6)
D

= 1
4(ργ,0)2

(2π)nS+2B2
λ

Γ
(
nS+3

2

)
2

(kD
kλ

)2nS+6k̃
−(2nS+6)
D

A2
0k

2nA+6

(2π)6(ργ,0)2 = A2
0

(2π)6(ργ,0)2k
2nA+6
D k̃

−(2nA+6)
D

= 1
4(ργ,0)2

(2π)nA+2B2
λ

Γ
(
nA+4

2

)
2

(kD
kλ

)2nA+6k̃
−(2nA+6)
D

A0S0k
nA+nS+6

(2π)6(ργ,0)2 = A0S0
(2π)6(ργ,0)2k

nA+nS+6
D k̃

−(nA+nS+6)
D

= 1
4(ργ,0)2

(2π)nA+nS+4B2
λB

2
λ

Γ
(
nA+4

2

)
Γ
(
nS+3

2

)(kD
kλ

)nA+nS+6k̃
−(nA+nS+6)
D ,

(A.13)

where 1
4(ργ,0)2 = 1.432 × 10−12. The full exact solutions for all the correlators derived in

Sections (4.1.4, 4.1.5,4.1.6) are put online1.

1The solutions written by Maple and Matlab notebook is publicly available at https://github.com/
scalby/MagIntegral
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