
An Experimental Study of a Point Set
Registration Algorithm

by

Hamid Homapour

M.Sc., Sharif University of Technology, 2013
B.Sc., Islamic Azad University, 2010

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Hamid Homapour 2019
SIMON FRASER UNIVERSITY

Fall 2019

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Hamid Homapour

Degree: Master of Science

Title: An Experimental Study of a Point Set
Registration Algorithm

Examining Committee: Chair: Thomas C. Shermer
Professor

Binay Bhattacharya
Senior Supervisor
Professor

Ramesh Krishnamurti
Internal Examiner
Professor
School of Computing Science

Abraham P. Punnen
External Examiner
Professor
Department of Mathematics
Simon Fraser University Surrey

Date Defended: December 5, 2019

ii

Abstract

We study the problem of point set registration in the plane to measure the similarity between
point sets in the plane. This problem plays an important role in a variety of applications,
from computer vision to molecular biology. Here, in this project, we study, implement, test,
and evaluate FPPMA which is one of the fastest algorithmic approaches in this context [43].
We then compare the results with another well-known technique in the computer vision
community (GMMReg method [30]). Finally, we generalize FPPMA to solve the groupwise
point set registration problem.

Keywords: point set registration; pairwise registration; groupwise registration

iii

Dedication

To my parents - for their unwavering support.

iv

Acknowledgements

I would like to thank my thesis advisor Professor Binay Bhattacharya of the School of
Computing Science at Simon Fraser University. The door to Prof. Bhattacharya’s office
was always open whenever I ran into a trouble spot or had a question about my research
or writing. He consistently allowed this paper to be my work but steered me in the right
direction whenever he thought I needed it.

December 5th, 2019
Hamid Homapour

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

List of Implementations x

1 Introduction 1
1.1 Problem Statement . 1
1.2 Variants of the Pattern Matching Problem 2
1.3 Current Work . 6

2 The Algorithm in Focus - FPPMA 7
2.1 Input Reader. 8
2.2 Transformation Finder Class . 8

2.2.1 Proximity and Neighborhood . 8
2.2.2 Grid Search Method . 10
2.2.3 Find a Global Match . 11

2.3 Finding Correspondences Strategies . 11
2.3.1 Unweighted Bipartite Matching Strategy 12
2.3.2 Weighted Bipartite Matching Strategy 12

3 Pairwise Experiments 13
3.1 Data and Point Set Generation . 13
3.2 Evaluation . 13

vi

3.2.1 Complete Matching (CM-DATA) . 15
3.2.2 Partial Matching (PM-DATA) . 19

3.3 Experimental Running Time of FPPMA-kNN 21
3.4 Correspondence Strategies Evaluation . 22
3.5 Method to Compare - Gaussian Mixture Models 23

4 Groupwise Point Set Registration 25
4.1 Groupwise method using FPPMA . 25
4.2 Groupwise Experiments . 26

5 Conclusion 28

Bibliography 29

Appendix A Point Pattern Matching Implementation 33

Appendix B Proximity Related Code 36

Appendix C Tools 40

vii

List of Tables

Table 3.1 For each argument, the best parameters and results for FPPMA-kNN
runs with complete matching data (CM-DATA) are provided. 16

Table 3.2 For each argument, the best parameters and results for FPPMA-dNN
runs with complete matching data (CM-DATA) are provided. 17

Table 3.3 For each argument, the best parameters and results for FPPMA-gNN
runs with complete matching data (CM-DATA) are provided. 18

Table 3.4 Summary of results of FPPMA-kNN with partial matching data (PM-
P-DATA) is provided. 19

Table 3.5 Summary of results of FPPMA-dNN with partial matching data (PM-
P-DATA) is provided. 19

Table 3.6 Summary of results of FPPMA-gNN with partial matching data (PM-
P-DATA) is provided. 19

Table 3.7 Summary of results of FPPMA-kNN with partial matching data (PM-
R-DATA) is provided. 20

Table 3.8 Summary of results of FPPMA-dNN with partial matching data (PM-
R-DATA) is provided. 20

Table 3.9 Summary of results of FPPMA-gNN with partial matching data (PM-
R-DATA) is provided. 20

Table 3.10 This table shows running time information of FPPMA-kNN over sam-
ple data with different sizes. 21

Table 3.11 This table shows average number of mismatches among points for eval-
uation of FPPMA-kNN with different matching strategies and config-
urations over different data points. The size of the input is about 200
for each data set. 22

Table 3.12 Experiment using GMM with different types of data. 24

Table 4.1 Runtime information of Pairwise implementation of FPPMA for differ-
ent values of ρ (time is represented in milliseconds). 26

viii

List of Figures

Figure 1.1 This figure shows some examples of transformations. Dashed and
solid lines indicate original and transformed objects, respectively. . 3

Figure 2.1 Using the grid strategy to facilitate searching to find a possible match. 10
Figure 2.2 Mismatches occurs due to the presence of the noise. 12

Figure 3.1 This figure shows some examples of transformations data. Blue and
red points indicate model and scene, respectively. 14

Figure 3.2 This figure shows an example result of FPPMA-kNN with CM-DATA. 15
Figure 3.3 An experiment on a pair of incomplete fish shapes by GMMReg

method. 23
Figure 3.4 A comparison result between FPPMA and GMMReg with PM-R-

DATA. 24

Figure 4.1 This figure shows a point set P , and its transformation by two dif-
ferent sets of parameters. 25

Figure 4.2 Time chart based on the table 4.1. This figure shows the required
time for Pairwise FPPMA in milliseconds for different ρs. Time is
increased by moving away from ρ = 0.5. 27

Figure 4.3 This figure shows output examples of Pairwise FPPMA for ρ = 0.42
and ρ = 0.50 with input data of Figure 4.1. 27

ix

List of Implementations

A.1 Transformation Finder Class . 33
B.1 Base Proximity Finder Class . 36
B.2 Nearest Neighbor Finder Class . 37
B.3 Delaunay Finder Class . 38
B.4 Gabriel Finder Class . 39
C.1 Grid Class . 40

x

Chapter 1

Introduction

Pattern matching is important in various application areas, particularly in computer vi-
sion [35, 38, 41, 44], image registration [10, 32] and pattern recognition [8, 22]. It, also, has
applications in other disciplines concerned with the form of objects such as astronautics [46],
vehicle tracking [25], computational chemistry [20, 21], molecular biology [28, 38, 47], and
medical imaging [27]. The applications often demand algorithms to find the similarity be-
tween a pattern, a set of objects, and an image, another usually a larger set of objects.

Finding correspondences is the primary goal of the point set registration algorithms to
get an estimation of the transformation among two or more point sets. Proposed approaches,
in this context, have some important challenges like deformation and the presence of noise
in point sets. As examples of deformation, consider two differently taken images of an object
with different points of view or two different images of an animal with different postures.
Outliers and occlusion are examples of the presence of noise. Note that, the presence of the
outlier is nearly like the presence of the occlusion, that is, in both situations, some points
are present in one of the point sets while they are not in the other one. Moreover, large
point sets and high dimensionality are the other challenges for methods in this context.

In the following, we first describe the basic definition of the nature of the problem
followed by an overview of different proposed point pattern matching algorithms.

1.1 Problem Statement

Let P and Q be two point sets in 2-dimensional space; P = {p1, p2, ..., pn} and Q =
{q1, q2, ..., qm}, where all pi and qj are points in R2. The goal is to find a similarity trans-
formation, see [18,24], Ts,θ,tx,ty , so that T (P) matches Q. In transformation Ts,θ,tx,ty , s is a
scaling factor, theta is a rotation angle, and tx and ty are translations along the x and y

directions, respectively. Thus, for (x, y) ∈ R2, we have:

T

(
x

y

)
=
(
tx
ty

)
+ s

(
cos θ − sin θ
sin θ cos θ

)(
x

y

)

1

Matching definition: Consider parameters ρ ∈ [0, 1] and t ∈ R+ as the matching
probability and the matching size, respectively. We define Ts,θ,tx,ty (P) matches Q, if there
exists a subset P ′ of P and |P ′| ≥ ρn, such that for each p ∈ P ′ we have |Ts,θ,tx,ty (p)−q| < t

for some q ∈ Q [43].
Choose t: Let r be the radius of the minimum circle that contains point set Q. Con-

sidering uniform distribution of points, r√
n

is the average shortest distance of points in
Q. A constant fraction (λ, i.e. matching factor) of this distance is a good candidate for t.
Therefore, we have t = λ. r√

n
.

1.2 Variants of the Pattern Matching Problem

Pattern matching measures the similarity between two objects. Variants of this problem can
be defined considering different criteria on the type of objects being matched, distance and
similarity measures being used, types of valid transformations being considered, etc. First,
let’s define some of these variants:

• Pairwise and Groupwise of objects: Pairwise point pattern matching problem only
considers two point sets and looks for only one transformation while groupwise point
pattern matching problem considers more than two point sets and looks for multiple
transformations for different sets simultaneously.

• Type of objects: Objects which are being matched are usually finite sets of shapes like
points, line segments, or shapes given by polygons in two dimensions or polyhedral
surfaces in higher dimensions. Most of the work has concentrated on point sets in two
and three dimensions, Alt et al. [5].

• Exact or approximate matching: In the exact matching, the question is whether two
sets can be matched exactly by some transformations. In practice, there are usually
small errors (or noise) in the data which make an exact match unlikely. To overcome
this problem, we can consider algorithms bringing each object in pattern within ε-
distance of some object in image, for some ε > 0 and distance function.

• Fixed or dynamic pattern set: Fixed pattern set means that the position of pattern
objects remains unchanged and dynamic pattern set means that the position of pattern
set can be changed using some transformations. The most important transformations
(for two-dimensional space) are:

– Translation: The simplest type of transformations are translations. The pattern
set can be translated by some translation vector t ∈ R2, see Figure 1.1.a.

– Rotation: The pattern set, also, can be rotated about a point (e.g. the rotation

matrix about the origin is
[

cos θ − sin θ
sin θ cos θ

]
, where θ ∈ [0, 2π)), see Figure 1.1.b.

2

(a) Translation (b) Rotation (c) Scaling

(d) Reflection (e) Shearing (f) Non-uniform Scaling

Figure 1.1: This figure shows some examples of transformations. Dashed and solid lines
indicate original and transformed objects, respectively.

– Scaling: The linear transformation that stretches an object by a certain factor λ

about the origin and is represented by the matrix
[
λ 0
0 λ

]
in two dimensions,

see Figure 1.1.c.

– Reflection: In a reflection transformation, all the points of an object are reflected
or flipped on a line called the axis of reflection or line of reflection, see Fig-
ure 1.1.d.

– Rigid transformation or Euclidean transformation: Rigid transformation is a
combination of translation, rotation, and reflection. In most algorithms, the pat-
tern only undertakes translation and rotation. The reflection can easily be in-
cluded by running the algorithm twice, one for the original location of the pattern
set and the other for the reflected pattern set, and return the better.

– Homothety: The Homothety is a combination of translation and scaling transfor-
mations.

– Similarity: The Similarity is a combination of rigid motions and scaling.

– Non-rigid: Typically these kind of transformation, involves nonlinear transfor-
mation. Non-rigid transformation include affine transformations such as scaling
and shear mapping (see Figure 1.1.e), and can change the size but not the shape
of the pre-image, see Figure 1.1.f.

– Affine: The affine transformation, which is nonrigid, includes transformations
that preserve ratios of distances and collinearity (i.e. points which are on a line,

3

still be on a line after transformation). For example translation, rotation, reflec-
tion, similarity, contraction, expansion, homothety, dilation, anisotropic scaling,
and skews.

Note: Roughly speaking, based on the difference in transformations, we can classify
point set registration approaches into rigid and non-rigid transformations.

• Distance function. A distance function d on a set S is a nonnegative valued function
d : S × S → R≥0. Distance function has been used in calculating the similarity/dis-
similarity between sets. For many pattern matching applications, it is desirable that
d has some of the following properties:

1. Self-identity: For all x ∈ S, d(x, x) = 0.

2. Positivity: For all x, y ∈ S, x 6= y, d(x, y) > 0.

3. Symmetry: For all x, y ∈ S, d(x, y) = d(y, x).

4. Triangle inequality: For all x, y, z ∈ S, d(x, z) ≤ d(x, y) + d(y, z).

5. Transformation invariant: For a chosen transformation group G, for all x, y ∈ S
and g ∈ G, d(g(x), g(y)) = d(x, y). This also implies that d(g(x), y) = d(x, g−1(y)).

A function with properties 1− 4 is called a metric.

• Dissimilarity measure: A dissimilarity measure is a function defined on pairs of shapes
indicating the degree of their discrepancy. Depending on the applications, different
dissimilarity measures can be considered:

– Hausdorff distance: The Hausdorff distance is the maximum of the distances from
each object in one set to its nearest neighbor in the other set [2–4, 7, 14, 26, 29].
Perhaps the most studied similarity measure between point sets is the directed
Hausdorff distance [7]. Aichholzer et al. [2] showed a (1 + π/4)-approximation
algorithm for rigid motion and a (3 + π/4)-approximation algorithm for sim-
ilarity transformation (translation, rotation and scaling) having the running
time of O(mn log(mn) log∗(mn)). Other approximation algorithms were given
by Goodrich et al. [26] who showed a 2-approximation algorithm with running
time O(nm logn) for translations and a 4-approximation algorithm with running
time O(n2m logn) for rigid transformations. Chew et al. [14] gave algorithms for
minimizing Hausdorff distance for two sets of planar points under rigid motions.
Their algorithm runs in time O(m3n2 log2(mn)) for one-sided Hausdorff distance
and in time O((m+n)5 log2(mn)) for bidirectional Hausdorff distances. The algo-
rithms have a decision subroutine to determine whether there exists a matching
under some transformation which brings the pattern set in the ε-neighborhood
of the image set.

4

– Euclidean Distance: The Euclidean distance is defined by the sum of the Eu-
clidean distances between the matched pairs [37,45]. In 2006, a graphical models-
based algorithm presented by Caetano et al. [12] to get point pattern matching
in Euclidean spaces of any dimension. This polynomial-time algorithm is optimal
for complete matching between noiseless point sets. Later, McAuley et. al. [33]
gave a new graph showing that improved performance and applied it to obtain
point set matching. These algorithms are designed for affine transformations,
but, they can not handle point sets under reflection transform. For this issue,
Wang et. al. [45] showed an efficient algorithm to handle reflections.

– Bottleneck distance. Bottleneck distance denotes the maximal distance between
all matched pairs while matching is injective [6,7,19]. In contrast to the directed
Hausdorff distance, the bottleneck distance has the advantage of being symmetric
for equally-sized sets. Here are some state-of-the-art results on some of these
variants. Benket et al. [7] gave some 1 + ε-approximation for equally-sized point
sets under similarity transformation. Erfat et al. [19] presented a scheme to find
a translation approximating minimum bottleneck for equally-sized point sets in
Rd. The algorithm first achieves a preliminary constant factor approximation
for the problem. Then, based on this approximated value of optimal solution
introduces an (1 + ε) approximation factor. The total time of the algorithm is
O((1 + 4

ε

√
d)d log ε−1d(1 + 1

ε)dn1.5 logn).

– Earth mover’s distance(EMD): This similarity measures are defined for weighted
objects and intuitively, can be seen as the least amount of work needed to move
earth on the pattern objects to the holes in image objects [11, 15, 17, 31, 36, 39].
The earth mover’s distance between two weighted point sets in the plane is a
similarity measure whose potential use for measuring shape dissimilarity was
first proposed by Mumford [36]. The problem of earth mover’s distance under
transformation has received considerable attentions. No algorithm is known that
computes an exact solution for matching weighted point sets in the plane that
minimize EMD under rigid motions. Cohen et al. [15] who introduced the prob-
lem, provided an iterative algorithm to find a local optimum for EMD under
rigid transformation. Later, Cabello et al. [11], Klein et al. [31], and more re-
cently Ding et al. [17] presented some approximate solutions, which are mainly
of theoretical importance.

• Partial/complete matching: When the cardinalities of sets are equal, the problem is
called complete matching. Otherwise, it is called partial matching in which a small
set is matched to a subset of equal size of a bigger set.

5

1.3 Current Work

This project deals with the matching of geometric points, with an emphasis on techniques
from computational geometry. Throughout this project report, unless otherwise stated, we
consider matching for a pattern set P of size n and an image set Q of size m. The elements
of the set are points in R2, and the pattern set can undertake translation, rotation, and
scaling. We consider Euclidean distance as similarity and dissimilarity measures.

The rest of the paper is organized as follows. Chapter 2 describes FPPMA [43] and the
details of its implementation. Chapter 3 shows the experimental results of FPPMA, and a
comparison with the well-known GMMReg method. In Chapter 4, we use FPPMA to solve
groupwise version of the problem.

6

Chapter 2

The Algorithm in Focus - FPPMA

The main purpose of this project is to implement, test, generalize, and evaluate the algorithm
provided in [43] for 2D point pattern matching. We call this algorithm FPPMA (Fast Point
Pattern Matching Algorithm). In the following, we give a brief description of FPPMA.

FPPMA comes with two main ideas. First, the idea is to select a random point in P ,
and hopefully, we can find its corresponding point in Q by a few random selections. Thus,
by taking a random point (p) in P , the algorithm searches for a match (q) in Q (i.e. a local
match). The second idea is to find a transformation T that matches the nearest neighbors
of p to those of q, in the hope that T is a global transformation. The following is the
pseudo-code for FPPMA.

Algorithm 1 Fast Point Pattern Matching Algorithm (FPPMA) [43]
1: procedure FPPMA
2: input:
3: P, Q
4: pre-processing:
5: For each point in P and Q find the k nearest neighbors and store

them in separate lists for each point set.
6: Make a grid (�) over the point set Q, and maintain a list of points

for each cell of the grid.
7: main computations:
8: for i = 1 to n do
9: for j = 1 to m do

10: Find a transformation T (considering pi, qj)
11: if T is a local match then
12: if T is a global match then
13: return Ts,θ,tx,ty

In this project, to implement FPPMA presented in [43], C++ is used as the programming
language, and Python is used for illustration purposes. The C++ code consists of differ-
ent parts: Input Reader, Nearest Neighbor Finder, Collision Detector, Road-map Maker,
ShortestPath Finder, and Visualization. In the following, we will describe each part.

7

2.1 Input Reader.

Point set P is read from a comma-separated file (i.e. a CSV file) such that each line contains
coordinates of a point. Therefore, Input Reader is for reading a CSV file, and converts and
stores coordinate information into some arrays.

2.2 Transformation Finder Class

Transformation Finder, see A.1, is the main part of the implementation, that is, the imple-
mentation of FPPMA presented in [43]. In the following, explanations and detailed infor-
mation about Transformation Finder are presented.

2.2.1 Proximity and Neighborhood

As mentioned before, the main idea of FPPMA is to find a local transformation for k nearest
neighbors of a randomly selected point in P and a point in Q. For a neighborhood of a point,
three different methods are used to select neighbors of a point. The three methods are k
nearest neighbors for the first method, and Delaunay and Gabriel neighbors in Delaunay
and Gabriel graphs for the two other methods, respectively. Thus, we implement three
different versions of the algorithm, that is, FPPMA-kNN, FPPMA-dNN, and FPPMA-
gNN to select k nearest, Delaunay, and Gabriel neighbors, respectively. In the following, a
brief explanation of the neighborhood and some of its variants that are used in this project
are given.

Proximity and location are basic concepts of computational geometry. The term prox-
imity is related to the concept of closeness or neighborhood. Computing geometric struc-
tures with the proximity in mind is a requirement for most of the problems in this field.
For example, Delaunay triangulation, Voronoi diagram, and similar graph structures like
Gabriel graph or the relative neighborhood graph [16]. Moreover, nearest neighbors, ge-
ometric range searching, and related problems are another group of problems with the
same requirement [34]. These structures and searching techniques have many applications,
including data mining, document analysis, classification, and pattern recognition.

In the project, the three methods are implemented as a child class of Base Finder class,
see B.1. The followings are a description of the methods and their implementation detail.

a. Nearest Neighbors - kNN

In the nearest neighbor (NN) problem, a set P containing n points is given in d-dimensional
space. The task is to preprocess the set P and build a data structure. Then, for any given
query point q, the algorithm is concerned with finding the point closest to the query point
(generally k nearest points of P to q). Note that, different distance functions can be con-
sidered to compute the distance between two points. For example, Euclidean distance,

8

Manhattan distance, and max distance. In the following, ANN library is introduced which
is used in our project to be able to search nearest neighbors.

ANN library [1]: ANN is a library for approximate and exact nearest neighbor search-
ing written in the C++ programming language. The work is done by David M. Mount of
the University of Maryland and Sunil Arya of the Hong Kong University of Science and
Technology.

ANN does some preprocessing over the given point set (say P), and creates a KD-Tree
data structure. Then, for any query point q = (x, y), it efficiently reports the nearest or
generally k nearest points of P to q. ANN is an in-memory approach, that is, data sets
should be small enough so that the search structure can be stored in the main memory.
Both preprocessing time and space are linear to the number of points and the dimension.
Also, any class of distance functions of Minkowski metrics can be used in ANN . For this
project, we used Euclidean distance to find the nearest neighbors of a point.

In this project, ANN is used to find k nearest neighbors of each point in P and Q. In
the preprocessing time, we find k nearest neighbor of each point of P and Q, and maintain
them in a separate list for easy access. NNFinder, see B.2, is a child class of BaseFinder,
and it deals with the problem of finding nearest neighbors in our implementation.

In the rest of this report, we use FPPMA-kNN to refer to the implementation of FPPMA
using nearest neighbors.

b. Delaunay Neighbors - dNN

For a given set P of discrete points in a plane, a Delaunay triangulation (DT) is a trian-
gulation in which for any triangle in DT (P), no point of P is inside the circumcircle of the
vertices of the triangle. In such a triangulation, the minimum angle of all the angles of the
triangles is maximized. Therefore, Delaunay triangulation gives us a fat triangulation. It is
worth to mention that Delaunay triangulation is completely related to the Voronoi diagram.
It corresponds to the dual graph of the Voronoi diagram for P .

Bowyer-Watson algorithm: In our implementation, to compute the Delaunay trian-
gulation, we used the Bowyer-Watson algorithm. It can be used to compute DT of a finite
set of points, as well as the Voronoi diagram of the points (i.e. the dual graph of DT).
Actually, the algorithm is incremental. In each iteration, one point is added to a valid De-
launay triangulation of the points which are already added. By adding a new point (pi), any
triangles that pi lies in its circumcircles, are deleted. Then, the affected area is a star-shaped
polygonal hole, and it is then re-triangulated using the new point [40].

In the implementation, DNFinder, see B.3, is a child class of BaseFinder, and it deals
with the problem of finding neighbors based on the Delaunay triangulation.

In the rest of this report, we use FPPMA-dNN to refer to the implementation of FPPMA
using Delaunay neighbors.

9

pi

T (pi)

Figure 2.1: Using the grid strategy to facilitate searching to find a possible match.

c. Gabriel Neighbor - gNN

For a set P of points in the Euclidean plane, the Gabriel graph shows one notion of proximity
or closeness of those points. More formally, two points p and q in P form an edge of the graph
if they are distinct, and no point of P is inside the closed disc of which line segment pq is a
diameter [23]. Note that, the Gabriel graph is a subgraph of the Delaunay triangulation [16].
Computing the Gabriel graph, when the Delaunay triangulation is given, can be done in
linear time. Also, it is worth to mention that the Euclidean minimum spanning tree, the
relative neighborhood graph, and the nearest neighbor graph are a subgraph of the Gabriel
graph.

Gabriel Graph Computation: Simply, the Gabriel graph computation is based on
the euclidean Delaunay triangulation and keeps only edges whose circumcircle does not
contain any other input point than the edge extremities. The implementation can be found
in B.4. GNFinder, see B.4, is a child class of DNFinder, and it deals with the problem of
finding neighbors based on the Gabriel graph.

In the rest of this report, we use FPPMA-gNN to refer to the implementation of FPPMA
using Gabriel neighbors.

2.2.2 Grid Search Method

Another part of the Transformation Finder class, see A.1, is a strategy to look up for
a neighborhood of a given position fast. When we want to find a possible match for a
transformed point T (pi) in the target point set (i.e. Q), we need a fast strategy to look for
the potential match. We need to check whether there is a point in Q in a short distance
(≤ t) of any coordinate T (pi) = (x, y). In this regard, the algorithm does some preprocessing
to create a grid (�) over the target point set Q. By creating the grid, considering c as an
arbitrary cell, a list of points that lie in c is stored in a separate list for later use.

Therefore, to find a potential match for a point pi for a given transformation T , the
algorithm finds a cell c of the grid that contains T (pi). Then, 9 cells of the grid closest to
c (including c itself) are used to find a potential match, see Figure 2.1. By doing so, the

10

query time for a given transformation and a given position requires O(1) time to search for
a potential match.

In the project, Grid class, see C.1, is provided to make a grid over the target point set
to facilitate the searching process for a possible match.

2.2.3 Find a Global Match

After finding a local match, that is, a transformation T that can transform some neighbors
of a randomly selected point p in P to neighbors of a point q in Q, then, the process to
check if T can be a global transformation is easy. The only thing is to apply T over the
whole point set P , and for each point p in P test if it is possible to find a match in Q which
is not further than a constant distance (i.e. within a threshold t). If the number of selected
matches is more than ρ.N , then the transformation is considered as a global match (ρ is a
matching probability). In the following, the pseudo code of the process is shown.

Algorithm 2 Global Match Test Algorithm
1: procedure IsGlobalMatch
2: input:
3: P, Q, T, ρ, and t
4: main computations:
5: L1 = {}, L2 = {}
6: for i = 1 to n do
7: tpi = T (pi)
8: list = �(tpi)
9: if list has a member (qj) within distance t, and qj is not marked then

10: append pi to L1, and mark qj and add it to L2

11: if |L1| ≥ ρ.n then
12: return T
13: return No global match found.

2.3 Finding Correspondences Strategies

Suppose FPPMA computed a transformation T from P to Q. Next, the question is after
transforming point set P and having T (P), how are we going to choose a match for a point
ti of T (P)? Therefore, we need a strategy to pick matches for each transformed point. It
is worth to mention that one of the fundamental shape analysis tasks is to find a relevant
correspondence among two or more points or shapes [42]. The original method that is used
in [43] is to find the nearest neighbor of each point (the Nearest Neighbor match method)
and consider it as a match. However, by having this strategy the algorithm makes some
mismatches, see Figure 2.2. In this example, some points are mismatched or unmatched. To
address this issue, we also study and implement two other strategies (based on unweighted
and weighted Euclidean graph of the points) in our project to have better matches (i.e. to

11

reduce the number of mismatches). In the following subsections, we describe these strategies,
and in Chapter 3 we give an evaluation among these three different strategies.

(a) A computed transformation using
FPPMA-kNN. The box shows a selected
area.

(b) The figure shows some mismatched
and unmatched points in the selected
area. Matched points are connected to-
gether using an edge. Red rectangles il-
lustrate some samples of mismatches.
An isolated point shows an unmatched
point.

Figure 2.2: Mismatches occurs due to the presence of the noise.

2.3.1 Unweighted Bipartite Matching Strategy

Let G = (V,E) be an unweighted undirected graph with vertex set V , edge set E. Here, V
is a union of points of T (P) and Q where T is a computed transformation between point
sets P and Q. Then, for each pair (u, v) of points where u ∈ T (P) and v ∈ Q, (u, v) ∈ E
if u and v are within distance t of each other. Note that, by definition of the edges in G in
which u ∈ P and v ∈ Q, this graph is a bipartite graph.

By having the graph G, in Unweighted Bipartite Matching strategy, FPPMA computes
a maximum bipartite matching [9] of G to make matches between points in T (P) and Q.

2.3.2 Weighted Bipartite Matching Strategy

Let G = (V,E) be an weighted undirected graph with vertex set V , edge set E, and a
weight function w. Here, V is a union of points of T (P) and Q where T is a computed
transformation between point set P and Q. Then, for each pair (u, v) of points where
u ∈ T (P) and v ∈ Q, (u, v) ∈ E while w(u, v) denotes the weight of the edge which equals
to the Euclidean distance between u and v.

By having the graph G, in Weighted Bipartite Matching strategy, FPPMA computes a
maximum bipartite matching of G with the minimum cost [9] to make matches between
points in T (P) and Q. Note that, the cost of the matching is the sum of the weights of the
edges of the matching. Therefore, the goal is to find a matching with maximum number of
edges with the minimum cost.

12

Chapter 3

Pairwise Experiments

The pairwise point pattern matching algorithm only considers two point sets and looks for
only one transformation. In this chapter, we present experimental results on the implemen-
tation of point pattern matching algorithm proposed in [43] using different kinds of point
sets for pairwise pattern matching.

All of our experiments were performed on a PC with 16 GB of RAM and an Intel(R)
Core(TM) i7-3770 CPU (3.40GHz).

3.1 Data and Point Set Generation

The algorithm is tested using many different 2D point-sets, including complete matching
and partial matching options. For partial matching we select a different part of a point set
in portion (i.e. a subset of the points that lie on a connected subset of the 2D-space), or
randomly removed some data points, see Figure 3.1.

To do that, a point set generation code is implemented. Here, by doing some random
transformation on a point set P , the code generates a point set Q. This is done by applying
some random translation (a random move between 0 to 15 along the x and y axis), rotation
(a random rotation between 0 to 360 degrees), and scaling (a random scaling between 0.1
and 5) over the point set P . Also, it applies some random noise for each point independently.

3.2 Evaluation

In this section, we are going to talk about the experiments that run over FPPMA-kNN,
FPPMA-dNN, and FPPMA-gNN algorithms. The performances of these representative
point set registration algorithms are validated using different kinds of data sets.

To evaluate the performance of the rivals, we use the Mean Squared Error Distance
(MSED) as the cost function of the optimization problem. It is worth to mention that all
the algorithms were implemented in C++.

In the following, a discussion and result data (including average number of selected pairs,
average running time, average error distances) for each type of data including complete

13

(a) Sample data for complete matching
with the same size point sets.

(b) Sample data for complete matching
(only border) with the same size point
sets.

(c) Sample data for partial matching
with different size point sets.

(d) Sample data for partial matching
(random removal - 20% of the blue
points are removed randomly).

Figure 3.1: This figure shows some examples of transformations data. Blue and red points
indicate model and scene, respectively.

matching and partial matching is presented. Note that, as pairwise matching case, here the
algorithm looks only for one transformation to transform P into Q. We summarize the
results of the evaluation in tables in the following. Note that, the results are the average
results over 20 trials. In all the tables, for each data set the size of each set of points is about
200. ρ is the matching probability, λ is the matching factor, see Section 1.1. k is the number
of neighbors, k2 and k3 are the number of neighbors of a point in P and Q to consider to
find a global match, respectively. #pairs is the average number of pairs of points that are
checked for a local match, #pairs(min) is the minimum number of checked pairs among
samples, #pairs(max) is the maximum number of checked pairs among samples, time is
the average time in milliseconds, ave dist is the average distance (i.e. Euclidean distance)
of the transformed points to the nearest corresponding matching points, and ave max dist
is the average distance of the farthest points in the results.

14

3.2.1 Complete Matching (CM-DATA)

The first data type that is used to test our implementation is complete matching. Here,
we know that the cardinalities of the point sets are equal, for example see Figures 3.1a
and 3.1b.

In the following tables, the summarized information of the evaluation for FPPMA-
kNN, FPPMA-dNN, and FPPMA-gNN with CM-DATA are presented, respectively. Also,
in Figuer 3.2a, a sample input of CM-DATA is shown, and Figure 3.2b shows the transformed
points by FPPMA-kNN.

(a) An example input of CM-DATA type
where point set P andQ are shown using
blue and red points, respectively.

(b) In the figure, green points indicate
transformed points using FPPMA-kNN.

Figure 3.2: This figure shows an example result of FPPMA-kNN with CM-DATA.

15

Table 3.1: For each argument, the best parameters and results for FPPMA-kNN runs with
complete matching data (CM-DATA) are provided.

arguments parameters results
ρ λ k k2 k3 #soln #pairs #pairs #pairs ave ave ave

(min) (max) time dist max dist
1 0.9 0.2 5 1 2 20 / 20 3534.25 169 8033 452.5 7.27 17.07
2 0.9 0.2 5 2 3 20 / 20 2360.4 25 8743 1293.24 6.3 15.23
3 0.9 0.2 5 3 3 20 / 20 1729.55 57 10346 1490.16 7.09 16.41
4 0.9 0.4 5 3 3 20 / 20 704.1 47 2007 636.94 9.95 24.57
5 0.9 0.2 5 3 4 20 / 20 1180.5 5 4425 1370.78 6.97 16.28
6 0.9 0.4 5 3 4 20 / 20 534.9 4 3171 662.41 12.31 30.57
7 0.9 0.2 6 1 2 20 / 20 2881.15 47 7862 399.47 6.22 14.67
8 0.9 0.2 6 2 3 20 / 20 1717.2 29 7067 1030.27 7.14 16.63
9 0.9 0.2 6 3 3 20 / 20 1265.25 39 4689 1205 7.12 16.65
10 0.9 0.4 6 3 3 20 / 20 694 10 3477 692.9 10.98 26.95
11 0.9 0.2 6 3 4 20 / 20 1158.05 166 4175 1503.33 7.01 16.34
12 0.9 0.4 6 3 4 20 / 20 801.9 48 3313 1109.88 12.72 30.91
13 0.75 0.4 6 3 4 20 / 20 171.95 10 463 236.01 13.54 34.81
14 0.75 0.4 7 2 3 20 / 20 229.55 44 602 166.27 15.63 40.29
15 0.75 0.4 7 3 3 20 / 20 178.45 2 777 202.51 13.6 36.04
16 0.75 0.4 7 4 4 20 / 20 213.9 12 606 447.51 15.9 43.96
17 0.75 0.4 9 3 4 20 / 20 236.3 9 1020 454.2 14.29 36.06

average: 1152.44 42.53 4163.29 785.49 10.24 25.5

16

Table 3.2: For each argument, the best parameters and results for FPPMA-dNN runs with
complete matching data (CM-DATA) are provided.

arguments parameters results
ρ λ k k2 k3 #soln #pairs #pairs #pairs ave ave ave

(min) (max) time dist max dist
1 0.9 0.2 5 1 2 20 / 20 1881.1 87 9675 189.91 6.24 15.19
2 0.9 0.2 5 2 3 20 / 20 896.3 20 4048 461.19 7.08 16.57
3 0.9 0.2 5 3 3 20 / 20 942.25 10 2627 776.52 6.7 15.42
4 0.9 0.4 5 3 3 20 / 20 681.7 39 2833 601.23 10.63 26.09
5 0.9 0.2 5 3 4 20 / 20 1062.25 30 3593 1339.51 7.26 16.51
6 0.9 0.4 5 3 4 20 / 20 876.65 18 2856 1171.96 11.98 29.91
7 0.9 0.2 6 1 2 20 / 20 2505.5 62 11925 171.09 6.59 15.35
8 0.9 0.2 6 2 3 20 / 20 1454.65 42 6427 629.16 7.18 16.31
9 0.9 0.2 6 3 3 20 / 20 874.7 18 4244 670.53 6.34 15.2
10 0.9 0.4 6 3 3 20 / 20 729.35 76 3121 536.01 10.13 23.64
11 0.9 0.2 6 3 4 20 / 20 1947.15 124 7313 2355.15 6.88 15.31
12 0.9 0.4 6 3 4 20 / 20 777.1 2 3210 1060.12 10.53 25.66
13 0.75 0.4 6 3 4 20 / 20 500.65 12 1590 623.6 14.17 37.15
14 0.75 0.4 7 2 3 20 / 20 968.2 48 3208 203.49 10.35 25.74
15 0.75 0.4 7 3 3 20 / 20 747.2 1 2682 402.9 12.3 31.66
16 0.75 0.4 7 4 4 20 / 20 734.7 14 3033 1168.54 12.63 33.81
17 0.75 0.4 9 3 4 20 / 20 4209.1 47 23903 1454.71 8.75 21.24

average: 1281.68 38.24 5664 812.68 9.16 22.4

Based on the information provided in the tables 3.1, 3.2, and 3.3, the average time/num-
ber of pairs required to find transformation for data sets with size 200 are 785/1152,
812/1281, and 4082/29404 milliseconds/pairs for FPPMA-kNN, FPPMA-dNN, and FPPMA-
gNN, respectively. Thus, we can say FPPMA-kNN and FPPMA-dNN act almost the same
and they are much faster than FPPMA-gNN. On the other hand, by comparing average
distances information the story can be changed. Based on the average timing, although
FPPMA-gNN is slow, its accuracy can be much better than FPPMA-kNN and FPPMA-
dNN. The average distances/average max distances are 10.24/25.5, 9.16/22.4, and 8.1/20.99
for FPPMA-kNN, FPPMA-dNN, and FPPMA-gNN, respectively. All in all, we can say for
timing purposes FPPMA-kNN and FPPMA-dNN are better, and for accuracy, FPPMA-
gNN is better than the others.

17

Table 3.3: For each argument, the best parameters and results for FPPMA-gNN runs with
complete matching data (CM-DATA) are provided.

arguments parameters results
ρ λ k k2 k3 #soln #pairs #pairs #pairs ave ave ave

(min) (max) time dist max dist
1 0.9 0.2 5 1 2 4 / 20 38026.35 10729 53361 777.61 4.11 9.82
2 0.9 0.2 5 2 3 15 / 20 20054.85 712 44100 1618.34 6.15 15.42
3 0.9 0.2 5 3 3 18 / 20 16720.7 377 42849 3181.28 6.34 14.91
4 0.9 0.4 5 3 3 18 / 20 10244.85 50 42849 1859.94 9.95 24.3
5 0.9 0.2 5 3 4 17 / 20 16805.1 177 42849 6680.59 6.21 14.68
6 0.9 0.4 5 3 4 18 / 20 11741.5 473 42849 4992.88 11.52 28.6
7 0.9 0.2 6 1 2 1 / 20 41103.8 32041 53361 692.21 7.02 17.01
8 0.9 0.2 6 2 3 3 / 20 38166 9233 53361 2133.93 4.3 10.8
9 0.9 0.2 6 3 3 6 / 20 36562.65 4791 53361 4096.25 5.42 14.27
10 0.9 0.4 6 3 3 11 / 20 26303.6 1876 50176 2802.22 9.95 25.23
11 0.9 0.2 6 3 4 7 / 20 34464.7 5333 53361 8603.99 5.59 14.44
12 0.9 0.4 6 3 4 11 / 20 28399.3 1149 53361 6970.09 9.25 23.69
13 0.75 0.4 6 3 4 17 / 20 23333.7 9042 50176 5558 13.45 36.58
14 0.75 0.4 7 2 3 1 / 20 41103.8 32041 53361 1994.67 7.22 18.8
15 0.75 0.4 7 3 3 1 / 20 40444.65 21042 53361 3201.17 9.16 29.53
16 0.75 0.4 7 4 4 6 / 20 35294.15 2289 53361 10322.98 14.12 43.78
17 0.75 0.4 9 3 4 1 / 20 41103.8 32041 53361 3923.53 8.01 15

average: 29404.32 9611.53 49968.12 4082.92 8.1 20.99

18

3.2.2 Partial Matching (PM-DATA)

Partial matching means the cardinalities of the point sets are not equal, that is, a smaller
set is matched to a subset of equal size of the bigger set, see Figures 3.1c and 3.1d. In this
project, different kinds of partial matching data are considered.

Partial Matching - Portion (PM-P-DATA):

In this case, for the data set mentioned in 3.1, the point set P is extracted in portion,
the neighborhood of the points are intact. For example, take a look at Figure 3.1c, we
run FPPMA-kNN, FPPMA-dNN, and FPPMA-gNN with different PM-P-DATA data, and
summarized information can be found in the following tables.

Table 3.4: Summary of results of FPPMA-kNN with partial matching data (PM-P-DATA)
is provided.

results
#soln #pairs #pairs (min) #pairs (max) time ave dist ave max dist

average: 60 / 60 621.96 13.67 2731.19 309.42 9.82 24.33

Table 3.5: Summary of results of FPPMA-dNN with partial matching data (PM-P-DATA)
is provided.

results
#soln #pairs #pairs (min) #pairs (max) time ave dist ave max dist

average: 60 / 60 1116.57 15.83 2084.11 456.57 9.11 22.83

Table 3.6: Summary of results of FPPMA-gNN with partial matching data (PM-P-DATA)
is provided.

results
#soln #pairs #pairs (min) #pairs (max) time ave dist ave max dist

average: 17 / 60 11718 1793.05 2539.43 1880.76 4.35 13.65

19

Partial Matching - Randomly Removed (PM-R-DATA):

Here, for the data set mentioned in 3.1, the point set P is extracted by random removal
of points. Therefore, it is worth to mention that unlike PM-P-DATA, for PM-R-DATA the
neighborhoods of the points are changed. For example, take a look at Figure 3.1d. We
run FPPMA-kNN, FPPMA-dNN, and FPPMA-gNN with different PM-R-DATA data, and
summarized information can be found in the following tables where for each data set only
20 percent of the points are removed randomly.

Table 3.7: Summary of results of FPPMA-kNN with partial matching data (PM-R-DATA)
is provided.

results
#soln #pairs #pairs (min) #pairs (max) time ave dist ave max dist

average: 20 / 20 1957.46 54.24 5460.89 768.62 10.04 24.59

Table 3.8: Summary of results of FPPMA-dNN with partial matching data (PM-R-DATA)
is provided.

results
#soln #pairs #pairs (min) #pairs (max) time ave dist ave max dist

average: 20 / 20 1319.33 89.38 3830.57 649.21 8.77 20.89

Table 3.9: Summary of results of FPPMA-gNN with partial matching data (PM-R-DATA)
is provided.

results
#soln #pairs #pairs (min) #pairs (max) time ave dist ave max dist

average: 7.9 / 20 25858.35 8448.65 1622.52 3186.01 9.64 23.71

20

3.3 Experimental Running Time of FPPMA-kNN

In table 3.10, FPPMA-kNN is run over sample data points with different sizes. In the table,
#pairs shows the average number of pairs of points that are checked for a local match and
time is the running time in milliseconds. Each row shows the average number of pairs and
time of running FPPMA-kNN over 10 trials on each specific sample data. For each row, in
each trial, the sample data remains intact. However, consider that in each trail the order of
picking points from P and Q is by random order. All in all, based on the table 3.10, in the
worst case, the time is basically the number of pairs times O(n).

Table 3.10: This table shows running time information of FPPMA-kNN over sample data
with different sizes.

sample size #pairs time
200 694 406
500 871 1177
1000 641 1581
1500 2882 10892
2000 14561 70971
3000 13826 113625
5000 44391 771616

21

3.4 Correspondence Strategies Evaluation

As we mentioned in Section 2.3, three different matching strategies are studied and imple-
mented in the current project. We use different data points to evaluate the performance of
each of the strategies. For evaluation, we count the number of matched pairs that are not
correct, i.e. mismatches. In table 3.11, summarized information of evaluations of strategies
with different data points and configurations are given. In all evaluations, the size of the
input is about 200. Based on the table 3.11, the average number of mismatches are 49, 40,
and 9 for the Nearest Neighbor, Unweighted, and Weighted matching strategies, respectively.
Therefore, the original method is the worst strategy with the highest number of mismatches
while it is fast. On the other hand, Weighted Matching is the best strategy with the lowest
number of mismatches while it is slow. All in all, to have an acceptable correspondence
among among matched points, Weighted Matching strategy is the better choice.

Table 3.11: This table shows average number of mismatches among points for evaluation
of FPPMA-kNN with different matching strategies and configurations over different data
points. The size of the input is about 200 for each data set.

rho lambda k k2 k3 ave time number of mismatches
Nearest Neighbor

0.9 0.2 5 2 3

883.13 50
Unweighted Matching 964.86 40

Weighted Matching 1480.91 8
Nearest Neighbor

0.9 0.2 5 3 3

1041.65 48
Unweighted Matching 1121.34 40

Weighted Matching 2093.65 10

22

3.5 Method to Compare - Gaussian Mixture Models

In this section, Robust Point Set Registration Using Gaussian Mixture Models (GMM-
Reg) [30] is chosen as a method of point set registration to compare against our imple-
mentation. In this registration method, the key idea is to represent the input point sets
using Gaussian Mixture Models (GMMs). Therefore, aligning the two GMMs can be seen
as a point set registration. Minimizing the Euclidean distance of the two GMMs estimates
the transformation of two point sets, as an example of matching see Figure 3.3.

(a) A sample input of two incomplete fishes. (b) Green points are the transformed points
using GMMReg.

Figure 3.3: An experiment on a pair of incomplete fish shapes by GMMReg method.

It is worth to mention that, in [13], to improve the robustness to outliers, noises,
and occlusions, Campbell et. al. developed a support vector-parametrized Gaussian mix-
ture (SVGM) method, which is an adaptive data representation method of point sets. Here,
the point set is shown by a one-class support vector model (SVM) and the output function
is approximated by a GMM.

To evaluate and compare the performance of the GMMs, as before we use the C++
implementation of GMMReg [30], and the Mean Squared Error Distance (MSED) as the
cost function of the optimization problem. The transformed function in the GMMReg is
chosen using a nonrigid transformation, and the parameters in this representative algorithm
are set as in the original paper. GMMReg is carried out until it is converged or runs at least
50 iterations. The evaluation information is presented in the following table 3.12.

Now, we have enough information to compare FPPMA and GMMReg with different
types of data including complete matching and partial matching.

First, for the complete matching, based on the provided information in tables 3.1, 3.2,
and 3.3, by setting proper parameters using FPPMA the average errors are near 7 and
15 for average distance and average maximum distance, respectively. However, based on
the table 3.12, for the same set of data, using GMMReg we can achieve 3.48 and 9.14
for average distance and average maximum distance errors, respectively. Clearly, GMMReg
beats FPPMA for the complete matching data.

23

Table 3.12: Experiment using GMM with different types of data.

results
time ave dist ave max dist

Complete Matching 5442.82 3.48 9.14
PM-P-DATA 3623.56 11.98 30.54

PM-R-DATA (20%) 4946.22 5.62 15.25

On the other hand, for the partial matching including PM-P-DATA and PM-R-DATA
the story is different. Based on the tables 3.4, 3.5, 3.6, and 3.12, the average distances/av-
erage max distances are 3.1/9.5 and 11.98/30.54 for for FPPMA and GMMReg with PM-
P-DATA data, respectively. Also, for PM-R-DATA, the average distances/average max dis-
tances are 3.2/8.8 and 5.62/15.25 for FPPMA and GMMReg, respectively. In both cases,
the accuracy of FPPMA beats GMMReg.

All in all, we can say GMMReg and FPPMA are better for complete matching and
partial matching, respectively. In Figure 3.4, an example of the result for partial matching
is shown.

(a) An example input of PM-
R-DATA where point set P
and Q are shown using blue
(20% of the points are re-
moved) and red points, re-
spectively.

(b) Green points indicate
transformed points using
FPPMA-kNN. The average
distances and max distance
are 2.6 and 5.4, respectively.

(c) Green points indicate
transformed points using
GMMReg. The average dis-
tances and max distance are
7.01 and 16.14, respectively.

Figure 3.4: A comparison result between FPPMA and GMMReg with PM-R-DATA.

24

Chapter 4

Groupwise Point Set Registration

In this section, we consider another variant of the point pattern matching problem, that is,
Group-wise point set registration.

Let P ′ = {p′1, p′2, ..., p′n′} and P ′′ = {p′′1, p′′2, ..., p′′n′′} be two point sets. Let P = P ′ ∪ P ′′

denote the union of the two point sets. Note that, we don’t know about point sets P ′ and
P ′′, and we only have point set P as a union of the two point sets. However, we know that it
is exactly two different transformations that can transform point set P into the target point
set. For example, imagine a situation where P is a point set that contains two different
objects (each point set P ′ and P ′′ represents a different object). Therefore, we need to find
two different transformations to have a good match, as an example see Figure 4.1.

(a) Point set P contains data points for two
different objects.

(b) Point set Q contains data points with dif-
ferent transformed objects of point set P .

Figure 4.1: This figure shows a point set P , and its transformation by two different sets of
parameters.

4.1 Groupwise method using FPPMA

In this project, the FPPMA algorithm is used sequentially to overcome the challenge of
multiple point sets registration problem. Here, the idea is to find a transformation for one

25

of the subsets of P , and then go for the rest of the points. However, the issue is that we don’t
know about P ′ and P ′′. Also, due to the presence of the two objects, the neighborhoods
of the points change, and this makes the process more difficult. Clearly, if the number of
points in one of the subsets (say P ′) is known then we can find a transformation (say T ′)
for P ′. To do that, FPPMA is used by setting ρ close to |P

′|
|P | . Then, we remove the selected

points in P and their corresponding matches in Q. Next, FPPMA is run once more over
the remaining points. Note that, if T ′ is a good transformation, FPPMA has to find a good
transformation for the rest of the points. Therefore, for the second round of the algorithm,
we should set ρ with a high percentage (say 0.8). Therefore, the idea is to try different
values for ρ to get the result. For example, we can do binary search between 1

100 and 5
10 ,

and stop the process whenever FPPMA can find a good transformation with a high ρ as a
parameter in the second phase.

4.2 Groupwise Experiments

The implementation is tested using some 2D point-sets. To evaluate Groupwise method,
FPPMA-kNN is used because it is faster. Again, to evaluate the performance of the ex-
periment, we use the Mean Squared Error Distance (MSED) as the cost function of the
optimization problem.

Here, like before, all of our experiments were performed on a PC with 16 GB of RAM
and an Intel(R)Core(TM) i7-3770 CPU (3.40GHz). Also, C++ is used for implementation.

Summarized information and sample illustration can be found in the following tables
and figures.

Table 4.1: Runtime information of Pairwise implementation of FPPMA for different values
of ρ (time is represented in milliseconds).

rho #pairs time ave dist ave max dist
0.5 22627 105918.54 49.4 315.34
0.48 9664 64926.31 47.94 293.9
0.46 4014 54822.51 50.29 312.21
0.44 7308 226825.63 43.84 294.34
0.42 5641 235061.92 50.99 314.89
0.4 23021 1821238.16 45.35 300.23
0.38 25370 2633175.98 45.35 300.23
0.36 17145 2534273.23 45.35 300.23

26

Based on the Figure 4.2, the required time to do Pairwise FPPMA is increased by
moving away from ρ = 0.5 for the set of points that are almost in the same size, that is, ρ
should be close to 0.5.

Figure 4.2: Time chart based on the table 4.1. This figure shows the required time for
Pairwise FPPMA in milliseconds for different ρs. Time is increased by moving away from
ρ = 0.5.

(a) Output example for Pairwise FPPMA
with ρ = 0.42.

(b) Output example for Pairwise FPPMA
with ρ = 0.5.

Figure 4.3: This figure shows output examples of Pairwise FPPMA for ρ = 0.42 and ρ = 0.50
with input data of Figure 4.1.

27

Chapter 5

Conclusion

In this project, we studied, implemented, tested, and evaluated FPPMA which is one of the
fastest algorithmic approaches to the point pattern matching problem [43]. The elements
of the set are points in R2, and the pattern set can undertake translation, rotation, and
scaling. We consider Euclidean distance as similarity and dissimilarity measures.

In Chapter 2, we give a description of FPPMA [43] and the details of its implementation.
We implemented FPPMA with three different neighborhood metrics, that is, FPPMA-
kNN, FPPMA-dNN, and FPPMA-gNN for k nearest, Delaunay, and Gabriel neighbors,
respectively. Moreover, we extended FPPMA by adding two different strategies of picking
matched points, i.e. Unweighted and Weighted matching strategies.

In Chapter 3, we evaluated different implementations of FPPMA including FPPMA-
kNN, FPPMA-dNN, and FPPMA-gNN with three different matching strategies. We then
showed the experimental results (including the average number of selected pairs, average
running time, average error distances) of these evaluations. All in all, we can say for timing
purposes FPPMA-kNN and FPPMA-dNN are better, and for accuracy, FPPMA-gNN is
better than the others. For matching strategies, Weighted Matching strategy is the better
choice while it is a little bit slow. In the end, we had a comparison between FPPMA-
kNN and the well-known GMMReg method. We can say GMMReg and FPPMA are better
for complete matching and partial matching (including PM-P-DATA and PM-R-DATA),
respectively.

In Chapter 4, we used and evaluated FPPMA-kNN to solve groupwise version of the
registration problem. It is observed that FPPMA can be generalized to solve this version of
the problem as well.

Many different tasks have been left for the future due to lack of time. For example, all
the ideas explored in this project can be easily extended to higher dimensions. As another
example, the problem of efficiently localizing the search for a matched point under general
transformation is still unresolved. This problem is solved here by a randomized exhaustive
search method.

28

Bibliography

[1] ANN: A library for approximate nearest neighbor searching. https://www.cs.umd.
edu/~mount/ANN/. Accessed: 2019-09-15.

[2] Oswin Aichholzer, Helmut Alt, and Günter Rote. Matching shapes with a reference
point. International Journal of Computational Geometry & Applications, 7(04):349–
363, 1997.

[3] Dror Aiger and Klara Kedem. Geometric pattern matching for point sets in the plane
under similarity transformations. Information Processing Letters, 109(16):935–940,
2009.

[4] Helmut Alt, Bernd Behrends, and Johannes Blömer. Approximate matching of polyg-
onal shapes. In Proceedings of the Seventh Annual Symposium on Computational Ge-
ometry, pages 186–193, 1991.

[5] Helmut Alt and Leonidas J Guibas. Discrete geometric shapes: Matching, interpolation,
and approximation. Handbook of Computational Geometry, 1:121–153, 1999.

[6] Helmut Alt, Kurt Mehlhorn, Hubert Wagener, and Emo Welzl. Congruence, similarity,
and symmetries of geometric objects. Discrete & Computational Geometry, 3(1):237–
256, 1988.

[7] Marc Benkert, Joachim Gudmundsson, Damian Merrick, and Thomas Wolle. Approx-
imate one-to-one point pattern matching. Journal of Discrete Algorithms, 15:1–15,
2012.

[8] Arijit Bishnu, Sandip Das, Subhas C Nandy, and Bhargab B Bhattacharya. Simple
algorithms for partial point set pattern matching under rigid motion. Pattern Recog-
nition, 39(9):1662–1671, 2006.

[9] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory with
applications, volume 290. Macmillan London, 1976.

[10] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM Computing
Surveys, 24(4):325–376, 1992.

[11] Sergio Cabello, Panos Giannopoulos, Christian Knauer, and Günter Rote. Matching
point sets with respect to the earth mover’s distance. In European Symposium on
Algorithms, pages 520–531, 2005.

29

https://www.cs.umd.edu/~mount/ANN/
https://www.cs.umd.edu/~mount/ANN/

[12] Tiberio S Caetano, Terry Caelli, Dale Schuurmans, and Dante Augusto Couto Barone.
Graphical models and point pattern matching. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(10):1646–1663, 2006.

[13] Dylan Campbell and Lars Petersson. An adaptive data representation for robust point-
set registration and merging. In Proceedings of the IEEE International Conference on
Computer Vision, pages 4292–4300, 2015.

[14] L.Paul Chew, Michael T. Goodrich, Daniel P. Huttenlocher, Klara Kedem, Jon M.
Kleinberg, and Dina Kravets. Geometric pattern matching under euclidean motion.
Computational Geometry, 7(1):113 – 124, 1997.

[15] S. Cohen and L. Guibasm. The earth mover’s distance under transformation sets.
In Proceedings of the Seventh IEEE International Conference on Computer Vision,
volume 2, pages 1076–1083, 1999.

[16] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-
putational geometry. In Computational geometry, pages 1–17. Springer, 1997.

[17] Hu Ding and Jinhui Xu. Fptas for minimizing the earth mover’s distance under rigid
transformations and related problems. Algorithmica, pages 1–30, 2016.

[18] Boris A Dubrovin, Anatolij Timofeevic Fomenko, and Sergei Petrovich Novikov. Mod-
ern geometry methods and applications: Part II: The geometry and topology of mani-
folds, volume 104. Springer Science & Business Media, 2012.

[19] Alon Efrat, Alon Itai, and Matthew J Katz. Geometry helps in bottleneck matching
and related problems. Algorithmica, 31(1):1–28, 2001.

[20] Paul Finn, Dan Halperin, Lydia Kavraki, Jean-Claude Latombe, Rajeev Motwani,
Christian Shelton, and Suresh Venkatasubramanian. Geometric manipulation of flexi-
ble ligands. Applied Computational Geometry Towards Geometric Engineering, pages
67–78, 1996.

[21] PW Finn, LE Kavraki, JC Latombe, R Motwani, C Shelton, S Venkatasubramanian,
and A Yao. Rapid: Randomized pharmacophore identification for drug design. In
Proceedings of the Thirteenth Annual Symposium on Computational Geometry, 1997.

[22] David Forsyth, Joseph L Mundy, Andrew Zisserman, Chris Coelho, Aaron Heller, and
Charlie Rothwell. Invariant descriptors for 3 d object recognition and pose. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(10):971–991, 1991.

[23] K Ruben Gabriel and Robert R Sokal. A new statistical approach to geographic
variation analysis. Systematic zoology, 18(3):259–278, 1969.

[24] David Gans. Transformations and geometries. Appleton-Century-Crofts New York,
1969.

[25] Warren F Gardner and Daryl T Lawton. Interactive model-based vehicle tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(11):1115–1121,
1996.

30

[26] Michael T Goodrich, Joseph SB Mitchell, and Mark W Orletsky. Approximate geo-
metric pattern matching under rigid motions. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21(4):371–379, 1999.

[27] WEL Grimson, RJFA Kikinis, Ferenc A Jolesz, and PM Black. Image-guided surgery.
Scientific American, 280(6):54–61, 1999.

[28] Liisa Holm and Chris Sander. Mapping the protein universe. Science, 273(5275):595,
1996.

[29] Daniel P Huttenlocher, Klara Kedem, and Micha Sharir. The upper envelope of voronoi
surfaces and its applications. Discrete & Computational Geometry, 9(3):267–291, 1993.

[30] Bing Jian and Baba C Vemuri. Robust point set registration using gaussian mixture
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1633–
1645, 2010.

[31] Oliver Klein and Remco C Veltkamp. Approximation algorithms for the earth mover’s
distance under transformations using reference points. 2005.

[32] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lucas
Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, et al. The
digital michelangelo project: 3d scanning of large statues. In Proceedings of the Twenty
Seventh Annual Conference on Computer Graphics and Interactive Techniques, pages
131–144, 2000.

[33] Julian J McAuley, Tibério S Caetano, and Marconi S Barbosa. Graph rigidity, cyclic
belief propagation, and point pattern matching. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 30(11):2047–2054, 2008.

[34] David M Mount. Cmsc 754 computational geometry. Lecture Notes for Spring, 2007.

[35] David M Mount, Nathan S Netanyahu, and Jacqueline Le Moigne. Efficient algorithms
for robust feature matching. Pattern recognition, 32(1):17–38, 1999.

[36] David Mumford. Mathematical theories of shape: Do they model perception? In
proceeding of the International Society for Optics and Photonics, pages 2–10, 1991.

[37] F Murtagh. A new approach to point pattern matching. Publications of the Astronom-
ical Society of the Pacific, 104(674):301, 1992.

[38] Raquel Norel, Daniel Fischer, Haim J Wolfson, and Ruth Nussinov. Molecular surface
recognition by a computer vision-based technique. Protein Engineering, 7(1):39–46,
1994.

[39] James B Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, 41(2):338–350, 1993.

[40] Stefano Rebay. Efficient unstructured mesh generation by means of delaunay triangula-
tion and bowyer-watson algorithm. Journal of Computational Physics, 106(1):125–138,
1993.

31

[41] Azriel Rosenfeld. Image analysis and computer vision. Computer Vision and Image
Understanding, 74(1):36–95, 1999.

[42] Oliver Van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. A survey
on shape correspondence. In Computer Graphics Forum, volume 30, pages 1681–1707.
Wiley Online Library, 2011.

[43] Paul B Van Wamelen, Z Li, and SS Iyengar. A fast expected time algorithm for the
2-d point pattern matching problem. Pattern Recognition, 37(8):1699–1711, 2004.

[44] Remco C. Veltkamp and Michiel Hagedoorn. State of the art in shape matching, pages
87–119. Springer London, 2001.

[45] Xiaoyun Wang and Xianquan Zhang. Point pattern matching algorithm for planar
point sets under euclidean transform. Journal of Applied Mathematics, 2012, 2012.

[46] Gerald Weber, Lars Knipping, and Helmut Alt. An application of point pattern match-
ing in astronautics. Journal of Symbolic Computation, 17(4):321–340, 1994.

[47] Thomas D Wu, Scott C Schmidler, Trevor Hastie, and Douglas L Brutlag. Modeling
and superposition of multiple protein structures using affine transformations: Analysis
of the globins. Patient Assessment Of Constipation Symptoms on Bio, pages 507–518,
1998.

32

Appendix A

Point Pattern Matching
Implementation

Implementation A.1: Transformation Finder Class
1
2 c l a s s TransformationFinder {
3 protec ted :
4 // parameters
5 i n t k = 5 ;
6 i n t k2 = 1 , k3 = 2 ;
7
8 f l o a t t = 0 . 0 5 ;
9 f l o a t lambda = 0 . 2 ;

10
11 f l o a t rho = 0 . 9 0 ;
12
13 // 0 = the d e f a u l t i . e . no matching ,
14 // 1 = simple matching , 2 = weighted matching
15 i n t _matching_mode = 0 ;
16
17
18 // data
19 ANNpointArray p_data ;
20 i n t p_size ;
21 vector<int > p_indices ;
22
23 ANNpointArray q_data ;
24 i n t q_size ;
25 vector<int > q_indices ;
26
27
28 // t o o l s
29 BaseFinder ∗ pFinder ;
30 BaseFinder ∗ qFinder ;
31
32 Grid ∗ _grid ;
33
34 vector<int > G_L1;
35 vector<int > G_L2;
36

33

37 bool is_found = f a l s e ;
38 double _tx ;
39 double _ty ;
40 double _rotat ion ;
41 double _scale ;
42 ANNpointArray transformed_data ;
43
44 clock_t pStart , pEnd ;
45 clock_t qStart , qEnd ;
46 clock_t tStar t , tEnd ;
47
48 i n t p_considered_num = 0 ;
49
50 // s e t data
51 void setData (ANNpointArray &p_set , i n t p_size , vector <int >
52 &p_indices , ANNpointArray &q_set , i n t q_size , vector <int >
53 &q_indices) ;
54
55 // s e t parameters
56 void setParameters (i n t k , i n t k2 , i n t k3 , f l o a t lambda , f l o a t rho) ;
57
58 // get average d i s t a n c e from min c i r c l e (i . e . r / s q r t (s i z e))
59 void getAverageDist (ANNpointArray &data , i n t s i z e , double &r e s) ;
60
61 bool find_a_local_match (i n t idx_p , i n t idx_q) ;
62
63 bool is_a_global_match (Transform2 &the_trans format ion) ;
64
65 bool is_a_global_match_graph (Transform2 &the_trans format ion) ;
66
67 bool is_a_global_match_graph_weighted (Transform2 &the_trans format ion) ;
68
69 pub l i c :
70 // c o n s t r u c t o r d e f i n i t i o n
71 TransformationFinder (ANNpointArray &p_set , i n t p_size , vector<int >
72 &p_indices , ANNpointArray &q_set , i n t q_size , vector <int >
73 &q_indices) ;
74
75 TransformationFinder (ANNpointArray &p_set , i n t p_size , vector<int >
76 &p_indices , ANNpointArray &q_set , i n t q_size , vector <int >
77 &q_indices , i n t k , i n t k2 , i n t k3 , f l o a t lambda ,
78 f l o a t rho) ;
79
80 ~ TransformationFinder () ;
81
82 // i n i t i a l i z a t i o n
83 void i n i t (i n t _mode) ;
84
85 void setMatchingMode (i n t _mode) ;
86
87 bool to_f ind_trans format ion () ;
88
89 double get_time (char _t) ;
90
91 void save_transformed_data (s t r i n g path) ;
92
93 void pr int_trans format ion () ;
94

34

95 void d i s p l a y () ;
96
97 void save_matched_points (s t r i n g path) ;
98
99 // to get matched po in t s data to a f i l e

100 void save_matched_points_data (s t r i n g path) ;
101
102 i n t get_number_matched () ;
103
104 void get_unmatched_points () ;
105
106 void get_unmatched_points (ANNpointArray &e_p_set , i n t &e_p_size ,
107 vector<int > &e_p_indices , ANNpointArray &e_q_set , i n t &e_q_size ,
108 vector<int > &e_q_indices) ;
109
110 void save_unmatched_points (s t r i n g path) ;
111
112 i n t get_number_unmatched () ;
113
114 void get_mismatched_points (vector <int > &s h u f f l e _ v e c t o r) ;
115
116 void save_mismatched_points (vector<int > &shu f f l e_vec to r , s t r i n g path) ;
117
118 i n t get_number_mismatches (vector<int > &s h u f f l e _ v e c t o r) ;
119
120 void save_info (s t r i n g path , vector <int > &s h u f f l e _ v e c t o r) ;
121
122 s t a t i c double get_hausdor f f_dis t (ANNpointArray &t_data , i n t t_size ,
123 ANNpointArray &q_data , i n t q_size) ;
124
125 double get_hausdor f f_distance () ;
126
127 s t a t i c void make_ini (s t r i n g path , s t r i n g base_path) ;
128
129 i n t get_p_considered_num () {
130 return p_considered_num ;
131 }
132 } ;
133
134 //−−−−−−−−−−−−−−−−−−−−−−−−−−− Implementation Part −−−−−−−−−−−−−−−−−−−−−−

35

Appendix B

Proximity Related Code

Implementation B.1: Base Proximity Finder Class
1
2 // ===================== BNFinder ==========================
3 c l a s s BaseFinder {
4 protec ted :
5
6 double eps = 0 ;
7
8 i n t nPts ; // ac tua l number o f data po in t s
9 ANNpointArray dataPts ; // data po in t s

10
11 vec to r <vector<int >> nn_l i s t ;
12
13 pub l i c :
14 BaseFinder (ANNpointArray &points , i n t p_size , double e = 0) {
15 th i s −>eps = e ;
16
17 // dataPts = annAllocPts (maxPts , dim) ;
18 // a l l o c a t e data po in t s
19 th i s −>dataPts = po in t s ;
20 th i s −>nPts = p_size ;
21 }
22
23 ~BaseFinder () {}
24
25 v i r t u a l void makeNNList (i n t k) = 0 ;
26
27 ANNpointArray getDataPts () {
28 return dataPts ;
29 }
30
31 vec to r <vector<int >> get_nn_list () {
32 return nn_l i s t ;
33 }
34 } ;

36

Implementation B.2: Nearest Neighbor Finder Class
1
2 // ===================== NNFinder ==========================
3 c l a s s NNFinder : pub l i c BaseFinder {
4
5 ANNkd_tree ∗kdTree ; // search s t r u c t u r e
6
7 ANNidxArray nnIdx ; // a l l o c a t e near neigh i n d i c e s
8 ANNdistArray d i s t s ; // a l l o c a t e near ne ighbor d i s t s
9 pub l i c :

10 NNFinder (ANNpointArray &points , i n t p_size , double e = 0)
11 : BaseFinder (po ints , p_size , e) {
12 // bu i ld search s t r u c t u r e
13 th i s −>kdTree = new ANNkd_tree (
14 dataPts , // the data po in t s
15 nPts , // number o f po in t s
16 2) ; // dimension o f space
17 }
18
19 ~NNFinder () {
20 d e l e t e kdTree ;
21 }
22
23 void makeNNList (i n t k) {
24 i f (k >= nPts)
25 k = nPts − 1 ;
26
27 // a l l o c a t e near neigh i n d i c e s
28 nnIdx = new ANNidx [k + 1] ;
29 // a l l o c a t e near ne ighbor d i s t s
30 d i s t s = new ANNdist [k + 1] ;
31
32 f o r (i n t i = 0 ; i < nPts ; i++) {
33 kdTree−>annkSearch (// search
34 dataPts [i] , // query po int
35 k + 1 , // number o f near ne ighbors
36 nnIdx , // nea r e s t ne ighbors (returned)
37 d i s t s , // d i s t a n c e (returned)
38 th i s −>eps) ; // e r r o r bound ‘
39
40 vector <int > temp_list ;
41 // s t a r t from 1 because index 0 i s the query po int i t s e l f
42 f o r (i n t j = 1 ; j <= k ; j++)
43 temp_list . push_back (nnIdx [j]) ;
44 nn_l i s t . push_back (temp_list) ;
45 }
46
47 // c l ean th ing s up
48 d e l e t e [] nnIdx ;
49 d e l e t e [] d i s t s ;
50 }
51
52 vector<int > getNN(ANNpoint _query , i n t k) {
53 i f (k >= nPts)
54 k = nPts − 1 ;
55
56 nnIdx = new ANNidx [k + 1] ; // a l l o c a t e near neigh i n d i c e s
57 d i s t s = new ANNdist [k + 1] ; // a l l o c a t e near ne ighbor d i s t s

37

58
59
60 kdTree−>annkSearch (// search
61 _query , // query po int
62 k + 1 , // number o f near ne ighbors
63 nnIdx , // nea r e s t ne ighbors (returned)
64 d i s t s , // d i s t a n c e (returned)
65 th i s −>eps) ; // e r r o r bound ‘
66
67 vector <int > temp_list ;
68 // s t a r t from 1 because index 0 i s the query po int i t s e l f
69 f o r (i n t j = 1 ; j <= k ; j++)
70 temp_list . push_back (nnIdx [j]) ;
71
72 d e l e t e [] nnIdx ; // c l ean th ing s up
73 d e l e t e [] d i s t s ;
74
75 return temp_list ;
76 }
77
78 ANNpointArray getDataPts () {
79 return dataPts ;
80 }
81
82 vec to r <vector<int >> get_nn_list () {
83 return nn_l i s t ;
84 }
85 } ;

Implementation B.3: Delaunay Finder Class
1
2 // ===================== DNFinder ==========================
3 c l a s s DNFinder : pub l i c BaseFinder
4 {
5 protec ted :
6 vector<DPoint<f l o a t >> d_points ;
7 Delaunay<f l o a t > _tr i angu la t i on ;
8 pub l i c :
9 DNFinder (ANNpointArray &points , i n t p_size , double e = 0)

10 : BaseFinder (po ints , p_size , e) {
11 f o r (i n t i = 0 ; i < p_size ; i++)
12 th i s −>d_points . push_back ({ i , po in t s [i] [0] , po in t s [i] [1] }) ;
13 }
14
15 ~DNFinder () {}
16
17 void makeNNList (i n t k) {
18 i f (k >= th i s −>nPts)
19 k = th i s −>nPts − 1 ;
20
21 th i s −>_tr iangu la t i on = t r i a n g u l a t e (th i s −>d_points) ;
22
23 std : : vector<std : : vector <int >> vec (th i s −>nPts , s td : : vector<int >(0)) ;
24
25 f o r (auto const& e : th i s −>_tr iangu la t i on . edges) {
26 i f (! (f i n d (vec [e . p0 . idx] . begin () , vec [e . p0 . idx] . end ()
27 , e . p1 . idx) != vec [e . p0 . idx] . end ()))

38

28 vec [e . p0 . idx] . push_back (e . p1 . idx) ;
29
30 i f (! (f i n d (vec [e . p1 . idx] . begin () , vec [e . p1 . idx] . end ()
31 , e . p0 . idx) != vec [e . p1 . idx] . end ()))
32 vec [e . p1 . idx] . push_back (e . p0 . idx) ;
33 }
34
35 f o r (i n t i = 0 ; i < th i s −>nPts ; i++) {
36 nn_l i s t . push_back (vec [i]) ;
37 }
38 }
39 } ;

Implementation B.4: Gabriel Finder Class
1
2 // ===================== GNFinder ==========================
3 c l a s s GNFinder : pub l i c DNFinder
4 {
5 pub l i c :
6 GNFinder (ANNpointArray &points , i n t p_size , double e = 0)
7 : DNFinder (po ints , p_size , e) {}
8
9 void makeNNList (i n t k) {

10 i f (k >= th i s −>nPts)
11 k = th i s −>nPts − 1 ;
12
13 th i s −>_tr iangu la t i on = t r i a n g u l a t e (th i s −>d_points) ;
14
15 std : : vector<std : : vector <int >> vec (th i s −>nPts , s td : : vector<int >(0)) ;
16
17 NNFinder ∗ aFinder = new NNFinder (th i s −>dataPts , th i s −>nPts , 0) ;
18
19 f o r (auto const& e : th i s −>_tr iangu la t i on . edges) {
20 // query po int to f i n d the nea r e s t ne ighbor in Q with in 2 t
21 ANNpoint pt = annAllocPt (2) ;
22 pt [0] = e . mid . x ;
23 pt [1] = e . mid . y ;
24 vector <int > t _ l i s t = aFinder−>getNN(pt , 1) ;
25 i n t id = t _ l i s t [0] ;
26 ANNdist d i s t = annDist (2 , pt , th i s −>dataPts [id]) ;
27 double _rea l_dist = ANN_ROOT(d i s t) ;
28 i f (! (_rea l_dist > e . rad)) cont inue ;
29
30 i f (! (f i n d (vec [e . p0 . idx] . begin () , vec [e . p0 . idx] . end ()
31 , e . p1 . idx) != vec [e . p0 . idx] . end ()))
32 vec [e . p0 . idx] . push_back (e . p1 . idx) ;
33
34 i f (! (f i n d (vec [e . p1 . idx] . begin () , vec [e . p1 . idx] . end ()
35 , e . p0 . idx) != vec [e . p1 . idx] . end ()))
36 vec [e . p1 . idx] . push_back (e . p0 . idx) ;
37 }
38
39 f o r (i n t i = 0 ; i < th i s −>nPts ; i++) {
40 nn_l i s t . push_back (vec [i]) ;
41 }
42 }
43 } ;

39

Appendix C

Tools

Implementation C.1: Grid Class
1
2 c l a s s Grid {
3 double s ide_len = 0 ;
4 double min_x = 0 , min_y =0, max_x = 0 , max_y = 0 ;
5 double l_x = 0 , l_y = 0 ;
6
7 i n t n_rows = 0 , n_cols = 0 ;
8
9 ANNpointArray po in t s ;

10 i n t nPts ; // ac tua l number o f data po in t s
11 i n t s i z e = 0 ;
12 vector<int >∗ _grid ;
13 p r i v a t e :
14 void i n i t (ANNpointArray pts , i n t s i z e , double s ide_len) {
15 th i s −>po in t s = pts ;
16 th i s −>nPts = s i z e ;
17 th i s −>side_len = s ide_len ;
18 double min_x = po in t s [0] [0] , min_y = po in t s [0] [1]
19 , max_x = po in t s [0] [0] , max_y = po in t s [0] [1] ;
20
21 f o r (i n t i = 0 ; i < s i z e ; i++) {
22 i f (po in t s [i] [0] < min_x)
23 min_x = po in t s [i] [0] ;
24
25 i f (po in t s [i] [0] > max_x)
26 max_x = po in t s [i] [0] ;
27
28 i f (po in t s [i] [1] < min_y)
29 min_y = po in t s [i] [1] ;
30
31 i f (po in t s [i] [1] > max_y)
32 max_y = po in t s [i] [1] ;
33 }
34
35 double l_x = fabs (max_x − min_x) ;
36 double l_y = fabs (max_y − min_y) ;
37
38 th i s −>min_x = min_x ;

40

39 th i s −>max_x = max_x ;
40 th i s −>min_y = min_y ;
41 th i s −>max_y = max_y ;
42
43 th i s −>l_x = l_x ;
44 th i s −>l_y = l_y ;
45
46 th i s −>n_rows = th i s −>l_y / s ide_len + 1 ;
47 th i s −>n_cols = th i s −>l_x / s ide_len + 1 ;
48
49 _grid = new vector <int >[th i s −>n_rows ∗ th i s −>n_cols] ;
50 }
51
52 // to f i n d po in t s i n s i d e each o f c e l l s o f the g r id
53 void load_data () {
54 f o r (i n t i = 0 ; i < th i s −>nPts ; i++) {
55 i n t row = fabs (th i s −>po in t s [i] [1] − th i s −>min_y) / s ide_len ;
56 i n t c o l = fabs (th i s −>po in t s [i] [0] − th i s −>min_x) / s ide_len ;
57
58 (th i s −>g e t C e l l (row , c o l))−>push_back (i) ;
59 }
60 }
61
62 pub l i c :
63 Grid (ANNpointArray points , i n t s i z e , double s ide_len) {
64 // i n i t i a l i z a t i o n
65 th i s −>i n i t (po ints , s i z e , s ide_len) ;
66
67 // load data
68 th i s −>load_data () ;
69 }
70
71 ~Grid () {
72 d e l e t e [] th i s −>_grid ;
73 }
74
75
76
77 vector<int >∗ g e t C e l l (s i z e_t row , s i z e_t c o l)
78 {
79 // cout << " gr id g e t C e l l () i s c a l l e d ! " << endl ;
80 re turn (th i s −>_grid + (row ∗ th i s −>n_cols + c o l)) ;
81 }
82
83 vector<int > search_for_a_match (ANNpoint pt , double t0) {
84 // cout << " gr id search () i s c a l l e d ! " << endl ;
85 i n t row = fabs (pt [1] − th i s −>min_y) / s ide_len ;
86 i n t c o l = fabs (pt [0] − th i s −>min_x) / s ide_len ;
87
88 // cout << " row : " << row << " and c o l : " << c o l << endl ;
89
90 vector <int > idxs ;
91 f o r (i n t i = −1; i <= 1 ; i++)
92 f o r (i n t j = −1; j <= 1 ; j++) {
93 i n t r = row + i ;
94 i n t c = c o l + j ;
95 i f (r < 0 | | c < 0 | | r >= th i s −>n_rows
96 | | c >= th i s −>n_cols) cont inue ;

41

97
98 vector<int >∗ v_ptr = th i s −>g e t C e l l (r , c) ;
99 f o r (i n t l = 0 ; l < v_ptr−>s i z e () ; l ++){

100 ANNpoint p_l = th i s −>po in t s [(∗ v_ptr) [l]] ;
101 ANNdist d i s t = annDist (2 , pt , p_l) ;
102 d i s t = ANN_ROOT(d i s t) ;
103 // cout << " d i s t : " << d i s t << endl ;
104 // cout << " d i s t : " << d i s t << " and t0 : " << t0 << endl ;
105 i f (d i s t < t0) {
106 // cout << "−− " << d i s t << " < " << t0 << endl ;
107 idxs . push_back ((∗ v_ptr) [l]) ;
108 }
109 }
110 }
111
112 return idxs ;
113 }
114
115
116 void p r i n t () {
117 cout << " Grid : " << endl
118 << " lx = " << th i s −> l_x << endl
119 << " ly = " << th i s −> l_y << endl
120 << " s i d e l en = " << th i s −>side_len << endl
121 << " nr = " << th i s −>n_rows << endl
122 << " nc = " << th i s −>n_cols << endl ;
123 }
124 } ;

42

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Implementations
	Introduction
	Problem Statement
	Variants of the Pattern Matching Problem
	Current Work

	The Algorithm in Focus - FPPMA
	Input Reader.
	Transformation Finder Class
	Proximity and Neighborhood
	Grid Search Method
	Find a Global Match

	Finding Correspondences Strategies
	Unweighted Bipartite Matching Strategy
	Weighted Bipartite Matching Strategy

	Pairwise Experiments
	Data and Point Set Generation
	Evaluation
	Complete Matching (CM-DATA)
	Partial Matching (PM-DATA)

	Experimental Running Time of FPPMA-kNN
	Correspondence Strategies Evaluation
	Method to Compare - Gaussian Mixture Models

	Groupwise Point Set Registration
	Groupwise method using FPPMA
	Groupwise Experiments

	Conclusion
	Bibliography
	Appendix Point Pattern Matching Implementation
	Appendix Proximity Related Code
	Appendix Tools

