
Towards Recommendation with User
Action Sequences

by

Jiaxi Tang

B.Eng., Wuhan University, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Science

c© Jiaxi Tang 2019
SIMON FRASER UNIVERSITY

Fall 2019

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Jiaxi Tang

Degree: Doctor of Philosophy (Computing Science)

Title: Towards Recommendation with User Action
Sequences

Examining Committee: Chair: Qianping Gu
Professor
School of Computing Science

Ke Wang
Senior Supervisor
Professor
School of Computing Science

Martin Ester
Supervisor
Professor
School of Computing Science

Greg Mori
Internal Examiner
Professor
School of Computing Science

James Caverlee
External Examiner
Professor
Department of Computer Science and Engineering
Texas A&M University

Date Defended: December 18, 2019

ii

Abstract

Across the web and mobile applications, recommender systems are relied upon to surface
the right items to users at the right time. This implies user preferences are usually dynamic
in real-world recommender systems, and a user’s historical action records are not equally
important when predicting her/his future preferences. Most existing recommendation al-
gorithms, including both shallow and deep approaches, usually treat all user’s historical
actions equally, which may have lost order information between actions.

In this thesis, we study the problem of modeling user action sequences for recommenda-
tion (a.k.a sequential recommendation). Motivated by the distinct challenges when modeling
user sequences, we focus on building sequential recommendation models to capture various
types of dependencies (sequential patterns). In particular, the dependencies can be in dif-
ferent forms. Also, they can either from the local part or the long-tail of user sequences.
Though usually neglected in existing approaches, these dependencies are informative for
accurate prediction of user preference.

In our first work, we discover the dependencies in real user sequences can have two different
forms: point-level and union-level. We propose a unified model to jointly capture both forms
of sequential patterns.

In our next work, we analyze the property of dependency from different temporal ranges
of long user sequences. Based on our observation, we propose a neural mixture model as a
tailored solution to deal with dependencies from all temporal ranges.

Finally, inference efficiency is critical for each model since recommendation is an online
service. It is particularly important for sequential recommendation as user’s sequence fre-
quently changes and inference is needed with the new sequence. We provide a knowledge
transfer framework to satisfy the efficiency requirement for recommendation models. We
show this framework can be used to learn a compact recommendation model with better
inference efficiency but with the similar efficacy of a large model. Our proposed solution
can be also used for other ranking problems.

Keywords: Recommender System; User Modeling; Sequential Prediction; Neural Networks

iii

Dedication

Dedicate to my parents and my love.

iv

Acknowledgements

First, I would like to thank my senior advisor Dr. Ke Wang, for his supervision throughout
my study at SFU. I am grateful not only for the trust he gave me on leaving me enough
independence, but also for consistent support and pushing me for being a better researcher.
Besides, I would like to thank Dr. Martin Ester, Dr. Greg Mori, Dr. James Caverlee for
serving my thesis committee and providing constructive suggestions on my thesis. Thanks
Dr. Qianping Gu for charing my thesis defence.

Thanks to my host at Google Research, Sagar Jain, for choosing me to be your intern
for two summers. Without you I couldn’t imagine I have the capability to work on cutting-
edge problems from industry. Also, I want to thank Francois Belletti, Rakesh Shivanna, Zhe
Zhao, Ed Chi and all other people from the same team, I feel really enjoyable to work with
you.

Thanks to all my collaborators, labmates, and friends in SFU. Especially thanks to for
their support and suggestions on my research and my daily life.

Finally, I would like to express my special thanks to my parents for their continuous
and unconditional encouragement and love.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Research Questions and Contributions . 3

1.1.1 Capturing Different Forms of Sequential Patterns 3
1.1.2 Utilizing Long-range Dependent User Sequences 3
1.1.3 Mitigating Model Serving Cost Overhead 4

1.2 Thesis Organization . 6

2 Preliminaries and Background 8
2.1 Basic Concepts . 8
2.2 Sequential Recommendation Problem . 9
2.3 Recommendation Model . 10
2.4 Evaluation Metrics . 12
2.5 Notations . 13

3 On Capturing Different Forms of Sequential Dependencies 14
3.1 Background and Motivations . 14

3.1.1 Observation from Data . 15
3.1.2 Contributions . 16

3.2 Related Work . 17
3.3 Proposed Methodology . 17

vi

3.3.1 Model Formulation . 18
3.3.2 Model Learning and Inference . 22
3.3.3 Connection to Existing Models . 23

3.4 Experimental Studies . 24
3.4.1 Experimental Setup . 24
3.4.2 Performance Comparison . 25

3.5 Conclusion . 31

4 On Exploiting Long-range Dependent User Sequences 32
4.1 Background and Motivations . 32

4.1.1 Observation from Data . 33
4.1.2 Limitations of Previous Work . 34
4.1.3 Contributions . 35

4.2 Proposed Methodology . 36
4.2.1 Overview . 36
4.2.2 Different Encoders for Dependencies from Different Ranges 40

4.3 Experimental Studies . 45
4.3.1 Experiments on MovieLens Dataset 45
4.3.2 Experiments on Anonymized YouTube Dataset 49
4.3.3 Ablation Study of Mixture of Models 51
4.3.4 Role of Gating Network . 52

4.4 Conclusion . 54

5 On Learning Compact Model for Efficient Recommendation 55
5.1 Background and Motivations . 55

5.1.1 Ranking from scratch . 56
5.1.2 Rethinking Effectiveness and Efficiency 57
5.1.3 Knowledge Distillation . 58
5.1.4 Contributions . 59

5.2 Related Work . 60
5.3 Proposed Methodology . 61

5.3.1 Overview . 61
5.3.2 Incorporating Distillation Loss . 63
5.3.3 Discussion . 66

5.4 Experimental Studies . 67
5.4.1 Experimental Setup . 67
5.4.2 Overall Performances . 68
5.4.3 Effects of Model Size and Distillation Loss 70
5.4.4 Effects of Weighting Schemes . 72

5.5 Conclusion . 72

vii

6 Conclusion 74
6.1 Summary . 74
6.2 Future Directions . 75

Bibliography 78

Appendix A List of Publications 87

viii

List of Tables

Table 3.1 Statistics of the datasets . 24
Table 3.2 Performance comparison on the four datasets. 27
Table 3.3 mAP vs. Caser Components . 29

Table 4.1 A summary of relationships and differences between sequence encoders
in M3. 44

Table 4.2 Performance comparison on MovieLens 20M. M3C and M3R outper-
form the baselines significantly. 47

Table 4.3 Statistics of the variants of the MovieLens dataset. 48
Table 4.4 Performance comparison on the anonymized YouTube dataset. M3C

and M3R outperform the baselines significantly. 50
Table 4.5 mAP@20 vs. different components of M3R on both datasets, where

T,S,L stands for MT , MS and ML respectively. 51
Table 4.6 mAP@20 vs. different types of gating network on the two datasets for

M3R. ‘Fixed’ indicates we fix gate values to 1.0, ‘Contextual-switch’
means that we use context features cin and cout as gate input and
‘Bottom-switch’ corresponds to the use of zin

t as gate input. 52

Table 5.1 Statistics of the data sets . 67
Table 5.2 Performance comparison. (1) The performance of the models with rank-

ing distillation, Fossil-RD and Caser-RD, always has statistically signif-
icant improvements over the student-only models, Fossil-S and Caser-S.
(2) The performance of the models with ranking distillation, Fossil-RD
and Caser-RD, has no significant degradation from that of the teacher
models, Fossil-T and Caser-T. We use the one-tail t-test with signifi-
cance level at 0.05. 69

Table 5.3 Model compactness and online inference efficiency. Time (seconds) in-
dicates the wall time used for generating a recommendation list for
every user. Ratio is the student model’s parameter size relative to the
teacher model’s parameter size. 70

Table 5.4 Performance of Caser-RD with different choices of weighting scheme
on two data sets. 73

ix

List of Figures

Figure 1.1 Example showing the differences between interaction matrix and user
action sequence. In this example, if we want to make a recommen-
dation for Chalice, only knowing the interaction matrix cannot dif-
ferentiate the choice between Avatar and StarWar 3. However, once
knowing the sequential information, we know StarWar 3 is better
choice over Avatar. 2

Figure 1.2 Serving pipeline of a developed machine learning model [24]. When
training recommendation models, we use logged feedback data to
learn a model offline. Then the learned model is composed as a pre-
diction service and respond to user requests in an online manner. . 5

Figure 2.1 A common two-tower neural framework for recommendation. 11

Figure 3.1 An example of point and union level dynamic pattern influences, the
order of Markov chain L = 3 . 15

Figure 3.2 The number of association rules vs L and skip steps. The minimum
support count = 5 and the minimum confidence = 50%. 16

Figure 3.3 The network architecture of Caser. The rectangular boxes represent
items Su1 , · · · ,Su|Su| in user sequence, whereas a rectangular box with
circles inside stands for a certain vector e.g., user embedding Pu. The
dash rectangular boxes are convolutional filters with different sizes.
The red circles in convolutional layers stand for the max values in
each of the convolution results. Here we are using previous 4 actions
(L = 4) to predict which items this user will interact with in next 2
steps (T = 2). 18

Figure 3.4 Darker colors mean larger values. The first filter captures “(Airport,
Hotel) → Great Wall” by interacting with the embedding of airport
and hotel and skipping that of fast food and restaurant. The second
filter captures “(Fast Food, Restaurant) → Bar”. 19

Figure 3.5 mAP (y-axis) vs. the number of latent dimensions d (x-axis). . . . 28
Figure 3.6 mAP (y-axis) vs. the Markov order L (x-axis). Caser-1, Caser-2, and

Caser-3 denote Caser with the number of targets T set to 1, 2, 3. . . 28

x

Figure 3.7 Visualization for four vertical convolutional filters of a trained model
on MovieLens data when L = 9. 30

Figure 3.8 Horizontal convolutional filters’s effectiveness of capturing union-
level sequential patterns on MovieLens data. 30

Figure 4.1 Trace of covariance (i.e. centered inner product similarity) of item
embeddings between the last item in user sequence and the item
located L steps before (100K samples). 33

Figure 4.2 An overview of the proposed M3 model. From bottom to top, we first
process the sequence inputs with a feed-forward layer F in. Next, we
apply three different sequence encoders on the processed sequence
and aggregate their results with a gate network. Here MT is the
tiny-range encoder that make prediction based on user’s last action;
MS is the short-range encoder using RNN/CNN to encode user’s
recent actions and ML is the long-range encoder that can utilize the
long-tail of user sequence. 37

Figure 4.3 The sequence encoders of M3. The solid lines are used to denote the
data flow. The dotted line in (a) means an identity copy whereas in
(b) it means the interaction of attention queries and keys. 39

Figure 4.4 Uplifts with respect to the best baselines on four MovieLens variants.
The improvement percentage of each model is computed by its rela-
tive mAP@20 gain against the best baseline. For all variants, M3R
significantly outperforms the two baselines we consider according to
a one-tail paired t-test at level 0.01, while M3C outperforms the
other two significantly only on ML20M-M. Note that the standard
error of all uplifts gets higher as we use a MovieLens variant with
longer sequences. The standard error reaches 2.3% on ML20M-XL. 48

Figure 4.5 Average gate values of M3R in different scenarios. The model learns
to use different combination of encoders in different recommendation
scenarios. 53

Figure 5.1 Two ways of boosting mean average precision (MAP) on Gowalla
data for recommendation. (a) shows that a larger model size in num-
ber of parameters, indicated by the bars, leads to a higher MAP. (b)
shows that a larger sample size of training instances leads to a higher
MAP. 57

Figure 5.2 The relationship between (a) Knowledge distillation and (b) Ranking
distillation. 59

xi

Figure 5.3 The learning paradigm with ranking distillation. We first train a
teacher model and let it predict a top-K ranked list of unlabeled (un-
observed) documents for a given query q. The student model is then
supervised by both ground-truth ranking from the training data set
and teacher model’s top-K ranking on unlabeled documents. . . . 62

Figure 5.4 An illustration of hybrid weighting scheme. We use K = 3 in this
example. 65

Figure 5.5 Mean average precision vs. (a) model size and (b) the choice of dis-
tillation loss. 71

Figure 5.6 MAP vs. balancing parameter α . 72

xii

Chapter 1

Introduction

This dissertation focuses on exploiting the sequence of actions that each user left in the
system, to provide better personalized experiences using machine learning. The goal is to
pinpoint the opportunities when using user action sequences for recommendation which
have been widely recognized by academia and industry recently. We analyze the unique
challenges for recommendation with user action sequences (a.k.a sequential recommenda-
tion) and introduce techniques based on machine learning to overcome such challenges. The
work presented in this dissertation take several essential steps to transit static user modeling
approach to a new generation of more dynamic personalization methodology.

Why recommendation with user action sequences? To show our motivation for
sequential recommendation, we’d like to discuss the importance of recommendation research
in general and the specific opportunities for the recommendation research with user action
sequences.

First of all, we care about the problem of recommendation in this dissertation since it
enables better content discovery and browsing experience: Users can enjoy accurate and
personalized recommendations without the need of effort to actively retrieve information
from the web. In industry, recommender system has become a core technology and even a
main user interface in large e-commerce, streaming and social media platforms [33, 62, 23].
As a result, it contributed a large proportion of the traffic and revenue to these online
services. One could think that this either is a solved problem or merely need attention from
industry, but this is far from the truth. In fact, the evolution of recommendation largely
depend on research contribution from academia [38, 57, 77, 82]. There are many facets of the
recommendation which have received little or no attention. Thus, there is a large untapped
potential for improving user experience, that this thesis attempts to shed light on.

Conventional recommendation techniques depend on static user-item feedback, which
is usually represented as a user-item interaction matrix as shown in Figure 1.1a. In this
formulation, recommendation can be viewed as a matrix completion problem to match user
long-term preference. Sequential recommendation takes a step forward to consider order

1

StarWars 2 StarWars 3The	GodfatherAvatar

Alice

Bob

Chalice

4

5 4

4

4 5

(a) An example user-item interaction matrix.

StarWars 3

The	GodfatherAvatar

Alice

Bob

StarWars 2

StarWars 2The	GodfatherChalice ??

(b) An example user action sequences.

Figure 1.1: Example showing the differences between interaction matrix and user action
sequence. In this example, if we want to make a recommendation for Chalice, only knowing
the interaction matrix cannot differentiate the choice between Avatar and StarWar 3. How-
ever, once knowing the sequential information, we know StarWar 3 is better choice over
Avatar.

sensitivity in user actions. It views recommendation as a sequence modeling problem as
shown in Figure 1.1b. The order of actions is commonly logged by real systems. In real-
world scenarios, drifts of individual interest can happen within a short time period (e.g.,
a user is interested in phone accessories soon after buying an iPhone). On the other hand,
items can hold certain relationship and are usually consumed in the certain order (e.g.,
most users prefer to watch StarWars 3 after finishing StarWars 2). That’s the reason why
sequential recommendation could make a huge difference to better understand user need in
the “near future”.

Why Using Machine Learning based Approaches? Recommendation methods start
from neighborhood-based approaches [82]. We calculate item-item similarities and recom-
mend a user with items similar to the items she/he has consumed. However, a good similarity
measurement with heavy feature engineering still cannot properly model complex user-item
relations. Thus, people turned to find more effective approaches – model-based approaches
powered by machine learning.

Since the 2009 Netflix Prize competition, latent factor models [57] shown to have
much better performance than neighborhood-based methods and it ‘automatically’ learns
user/item representations from low-dimensional latent space. Recently, with the great im-
pact of deep learning on computer vision [58, 51], a new type of model using deep neural
networks has shown strong performances. Better harnessing the power of rich data, neural
networks have an incredible ability to automatically capture high-level features and learn
feature interactions. Recent works [38, 97] show the success for deep neural networks for
recommendation with static user feedback.

Back to sequential recommendation, using sequence model allows us to easily incorpo-
rate user dynamics when making recommendations. Moreover, promising results in natural
language processing with neural networks [67, 53] suggest deep learning’s potential benefits
for better modeling dependencies (patterns) within user action sequences.

2

1.1 Research Questions and Contributions

From the above introduction, one could think merely applying deep neural networks on user
sequences can achieve considerable performance. However, this naive assumption largely
overlooked the challenges existing in sequential recommendation. In what follows, we pin-
point these unique challenges under the context of machine learning (especially deep learn-
ing), which can be categorized as challenges for modeling user sequences and challenges for
serving such models. Besides, we present our contributions.

1.1.1 Capturing Different Forms of Sequential Patterns

How can we model multiple forms of dependencies when they co-exist in the recent part of
user action sequence?

Challenge: From data mining point of view, the prediction on the item a user will
likely to buy usually depend on certain patterns from her/his action sequence in the past.
Inspired by sequential association rule mining [2], the sequential pattern can be in point-level
or union-level. The former means previous actions influence the target action individually.
An example pattern may look like: ia → it, here ia is the item previously interacted by a
user and it is the target item. Union-level sequential pattern is an extension of point-level
pattern, where multiple previous actions jointly influence the target action. An example may
be: (ia, ib, ic) → it, here (ia, ib, ic) are the items in an episode of of a user sequence (with
order preserved). If these two forms of sequential dependencies co-exist in the recent part
of user sequence, leveraging them may help further improve the recommendation accuracy.
From the past literature, however, we found seldom works have been done to explicitly
model both of these two forms of sequential patterns.

Our Contributions: In Chapter 3, we confirm the existence of sequential dependencies
with multiple forms and study how they can influence user action in the future, by using
a commonly used public dataset. Inspired from the recent success of convolution filters of
Convolutional Neural Network (CNN) to capture local invariant features [58, 51, 53], we
propose a ConvolutionAl Sequence Embedding Recommendation Model, or Caser for short.
Compared to existing methods, Caser offers several distinct advantages. (1) Caser uses 1-D
convolutional filters with various shapes to capture sequential patterns at point-level, union-
level. (2) Caser is very flexible that it generalizes several existing state-of-the-art methods
in a single unified framework. (3) Caser outperforms state-of-the-art methods for top-N
sequential recommendation on real life datasets.

1.1.2 Utilizing Long-range Dependent User Sequences

How can we model dependencies from everywhere of long user action sequence where differ-
ent parts of the sequence show different properties?

3

Challenge: In the last problem, we only focus on modeling user’s recent actions (short-
range part) in his/her sequence. While user sequence can be very long, modeling user’s ac-
tions from far past (long-range part) also enables us to learn user interests from a longer time
span. For example, if a movie recommender can ‘remember’ a user’s interest (e.g., love watch-
ing Jackie Chan’s movies) from long time ago, it may recommend relevant movies (Jackie
Chan’s new released movies) that fit this user’s taste, based on the fact that users’ tastes
for movie don’t change too much over time. However, capturing sequential patterns from
extremely long user sequence could be very challenging. Firstly, dependencies (patterns)
from different part of the sequence may show different properties. Moreover, dependencies
from long-range part of the user sequence, which is also called the long-range-dependent
patterns, are usually hard to capture by the existing models in the literature, even though
sometimes they are informative and crucial to accurate predictions. Existing sequential
recommenders with factorized Markov chain methods [37] or deep neural networks [39] ar-
guably provide reliable sequential recommendation strategies. Unfortunately, they are all
limited by a short window of significant temporal dependence when leveraging sequential
data to make a recommendation prediction.

Our Contributions: In Chapter 4, we dive into a large-scale YouTube dataset and demon-
strate that in real-world recommendation tasks there are significant long-range temporal
dependencies in user sequence data. Besides, the dependencies have certain interesting prop-
erties. First, the dependency between two events decreases in a hyperbolic manner, as the
time step separating their consumption grows. Second, the dependencies from events re-
cently are very sensitive to order but are order insensitive from the events in the far past.
Based on our observations, we realize the limitation of using a monolithic model and propose
the multi-temporal-range mixture model (M3). From its data-driven design, M3 is a mixture
model consisting of three sub-models (each with a distinct manually designed architecture)
that specialize in capturing dependencies from different temporal ranges. It can also learn
how to dynamically choose to focus on different temporal dynamics and ranges depending
on the application context.

1.1.3 Mitigating Model Serving Cost Overhead

How can we have an efficient model that works as effectively as possible?
Challenge: After a recommendation model is trained, the next step is to serve it, making

it respond to online user requests. Specifically, the routine serving pipeline for machine
learning models consists of two main parts as shown in Figure 1.2. First of all, we have to
train the designed model offline with massive logged data, which are processed through a
pipeline including data cleaning, feature selection, etc. Then the trained model is used as
a prediction service to make responses to various user requests. The later process is also
called the inference phase and is performed in an online manner. Usually speaking, an online

4

Figure 1.2: Serving pipeline of a developed machine learning model [24]. When training
recommendation models, we use logged feedback data to learn a model offline. Then the
learned model is composed as a prediction service and respond to user requests in an online
manner.

service needs to control the response time strictly less than 0.2 seconds (200 ms), that’s why
enhancing the efficiency of model inference is a critical research problem.

The inference time cost for recommendation models is extremely high, since in order
to sort the items, we need to compute the relevance scores for all items given a single
user request. And the time cost for computation is O(|I| × ∆c), where |I| is the number
of items and ∆c is the time cost needed to compute relevance score for single user-item
pair. For sequential recommenders, since users’ representations are changing all the time
when interacting with the platform, we need to do the inference much more frequently, thus
we suffer more from efficiency issue. What’s worse, as neural networks becoming the main
stream for recommendation due to their excellent performances, these models incur even
larger latency1 at online inference phase due to the larger model size.

Our Contributions: As we all know, ∆c is highly depend on model size. Therefore, to
answer the research question, a proper solution is to reduce the model size, and at the same
time, keep its accuracy as much as possible. Put differently, the ideal way is increasing a
model’s performance while having its size fixed. Also, the proposed solution is better to be
model-agnostic, not an ad-hoc approach designed for certain models specifically. In Chap-
ter 5, we present our solution called ranking distillation (RD) to learn a compact ranking
model that remains effective. The idea is an adapted solution for knowledge distillation
(KD) for top-N ranking problems. To be specific, a small student model is trained to learn
to rank from two sources of information, i.e., the training set and the top N recommenda-
tions for each user generated by a large well-trained teacher ranking model. With the large

1As described in Chapter 2, the computation cost for making recommendations with a commonly used
two-tower neural framework is highly depend on the neural model size.

5

model size, the teacher model captures more complex user-item interaction patterns from
the training set and provides top-N ranked items as an extra training data for the student
model. The student model benefits from the extra supervisions from the teacher (in addition
to the data from usual training set), thus, improves its recommendation accuracy, but is
more efficient for online inferences thanks to its small model size. It is also worth noting
that, besides sequential recommendation, our proposed method can be also generalized to
other recommendation (and ranking) tasks.

To summarize, this dissertation focuses on improving the performance of the sequential
recommender system, while making the resulting system more efficient to use. Our first two
works focus on how to gain a better ranking performance for sequential recommender by
modeling more complex user-item interactions that potentially exist in the data. However,
it is often the case that these complex models incur a larger latency at online inference
phase due to the much larger model size. In order to make the resulting methods efficient
to use in real-world scenarios, we propose a model independent approach that is able to
reduce the model size and at the same time keep the accuracy as much as possible.

1.2 Thesis Organization

The remainder of the thesis is structured as follows.

• In Chapter 2, we present some background knowledge on conventional recommenda-
tion and sequential recommendation, including the basic concepts, problem definition,
evaluation measurements and commonly used techniques.

• In Chapter 3, we empirically investigate the sequential association rules containing the
multiple forms of patterns (left hand side of the rule) in the real-world dataset and
study how they influence the user’s actions (right hand side of the rule) in the near
future. We propose the Convolutional Sequence Embedding Recommendation Model
(Caser) as a unified approach to capture these patterns. We show how we represent a
sequence of recent items into an “image” in the time step and latent spaces and learn
sequential patterns as local features of the image using 1-D convolutional filters. Our
proposed approach is flexible to generalize other existing methods. Extensive experi-
ments conducted on public datasets demonstrate the effectiveness of our method.

• In Chapter 4, we examine how to build a model that can make use of different temporal
ranges and dynamics depending on the request context. We begin with the analysis of
an anonymized Youtube dataset comprising millions of user sequences. We quantify
the degree of long-range dependence in these sequences and demonstrate that both
short-term and long-term dependent behavioral patterns coexist. We then propose a
neural Multi-temporal-range Mixture Model (M3) as a tailored solution to deal with
both short-term and long-term dependencies. Our approach employs a mixture of

6

models, each with a different temporal range. These models are combined by a learned
gating mechanism capable of exerting different model combinations given different
contextual information. In empirical evaluations on a public dataset and our own
anonymized YouTube dataset, M3 consistently outperforms state-of-the-art sequential
recommendation methods.

• In Chapter 5, we present our work Ranking Distillation (RD) as a novel way to
train ranking models that are both effective and efficient. Based on a similar idea of
knowledge distillation (KD), we achieve this goal by improving model performances
while keeping the model size fixed. Specifically, we employ the student-teacher learning
paradigm and train a smaller student model to learn to rank documents/items from
both the training data and the supervision of a larger teacher model. The resulting
student model achieves a similar ranking performance to that of the large teacher
model, but its smaller model size makes the online inference more efficient. From
empirical studies, we show our solution can learn a compact student model with size
less than half of the teacher model while achieving a ranking performance similar to
the teacher model and much better than the model learnt without RD.

• Finally, we conclude the thesis with a summary of our contributions and point out
some potential future directions in Chapter 6.

• A list of our publications about the three proposed works is included in Appendix A.

7

Chapter 2

Preliminaries and Background

We begin with an overview of the background concepts used throughout this dissertation.
We then present the problem definition and necessary background knowledge. In discussing
such backgrounds, we cover some related works, but we will go into more depth in the
related chapters of this thesis.

2.1 Basic Concepts

Recommendation task. In a recommender system, there is a set of users U , a set of items
I (e.g., products, video, venues, etc.), and feedback/interaction data (e.g., user purchased a
product, watched a video, checked-in at a venue). The logged data from system represents
the feedback users from U have given on items from I. Usually, a timestamp is also recorded
along with the feedback data. Besides, additional data might be available, such as contextual
feature data, describing more properties of users (e.g., age, sex, device used, etc.) and/ or
items (e.g., category, text description, associated images, etc). We will not consider the
contextual features in most chapters of this thesis. The only exception is in Chapter 4,
when we evaluate our method on YouTube dataset which has rich contextual annotations.
The ultimate goal of recommendation is to build a model on users’ historical data that
can be used to predict top N ranked items that each user will have the greatest chance to
interact with in the future.

Types of feedback. While interacting with an online service provider, the feedback that
users left in the system can have different types. The feedback can be explicit. That is, the
user explicitly shows how she/he likes an item. For example, a user may give five stars or
one star to a certain movie. Feedback can also be implicit such that the user’s behavior
implicitly reflect her/his preferences. For example, a user may click a link, watch a video
or check-in at a venue. Such feedback usually implies user’s positive preference on a given
item and is much more prevalent than the explicit feedback in real systems.

In this thesis, we focus on implicit feedback as it is more common in real-world scenarios.

8

Data sparsity and feedback missing-not-at-random assumption. For recommen-
dation problem specifically, although we have a lot of signals from interaction data, we only
observe a few items that have feedback from a given user. This cause the feedback data
extremely sparse. Besides, those unobserved data are not treated equally and are usually
regarded as negative feedback. This is based on a well-known assumption that feedback
is not missing (completely) at random [66, 88]. In particular, it suggests each item is not
equally likely to be clicked or viewed by a user and the unobserved feedback has a higher
propensity to be a negative feedback.

Offline model learning vs. Online model inference. Similar to other machine learn-
ing based methods, there are two phases for building a recommendation model: learning
and inference. In most cases, the efficiency requirements for the two phases are different:
the learning phase can be done in the offline so we don’t have a limitation on its efficiency;
the inference phase for recommendation models has a tight constraint for efficiency if it is
required to perform in real-time.

For learning phase in recommendation, people tend to learn (train) a model M (param-
eterized θ) offline with logged feedback data. In particular, we define a loss function over a
real preference label (e.g., positive or negative) y(u)

i and a model predicted relevance score
ŷ

(u)
i , for a given user-item pair1 (u, i). We learn the recommendation modelM(u, i; θ) = ŷ

(u)
i

via optimizing the loss function using some variants of Stochastic Gradient Descent. Specific
to implicit feedback considered in this thesis, data may only contain positive preference la-
bel. However, according to the missing-not-at-random assumption, we can randomly sample
unobserved user feedback on items then label it as negative.

For inference phase in recommendation, whenever we need to make recommendations for
a certain user, we need to calculate the predicted relevance scores for all possible items. And
then we can make recommendations for this user with the top N items that have highest
relevance scores. Note that the inference phase is not needed to be online for conventional
recommendation task, as the recommended items for every user can be pre-computed offline.
However, for the sequential recommendation, since users’ action sequences are dynamically
changing while interacting with the system, the inference usually has to be done in the
real-time with the new user sequences as model inputs.

2.2 Sequential Recommendation Problem

Now we define the top-N sequential recommendation problem considered in this dissertation.
Similar to conventional recommendation task, we recommends N items that a user likely

1In some cases, preference label not only depend on user and item but also need to consider the context.
For simplicity and to facilitate presentation, we omit the contextual features here.

9

interacts with in a near future. This problem assumes a set of users U = {u1, u2, · · · , u|U|}
and a universe of items I = {i1, i2, · · · , i|I|}. Each user u is associated with a sequence
of some items from I, Su = (Su1 , · · · ,Su|Su|), where S

u
i ∈ I. The index t for Sut denotes

the order in which an action occurs in the sequence Su, not the absolute timestamp as in
temporal recommendation like [100, 108, 56]. Given all users’ sequences Su, the goal is to
recommend each user a list of items that maximize her/his future needs. Unlike conventional
top-N recommendation, top-N sequential recommendation models the user behavior as a
sequence of items, instead of a set of items.

2.3 Recommendation Model

As mentioned above, a model is needed to take user sequence into consideration and make
prediction on the user’s feedback to items. In the following, we will cover several popular
choices and analyze their efficiency for making recommendations. We categorize them as
shallow latent factor based models and deep neural network based models. As we will
elaborate in the following chapters, these models have certain limitations when modeling
user sequences and will serve as our baselines.

Shallow latent factor based model. Latent factor or matrix factorization (MF) based
approaches are very popular in recommendation for both implicit [77] and explicit feed-
back [57]. They predict a user’s preference on an item on the basis of low dimensional latent
factors, by optimizing an objective function. Let P ∈ R|U|×d be the latent factor matrix
corresponding to users, where d is the number of latent factors and the u-th row Pu ∈ Rd is
the latent factors for user u. Similarly, we have the Q ∈ R|I|×d to represent item latent fac-
tors and Qi ∈ Rd is the latent factors for item i. The predicted relevance score ŷ(u)

i = Pu ·Qi
is a inner-product of user and item’s latent factors. These latent factors are semantically
similar to the ‘embeddings’ of neural network. This is a dimensionality reduction approach,
projecting both users and items in the same lower dimensional space, where the nearby
items/users are similar, and items that are close to a user are a good fit for this user. The
nature of latent factor based approaches is factorizing the user-item interaction matrix as
showed in Figure 1.1a. Then to incorporate user sequence, one can use the similar idea and
factorize the item-to-item transition matrix, where each entry (i, j) records the probability
of interacting with item j right after a user has interacted with item i. When predicting an
item’s relevance score, we can incorporate the predicted transit probability from the last
item this user interacted with. This approach is named as factorizing personalized Markov
chain (FPMC) [78]. We will discuss more about this approach in the Chapter 3.

The time cost for making recommendations with such shallow models is O(|I| × ∆c).
Here ∆c is the time required to compute relevance score for each user-item pair, it grows
nearly linearly with the number of latent factors d to use.

10

Represent
Network

User Id, arributes,
action sequences..

Item Id, text
description, images..

Raw
feature

Neural
representation

Relevance
score

Matching
Network

Represent
Network

Figure 2.1: A common two-tower neural framework for recommendation.

Deep neural network based framework. As for neural network based methods, here
we present a very general two-tower framework that adopted by many existing works. Fig-
ure 2.1 shows this neural architecture. As can be seen, this framework has a two-tower
structure and consists of two important components. Represent network projects users’ and
items’ raw features to a lower dimensional dense representations. Matching network ap-
proximates the matching function, it takes the representations as inputs and output the
relevance score. There are various choices for represent network and matching network and
many existing works can be categorized into this framework. For example, the latent factor
model discussed above can be generalized into this framework by having embedding layer
as represent network to map each user (id) and item (id). Then using the inner-product
function as matching network. Neural collaborative filtering [38] further shows a more effec-
tive model when having several additional fully-connected layers, that inject non-linearities,
in matching network. To incorporate user action sequences, one can use recurrent neural
nets (RNN) as part of the user represent network. However, simply applying RNN to model
user action sequences has several limitations, as we shall discuss in Chapter 3 and Chapter 4.

It is easily to see that the time cost for making recommendation with this two-tower
neural networks is O(|I| × (∆c + ∆i) + ∆u), where ∆u and ∆i are the time cost needed to
compute for user and item representations, respectively. ∆c is the time cost for matching
network. It is worth noting that all of (∆u, ∆i, ∆c) are highly depend on network complexity.
As a result, higher network complexity provides more expressive power but will incur larger
latency for inference. In Chapter 5, we present a way to mitigate this.

11

2.4 Evaluation Metrics

Ideally, the best way to evaluate the recommender systems is to carry out online A/B testing
experiments on real systems with a decent amount of user, measuring the business metrics
(i.e., metrics to evaluate user satisfactory with the recommended item) after deploying
different methods then running statistical tests. However, online A/B testing is usually
very expensive and might hurt user experience (and also profit) if the tested models are not
good enough. Thus, offline evaluation is a necessary step to compare candidate methods
before doing large scale online tests. And it may be the best way for researchers to evaluate
a recommendation model without the need of a real environment.

For offline evaluation, two basic metrics to evaluate the effectiveness of a ranking model
are Precision@N , Recall@N . Given a list of top N predicted items for a user, denoted
R̂1:N , and the ground-truth items of this user in test set, denoted as R, Precision@N and
Recall@N are computed by

Prec@N = |R
⋂
R̂1:N |
N

,

Recall@N = |R
⋂
R̂1:N |
|R|

.

(2.1)

The precision and recall look similar in the numerator but have different denominators.
When the number of ground-truth items of each user is limited, the precision@N will become
smaller as N gets higher while the recall@N will become larger. Note that these metrics are
averaged by all users and we usually set N to be small (e.g., N ≤ 10), as recommendations
at top positions of ranked lists are more important.

Precision and Recall treat the prediction in topN positions equally, while some works [102,
38] also use metrics that assign different weights for different positions. The weights are usu-
ally discounted as the position goes higher, so that it emphasizes more on the correctness
of the top predictions. To this extent, mean Average Precision (mAP) and normalized Dis-
counted Cumulative Gain (nDCG) are often used. The Average Precision (AP) is defined
by

AP =
∑|R̂|
i=1 Prec@i× rel(i)

|R̂|
, (2.2)

where rel(i) = 1 if the i-th item in the predicted ranking R̂ is in the ground-truth items
R. The Mean Average Precision (mAP) is the average of AP for all users. The Discounted
Cumulative Gain (DCG) is defined by

DCG =
|R̂|∑
i=1

rel(i)
log2(i+ 1) . (2.3)

The nDCG@n is the ratio of DCG@n to the optimal DCG@n for that user, where the
optimal DCG@n is computed by using the ideal ranking.

12

2.5 Notations

In the rest of thesis, we use U = {u1, u2, · · · , u|U|} to denote the set of users, and I =
{i1, i2, · · · , i|I|} to denote the items. | · | stands for the cardinality of a set. We use u to
index a user, and i and j to index items. User u’s action sequence is denoted by S(u).
User and item latent factor matrix (embedding matrix) are denoted by P ∈ R|U|×d and
Q ∈ R|U|×d, respectively. d is used to represent the number of latent factors to use.

Besides, vectors and matrices are denoted by bold symbols, where symbols in lower case
(e.g., x) represent vectors and symbols in upper case (e.g., X) represent matrices. Unless
stated differently, xi represents the i-th element of vector x. We denote the i-th row of
matrix X by Xi and its (i, j)-th entry by Xij .

13

Chapter 3

On Capturing Different Forms of
Sequential Dependencies

From sequential association rule mining perspective, sequential dependencies (patterns) may
have various forms. Such dependencies if modeled explicitly and properly, can be informative
to predict user needs in the future. As discussed in Chapter 1.1, the sequential pattern can
be in point-level where previous actions influence the target action individually. Or the
pattern can be in union-level where multiple previous actions jointly influence the target
action. However, existing methods fail to best utilize all forms of dependencies. Can we
build a unified and flexible model for capturing all kinds of sequential patterns informed by
sequential association rules?

3.1 Background and Motivations

The Markov chain based model [78, 37, 19, 98] is an early approach to top-N sequential
recommendation, where an L-order Markov chain makes recommendations based on L pre-
vious actions. The first-order Markov chain is an item-to-item transition matrix learnt using
maximum likelihood estimation. Factorized personalized Markov chains (FPMC) proposed
by Rendle et al. [78] and its variant [19] improved this method by factorizing this transition
matrix into two latent and low-rank sub-matrices. Factorized Sequential Prediction with
Item Similarity ModeLs (Fossil) proposed by He and McAuley [37] generalizes this method
to high-order Markov chains using a weighted sum aggregation over previous items’ latent
representations. However, existing approaches suffered from two major limitations:

Fail to model union-Level sequential patterns. As shown in Figure 3.1a, the Markov
chain models only capture point-level sequential patterns where each of the previous ac-
tions (blue) influences the target action (yellow) individually, instead of collectively. FPMC
and Fossil fall into this taxonomy. Although Fossil [37] considers a high-order Markov chain,
the overall influence is a weighted sum of previous items’ latent representations factorized
from first-order Markov transition matrices. Such aggregation of point-level influences is not

14

… …

"#$ "|"$|$"&'($ "&')$ "&'#$ "&$ "&*#$

(a) point-level

…

"#$ "%&'$ "%&($ "%&#$ "%$

…

"|"$|$"%*#$

(b) union-level

Figure 3.1: An example of point and union level dynamic pattern influences, the order of
Markov chain L = 3

sufficient to model the union-level influences shown in Figure 3.1b where several previous
actions, in that order, jointly influence the target action. For example, buying both milk
and butter together leads to a higher probability of buying flour than buying milk or butter
individually; buying both RAM and Hard Drive is a better indication of buying Operating
System next than buying only one of the components.

Fail to allow skip behaviors. Existing models don’t consider skip behaviors of se-
quential patterns, where the impact from past behaviors may skip a few steps and still have
strength. For example, a tourist has check-ins sequentially at airport, hotel, restaurant, bar,
and attraction. While the check-ins at the airport and hotel do not immediately precede the
check-in of the attraction, they are strongly associated with the latter. On the other hand,
the check-in at the restaurant or bar has little influence on the check-in of the attraction
(because they do not necessarily occur). A L-order Markov chain does not explicitly model
such skip behaviors because it assumes that the L previous steps have an influence on the
immediate next step.

3.1.1 Observation from Data

To provide evidences of union-level influences and skip behaviors, we mine sequential asso-
ciation rules [2, 34] of the following form from two real life datasets, MovieLens and Gowalla
(see the details of these data sets in Section 3.4)

(Sut−L, · · · ,Sut−2,Sut−1)→ Sut . (3.1)

For a rule X → Y of the above form, the support count sup(XY) is the number of sequences
in whichX and Y occur in order as in the rule, and the confidence, sup(XY)

sup(X) , is the percentage
of the sequences in which Y follows X among those in which X occurs. This rule represents
the joint influence of all the items inX on Y . By changing the right hand side to Sut+1 or Sut+2,
the rule also captures the influences with one or two step skips. Figure 3.2 summarizes the
number of rules found versus the Markov order L and skip steps with the minimum support

15

count = 5 and the minimum confidence = 50% (we also tried the minimum confidence of
10%, 20%, and 30%, these trends are similar). Most rules have the orders L = 2 and L = 3
and the confidence of rules gets higher for larger L. The figure also tells that a sizable
number of rules have skip steps 1 or 2. These findings support the existence of union-level
influences and skip behaviors.

1 2 3 4 5

Markov order L

0

200

400

600

800

1000

#
 v

a
li
d

 r
u

le
s

no skip

skip once

skip twice

(a) MovieLens

1 2 3 4 5

Markov order L

0

100

200

300

400

500

600

#
 v

a
li

d
 r

u
le

s

no skip

skip once

skip twice

(b) Gowalla

Figure 3.2: The number of association rules vs L and skip steps. The minimum support
count = 5 and the minimum confidence = 50%.

3.1.2 Contributions

To address these above limitations of existing works, we propose a ConvolutionAl Sequence
Embedding Recommendation Model, or Caser for short, as a solution to top-N sequential
recommendation. This model leverages the recent success of convolution filters of Convolu-
tional Neural Network (CNN) to capture local features for image recognition [58, 51] and
natural language processing [53]. The novelty of Caser is to represent the previous L items
as an L × d matrix E, where d is the number of latent dimensions and the rows preserve
the order of the items. Similar to [53], we regard this embedding matrix as the “image” of
the L items in the latent space and search for sequential patterns as local features of this
“image” using various convolutional filters. Unlike image recognition, however, this “image”
is not given in the input and must be learnt simultaneously with all filters.

Compared to existing methods, Caser offers several distinct advantages:

• Caser uses horizontal and vertical convolutional filters to capture sequential patterns
at point-level, union-level, and of skip behaviors.

• Caser models both users’ general preferences and sequential patterns, and generalizes
several existing state-of-the-art methods in a single unified framework.

• Caser outperforms state-of-the-art methods for top-N sequential recommendation on
real life datasets.

16

3.2 Related Work

Besides the pre-existing methods for sequential recommendation that discussed above, we
introduce some further related works as follow.

Conventional recommendation methods, e.g., collaborative filtering [82], matrix factor-
ization [57, 80], and top-N recommendation [43][70], are not suitable for capturing sequential
patterns because they do not model the order of actions. Early works on sequential pattern
mining [2, 34] find explicit sequential association rules based on statistical co-occurrences
[64]. This approach depends on the explicit representation of patterns, thus, could miss pat-
terns in unobserved states. Also, it suffers from a potentially large search space, sensitivity
to threshold settings, and a large number of rules, most being redundant.

Restricted Bolzmann Machine (RBM) [81] is the first successful 2-layers neural net-
work that is applied to recommendation problems. Auto-encoder framework [83, 97] and
its variant denoising auto-encoder [102] also produce a good recommendation performance.
Convolutional neural network (CNN) [112] has been used to extract users’ preferences from
their reviews. None of these works is for sequential recommendation.

Recurrent neural networks (RNN) was used for session-based recommendation [39, 47].
While RNN has shown to have an impressive capability in modeling sequences [67], its
sequentially connected network structure may not work well under sequential recommen-
dation setting. Because in sequential recommendation problem, not all adjacent actions
have dependency relationships (e.g., a user bought i2 after i1 only because she loves i2).
Our experimental results in Section 3.4 verify this point: RNN-based method performs bet-
ter when datasets contains considerable sequential patterns. While our proposed method
doesn’t model sequential pattern as adjacent actions, it adopts convolutional filters from
CNN and model sequential patterns as local features of the embeddings of previous items.
This approach offers the flexibility of modeling sequential patterns at both point level and
union level, and skip behaviors in a single unified framework. In fact, we will show that
Caser generalizes several state-of-the-art methods.

A related but different problem is temporal recommendation [108, 100, 86]. For example,
temporal recommendation recommends coffee in the morning, instead of evening, whereas
our top-N sequential recommendation would recommend phone accessories soon after a user
bought an iPhone, independently of the time. Clearly, the two problems are different and
require different solutions.

3.3 Proposed Methodology

The proposed model, ConvolutionAl Sequence Embedding Recommendation (Caser), incor-
porates the Convolutional Neural Network (CNN) to learn sequential features, and Latent
Factor Model (LFM) to learn user specific features. The goal of Caser’s network design is
multi-fold: capture both user’s general preferences and sequential patterns, at both union-

17

…
…

…

Item embedding User embedding

Embedding Look-up Convolutional Layers Fully-connected Layers

𝒖

…

𝑆$%

𝑆|'(|
%

𝑇 = 2

𝐿 = 4

𝑬(%,1)

𝑷%

max
pooling 𝒐

𝒐5

𝒛

𝒚(𝒖,𝒕)

𝑷%
𝑭:𝒌:
𝐿	×	1

𝑭𝒌: ℎ	×	𝑑

horizontal convolutional layer

convolution

vertical convolutional layer

Figure 3.3: The network architecture of Caser. The rectangular boxes represent items
Su1 , · · · ,Su|Su| in user sequence, whereas a rectangular box with circles inside stands for
a certain vector e.g., user embedding Pu. The dash rectangular boxes are convolutional
filters with different sizes. The red circles in convolutional layers stand for the max values
in each of the convolution results. Here we are using previous 4 actions (L = 4) to predict
which items this user will interact with in next 2 steps (T = 2).

level and point-level, and capture skip behaviors, all in unobserved spaces. Shown in Fig-
ure 3.3 Caser consists of three components: Embedding Look-up, Convolutional Layers, and
Fully-connected Layers. To train the CNN, for each user u, we extract every L successive
items as input and their next T items as the targets from the user’s sequence Su, shown on
the left side of Figure 3.3. This is done by sliding a window of size L + T over the user’s
sequence, and each window generates a training instance for u, denoted by a triplet (u,
previous L items, next T items).

3.3.1 Model Formulation

Embedding Look-up

Caser captures sequence features in the latent space by feeding the embeddings of previous
L items into the neural network. The embedding Qi ∈ Rd for item i is a similar concept
to its latent factors. Here d is the number of latent dimensions. The embedding look-up
operation retrieves the previous L items’ embeddings and stacks them together, resulting
in a matrix E(u,t) ∈ RL×d for user u at time step t:

E(u,t) =


QSu

t−L

...
QSu

t−2

QSu
t−1

 . (3.2)

18

User Sequence Latent Space Horizontal Filters Predictions

Great Wall

Bar
!(#,%)

'(: 2	×	-

'.: 2	×	-

/

0

Figure 3.4: Darker colors mean larger values. The first filter captures “(Airport, Hotel) →
Great Wall” by interacting with the embedding of airport and hotel and skipping that of
fast food and restaurant. The second filter captures “(Fast Food, Restaurant) → Bar”.

Along with the item embeddings, we also have an embedding Pu ∈ Rd for a user u, repre-
senting user features in latent space. These embeddings are represented by blue and purple
circles in the box of Embedding Look-up in Figure 3.3.

Convolutional Layers

Our approach leverages the recent success of convolution filters of CNN in capturing local
features for image recognition [58, 51] and natural language processing [53]. Borrows the
idea of using CNN in text classification [53], our approach regards the L×d matrix E as the
“image” of the previous L items in the latent space and regard sequential patterns as local
features of this “image”. This approach enables the use of convolution filters to search for
sequential patterns. Figure 3.4 shows two “horizontal filters” that capture two union-level
sequential patterns. These filters, represented as h× d matrices, have the height h = 2 and
the full width equal to d. They pick up signals for sequential patterns by sliding over the
rows of E. For example, the first filter picks up the sequential pattern “(Airport, Hotel) →
Great Wall” by having larger values in the latent dimensions where Airport and Hotel have
larger values. Similarly, a “vertical filter” is a L×1 matrix and will slide over the columns of
E. More details are explained below. Unlike image recognition, the “image” E is not given
because the embedding Qi for all items i must be learnt simultaneously with all filters.

Horizontal Convolutional Layer. This layer, shown in the upper part of the second
component in Figure 3.3, has n horizontal filters F k ∈ Rh×d, 1 ≤ k ≤ n. h ∈ {1, · · · , L} is
the height of a filter. For example, if L = 4, one may choose to have n = 8 filters, two for
each h in {1, 2, 3, 4}. F k will slide from top to bottom on E and interact with all horizontal
dimensions of E of the items i, 1 ≤ i ≤ L− h+ 1. The result of the interaction is the i-th

19

convolution value given by
cki = φc(Ei:i+h−1 � F k). (3.3)

where the symbol � denotes the inner product operator and φc(·) is the activation function
for convolutional layers. This value is the inner product between F k and the sub-matrix
formed by the row i to row i−h+ 1 of E, denoted by Ei:i+h−1. The final convolution result
of F k is the vector

ck =
[
ck1 c

k
2 · · · ckL−h+1

]
. (3.4)

We then apply a max pooling operation to ck to extract the maximum value from all values
produced by this particular filter. The maximum value captures the most significant feature
extracted by the filter. Therefore, for the n filters in this layer, the output value o ∈ Rn is

o = {max(c1),max(c2), · · · ,max(cn)}. (3.5)

Horizontal filters interact with every successive h items through their embeddings E.
Both the embeddings and the filters are learnt to minimize an objective function that
encodes the prediction error of target items (more in Section 3.3.2). By sliding filters of
various heights, a significant signal will be picked up regardless of location. Therefore,
horizontal filters can be trained to capture union-level patterns with multiple union
sizes.

Vertical Convolutional Layer. This layer is shown in the lower part of the second
component in Figure 3.3. We use tilde (∼) for the symbols of this layer. Suppose that there
are ñ vertical filters F̃ k ∈ RL×1 , 1 ≤ k ≤ ñ. Each filter F̃ k interacts with the columns of
E by sliding d times from left to right on E, yielding the vertical convolution result c̃k:

c̃k =
[
c̃k1 c̃

k
2 · · · c̃kd

]
. (3.6)

For the inner product interaction, it is easy to verify that this result is equal to the weighted
sum over the L rows of E with F̃ k as the weights:

c̃k =
L∑
l=1
F̃ k
l ·El, (3.7)

where El is the l-th row of E. Therefore, with vertical filters we can learn to aggregate the
embeddings of the L previous items, similar to Fossil’s [37] weighted sum to aggregate the
L previous items’ latent representations. The difference is that each filter F̃ k is acting like a
different aggregator. Thus, similar to Fossil, these vertical filters are capturing point-level
sequential patterns through weighted sums over previous items’ latent representations.
While Fossil uses a single weighted sum for each user, we can use ñ global vertical filters to

20

produce ñ weighted sums õ ∈ Rdñ for all users:

õ =
[
c̃1 c̃2 · · · c̃ñ

]
. (3.8)

Since their usage is aggregation, vertical filters have some differences from horizontal ones:
(1) The size of each vertical filter is fixed to be L× 1. This is because each column of E is
latent for us, it is meaningless to interact with multiple successive columns at one time. (2)
There is no need to apply max pooling operation over the vertical convolution results, as
we want to keep the aggregation for every latent dimension. Thus, the output of this layer
is õ.

Fully-connected Layers

We concatenate the outputs of the two convolutional layers and feed them into a fully-
connected neural network layer to get more high-level and abstract features:

z = φa(W
[
o

õ

]
+ b), (3.9)

where W ∈ Rd×(n+dñ) is the weight matrix that projects the concatenation layer to a
d-dimensional hidden layer, b ∈ Rd is the corresponding bias term and φa(·) is the acti-
vation function for fully-connected layer. z ∈ Rd is what we called convolutional sequence
embedding, which encodes all kinds of sequential features of the L previous items.

To capture user’s general preferences, we also look-up the user embedding Pu and con-
catenate the two d-dimensional vectors, z and Pu, together and project them to an output
layer with |I| nodes, written as

y(u,t) = W ′
[
z

Pu

]
+ b′, (3.10)

where b′ ∈ R|I| and W ′ ∈ R|I|×2d are the bias term and weight matrix for output layer,
respectively. As explained in Section 3.3.2, the value y(u,t)

i in the output layer is associated
with the probability of how likely user u will interact with item i at time step t. z intends
to capture short term sequential patterns, whereas the user embedding Pu captures user’s
long-term general preferences. Here we put the user embedding Pu in the last hidden layer
for several reasons: (1) As we shall see in Section 3.3.3, it can have the ability to generalize
other models. (2) we can pre-train our model’s parameters with other generalized models’
parameters. As stated in [38], such pre-training is critical to model performance

21

3.3.2 Model Learning and Inference

Model Parameters Learning

To train the network, we transform the values of the output layer, y(u,t), to probabilities
by:

p(Sut | Sut−1,Sut−2, · · · ,Sut−L) = σ(y(u,t)
Su

t
), (3.11)

where σ(x) = 1/(1 + e−x) is the sigmoid function. Let Cu = {L + 1, L + 2, ..., |Su|} be
the collection of time steps for which we would like to make predictions for user u. The
likelihood of all sequences in the dataset is:

p(S|Θ) =
∏
u

∏
t∈Cu

σ(y(u,t)
Su

t
)
∏
j 6=Su

t

(1− σ(y(u,t)
j)). (3.12)

To further capture skip behaviors, we could consider the next T target items, Dut =
{Sut ,Sut+1, ...,Sut+T }, at once by replacing the immediate next item Sut in the above equation
with Dut . Taking the negative logarithm of likelihood, we get the objective function, also
known as binary cross-entropy loss:

` =
∑
u

∑
t∈Cu

∑
i∈Du

t

−log(σ(y(u,t)
i)) +

∑
j 6=i
−log(1− σ(y(u,t)

j)). (3.13)

Following previous works [78, 37, 102], for each target item i, we randomly sample several
(3 in our experiments) negative instances j in the second term.

The model parameters Θ = {P ,Q,F , F̃ ,W ,W ′, b, b′} are learned by minimizing the
objective function in Eqn equation 3.13 on the training set, whereas the hyperparameters
(e.g., d, n, ñ, L, T) are tuned on the validation set via grid search. We adopt an variant of
Stochastic Gradient Descent (SGD) called Adaptive Moment Estimation (Adam) [55] for
faster convergence, with a batch size of 100. To control model complexity and avoid over-
fitting, we use two kinds of regularization methods: the l2 Norm (weight decay) is applied
for all model parameters and Dropout [87] technique with 50% drop ratio is used on fully-
connected layers. We implemented Caser with MatConvNet [96]. The whole training time
is proportional to the number of training instances. For example, it took around 1 hour for
MovieLens data and 2 hours for Gowalla data, 2 hours for Foursquare and 1 hour for Tmall
on a 4-cores i7 CPU and 32GB RAM machine. These times are comparable to Fossil’s [37]
running time and can be further reduced by using GPU.

Model Inference for Recommendations

After obtaining the trained neural network, to make recommendations for a user u at time
step t, we take u’s latent embedding Pu and extract his last L items’ embeddings given by
Eqn equation 3.2 as the neural network input. We recommend the N items that have the

22

highest values in the output layer y. The complexity for making recommendations to all
users is O(|U||I|d), where the complexity of convolution operations is ignored. Note that
the number of target items T is a hyperparameter used during the model training, whereas
N is the number of items recommended after the model is trained.

3.3.3 Connection to Existing Models

We show that Caser is a generalization of several previous models.

Caser vs. MF. By discarding all convolutional layers and all bias terms, our model
becomes a vanilla LFM with user embeddings as user latent factors and its associated
weights as item latent factors. MF usually contains bias terms1, which is b′ in our model.
After discarding all convolutional layers, the resulting model is the same as MF:

yui = W ′
i

[
0
Pu

]
+ b′i. (3.14)

Caser vs. FPMC. FPMC fuses factorized first-order Markov chain with LFM and is
optimized by Bayesian personalized ranking (BPR). Although Caser uses a different op-
timization criterion, i.e., the cross-entropy, it is able to generalize FPMC by copying the
previous item’s embedding to the hidden layer z and not using any bias terms:

y
(u,t)
i = W ′

i

[
QSu

t−1

Pu

]
. (3.15)

As FPMC uses BPR as the criterion, our model is not exactly the same as FPMC. However,
BPR is limited to have only 1 target and negative sample at each time step. Our cross-
entropy loss does not have these limitations.

Caser vs. Fossil. By omitting the horizontal convolutional layer and using one vertical
filter and copying the vertical convolution result c̃ to the hidden layer z, we get

y
(u,t)
i = W ′

i

[
c̃

Pu

]
+ b′i. (3.16)

As discussed for Eqn equation 3.7, this vertical filter serves as the weighted sum of the em-
beddings of the L previous items, like in Fossil, though Fossil uses Similarity Model instead
of LFM and factorizes it in the same latent space as Markov model. Another difference is

1Top-N recommendation ranks the items for each user individually, which is invariant to user bias and
global bias.

23

Table 3.1: Statistics of the datasets

Datasets Sequential #users #items avg. actions SparsityIntensity per user

MovieLens 0.3265 6.0k 3.4k 165.50 95.16%

Gowalla 0.0748 13.1k 14.0k 40.74 99.71%

Foursquare 0.0378 10.1k 23.4k 30.16 99.87%

Tmall 0.0104 23.8k 12.2k 13.93 99.89%

that Fossil uses one local weighting for each user while we use a number of global weighting
through vertical filters.

3.4 Experimental Studies

We compare Caser with state-of-the-art methods. The source code of Caser and processed
datasets are available online2.

3.4.1 Experimental Setup

Datasets. Sequential recommendation makes sense only when the dataset contains sequen-
tial patterns. To identify such datasets, we applied sequential association rule mining to
several public datasets and computed their sequential intensity defined by:

Sequential Intensity (SI) = #rules
#users . (3.17)

The numerator is the total number of rules in the form of Eqn equation 3.1 found using
a minimum threshold on support (i.e., 5) and confidence(i.e., 50%) with Markov order L
range from 1 to 5. The denominator is the total number of users. We use SI to estimate
the intensity of sequential signals in a dataset.

The four datasets with their SI are described in Table 3.1. MovieLens3 is the widely
used movie rating data. Gowalla4 constructed by [20] and Foursquare obtained from [107]
contain implicit feedback through user-venue check-ins. Tmall, the largest B2C platform
in China, is a user-purchase data obtained from IJCAI 2015 competition5, which aims to
forecast repeated buyers. Following previous works [37, 77, 102], we converted all numeric

2https://github.com/graytowne/caser

3https://grouplens.org/datasets/movielens/1m/

4https://snap.stanford.edu/data/loc-gowalla.html

5https://ijcai-15.org/index.php/repeat-buyers-prediction-competition

24

ratings to implicit feedback of 1. We also removed cold-start users and items of having
less than n feedbacks, as dealing with cold-start recommendation is usually treated as a
separate issue in the literature [102, 38, 37, 78]. n is [5,15,10,10] for MovieLens, Gowalla,
Foursquare, and Tmall. The Amazon data previously used in [37, 36] was not used due
to its SI (0.0026 for ‘Office Products’ category, 0.0019 for ‘Clothing, Shoes, Jewelry’ and
’Video Games’ category), in other words, its sequential signals are much weaker than the
above datasets.

Following [64, 107], we hold the first 70% of actions in each user’s sequence as the
training set and use the next 10% of actions as the validation set to search the optimal
hyperparameter settings for all models. The remaining 20% actions in each user’s sequence
are used as the test set for evaluating a model’s performance.
Evaluation Metrics. As in [70, 78, 97, 102], we evaluate a model by Precision@N ,
Recall@N , and Mean Average Precision (mAP). We report the average of these values
of all users. N ∈ {1, 5, 10}.

3.4.2 Performance Comparison

We compare our method, Caser, proposed in Section 4.2 with the following baselines.

• POP. All items are ranked by their popularity in all users’ sequences, and the popu-
larity is determined by the number of interactions.

• BPR. Combined with Matrix Factorization model, Bayesian personalized ranking [77]
is the state-of-the-art method for non-sequential item recommendation on implicit
feedback data.

• FMC and FPMC. As introduced in [78], FMC factorizes the first-order Markov
transition matrix into two low-dimensional sub-matrices, and FPMC is a fusion of
FMC and LFM. These are the state-of-the-art sequential recommendation methods.
FPMC allows a basket of several items at each step. For our sequential recommenda-
tion problem, each basket has a single item.

• Fossil. Fossil [37] models high-order Markov chains and uses Similarity Model instead
of LFM for modeling general user preferences.

• GRU4Rec. This is the session-based recommendation proposed by [39]. This model
uses RNN to capture sequential dependencies and make predictions.

For each method, the grid search is applied to find the optimal settings of hyperparame-
ters using the validation set. These include latent dimensions d from {5, 10, 20, 30, 50, 100},
regularization hyperparameters, and the learning rate from {1, 10−1, ..., 10−4}. For Fossil,
Caser and GRU4Rec, the Markov order L is from {1, · · · , 9}. For Caser itself, the height

25

h of horizontal filters is from {1, · · · , L}, the target number T is from {1, 2, 3}, the ac-
tivation functions φa and φc are from {identity, sigmoid, tanh, relu}. For each height h,
the number of horizontal filters is from {4, 8, 16, 32, 64}. The number of vertical filters is
from {1, 2, 4, 8, 16}. We report the result of each method under its optimal hyperparameter
settings.

The best results of the six baselines and Caser are summarized in Table 3.2. The best
performer on each row is highlighted in bold face. The last column is the improvement of
Caser relative to the best baseline, defined as Caser−baseline

baseline . Except for MovieLens, Caser
improved the best baseline on all N tested by a large margin w.r.t. the three metrics. Among
the baseline methods, the sequential recommenders (e.g., FPMC and Fossil) usually outper-
form non-sequential recommenders (i.e., BPR) on all datasets, suggesting the importance
of considering sequential information. FPMC and Fossil outperform FMC on all datasets,
suggesting the effectiveness of personalization. On MovieLens, GRU4Rec achieved a perfor-
mance close to Caser’s, but got a much worse performance on the other three datasets. In
fact, MovieLens has more sequential signals than the other three data sets, thus, the RNN-
based GRU4Rec could perform well on MovieLens but can easily get biased on training
sets of the other three datasets despite the use of regularization and dropout as described
in [39]. In addition, GRU4Rec’s recommendation is session-based, instead of personalized,
which enlarge the generalization error to some extent.

In the following studies, we examine the impact of the hyperparameters {d, L, T} one
at a time by holding the remaining hyperparameters at their optimal settings. We focus on
MAP as it is an overall performance indicator and consistent with other metrics.

Influence of Latent Dimensionality d. Figure 3.5 shows mAP for various d while
keeping the other optimal hyperparameters unchanged. On the denser MovieLens, a larger
d does not always lead to a better model performance. A model achieves its best performance
when d is chosen properly and gets worse for a larger d because of over-fitting. But for the
other three sparser datasets, each model requires more latent dimensions to achieve their
best results. For all datasets, Caser beats the strongest baseline performance by using a
relatively small number of latent dimensions.

Influence of Markov Order L and Target Number T . We vary L to explore how
much of Fossil, GRU4Rec and Caser can gain from high-order information while keeping
other optimal hyperparameters unchanged. Caser-1, Caser-2, and Caser-3 denote Caser with
the target number T at 1, 2, 3 to study the effect of skip behaviors. The results are shown
in Figure 3.6. On the dense MovieLens, Caser best utilizes the extra information provided
by a larger L and Caser-3 performs the best, suggesting the benefits of skip steps. However,
for the sparser datasets, all models do not consistently benefit from a larger L. This is
reasonable, because for a sparse dataset, a higher order Markov chain tends to introduce

26

Ta
bl
e
3.
2:

Pe
rf
or
m
an

ce
co
m
pa

ris
on

on
th
e
fo
ur

da
ta
se
ts
.

D
at
as
et

M
et
ric

PO
P

B
PR

FM
C

FP
M
C

Fo
ss
il

G
R
U
4R

ec
C
as
er

Im
pr
ov
.

M
ov
ie
Le

ns

Pr
ec
@
1

0.
12

80
0.
14

78
0.
17

48
0.
20

22
0.
23

06
0.
25

15
0.
25

02
-0
.5
%

Pr
ec
@
5

0.
11

13
0.
12

88
0.
15

05
0.
16

59
0.
20

00
0.
21

46
0.
21

75
1.
4%

Pr
ec
@
10

0.
10

11
0.
11

93
0.
13

17
0.
14

60
0.
18

06
0.
19

16
0.
19

91
4.
0%

R
ec
al
l@

1
0.
00

50
0.
00

70
0.
01

04
0.
01

18
0.
01

44
0.
01

53
0.
01

48
-3
.3
%

R
ec
al
l@

5
0.
02

13
0.
03

12
0.
04

32
0.
04

68
0.
06

02
0.
06

29
0.
06

32
0.
5%

R
ec
al
l@

10
0.
03

75
0.
05

60
0.
07

22
0.
07

77
0.
10

61
0.
10

93
0.
11

21
2.
6%

m
A
P

0.
06

87
0.
09

13
0.
09

49
0.
10

53
0.
13

54
0.
14

40
0.
15

07
4.
7%

G
ow

al
la

Pr
ec
@
1

0.
05

17
0.
16

40
0.
15

32
0.
15

55
0.
17

36
0.
10

50
0.
19

61
13

.0
%

Pr
ec
@
5

0.
03

62
0.
09

83
0.
08

76
0.
09

36
0.
10

45
0.
07

21
0.
11

29
8.
0%

Pr
ec
@
10

0.
02

81
0.
07

26
0.
06

57
0.
06

98
0.
07

82
0.
05

71
0.
08

33
6.
5%

R
ec
al
l@

1
0.
00

64
0.
02

50
0.
02

34
0.
02

56
0.
02

77
0.
01

55
0.
03

10
11

.9
%

R
ec
al
l@

5
0.
02

57
0.
07

43
0.
06

48
0.
07

22
0.
07

93
0.
05

29
0.
08

45
6.
6%

R
ec
al
l@

10
0.
04

02
0.
10

77
0.
09

50
0.
10

59
0.
11

66
0.
08

26
0.
12

23
4.
9%

m
A
P

0.
02

29
0.
07

67
0.
07

11
0.
07

64
0.
08

48
0.
05

80
0.
09

28
9.
4%

Fo
ur
sq
ua

re

Pr
ec
@
1

0.
10

90
0.
12

33
0.
08

75
0.
10

81
0.
11

91
0.
10

18
0.
13

51
13

.4
%

Pr
ec
@
5

0.
04

77
0.
05

43
0.
04

45
0.
05

55
0.
05

80
0.
04

75
0.
06

19
6.
7%

Pr
ec
@
10

0.
03

04
0.
03

48
0.
03

09
0.
03

85
0.
03

99
0.
03

31
0.
04

25
6.
5%

R
ec
al
l@

1
0.
03

76
0.
04

45
0.
03

05
0.
04

40
0.
04

97
0.
03

69
0.
05

65
13

.7
%

R
ec
al
l@

5
0.
08

00
0.
08

88
0.
06

89
0.
09

59
0.
09

48
0.
07

70
0.
10

35
7.
9%

R
ec
al
l@

10
0.
09

54
0.
10

61
0.
09

11
0.
12

00
0.
11

87
0.
10

11
0.
12

91
7.
6%

m
A
P

0.
06

36
0.
07

19
0.
05

71
0.
07

82
0.
08

23
0.
06

43
0.
09

09
10

.4
%

Tm
al
l

Pr
ec
@
1

0.
00

10
0.
01

11
0.
01

97
0.
02

10
0.
02

80
0.
01

39
0.
03

12
11

.4
%

Pr
ec
@
5

0.
00

09
0.
00

81
0.
01

14
0.
01

20
0.
01

49
0.
00

90
0.
01

79
20

.1
%

Pr
ec
@
10

0.
00

07
0.
00

63
0.
00

84
0.
00

90
0.
01

04
0.
00

70
0.
01

32
26

.9
%

R
ec
al
l@

1
0.
00

04
0.
00

46
0.
00

79
0.
00

82
0.
01

17
0.
00

56
0.
01

30
11

.1
%

R
ec
al
l@

5
0.
00

19
0.
01

69
0.
02

26
0.
02

45
0.
03

06
0.
01

80
0.
03

66
19

.6
%

R
ec
al
l@

10
0.
00

26
0.
02

60
0.
03

33
0.
03

64
0.
04

25
0.
02

78
0.
05

34
25

.6
%

m
A
P

0.
00

30
0.
01

45
0.
01

97
0.
02

12
0.
02

56
0.
01

64
0.
03

10
21

.1
%

27

5 10 20 30 50 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16
MovieLens

5 10 20 30 50 100
0

0.02

0.04

0.06

0.08

0.1
Gowalla

5 10 20 30 50 100
0.02

0.04

0.06

0.08

0.1
Foursquare

5 10 20 30 50 100
0

0.01

0.02

0.03

0.04
Tmall

5 10 20 30 50 100
0

0.01

0.02

0.03

0.04
Tmall

POP
BPR
FMC
FPMC
Fossil
GRU4Rec
Caser

Figure 3.5: mAP (y-axis) vs. the number of latent dimensions d (x-axis).

1 2 3 4
0.1

0.11

0.12

0.13

0.14

0.15

0.16
MovieLens

1 2 3 4
0.05

0.06

0.07

0.08

0.09

0.1
Gowalla

1 2 3 4
0.02

0.04

0.06

0.08

0.1
Foursquare

1 2 3 4
0

0.01

0.02

0.03

0.04

0.05
Tmall

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05
Tmall
Fossil
GRU4Rec
Caser-1
Caser-2
Caser-3

Figure 3.6: mAP (y-axis) vs. the Markov order L (x-axis). Caser-1, Caser-2, and Caser-3
denote Caser with the number of targets T set to 1, 2, 3.

28

both extra information and more noises. In most cases, Caser-2 slightly outperforms the
other models on these three datasets.

Table 3.3: mAP vs. Caser Components

MovieLens Gowalla

Caser-p 0.0935 0.0777

Caser-h 0.1304 0.0805

Caser-v 0.1403 0.0841

Caser-vh 0.1448 0.0856

Caser-ph 0.1372 0.0911

Caser-pv 0.1494 0.0921

Caser-pvh 0.1507 0.0928

Analysis of Caser Components. Finally, we evaluate the contribution of each of Caser’s
components, the horizontal convolutional layer (i.e., o), the vertical convolutional layer (i.e.,
õ), and personalization (i.e., Pu), to the overall performance while keeping all hyperparam-
eters at their optimal settings. The result is shown in Table 3.3 for MovieLens and Gowalla;
the results of the other two datasets are similar. For x ∈ {p, h, v, vh, ph, pv, pvh}, Caser-x
denotes Caser with the components x enabled. h denotes horizontal convolutional layer; v
denotes vertical convolutional layer; p denotes personalization, which is similar to BPR and
uses LFM only. Any missing component is represented by setting its corresponding o, õ,
and Pu to zero. For example, vh denotes both vertical convolutional layer and horizontal
convolutional layer by setting Pu to all zeros, and pv denotes vertical convolutional layer
and personalization by setting o to all zeros. Caser-p performs the worst whereas Caser-h,
Caser-v, and Caser-vh improve the performance significantly, suggesting that treating top-
N sequential recommendation as the conventional top-N recommendation will lose useful
information, and that modeling both sequential patterns at the union-level and point-level
is useful for improving the prediction. For both datasets, the best performance is achieved
by jointly using all parts of Caser, i.e., Caser-pvh.

Network Visualization. We have a closer look at some trained networks and prediction.
Figure 3.7 shows the values of four vertical convolutional filters after training Caser on
MovieLens with L = 9. In the micro perspective, the four filters are trained to be diverse,
but in the macro perspective, they follow an ascending trend from past positions to recent
positions. With each vertical filter serving as a way of weighting the embeddings of previous
actions (see the related discussion in Section 3.3), this trend indicates that Caser puts more

29

past

recent
𝐹"# 𝐹"$ 𝐹"% 𝐹"&F1 F2 F3 F4

t-9

t-8

t-7

t-6

t-5

t-4

t-3

t-2

t-1

0.029

0.018

0.018

0.012

0.044

0.055

0.040

0.023

0.005

0.017

0.014

0.023

0.035

0.021

0.048

0.034

0.024

0.029

0.021

0.011

0.025

0.042

0.037

0.023

0.012

0.012

0.042

0.030

0.048

0.0530.067

0.073 0.067

0.059

0.061 0.063 0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3.7: Visualization for four vertical convolutional filters of a trained model on Movie-
Lens data when L = 9.

Previous Sequence Predictions

𝑆" 𝑆# 𝑆$ 𝑆% 𝑆& 𝑅("

(b)

(a)

Masking	Items New	Rank	of	𝑹*𝟑	after	masking

𝑆", 𝑆# 2

𝑆$ 32

𝑆% 117

𝑆& 77

𝑆$, 𝑆%, 𝑆& 513

𝑅(# 𝑅($

Figure 3.8: Horizontal convolutional filters’s effectiveness of capturing union-level sequential
patterns on MovieLens data.

emphasis on recent actions, demonstrating a major difference from the conventional top-N
recommendation.

To see the effectiveness of horizontal filters, Figure 3.8(a) shows top N = 3 ranked
movies recommended by Caser, i.e., R̂1 (Mad Max), R̂2 (Star War), R̂3 (Star Trek) in that
order, for a user with L = 5 previous movies, i.e., S1 (13th Warrior), S2 (American Beauty),
S3 (Star Trek), S4 (Star Trek III), and S5 (Star Trek IV). R̂3 is the ground truth (i.e., the
next movie in the user sequence). Note that R̂1 and R̂2 are quite similar to R̂3, i.e., all

30

being action and science fiction movies, so are also recommended to the user. Figure 3.8(b)
shows the new rank of R̂3 after masking some of the L previous movies by setting their
item embeddings to zeros in the trained network. Masking S1 and S2 actually increases
the rank of R̂3 to 2 (from 3); in fact, S1 and S2 are history or romance movies and act
like noises for recommending R̂3. Masking each of S3, S4 and S5 decreases the rank of
R̂3 because these movies are in the same category as R̂3. The most decrease occurs after
masking S3, S4 and S5 all together. This study clearly indicates that our model correctly
captures the dependence of R̂3 on the related {S3, S4, S5} as a union-level sequential feature
for recommending R̂3.

3.5 Conclusion

Caser is a novel solution to top-N sequential recommendation by modeling recent actions as
an “image” among time and latent dimensions and learning sequential patterns using convo-
lutional filters. This approach provides a unified and flexible network structure for capturing
many important features of sequential recommendation, i.e., point-level and union-level se-
quential patterns, skip behaviors, and long term user preferences. Our experiments and
case studies on public real life datasets suggested that Caser outperforms the state-of-the-
art methods for top-N sequential recommendation.

31

Chapter 4

On Exploiting Long-range
Dependent User Sequences

In this chapter, we observe and study an open challenge for sequential recommender systems.
That is, how can we best utilize extremely-long user action sequences? As described in
Chapter 1.1, using a longer user sequence gives a model more flexibility to learn user interests
from a longer time span. However, modeling long user sequence is challenging. Specifically,
different part of a long user sequence may have different properties and cannot be treated
equally. Also, modeling the dependencies from the long tail of user sequence is difficult. How
can we design a model that works, simultaneously, across all of temporal ranges?

4.1 Background and Motivations

In the previous chapter, we assumed each user has long-term preferences, which don’t change
much with the time. For example, users’ tastes for movie don’t change too much over time,
thus we should recommend Jackie Chan’s new released movies if this user love watching
Jackie Chan’s movies long time ago. In Caser, we learned an embedding for each user to
model her/his long-term preference. However, as we will elaborate later in this section,
learning user embedding explicitly is impractical for large-scale recommender systems in
industry. Fortunately, we can directly learn this long-term preference from the long user
sequences once these sequences are available. By doing this, one can discard the user em-
beddings and can greatly reduce the model size when the number of users is huge. This raises
two natural questions: (1) Do users really have long-term preferences? and (2) What’s the
challenges for modeling these preferences with long user sequences? In the following, We
first present our findings on YouTube dataset which reveal the existence of users’ long-term
preference. We also uncover properties of behavioral patterns in different temporal ranges
of user sequences. Finally, we show some limitations of existing methods which motivate us
to design a better adapted solution.

32

0 100 200 300 400 500
Distance to label

0.000

0.005

0.010

0.015

0.020

0.025 Centered inner product of item embeddings

Mean

5th and 95th percentiles

Figure 4.1: Trace of covariance (i.e. centered inner product similarity) of item embeddings
between the last item in user sequence and the item located L steps before (100K samples).

4.1.1 Observation from Data

We now describe how we developed a better understanding of long user sequences in
YouTube dataset through quantitative data exploration. To quantify how past events in
a user sequence1 S can influence a user’s current behavior in our dataset, i.e. measure the
range of temporal dependency within a sequence of actions, one can examine the covari-
ance matrix of two events L-step apart [8, 74], where step denotes the relative order of
events within sequence. In particular, we look at the trace of the covariance matrix as a
measurement of dependency:

DepL = tr
(
Cov

(
QSM

, QSM−L

))
where SM is the item in last event in a logged user action sequence S and SM−L is the
item corresponding to the interaction that occurred L time steps before the last event. We
focus on the trace of the covariance matrix as it equals the sum of the eigenvalues of the
covariance matrix and its rate of decay is therefore informative of the rate of decay of these
eigenvalues as a whole.

We utilize the item embeddings Q that have been learned by a pre-existing model—in
our case an RNN-based sequential recommender which we describe later as one of M3’s
sub-models. DepL here measures the similarity between the current event and the event
L steps back from it. To estimate DepL for a particular value of L we employ a classic
empirical averaging across user sequences in our dataset. From Figure 4.1, we can extract
multiple findings:

1For simplicity, we omit the superscripts related to users (i.e., Su will be denoted S) and focus on one
single user sequence to illustrate our observation and our proposed method.

33

• The dependency between two events decreases as the time separating their consump-
tion grows. This suggests that recent events bear most of the influence of past user
behavior on a user’s future behavior.

• The dependency slowly approaches zero even as the temporal distance becomes very
large (i.e., L > 100). The clear hyperbolic-decay of the level of temporal dependencies
indicates the presence of long-range-dependent patterns existing in user sequences [74].
In other words, a user’s past interactions, though far from the current time step, still
cumulatively influence their current behavior significantly.

These findings suggest that users do have long-term preferences and better capturing such
long-range-dependent pattern could help predicting their future interests. In further work,
we plan to use off-policy correction methods such as [32, 15] to remove presentation bias
when estimating correlations.

4.1.2 Limitations of Previous Work

Limitations of Existing Sequential Models. The previous section has demonstrated
the informational value of long-range temporal patterns in user sequences. Unfortunately,
it is still generally challenging for existing sequential predictive models to fully utilize in-
formation located far into the past.

Most prior models have difficulties when learning to account for sequential patterns in-
volving long-range dependence. Existing sequential recommenders with factorized Markov
chain methods [37] or CNNs (i.e., Caser in Chapter 3) arguably provide reliable sequential
recommendation strategies. Unfortunately they are all limited by a short window of sig-
nificant temporal dependence when leveraging sequential data to make a recommendation
prediction. And the performance of these model may drop when having a larger window.
RNNs [39, 47, 11] and their variants [75, 26] are widely used in sequential recommendation.
RNN-based models, though effective for short user sequences (e.g., short event sequences
within a session), are challenged by long-range dependent patterns in long user sequences.
Because of the way they iterate over sequential items [67] and their use of saturating non-
linear functions such as tanh to propagate information through time, RNNs tend to have
difficulties leveraging the information contained in states located far into the past due to
gradient propagation issues [73, 9]. Even recent architectures designed to facilitate gradient
propagation such as Gated Recurrent Unit [21] and Long-short Term Memory [41, 89] have
also been shown to suffer from the same problem of not being able to provably account for
long-range dependent patterns in sequences [9].

A second challenge in sequential recommendations is learning user latent factors Pu
explicitly from data, which has been observed to create many difficulties [37, 17, 78]. In the
corresponding works, users’ long-term preferences have been modeled through learning a set
of latent factors Pu for each user. However, learning Pu explicitly is difficult in large-scale

34

production systems. As the number of users is usually several magnitudes higher than the
number of items, building such a large user vocabulary and storing the latent factors in a
persistent manner is challenging. Also, the long-tail users (a.k.a cold users) and visitor users
(i.e., users who are not logged in) could have much worse recommendations than engaged
users [10].

Limitations of Single Monolithic Models. Figure 4.1 clearly indicates that although
the influence of past user events on future interactions follows a significant decaying trend,
significant predictive power can still be carried by events located arbitrarily far in the past.
Very recent events (i.e., 1 ≤ L ≤ 10) have large magnitude similarities with the current user
behavior and this similarity depends strongly on the sequential order of related events. As
the distance L grows larger, the informative power of previously consumed items on future
user behavior is affected by more uncertainty (e.g., variance) and is less sensitive to relative
sequential position. That is, the events from 100 steps ago and from 110 steps ago may have
a generally similar influence on future user decisions regardless of their relative temporal
location. Therefore, for the kind of sequential signals we intend to leverage, in which different
scales of temporal dependencies co-exist, it may be better to no longer consider a single
model. While simple monolithic models such as Deep Neural Network (DNN) with pooling
and dropout [101, 23] are provably robust to noise, they are unfortunately not sensitive
to sequential order (without substantial modifications). On the other hand, RNNs [39, 11]
provide cutting-edge sequential modeling capabilities but they are heavily sensitive to noise
in sequential patterns. Therefore, it is natural to choose a mixture of diverse models which
would then complement each other to provide better overall predictive power.

4.1.3 Contributions

We address the issue of providing a single model adapted to the diversity of contexts and
scales of temporal dependencies in sequential recommendations through data analysis and
the design of a Multi-temporal-range Mixture Model, orM3 for short. We make the following
contributions to this problem:

• Data-driven design:We demonstrate that in real world recommendation tasks there
are significant long-range temporal dependencies in user sequence data, and that pre-
vious approaches are limited in their ability to capture those dynamics. M3’s design
is informed by this quantitative analysis.

• Multi-range Model: We offer a single model, M3, which is a mixture model con-
sisting of three sub-models (each with a distinct manually designed architecture) that
specialize in capturing different ranges of temporal dependencies. M3 can learn how
to dynamically choose to focus on different temporal dynamics and ranges depending
on the application context.

35

• Empirical Benefits and Interpretability: We show on both public academic and
private data that our approach provides significantly better recommendations. Fur-
ther, using its interpretable design, we analyze how M3 dynamically switches between
patterns present at different temporal ranges for different contexts, thus showing the
value in enabling context-specific multi-range modeling. Our private dataset consists
in anonymized user sequences from YouTube. To the best of our knowledge this paper
is the first to focus on sequential patterns in such a setting.

4.2 Proposed Methodology

Motivated by our earlier analyses in Section 4.1.2, we now introduce a novel method aimed
at addressing the shortcoming of pre-existing approaches for long user/item interaction
sequences: Multi-temporal-range Mixture Model (M3) and its two variants (M3R/M3C).
Put everything in a nutshell, M3 is a tailored solution with the following design to overcome
the limitations we discussed above:

• Instead of using monolithic model, we adopt a Mixture-of-Experts (MOE) deign to
cater the distinct properties from different parts of user sequence.

• To overcome the challenge of modeling long-range dependencies, we use Attention
Model, which is insensitive to long temporal range, as one of the experts in complement
to RNN/CNN.

• The sequence embedding from M3 encodes both user’s short-term and long-term pref-
erences, without the need of explicitly using user embeddings.

4.2.1 Overview

Figure 4.2 gives a general schematic depiction of M3. We will now introduce each part of
the model separately in a bottom-up manner, starting from the inputs and progressively
abstracting their representation which finally determines the model’s output.

Process sequence inputs. When predicting the next item St+1 a user is going to interact
in her/his logged sequence, we employ item embeddings and context features (optional) from
past events as inputs:

xt = [Qt ⊕ cin
t], (4.1)

where ⊕ denotes the concatenation operator. To map the raw context features and item
embeddings to the same high-dimensional space for future use, a feed-forward layer F in is
used:

Z in
t = {zin

i }i=1···t where zin
t = F in(xt) (4.2)

36

Context

Softmax

Feed-forward

Encoder Encoder Encoder

Concat / Sum
(Gate)(Gate)

Event

Feed-forward

Context Embedding

Event

Figure 4.2: An overview of the proposed M3 model. From bottom to top, we first process
the sequence inputs with a feed-forward layer F in. Next, we apply three different sequence
encoders on the processed sequence and aggregate their results with a gate network. Here
MT is the tiny-range encoder that make prediction based on user’s last action; MS is
the short-range encoder using RNN/CNN to encode user’s recent actions and ML is the
long-range encoder that can utilize the long-tail of user sequence.

here zin
t ∈ R1×din represents the input processed at step t and Z in

t ∈ Rt×din stands for the
collection of all processed inputs before step t (included). Either the identity function or a
ReLU [68] can be used to instantiate the feed-forward layer F in.

Mixture of multiple sequence models. In the previous section, we assessed the limita-
tions of using a single model on long user sequence. To circumvent the issues we highlighted,
we employ in M3 three different sequence models (encoders) in conjunction, namely MT ,
MS and ML, on top of the processed input Z in

t . We will later explain their individual ar-
chitectures in details. The general insight is that we want each of these sub-models to focus
on different ranges of temporal dependencies in user sequences to provide a better repre-
sentation (i.e., embedding) of the sequence. We want the sub-models to be architecturally
diverse and address each other’s shortcomings. Hence

SETt = MT (Z in
t), SESt = MS(Z in

t), SELt = ML(Z in
t), (4.3)

37

which yields three different representations, one produced by each of the three sequence
encoders. The three different sub-model encoders are expected to produce outputs—denoted
by denc—of identical dimension. By construction, each sequential encoder produces its own
abstract representation of a given user’s logged sequence, providing diverse latent semantics
for the same input data.

Aggregate representations with MOE-like design. Our approach builds upon the
success of Mixture-of-Experts (MOE) model [46]. One key difference is that our ‘experts’ are
constructed to work with different ranges of temporal dependencies, instead of letting the
cohort of ‘experts’ specialize by learning from data. As shown in [84], heavy regularization is
needed to learn different experts sharing the same architecture in order to induce specializa-
tion and prevent starvation when learning (only one expert performs well because it is the
only one to learn which creates a self-reinforcing loop when learning with back-propagation).

Informed by the insights underlying the architecture of MOE models, we aggregate
all sequence encoders’ results by weighted-concatenate or weighted-sum, with weights Gt
computed by a small gating network. In fact, we concatenate the outputs with

SEt = (GTt × SETt)⊕ (GSt × SESt)⊕ (GLt × SELt), (4.4)

where Gt ∈ R3 corresponds to the outputs of our gating network. We can also aggregate
outputs with a weighted-sum:

SEt = (GTt × SETt) + (GSt × SESt) + (GLt × SELt). (4.5)

Note that there is no theoretical guarantee whether concatenation is better than summation
or not. The choice of aggregation, as well as the choice of activation functions, is determined
by observing a given model’s performance from a validation set extracted from different
datasets. Such a procedure is usual in machine learning and will help practitioners determine
which variant of the model we propose is best suited to their particular application.

Because of its MOE-like structure, our model can adapt to different recommendation
scenarios and provide insightful interpretability (as we shall see in Section 4.3). In many
recommendation applications, some features annotate each event and represent the context
in which the recommendation query is produced. Such features are for instance indicative
of the page or device on which a user is being served a recommendation.

Output layer. After obtaining a sequence representation at step t (i.e., SEt), we fuse it
with the annotation’s context features (optional) at prediction-time and project them to
the same latent space with another hidden feed-forward layer F out:

zout
t = F out([SEt ⊕ cout

t]) (4.6)

38

Encoder

Linear

output

(a) Tiny-range encoder

Encoder

Attention

output

(b) Long-range encoder

Encoder

ConvConvConv

Conv

output

(c) Short-range encoder (CNN)

Encoder

RNNRNNRNN

output

(d) Short-range encoder (RNN)

Figure 4.3: The sequence encoders of M3. The solid lines are used to denote the data flow.
The dotted line in (a) means an identity copy whereas in (b) it means the interaction of
attention queries and keys.

where cout is a vector encoding contextual information to use after the sequence has been
encoded. Here the zout

t ∈ R1×dout is what we name user representation, it is computed based
on the user’s history as it has been gathered in logs and encodes both user’s short-term and
long-term preferences. Finally, a user similarity (relevance) score rv is predicted for each
item via an inner-product (which can be changed to another similarity scoring function):

rv = zout
t ·Q′i (4.7)

where Q′i is a set of latent factors (a embedding) representing the item i. For a given user,
item similarity scores are then normalized by a softmax layer which yields a recommendation
distribution over the item vocabulary. After training M3, the recommendations for a user
at step t are served by sorting the similarity scores ri obtained for all i ∈ I and retrieving
the items associated with the highest scores.

39

4.2.2 Different Encoders for Dependencies from Different Ranges

Item Co-occurrence as a Tiny-range Encoder

The Tiny-range encoder MT only focuses on the user’s last event et, ignoring all previous
events. In other words, given the processed inputs from past events Z in

t , this encoder will
only consider zin

t . As in factorizing Markov chain (FMC) models [78],MT makes predictions
based on item range-1 co-occurrence within observed sequences. For example, if most of
users buy iPhone cases after purchasing an iPhone, then MT should learn this item-to-item
co-occurrence pattern. As shown in Figure 4.3a, we compute MT ’s output as:

MT (Z in
t) = φ(zin

t), where φ(x) =

xW
(T) + b(T), if din 6= denc,

x, otherwise.
(4.8)

That is, when the dimensionality of processed input and encoder output are the same, the
tiny-range encoder performs a role of residual for the other encoders in mixture. If din 6= denc

, it is possible to down-sample (if din > denc) or up-sample (if din < denc) from zin
t by learned

parameters W (T) ∈ Rdin×denc and b(T) ∈ Rdenc .
In summary, the tiny-range encoderMT can only focus on the last event by construction,

meaning it has a temporal range of 1 by design. If we only use the output of MT to make
predictions, we obtain recommendations results based on item co-occurrence.

RNN/CNN as Short-range Encoder

As discussed in Section 4.1, the recent behavior of a user has substantial predictive power
on current and future interactions. Therefore, to leverage the corresponding signals entailed
in observations, we consider instantiating a short-range sequence encoder that puts more
emphasis on recent past events. Given the processed input from past events Z in

t , this en-
coder, represented as MS , focuses by design on a recent subset of logged events. Based on
our quantitative data exploration, we believe it is suitable for MS to be highly sensitive
to sequence order. For instance, we expect this encoder to capture the purchasing pattern
iPhone→ iPhone case→ iPhone charger if it appears frequently in user sequences. As a re-
sult, we believe the Recurrent Neural Network (RNN [67]) and the Temporal Convolutional
Network ([94, 7, 106]) are fitting potential architectural choices. Such neural architectures
have shown superb performances when modeling high-order causalities. Beyond accuracy,
these two encoders are also order sensitive, unlike early sequence modeling method (i.e.,
Bag-of-Word [50]). As a result we develop two interchangeable variants of M3: M3R and
M3C using an RNN and a CNN respectively.

To further describe each of these options, let us introduce our RNN encoder MS
RNN. As

shown in Figure 4.3d we obtain the output of MS
RNN by first computing the hidden state of

40

RNN at step t:
ht = RNN(zin

t , ht−1), (4.9)

where RNN(·) is a recurrent cell that updates the hidden state at each step based on the
previous hidden state ht−1 ∈ R1×din and the current RNN input zin

t . Several choices such as
Gated Recurrent Unit (GRU) [21] or Long Short Term Memory (LSTM) [41] can be used.
The output is then computed as follows:

MS
RNN(Z in

t) = htW
(R), where W (R) ∈ Rdin×denc (4.10)

whereW (R) maps the hidden state to the encoder output space. We design our CNN encoder
MS

CNN as a Temporal Convolutional Networks which has provided state-of-art sequential
modeling performance [94, 31, 7]. As shown in Figure 4.3c, this encoder consists of several
stacked layers. Each layer computes

h
(1)
t = Conv(Z in

t), . . . , h(k)
t = Conv(h(k−1)

t), (4.11)

where k indicates the layer number. The Conv(·) is a 1-D convolutional operator (combined
with non-linear activations, see [7] for more details), which contains denc convolutional
filters and operates on the convolutional inputs. With K layers in our CNN encoder, the
final output will be:

MS
CNN(Z in

t) = h
(K)
t . (4.12)

As highly valuable signals exist in the short-range part of user sequence, we propose two
types of encoders to capture them. Our model can be instantiated in its first variant, M3R,
if we use RNN encoder or M3C if a CNN is employed. Here M3C and M3R are totally
interchangeable with each other and they show comparable results in our experiments (see
Section 4.3.2). We believe such flexibility will help practitioners adapt their model to the
hardware they intend to use, i.e., typically using GPU for faster CNN training or CPU
for which RNNs are better suited. In terms of temporal range, the CNN only considers a
limited finite window of inputs when producing any output. The RNN, although it does
not have a finite receptive field, is hampered by difficulties when learning to leverage events
located further back into the past (to leverage an event located L observations ago the RNN
needs L− 1 steps). Regardless of the choice of a CNN or an RNN, our short-range encoder
MS has a temporal range greater than 1, although it is challenging for this sub-model to
capture signals too far away from current step. This second encoder is specifically designed
to capture sequence patterns that concern recent events.

Attention Model as Long-range Encoder

The choice of an attention model is also influenced by our preliminary quantitative analysis.
As discussed in Section 4.1, as the temporal distance grows larger, the uncertainties affecting

41

the influence of item consumption on future events get larger as well. Moreover, as opposed
to the recent part of a given user’s interaction sequence, relative position does not matter
as much when it comes to capturing the influence of temporally distant events. As we
take these properties into account, we choose to employ Attention Model [6, 95] as our
long-range sequence encoder. Usually, an attention model consists of three parts: attention
queries, attention keys and attention values. One can simply regard an attention model
as weighted-sum over attention values with weights resulting from the interaction between
attention queries and attention keys. In our setting, we use (1) the last event’s processed
input zin

t as attention queries, (2) all past events’ processed inputs Z in
t as keys and values and

(3) scaled dot-product [95] as the similarity metric in the attention softmax. For instance,
if a user last purchased a pair of shoes, the attention mechanism will focus on footwear
related previous purchases.

So that all encoders have the same output dimensionality, we need to transform2 our
processed input first as follows:

Z̃ in
t = Z in

t W
(A), (4.13)

where W (A) ∈ Rdin×denc is a learned matrix of parameters. Then for each position i ∈ [1, t],
we obtain its raw attention weights, with respect to the processed input z̃in

i , as follows:

ωt,i = z̃in
t · z̃in

i√
denc

, (4.14)

where ωt,i is the raw weight at position i. Similarly, we compute the raw attention weights
ωt ∈ R1×t for all positions ωt = {ωi}i=1..t and normalize them with a softmax(·) function.
Finally, we acquire the output of our long-range encoder as follows:

ML(Z in
t) = softmax(ωt)Z in

t . (4.15)

Our long-range encoder borrows several advantages from the attention model. First,
it is not limited by a certain finite temporal range. That is, it has an unlimited temporal
range and can ‘attend’ to anywhere in user’s sequence with O(1) steps. Second,because it
computes its outputs as a weighted sum of inputs, the attention-based encoder is not as
sensitive to sequential order as an RNN or a CNN as each event from the past has an equal
chance of influencing the prediction. Third, the attention model is robust to noisy inputs
due to its normalized attention weights and weighted-sum aggregation.

Gating Network

Borrowing the idea from from Mixture-of-Experts model [46, 65], we build a gating net-
work to aggregate our encoders’ results. The gate is also helpful to better understand our

2It is unnecessary if din is same as denc.

42

model (see Section 4.3). To produce a simpler gating network, we use a feed-forward layer
F g on the gating network’s inputs:

Gt = [GTt , GSt , GLt] = sigmoid(F g(Gin
t)), (4.16)

where Gin
t is the input we feed into our gating network. We will discuss how the model

performs overall with different choices of gate inputs in Section 4.3.4. The resulting Gt ∈
R3 contains the gate value modulating each encoder. More importantly, an element-wise
sigmoid function is applied to the gate values which allows encoders to ‘corporate’ with
each other [9]. Note that a few previous works [65, 49, 84] also normalize the gate values,
but we found this choice led to the degeneracy of our mixture model as it would learn to
only use MS which in turn hampers model performance.

Summary

M3 is able to address limitations of pre-existing models as shown in Table 4.1: (1) M3 has
a mixture of three encoders with different temporal ranges which can capture sequential
patterns located anywhere in user sequences. (2) Instead of learning a set of latent factor Pu
for each user, M3 represents the long-term user preferences by using a long-range sequence
encoder that provides a representation of the entire history of a user. Furthermore, M3 is
efficient in both model size and computational cost. In particular M3 does not introduce
any extra parameters under certain settings (i.e., din = denc), and the computation of MT

and ML are very efficient when using specialized hardware such as a GPU. With its simple
gate design, M3 also provides good interpretability and adaptability.

• Effectiveness. Given our analysis on user sequences, we assume M3 to be effective. As
compared to past works, M3 is capable to capture signals from the whole sequence, it
also satisfies the properties we found in different parts of sequence. Moreover, our three
encoders constitute a diverse set of sequential encoder and, if well-trained, can model
user sequence in a multi-scale manner, which is a key to success in past literature [94,
105].

• Efficiency. In terms of model size, M3 is efficient. As compared to existing works
which use short-range encoder only, though uses two other encoders, our M3 model
doesn’t introduce any extra parameters (if din = denc). In terms of computational
efficiency, our M3 is good as well, as both MT and ML are nothing other than matrix
multiplication, which is cheap when computed with optimized hardwares like Graphics
Processing Unit (GPU).

• Interpretability. Model’s interpretability is critical for diagnosing purpose. As we
shall see later, with the gate network, we are able to visualize our network transpar-
ently by observing the gate values.

43

Ta
bl
e
4.
1:

A
su
m
m
ar
y
of

re
la
tio

ns
hi
ps

an
d
di
ffe

re
nc

es
be

tw
ee
n
se
qu

en
ce

en
co
de

rs
in

M
3.

B
as
e
m
od

el
T
em

po
ra
l
ra
ng

e
M
od

el
si
ze

Se
ns
it
iv
e
to

or
de

r
R
ob

us
tn
es
s

M
T

It
em

C
o-
oc
cu

rr
en

ce
1

sm
al
l(
or

0)
ve
ry

hi
gh

no

M
S R

N
N

R
ec
ur
re
nt

N
eu

ra
lN

et
s

un
kn

ow
n

la
rg
e

hi
gh

no

M
S C

N
N

Te
m
po

ra
lC

on
vo
lu
tio

n
N
et
s

lim
ite

d
la
rg
e

hi
gh

no

M
L

A
tt
en
tio

n
M
od

el
un

lim
ite

d
sm

al
l(

or
0)

no
hi
gh

44

• Adaptability. One issue in production recommender system is modeling users for
different recommendation scenarios, as people may behave very differently. Two typical
scenarios are HomePage recommendation and product DetailPage recommendation.
However, as we shall introduce in later section, M3 is able to adapt to these scenarios
if we use the scenario information as our gate input.

4.3 Experimental Studies

In this section, we study the two variants of M3 against several baseline state-of-the-art
methods on both a publicly available dataset and our large-scale Youtube dataset.

Datasets. We use MovieLens 20M3, which is a publicly available dataset, along with
a large-scale anonymized dataset from YouTube, which is private, anonymized and at
production-scale (much larger than any publicly available datasets).

4.3.1 Experiments on MovieLens Dataset

Experimental Setup

As in previous works [37], we process the MovieLens data by first converting numeric ratings
to 1 values, turning them into implicit logged item consumption feedback. We remove the
items with less than 20 ratings. Such items, because of how little user feedback is available
for them, represent another research challenge — cold start — which is outside the scope
of the present paper.

To focus on long user sequences, we filtered out users who had a sequence length of
less than δmin = 20 item consumed, while we didn’t filter items specifically. The maximum
sequence length in the dataset being 7450, we follow the method proposed in [37] and employ
a sliding window of length δwin = 300 to generate similarly long sequences of user/item
interactions in which we aim to capture long range dependent patterns. Some statistics can
be found in the first row of Table 4.3.

We do not use contextual annotations for the MovieLens data.

Evaluation protocol. We split the dataset into training and test set by randomly choos-
ing 80% of users for training and the remaining 20% for validation (10%) and testing (10%).
As with the training data, a sliding window is used on the validation and test sets to gener-
ate sequences. We measure the mean average precision (mAP) as an indicator for models’
performances [10]. We only focus on the top positions of our predictions, so we choose to
use mAP@n with n ∈ {5, 10, 20}. There is only one target per instance here and therefore

3https://grouplens.org/datasets/movielens/20m/

45

the mAP@n is expected to increase with n which is consistent with [9] but differs from the
performances we presented in Chapter 3.

Model details. We keep architectural parameters consistent across all experiments on
MovieLens. In particular, we use identical representation dimensions: din = denc = dout = 32.
Such a choice decreases the number of free parameters as the sub-models MT and ML will
not have learned parameters. A GRU cell is employed for the RNN while 2 stacked temporal
convolution layers [7] of width 5 are used in the CNN. A ReLU activation function is
employed in the feed-forward layers F in and F out. Item embeddings of dimension 64 are
learned with different weights on the input side (i.e., Q in Eq. 4.1) and output side (i.e., Q′

in Eq. 4.7). Although previous work [37] has constrained such embeddings to be identical
on the input and output side of the model, we found that increasing the number of degrees
of freedom led to better results.

Baselines. We compare our two variants, i.e., M3R and M3C, with the following baselines:

• FMC: The Factorizing model for the first-order Markov chain (FMC) [78] is a sim-
ple but strong baseline in sequential recommendation task [11, 85]. As discussed in
Section 1, we do not want to use explicit user representations. Therefore, we do not
compare the personalized version of this model (FPMC).

• DeepBoW: The Deep Bag-of-word model represent user by averaging item embed-
dings from all past events. The model then makes predictions through a feed-forward
layer. In our experiments, we use a single hidden layer with size of 32 and ReLU as
activation function.

• GRU4Rec: Originally presented in [39], this method uses a GRU RNN over user se-
quences and is a state-of-the-art model for sequential recommendation with anonymized
data.

• Caser: The Convolutional Sequence Embeddings model (proposed in Chapter 3) ap-
plying horizontal and vertical convolutional filters over the embedding matrix and
achieves state-of-the-art sequential recommendation performance. We try {2, 4, 8} ver-
tical filters and {16, 32, 64} horizontal filters of size (3, 5, 7). In order to focus on the
sequential encoding task, we discard the user embedding and only use the sequence
embedding of this model to make predictions.

In the models above, due to the large number of items in input and output dictio-
naries, the learned embeddings comprise most of the free parameters. Therefore, having
set the embedding dimension to 64 in all the baselines as well as in M3R and M3C, we
consider models with similar numbers of learned parameters. The other hyperparameters
mentioned above are tuned by looking at the mAP@20 on validation set. The training time

46

of M3R/M3C is comparable with others and can be further improved with techniques like
model compression [91], quantization [44], etc.

Overall Performances

We report each model’s performance in Table 4.2. Each metric is averaged across all user
sequences in test set. The best performer is highlighted in bold face. The results show that
both M3C and M3R outperform other baselines by a large margin. Among the baselines,
GRU4Rec achieves the best performance and DeepBoW worst one, suggesting the sequence
order plays a very important predictive role. FMC performs surprisingly well, suggesting we
could get considerable results with a simple model only taking the last event into account.
The poor results of Caser may be caused by its design which relies on vertical filters of fixed
size. Caser performs better in the next subsection which considers sequences whose lengths
vary less within the training data.

Table 4.2: Performance comparison on MovieLens 20M. M3C and M3R outperform the
baselines significantly.

mAP@5 mAP@10 mAP@20

FMC 0.0256 0.0291 0.0317
DeepBoW 0.0065 0.0079 0.0093
GRU4Rec 0.0256 0.0304 0.0343
Caser 0.0225 0.0269 0.0304

M3C 0.0295 0.0342 0.0379
M3R 0.0315 0.0367 0.0421

Improv. +23.4% +20.7% +22.7%

Investigating the influence of sequence length through variants of MovieLens

The previous results have shown strong performance gains achieved by the models we in-
truced: M3C and M3R. We now investigate the origin of such improvements. The design
of these models was inspired by an attempt to capture sequential patterns with different
characteristic temporal extents. To check whether the models we introduced achieve this
aim we construct multiple variants of MovieLens with different sequence lengths.

We vary the sequence length by having a maximum cutoff threshold δmax which comple-
ments the minimal sequence length threshold δmin. A sequence with more than δmax only
has its latest δmax observations remained. We vary the values of δmin, δmax and the sequence
generation window size. Table 4.3 summarizes the properties of the four variants of the
MovieLens dataset we construct. It is noteworthy that such settings make Caser perform
better as the sequence length is more consistent within each dataset variant.

47

Table 4.3: Statistics of the variants of the MovieLens dataset.

Min. Max. Window Avg. Num. Num.
length length size length sequences items

ML20M 20 ∞ 300 144.1 138.4K 13.1K

ML20M-S 20 50 20 42.8 138.4K 13.1K

ML20M-M 50 150 50 113.6 85.2K 13.1K

ML20M-L 150 300 150 250.7 35.8K 12.9K

ML20M-XL 300 ∞ 300 605.5 16.3K 12.5K

%
Im

pr
ov
.	o
f	m

AP
@
20

%
Im

pr
ov
.	o
f	m

AP
@
20

Figure 4.4: Uplifts with respect to the best baselines on four MovieLens variants. The
improvement percentage of each model is computed by its relative mAP@20 gain against
the best baseline. For all variants, M3R significantly outperforms the two baselines we
consider according to a one-tail paired t-test at level 0.01, while M3C outperforms the
other two significantly only on ML20M-M. Note that the standard error of all uplifts gets
higher as we use a MovieLens variant with longer sequences. The standard error reaches
2.3% on ML20M-XL.

GRU4Rec and Caser outperform the other baselines in the present setting and therefore
we only report their performance. Figure 4.4 shows the improvements of M3C and M3R over

48

the best baselines on four MovieLens variants. The improvement of each model is computed
by its mAP@20 against the best baseline. In most cases, M3C and M3R can outperform
the highest performing baseline. Specifically, on ML20M-S and ML20M-M, Caser performs
similarly to GRU4Rec while both M3C and M3R have good performance. This is probably
due to the contribution of the tiny-range encoder.

4.3.2 Experiments on Anonymized YouTube Dataset

Experimental Setup

For the YouTube dataset, we filtered out users whose logged sequence length was less than
150 (δmin = 150) and keep each user’s last 300 events (δmax = 300) in their item consumption
sequence. In the following experiments, we exploit contextual annotations such as user
device (e.g., from web browser or mobile App), time-based features (e.g., dwelling time),
etc. User sequences are all anonymized and precautions have been taken to guarantee that
users cannot be re-identified. In particular, only public videos with enough views have been
retained.

Neural recommender systems attempt at foreseeing the interest of users under extreme
constraints of latency and scale. We define the task as predicting the next item the user
will consume given a recorded history of items already consumed. Such a problem setting is
indeed common in collaborative filtering [82, 62] recommendations. We present here results
obtained on a dataset where only about 2 million items are present that correspond to most
popular items. While the user history can span over months, only watches from the last 7
days are used for labels in training and watches in the last 2 days are used for testing. The
train/test split is 90/10%. The test set does not overlap with the train set and corresponds
to the last temporal slice of the dataset. In all, we have more than 200 million training
sequences and more than 1 million test sequences, and with overall average sequence length
approximately being 200.

The neural network predicts, for a sample of negatives, the probability that they are
chosen and classically a negative sampling loss is employed in order to leverage observations
belonging to a very large vocabulary [48]. The loss being minimized is

∑
l∈Labels

wl × CrossEntropy(SampledSoftmax(ξ(t+ 1)))

where the SampledSoftmax [48] uses 20000 randomly sampled negatives and wl is the weight
of each label.

Evaluation protocol. To test the models’ performances, still we measure mAP@n with
n ∈ {5, 10, 20}. The mAP is computed with the entire dictionary of candidate items as
opposed to the training loss which samples negatives.

49

Table 4.4: Performance comparison on the anonymized YouTube dataset. M3C and M3R
outperform the baselines significantly.

mAP@5 mAP@10 mAP@20

Context-FMC 0.1103 0.119 0.1240
DeepYouTube 0.1295 0.1399 0.1455
Context-GRU 0.1319 0.1438 0.1503

M3C 0.1469 0.1591 0.1654
M3R 0.1541 01670 0.1743

Improv. +16.8% +16.1% +16.0%

Baselines. In order to make fair comparisons with all previous baselines, we used their
contextual counterparts if they are proposed or compared in literature.

• Context-FMC: The Context-FMC condition the last event’s embedding on last
event’s context features by concatenating them and having a feed-forward layer over
them.

• DeepYouTube: Proposed by [23], the DeepYoutube model is a state-of-the-art neural
model for recommendation. It concatenates: (1) item embedding from users’ last event,
(2) item embeddings averaged by all past events and (3) context features. The model
then makes predictions through a feedforward layer composed of several ReLU layers.

• Context-GRU: We used the contextual version of GRU proposed in [85]. Among
the three conditioning paradigms on context, we used the concatenation as it gives us
better performances.

All models are implemented by TensorFlow [1] and by Adagrad [28] over a parameter
server [61] with many workers.

Model details. In the following experiments, we keep the dimensions of processed input
din and encoder outputs denc identical for all experiments conducted on the same dataset.
Once more, we also want to share some of our architectural parameters so that they are
consistent across the two datasets. Again, by doing this, we make the parametrization of
our models more parsimonious, because the sub-modelsMT andML will be parameter-free.
For the RNN cell, we use a GRU on both datasets for its effectiveness as well as efficiency.
For the CNN version, we stacked 3 layers of temporal convolution [7], with no dilation and
width of 5. For the feed-forward layers F in and F out, we used ReLU as their activation
functions, whereas they contains different number of sub-layers. For item embeddings on
the input side (i.e., Q in Eq. 4.1) and on the output side (i.e., Q′ in Eq. 4.7), we learn them
separately which improves all results.

50

Table 4.5: mAP@20 vs. different components of M3R on both datasets, where T,S,L stands
for MT , MS and ML respectively.

MovieLens 20M YouTube Dataset

M3R-T 0.0269 0.1406

M3R-S 0.0363 0.1673

M3R-L 0.0266 0.1359

M3R-TS 0.0412 0.1700

M3R-TL 0.0293 0.1485

M3R-SL 0.0403 0.1702

M3R-TSL 0.0421 0.1743

Overall Performances

We report each model’s performance on the private dataset in Table 4.4. The best performer
is highlighted in bold face. As can be seen from this table, on our anonymized YouTube
dataset, the Context-FMC performs worse followed by DeepYoutube while Context-GRU
performs best among all baselines. The DeepYouTube and Context-GRU perform better
than Context-FMC possibly because they have longer temporal range, which again shows
that the temporal range matters significantly in long user sequences. One can therefore
improve the performance of a sequential recommender if the model is able to leverage
distant (long-range dependent) informantion in user sequences.

On both datasets, we observed our proposed two model variants M3R and M3C sig-
nificantly outperform all other baselines. Within these two variants, the M3R preforms
marginally better than the M3C, and it improves upon the best baselines by a large margin
(more than 20% on MovieLens data and 16.0% on YouTube data).

4.3.3 Ablation Study of Mixture of Models

To demonstrate how each encoder contributes to the overall performance, we now present
an ablation test on our M3R model (results from M3C are similar) on our proprietary
data. We use T, S, L to denote MT , MS and ML respectively. The results are described
in Table 4.5. When we only enable single encoder for M3R, the best performer is M3R-T
on MovieLens data and M3R-S on the YouTube data. This result is consistent with the
results in Section 4.3.2. With more encoders involved in M3R the model performs better.
In particular, when all encoders are incorporated, our M3R-TSL performs best on both
datasets, indicating all three encoders matter for performance.

51

Table 4.6: mAP@20 vs. different types of gating network on the two datasets for M3R.
‘Fixed’ indicates we fix gate values to 1.0, ‘Contextual-switch’ means that we use context
features cin and cout as gate input and ‘Bottom-switch’ corresponds to the use of zin

t as gate
input.

MovieLens YouTube

Fixed 0.0413 0.1715

Bottom-switch 0.0421 0.1734

Contextual-switch / 0.1743

4.3.4 Role of Gating Network

We now begin to study our gating network in order to answer the following questions:

1. Is the gating network beneficial to the overall model performance?

2. How do different gating network inputs influence the model performance?

3. How can the gating network make our model more adaptable and interpretable?

Fixed gates versus learned gates. First of all, we examine the impact of our gating
network by comparing it with a set of fixed gate values. More precisely, we fixed the gate
values to be all equal to 1.0 during the model training: Gt = 1, here 1 ∈ R3 is a vector.
The first row of Table 4.6 shows the result of this fixed-gate model. We found that the fixed
models are weaker than the best performing version of M3R (i.e., mAP@20 of 0.1743) and
M3C (i.e., mAP@20 of 0.1654). This reveals that the gating network consistently improves
M3-based models’ performances.

Influence of different gate inputs. In this paragraph we investigate the potential
choices of inputs for the gating network, and how they result in different performance scores.
In the existing Mixture-of-Experts (MOE) literature, the input for the gating network Gin

t

can be categorized into Contextual-switch and Bottom-switch. The Contextual-switch, used
in [9], uses context information as gate input:

Gin
t = [cin

t ⊕ cout
t], (4.17)

where cin
t and cout

t are context features from input and output side. Intuitively, this suggests
how context may influence the choices of different encoders. If no context information is
available, we can still use the output of a shared layer operating before the MOE layer [65, 84]
as gate input, i.e., Bottom-switch:

Gin
t = zin

t . (4.18)

52

ML MS MT
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ga

te
va

lu
e

HomePage

ML MS MT
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ga

te
va

lu
e

DetailPage

Figure 4.5: Average gate values of M3R in different scenarios. The model learns to use
different combination of encoders in different recommendation scenarios.

The shared layer contains high-level semantic knowledge from the last event, which can also
enable gate switching.

On the MovieLens data, we used Bottom-switched gate for all the results above because
of the absence of contextual annotations. On the YouTube dataset, the last two rows from
Table 4.6 provide the comparison results between Contextual-switched gate and Bottom-
switched gate. We observe that context information is more useful to the gates than a shared
layer. In other words, the decision of whether to focus more on recent part (i.e., large gate
values forMT andMS) or on the distant part (i.e., large values forML) from user sequence
is easier to make based on contextual annotations.

Discussion on model interpretability and adaptability. The model architecture we
design is based on quantitative findings and has two primary goals: capturing co-existing
short-range and long-range behavioral patterns as well as serving recommendations given
in different contexts with a single model.

We know for recommender systems in most applications (e.g. e-commerce like Amazon,
streaming services like Netflix) that recommendations commonly occur in at least two dif-
ferent contexts: either a HomePage or a DetailPage. The Homepage is the page shown when
users open the website or open the mobile App, while DetailPage is the page shown when
users click on a certain item. User behaviors are different depending on which of these two
pages they are browsing. Users are more likely to be satisfied by a recommendation related
to recent events, especially the last event, when they are on a DetailPage. A straightforward
solution to deal with these changing dynamics is to train two different models.

We now demonstrate that with the multi-temporal-range encoders architecture and
gating mechanism in M3, we can have a single adaptive end-to-end model that provides
good performance in a multi-faceted recommendation problem. To that end we analyze the

53

behavior of our gating network and show the adaptability of the model as we gain a better
understanding of its behavior.

What we observe in Figure 4.5 is that when contextual information is available to infer
the recommendation scenario, the gating network can effectively automatically decide how
to combine the results from different encoders in a dynamic manner to further improve
performance. Figure 4.5 shows how gate values of M3R change w.r.t across different recom-
mendation scenarios. It is clear that M3R puts more emphasis on MS when users are on
the HomePage, while it encourages all three encoders involved when users are on Detail-
Page. This result shows that the gating network uses different combinations of encoders for
different recommendation scenarios.

As a result, we can argue that our architectural design choices do meet the expectations
we set in our preliminary analysis. It is noteworthy that the gating mechanism we added
on top of the three sub-models is helpful to improve predictive performance and ease model
diagnosis. We have indeed been able to analyze recommendation patterns seamlessly.

4.4 Conclusion

M3 is an effective solution to provide better recommendations based on long user sequences.
M3 is a neural model that avoids most of the limitations faced by pre-existing approaches
and is well adapted to cases in which short term and long term temporal dependencies
coexist. Other than effectiveness, this approach also provides several advantages such as the
absence of a need extra parameters and interpretability. Our experiments on large public
dataset as well as a large-scale production dataset suggest that M3 outperforms the state-of-
the-art methods by a large margin for sequential recommendation with long user sequences.
One shortcoming of the architecture we propose is that all sub-models are computed at
serving time. As a next step, we plan to train a sparse context dependent gating network
to address this shortcoming.

54

Chapter 5

On Learning Compact Model for
Efficient Recommendation

The previous chapters showed how to design model to capture different types of sequential
patterns in different parts of user sequence. However, our proposed neural network based ap-
proaches may incur a large inference time, resulting an issue when responding user requests
in the real-time. Recall that in Chapter 2, we analyzed the different efficiency requirements
for different phases of recommendation models. For sequential recommendation task, since
users’ action sequences are dynamically changing while interacting with the system, the
inference phase usually has to be done more frequently and in the real-time. Therefore, be-
sides the effectiveness of every model, we also have tight efficiency constraints. It is known
that more model complexity (especially larger model size) will benefit the effectiveness but
will hurt the efficiency for neural network based model. How can we have a model-agnostic
approach to learn a compact model that maintians similar performance?

5.1 Background and Motivations

Balancing effectiveness and efficiency has been a line of recent recommendation research [109,
113, 111, 93, 60]. Discrete hashing techniques [109, 110] and binary coding of model pa-
rameters [113] are suggested to speed up the calculation of the relevance score for a given
user-item pair. Other works focus on database-related methods, such as pruning and index-
ing to speed-up retrieval of related items [93, 60], using fast models for candidate generation
and applying time-consuming models to the candidates for online inferences [23, 63]. These
methods either lose much of effectiveness, due to the introduced model constraints, or can-
not be easily extended to other models in most cases, due to the model-dependency nature.
In the following, we first review the learning to rank problem in general (we will regard
sequential recommendation as an application), then revisit the issues of effectiveness and
efficiency in the problem, which serves to motivate our ranking distillation.

55

5.1.1 Ranking from scratch

Without loss of generality, we use the IR terms “query" q and “document" d in our discussion,
but these terms can be replaced with “user profile" and “item" when applied to recommender
systems.

The learning to rank problem can be summarized as follows: Given a set of queries
Q={q1,· · · ,q|Q|} and a set of documents D={d1,· · · ,d|D|}, we want to retrieve documents
that are most relevant to a certain query. The degree of relevance for a query-document pair
(q, d) is determined by a relevance score. Sometimes, for a single (q, d) pair, a relevance score
y

(q)
d is labeled by human (or statistical results) as ground-truth, but the number of labeled

(q, d) pairs is much smaller compared to the pairs with unknown labels. Such labels can
be binary (i.e., relevant/non-relevant) or ordinal (i.e., very relevant/relevant/non-relevant).
In order to rank documents for future queries with unknown relevance scores, we need a
ranking model to predict their relevance scores. A ranking modelM(q, d;θ) = ŷ

(q)
d is defined

by a set of model parameters θ and computes a relevance score ŷ(q)
d given the query q and

document d. The model predicted document ranking is supervised by the human-labeled
ground truth ranking. The optimal model parameter set θ∗ is obtained by minimizing a
ranking-based loss function:

θ∗ = arg min
θ

∑
q∈Q
LR(y(q), ŷ(q)). (5.1)

For simplicity, we focus on a single query q and omit the superscripts related to queries
(i.e., y(q)

d will becomes yd).
The ranking-based loss could be categorized as point-wise, pair-wise, and list-wise. Since

the first two are more widely adopted, we don’t discuss list-wise loss in this work. The point-
wise loss is widely used when relevance labels are binary [38]. One typical point-wise loss is
taking the negative logarithmic of the likelihood function:

LR(y, ŷ) = −(
∑
d∈yd+

log(P (rel = 1|ŷd))

+
∑
d∈yd−

log(1− P (rel = 1|ŷd))),
(5.2)

where yd+ and yd− are the sets of relevant and non-relevant documents, respectively. We
could use the logistic function σ(x) = 1/(1 + e−x) and P (rel = 1|ŷd) = σ(ŷd) to transform
a real-valued relevance score to the probability of a document being relevant (rel = 1). For
ordinal relevance labels, pair-wise loss better models the partial order information:

LR(y, ŷ) = −
∑

di,dj∈C
log(P (di � dj |ŷi, ŷj)), (5.3)

56

XS S M L

Model Size

0.07

0.08

0.09

0.1

M
e
a
n

 A
v
e
ra

g
e
 P

re
c
is

io
n

0

1

2

3

4

5

6

#
 P

a
ra

m
e
te

rs
 (

m
il
li
o

n
)

(a) MAP vs. model size

0.3 0.5 0.7 0.9

Sample Ratio

0.05

0.06

0.07

0.08

0.09

0.1

M
e
a
n

 A
v
e
ra

g
e
 P

re
c
is

io
n

0

0.2

0.4

0.6

0.8

1

#
 T

ra
in

in
g

 I
n

s
ta

n
c
e
s
 (

m
il
li
o

n
)

(b) MAP vs. training instances

Figure 5.1: Two ways of boosting mean average precision (MAP) on Gowalla data for rec-
ommendation. (a) shows that a larger model size in number of parameters, indicated by the
bars, leads to a higher MAP. (b) shows that a larger sample size of training instances leads
to a higher MAP.

where C is the set of document pairs {(di, dj) : yi � yj} and the probability P (di � dj) can
be modeled using the logistic function P (di � dj |yi, yj) = σ(yi − yj).

5.1.2 Rethinking Effectiveness and Efficiency

We consider ranking models with latent factors or neural networks (a.k.a neural ranking
models) instead of traditional models (e.g., SVM, tree-based models) for the following rea-
sons. First, these models are well-studied recently for its capability to capture features from
a latent space and are shown to be highly effective; indeed, neural ranking models are pow-
erful for capturing rich semantics for queries and documents, which eliminates the tedious
and ad-hoc feature extraction and engineering normally required in traditional models. Sec-
ond, these models usually require many parameters and suffer from efficiency issue when
making online inferences. Third, traditional models like SVM usually has convex guarantees
and are trained through convex optimization. The objectives of latent factor models and
neural networks are usually non-convex [22, 52], which means that their training processes
are more challenging and need more attentions.

The goal of ranking models is predicting the rank of documents as accurately as pos-
sible near the top positions, through learning from human-labeled ground-truth document
ranking. Typically, there are two ways to make a ranking model perform better at top
positions:

1. By having a large model size, as long as it doesn’t overfit the data, the model could
better capture complex query-document interaction patterns and has more predictive
capability. Figure 5.1a shows that, when a ranking model has more parameters, it

57

acquires more flexibility to fit the data and has a higher MAP, where the mean average
precision (MAP) is more sensitive to the precision at top positions.

2. By having more training data, side information, human-defined rules etc., the model
can be trained with more guidance and has less variance in gradients [40]. Figure 5.1b
shows that, when more training instances are sampled from the underlying data dis-
tribution, a ranking model could achieve a better performance.

However, each method has its limitations: method (1) surrenders efficiency for effectiveness
whereas method (2) requires additional informative data, which is not always available or
is expensive to obtain in practice.

5.1.3 Knowledge Distillation

Knowledge distillation (KD), is a model-independent knowledge transfer strategy for im-
proving model performance [40, 5, 3] while having its size fixed. Therefore, it can be used
for generating a compact model for better inference efficiency while retaining the model
effectiveness. The idea of KD is shown in Figure 5.2a for image recognition. During the
offline training phase, a larger teacher model is first trained from the training set, and a
smaller student model is then trained by minimizing two deviations: the deviation from the
training set’s ground-truth label distribution, and the deviation from the label distribu-
tion generated by the teacher model. Then the student model is used for making online
inferences. Intuitively, the larger teacher model helps capture more information of the label
distribution (for example, outputting a high probability for “tiger" images for a “cat" image
query due to correlation), which is used as an additional supervision to the training of the
student model. The student model trained with KD has an effectiveness comparable to that
of the teacher model [40, 54, 3] and can make more efficient online inference due to its small
model size.

Despite of this breakthrough in image recognition, it is not straightforward to apply
KD to ranking models and ranking problems (e.g., recommendation). First, the existing
KD is designed for classification problems, not for ranking problems. In ranking problems,
the focus is on predicting the relative order of documents or items, instead of predicting
a label or class as in classification. Second, KD requires computing the label distribution
of documents for each query using both teacher and student models, which is feasible for
image classification where there are a small number of labels, for example, no more than 1000
for the ImageNet data set; however, for ranking and recommendation problems, the total
number of documents or items could be several orders of magnitudes larger, say millions,
and computing the distribution for all documents or items for each training instance makes
little sense, especially only the highly ranked documents or items near the top of the ranking
will matter. We also want to point out that, for context sensitive recommendation, such
as sequential recommendation, the items to be recommended usually depend on the user

58

Teacher Model

Student Model

Learns to
minimize
KL-
divergence

Label Distribution

Label Distribution

(a) Knowledge Distillation: given an input, student model learns
to minimize the KL Divergence of its label distribution and
teacher model’s.

Teacher Model

Student Model

Learns to
rank
higher(q,d) pairs

Top-k Documents

Document Ranking

(b) Ranking Distillation: given an query (or user in the context
of recommendation), student model learns to give higher rank for
it’s teacher model’s top-K ranking of documents (or items in the
context of recommendation).

Figure 5.2: The relationship between (a) Knowledge distillation and (b) Ranking distillation.

behaviors prior to the recommendation point (e.g., what she has viewed or purchased),
and the set of contexts of a user is only known at the recommendation time. This feature
requires recommender system to be strictly responsive and makes online inference efficiency
particularly important.

5.1.4 Contributions

In this work, we study knowledge distillation for the learning to rank problem that is the
core in recommender systems and many other IR systems. Our objective is achieving the
ranking performance of a large model with the online inference efficiency of a small model.
In particular, by fusing the idea of knowledge transfer and learning to rank, we propose a
technique called ranking distillation (RD) to learn a compact ranking model that remains
effective. The idea is shown in Figure 5.2b where a small student model is trained to learn to
rank from two sources of information, i.e., the training set and the top-K documents for each

59

query generated by a large well-trained teacher ranking model. With the large model size,
the teacher model captures more ranking patterns from the training set and provides top-K
ranked unlabeled documents as an extra training data for the student model. This makes
RD differ from KD, as teacher model in KD only generate additional labels on existing
data, while RD generate additional training data and labels from unlabeled data set. The
student model benefits from the extra training data generated from the teacher, in addition
to the data from usual training set, thus, inherits the strong ranking performance of the
teacher, but is more efficient for online inferences thanks to its small model size.

We will examine several key issues of RD, i.e., the problem formulation, the represen-
tation of teacher’s supervision, and the balance between the trust on the data from the
training set and the data generated by the teacher model, and present our solutions. Ex-
tensive experiments on recommendation problems and real-world datasets show that the
student model achieves a similar or better ranking performance compared to the teacher
model while using less than half of model parameters. While the design goal of RD is retain-
ing the teacher’s effectiveness (while achieving the student’s online inference efficiency), RD
exceeds this expectation that the student sometime has a even better ranking performance
than the teacher. Similar to KD, RD is orthogonal to the choices of student and teacher
models by treating them as black-boxes. To our knowledge, this is the first attempt to adopt
the idea of knowledge distillation to large-scale ranking problems.

5.2 Related Work

In this section, we compared our works with several related research areas.

Knowledge Distillation. Knowledge distillation has been used in image recognition [40,
5, 79] and neural machine translation [54] as a way to generate compact models. As pointed
out in Introduction, it is not straightforward to apply KD to ranking models and new issues
must be addressed. In the context of ranking problems, the most relevant work is [18], which
uses knowledge distillation for image retrieval. This method applies the sampling technique
to rank a sample of the image from all data each time. In general, training on a sample
works if the sample shares similar patterns with the rest of data through some content
information, such as image contents in the case of [18]. But this technique is not applicable
to training a recommender model when items and users are represented by IDs with no
content information, as in the case of collaborative filtering. In this case, the recommender
model training cannot be easily generalize to all users and items.

Semi-Supervised Learning. Another related research area is semi-supervised learn-
ing [114, 14]. Unlike the teacher-student model learning paradigm in knowledge distillation
and in our work, semi-supervised learning usually trains a single model and utilizes weak-

60

labeled or unlabeled data as well as the labeled data to gain a better performance. Several
works in information retrieval followed this direction, using weak-labeled or unlabeled data
to construct test collections [4], to provide extra features [27] and labels [25] for ranking
model training. The basic idea of ranking distillation and semi-supervised learning is similar
as they both utilize unlabeled data while with different purpose.

Transfer Learning for Recommender System. Transfer learning has been widely
used in the field of recommender systems [16, 29]. These methods mainly focus on how
to transfer knowledge (e.g., user rating patterns) from a source domain (e.g., movies) to a
target domain (e.g., musics) for improving the recommendation performance. If we consider
the student as a target model and the teacher as a source model, our teacher-student learning
can be seen as a special transfer learning. However, unlike transfer learning, our teacher-
student learning does not require two domains because the teacher and student models are
learned from the same domain. Having a compact student model to enhance online inference
efficiency is another purpose of our teacher-student learning.

5.3 Proposed Methodology

In this section, we propose ranking distillation (RD) to address the dual goals of effectiveness
and efficiency for ranking problems. To address the efficiency of online inference, we use a
smaller ranking model so that we can rank documents for a given query more efficiently.
To address the effectiveness issue without requiring more training data, we introduce extra
information generated from a well-trained teacher model and make the student model as
effective as the teacher.

5.3.1 Overview

Figure 5.3 shows the overview of ranking distillation. In the offline training phase (prior to
any user query), similar to KD, first we train a large teacher model with a strong ranking
performance on the training set. Then for each query, we use the well-trained teacher model
to make predictions on unlabeled documents (green part in Figure 5.3) and use this extra
information for learning the smaller student model. Since the teacher model is allowed to
have many parameters, it captures more complex features for ranking and is much powerful,
thus, its predictions on unlabeled documents could be used to provide extra information for
the student model’s training. The student model with fewer parameters is more efficient for
online inference, and because of the extra information provided by the teacher model, the
student model inherits the high ranking performance of the teacher model.

Specifically, the offline training for student model with ranking distillation consists of
two steps. First, we train a larger teacher model MT by minimizing a ranking-based loss
with the ground-truth ranking from the training data set, as showed in Eqn (5.1). With

61

Ground-truth
Document Labels: 𝒚

Model Predicted Top-𝑲
Ranking:

𝝅𝟏..𝑲 = (𝜋), 𝜋+ …𝜋-)

Teacher Model:	𝑀1
(well-trained)

Student Model:	𝑀2

Compute Ranking
Loss: ℒ𝑹

Compute Distillation
Loss: ℒ𝑫

Forward Propagation
Backward Propagation

Given Query 𝒒

Traditional Module
Distillation Module

Unlabeled
Document
Set 𝓞8

Labeled
Document
Set 𝓞

Figure 5.3: The learning paradigm with ranking distillation. We first train a teacher model
and let it predict a top-K ranked list of unlabeled (unobserved) documents for a given query
q. The student model is then supervised by both ground-truth ranking from the training
data set and teacher model’s top-K ranking on unlabeled documents.

much more parameters in this model, it captures more patterns from data and thus has a
strong performance. We compute the predicted relevance scores of the teacher model MT

for unlabeled documents Ō = {d : yd = ∅} and get a top-K unlabeled document ranking
π1..K = (π1, . . . , πK), where πr ∈ D is the r-th document in this ranking. Then, we train
a smaller ranking model MS to minimize a ranking loss from the ground-truth ranking in
the training data set, as well as a distillation loss with the exemplary top-K ranking on
unlabeled document set π1..k offered by its teacher MT . The overall loss to be minimized is
as follows:

L(θS) = (1− α)LR(y, ŷ) + αLD(π1..K , ŷ). (5.4)

Here ŷ is the student model’s predicted scores1. LR(,) stands for the ranking-based objective
as in Eqn (5.1). The distillation loss, denoted by LD(,), uses teacher model’s top-K ranking
on unlabeled documents to guide the student model learning. α is the hyperparameter used
for balancing these two losses.

For a given query, the top documents ranked by the well-trained teacher can be regarded
to have a strong correlation to this query, although they are not labeled in the training set.
For example, if a user watches many action movies, the teacher’s top-ranked documents
may contain some other action movies as well as some adventure movies because they are
correlated. In this sense, the proposed RD lets the teacher model teach its student to find
the correlations and capture their patterns, thus, makes the student more generalizable and

1When using point-wise and pair-wise losses, we only need to compute the student’s predictions for a
subset of documents, instead of all documents, for a given query.

62

perform well on unseen data in the future. We use the top-K ranking from the teacher
instead of the whole ranked list because the noisy ranking at lower positions tends to cause
the student model to overfit its teacher and lose generalizability. Besides, only top positions
are considered important for ranking problems. K is a hyperparameter that represents the
trust level on the teacher during teaching, i.e., how much we adopt from teacher.

The choice of the ranking loss LR(,) follows from different models’ preferences and we
only focus on the second term LD(,) in Eqn (5.4). A question is how much we should trust
teacher’s top-K ranking, especially for a larger K. In the rest of the section, we consider
this issue.

5.3.2 Incorporating Distillation Loss

We consider the point-wise ranking loss for binary relevance labels for performing distilla-
tion, we also tried the pair-wise loss and will discuss their pros and cons later. Similar to
Eqn (5.2), we formalize distillation loss as:

LD(π1..K , ŷ) =−
K∑
r=1

wr · log(P (rel = 1|ŷπr))

=−
K∑
r=1

wr · log(σ(ŷπr)),
(5.5)

where σ(·) is the sigmoid function and wr is the weight to be discussed later. There are
several differences compared to Eqn (5.2). First, in Eqn (5.5), we treat the top-K ranked
documents from the teacher model as positive instances and there is no negative instance.
Recall that KD causes the student model to output a higher probability for the label “tiger”
when the ground-truth label is “cat” because their features captured by the teacher model
are correlated. Along this line, we want the student model to rank higher for teacher’s
top-K ranked documents. As we mentioned above, for the given query, besides the ground-
truth positive documents y+, teacher’s top-K ranked unlabeled documents are also strongly
correlated to this query. These correlations are captured by the well-trained powerful teacher
model in the latent space when using latent factor model or neural networks.

However, asK increases, the relevance of the top-K ranked unlabeld documents becomes
weaker. Following the work of learning from noise labels [69], we use a weighted sum over the
loss on documents from π1..K with weight wr on each position r from 1 to K. There are two
straightforward choices for wr: wr = 1/r puts more emphasis on the top positions, whereas
wr = 1/K weights each position equally. Such weightings are heuristic and pre-determined,
may not be flexible enough to deal with general cases. Instead, we introduce two flexible
weighting schemes, which were shown to be superior in our experimental studies.

63

Algorithm 1 Estimate Student’s Ranking for πr
Require: Student Model MS(q, d; θS), unlabeled document set Ō for a given query q and
the hyperparameter ε
ŷπr ←MS(q, πr; θS)
Initialize n = 0
for t = 1, 2, ...ε do
Sample a document d from Ō without replacement
ŷd ←MS(q, d; θS)
if ŷd > ŷπr then
n← n+ 1

end if
end for
r̂πr ←

⌊n×(|Ō|−1)
ε

⌋
+ 1

return r̂πr

Weighting by Position Importance

In this weighting scheme, we assume that the teacher predicted unlabeled documents at top
positions are more correlated to the query and are more likely to the positive ground-truth
documents, therefore, this weight wa should be inversely proportional to the rank:

war ∝ r−1 and r ∈ [1,K], (5.6)

where r is the rank range from 1 to K. As pointed out above, this scheme pre-determines
the weight. Rendle et al [76] proposed an empirical weight for sampling a single position
from a top-K ranking, following a geometric distribution:

war = ρ(1− ρ)r and ρ ∈ (0, 1). (5.7)

Following their work, we use a parametrized geometric distribution for weighting the posi-
tion importance:

war ∝ e−r/λ and λ ∈ R+, (5.8)

where λ is the hyperparameter that controls the sharpness of the distribution, and is
searched through the validation set. When λ is small, this scheme puts more emphasis on top
positions, and when λ is large enough, the distribution becomes the uniform distribution.
This parametrization is easy to implement and configurable to each kind of situation.

Weighting by Ranking Discrepancy

The weighting by position importance is static, meaning that the weight at the same po-
sition is fixed during training process. Our second scheme is dynamic that considers the
discrepancy between the student-predicted rank and the teacher-predicted rank for a given

64

Student
Ranking

Top BottomK

Initial State

Only𝒘𝜶 Hybrid of𝒘𝜶and𝒘𝜷

after
training
several
iterations

Documents from
teacher’s top-K ranking

Documents NOT from
teacher’s top-K ranking

𝜋% 𝜋& 𝜋'

Top BottomK

𝜋& 𝜋% 𝜋'
Top BottomK

𝜋& 𝜋% 𝜋'

Upward
gradient

𝒘𝒓 = [𝟎. 𝟔𝟕, 𝟎. 𝟐𝟒, 𝟎. 𝟎𝟗] 𝒘𝒓 = [𝟎. 𝟎𝟎, 𝟎. 𝟎𝟎, 𝟏. 𝟎𝟎]

Figure 5.4: An illustration of hybrid weighting scheme. We use K = 3 in this example.

unlabeled document, and uses it as another weight wb. This weighting scheme allows the
training to gradually concentrate on the documents in teacher’s top-K ranking that are not
well-predicted by the student. The details are as follows.

For the r-th document πr (r ∈ [1,K]) in teacher model’s top-K ranking, the teacher-
predicted ranking (i.e., r) is known for us. But we know only the student predicted relevant
score ŷπr instead of its rank without computing relevance scores for all documents. To get the
student predicted rank for this document, we apply Weston et al [99]’s sequential sampling,
and do it in a parallel manner [42]. As described in Algorithm 1, for the r-th document
πr, if we want to know its rank in a list of N documents without computing the scores for
all documents, we can randomly sample ε ∈ [1, N − 1] documents in this list and estimate
the relative rank by n/ε, where n is the number of documents whose (student) scores are
greater than ŷπr . Then the estimated rank in the whole list is r̂πr =

⌊n×(N−1)
ε

⌋
+ 1. When

ε goes larger, the estimated rank is more close to the actual rank.
After getting the estimated student’s rank r̂πr for the r-th document πr in teacher’s

top-K ranking, the discrepancy between r and r̂ is computed by

wbr = tanh(max(µ · (r̂πr − r), 0)), (5.9)

where tanh(·) is a rescaled logistic function tanh(x) = 2σ(2x) − 1 that rescale the output
range to [0, 1] when x > 0. The hyperparameter µ ∈ R+ is used to control the sharpness of
the tanh function. Eqn (5.9) gives a dynamic weight: when the student predicted-rank of a
document is close to its teacher, we think this document has been well-predicted and impose
little loss on it (i.e., wbr ≈ 0); the rest concentrates on the documents (i.e., wbr ≈ 1) whose

65

student predicted-rank is far from the teacher’s rank. Note that the ranking discrepancy
weight wb is computed for each document in π1..K during training. So in practice, we choose
ε � |Ô| for training efficiency. While extra computation used to compute relevance scores
for sampled ε documents, we still boost the whole offline training process. Because the
dynamic weight allows the training to focus on the erroneous parts in the distillation loss.

Hybrid Weighting Scheme

The hybrid weighting combines the weight wa by position importance, and the weight wb by
ranking discrepancy: wr = (war · wbr)/(

∑K
i=1w

a
i · wbi). Figure 5.4 illustrates the advantages of

hybrid weighting over weighting only by position importance. Our experiments show that
this hybrid weighting gives better results in general. In the actual implementation, since the
estimated student ranking of r̂πr is not accurate during the first few iterations, we use only
wa during the first m iterations to warm up the model, and then use the hybrid weighting
to make training focus on the erroneous parts in distillation loss. m should be determined
via the validation set. In our experiments, m is usually set to more than half of the total
training iterations.

5.3.3 Discussion

Under the paradigm of ranking distillation, for a certain query q, besides the labeled doc-
uments, we use a top-K ranking for unlabeled documents generated by a well-trained
teacher ranking model MT as extra information to guide the training of the student rank-
ing model MS with less parameters. During the student model training, we use a weighted
point-wise ranking loss as the distillation loss and propose two types of flexible weighting
schemes, i.e., wa and wb and propose an effective way to fusion them. For the hyperpa-
rameters (α, λ, µ, ε,K,m), they are dataset-dependent and are determined for each data set
through the validation set. Two key factors for the success of ranking distillation are: (1)
larger models are capable to capture the complex interaction patterns between queries and
documents, thus, their predicted unlabeled documents at top positions are also strongly
correlated with the given query and (2) student models with less parameters can learn from
the extra-provided helpful information (top-K unlabeled documents in teacher’s ranking)
and boost their performances.

We also tried to use a pair-wise distillation loss when learning from teacher’s top-K
ranking. Specifically, we use Eqn (5.3) for the distillation loss by taking the partial order
in teacher’s top-K ranking as objective. However, the results were disappointing. We found
that if we use pair-wise distillation loss to place much focus on the partial order within
teacher’s ranking, it will produce both upward and downward gradients, making the training
unstable and sometimes even fail to converge. However, our weighted point-wise distillation
loss that only contains upward gradients doesn’t suffer from this issue.

66

Table 5.1: Statistics of the data sets

Datasets #users #items avg. actions (u,S(u,t)) Sparsityper user pairs

Gowalla 13.1k 14.0k 40.74 367.6k 99.71%

Foursquare 10.1k 23.4k 30.16 198.9k 99.87%

5.4 Experimental Studies

We evaluate the performance of ranking distillation on two real-world data sets. The source
code and processed data sets are publicly available online2.

5.4.1 Experimental Setup

Task description. We use recommendation as our task for evaluating the performance
of ranking distillation. In this problem, we have a set of users U = {u1, u2, · · · , u|U|} and
a universe of items I = {i1, i2, · · · , i|I|}. For recommendation without context information,
we can cache the recommendation list for each user 3. However, for context-aware recom-
mendation, we have to re-compute the recommendation list each time a user comes with
a new context, so the online inference efficiency becomes important. The following sequen-
tial recommendation is one case of context-aware recommendation. Given a users u with
her/his history sequence (i.e., past L interacted items) at time t, S(u,t) = (Sut−1, ..,Sut−L),
where Sui ∈ I, the goal is to retrieve a list of items for this user that meets her/his future
needs. In IR’s terms, the query is the user profile (u,S(u,t)) at time t, and the document
is the item. Note that whenever the user has a new behavior (e.g., watch a video/listen to
a music), we have to re-compute the recommendation list as her/his context changes. We
also wish to point out that, in general, ranking distillation can be applied to other learning
to rank tasks, not just to recommendation.

Datasets. We choose two real-world data sets in this work, as they contain numerous
sequential signals and thus suitable for sequential recommendation. Their statistics are
described in Table 5.1. Gowalla4 was constructed by [20] and Foursquare was obtained from
[107]. These data sets contain sequences of implicit feedbacks through user-venue check-ins.
During the offline training phase, for a user u, we extract every 5 successive items (L = 5)
from her sequence as S(u,t), and the immediately next item as the ground-truth. Following

2https://github.com/graytowne/rank_distill

3We suppose the recommendation model doesn’t change immediately whenever new observed data come,
which is common in real-world cases.

4https://snap.stanford.edu/data/loc-gowalla.html

67

[107], we hold the first 70% of actions in each user’s sequence as the training set and use
the next 10% of actions as the validation set to search the optimal hyperparameter settings
for all models. The remaining 20% actions in each user’s sequence are used as the test set
for evaluating a model’s performance.

Evaluation protocol. As in [72, 103, 25, 71], three different evaluation metrics used
are Precision@n (Prec@n), nDCG@n, and Mean Average Precision (MAP). We set n ∈
{3, 5, 10}, as recommendations are top positions of rank lists are more important. To mea-
sure the online inference efficiency, we count the number of parameters in each model and
report the wall time for making a recommendation list to every user based on her/his last 5
actions in the training data set. While training models efficiently is also important, training
is done offline before the recommendation phase starts, and our focus is the online inference
efficiency where the user is waiting for the responses from the system.

Teacher/Student models. We apply the proposed ranking distillation to two sequential
recommendation models that have been shown to have strong performances:

• Fossil. Factorized Sequential Prediction with Item Similarity ModeLs (Fossil) [37]
models sequential patterns and user preferences by fusing a similarity model with
latent factor model. It uses a pair-wise ranking loss.

• Caser. ConvolutionAl Sequence Embedding Recommendation model (Caser in Chap-
ter 3) incorporates the Convolutional Neural Network and latent factor model to learn
sequential patterns as well as user preferences. It uses a point-wise ranking loss.

To apply ranking distillation, we adopt as many parameters as possible for the teacher
model to achieve a good performance on each data set. These well-trained teacher models
are denoted by Fossil-T and Caser-T. We then use these models to teach smaller student
models denoted by Fossil-RD and Caser-RD by minimizing the ranking distillation loss
in Eqn (5.4). The model sizes of the student models are gradually increased until the models
reach a comparable performance to their teachers. Fossil-S andCaser-S denote the student
models trained with only ranking loss, i.e., without the help from the teacher. Note that the
increasing in model sizes is achieved by using larger dimensions for embeddings, without
any changes to the model structure.

5.4.2 Overall Performances

The results of each method are summarized in Table 5.2. We also included three non-
sequential recommendation baselines: the popularity (in all users’ sequences) based item
recommendation (POP), the item based Collaborative Filtering5 (ItemCF) [82], and the

5We use Jaccard similarity measure and set the number of nearest neighbor to 20.

68

Table 5.2: Performance comparison. (1) The performance of the models with ranking dis-
tillation, Fossil-RD and Caser-RD, always has statistically significant improvements over
the student-only models, Fossil-S and Caser-S. (2) The performance of the models with
ranking distillation, Fossil-RD and Caser-RD, has no significant degradation from that of
the teacher models, Fossil-T and Caser-T. We use the one-tail t-test with significance level
at 0.05.

Gowalla
Model Prec@3 Prec@5 Prec@10 nDCG@3 nDCG@5 nDCG@10 MAP

Fossil-T 0.1299 0.1062 0.0791 0.1429 0.1270 0.1140 0.0866
Fossil-RD 0.1355 0.1096 0.0808 0.1490 0.1314 0.1172 0.0874
Fossil-S 0.1217 0.0995 0.0739 0.1335 0.1185 0.1060 0.0792

Caser-T 0.1408 0.1149 0.0856 0.1546 0.1376 0.1251 0.0958
Caser-RD 0.1458 0.1183 0.0878 0.1603 0.1423 0.1283 0.0969
Caser-S 0.1333 0.1094 0.0818 0.1456 0.1304 0.1188 0.0919

POP 0.0341 0.0362 0.0281 0.0517 0.0386 0.0344 0.0229
ItemCF 0.0686 0.0610 0.0503 0.0717 0.0675 0.0640 0.0622
BPR 0.1204 0.0983 0.0726 0.1301 0.1155 0.1037 0.0767

Foursquare
Model Prec@3 Prec@5 Prec@10 nDCG@3 nDCG@5 nDCG@10 MAP

Fossil-T 0.0859 0.0630 0.0420 0.1182 0.1085 0.1011 0.0891
Fossil-RD 0.0877 0.0648 0.0430 0.1203 0.1102 0.1023 0.0901
Fossil-S 0.0766 0.0556 0.0355 0.1079 0.0985 0.0911 0.0780

Caser-T 0.0860 0.0650 0.0438 0.1182 0.1105 0.1041 0.0941
Caser-RD 0.0923 0.0671 0.0444 0.1261 0.1155 0.1076 0.0952
Caser-S 0.0830 0.0621 0.0413 0.1134 0.1051 0.0986 0.0874

POP 0.0702 0.0477 0.0304 0.0845 0.0760 0.0706 0.0636
ItemCF 0.0248 0.0221 0.0187 0.0282 0.0270 0.0260 0.0304
BPR 0.0744 0.0543 0.0348 0.0949 0.0871 0.0807 0.0719

Bayesian personalized ranking (BPR) [77]. Clearly, the performance of these non-sequential
baselines is worse than that of the sequential recommenders, i.e., Fossil and Caser.

The teacher models, i.e., Fossil-T and Caser-T, have a better performance than the
student-only models, i.e., Fossil-S and Caser-S, indicating that a larger model size provides
more flexibility to fit the complex data with more predictive power. The effectiveness of
ranking distillation is manifested by the significantly better performance of Fossil-RD and
Caser-RD compared to Fossil-S and Caser-S, and by the similar performance of Fossil-RD
and Caser-RD compared to Fossil-T and Caser-T. In other words, thanks to the knowledge
transfer of ranking distillation, we are able to learn a student model that has fewer pa-
rameters but similar performance as the teacher model. Surprisingly, student models with

69

Table 5.3: Model compactness and online inference efficiency. Time (seconds) indicates the
wall time used for generating a recommendation list for every user. Ratio is the student
model’s parameter size relative to the teacher model’s parameter size.

Datasets Model Time Time #Params Ratio(CPU) (GPU)

Gowalla

Fossil-T 9.32s 3.72s 1.48M 100%
Fossil-RD 4.99s 2.11s 0.64M 43.2%
Caser-T 38.58s 4.52s 5.58M 100%
Caser-RD 18.63s 2.99s 2.79M 50.0%

Foursquare

Fossil-T 6.35s 2.47s 1.01M 100%
Fossil-RD 3.86s 2.01s 0.54M 53.5%
Caser-T 23.89s 2.95s 4.06M 100%
Caser-RD 11.65s 1.96s 1.64M 40.4%

ranking distillation often have even better performance than their teachers. This finding is
consistent with [54] and we will explain possible reasons in Section 5.4.3.

The online inference efficiency is measured by the model size (number of model param-
eters) and is shown in Table 5.3. Note that Fossil-S and Caser-S have the same model size
as Fossil-RD and Caser-RD. All inferences were implemented using PyTorch with CUDA
from GTX1070 GPU and Intel i7-6700K CPU. Fossil-RD and Caser-RD nearly half down
the model size compared to their teacher models, Fossil-T and Caser-T. This reduction in
model size is translated into a similar reduction in online inference time. In many practical
applications, the data set is much larger than the data sets considered here in terms of
the numbers of users and items; for example, Youtube could have 30 million active users
per day and 1.3 billion of items6. For such large data sets, online inference could be more
time-consuming and the reduction in model size has more privileges. Also, for models that
are much more complicated than Fossil and Caser, the reduction in model size could yield
a larger reduction in online inference time than reported here.

In conclusion, the findings in Table 5.2 and 5.3 together confirm that ranking distillation
helps generate compact models with no or little compromise on effectiveness, and these
advantages are independent of the choices of models.

5.4.3 Effects of Model Size and Distillation Loss

In this experiment, we study the impact of model size on the student model’s perfor-
mance (i.e., MAP). We consider only Caser because the results for Fossil are similar. Fig-
ure 5.5a shows the results. Caser-S and Caser-RD perform better when the model size goes

6https://fortunelords.com/youtube-statistics

70

Gowalla

XS S M
Model Size

0.07

0.08

0.09

0.1

M
e

a
n

 A
v

e
ra

g
e

 P
re

c
is

io
n

0

1

2

3

4

5

6

#
 P

a
ra

m
e

te
rs

 (
m

il
li

o
n

)

Foursquare

XS S M
Model Size

0.07

0.08

0.09

0.1

M
e

a
n

 A
v

e
ra

g
e

 P
re

c
is

io
n

0

1

2

3

4

5

6

#
 P

a
ra

m
e

te
rs

 (
m

il
li

o
n

)

Foursquare

XS S M
Model Size

0.07

0.08

0.09

0.1

M
e
a
n

 A
v
e
ra

g
e
 P

re
c
is

io
n

0

1

2

3

4

5

6

#
 P

a
ra

m
e
te

rs
 (

m
il
li
o

n
)Caser-S Caser-RD

Gowalla

XS S M
Model Size

0.07

0.08

0.09

0.1

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

0

1

2

3

4

5

6

Pa

ra
m

et
er

s
(m

ill
io

n)

Caser-T Caser-RD

(a) MAP vs. model size

20 40 60 80
Iterations

0.05

0.06

0.07

0.08

0.09

0.1

M
e
a
n

 A
v
e
ra

g
e
 P

re
c
is

io
n

Foursquare

20 40 60 80
Iterations

0.08

0.085

0.09

0.095

0.1

M
e
a
n

 A
v
e
ra

g
e
 P

re
c
is

io
n

Gowalla

20 40 60 80

Iterations

0.05

0.06

0.07

0.08

0.09

0.1

M
e

a
n

 A
v

e
ra

g
e

 P
re

c
is

io
n

Foursquare

Caser-S Caser-T Caser-RD Caser-S-RD

Caser-S-RD use
ranking distillation
after iteration>30

Caser-S-RD use
ranking distillation
after iteration>30

(b) MAP vs. the number of iterations for model training

Figure 5.5: Mean average precision vs. (a) model size and (b) the choice of distillation loss.

up, but there is always a gap. Caser-RD reaches a similar performance to its teacher with
the medium model size, which is about 50% of the teacher model size.

Figure 5.5b shows the impact of ranking distillation on the student model’s MAP iter-
ation by iteration. We compare four models: Case-S, Caser-T, Caser-RD, and Caser-S-RD.
The last model minimizes ranking loss during the first 30 iterations and adds distillation
loss after that. Caser-RD outperforms Caser-S all the time. Caser-S reaches its limit after
50 iterations on Gowalla and 70 iterations on Foursquare. Caser-S-RD performs similarly
to Caser-S during the first 30 iterations, but catches up with the Caser-RD at the end, indi-
cating the impressive effectiveness of ranking distillation. Caser-T performs well at first but
tends to get overfitted after about 60 iterations due to its large model size and the sparse rec-
ommendation data sets. In contrast, Caser-RD and Caser-S-RD, which have smaller model
sizes, are more robust to overfitting issue, though their training is partially supervised by
the teacher. This finding reveals another advantage of ranking distillation.

71

Figure 5.6 shows the MAP for various balancing parameter α to explore models’ per-
formance when balancing ranking loss and distillation loss. For Gowalla data, the best
performance is achieved when α is around 0.5. But for Foursquare data, the best perfor-
mance is achieved when α is around 0.3, indicating too much concentrate on distillation loss
leads to a bad performance. On both data sets, either discarding ranking loss or discarding
distillation loss gives poor results.

0 0.2 0.4 0.6 0.8 1

0.08

0.085

0.09

0.095

0.1

M
e

a
n

 A
v

e
ra

g
e

 P
re

c
is

io
n

(a) Gowalla

0 0.2 0.4 0.6 0.8 1

0.08

0.085

0.09

0.095

0.1

M
e

a
n

 A
v

e
ra

g
e

 P
re

c
is

io
n

(b) Foursquare

Figure 5.6: MAP vs. balancing parameter α

5.4.4 Effects of Weighting Schemes

Table 5.4 shows the effects of the proposed weighting schemes in our ranking distillation.
For the weight wr for r-th document in the teacher’s top-K ranking, we used the equal
weight (wr = 1/K) as the baseline and considered the weighting by position importance
(wr = war), the weighting by ranking discrepancy (wr = wbr), and the hybrid weighting
(wr ∝ war ·wbr). The equal weight performs the worst. The position importance weighting is
much better, suggesting that within the teacher’s top-K ranking, documents at top positions
are more related to the positive ground truth. The ranking discrepancy weighting only
doesn’t give impressive results, but when used with the position importance weighting, the
hybrid weighting yields the best results on both data sets.

5.5 Conclusion

The proposed ranking distillation enables generating compact ranking models for better
online inference efficiency without scarifying the ranking performance. The idea is training a
teacher model with more parameters to teach a student model with fewer parameters to rank
unlabeled documents. While the student model is compact, its training benefits from the
extra supervision of the teacher, in addition to the usual ground truth from the training data,
making the student model comparable with the teacher model in the ranking performance.
This paper focused on several key issues of ranking distillation, i.e., the problem formulation,

72

Table 5.4: Performance of Caser-RD with different choices of weighting scheme on two data
sets.

Datasets Weighting P@10 nDCG@10 MAP

Gowalla

wr = 1/K 0.0843 0.1198 0.0925
wr = war 0.0850 0.1230 0.0945
wr = wbr 0.0851 0.1227 0.0937
hybrid 0.0878 0.1283 0.0969

Foursquare

wr = 1/K 0.0424 0.1046 0.0914
wr = war 0.0423 0.1052 0.0929
wr = wbr 0.0429 0.1035 0.0912
hybrid 0.0444 0.1076 0.0952

the representation of teacher’s supervision, and the balance between the trust on the training
data and the trust on the teacher, and presented our solutions. The evaluation on real data
sets supported our claims.

73

Chapter 6

Conclusion

6.1 Summary

Leveraging user action sequences helps us better understand users’ need in the near future.
Therefore, sequential recommendation takes a big step towards building a more precise
recommender system. Deep neural networks could be promising tools for solving sequen-
tial recommendation problem. Our research in this thesis targets several unique challenges
when modeling user action sequences with neural networks and proposes our solutions. In
particular, we make the following contributions to better utilize dependencies (patterns) in
user action sequences and make the resulting recommender efficient to use:

• In Chapter 3, we confirmed the existence of multi-form sequential patterns and investi-
gated how they can influence user’s future actions. We proposed Caser, a unified model
that uses convolutional filters with different shapes to capture sequential patterns in
different forms. Caser is flexible as it can generalize several existing methods and it
is one of the earliest attempts for using deep neural network to deal with sequential
recommendation problem.

• In Chapter 4, we examined the properties of sequential dependencies in YouTube
dataset where we have long user action sequences (length greater than 100). Based
on our findings, we proposed a multi-temporal-range mixture model, called M3, as
a tailored solution. M3 uses a combination of several sequence models to cater the
distinct needs from different parts of user sequence. Besides accuracy, it offers good
interpretability and can adapt to various recommendation scenarios.

• In Chapter 5, we pointed out the online efficiency issue caused by cumbersome neural
network models. The issue is extremely critical for sequential recommendation which
needs to quickly respond user requests in real-time. To mitigate this, we proposed
a ranking distillation (RD) method. RD is able to learn a recommendation model
with fewer parameters and good online inference efficiency but with its performance

74

similar to a recommendation model with much more parameters. Though designed for
recommendation, the idea of RD can also be generalized to other ranking problems.

6.2 Future Directions

The work described in this thesis focuses on making sequential recommender systems more
precise and more affordable. For the same problem we studied, there are many other promis-
ing future ways to further improve recommendation precision and efficiency. To this end, I
summarize some of the intuitions in below.

Further improve recommendation precision by modeling seasonal patterns. Al-
though the sequential order is used in this dissertation for providing better recommendation,
there are more opportunities of exploiting the time information. Among this, modeling sea-
sonal patterns in user action sequences can be very useful but is overlooked by literature.
Most existing works do not explicitly discuss or model the following important seasonal pat-
terns. First of all, we have item-specific seasonal patterns. Such seasonality can be life-cycle
of a certain item or some overall trends for a particular item. For instance, TV’s life-cycle is
much longer than coffee. That’s why it is meaningless to recommend another TV after the
user has purchased a TV. On the other hand, if we know coffee is usually purchased in the
morning and usually consumed by people every day, we can use this information to provide
better user experiences for repetitive consumption [12]. Besides, we may also have person-
alized seasonal patterns in dataset. For example, one may prefer to watch study videos
during day time and entertainment videos at night. That’s why the user may not prefer the
recommended entertainment videos at day time. This doesn’t mean our recommendation
is bad but not satisfactory to user’s need at that time. The personalized seasonal pattern
reflects the difference of certain person’s interest at different times.

Further reduce parameters in recommendation models. From model compression
perspective, it is known that above 90% of parameters of any recommendation models are
from user and item latent factors (embeddings). Therefore, to reduce model parameters
effectively, we should focus on compressing user and item embeddings. There are some
possible solutions along this line. Firstly, we could group similar users’ (or items’) embed-
dings by learning some representative embeddings. Vector quantization [35, 45] can be used
to achieve this purpose. Also, there’s a major limitation when using the same embedding
dimensionality for each user embedding. Instead, using smaller dimensionality to embed
cold-start users (users with few feedback) should be more reasonable, as these users didn’t
show many diverse interests. After these users left more feedback and more engaged into the
system, we can gradually increase their embeddings’ dimensionality. By using an adaptive

75

embedding size, we could not only save a lot of model parameters but also regularize the
model in a proper way.

Beyond the problems discussed in this dissertation, there are also some meaningful directions
that are critical to the whole recommender system. Below I state them into details.

Investigating negative impacts of recommendation. During the past decade, most
works focused on developing more precise recommendation methods. However, recommender
system can also cause potential negative impacts to the system provider and to the users,
while they are certainly under-explored. To the system provider, due to the open nature of
recommender systems and their reliance on user contributed judgments [13], recommender
systems can be misused, attacked with malicious purposes [59]. Once this happens, the cred-
ibility of a recommender system will be largely affected, which could lead to a significant
economic loss. To this end, some research directions deserve more explorations, including
but not limited to: (1) Recommedation models’ vulnerability, (2) models’ reactions to differ-
ent types of attacks and (3) proper defensive strategies . To the users, people’s interactions
with recommendation systems cannot precisely reflex their original intentions [104]. What
even worse is the recommendations may change users’ consumption from what they aspire
to choose, since it has become the main user interface of some platforms (e.g., YouTube).
This could cause the filtering bubble problem [30], where user interests are narrowed by the
recommender system. Moreover, privacy of each user might be disclosed via recommender
system. More studies should be done to protect the system’s users. In all, we believe un-
derstanding the negative impacts of recommendation is crucial and is a promising direction
that needs more research.

Optimizing long-term user engagement metrics. In recommendation research, our
goal is to make recommendations that the user may have largest probabilities to interact
with. However, user interaction is not equal to user satisfaction, which is always revealed
by the long-term user engagement metrics (e.g., user’s time spent on the recommended
videos or the number of “likes” on the recommended videos). But this discrepancy also
brings opportunities to recommendation research. On the one hand, user satisfaction is
always measured by a combination of multiple user behaviors. Therefore, it requires more
attention to investigate how to effectively performing multi-objective optimization. On the
other hand, some of the engagement metrics are non-differentiable thus cannot be directly
optimized via Gradient Descent methods. To solve this, reinforcement learning [15] might
be a potential solution. Alternatively, we can devise some other surrogate metrics to align
with the non-differentiable user engagement metrics [32].

76

Recommendation for multi-stakeholders One of the most essential aspects of any
recommender system is personalization. That is, we develop methods to suit the user’s
interests. However, in many real-world applications, there are other stakeholders whose
needs and interests should be taken into account. In multi-sided online platforms, such
as YouTube, aside from content consumers (users) there are also content providers whose
needs should be considered. Maximization of a combination of different objectives that
simultaneously satisfy multi-stakeholders is a critical but challenging problem. Especially
when there are conflicting goals from different parties, the recommender system will need to
balance the interests of different parties. In this way, maybe game theory is a good solution.

77

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation, pages 265–283, 2016.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Interna-
tional Conference on Data Engineering, pages 3–14. IEEE, 1995.

[3] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormándi, George E. Dahl,
and Geoffrey E. Hinton. Large scale distributed neural network training through
online distillation. arXiv preprint arXiv:1804.03235, 2018.

[4] Nima Asadi, Donald Metzler, Tamer Elsayed, and Jimmy Lin. Pseudo test collections
for learning web search ranking functions. In International Conference on Research
and development in Information Retrieval, pages 1073–1082. ACM, 2011.

[5] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in
neural information processing systems, pages 2654–2662, 2014.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271, 2018.

[8] Francois Belletti, Evan Sparks, Alexandre Bayen, and Joseph Gonzalez. Random
projection design for scalable implicit smoothing of randomly observed stochastic
processes. In Artificial Intelligence and Statistics, pages 700–708, 2017.

[9] Francois Belletti, Alex Beutel, Sagar Jain, and Ed Chi. Factorized recurrent neural
architectures for longer range dependence. In International Conference on Artificial
Intelligence and Statistics, pages 1522–1530, 2018.

[10] Alex Beutel, Ed H Chi, Zhiyuan Cheng, Hubert Pham, and John Anderson. Beyond
globally optimal: Focused learning for improved recommendations. In International
Conference on World Wide Web, pages 203–212, 2017.

[11] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H
Chi. Latent cross: Making use of context in recurrent recommender systems. In
International Conference on Web Search and Data Mining, pages 46–54. ACM, 2018.

78

[12] Rahul Bhagat, Srevatsan Muralidharan, Alex Lobzhanidze, and Shankar Vishwanath.
Buy it again: Modeling repeat purchase recommendations. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 62–70. ACM, 2018.

[13] Robin Burke, Michael P O’Mahony, and Neil J Hurley. Robust collaborative recom-
mendation. In Recommender systems handbook, pages 961–995. Springer, 2015.

[14] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,
20(3):542–542, 2009.

[15] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H
Chi. Top-k off-policy correction for a reinforce recommender system. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining, pages
456–464. ACM, 2019.

[16] Xu Chen, Zheng Qin, Yongfeng Zhang, and Tao Xu. Learning to rank features for
recommendation over multiple categories. In International ACM SIGIR conference
on Research and Development in Information Retrieval, pages 305–314, 2016.

[17] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. Sequential recommendation with user memory networks. In Interna-
tional Conference on Web Search and Data Mining, pages 108–116. ACM, 2018.

[18] Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Darkrank: Accelerating deep met-
ric learning via cross sample similarities transfer. arXiv preprint arXiv:1707.01220,
2017.

[19] Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. Where you like to go
next: Successive point-of-interest recommendation. In International Joint Conference
on Artificial Intelligence, pages 2605–2611, 2013.

[20] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user move-
ment in location-based social networks. In International Conference on Knowledge
Discovery and Data Mining, pages 1082–1090. ACM, 2011.

[21] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[22] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann
LeCun. The loss surfaces of multilayer networks. In Artificial Intelligence and Statis-
tics, pages 192–204, 2015.

[23] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube
recommendations. In ACM Conference on Recommender Systems, 2016.

[24] D Crankshaw and J Gonzalez. Prediction-serving systems. Queue, 16:83–97, 01 2018.
doi: 10.1145/3194653.3210557.

79

[25] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Croft. Neural ranking models with weak supervision. arXiv preprint
arXiv:1704.08803, 2017.

[26] Robin Devooght and Hugues Bersini. Long and short-term recommendations with
recurrent neural networks. In Conference on User Modeling, Adaptation and Person-
alization, pages 13–21. ACM, 2017.

[27] Fernando Diaz. Learning to rank with labeled features. In International Conference
on the Theory of Information Retrieval, pages 41–44. ACM, 2016.

[28] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):
2121–2159, 2011.

[29] Ignacio Fernández-Tobías, Iván Cantador, Marius Kaminskas, and Francesco Ricci.
Cross-domain recommender systems: A survey of the state of the art. In Spanish
Conference on Information Retrieval, page 24. sn, 2012.

[30] Seth Flaxman, Sharad Goel, and Justin M Rao. Filter bubbles, echo chambers, and
online news consumption. Public opinion quarterly, 80(S1):298–320, 2016.

[31] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

[32] Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and
Simon Dollé. Offline a/b testing for recommender systems. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, pages 198–
206. ACM, 2018.

[33] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms,
business value, and innovation. ACM Transactions on Management Information Sys-
tems (TMIS), 6(4):13, 2016.

[34] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.
Elsevier, 2011.

[35] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[36] R. He, W.-C. Kang, and J. McAuley. Translation-based recommendation. In ACM
Conference on Recommender systems, 2017.

[37] Ruining He and Julian McAuley. Fusing similarity models with markov chains for
sparse sequential recommendation. In International Conference on Data Mining.
IEEE, 2016.

[38] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
Neural collaborative filtering. In International Conference on World Wide Web, pages
173–182. ACM, 2017.

80

[39] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
Session-based recommendations with recurrent neural networks. arXiv preprint
arXiv:1511.06939, 2015.

[40] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[41] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[42] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and Deborah
Estrin. Collaborative metric learning. In International Conference on World Wide
Web, pages 193–201, 2017.

[43] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In International Conference on Data Mining, pages 263–272. IEEE,
2008.

[44] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Quantized neural networks: Training neural networks with low precision weights
and activations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

[45] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2704–2713,
2018.

[46] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adap-
tive mixtures of local experts. Neural computation, 3(1):79–87, 1991.

[47] Dietmar Jannach and Malte Ludewig. When recurrent neural networks meet the
neighborhood for session-based recommendation. In ACM Conference on Recom-
mender systems, pages 306–310. ACM, 2017.

[48] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On us-
ing very large target vocabulary for neural machine translation. arXiv preprint
arXiv:1412.2007, 2014.

[49] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em
algorithm. Neural computation, 6(2):181–214, 1994.

[50] Dan Jurafsky and James H Martin. Speech and language processing, volume 3. Pearson
London, 2014.

[51] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural
networks. In IEEE conference on Computer Vision and Pattern Recognition, pages
1725–1732, 2014.

[52] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural
Information Processing Systems, pages 586–594, 2016.

81

[53] Yoon Kim. Convolutional neural networks for sentence classification. In Conference
on Empirical Methods on Natural Language Processing, pages 1756–1751. ACL, 2014.

[54] Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv
preprint arXiv:1606.07947, 2016.

[55] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[56] Yehuda Koren. Collaborative filtering with temporal dynamics. In ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 2009.

[57] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8), 2009.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 1097–1105, 2012.

[59] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning attacks
on factorization-based collaborative filtering. In Advances in neural information pro-
cessing systems, pages 1885–1893, 2016.

[60] Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. Fexipro: Fast and
exact inner product retrieval in recommender systems. In International Conference
on Management of Data, pages 835–850. ACM, 2017.

[61] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed ma-
chine learning with the parameter server. In 11th USENIX Symposium on Operating
Systems Design and Implementation, pages 583–598, 2014.

[62] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations: Item-
to-item collaborative filtering. IEEE Internet computing, 2003.

[63] David C Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C Ma, Zhi-
gang Zhong, Jenny Liu, and Yushi Jing. Related pins at pinterest: The evolution of
a real-world recommender system. In International Conference on World Wide Web,
pages 583–592, 2017.

[64] Duen-Ren Liu, Chin-Hui Lai, and Wang-Jung Lee. A hybrid of sequential rules and
collaborative filtering for product recommendation. Information Sciences, 179(20):
3505–3519, 2009.

[65] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. Modeling
task relationships in multi-task learning with multi-gate mixture-of-experts. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1930–1939, 2018.

[66] Benjamin Marlin, Richard S Zemel, Sam Roweis, and Malcolm Slaney. Collaborative
filtering and the missing at random assumption. arXiv preprint arXiv:1206.5267,
2012.

82

[67] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudan-
pur. Recurrent neural network based language model. In Interspeech, 2010.

[68] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In International Conference on Machine Learning, pages 807–814, 2010.

[69] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari.
Learning with noisy labels. In Advances in neural information processing systems,
pages 1196–1204, 2013.

[70] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz, and
Qiang Yang. One-class collaborative filtering. In International Conference on Data
Mining, pages 502–511. IEEE, 2008.

[71] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
Text matching as image recognition. In AAAI Conference on Artificial Intelligence,
pages 2793–2799. AAAI Press, 2016.

[72] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng.
Deeprank: A new deep architecture for relevance ranking in information retrieval.
arXiv preprint arXiv:1710.05649, 2017.

[73] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International Conference on Machine Learning, pages
1310–1318, 2013.

[74] Vladas Pipiras and Murad S Taqqu. Long-range dependence and self-similarity, vol-
ume 45. Cambridge university press, 2017.

[75] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.
Personalizing session-based recommendations with hierarchical recurrent neural net-
works. In ACM Conference on Recommender Systems, pages 130–137. ACM, 2017.

[76] Steffen Rendle and Christoph Freudenthaler. Improving pairwise learning for item
recommendation from implicit feedback. In International Conference on Web Search
and Data Mining, pages 273–282. ACM, 2014.

[77] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Conference on Uncer-
tainty in Artificial Intelligence, pages 452–461. AUAI Press, 2009.

[78] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing per-
sonalized markov chains for next-basket recommendation. In International Conference
on World Wide Web, pages 811–820. ACM, 2010.

[79] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550, 2014.

[80] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Ad-
vances in neural information processing systems, pages 1257–1264, 2008.

83

[81] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann
machines for collaborative filtering. In International Conference on Machine learning,
pages 791–798. ACM, 2007.

[82] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collab-
orative filtering recommendation algorithms. In International Conference on World
Wide Web, pages 285–295. ACM, 2001.

[83] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec:
Autoencoders meet collaborative filtering. In International Conference on World Wide
Web, pages 111–112. ACM, 2015.

[84] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geof-
frey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[85] Elena Smirnova and Flavian Vasile. Contextual sequence modeling for recommenda-
tion with recurrent neural networks. In Proceedings of the 2nd Workshop on Deep
Learning for Recommender Systems, pages 2–9. ACM, 2017.

[86] Yang Song, Ali Mamdouh Elkahky, and Xiaodong He. Multi-rate deep learning for
temporal recommendation. In International ACM SIGIR conference on Research and
Development in Information Retrieval, pages 909–912. ACM, 2016.

[87] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[88] Harald Steck. Training and testing of recommender systems on data missing not
at random. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 713–722. ACM, 2010.

[89] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, 2014.

[90] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convo-
lutional sequence embedding. In ACM International Conference on Web Search and
Data Mining, 2018.

[91] Jiaxi Tang and Ke Wang. Ranking distillation: Learning compact ranking models
with high performance for recommender system. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2289–2298. ACM, 2018.

[92] Jiaxi Tang, Francois Belletti, Sagar Jain, Minmin Chen, Alex Beutel, Can Xu, and
Ed H Chi. Towards neural mixture recommender for long range dependent user
sequences. arXiv preprint arXiv:1902.08588, 2019.

[93] Christina Teflioudi, Rainer Gemulla, and Olga Mykytiuk. Lemp: Fast retrieval of
large entries in a matrix product. In International Conference on Management of
Data, pages 107–122. ACM, 2015.

84

[94] Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, AndrewW Senior, and Koray Kavukcuoglu. Wavenet:
A generative model for raw audio. In SSW, page 125, 2016.

[95] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, pages 5998–6008, 2017.

[96] Andrea Vedaldi and Karel Lenc. Matconvnet: Convolutional neural networks for
matlab. In International conference on Multimedia, pages 689–692. ACM, 2015.

[97] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for rec-
ommender systems. In International Conference on Knowledge Discovery and Data
Mining, pages 1235–1244. ACM, 2015.

[98] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi Cheng.
Learning hierarchical representation model for nextbasket recommendation. In In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval, pages 403–412. ACM, 2015.

[99] Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annotation:
learning to rank with joint word-image embeddings. Machine learning, 81(1):21–35,
2010.

[100] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing. Re-
current recommender networks. In International Conference on Web Search and Data
Mining, pages 495–503. ACM, 2017.

[101] Chen Wu and Ming Yan. Session-aware information embedding for e-commerce prod-
uct recommendation. In ACM on Conference on Information and Knowledge Man-
agement, pages 2379–2382. ACM, 2017.

[102] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. Collaborative de-
noising auto-encoders for top-n recommender systems. In International Conference
on Web Search and Data Mining, pages 153–162. ACM, 2016.

[103] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. End-
to-end neural ad-hoc ranking with kernel pooling. In International ACM SIGIR con-
ference on Research and Development in Information Retrieval, pages 55–64, 2017.

[104] Longqi Yang, Michael Sobolev, Yu Wang, Jenny Chen, Drew Dunne, Christina Tsan-
gouri, Nicola Dell, Mor Naaman, and Deborah Estrin. How intention informed rec-
ommendations modulate choices: A field study of spoken word content. In The World
Wide Web Conference, pages 2169–2180. ACM, 2019.

[105] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolu-
tions. arXiv preprint arXiv:1511.07122, 2015.

[106] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiangnan
He. A simple convolutional generative network for next item recommendation. In
Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining, pages 582–590. ACM, 2019.

85

[107] Quan Yuan, Gao Cong, and Aixin Sun. Graph-based point-of-interest recommen-
dation with geographical and temporal influences. In International Conference on
Information and Knowledge Management, pages 659–668. ACM, 2014.

[108] Chenyi Zhang, Ke Wang, Hongkun Yu, Jianling Sun, and Ee-Peng Lim. Latent factor
transition for dynamic collaborative filtering. In SIAM International Conference on
Data Mining, pages 452–460. SIAM, 2014.

[109] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-Seng
Chua. Discrete collaborative filtering. In International Conference on Research and
Development in Information Retrieval, pages 325–334. ACM, 2016.

[110] Yan Zhang, Defu Lian, and Guowu Yang. Discrete personalized ranking for fast collab-
orative filtering from implicit feedback. In AAAI Conference on Artificial Intelligence,
pages 1669–1675. AAAI Press, 2017.

[111] Zhiwei Zhang, Qifan Wang, Lingyun Ruan, and Luo Si. Preference preserving hashing
for efficient recommendation. In International Conference on Research and Develop-
ment in Information Retrieval, pages 183–192. ACM, 2014.

[112] Lei Zheng, Vahid Noroozi, and Philip S. Yu. Joint deep modeling of users and items
using reviews for recommendation. In International Conference on Web Search and
Data Mining, pages 425–434. ACM, 2017.

[113] Ke Zhou and Hongyuan Zha. Learning binary codes for collaborative filtering. In
International Conference on Knowledge Discovery and Data Mining, pages 498–506.
ACM, 2012.

[114] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report, Uni-
versity of Wisconsin-Madison Department of Computer Sciences, 2005.

86

Appendix A

List of Publications

Chapter 3

1. Tang J, Wang K. Personalized Top-N Sequential Recommendation via Convolutional
Sequence Embedding. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining (WSDM) 2018 Feb 2 (pp. 565-573). ACM. [90]

Chapter 4

1. Tang J, Belletti F, Jain S, Chen M, Beutel A, Xu C, H Chi E. Towards Neural Mixture
Recommender for Long Range Dependent User Sequences. In The Web Conference
(WWW) 2019 May 13 (pp. 1782-1793). ACM. [92]

Chapter 5

1. Tang J, Wang K. Ranking Distillation: Learning Compact Ranking Models with High
Performance for Recommender System. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD) 2018 Jul 19
(pp. 2289-2298). ACM. [91]

For the three papers listed above, I am the primary author of the entire work. In the first and
the last paper, I made contribution in coming up with the research questions, proposing
the solutions, conducting the experiments and writing paper. In the second paper, the
motivation is from Francois Belletti and the solution is proposed by me during an insightful
discussion with Francocis Belletti and Sagar Jain. I conducted all the experiments and
finished the first version of the paper draft.

87

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research Questions and Contributions
	Capturing Different Forms of Sequential Patterns
	Utilizing Long-range Dependent User Sequences
	Mitigating Model Serving Cost Overhead

	Thesis Organization

	Preliminaries and Background
	Basic Concepts
	Sequential Recommendation Problem
	Recommendation Model
	Evaluation Metrics
	Notations

	On Capturing Different Forms of Sequential Dependencies
	Background and Motivations
	Observation from Data
	Contributions

	Related Work
	Proposed Methodology
	Model Formulation
	Model Learning and Inference
	Connection to Existing Models

	Experimental Studies
	Experimental Setup
	Performance Comparison

	Conclusion

	On Exploiting Long-range Dependent User Sequences
	Background and Motivations
	Observation from Data
	Limitations of Previous Work
	Contributions

	Proposed Methodology
	Overview
	Different Encoders for Dependencies from Different Ranges

	Experimental Studies
	Experiments on MovieLens Dataset
	Experiments on Anonymized YouTube Dataset
	Ablation Study of Mixture of Models
	Role of Gating Network

	Conclusion

	On Learning Compact Model for Efficient Recommendation
	Background and Motivations
	Ranking from scratch
	Rethinking Effectiveness and Efficiency
	Knowledge Distillation
	Contributions

	Related Work
	Proposed Methodology
	Overview
	Incorporating Distillation Loss
	Discussion

	Experimental Studies
	Experimental Setup
	Overall Performances
	Effects of Model Size and Distillation Loss
	Effects of Weighting Schemes

	Conclusion

	Conclusion
	Summary
	Future Directions

	Bibliography
	Appendix List of Publications

