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Abstract

Mixed integer programming provides a unifying framework for solving a medley of hard
combinatorial optimization problems of practical interest. A mixed integer program (MIP) is
typically solved using linear programming (LP) based branch-and-bound algorithm. Primal
heuristics are a key component of MIP solvers and enable finding good feasible solutions
early in the tree search. The literature is rich with a variety of hybrid primal heuristics that
combine both heuristic and exact methods.

In this thesis, we propose a new supervised large neighborhood search heuristic for the
general MIP, as well as, a new analytical MIP-based primal heuristic for the linear ordering
problem. We present our work in two parts.

Part I: Supervised Neighborhood Selection for Mixed Integer Programs
Large neighborhood search (LNS) heuristics are employed as improvement procedures within
the branch-and-bound algorithm. They formulate the neighborhoods as an auxiliary MIP
with a restricted search space, which is then solved to search for an improving solution.
The neighborhoods are typically defined by handcrafted rules, guided by human intuition
and offline experimentation. Alternatively, a neighborhood should be defined such that it
has a high likelihood of success. We apply a data-driven approach to predict an ideal neigh-
borhood for the neighborhood search. We propose a supervised large neighborhood search
heuristic for the general mixed integer programs and compare it with Relaxation Induced
Neighborhood Search (RINS), a popular LNS heuristic. Our heuristic not only finds an
improving solution more often but also improves the solver performance on key metrics.

Part II: MIP-based Primal Heuristic for the Linear Ordering Problem
Linear ordering problem (LOP) is a quintessential combinatorial optimization problem and
has been well studied in the literature. We present a new MIP-based primal heuristic for
the LOP. The heuristic decomposes the LOP instance into sub-problems albeit sub-optimal
ones, solves each sub-problem optimally and concatenates the partial solutions to construct
a solution to the original problem instance. We present empirical results that show that our
heuristics achieves good performance on benchmark instances.

Keywords: Mixed Integer Programming; Primal Heuristics; Large Neighborhood Search;
Machine Learning; Supervised Learning; Linear Ordering Problem
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Chapter 1

Introduction

A large number of combinatorial optimization (CO) problems are difficult-to-solve (NP-
hard) yet ubiquitous. They frequently arise in a diversity of domains, including but not
limited to operations research, economics, finance, energy, electronics, and bioinformatics.
Their computational intractability, therefore, does not curtail their significance in real-world
applications, and we must put our best efforts to solve them as well as possible. This has
motivated the research in approximation algorithms [80], heuristic methods [21], and integer
programming [81].

Approximation algorithms have the advantage of theoretical guarantees as they provide
a strict bound on the solution quality. However, algorithms with satisfactory bounds may
not exist for a given problem. Besides, some optimization problems are known to be inap-
proximable, a classic example being the general case of the traveling salesman problem. They
additionally may not be practical for solving very large scale problems. Heuristic methods, in
contrast, make a compromise with theoretical guarantees in favour of being highly efficient
and scalable. Moreover, unlike approximation algorithms, many available general-purpose
heuristics readily apply to a variety of different problems. Therefore, heuristic methods are
particularly prevalent in practice. Integer programming is another method widely used in
practical applications not only for its high scalability but also for its capability to provide
a guarantee on solution quality. Although solving an integer programming problem can
theoretically take exponential time, exact integer programming solvers exploit an array of
tools to achieve satisfactory performance in practice [3]. More recently, the research com-
munity has shown a keen interest in applying machine learning techniques to combinatorial
optimization. The proposed methods intend to either replace exact solvers and heuristic
methods in a particular problem domain or support general-purpose exact solvers [14].

Classical combinatorial problems include the satisfiability problem, knapsack problem,
traveling salesman problem, set cover, set packing, and the 0-1 integer program. The equiv-
alence among these problems is well known [52]. Even though it may be possible to apply
known approximation and heuristic algorithms for one problem to another, not all such
reductions may be efficient. Mixed integer programming provides a unifying framework
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to model these combinatorial problems. Furthermore, it can be readily extended to many
other diverse optimization problems. A mixed integer programming problem (MIP) is char-
acterized by a linear objective function over certain variables, subject to a set of linear
constraints. A MIP is typically solved using a linear programming problem (LP) based
branch-and-bound algorithm. The algorithm solves a series of LP-relaxations, branching
on any fractional integer variables, in search of a feasible solution. As noted earlier, the
solving time using the branch-and-bound algorithm may still be disproportionately high.
To bring it down significantly, a modern MIP solver implements many auxiliary solving
components [19], such as branching strategies, node selection strategies, presolving, cutting
plane separation, and primal heuristics.

Thanks to decades of research and development, modern MIP solvers have become
remarkably effective and robust tools integral to today’s global economy [20, 5]. Problems
such as vehicle routing, scheduling, production planning, network design, crew pairing, and
task allocation are quite commonly solved using MIP solvers [72]. Although we have come
a long way, the diversity and the scale of the problems we need to solve today is larger than
ever. To this end, further advances in mixed integer programming still have the potential
to have a far-reaching impact.

Primal heuristics are integral in improving the performance of MIP solvers as they
enable early exploration of good feasible solutions. In this thesis, our central focus is on
hybrid primal heuristics that combine approximate and exact methods. Solving a MIP to
obtain good-quality feasible solutions is known to require computing time that is compara-
ble to solving its LP-relaxation [34]. Large neighborhood search heuristics and MIP-based
heuristics leverage exact MIP solvers as a black-box to solve parts of the problem optimally
or near-optimally. In our work, we explore the idea of designing a dynamic, data-driven,
and context-dependent large neighborhood search heuristic for the general mixed integer
programming problem. We also propose an analytical MIP-based heuristic for the linear
ordering problem.

1.1 Role of primal heuristics

Mixed integer programming has proved extremely powerful and reliable for solving a diverse
set of CO problems. However, obtaining exact solutions to many hard problems remains
challenging. Primal heuristics are crucial in finding and improving feasible solutions early
in the branch-and-bound search. A reasonable assumption is that good primal bounds at-
tained early help prune sub-optimal branches more quickly, thereby improving the overall
performance of the algorithm. However, experiments have shown that primal heuristics have
a rather limited contribution in solving a problem instance to optimality [2]. In practical
applications, a user may not always prioritize finding a provably optimal solution. A feasible
solution with a reasonable quality might be sufficient. Primal heuristics are critical in this
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regard. Berthold [17] says the impact of heuristics on solving a MIP is not rightly mea-
sured by time to optimality or number of branch-and-bound nodes. Instead they propose
primal integral as a performance metric, and show that the heuristics improve the primal
performance by up to 80%.

Primal heuristics have been a focus of extensive research, and the literature is rich in
heuristics for the general MIP. Early heuristics were mainly targeted towards achieving
feasibility quickly. One of the first well-known heuristics is pivot and complement [10], orig-
inally designed for the 0-1 integer program and later generalized to mixed integer program
as pivot and shift [11]. It builds upon the observation that an LP-feasible solution is also
integer feasible if all its integer variables are non-basic. The heuristic works in two phases. In
the first phase, it performs non-standard pivot operations in an attempt to drive non-basic
slack variables into the basis at a minimal cost. Finally, it attempts to improve the obtained
feasible solution using local search by complementing (or shifting) certain sets of variables.
Other popular primal heuristics for mixed integer programming can be broadly classified as
rounding heuristics, diving heuristics, objective diving heuristics, and improvement heuris-
tics [47].

Rounding heuristics, as the name suggests, perform a series of rounding operations
on fractional integer variables in the LP-relaxation. A simple rounding heuristic is one
where we attempt to round every fractional integer variable while maintaining the LP-
feasibility. Other more sophisticated rounding heuristics may perform rounding operations
that occasionally result in an LP-infeasible solution, and recover from the infeasibility by
further rounding operations. In contrast, Relaxation Enforced Neighborhood Search (RENS)
[18] defines a neighborhood around all feasible roundings of the LP-relaxation solution by
adjusting the bounds on all integer variables. Diving heuristics utilize bound adjustments
slightly differently. They perform a sequence of bound changes to simulate a dive or plunge
in the branch-and-bound tree without actually generating the intermediate nodes. Any
infeasibilities resulting from a bound change are resolved using the dual simplex algorithm.
The dive may eventually lead to a feasible solution or is infeasible, in which case the heuristic
is said to have failed. Alternatively, objective diving heuristics perform what is called soft
roundings, to always maintain feasibility. Instead of explicitly adjusting the variable bounds,
they modify the objective function coefficient of the variable to drive it towards its lower or
upper bound.

While the main focus of rounding and diving heuristics is on achieving feasibility, a wide
selection of primal heuristics are classified as Large Neighborhood Search (LNS) heuristics
targeted towards improving a known feasible solution [26, 32, 35, 40, 73]. LNS heuristics re-
strict the search space of the input MIP instance to a neighborhood of interest and partially
solve an auxiliary problem (also a MIP instance) using the branch-and-bound algorithm [47].
The neighborhoods may be defined in several ways i.e. by fixing variables, enforcing addi-
tional constraints, modifying objective function coefficients, or any combination of these.
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This technique is also utilized by feasibility pump [31], a heuristic designed to achieve fea-
sibility quickly. Popular metaheuristic methods such as tabu search, variable neighborhood
search and genetic algorithms have also been applied to the general integer programming
problems [9, 44, 66].

For an extensive survey on primal heuristics for general mixed integer programs, we
direct the interested reader to these resources [16, 33].

1.2 Motivation for learning in combinatorial optimization

The idea of utilizing machine learning for combinatorial optimization problems is not a
new one [48]. However, the dramatic explosion in machine learning research in the last
few years has renewed interest in learning-based algorithms for NP-hard problems. The
primary motivation, as described in a recent survey by Bengio et al. [14], is to replace some
heavy computation with a faster learning-based approximation or to efficiently explore
the algorithmic design space in search of better performing policies. We can classify the
recent work in this area into two broad categories. First, are approaches that provide an
alternative to existing solving methods such as heuristics or exact solvers [25, 60]. Second,
are approaches designed to support exact solvers by augmenting them [45, 53, 54].

In practice, the field of combinatorial optimization has long been dominated by heuristic
methods, as good solutions are often acceptable. Moreover, exact methods may not scale
well or be fast enough to support decision making in many real-world applications. These
heuristics are essentially handcrafted rules, designed by human intuition, and refined by
extensive experimentation and tuning by experts with domain knowledge. Alternatively,
we can automate this process in an attempt to derive heuristic rules directly from large
datasets. Li et al. [60] identify that machine learning can play a key role in detecting useful
patterns, by leveraging the regularities in real-world data. Such patterns may elude human
algorithm designers or may be hard to describe manually. They give the example of graph
motifs that can indicate a set of vertices that belong to the optimal solution.

Many recent papers demonstrate the utility of machine learning for specific combina-
torial problems such as the traveling salesman problem (TSP) [13, 79], knapsack problem
[13], vehicle routing problem (VRP) [56], satisfiability problem [75], and the graph coloring
problem [59]. Problems such as TSP and VRP are frequently solved by companies in the
transportation and logistics industries, often with minor tweaks to the problem parameters.
In such scenarios, a faster method to solve these problem may be more convenient. Other
studies try to generalize learning-based models to many different problems at once. Dai et al.
[25] propose learning greedy heuristics using reinforcement learning, more specifically deep
Q-learning, for graph problems such as minimum vertex cover, maximum cut, and the TSP.
On the other hand, Li et al. [60] propose a supervised graph convolutional network and tree
search based algorithm for graph problems such as maximum independent set, minimum
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vertex cover, maximal clique and satisfiability. Their approach uses a graph convolutional
network to estimate the likelihood for each vertex to be a part of the optimal solution.
Further, they use tree search to disambiguate solutions where multiple different optimal
solutions may exist. The advantage of their approach over the reinforcement learning based
approach of Dai et al. [25] is that the same model can generalize to multiple problems at
once and need to not be trained separately for each problem.

Alternatively, owing to the widespread applicability of mixed integer programming to
an even broader class of CO problems, methods have been proposed to assist exact MIP
solvers. By far, the most common problem targeted in the context of MIP solvers is one of
branching variable selection [8, 12, 38, 53]. Selecting the right branching variables can have
a significant impact on the size of the branch-and-bound tree, thus reducing the time to
optimality. Strong branching is a technique experimentally shown to produce smaller search
trees, but is computationally expensive [4]. The proposed learning-based approaches aim to
learn a fast approximation for strong branching in an attempt to make it a viable branching
strategy.

1.3 Structure and overview of results

In the following chapters, we will introduce our research on primal heuristics, specifically,
hybrid heuristics that combine both heuristic and exact methods. In Chapter 2, we discuss
the relevant literature and prior work that intersects with the ideas in this thesis. We
mainly outline work related to large neighborhood search heuristics, and the implementation
of machine learning techniques in the context of mixed integer programming. Chapter 3
provides the relevant background and definitions key to understanding our work. In Chapter
4, we introduce our supervised learning framework for neighborhood selection and devise a
large neighborhood search heuristic for the general mixed integer programming problem. In
Chapter 5, we present a more analytical approach to MIP-based heuristics in the context of
the linear ordering problem. Finally, we discuss the advantages, limitations, and potential
directions for future work in Chapter 6, and provide a short conclusion in Chapter 7.

1.4 Bibliographic notes

Chapter 5 is based on joint work with Ehsan Iranmanesh and Ramesh Krishnamurti, ac-
cepted as a full paper at the International Conference on Operations Research and Enter-
prise Systems (ICORES) 2019 [6].

5



Chapter 2

Related Work

Our work intersects two diverse areas of computer science: combinatorial optimization, and
machine learning. In this chapter, we first review the prior literature on large neighborhood
search heuristics for the mixed integer programming problem. Next, we discuss the more
recent work focused on the integration of machine learning with MIP solvers.

2.1 Large neighborhood search heuristics

Neighborhood search, also known as local search, is a metaheuristic strategy commonly
employed as an improvement heuristic within many heuristic algorithms. The idea behind
neighborhood search is simple, namely: iteratively try to improve a known feasible solution
by exploring the solutions around it. In any neighborhood search heuristic, the choice of the
neighborhood dictates its performance. Typically, the larger the neighborhood, the higher
the likelihood of obtaining good-quality solutions. However, searching large neighborhoods
can be computationally expensive and therefore it is a trade-off. In order to take advantage
of large neighborhoods, one must develop efficient algorithms to explore them. In a survey
on very large scale neighborhood search, Ahuja et al. [7] consider three broad techniques for
efficiently exploring large neighborhoods. They study variable-depth methods that partially
search exponentially large neighborhoods, network flow based techniques to identify improv-
ing neighborhoods, and finally, neighborhoods for NP-hard problems induced by subclasses
or restrictions of the problems that are solvable in polynomial time.

Variable-depth methods are techniques that search the k-OPT neighborhood partially as
effort required for an exhaustive search may become prohibitive as k grows large. Typically,
k-OPT neighborhoods with only a small value of k i.e. 1 or 2 can be searched efficiently but
are known to yield a better local optima for larger values of k. Variable-depth methods are
designed to find solutions close to the global optimum although they do not guarantee a
local optima. A popular example of this approach is the Lin-Kernighan heuristic for the TSP
[61]. The network flow based techniques for neighborhood search include minimum cost cycle
finding methods, shortest path or dynamic programming based methods, and methods based
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on finding minimum cost assignments or matching. Finally, there are methods that utilize
special cases of NP-hard problems to search exponential sized neighborhoods in polynomial
time. An example is the TSP restricted to Halin graphs that may have exponential number
of TSP tours but is solvable in linear time [24].

Large neighborhood search (LNS) heuristics in the context of mixed integer program-
ming define the large neighborhood by formulating an auxiliary problem, typically by re-
stricting the search space of the original MIP. The search is then performed by solving the
auxiliary problem, also called the sub-MIP, using the branch-and-bound algorithm. Any im-
proving solutions found during the search are applied back to the original MIP. To avoid an
explosion in computation time, solving the auxiliary problem is subject to reasonable limits
with respect to the number of nodes or number of LPs solved. Modern MIP solvers, armed
with an arsenal of tools such as presolving and cutting plane separation, are extremely ef-
ficient in exploring these restricted search spaces. As a result, LNS heuristics have proved
quite effective in improving the primal performance of MIP solvers.

The literature is rich with a wide selection of large neighborhood search heuristics.
One of the first heuristics, called local branching [32], was designed primarily for the 0-
1 integer programming problem. Local branching defines a neighborhood by adding an
invalid global cut, called the local branching constraint. The constraint puts a bound on
the Manhattan distance from the best known feasible solution, also called the incumbent
solution. It restricts the number of variables that can change their values as compared to
the incumbent solution, essentially, defining a k-OPT neighborhood around the incumbent
solution. This strategy is referred to as soft fixing as compared to hard fixing where a set of
variables are fixed explicitly. Relaxation Induced Neighborhood Search (RINS) [26] adopts
the hard-fixing strategy. It defines the neighborhood by fixing variables that assume the
same value in the LP-relaxation solution and the incumbent solution. Experiments show
that RINS is more effective compared to local branching. The sub-MIP for RINS is typically
less computationally expensive due to the reduced number of variables. Moreover, it does
not contain a dense constraint like in local branching. RINS is also able to produce better
quality solutions. Unlike local branching, it does not get stuck in a neighborhood of a poor-
quality solution. RINS is especially useful in case of highly constrained problems, where one
must change the solution significantly to find good solutions.

Rothberg [73] proposed a solution-polishing heuristic that uses the variable fixing neigh-
borhood similar to RINS but combines it with the evolutionary algorithm approach. Unlike
RINS, this heuristic uses crossover and mutation to combine multiple solutions selected from
a pool of available feasible solutions. The crossover procedure fixes variables that assume
the same value across all the selected solutions. Mutation is introduced by fixing additional
variables randomly. The heuristic is mainly designed to further polish already good solu-
tions. It is able to find improving solutions in very late stages of the solving process when
other heuristics are unable to do so. Restrict and relax [43] uses a combination of fixing
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variables, and unfixing or relaxing previously fixed variables. The heuristic always works
with a restricted but dynamically changing set of variables. As a result, it can be used to
solve very large problems that do not fit in the memory. Relaxation Enforced Neighbor-
hood Search (RENS) [18], takes a different approach. Instead of fixing variables, it restricts
the search space to all feasible roundings of the LP-relaxation solution. The Distance In-
duced Neighborhood Search (DINS) [40] combines elements from RINS, local branching,
and bound changes.

An alternate way to define a neighborhood is by using an auxiliary objective function,
an approach used by proximity search [35]. Similar to local branching, proximity search
heuristic was proposed for the 0-1 integer programs. It introduces the idea of formulating
the auxiliary problem using an objective function different from the original. It replaces
the original objective function with one that minimizes the Hamming distance from the
incumbent solution. Proximity search adds an explicit cutoff constraint to prevent it from
searching the non-improving neighborhood. An important requirement for the LNS heuris-
tics discussed so far is a known feasible solution. However, a feasible solution may not always
be available and some heuristics are specifically designed to tackle the problem of obtaining
a feasible solution. Feasiblity pump [31] tries to achieve feasibility by recursively minimizing
the distance between the LP-relaxation solution and its rounded solution. The feasibility
pump was later generalized to the general mixed integer programs [15]. Although the feasi-
blity pump heuristic works well in obtaining a feasible solution, the solutions obtained are
often poor-quality because the original objective function is disregarded. Achterberg et al.
[3] proposed a slight modification, called objective feasibility pump, and included the original
objective function along with the feasibility pump objective, to enable finding better quality
solutions.

A common characteristic among the different LNS heuristics discussed here, is the way
they define the neighborhood, and use a MIP solver as a black-box to solve a sub-problem.
Although these heuristics have proved extremely useful, they often take much longer com-
pared to their rounding or diving counterparts. For this reason, they are not executed as
frequently in the branch-and-bound search. Moreover, it is also unclear which neighborhoods
might be lucrative for which problems and when they should be executed in the branch-
and-bound search. Hendel [47] proposed Adaptive Large Neighborhood Search (ALNS), an
orchestration technique for the many LNS heuristics implemented in SCIP [42] by formu-
lating it as a multi-armed bandit problem. The adaptive heuristic tries to devise a selection
policy that maximizes the reward, based entirely on the reward feedback it gets after hav-
ing selected a neighborhood. The handcrafted reward function combines rewards for the
presence of a solution, relative amount of gap closed, and the time spent on solving the
sub-MIP.

A key observation is that the proposed heuristics rely on static rules and handcrafted
strategies to select a neighborhood. We take away from this wide selection of heuristics,
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the more general and broader ideas, like fixing variables, enforcing additional constraints,
and modifying objective function coefficients, and alternatively propose the idea of defining
a neighborhood such that it has a high likelihood for success. In this thesis, we propose
the idea of a supervised variable fixing neighborhood. Our supervised neighborhood selection
framework defines the neighborhood based on the likelihood of a variable to remain fixed at
its value in the incumbent solution. In chapter 4, we develop this idea further and describe
our supervised large neighborhood search heuristic.

2.2 Machine learning in mixed integer programming

LP-based branch-and-bound algorithm, by itself, is often not enough to achieve a satisfac-
tory performance on real-world problem instances. Therefore, a MIP solver must employ a
number of auxiliary solving components, including but not limited to, sophisticated branch-
ing strategies, node selection strategies, presolving, cutting plane separation, and primal
heuristics [19]. The right selection of these strategies, for an instance at hand, can dramati-
cally improve the solver’s performance [3]. Unfortunately, these algorithmic problems within
the context of mixed integer programming are often tackled using heuristics due to their
ill-defined nature [62]. The heuristics incorporated are static, instance-agnostic, and hand-
crafted rules, tuned by offline experimentation. Machine learning (ML) based methods, on
the other hand, have the advantage of automatically inferring dynamic, context-dependent
strategies from a large dataset. ML can help in exploring the algorithmic design space more
efficiently and learn complex rules difficult to specify by hand. It can also help in learning
a fast-approximation for a problem that otherwise takes a significant amount of time to
solve. This is the primary motivation behind the integration of machine learning with MIP
solvers.

In the context of MIP, the most common problem tackled using machine learning is one
of branching variable selection [8, 12, 38, 53]. Branching strategies play a major role in solv-
ing an instance to optimality. Selecting the right variables to branch on, can significantly
improve the solving time [3]. Unfortunately, there is a limited mathematical understanding
regarding choosing the right branching variables. Achterberg et al. [4] reviewed the differ-
ent branching strategies and compared them via a computational study. Early branching
strategies include simple heuristics, like minimum infeasibility branching and maximum in-
feasibility branching, that select a branching variable based on its distance from integer
values. More sophisticated information-based methods, like pseudocost branching, track the
bound improved by a variable each time it is used for branching. Pseudocost branching
works well in practice, however, search trees are still quite large compared to strong branch-
ing, a strategy experimentally shown to generate smaller search trees [4]. However, strong
branching is impractical due to the computational effort involved. They propose a hybrid
method called reliability branching that uses strong branching only on variables with an
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unreliable pseudocost and falls back to pseudocost branching otherwise. MIP solvers also
often implement their own strategies or the default strategy that is a combination of these
methods. However, these strategies are not open source, and we have no clear idea of the pa-
rameters that are used to define them. While the previous methods rely on the dual bound
of child nodes, Karzan et al. [55] propose collecting information on branching variables that
result in fathomed child nodes for a partial exploration of the branch-and-bound tree and
then restart the solving process.

One of the first ML-based approaches for branching strategies was Dynamic Approach
for Switching Heuristics (DASH) proposed by Di Liberto et al. [28]. They collect 40 features
on a diverse set of problem instances and evaluate the different branching strategies on each
instance. Then for each strategy, they identify clusters of instances for which the strategy
works the best and compute their regions. Thereafter, for any node in the branch-and-bound
tree, they use the strategy corresponding to the region in which the node MIP instance lies.
More recent work around learning-based branching rules is mainly focused around finding a
fast approximation for strong-branching. These methods record the data i.e. the state-action
pairs by using the strong-branching expert rule and learn to predict a branching variable.
The approaches differ mainly on how they define the problem, the machine learning model
they use, and how they train the model. Alvarez et al. [8] use Extremely Randomized Trees,
also known as ExtraTrees, to approximate the strong-branching score for each variable.
Khalil et al. [53] use SVM-rank to learn a ranking function for the variables instead. Balcan
et al. [12] learn a convex combination of the different scoring rules. Gasse et al. [38] propose
an offline-learning model unlike the previous work to predict a branching variable. They
use the natural constraint-variable bipartite representation of the MIP problem and train
a graph convolutional network using standard classification algorithm. For further reading
on learning and branching, please refer to the recent surveys by Lodi and Zarpellon [65],
and Dilkina et al. [29].

Other methods target the problem of node selection, within the branch-and-bound search
algorithms in MIP solvers. He et al. [45] use an imitation learning based approach to learn
an adaptive search policy within the branch-and-bound algorithms. Song et al. [76] build
upon their work and propose a paradigm called retrospective imitation where a policy learns
from its own mistakes without repeated expert feedback, which can be expensive to obtain.
Tang et al. [77] investigate the problem of solving MIP instances using the cutting plane
method. They use a reinforcement learning approach to learn a policy for intelligent adaptive
selection of cutting planes. For challenges around cutting plane selection, please refer to a
recent survey by Dey and Molinaro [27]. Feature based algorithm selection by Georges et
al. [39], defines the problem of selecting appropriate parameters for the MIP solver given a
problem instance. The idea behind this work is to predict what algorithm is likely to perform
the best for a problem instance. Here, an algorithm is defined by a unique setting of the
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solver’s parameters. Machine learning has also been applied to the problem of predicting
when it is most profitable to use decomposition [57].

Finally, primal heuristics within MIP solvers, is another problem of interest. Khalil et
al. [54] study the problem of predicting when to run a heuristic. They use eight diving
heuristics implemented within SCIP [42] and train a classifier to predict if a heuristic would
be successful if it is run at a particular node. They define a run when successful (RWS)
policy to run the heuristic whenever the predictor returns true for a particular heuristic.
The approach is promising as it helps reduce the amount of time spent on heuristics. Our
approach builds upon this idea and applies it to the problem of neighborhood selection in
the context of large neighborhood search heuristics. However, in the case of search neighbor-
hoods, we can design a more fine-grained policy. Our approach is most similar to two very
recent papers on solution prediction [63, 30]. Where Lodi et al. [63], tackle the problem
of predicting solutions under parameter perturbation in case of facility location problem,
Ding et al. [30] propose a more generalized approach to solution prediction. We target the
problem rather differently in the context of large neighborhood heuristics, and formalize
the problem as neighborhood selection. We highlight the key differences between our work
and those in the literature in Chapter 4.
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Chapter 3

Background

3.1 A brief overview of mixed integer programming

We start with the formal definition of a mixed integer program (MIP). As introduced earlier,
a MIP is characterized by a linear objective function to be optimized subject to a set of
linear constraints. Let m,n ∈ N be the number of constraints and the number of variables,
respectively, and N := {1, 2, . . . , n} be the set of variable indices.

Definition 3.1. Mixed Integer Program
Given the objective function coefficients c ∈ Rn, the constraint matrix A ∈ Rm×n, the
constraints’ RHS b ∈ Rm, the variable bounds l,u ∈ Rn and the set of indices for integer
variables I ⊆N , we define the mixed integer program P as:

Minimize cᵀx (3.1)

s.t.

Ax ≥ b (3.2)

l ≤ x ≤ u (3.3)

x ∈ Rn (3.4)

xj ∈ Z ∀ j ∈ I (3.5)

We refer to cᵀx in equation (3.1) as the objective function, Ax ≥ b in equation (3.2) as
the linear constraints, l ≤ x ≤ u in equation (3.3) as the bounding constraints, and equation
(3.5) as the integrality constraints of the MIP. For any variable xj for j ∈ N , cj denotes
its objective function coefficient, and lj and uj denote its lower bound and upper bound,
respectively.

The variables participating in the MIP can be classified as integer, binary, general inte-
ger, or continuous based on the integrality constraints, and their lower and upper bounds.
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Definition 3.2. Let B := {j ∈ I | lj = 0 and uj = 1}. A variable xj in the MIP is:

an Integer Variable if j ∈ I

a Binary Variable if j ∈ B

a General Integer Variable if j ∈ I \B

a Continuous Variable if j ∈N \ I

The MIP as defined in (3.1 - 3.5) is in its most general form. However, we can classify a
MIP as a Linear Program, an Integer Program, a Binary Program, a Mixed Binary Program
or a Mixed Integer Program based on the number of variables of different types.

Definition 3.3. A MIP as defined in (3.1 - 3.5) is referred to as:

a Linear Program (LP) if I = ∅

an Integer Program (IP) if I = N

a Binary Program (BP) or 0-1 IP if B = N

a Mixed Binary Program (MBP) if B = I 6= ∅ and N \ I 6= ∅

a Mixed Integer Program (MIP) if I 6= ∅ and N \ I 6= ∅

Definition 3.4. LP-relaxation
The LP we get by eliminating the integrality constraints as defined in (3.5) from a MIP is
called its LP-relaxation

Any solution to the MIP can be classified as LP-feasible, Integer-feasible, IP-feasible
or Optimal based on the constraints (3.2 - 3.5) it satisfies and the value of the objective
function. The terms LP-infeasible, Integer-infeasible, IP-infeasible are defined analogously.

Definition 3.5. A solution x̂ ∈ Rn for the MIP is called:

LP-feasible if Ax̂ ≥ b and l ≤ x̂ ≤ u

Integer-feasible if x̂j ∈ Z ∀ j ∈ I

IP-feasible if x̂ is both LP-feasible and Integer-feasible

Optimal if x̂ is IP-feasible and cᵀx̂ ≤ cᵀx

for all feasible solutions x

3.1.1 The branch-and-bound algorithm

The branch-and-bound algorithm to solve a MIP, adopts a divide-and-conquer type tech-
nique that manifests into a search tree as shown in Figure 3.1. Every node in the search
tree corresponds to a MIP, and we solve its LP-relaxation. If any integer variable xj for
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j ∈ I

xj ≤ bx̂jc

...
...

...

xj ≥ dx̂je

...
...

...
...

Figure 3.1: Illustration of the branch-and-bound algorithm

j ∈ I assumes a fractional value in the LP-relaxation solution, we branch on the variable
by restricting its bounds. Essentially, we create two child nodes or sub-MIPs by bounding
the variable to ≤ bx̂jc and ≥ dx̂je. Note that the branching leads to two disjoint feasible
regions, none containing the previous LP-relaxation solution. However, if the LP-relaxation
is infeasible or IP-feasible, the node does not need to be expanded. If the LP-relaxation is
infeasible, then by definition it is also IP-infeasible and the node can be fathomed. Other-
wise, we have found an IP-feasible solution. Note that as we relax the integrality constraints,
the objective value of any IP-feasible solutions resulting from a sub-tree is worse or equal to
the objective value of the LP-relaxation at its root node. Therefore, any nodes with an LP-
relaxation worse than the best known IP-feasible solution, also called the incumbent, can
be fathomed. After we have solved or fathomed every node in the tree, we have solved the
original MIP to optimality. Now, we define key terms associated to the branch-and-bound
algorithm.

Definition 3.6. Branch and Bound Search Tree
For a given MIP P, the branch-and-bound search tree T is the tree, as shown in Figure 3.1,
resulting from the branch-and-bound algorithm. Each node v in T is a MIP, with altered
variable bounds. The node corresponding to P is referred to as the root node.

Definition 3.7. Incumbent Solution
At any time t in the branch-and-bound search, the incumbent solution is the best IP-feasible
solution found until time t. Let J t be the set of IP-feasible solutions found until time t. An
incumbent solution x̃ ∈ J t is defined as:

x̃ = x̂ where cᵀx̂ ≤ cᵀx ∀ x ∈ J t (3.6)
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We refer to the set of incumbent solutions or strictly improving IP-feasible solutions found
in the branch-and-bound search as I.

Definition 3.8. Dual Bound
The dual bound for a node v in the tree T is the objective value of its LP-relaxation solution.
The dual bound for the tree T is given by the best LP-relaxation solution among all the
nodes in the tree.

Definition 3.9. Primal Bound
Let x̃ be the incumbent solution for P. The primal bound for the branch-and-bound search
for P is then given by its objective value cᵀx̃.

Definition 3.10. Primal Gap
Let x̂ be a feasible solution of a given MIP, and x∗ its optimal solution. We define the
primal gap γp as:

γp(x̂) =


|cᵀx̂−cᵀx∗|

max{|cᵀx̂|,|cᵀx∗|} if |cᵀx∗| > 0 and cᵀx̂ · cᵀx∗ > 0

0 if |cᵀx̂| = |cᵀx∗| = 0

∞ otherwise

(3.7)

Definition 3.11. Primal Dual Gap
Let x̂ be a feasible solution of a given MIP, and cᵀŷ the dual bound during the branch-
and-bound. We define the primal-dual gap γpd as:

γpd(x̂, ŷ) =


|cᵀx̂−cᵀŷ|

max{|cᵀx̂|,|cᵀŷ|} if |cᵀŷ| > 0 and cᵀx̂ · cᵀŷ > 0

0 if |cᵀx̂| = |cᵀŷ| = 0

∞ otherwise

(3.8)

Definition 3.12. Primal Gap Function [17]
Let tmax ∈ R≥0 be a limit on the solution time of a MIP solver. Its primal gap function
p : [0, tmax] 7→ [0, 1] is defined as:

p(t) =

1 if no incumbent until point t,

γp(x̃(t)) otherwise, where x̃(t) is the incumbent solution at time t.
(3.9)

Definition 3.13. Primal Integral [17]
Let T ∈ [0, tmax] and let ti ∈ [0, T ] for i ∈ {1, . . . , |I| − 1} be the points in time a new
incumbent solution is found, t0 = 0, t|I| = T . We define the primal integral P (T ) of the run
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as:

P (T ) =
∫ T

t=0
p(t)dt =

|I|∑
i=1

p(ti−1) · (ti − ti−1) (3.10)

It is evident from the definition of the branch-and-bound algorithm that it poses two
competing goals. On one hand, we want to discover better feasible solutions as early as pos-
sible. On the other hand, we want to improve on the primal-dual gap to ultimately provide
the certificate of optimality. The two goals are tackled using separate components, namely,
primal heuristics, and branching rules. In the next section, we provide some definitions for
the large neighborhood search heuristics relevant to our work. The reader is referred to
[16, 46] for an overview of other primal heuristics and [4] for an overview on branching
rules. For details on other components in MIP solvers, please refer to [3].

3.2 Primal heuristics

The branch-and-bound algorithm as described in Section 3.1.1 may often take a long time to
find good feasible solutions. For this reason, a number of primal heuristics are applied. They
range from simpler rounding heuristics to more computationally expensive diving and large
neighborhood search heuristics. The large neighborhood search heuristics are improvement
heuristics that solve an auxiliary problem using branch-and-bound. Here, we give a definition
for the general auxiliary problem, which is also a MIP with some modifications to the
original MIP. Possible modifications include fixing of variables, additional constraints, and
an auxiliary objective function. For an extensive survey on LNS heuristics in MIP, please
refer to [47].

Definition 3.14. Auxiliary Problem [47]
Let P be a given MIP with n variables, and N orig be the polyhedron defined by the set of
its linear constraints. For a polyhedron N ⊆ Rn expressed as a set of inequalities and an
auxiliary objective function coefficients caux ∈ Rn, an auxiliary MIP P ′ is defined as:

min{cᵀauxx|x ∈ N orig ∩N} (3.11)

The auxiliary problem has the same number of variables as compared to the original
problem and the set of feasible solutions of the auxiliary problem is a subset of original
feasible solutions. Therefore, each solution for the auxiliary problem is also a valid solution
for the original problem. The neighborhood in this case is defined as the polyhedron N . In
its most general form, the auxiliary problem can have an auxiliary objective function.

Definition 3.15. Fixing Neighborhood [47]
Let P be a given MIP with n variables and I be the set of integer variable indices. Given a
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subset of integer variables J ⊆ I and an IP-feasible solution x̂ ∈ Rn, the fixing neighborhood
is defined as:

N fix(x̂,J) = {x ∈ Rn|xj = x̂j ∀ j ∈ J} (3.12)

It is also common to define an improvement neighborhood that restricts the search space
to only improving solutions. Such a neighborhood can be defined by adding an explicit cutoff
constraint like in equation (3.13). The cutoff constraint is a function of the primal and dual
bound of the MIP.

Definition 3.16. Improvement Neighborhood [47]
Let δ ∈ [0, 1]. For a given MIP P with an incumbent solution x̃ and a dual solution ŷ, an
improvement neighborhood is defined as:

N imp(δ) = {x ∈ Rn|cᵀx ≤ (1− δ) · cᵀx̃ + δ · (cᵀŷ)} (3.13)

Here, δ controls the minimum improvement that any new incumbent solution must have
as compared to the current incumbent solution.

3.2.1 Relaxation Induced Neighborhood Search

Relaxation Induced Neighborhood Search (RINS) is a general purpose primal heuristic for
MIP proposed by Danna et al. [26]. The idea is to fix integer variables whose values agree
in the LP solution x̂ and the incumbent solution x̃.

NRINS = N fix(x̃,J) ∩ N imp(δ) (3.14)

where J = {j ∈ I|x̂j = x̃j} (3.15)

3.2.2 Crossover

The crossover heuristic implemented in SCIP [42] is inspired from the work of Rothberg
[73]. It selects k ≥ 2 known feasible solutions, X = {x̂1, . . . , x̂k} ⊆ I as reference solutions
not necessarily containing the incumbent solution x̃.

NCrossover = N fix(x̂1,J) ∩ N imp(δ) (3.16)

where J = {j ∈ I|x̂1
j = x̂2

j = · · · = x̂kj } (3.17)
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3.2.3 Mutation

The mutation heuristic implemented in SCIP [42] is also inspired from the work of Rothberg
[73]. It fixes a random subset of integer variables to their values in the incumbent solution.

NMutation = N fix(x̃,J) ∩ N imp(δ) (3.18)

where J is a randomly chosen subset of I
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Chapter 4

Supervised Neighborhood Selection
for Mixed Integer Programs

4.1 Introduction

Mixed integer program (MIP) solvers commonly utilize large neighborhood search (LNS)
heuristics as improvement heuristics within the branch-and-bound algorithm. These heuris-
tics improve on a known feasible solution by solving an auxiliary MIP problem, typically
a restricted version of the original MIP (see Definition 3.14). As solving a MIP can be
computationally expensive, LNS heuristics are executed less often compared to their faster
counterparts such as rounding or propagation heuristics. Moreover, the rules of these LNS
heuristics are handcrafted and hard-coded into the solver. The static, input-agnostic, and
context-independent rules may be unable to adapt to the state of the branch-and-bound
search [54]. To this end, we propose a dynamic, data-driven approach to the problem of
neighborhood selection.

The idea of exploiting readily available information from the MIP solver to design primal
heuristics is not new [36]. Moreover, even traditional LNS heuristics rely on some partial
information to prompt their heuristic decisions. For example, in case of Relaxation Induced
Neighborhood Search (RINS) [26], the variables that agree in the LP-relaxation solution
and the incumbent solution are fixed. Alternatively, we propose to bring together the un-
derlying ideas behind these heuristics such as variable fixing, and intelligently formulate the
neighborhood to be searched. Our goal is to automatically infer the heuristic strategy from
the data observed on a wide range of problem instances.

For our preliminary studies, we restrict our focus to the variable fixing neighborhood
(see Definition 3.15). RINS [26], Crossover [73], and Mutation [73] all use this neighborhood,
where the only differing factor is how they decide what variables are to be fixed. Although
one can choose the easier way out and just execute all of them, doing so would involve a
high computational effort and our mathematical understanding of which heuristic works
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best for a given problem is limited. Moreover, any one scheme of fixing variables may be
too restrictive for the problem at hand.

The difficulty of the auxiliary problem plays an important role in the performance of
the LNS heuristic. Fixing too few variables might make the sub-MIP too difficult to solve,
likely reducing the heuristic’s success rate. Fixing too many variables might restrict the
neighborhood so much that it may not contain any improving solutions. Unfortunately,
RINS and Crossover both do not allow for controlling the fixing rate. Mutation is the only
neighborhood for which this can be controlled directly. However, fixing a random set of
variables is unlikely to be very effective.

We hypothesize that a learning-based framework can help define a neighborhood that
would be the most fruitful so that computational resources can be focused on the more diffi-
cult parts of the problem. In this chapter, we explore a dynamic and data-driven approach to
the design of large neighborhood search heuristics. We propose a supervised neighborhood
selection framework for defining a search neighborhood based on variable fixing and then
utilize the framework to devise a supervised large neighborhood search (SLNS) heuristic.

4.2 Problem formulation

The common idea behind the LNS heuristics is that they solve an auxiliary problem (Defini-
tion 3.14) using MIP as a black-box. The large neighborhood in these heuristics is essentially
defined by the search space of the auxiliary problem. An important question we can ask is -
how should we define the neighborhood N at any given node in the search tree? The classi-
cal heuristics’ approach to this question is through static handcrafted rules. Alternatively,
a neighborhood should be defined such that it has a high likelihood for success. Ideally,
a neighborhood should be large enough such that it potentially contains many improving
solutions but not so large that it can’t be searched under reasonable resource limits. Here,
we formalize this problem of transforming a given MIP to an auxiliary MIP, as the neighbor-
hood selection problem. In the most general form, we can define the neighborhood selection
problem as:

Definition 4.1. Neighborhood Selection Problem
Given a MIP P, find an efficient transformation to an auxiliary problem P ′. Such that,
solving P ′ finds the best improving solution for P within a prescribed node limit vmax.

The definition above for the neighborhood selection problem is quite broad in scope,
encapsulating the many ways a neighborhood can be defined. In this thesis however, we
restrict ourselves to the fixing neighborhood (Definition 3.15). A reasonable assumption
is that fixing more variables will make the auxiliary problem easier and faster to solve.
Therefore, the definition of the restricted version of the neighborhood selection problem can
be given as
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Definition 4.2. Neighborhood Selection Problem for Fixing Neighborhood
Given a MIP P and a known incumbent solution x̃, find the maximal subset of variables
that have the same values in the optimal solution x∗ as they have in x̃.

4.3 An overview of the framework

We now describe our approach for supervised neighborhood selection for the variable fixing
neighborhood. We use a graph attention network (GAT) [78] based supervised learning
model to dynamically decide what variables should be fixed in order to define the search
neighborhood. The variables to be fixed are predicted based on the variables, constraints
and instance characteristics, and the state of the branch-and-bound search. The task is
essentially reduced to binary classifcation, where for each variable j ∈ I, we predict the
probability that the variable stays fixed at its value in the incumbent solution x̃. In the
following sections, we describe in detail our supervised learning task, graph representation
for MIP, the GAT model, and how the framework can be utilized in an LNS heuristic.

4.3.1 Supervised learning

For our supervised learning task, we first collect data by running the MIP solver on many
diverse problem instances. Hopefully, the solver generates many feasible solutions during
the solving process, using the many primal heuristics that are already implemented in
the MIP solver. Each time the solver finds a new incumbent solution, we record samples
containing the state of the solver si, and the new incumbent solution x̃i+1. The set of
samples recorded for a given instance a, can be given as Sa = {(si, x̃i+1)}ka

i=0 if the solver
finds (ka + 1) improving solutions. We then compute the class labels for each variable j ∈ I

in a retrospective manner. Given (si, x̃i+1) ∈ Sa ∀ i ∈ {1, 2, . . . , ka}, the labels are computed
as follows

yij =

 1 if x̃ij == x̃i+1
j == · · · == x̃ka+1

j

0 otherwise
(4.1)

Note that the way we define the labels, the resulting neighborhood around an incum-
bent solution x̃i, would contain all the improving solutions i.e. {x̃i+1, . . . , x̃ka+1} found
by the solver. Moreover, by definition |yi| is a monotonically increasing function over
i ∈ {1, 2, . . . , ka}, as a result the neighborhood is naturally relaxed in the beginning and
stricter towards the end. We can now define the dataset for an instance a as the set of
state-label pairs Da = {(si,yi)}ki=1. The complete dataset across all instances in set A can
be given as

D =
⋃
a∈A
Da (4.2)

21



v1

v2

v3

c1

c2

c3

e11

e12

e21

e22

e32

e33

Figure 4.1: Graph representation of a mixed integer program

We now define our supervised learning task as binary classification where given a state-
labels pair (s,y) ∈ D, we learn a function Fθ(s) parametrized by θ that outputs the proba-
bilities for the labels to be 1 or 0. We train the classifier model by minimizing the weighted
cross entropy loss function given below

L(θ) =
∑

(s,y)∈D

{
− 1
|I|

∑
j∈I

ρyj log zj + (1− yj) log (1− zj)
}

(4.3)

Here, yj are the true labels, and zj are the probabilities for each variable j in the sample
(s,y). The set I denotes the set of integer variables for the instance the sample belongs to.
The variable ρ controls the weight for class 1, and is defined as

ρ =
∑
j∈I(1− yj)∑

j∈I yj
(4.4)

4.3.2 Graph representation

A natural way to represent a MIP problem P is using the constraint-variable bipartite graph
G = (V, C, E), see Figure 4.1. Here V is the set of variable nodes, C is the set of constraint
nodes, and E is the set of edges, where an edge between a variable and constraint exists
only if it has a nonzero coefficient in the constraint. Gasse et al. [38] proposed using this
representation to encode the state of the MIP solver’s branch-and-bound process. This rep-
resentation is ideal as it is scale-independent, permutation-invariant, and computationally
efficient for sparse problems typically encountered in practice. The graph representation
also naturally captures the dependencies between the variables and constraints.
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Figure 4.2: Our graph attention model

4.3.3 Graph attention network

Now, we describe our graph attention network model [78] that attempts to approximate
the function Fθ(s). Our model is an adaptation of the graph convolutional network based
model proposed by Gasse et al. [38] with added self-attention layers. Self-attention layers,
essentially, learn to prioritize the features of nearby nodes, by implicitly learning different
weights for each node in the neighborhood. The main reason behind using a graph attention
model is that it is specifically designed for inductive tasks, where the graph structures can
vary. The state s of the MIP solver’s branch-and-bound process can be encoded in the graph
as s = (G,V,E,C). Here G is the bipartite graph as defined above, V ∈ Rn×d is the feature
matrix for the variables, E ∈ Rm×n×e is a (sparse) tensor of edge features, and C ∈ Rm×c

is the feature matrix for the constraints. For the details about features, please refer to
Appendix A. Our GAT model performs two message passing operations, one from variables
to constraints, and another from constraints to variables, see Figure 4.2. The operations
performed by the GAT (See Figure 4.3) are as follows

ci ← fC(ci,
(i,j)∈E∑

j

αij · gC(vj)), vj ← fV(vj ,
(i,j)∈E∑

i

βij · gV(ci)) (4.5)
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Figure 4.3: Graph convolution operations

For each i ∈ C, and j ∈ V, where fC , fV , gC , and gV are 2 layer perceptrons with ReLU
activation functions. The attention coefficients αij , and βij are defined as

αij = exp(hC(ci, eij ,vj))
(i,j)∈E∑

j
exp(hC(ci, eij ,vj))

and βij = exp(hV(ci, eij ,vj))
(i,j)∈E∑

j
exp(hV(ci, eij ,vj))

(4.6)

Here, hC and hV are dense networks with one node and LeakyReLU activation function
with a negative slope coefficient of 0.2. The graph attention network uses graph convolution
operations to aggregate the features of a node’s neighbors. The features for constraint,
variables, and edges are all mapped to a vector of fixed size, in our case 64, to make these
operations easier. After the convolution operation, the variable features would essentially
include information from every neighboring constraint node and every variable node at a
distance 2 from itself. Finally, the updated variable features are passed through another 2-
layer perceptron and the sigmoid function to obtain the probability estimate for the variable
to be fixed.

4.4 Supervised large neighborhood search

Here, we describe how we use the neighborhood selection framework for our supervised large
neighborhood search heuristic. While solving a MIP problem, we can extract the variable-
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constraint bipartite graph along with the features from the MIP solver to get the state
encoding, s = (G,V,E,C). The graph attention model takes the state encoding as input
and estimates the probabilities for variables to be fixed.

z = Fθ(s) (4.7)

The estimated probabilities can then be used to devise a fixing strategy for defining
the search neighborhood. A possible strategy is to define a decision boundary by setting a
probability threshold φthreshold ∈ [0, 1], thereby fixing any variable j in I with a probability
greater than φthreshold. The set of fixing variables can be defined as

J = { j | zj ≥ φthreshold} (4.8)

Another strategy, is to set a fixing rate φfixing ∈ [0, 1] instead. In this case, we sort
the variables according to their estimated probabilities from high to low, and select the top
φfixing · |I| variables.

4.5 Data collection

To collect training data for our graph attention model, we record the state of the MIP solver
every time a new incumbent solution is found. The state of the solver at any time can be
characterized by the LP-relaxation solution, the incumbent solution, and the branch-and-
bound history. Here, we discuss details about the features and labels that we record. A
complete list of features used can be found in Appendix A.

4.5.1 Features

The ideal set of features for our problem must capture critical information about the struc-
ture of the MIP instance, as well as the state of the branch-and-bound search. The features
must also be computationally efficient to extract. Previous work [53, 54, 38, 30] have iden-
tified many different features for constraints and variables. Ding et al. [30] classify these
features as basic features, LP features, and structure features. Although it should be pos-
sible for a graph network to learn complex relations from just the basic features, they are
known to have difficulty in learning simple counting operations. For this reason, Ding et al.
found it best to include both LP features and structure features. We augment the set of
features with History or Branch-and-bound features that include historical information like
incumbent solution and average incumbent solution. Overall, our features can be extracted
in linear time with respect to the number of nonzeros in the problem instance.

Feature scaling is a common technique used to stabilize the learning process of a neural
network, as it mitigates the problem of vanishing or exploding gradients. However, scaling
features without any consideration to the problem at hand can cause loss of information.
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To address this issue, we appropriately scale each individual feature trying to preserve the
problem structure as well as we can. For example, the objective function coefficients are
scaled by dividing by its L2 norm. Another example is the number of constraints for each
variable, where we scale the feature by dividing it by the total number of constraints. The
reason this works well is because presolving takes care of the many redundancies in the
problem instance. In situations where a natural way of scaling is not apparent, we use the
query based standardization similar to [53].

4.5.2 Labels

The labels for each integer variable, are computed using the retrospective labeling scheme as
described in Section 4.3.1. After we have solved an instance, we know the set of improving
solution found during the search. We then go back and compute the labels for each variable
across the collected samples. The label is 1 if the variable assumes the same value in the
incumbent solution and all the improving solutions. Otherwise, it is labelled as 0.

Note that Ding et al. [30] propose a similar strategy, however, their approach is designed
to directly predict the solution values for binary variables. They also define the terminology
of stable and unstable variables. Using the same terminology, we are trying to predict which
variables are stable as opposed to predicting their solution value.

4.6 Empirical analysis

We performed extensive experimentation to evaluate our graph attention network model
for neighborhood selection and the ensuing SLNS heuristic. In the following sections, we
describe in detail the setup, the dataset, key aspects of data collection, and experiments,
as well as summarize our computational results.

4.6.1 Setup

Our framework comprises of many interacting components. For data collection and evalua-
tion, we modify SCIP 6.0.1 [42] and use IBM ILOG CPLEX 12.9.0 [49] as the underlying LP
solver. Overall, the framework is written in Python 3.6.8 using PySCIPOpt [67], a Python
interface for SCIP, and TensorFlow 1.12.0 [1] for implementing the graph attention model.
The framework was adapted from the work of Gasse et al. [38] on branching strategies.
All data collection tasks and experiments were run on the Compute Canada Cedar cluster
composed of nodes with the following CPUs:

1. Intel E5-2683 v4 Broadwell @ 2.1Ghz

2. Intel E7-4809 v4 Broadwell @ 2.1Ghz

3. Intel E5-2650 v4 Broadwell @ 2.2GHz
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4. Intel Platinum 8160F Skylake @ 2.1Ghz

No restriction was placed on the nodes’ CPU architecture for data collection tasks, however
to avoid performance variability in experiments, we restrict the architecture to Skylake. The
graph attention model was trained on the same cluster using NVIDIA P100 Pascal GPU
with 12GB Memory. For performance evaluation tasks, we run each solver process on a
dedicated CPU core, minimizing the effects of shared resources among multiple processes.
We allow presolving and cutting plane separation at the root node, and disable presolving
restarts, as is common practice in previous studies [53, 38]. All SCIP parameters are kept
at their default values, unless noted otherwise.

4.6.2 Instances

To test the effectiveness and generality of our neighborhood selection framework, we use
MIP instances from the “Collection” and “Benchmark” sets from MIPLIB2017 [41]. The
“Benchmark” set contains 240 instances specifically selected for benchmarking purposes
whereas the “Collection” set is larger and much more diverse. We reserve the “Bench-
mark” instances to serve as our test set. For the training dataset, we select comparable
instances from the “Collection” set (ones that are not in “Benchmark” set) that are tagged
as “benchmark_suitable”. To avoid memory issues, we put a hard cap on the number of
nonzeros (≤ 500, 000). We also remove any feasibility instances (without an objective func-
tion), infeasible instances, and unbounded instances. After filtering, we have 204 instances in
the training set and 181 instances in the test set. We further use an 80/20 split for training
and validation, respectively. Detailed information about the instances can be found on the
MIPLIB website, https://miplib.zib.de.

4.6.3 Data collection

For the data collection, we implement an event handler plugin for SCIP [42]. The plugin is
called every time SCIP finds a new incumbent solution, at which point we capture the state
of the solver and the new incumbent solution. To be precise, we only start capturing data
samples after the presolving and cutting plane separation is complete, and the root LP-
relaxation is solved. The captured raw data samples are later used to compute the variable
and constraint features, and to perform the retrospective labelling of the variables. Note
that a new incumbent may be found by one of the many primal heuristics implemented in
the solver or a leaf node in the search tree. As the LP solution and incumbent solution are
the same at the leaf node, the resulting data samples do not add much in terms of capturing
the state of the solver. Therefore, we use these samples only for the labelling of variables
but exclude them from being used for training.

In order to collect the training and test data, we run the solver on the respective instances
for one hour each. It is unreasonable to expect every instance to be solved within this time
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limit or even to find many incumbent solutions. However, we are able to collect a large
enough dataset even though some instances may not be represented in the training or test
data. Note that it is also possible that some instances find many more solutions than others
and therefore result in more samples.

4.6.4 Training

We train our graph attention model on the collected training samples using the Adam
optimizer with a learning rate of 0.001. We use a mini-batch size of one which means that
we compute the gradients on the graph from one sample at a time. As we can have a different
number of samples from each instance, we resample the data such that each instance has
equal representation in the training data.

We use a patience of 10 epochs i.e. we let the training continue for 10 epochs even if
there is no improvement after which, we decrease the learning rate by a factor of 0.2. We
stop the training early if there is no improvement on the validation loss for 20 epochs. The
training converges within 10-20 epochs with minor improvements later on and takes about
2 hours to complete on the NVIDIA P100 Pascal GPU.

4.6.5 Computational results

Now, we describe our computational results across different experiments designed to evalu-
ate our graph attention model and its utility within an LNS heuristic.

(a) For each sample in the dataset (b) Averaged for each instance in the dataset

Figure 4.4: Average precision vs. Class ratio
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Figure 4.5: Mean average precision vs. Tags

Predicting class labels

Prediction of class labels as per the classification task described in Section 4.3.1 is difficult
due to the high imbalance and high variability in the two classes across collected samples,
even when the samples come from the same instance. As accuracy is not the perfect measure
to capture the quality of predictions in this case, we use the average precision metric [82]
similar to Ding et al. [30]. Average precision, essentially, is the area under the curve of
the precision-recall curve and measures how well a classifier ranks items from one class
above items from the other. Note that the average precision metric is asymmetric for the
two classes, therefore, we report the metric for both the classes. Figure 4.4a, shows the
average precision metric vs. the class ratio for each sample in the dataset. Figure 4.4b, on
the other hand, shows the mean average precision vs. mean class ratio per instance. We can
say that the classifier achieves good performance as the average precision in most cases is
considerably greater than the class ratio. Note that a random classifier would achieve an
average precision close to the class ratio. Table 4.1, shows the mean average precision and
mean class ratio across all instances in the dataset. To see if our model performs well on
certain type of instances, we also plot the mean average precision vs. the tags (Figure 4.5)
assigned to the instances in the MIPLIB2017 [41]. The tags, essentially, characterize the
structure of the instances. Unfortunately, we did not find any correlation.

Mean Class Ratio Mean Average Precision

Class 1 0.81 0.91
Class 0 0.19 0.58

Table 4.1: Mean average precision for class 1 and class 0 variables
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(a) Success rate vs. Threshold (b) Success rate vs. Fixing rate

Figure 4.6: Success rate of SLNS

Fixing strategy

In the previous section, we described how our graph attention model performs well in terms
of separating the two classes. Now, we design an experiment to determine which of the
two strategies described in Section 4.4 works best. We test the two strategies, with choice
of threshold in the range (0.2, 0.8), and choice of fixing rate in the range (0.3, 0.9) with
steps of 0.5. Figure 4.6, shows the success rate of SLNS with respect to different values of
threshold and fixing rate. For reference, we plot the success rate for RINS, that has a fixing
rate determined by the LP-relaxation solution and the incumbent solution. Finally, in the
case of fixing rate, we also compare to the Mutation neighborhood. Figure 4.6a shows that
the success rate peaks at a value of 0.35, at which point our heuristic has a higher success
rate compared to RINS. As expected, the success rate decreases with increasing threshold
as we fix less and less variables. Figure 4.6b shows the success rate vs. fixing rate. Again as
expected, we see a rise in success rate as the fixing rate increases and then a drop thereafter.

SLNS vs. RINS

Next, we study how SLNS fares against RINS, as our heuristic most directly compares with
it. RINS is one of the better performing LNS heuristics and both SLNS and RINS can run
in exactly identical situations. Other heuristics, like Crossover cannot execute until at least
two or more solutions are available. For this experiment, we run both SLNS and RINS at
each node in stealth mode [54], where any new incumbents found do not replace the existing
incumbent solution. We report the number of overall wins, ties, and overall losses for SLNS
as compared to RINS. An overall win is where SLNS finds an incumbent solution that is
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(a) Overall win/loss/tie vs. Threshold (b) Overall win/loss/tie vs. Fixing Rate

Figure 4.7: Overall win/loss/tie for SLNS with respect to RINS

better than the solution found by RINS. An overall loss is defined analogously, and a tie
is when both heuristics find a solution with the same primal bound or both are unable to
find a solution. In figures 4.7a and 4.7b, we can see that the number of absolute losses for
SLNS compared to RINS are always higher than the number of absolute wins, except in
the case of 0.5 threshold where it comes quite close. We believe that this is due to the high
variability in classes across the different problem instances, and any one value of threshold
or fixing rate cannot capture all scenarios. The red line in the figure, denotes at least one
win across the different threshold or fixing rate values. The purple line in the figure, denotes
that it was a loss for all threshold or fixing rates. This means that if we use an adaptive
fixing rate we can achieve significantly more wins. Therefore, to address this issue, we use
an adaptive fixing rate similar to [47].

SLNS Performance

In our final experiment, we evaluate the performance of SLNS as compared to the default
set of heuristics that are a part of SCIP [42]. All SCIP settings were kept at their default
values. We run the solver on every instance in the test set, once with SLNS enabled, and
once without SLNS. We set a timelimit of one hour for each run. We execute the experiment
with five different seeds to control for the performance variability [64]. For a total of 181 test
instances this results in 905 runs. From this, we filter any runs where no incumbent solution
was found beyond the root node, or where the gap was infinite. After filtering, we get a
total of 728 runs for which we report the data in Table 4.2. The table shows the comparison
between the two conditions. In particular, we report the shifted geometric means (with a
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shift of 1) for the primal gap, primal dual gap, primal integral, time to best incumbent,
total time, and total nodes, and the raw values of number of instances solved and number
of times an overall better solution was found as compared to the other condition. We can
see that there is a significant improvement, especially in primal bound and primal integral
when our heuristic is added to the existing pool. Moreover, in almost half the cases a better
solution was found when SLNS was enabled. Another key finding is that when both SLNS
and RINS are enabled, SLNS is on average five times more likely to find an improving
solution as compared to RINS. We report exhaustive results for this experiment in Table
B.1 and Table B.2 in Appendix B.

without SLNS with SLNS Improvement (%)

Primal Gap (%) 4.60 3.68 20.00
Primal Dual Gap (%) 13.01 12.23 6.00
Primal Integral 21.86 17.05 28.21
Time to Best Incumbent (s) 546.39 549.00 -0.48
Total Time (s) 1464.23 1394.02 4.80
Total Nodes 11292.12 14899.34 -31.94
Number of Instances Solved 240.00 256.00 6.66
Number of Times Better Solution 75 341 354.66

Table 4.2: Performance comparison with and without SLNS (Total 728 runs)

4.7 Summary

In this chapter, we formalized the idea of neighborhood selection problem in the context
of large neighborhood search heuristics. We presented our graph attention network based
supervised learning framework for predicting the ideal variable fixing neighborhood. Fi-
nally, we devised a supervised large neighborhood search heuristic based on our framework.
We evaluated our supervised neighborhood selection framework and our heuristic through
multiple experiments. The experiments show that our method is promising as compared to
the traditional LNS heuristics. Our heuristic improves the solver’s performance on many
key metrics, primarily the primal bound and the primal integral, which are frequently used
to judge the quality of a heuristic. Moreover, our heuristic is also five times more likely
to succeed as compare to RINS. Future work in this direction would help uncover more
insights.
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Chapter 5

MIP-based Primal Heuristic for
the Linear Ordering Problem

5.1 Introduction

The linear ordering problem (LOP) is defined as follows. Let G = (V,A) denote a complete
directed graph or digraph on n vertices, where V = {1, 2, . . . , n} is the set of vertices, A
is the set of arcs that includes (i, j) and (j, i), for every distinct pair of vertices i and j in
V , and each arc (i, j) ∈ A has a weight cij . A linear ordering of the vertices {1, 2, . . . , n} is
denoted by 〈v1, v2, . . . , vn〉, where v1 precedes v2, v2 precedes v3, and so on. The objective of
the linear ordering problem is to find an ordering σ such that

∑
i,j:σ(i)≺σ(j) cij is maximized,

where σ(i) ≺ σ(j) denotes that vertex i precedes vertex j in the linear ordering σ.
LOP is an NP-hard problem [37], closely related to other problems in graph theory,

such as the feedback arc set problem, the analogous feedback node set problem, as well as
the node induced acyclic subdigraph problem. The problem is relevant to voting theory [50],
where an aggregated ranking is to be computed from individual preferences such that it
most appropriately represents the preferences. This is also relevant to the ranking of a set
of teams in sports tournaments. The input-output analysis in the field of economics and the
problem of machine scheduling under precedence constraints are other problems that can
be modeled using LOP. For a detailed discussion on the applications of the linear ordering
problem, the reader is referred to [68].

As LOP can model many problems of practical importance, it has garnered a lot of
attention in the literature. An exact method for LOP includes formulating it as a 0-1 integer
program and then solving it using the branch-and-bound algorithm [70]. However, as the
computation time can grow rapidly with the size of the problem, it becomes impractical
for problems of large sizes. Population based metaheuristic methods such as the genetic
algorithm, and scatter search, have been successfully applied to LOP [68]. However, the
current state-of-the-art method for LOP is the memetic algorithm that combines the genetic
algorithm with local search [74]. Ceberio et al. [22] propose a more efficient way for local
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search in the context of LOP that excludes provably suboptimal solutions from the search
neighborhood. Hybrid approaches that combine heuristic and exact methods have also been
developed for the LOP [51]. They propose a MIP heuristic that generates a starting feasible
solution based on the solution to the LP relaxation. Using the starting solution, they then
define a neighborhood which is then solved optimally using a MIP solver.

As compared to the existing MIP heuristic, our heuristic relies on partitioning the set
of vertices S into an ordered pair of subsets (S1, S2) such that the difference between the
weights of all arcs from S1 to S2 and the weights of all arcs from S2 to S1 is maximized. The
set of vertices are recursively partitioned until we can quickly solve LOP instances on each
subset using a MIP solver. The solution to the original LOP instance is then constructed
by concatenating the solutions to the LOP instances on each subset. In comparison with
MIP heuristic, our heuristic is fast and generates good solutions close to the optimal and
hence can be used as a primal heuristic in branch-and-bound.

5.2 Problem formulation

A linear ordering problem on graph G = (V,A) with arc weights cij ∀ (i, j) ∈ A, can be
formulated as a 0-1 integer programming problem. We define a binary decision variable xij
for each arc (i, j) ∈ A such that:

xij =

1, if i ≺ j, vertex i precedes vertex j

0, otherwise

The canonical Integer Linear Programming formulation for the LOP [68] can be given
as follows:

Maximize
∑

(i,j)∈A
cijxij (5.1)

s.t.

xij + xji = 1 ∀ i, j ∈ V : i < j (5.2)

xij + xjk + xki 6 2 ∀ i, j, k ∈ V : i < j, i < k, j 6= k (5.3)

xij ∈ {0, 1} ∀ i, j ∈ V : i 6= j (5.4)

The objective function (5.1) maximizes the total weight of all arcs (i, j) such that i ≺ j.
Constraint (5.2) ensures that either i ≺ j or j ≺ i, but not both. Constraint (5.3) prohibits
a directed cycle where i ≺ j, j ≺ k, and k ≺ i. Constraint (5.4) constrains the variables xij
to take values in the set {0, 1}.
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5.3 Partitioning Problem

We design the primal heuristic for the linear ordering problem based on the concept of
strongly connected components in graph theory. A directed graph is said to be strongly
connected if every vertex in the graph is reachable from every other vertex. The strongly
connected components of an arbitrary directed graph form a partition into subgraphs that
are themselves strongly connected. If every strongly connected component in the graph is
contracted to a single vertex, the resulting graph is a directed acyclic graph. The linear
ordering problem itself is based on a complete directed graph which is strongly connected.
However, if we had some way of determining edges at least some of which participate in the
optimal solution, we can compute the strongly connected components over this new graph.
The resulting directed acyclic graph can then be used to establish the precedence relation
between the vertices that belong to the different strongly connected components. The linear
ordering problem, as a result, can be decomposed into subproblems on each of the strongly
connected components.

To see how this could be useful, consider the graph G = (V,A) for the linear ordering
problem. We form a new graph G′ by greedily selecting the edges (i, j) between each pair of
vertices i and j, such that cij > cji. The strongly connected components of graph G′ form
an acyclic graph S = (Vs, As) where Vs = {s1, s2, . . . , sk} is the set of components and As is
the set of arcs between the components. We can then define the precedence relation between
the different components as si ≺ sj if (si, sj) ∈ As. Consequently, we can also define the
precedence relation between the vertices belonging to the different components as u ≺ v if
u ∈ si, v ∈ sj and si ≺ sj . Once these precedence relations are established, we just need
to find the precedence relations between the vertices within each component to solve the
complete linear ordering problem.

In practice, however, it is too much to expect that the graph resulting from the greedy
selection of edges would contain more than one component. So we devise an IP to find the
best partition to divide the linear ordering problem into subproblems.

5.3.1 Formulation as an integer programming problem

For a given linear ordering problem, the partitioning problem splits the set of vertices V
into two subsets S1 and S2 such that

∑
i∈S1,j∈S2(cij − cji) is maximized. It is formulated as

a 0-1 integer programming problem. We define a decision variable yi for each vertex i ∈ V
such that:

yi =

1, if vertex i belongs to S1

0, if vertex i belongs to S2

The Integer Linear Programming formulation for the partitioning problem can then be
given as:
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Maximize
∑

(i,j)∈A
cij(yi − yj) (5.5)

s.t.

yi ∈ {0, 1} ∀ i ∈ V (5.6)

Algorithm 1: Partitioning Problem for the Linear Ordering Problem
Input : Weight matrix [C]n×n, and LP relaxation solution [P ]n×n
Output: Subsets (S1, S2) of the set of vertices V in graph G = (V,A)

1 for each xij == 1 in P do
2 add constraint (yi − yj ≥ 0) to LOP-Partition formulation;
3 end
4 Solve the LOP-Partition (with the added constraints);
5 Let S1 be the set of all vertices with yi == 1;
6 Let S2 be the set of all vertices with yi == 0;
7 Return (S1, S2);

We call this problem LOP-Partition. The objective function (5.5) maximizes the differ-
ence between the total weight of the arcs from subset S1 to S2 and the total weight of the
arcs from S2 to S1. The only set of constraints for the problem, Constraint (5.6), states that
the decision variables take values from the set {0, 1}.

We can see that the problem is trivial when we have no constraints. However, when
using branch-and-bound to solve the LOP, we have the solution to the LP relaxation at
each node where some variables xij have been fixed to either 0 or 1. For all variables xij set
to 1, we introduce additional precedence constraints in the above problem to ensure that
we adhere to the partial solution. The constraint can be given as follows:

yi − yj ≥ 0 (5.7)

5.3.2 Formulation as a minimum cut problem

For a given LOP-Partition, we compute the graphH exhibited by the precedence constraints
in (5.7). By definition of LOP, this graph is expected to be a directed acyclic graph (DAG).
We then compute the potentials for each node j in H as νj =

∑
j∈V,j 6=i(cji − cij). The goal

then is to maximize
∑
j∈V νj subject to the precedence constraints of the DAG H. This

problem as is it turns out, is equivalent to the restricted primal of the Hitchcock problem
[71]. We solve it using the min-cut problem.

1. We compute the transitive closure of H and reverse the edges to compute H ′. The
capacity of each edge in H ′ is set to ∞.
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Figure 5.1: Formulation as a minimum cut problem

2. We then add a super source s and connect it to all nodes j where νj > 0 and set the
edge capacities to νj .

3. Similarly, we add a super sink t and connect all nodes j where νj < 0 to t and set the
edge capacities to −νj .

We then compute the min-cut for the graph H ′. All the nodes reachable from s belong to
the set S1 and all the nodes reachable from t belong to the set S2. The reason this method
works is that maximizing

∑
j∈V νj subject to the precedence constraints is equivalent to

maximizing
∑
j∈S1 νj +

∑
j∈S2 −νj or minimizing

∑
j∈S2 νj +

∑
j∈S1 −νj which is exactly

what the min-cut computes.

5.4 Algorithm

The heuristic recursively partitions the set of vertices in the graph G = (V,A) into two
subsets. The partitioning is performed until the subsets can be efficiently solved using a
MIP solver. If the subsets are sufficiently small, we use the MIP solver to solve them
optimally. The pseudocode for the heuristic is given in Algorithm 2.

5.4.1 Improvement Phase

The linear ordering 〈v1, v2, . . . , vn〉 obtained via the primal heuristic as described in Algo-
rithm 2 serves as a starting solution for improvement heuristics. We use local search to look
for insert moves that further improve the objective function (5.1) [58]. We perform the move
that causes maximum improvement until no improvement is possible using such a move.

5.4.2 Node Selection

When using the branch-and-bound search in IP, we may have multiple nodes in the queue
waiting to be processed. For each node, we have the solution to the LP relaxation and the
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Algorithm 2: Primal Heuristic to obtain Integer Feasible Solution
Input : Weight matrix [C]n×n, and LP relaxation solution [P ]n×n
Output: An ordering 〈v1, v2, . . . , vn〉 of the vertices in graph G = (V,A)

1 if n ≤ 40 then
2 return optimal ordering v∗ using a MIP solver;
3 end
4 Run Algorithm 1 (partitioning problem) to obtain subsets S1 and S2;
5 Find the weight matrix [CS1 ]|S1|×|S1| for subset S1;
6 Find the weight matrix [CS2 ]|S2|×|S2| for subset S2;
7 Find the LP solution matrix [PS1 ]|S1|×|S1| for subset S1;
8 Find the LP solution matrix [PS2 ]|S2|×|S2| for subset S2;
9 Run Algorithm 2 with [CS1 ] and [PS1 ] to get ordering v1 of S1;

10 Run Algorithm 2 with [CS2 ] and [PS2 ] to get ordering v2 of S2;
11 Obtain v by concatenating v1 and v2;
12 Return v;

branching variable at its parent node, and the branching direction. This information is used
to provide the partial solution to the heuristic and a node with the best heuristic solution
is chosen to be processed next.

5.5 Empirical analysis

The computational experiments were conducted on an Intel Core i7-7700HQ with 2.80 GHz
64-bit processor, 8.0 GB of RAM and Ubuntu 16.04 64-bit as the Operating System. The
heuristic was implemented in C++. The LP and MIP problems were solved using CPLEX
12.8 on a single thread. The experiments on the difficult instances were run under the time
restriction of 600 seconds however no such constraint was placed on the easier instances.

5.5.1 Dataset

The data set for the computational experiments was obtained from the Optsicom project
[69]. We use the following data for our experiments.

Special Instances:

These are problem instances that were used in publications. The EX instances were used
in [23]. The ATP instances were created from the results of ATP tennis tournaments in
1993/1994. Nodes correspond to a selection of players and the weight of an arc (i, j) is the
number of victories of player i against player j.
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Table 5.1: Computational Results for Special Instances

CPLEX H H+NS

Instance Size NLPS CPU(s) NLPS CPU(s) NLPS CPU(s)

ATP66 66 113 56 57 41 62 44
ATP76 76 1046 1147 651 778 254 368
EX4 50 133 22 97 21 128 46
EX5 50 197 35 183 45 123 42
EX6 50 47 10 37 12 58 18

Table 5.2: Computational Results for RandomAI Instances

Best Known [69] H H+NS

Instance Size Solution Bound Gap(%) Solution Gap(%) Solution Gap(%)

t1d100.01 100 106852 114468 7.128 106288 7.696 106344 7.639
t1d100.02 100 105947 114077 7.674 104905 8.743 104952 8.694
t1d100.03 100 109819 117843 7.306 109035 8.078 109184 7.931
t1d100.04 100 109252 117639 7.677 108417 8.506 108675 8.248
t1d100.05 100 108859 117538 7.973 108094 8.737 108447 8.383
t1d100.06 100 108201 117057 8.185 107786 8.601 107609 8.779
t1d100.07 100 108803 117118 7.642 108276 8.166 108405 8.037
t1d100.08 100 107480 115756 7.700 106746 8.440 107010 8.173
t1d100.09 100 108549 116527 7.350 107720 8.176 107776 8.120
t1d100.10 100 108771 117518 8.042 108222 8.590 108336 8.475

Instances RandomAI:

These instances are generated from a uniform distribution in the range [0, 100]. These
problems were originally generated from a [0, 25000] uniform distribution [58] and modified
afterwards, sampling from a significatively narrow range ([0,100]) to make them harder to
solve. The size of these instances are 100, 150, and 200. For the experiments, we use the
instances with size 100 as the larger instances are too difficult to be solved using IP.

5.5.2 Computational results

We summarize the computational results in Table 5.1 and Table 5.2. Table 5.1 shows exper-
iments on special instances that can be solved in reasonable time using IP, and Table 5.2
shows experiments on the much harder RandomAI instances. In Table 5.1, we can see that
using the heuristic (H), and using the heuristic along with node selection (H+NS), both
lead to a decline in the number of LPs (NLPS) solved. However, for some instances we can
see an increase in the CPU time (in seconds) which may be due to the additional work at
each node. Table 5.2 shows results for the much harder instances for which we report the
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lower bounds obtained. The heuristic can be used to find solutions which are substantially
close to the best known solutions [69] thereby making it possible to prune large parts of the
tree quickly.

5.6 Summary

The Linear Ordering Problem is a classic combinatorial optimization problem with appli-
cations to numerous problems of practical importance. A standard method to solve such
problems optimally is using Integer Programming and branch-and-bound. The computa-
tion time, however, grows rapidly with the size of the problem instance. In this paper, we
propose a new MIP-based primal heuristic that generates good feasible solutions from the
partial LP solution at each node of the branch-and-bound tree. We also devise a new node
selection strategy based on the heuristic solution. Preliminary experimental results show
that the approach is promising. The solutions obtained using the heuristic are substantially
close to the optimal and provide a good lower bound for the branch-and-bound algorithm.
The number of nodes that need to be processed also show a decline when the heuristic is
used.
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Chapter 6

Discussion

In this thesis, our main contribution includes hybrid primal heuristics that combine both
heuristic and exact methods. In particular, we propose a supervised large neighborhood
search heuristic for the general mixed integer programming problem as well as a MIP-based
heuristic for the linear ordering problem. This chapter outlines our results and discusses the
limitations and scope of future work for the ideas presented in the thesis.

6.1 Supervised neighborhood selection

For our preliminary work on supervised neighborhood selection, we focus, particularly on
the variable fixing neighborhood. We design the framework to predict the set of variables
to be fixed in an ideal search neighborhood. We evaluate the effectiveness and generality
of our large neighborhood search heuristic through extensive experimentation on a wide
selection of problem instances. The experiments clearly demonstrate that our supervised
learning approach to neighborhood selection is promising. Our heuristic is not only more
likely to find an improving solution but also improves the solver performance over multiple
metrics compared to the existing state-of-the-art heuristics. Here, we discuss its limitations
and possible directions for future work.

6.1.1 Limitations

A key limitation of our heuristic is the computation time required by the neighborhood
selection framework. The time complexity of the framework is linear in the number of non-
zeros in the problem instance as compared to RINS, which has a time complexity linear in
the number of variables. Moreover, the graph attention model adds a significant overhead
to the computation time, especially when executed on a CPU. The heuristic is likely to be
prohibitively expensive on larger or denser problem instances. We believe however, that the
overall computation time can be considerably improved through a tighter integration with
the MIP solver and through model execution on a GPU.
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6.1.2 Future work

In the course of our preliminary work, we identified many promising avenues for further
research.

Alternate and hybrid neighborhoods

In our exploratory study, we focus specifically on the variable fixing neighborhood. However,
a straightforward extension of our work is to incorporate alternate neighborhoods proposed
in the literature. Possible approaches include adding a global cut similar to local branching
[32], or modifying the objective function coefficients like in proximity search [35]. Hybrid
approaches combining the different techniques is another promising direction.

Transfer learning

Transfer learning is a compelling approach where an ML model trained on one high level
task can be easily reused for another related but distinct task. It would be interesting to
explore this idea in the context of mixed integer programming where we have several high
level problems to be tackled such as branching strategies, node selection strategies, and
cutting plane selection. It would also help justify the high computation cost involved in
sophisticated machine learning models such as graph convolutional networks.

Interpretability

A common drawback of neural network models is their lack of interpretability in terms of
the logic behind their predictions. Recent visualization techniques in the field of machine
learning aim to alleviate this problem and try to explain the decisions made by the neural
network models. Analyzing the learned graph network models may provide key insights into
what information is most crucial when defining a search neighborhood. This might help in
discovering new simpler heuristics reducing the time and memory overhead of our graph
attention model. Another possibility may be the classification of problem instances based
on the information most relevant to solve them.

Standardized open datasets

Lastly, areas such as computer vision have developed immensely due to standardized open
datasets that help reduce the barrier of entry into the field. Given the difficulty in obtain-
ing data for combinatorial optimization problems, a similar approach can lead to a more
focused effort in this area. It would also provide an opportunity for a fairer comparison
between different approaches. Important benefits that can come out of this exercise are
better modeling techniques for MIP and more sophisticated features engineered to tackle
the problem of generalizability.
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6.2 Primal heuristic for the linear ordering problem

Another work, we present in this thesis, targets the linear ordering problem. We propose
an analytical MIP-based primal heuristic for the linear ordering problem. The heuristic is
based on a decomposition technique that subdivides the LOP instance into smaller instances
that can be quickly solved using a MIP solver. The solution for the original problem is then
constructed by concatenating the partial solutions. Our experiments demonstrate that the
heuristic is fast and can be used as a primal heuristic in the branch-and-bound algorithm.
The heuristic has the potential to be applied to very large scale instances as it uses a
decomposition based approach.

6.2.1 Limitations

A limitation of our MIP-based heuristic for LOP is that the size of the instance that can be
efficiently solved using a MIP solver is not clear. The actual solving time would depend on
the type of instance and the particular instance at hand. The method seems to work well
in the case of some real-world instances and random LOP instances. However, the heuristic
might suffer greatly in the case of instances that are more symmetric in structure.

6.2.2 Future work

In the context of our work on the linear ordering problem, we identify two key future
directions based on machine learning based approaches.

ML-based approaches to LOP

Many ML-based approaches have been proposed for the traveling salesman problem, specif-
ically, the euclidean version. Typically, these methods rely on the approximability of the
euclidean TSP. Even though the structure of the problem input is the same in the case of
TSP and LOP, it would be interesting to see how similar methods fare on the linear ordering
problem.

Decomposition based heuristics

Most of the proposed ML-based heuristics approach the problem targeting the local struc-
ture, i.e. through greedily constructing the solution or directly predicting it. An alternate
approach is to use an ML-based decomposition and fall back on MIP to solve partial prob-
lems optimally.
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Chapter 7

Conclusion

Our key contribution, in this thesis, includes the design of hybrid primal heuristics that
combine both heuristic and exact methods. In particular, we propose a supervised neigh-
borhood selection framework and incorporate it within a large neighborhood search heuristic
for the general mixed integer program. Our framework uses data collected over a diverse set
of problem instances, to devise a dynamic strategy for defining a variable fixing neighbor-
hood. The heuristic searches for an improving solution by solving an auxiliary problem, a
version of the original MIP restricted to our dynamically defined neighborhood. We perform
extensive experimentation in order to evaluate our neighborhood selection framework and
the resulting large neighborhood search heuristic. The experiments demonstrate that our
supervised learning based approach to neighborhood selection is promising. Moreover, our
heuristic also finds an improving solution more often than existing state-of-the-art heuristics
and performs at par or better on many key metrics used for evaluation.

We also propose an analytical MIP-based primal heuristic for the linear ordering prob-
lem. The key idea is to recursively decompose the LOP problem instance into smaller ones
until each instance is small enough to be quickly solved to optimality using a MIP solver.
The heuristic then constructs the solution to the original LOP instance by concatenating
the partial solutions. Although our heuristic is fast and can achieve good solutions, the
solutions are not quite comparable to state-of-the-art methods such as memetic algorithm.

In the course of our work, we also identified many avenues for future work in integrating
machine learning with mixed integer programming. Future work could be focused towards
answering the following questions: to what extent can machine learning support problems
in the context of MIP, what information is most critical when solving a MIP, and what are
the characteristic features of MIP that make it difficult to solve.
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Appendix A

Description of Features

For our graph attention model, we use many features that have been quite commonly used
in the recent work in this area. The references for each feature are inline.

Feature Description Count Reference

Basic Features (12)

Type (binary, integer, implicit integer, continuous) 4 [38, 30]
Coefficient, normalized (raw, positive only, negative only) 3 [53, 38, 30]
Number of constraints Number of nonzero coefficients for variable 1 [53, 30]
Has lower (upper) bound Lower (upper) bound indicator 2 [38]
Global lower (upper) bound, standardized Value of global lower (upper) bound 2 [30]

LP Features (16)

Solution value, standardized Value in LP-relaxation solution 1 [38, 30]
Slack and ceil distances min{x̂− bx̂c, dx̂e − x̂} and dx̂e − x̂ 2 [53, 30]
Basis status (lower, basic, upper) 3 [38]
Reduced costs, standardized Value of reduced cost 1 [38, 30]
Pseudocosts, standardized Upwards, downwards, sum, product, ratio 5 [53, 30]
May round up (down) Variable may round up (down)? 2 [54]
Number of up (down) locks Number of locks 2 [54, 30]

Aggregated/Structure Features (44)

Stats for constraint degrees (mean, std. dev., min, max) 4 [53, 30]
Stats for positive (negative) constraint coeffi-
cients

(count, mean, std. dev., min, max) 10 [53, 30]

Ratios of constraint coefficients to RHS, stan-
dardized

(min, max) 4 [53, 30]

One-to-all coefficient ratios (min, max) 8 [53]
Stats for active constraint coefficients, stan-
dardized. Three weighting schemes: unit
weight, dual cost, inverse sum of coefficients

(count, sum, mean, std. dev., min, max) 18 [53, 30]

History/Branch-and-bound Features (8)

Age Age of column in LP 1 [38]
Fraction up (down) infeasibility Fraction of times branch is infeasible 2 [53]
Local lower (upper) bound, standardized Value of local lower (upper) bound 2
Incumbent value, standardized Value in incumbent solution 1 [38]
Average incumbent value, standardized Value of average incumbent solution 1 [38]
Solution is at incumbent Is solution value and incumbent value equal? 1

Table A.1: Description of Variable Features (V)
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Feature Description Count Reference

Basic Features (12)

Objective cosine similarity Cosine similarity with objective function 1 [38]
RHS, standardized Value of RHS in constraint 1 [38, 30]
Number of nonzeros (positive,
negative)

Number of nonzeros in constraint 3 [30]

Constraint types (precedence, and, knapsack, linear, logicor, setppc, varbound) 7 [30]

LP Features (4)

Dual solution, standardized Dual solution for the constraint 1 [38, 30]
Basis Status (lower, basic, upper) 3 [30]

Aggregated Features (7)

Sum norm of coefficients (absolute, positive only, negative only) 3 [30]
Stats on variable coefficients (mean, std. dev., min, max) 4 [30]

History/Branch-and-bound
Features (1)

Age Age of row in LP 1 [38]

Table A.2: Description of Constraint Features (C)

Feature scaling is typically used to stabilize the training of machine learning models. While
scaling features is important, it also causes loss of information. This becomes especially
tricky in our case due to the high variability in problem structure and feature scales across
a diverse set of instances. We address this problem by choosing the most natural way to
scale the features. For example, the objective function is scaled by dividing by the L2 norm.
Similarly, the number of constraints is scaled by dividing by the total number of constraints.
This works well in practice as presolving can detect and help remove the redundancies in
a problem instance. When there is no clear and intuitive way of scaling a feature, we use
query based standardization similar to [53]. The features that are standardized are noted
inline.

Feature Description Count Reference

Basic Features (1)

Variable coefficient in constraint, normalized Coefficient of the variable in constraint 1 [38, 30]

Table A.3: Description of Edge Features (E)
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Appendix B

Exhaustive Results for MIP
Instances

Table B.1: Exhaustive Results for MIP Instances - Primal Gap, Primal Dual Gap, Primal
Integral, Time to Best Solution

Instance Primal Gap Primal Dual Gap Primal Integral Time to Best Sol.
w/o SLNS w SLNS w/o SLNS w SLNS w/o SLNS w SLNS w/o SLNS w SLNS

30n20b8.mps 0.00 0.00 0.00 0.00 129.74 103.39 396.74 351.58
50v-10.mps 0.91 0.49 2.95 2.43 32.48 22.45 1201.04 759.07
CMS750_4.mps 18.11 16.09 18.76 16.76 777.68 736.06 1646.08 2908.98
academictimetablesmall.mps 100.00 100.00 100.00 100.00 3600.01 3600.01 1279.80 1575.88
air05.mps 0.00 0.00 0.00 0.00 0.85 0.84 30.11 30.26
app1-1.mps 0.00 0.00 0.00 0.00 0.63 0.64 9.27 9.09
app1-2.mps 0.00 0.00 0.00 0.00 3.65 3.60 819.30 792.57
assign1-5-8.mps 0.00 0.00 6.00 5.74 0.28 0.27 8.62 7.49
atlanta-ip.mps 2.98 2.16 9.60 8.55 157.30 137.26 2639.46 2654.64
b1c1s1.mps 2.55 1.01 14.37 12.53 159.42 121.55 1898.52 2183.28
beasleyC3.mps 0.00 0.00 0.28 0.18 2.63 2.04 311.80 159.83
binkar10_1.mps 0.00 0.00 0.00 0.00 0.06 0.04 42.43 41.49
blp-ar98.mps 1.95 1.63 2.62 2.30 113.08 100.73 2420.60 2722.73
blp-ic98.mps 5.41 6.03 6.61 7.18 204.06 236.75 2674.26 1781.34
bnatt400.mps 0.00 0.00 0.00 0.00 0.00 0.00 355.74 330.42
bppc4-08.mps 0.00 0.00 1.89 1.89 1.00 1.39 565.72 466.13
brazil3.mps 1.49 0.00 5.95 6.07 354.17 331.29 1243.68 1115.71
chromaticindex1024-7.mps 0.00 0.00 25.00 25.00 0.00 0.00 2793.19 2895.45
chromaticindex512-7.mps 0.00 0.00 14.33 19.54 0.00 0.00 847.31 870.11
cmflsp50-24-8-8.mps 2.54 1.48 3.61 2.51 150.50 145.73 2732.62 3033.62
cod105.mps 0.00 0.00 26.07 26.01 0.00 0.00 146.15 145.24
comp07-2idx.mps 93.62 93.14 93.62 93.14 3454.94 3440.18 2930.92 3309.59
comp21-2idx.mps 52.49 49.24 71.36 68.81 2131.10 2084.02 2983.86 2606.02
cost266-UUE.mps 0.00 0.00 6.08 4.89 11.25 5.82 1375.92 985.99
csched007.mps 1.06 0.33 10.63 9.54 119.91 57.82 3002.65 1663.21
csched008.mps 0.00 0.00 0.00 0.00 8.29 4.94 909.68 651.25
cvs16r128-89.mps 1.65 0.62 20.39 19.37 100.83 65.81 1363.93 1470.43
dano3_3.mps 0.00 0.00 0.00 0.00 0.17 0.15 105.07 100.41
dano3_5.mps 0.01 0.00 0.02 0.00 0.83 0.60 267.08 331.46
drayage-100-23.mps 0.00 0.00 0.00 0.00 0.16 0.14 14.01 13.15
drayage-25-23.mps 0.00 0.00 0.07 0.06 1.65 1.58 346.27 547.35
dws008-01.mps 27.95 20.56 61.24 55.92 1010.91 848.08 1000.46 2696.05
eil33-2.mps 0.00 0.00 0.00 0.00 5.51 5.57 131.61 132.55
fast0507.mps 0.00 0.00 0.00 0.00 0.91 0.90 131.02 125.62
fastxgemm-n2r6s0t2.mps 0.00 0.00 87.88 87.26 29.89 27.54 264.87 100.05
fiball.mps 1.70 0.00 1.70 0.00 61.22 24.61 1382.52 1704.01
gen-ip002.mps 0.03 0.00 0.59 0.48 0.97 0.29 545.54 2114.26
gen-ip054.mps 0.12 0.11 0.89 0.82 6.69 3.54 546.65 2347.02
germanrr.mps 1.18 1.44 1.74 2.00 69.92 72.87 2259.80 2600.37
glass-sc.mps 0.00 0.00 14.78 14.47 0.00 0.00 161.79 147.34
glass4.mps 23.74 15.08 46.11 31.85 955.72 730.12 1653.78 2444.37
gmu-35-40.mps 0.02 0.02 0.03 0.03 1.45 1.03 1977.37 1426.71
gmu-35-50.mps 0.05 0.04 0.05 0.04 2.46 1.78 1406.72 3194.51
graph20-20-1rand.mps 0.00 0.00 65.77 65.68 33.88 31.95 225.12 211.26
graphdraw-domain.mps 1.07 0.01 24.40 18.82 73.97 18.47 1368.36 1783.11
h80x6320d.mps 0.00 0.00 0.00 0.00 0.00 0.00 191.43 164.36
ic97_potential.mps 0.38 0.08 2.00 1.60 28.32 11.03 1703.92 1729.84
icir97_tension.mps 0.57 0.06 0.83 0.32 21.51 7.10 2210.62 2366.88

Continued on next page ...
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Table B.1 – continued from previous page

Instance Primal Gap Primal Dual Gap Primal Integral Time to Best Sol.
w/o SLNS w SLNS w/o SLNS w SLNS w/o SLNS w SLNS w/o SLNS w SLNS

irp.mps 0.00 0.00 0.00 0.00 0.00 0.00 18.89 19.63
istanbul-no-cutoff.mps 0.00 0.00 0.00 0.00 13.76 13.00 186.00 175.36
lectsched-5-obj.mps 37.06 29.89 60.74 56.36 1567.51 1301.92 1386.23 1143.91
leo1.mps 2.16 1.41 3.41 2.54 92.99 74.13 1750.67 2570.31
leo2.mps 4.69 2.63 6.46 4.35 212.46 157.11 2213.82 3001.37
lotsize.mps 0.54 0.54 1.51 1.50 156.43 147.24 2202.57 2119.31
mad.mps 44.92 27.31 100.00 100.00 1944.45 1581.00 2286.91 2341.01
markshare2.mps 93.59 93.21 100.00 100.00 3407.31 3408.20 2364.96 2564.01
markshare_4_0.mps 0.00 0.00 74.11 100.00 53.26 19.70 1364.26 640.57
mas74.mps 0.39 0.00 5.69 4.24 11.38 1.18 684.63 110.29
mas76.mps 0.00 0.00 0.44 0.00 0.04 0.04 3.71 2.61
mc11.mps 0.04 0.00 1.61 1.55 2.52 1.30 629.78 726.93
mcsched.mps 0.00 0.00 0.00 0.00 0.66 0.65 85.96 85.77
mik-250-20-75-4.mps 0.00 0.00 0.00 0.00 0.00 0.00 12.67 9.55
milo-v12-6-r2-40-1.mps 0.83 0.27 18.53 17.75 109.87 74.47 1450.19 1960.77
momentum1.mps 24.14 12.75 32.48 21.68 1502.97 1481.12 2543.65 3277.19
mushroom-best.mps 0.00 0.00 68.91 62.00 13.01 12.33 116.98 105.20
mzzv11.mps 0.00 0.00 0.00 0.00 8.19 7.91 257.81 235.45
mzzv42z.mps 0.00 0.00 0.00 0.00 0.95 0.96 154.74 155.49
n2seq36q.mps 0.00 0.00 0.38 0.38 21.93 19.70 221.83 206.54
n3div36.mps 0.09 0.09 4.39 4.32 30.48 27.96 709.20 737.17
n5-3.mps 0.00 0.00 0.00 0.00 6.52 6.31 31.95 30.85
neos-1171448.mps 0.00 0.00 0.00 0.00 0.16 0.12 56.32 51.44
neos-1171737.mps 2.56 1.18 2.56 1.18 90.53 46.57 203.39 1139.41
neos-1445765.mps 0.00 0.00 0.00 0.00 0.18 0.18 77.05 73.16
neos-1456979.mps 0.11 0.11 7.58 7.48 37.77 25.79 1953.30 1095.66
neos-1582420.mps 0.00 0.00 0.00 0.00 0.22 0.21 25.82 24.35
neos-2657525-crna.mps 51.85 31.44 100.00 100.00 2103.54 249.72 218.63 544.93
neos-2746589-doon.mps 0.23 0.15 0.55 0.46 81.02 89.12 2015.22 1656.38
neos-3004026-krka.mps 0.00 0.00 0.00 0.00 0.00 0.00 316.32 327.72
neos-3024952-loue.mps 31.13 16.00 33.83 19.30 1253.30 999.17 2641.96 3243.38
neos-3046615-murg.mps 3.46 0.02 73.99 69.28 136.25 6.43 715.60 962.58
neos-3083819-nubu.mps 0.00 0.00 0.00 0.00 0.03 0.03 34.61 25.60
neos-3216931-puriri.mps 54.70 54.70 62.01 61.98 1968.96 1968.96 1507.41 1516.65
neos-3381206-awhea.mps 0.00 0.00 0.00 0.00 0.03 0.04 5.95 6.21
neos-3627168-kasai.mps 0.07 0.07 0.51 0.49 3.03 2.87 1042.06 1226.01
neos-3656078-kumeu.mps 6.01 1.02 11.95 7.44 425.27 359.20 1917.42 3194.27
neos-4300652-rahue.mps 12.16 12.16 89.77 89.63 838.35 840.45 1920.98 1944.64
neos-4338804-snowy.mps 0.77 0.51 2.39 2.14 72.08 53.99 2483.62 2010.25
neos-4387871-tavua.mps 4.09 1.54 20.56 18.70 185.01 87.00 934.05 1927.83
neos-4722843-widden.mps 0.00 0.00 4.54 5.24 126.36 123.49 3517.60 3367.53
neos-4738912-atrato.mps 0.00 0.00 0.00 0.00 1.42 0.78 974.50 421.73
neos-4763324-toguru.mps 1.30 1.15 26.81 26.15 219.12 211.80 2102.39 2367.37
neos-4954672-berkel.mps 1.02 0.49 14.33 13.66 46.25 30.93 914.80 517.21
neos-5107597-kakapo.mps 50.96 22.13 90.66 82.97 2458.10 1742.87 3367.00 3404.52
neos-5188808-nattai.mps 0.00 0.00 0.00 0.00 45.94 41.96 1199.15 1068.10
neos-5195221-niemur.mps 0.14 0.01 67.77 49.84 600.84 346.69 2170.57 1855.72
neos-662469.mps 8.62 0.07 8.63 0.07 330.07 281.61 1841.57 2325.71
neos-873061.mps 1.50 2.04 2.41 2.94 86.86 91.77 3147.51 3062.94
neos-911970.mps 0.00 0.00 0.18 0.18 0.67 0.44 1067.61 1271.33
neos-933966.mps 0.00 0.00 0.00 0.00 3.00 2.93 206.46 208.43
neos-950242.mps 0.00 0.00 71.43 71.21 0.00 0.00 617.04 569.15
neos-957323.mps 0.00 0.00 0.00 0.00 0.00 0.00 57.14 57.24
neos-960392.mps 0.00 0.00 0.00 0.00 1.17 1.07 296.35 257.67
neos17.mps 0.00 0.00 0.00 0.00 0.76 0.58 42.25 12.53
neos5.mps 0.00 0.00 4.78 3.22 0.14 0.14 9.97 8.78
net12.mps 0.00 0.00 0.00 0.00 50.73 42.34 424.93 388.09
nexp-150-20-8-5.mps 0.86 0.52 1.35 1.00 46.74 40.75 1424.11 1913.89
ns1208400.mps 0.00 0.00 0.00 0.00 0.00 0.00 573.40 464.26
ns1830653.mps 0.91 0.00 6.14 0.00 72.78 30.97 488.73 378.76
ns1952667.mps 0.00 0.00 0.00 0.00 0.00 0.00 1651.08 1297.10
nu25-pr12.mps 0.00 0.00 0.00 0.00 0.00 0.00 6.72 5.78
nursesched-sprint02.mps 0.00 0.00 0.00 0.00 3.31 2.78 64.06 54.64
opm2-z10-s4.mps 7.12 10.39 30.11 33.35 435.76 472.26 3070.28 3096.47
p200x1188c.mps 0.00 0.00 0.00 0.00 0.00 0.00 6.62 6.96
peg-solitaire-a3.mps 0.00 0.00 0.00 0.00 0.00 0.00 2482.96 2829.42
pg.mps 0.00 0.00 0.00 0.00 0.01 0.01 19.03 18.49
pg5_34.mps 0.01 0.00 0.05 0.00 0.97 0.23 2253.57 1411.25
physiciansched6-2.mps 0.00 0.00 0.00 0.00 0.00 0.00 117.78 119.49
piperout-08.mps 0.00 0.00 0.00 0.00 99.14 97.88 269.44 263.74
piperout-27.mps 0.00 0.00 0.00 0.00 149.94 146.89 360.27 352.27
pk1.mps 0.00 0.00 0.00 0.00 8.10 8.58 137.65 416.65
radiationm18-12-05.mps 16.50 9.21 16.51 9.21 794.14 568.34 1526.84 2133.41
radiationm40-10-02.mps 53.68 46.73 53.68 46.74 1988.44 1818.85 1756.72 2874.20
rail01.mps 23.93 23.93 27.62 27.62 861.66 861.66 3326.36 3501.25
rail507.mps 0.00 0.00 0.00 0.00 1.18 1.04 94.70 82.88
ran14x18-disj-8.mps 0.51 0.49 4.15 3.94 20.51 18.69 1116.52 1749.06
reblock115.mps 0.05 0.01 0.48 0.41 21.65 18.73 1236.52 976.09
rmatr100-p10.mps 0.00 0.00 0.00 0.00 3.64 3.18 52.00 45.95
rmatr200-p5.mps 0.29 0.14 17.78 16.97 22.19 7.11 1872.88 1529.66
rocI-4-11.mps 0.00 0.00 0.00 0.00 19.85 19.06 81.96 79.12
rocII-5-11.mps 2.98 2.99 45.22 45.22 323.18 305.69 2471.77 2999.80
rococoB10-011000.mps 0.77 0.04 14.51 13.38 77.75 52.85 1398.52 1639.97
rococoC10-001000.mps 0.00 0.00 1.99 1.65 8.63 5.03 1078.79 1017.29
roll3000.mps 0.00 0.00 0.00 0.00 4.41 2.32 793.46 377.70

Continued on next page ...

54



Table B.1 – continued from previous page

Instance Primal Gap Primal Dual Gap Primal Integral Time to Best Sol.
w/o SLNS w SLNS w/o SLNS w SLNS w/o SLNS w SLNS w/o SLNS w SLNS

satellites2-40.mps 21.05 57.89 46.43 71.43 1621.78 2084.22 3462.81 2513.55
satellites2-60-fs.mps 0.00 0.00 34.48 34.48 937.05 857.89 3350.81 3076.20
sct2.mps 0.00 0.00 0.04 0.03 0.75 0.30 674.37 210.80
seymour.mps 0.47 0.19 2.28 1.96 22.45 11.67 1019.09 1120.77
seymour1.mps 0.00 0.00 0.00 0.00 1.09 1.08 135.43 144.47
sing326.mps 0.26 0.12 0.43 0.28 26.19 21.35 3324.02 3249.82
sing44.mps 0.07 0.11 0.19 0.23 9.62 10.88 2004.60 3022.64
snp-02-004-104.mps 0.95 0.96 0.96 0.97 79.13 80.55 2606.80 2065.82
sp150x300d.mps 0.00 0.00 5.79 4.35 0.00 0.00 0.99 1.00
sp97ar.mps 2.16 0.58 2.78 1.16 102.08 66.95 1969.08 3033.82
sp98ar.mps 0.36 0.22 0.75 0.59 30.64 29.31 2489.63 2715.42
supportcase18.mps 4.00 4.00 5.63 5.63 147.74 147.29 644.03 524.05
supportcase26.mps 2.51 0.40 18.01 15.18 101.74 44.47 846.40 1060.63
supportcase33.mps 0.00 0.29 0.00 1.64 49.25 50.53 1753.48 1017.86
supportcase40.mps 0.70 0.00 3.22 0.25 26.02 6.12 1499.09 2145.31
supportcase42.mps 2.39 2.37 2.54 2.53 111.36 107.70 923.38 1239.90
swath1.mps 0.00 0.00 0.00 0.00 0.34 0.41 45.44 45.15
swath3.mps 0.24 0.00 6.81 5.45 6.39 1.61 237.23 347.23
tbfp-network.mps 0.00 0.00 0.00 0.00 122.56 115.30 1382.24 1334.06
thor50dday.mps 0.55 0.54 20.21 20.20 75.96 66.64 2886.05 2787.95
timtab1.mps 0.24 0.26 15.37 10.89 49.90 22.91 1376.06 792.25
tr12-30.mps 0.00 0.00 0.08 0.07 0.18 0.19 577.08 897.24
traininstance2.mps 9.10 8.44 100.00 100.00 379.56 378.33 1355.36 1194.14
traininstance6.mps 2.02 1.32 98.75 98.40 125.41 89.94 1525.86 1478.90
trento1.mps 2.08 0.78 2.17 0.87 189.64 178.66 2649.32 2797.51
uccase12.mps 0.00 0.00 0.00 0.00 0.00 0.00 772.56 981.64
uccase9.mps 1.43 1.64 2.47 2.68 110.83 109.38 2257.27 2865.60
uct-subprob.mps 0.38 0.13 7.24 6.95 32.86 18.19 1112.00 1123.40
unitcal_7.mps 0.00 0.00 0.00 0.00 0.00 0.00 216.92 213.03
wachplan.mps 0.00 0.00 11.11 11.11 0.00 0.00 26.37 25.45
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Table B.2: Exhaustive Results for MIP Instances - Total Time, Total Nodes, Fraction Solved,
Success Count

Instance Total Time Total Nodes Fraction Solved Success Count
w/o SLNS w SLNS w/o SLNS w SLNS w/o SLNS w SLNS RINS SLNS

30n20b8.mps 405.82 357.18 430.36 370.68 1.00 1.00 0.00 0.50
50v-10.mps 3600.08 3600.07 88157.10 264664.90 0.00 0.00 0.00 1.00
CMS750_4.mps 3600.22 3600.42 21994.67 39784.93 0.00 0.00 0.20 12.60
academictimetablesmall.mps 3600.56 3600.49 1444.34 1511.53 0.00 0.00 0.00 0.33
air05.mps 31.57 31.73 259.17 259.17 1.00 1.00 0.00 0.00
app1-1.mps 9.56 9.39 13.60 13.60 1.00 1.00 0.00 0.00
app1-2.mps 1177.27 1110.23 841.47 832.00 1.00 1.00 0.25 0.25
assign1-5-8.mps 3600.13 3600.09 851747.13 1250871.21 0.00 0.00 0.60 0.40
atlanta-ip.mps 3600.77 3601.10 4025.66 3785.42 0.00 0.00 1.00 2.00
b1c1s1.mps 3600.17 3600.16 43560.90 71037.82 0.00 0.00 1.20 13.60
beasleyC3.mps 1459.68 1594.76 45985.46 60020.25 0.60 0.80 1.00 2.20
binkar10_1.mps 289.42 258.19 53417.25 54301.09 1.00 1.00 0.80 2.80
blp-ar98.mps 3600.36 3600.83 14291.28 30007.56 0.00 0.00 3.40 0.00
blp-ic98.mps 3600.45 3600.57 24861.03 37088.23 0.00 0.00 2.00 0.20
bnatt400.mps 451.57 419.84 5956.97 5956.97 1.00 1.00 0.00 0.00
bppc4-08.mps 3600.13 3600.13 311043.16 321163.86 0.00 0.00 0.00 0.20
brazil3.mps 2088.18 2039.44 1217.44 1361.16 0.60 0.60 0.00 0.60
chromaticindex1024-7.mps 3615.61 3601.08 160.87 95.46 0.00 0.00 0.00 0.00
chromaticindex512-7.mps 3071.57 3139.06 6310.79 6110.49 0.40 0.20 0.00 0.00
cmflsp50-24-8-8.mps 3600.38 3600.27 33102.25 38814.22 0.00 0.00 2.00 12.00
cod105.mps 3600.11 3600.10 18118.91 28285.73 0.00 0.00 0.00 0.00
comp07-2idx.mps 3600.39 3600.28 2992.85 4024.93 0.00 0.00 1.40 0.00
comp21-2idx.mps 3600.18 3600.30 12695.29 12743.41 0.00 0.00 5.00 8.60
cost266-UUE.mps 3600.11 3600.11 44819.04 113350.92 0.00 0.00 1.40 5.60
csched007.mps 3600.06 3600.05 202982.55 270726.97 0.00 0.00 2.60 17.20
csched008.mps 1894.00 1812.16 113728.48 125166.23 1.00 1.00 2.40 4.60
cvs16r128-89.mps 3600.13 3600.10 17431.13 30459.73 0.00 0.00 0.40 2.40
dano3_3.mps 112.08 107.11 12.16 12.16 1.00 1.00 0.00 0.00
dano3_5.mps 441.71 380.49 233.08 249.04 0.80 1.00 0.20 0.20
drayage-100-23.mps 14.40 13.63 6.23 6.23 1.00 1.00 0.00 0.00
drayage-25-23.mps 3600.22 3518.82 141945.39 253946.34 0.00 0.20 0.20 1.60
dws008-01.mps 3600.25 3600.16 18846.24 26898.38 0.00 0.00 0.80 0.00
eil33-2.mps 216.89 219.30 642.75 642.75 1.00 1.00 0.00 0.00
fast0507.mps 160.40 154.68 1098.18 1098.18 1.00 1.00 0.20 0.00
fastxgemm-n2r6s0t2.mps 3600.09 3600.11 92141.89 116211.18 0.00 0.00 0.80 1.20
fiball.mps 3084.24 1705.33 16081.13 16625.20 0.20 1.00 0.60 0.40
gen-ip002.mps 3600.08 3600.10 490285.45 994279.08 0.00 0.00 0.20 2.00
gen-ip054.mps 3600.09 3600.08 457148.67 993144.34 0.00 0.00 0.20 5.20
germanrr.mps 3600.38 3600.33 2994.52 2976.11 0.00 0.00 0.20 0.40
glass-sc.mps 3600.26 3600.24 70977.51 78388.83 0.00 0.00 0.00 0.00
glass4.mps 3600.09 3367.85 630519.75 904667.44 0.00 0.20 0.40 22.80
gmu-35-40.mps 3600.10 3600.08 577557.38 852713.65 0.00 0.00 0.40 16.40
gmu-35-50.mps 3600.13 3600.15 325272.13 582101.45 0.00 0.00 0.40 13.80
graph20-20-1rand.mps 3600.21 3600.11 35823.18 38320.32 0.00 0.00 0.60 0.00
graphdraw-domain.mps 3600.08 3600.08 340491.40 843202.13 0.00 0.00 1.20 10.80
h80x6320d.mps 192.03 165.01 7.00 7.00 1.00 1.00 0.00 0.00
ic97_potential.mps 3600.10 3600.09 251713.56 673577.59 0.00 0.00 0.80 12.60
icir97_tension.mps 3600.16 3600.13 190907.50 355227.55 0.00 0.00 0.60 6.60
irp.mps 19.40 20.13 3.00 3.00 1.00 1.00 0.00 0.00
istanbul-no-cutoff.mps 342.72 323.77 456.15 456.15 1.00 1.00 0.00 0.00
lectsched-5-obj.mps 3600.54 3600.44 37539.23 60741.38 0.00 0.00 2.60 4.00
leo1.mps 3600.38 3600.23 40954.42 97533.33 0.00 0.00 2.40 0.40
leo2.mps 3600.36 3600.46 17470.85 34214.10 0.00 0.00 1.40 0.00
lotsize.mps 3600.10 3600.08 4352.55 4902.74 0.00 0.00 0.60 4.20
mad.mps 3600.08 3600.05 1115036.96 1294607.08 0.00 0.00 1.00 11.80
markshare2.mps 3600.07 3600.11 4873115.59 5179318.15 0.00 0.00 0.40 0.40
markshare_4_0.mps 3509.23 3600.07 1351789.23 1758934.83 0.20 0.00 0.40 0.40
mas74.mps 3600.08 3600.07 406537.79 1045392.00 0.00 0.00 0.00 2.60
mas76.mps 3128.70 1645.80 414093.05 537679.62 0.50 1.00 0.25 0.75
mc11.mps 3600.08 3600.18 81497.76 114280.48 0.00 0.00 0.00 5.80
mcsched.mps 239.83 241.30 19553.08 19553.08 1.00 1.00 0.00 0.00
mik-250-20-75-4.mps 1071.36 894.57 173467.27 193867.84 1.00 1.00 0.00 0.50
milo-v12-6-r2-40-1.mps 3600.13 3600.11 30083.46 48969.03 0.00 0.00 0.50 8.75
momentum1.mps 3600.35 3600.24 2794.34 2972.13 0.00 0.00 1.25 6.50
mushroom-best.mps 3600.43 3600.37 6233.12 19358.33 0.00 0.00 0.40 0.20
mzzv11.mps 294.80 279.10 313.46 312.08 1.00 1.00 0.20 0.20
mzzv42z.mps 161.65 162.32 14.53 14.53 1.00 1.00 0.00 0.00
n2seq36q.mps 3600.47 3600.44 49254.92 73065.07 0.00 0.00 1.40 1.60
n3div36.mps 3600.77 3600.80 18511.51 22336.79 0.00 0.00 0.00 0.60
n5-3.mps 47.84 46.18 1418.45 1418.45 1.00 1.00 0.00 0.00
neos-1171448.mps 57.15 52.17 94.05 94.05 1.00 1.00 0.00 0.00
neos-1171737.mps 3600.23 3600.12 41179.00 73291.76 0.00 0.00 0.00 0.80
neos-1445765.mps 79.29 75.25 4.53 4.53 1.00 1.00 0.00 0.00
neos-1456979.mps 3600.16 3600.19 96850.50 112603.56 0.00 0.00 0.20 2.80
neos-1582420.mps 26.21 24.74 65.52 65.52 1.00 1.00 0.20 0.20
neos-2657525-crna.mps 3600.16 3600.09 556806.62 750373.25 0.00 0.00 0.75 2.25
neos-2746589-doon.mps 3600.74 3601.05 9551.22 8525.94 0.00 0.00 0.80 2.40
neos-3004026-krka.mps 317.48 328.86 20465.75 20465.75 1.00 1.00 0.00 0.00
neos-3024952-loue.mps 3600.15 3600.06 165185.21 208663.38 0.00 0.00 0.00 22.67
neos-3046615-murg.mps 3600.06 3600.08 121905.30 820139.32 0.00 0.00 2.60 16.40
neos-3083819-nubu.mps 63.37 50.59 6344.27 5909.95 1.00 1.00 1.20 1.20
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Table B.2 – continued from previous page

Instance Total Time Total Nodes Fraction Solved Success Count
w/o SLNS w SLNS w/o SLNS w SLNS w/o SLNS w SLNS RINS SLNS

neos-3216931-puriri.mps 3600.14 3600.16 2337.57 2419.14 0.00 0.00 0.00 0.00
neos-3381206-awhea.mps 6.20 6.43 142.00 142.00 1.00 1.00 0.00 0.00
neos-3627168-kasai.mps 3600.11 3600.17 242116.16 585096.73 0.00 0.00 2.80 14.80
neos-3656078-kumeu.mps 3600.16 3600.21 8710.00 5239.00 0.00 0.00 2.00 5.00
neos-4300652-rahue.mps 3600.81 3600.91 994.63 1010.06 0.00 0.00 0.00 0.00
neos-4338804-snowy.mps 3600.11 3600.11 173090.90 529973.23 0.00 0.00 3.40 9.80
neos-4387871-tavua.mps 3600.09 3600.15 30279.21 38569.48 0.00 0.00 0.60 8.00
neos-4722843-widden.mps 3600.75 3600.82 2026.00 2020.00 0.00 0.00 0.00 2.00
neos-4738912-atrato.mps 1070.18 519.59 40484.60 24748.27 1.00 1.00 1.00 6.20
neos-4763324-toguru.mps 3601.17 3600.87 3837.69 4712.51 0.00 0.00 0.40 0.40
neos-4954672-berkel.mps 3600.18 3600.09 329482.40 495201.87 0.00 0.00 0.00 9.40
neos-5107597-kakapo.mps 3600.15 3600.17 126913.45 183648.23 0.00 0.00 0.00 17.60
neos-5188808-nattai.mps 1966.34 1902.64 19564.54 19318.90 1.00 1.00 0.00 1.00
neos-5195221-niemur.mps 3600.38 3413.26 19466.73 19235.71 0.00 0.20 1.80 7.20
neos-662469.mps 3600.36 3600.53 9227.41 21665.03 0.00 0.00 3.20 4.00
neos-873061.mps 3601.73 3605.29 1406.73 1389.73 0.00 0.00 2.60 0.00
neos-911970.mps 3600.09 3600.25 428650.26 808101.88 0.00 0.00 0.60 6.60
neos-933966.mps 207.41 209.39 26.49 26.49 1.00 1.00 0.00 0.00
neos-950242.mps 3600.24 3600.25 932.14 1299.04 0.00 0.00 0.00 0.00
neos-957323.mps 58.66 58.50 3.00 3.00 1.00 1.00 0.00 0.00
neos-960392.mps 297.78 259.13 129.38 129.38 1.00 1.00 0.00 0.00
neos17.mps 95.69 41.12 8142.79 7337.97 1.00 1.00 0.80 2.60
neos5.mps 3600.12 3600.06 397930.18 946703.76 0.00 0.00 1.00 0.00
net12.mps 941.91 866.84 2053.48 2081.68 1.00 1.00 0.40 0.40
nexp-150-20-8-5.mps 3600.20 3600.15 8309.66 13826.66 0.00 0.00 1.40 0.00
ns1208400.mps 580.30 469.86 5355.72 5355.72 1.00 1.00 0.00 0.00
ns1830653.mps 1344.91 733.32 22825.68 26280.82 0.80 1.00 0.80 1.60
ns1952667.mps 1657.27 1302.45 4287.21 4287.21 1.00 1.00 0.00 0.00
nu25-pr12.mps 7.49 6.38 18.61 18.61 1.00 1.00 0.00 0.00
nursesched-sprint02.mps 65.07 55.52 78.67 78.67 1.00 1.00 0.00 0.00
opm2-z10-s4.mps 3600.73 3600.98 141.49 96.11 0.00 0.00 0.00 0.00
p200x1188c.mps 6.90 7.22 3.00 3.00 1.00 1.00 0.00 0.00
peg-solitaire-a3.mps 2483.56 2830.09 2009.00 2009.00 1.00 1.00 0.00 0.00
pg.mps 21.24 20.87 545.62 539.69 1.00 1.00 0.40 0.40
pg5_34.mps 2965.45 1670.95 129940.19 134292.25 0.40 1.00 0.80 4.60
physiciansched6-2.mps 119.69 121.44 81.36 81.36 1.00 1.00 0.00 0.00
piperout-08.mps 270.05 264.31 918.91 862.24 1.00 1.00 0.00 0.80
piperout-27.mps 361.10 353.10 427.90 427.90 1.00 1.00 0.20 0.00
pk1.mps 1546.83 1080.30 334642.60 337004.62 1.00 1.00 1.00 5.00
radiationm18-12-05.mps 3600.34 3600.39 118158.72 159340.03 0.00 0.00 2.40 15.40
radiationm40-10-02.mps 3601.52 3601.32 8241.84 11768.41 0.00 0.00 0.20 7.80
rail01.mps 3600.80 3600.80 20.00 20.00 0.00 0.00 0.00 0.00
rail507.mps 138.34 121.40 776.22 776.22 1.00 1.00 0.00 0.00
ran14x18-disj-8.mps 3600.11 3600.05 343795.94 484604.14 0.00 0.00 0.80 22.40
reblock115.mps 3600.12 3600.13 150356.25 227933.45 0.00 0.00 3.80 17.80
rmatr100-p10.mps 100.55 89.62 904.60 904.60 1.00 1.00 0.20 0.00
rmatr200-p5.mps 3600.40 3600.34 861.89 1095.37 0.00 0.00 0.00 0.25
rocI-4-11.mps 164.10 156.81 17190.87 17190.87 1.00 1.00 0.40 0.00
rocII-5-11.mps 3600.52 3600.52 26775.93 34168.43 0.00 0.00 0.00 2.20
rococoB10-011000.mps 3600.13 3600.10 116776.42 119125.92 0.00 0.00 1.60 8.00
rococoC10-001000.mps 3600.13 3600.10 226200.38 273425.58 0.00 0.00 0.60 15.80
roll3000.mps 2568.34 2231.83 139905.20 149362.74 1.00 1.00 1.80 8.00
satellites2-40.mps 3600.42 3600.60 125.00 66.00 0.00 0.00 0.00 0.00
satellites2-60-fs.mps 3600.42 3600.22 163.00 183.00 0.00 0.00 0.00 0.00
sct2.mps 3600.11 3600.09 77337.68 263616.98 0.00 0.00 1.00 3.00
seymour.mps 3600.12 3600.16 41626.45 52490.32 0.00 0.00 1.40 4.20
seymour1.mps 284.40 277.75 2232.08 2241.02 1.00 1.00 0.20 1.00
sing326.mps 3600.63 3600.82 5217.53 6068.87 0.00 0.00 2.00 6.60
sing44.mps 3600.67 3601.02 5625.18 5803.36 0.00 0.00 1.20 4.80
snp-02-004-104.mps 3602.57 3602.59 154.47 121.60 0.00 0.00 0.00 0.00
sp150x300d.mps 3600.08 3600.14 168410.00 697981.00 0.00 0.00 0.00 0.00
sp97ar.mps 3600.65 3600.74 10606.34 31965.33 0.00 0.00 3.00 0.20
sp98ar.mps 3600.80 3600.53 15187.13 31137.32 0.00 0.00 3.80 0.00
supportcase18.mps 3600.21 3600.26 37333.82 97209.07 0.00 0.00 0.60 0.00
supportcase26.mps 3600.14 3600.12 223687.86 695869.30 0.00 0.00 0.40 10.40
supportcase33.mps 2033.37 1784.52 8045.60 7678.71 1.00 0.80 0.00 0.60
supportcase40.mps 3600.38 3501.44 12947.05 37884.52 0.00 0.60 0.40 6.60
supportcase42.mps 3601.17 3600.77 7525.02 12619.45 0.00 0.00 0.50 2.00
swath1.mps 75.84 70.60 880.81 876.38 1.00 1.00 0.25 0.25
swath3.mps 3515.57 2967.56 39791.72 81306.08 0.20 0.20 0.80 1.40
tbfp-network.mps 1409.77 1360.22 100.06 100.06 1.00 1.00 0.00 0.00
thor50dday.mps 3601.11 3602.31 1022.14 1584.67 0.00 0.00 0.50 0.00
timtab1.mps 3600.09 3521.75 452158.92 662145.91 0.00 0.20 1.60 12.60
tr12-30.mps 3600.05 3600.09 336947.43 375019.26 0.00 0.00 0.60 7.80
traininstance2.mps 3600.16 3600.24 6714.12 7170.22 0.00 0.00 0.60 0.80
traininstance6.mps 3600.14 3600.14 28588.93 26454.05 0.00 0.00 0.20 2.00
trento1.mps 3600.31 3600.20 16268.06 22435.67 0.00 0.00 0.60 9.00
uccase12.mps 3601.32 3601.42 5077.85 9655.18 0.00 0.00 0.60 1.00
uccase9.mps 3600.77 3600.61 1039.08 1220.45 0.00 0.00 0.00 1.20
uct-subprob.mps 3600.19 3600.09 170054.68 189334.80 0.00 0.00 1.00 7.20
unitcal_7.mps 232.51 227.99 240.30 240.30 1.00 1.00 0.00 0.00
wachplan.mps 3600.21 3600.26 39473.64 92073.21 0.00 0.00 0.00 0.00
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