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Abstract

The thesis focused on the development of a wearable motion tracking platform employing

fiber strain sensors and inertial measurement units through a data fusion algorithm. The

development of a smart sleeveless shirt for measuring the kinematic angles of the trunk in

complicated 3-dimensional movements was demonstrated. Fiber strain sensors were inte-

grated into the fabric as the sensing element of the system. Furthermore, a novel method

for obtaining the kinematic data of joints based on the data from wearable sensors was pro-

posed. More specifically, the proposed method uses the data from two gyroscopes and the

smart shirt strain sensors in a combined machine learning-unscented Kalman filter (UKF)

data fusion approach to track the three-dimensional movements of a joint accurately. The

suggested technique thus avoids the common problems associated with extracting the move-

ment information from accelerometer and magnetometer readings in the presence of distur-

bances. A study with 12 participants performing an exhaustive set of simple to complex

trunk movements was conducted to investigate the performance of the developed algorithm.

The results of this study demonstrated that the data fusion algorithm could significantly

improve the accuracy of motion tracking in complicated 3-dimensional movements. Future

work requires coherently combining both types of sensors in a wearable platform for full-

body motion tracking so that the proposed algorithm can be tested in a variety of daily

living activities.

Keywords: wearable sensors; fiber strain sensor; IMU; unscented Kalman filter; random

forest regressor; wearable motion tracking
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Chapter 1

Introduction

The material of this chapter is excerpted, modified, and reproduced with permission from

the following papers that I co-authored:

• A. Rezaei, T.J. Cuthbert, M. Gholami, C. Menon, "Application-Based Production

and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility

Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles", Sensors,

vol. 19, no. 19, p. 4288, 2019.

• A. Rezaei, M. Khoshnam, C. Menon, "Towards User-friendly Wearable Platforms for

Monitoring Unconstrained Indoor and Outdoor Activities", article in preparation.

Sections of this chapter have been adapted from the above papers to fit the scope and

formatting of the thesis.

1.1 Background

Musculoskeletal disorders, specifically low back pain (LBP), plague a large portion of the

population in a variety of occupations, including healthcare and social assistance [1]. Chronic

LBP is the second leading cause of disability worldwide [2]. Despite its widespread prevalence

in many occupations, risk assessment and management of LBP is still controversial [3]. Risk

assessment for this disorder is a multifactorial problem that both physical and psychoso-

cial factors contribute to its happening [3, 4]. Among the physical factors, several different

factors including frequency and duration of lift/bending, average and maximal weight of

lift, pounds lifted/lowered per day/hour, frequency and duration of bending/twisting/static
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posture, estimation of energy expenditure, body part discomfort survey, perceived effort,

length of time employed, prolonged sustained bad posture, peak lumbar shear force, cumu-

lative lumbar compression, cumulative spinal loads, and peak spinal flexion velocity have

been suggested as attributable to the LBP [5, 6, 7, 8]. However, there is still an open dis-

cussion about the relationship between these factors and the LBP occurrence. This unclear

relationship is due to the lack of enough long-term kinematic and kinetic information of

the workers so that a clear causal relationship can be established. While performing similar

workplace tasks in a lab environment has been a common approach to gather this infor-

mation; it has been shown that the results of such clinical tests were considerably different

from real-life examinations [9]. As a result, in situ measurement systems are necessary for

injury risk assessment. This highlights the need for unobtrusive systems that allow move-

ment tracking measurements without any interference with the user’s daily routine. With

the emergence of wearable sensors, they can perform a principal role in solving this problem.

Their reliability and accuracy however still need to be studied.

In situ motion tracking application is not limited to the biomedical applications such as

LBP prevention. It has a variety of applications in sports such as diagnosis, rehabilitation,

physical monitoring, and performance improvement in athletes [10]. Kinematic information

measured by wearable sensors provides variables that can help the trainers for training im-

plementation and performance evaluation [11, 12]. Variables such as proper execution of

physical movements, number of repetitions of the movements, proper posture during exe-

cuting a movement, and duration of movements can all be measured having the kinematic

information of the body [10]. If the athletes are equipped with sensors that are capable of

monitoring the movements in real-time, physiologists and trainers can assess the perfor-

mance, provide necessary interventions, and reduce the chance of injury occurrence. This

shows that the importance of in situ motion tracking expands to the different applications,

as this information is significantly beneficial.

Current technologies that can track movement accurately are non-wearable systems.

Non-wearable systems are considered the gold standard for motion analysis measurements.

Electromagnetic tracking, ultrasonic, and optoelectronic motion capture are among the non-
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wearable systems [13]. These systems are all marker-based and have been used in the lab

environment as they provide accurate kinematic data of movement. However, they have limi-

tations that restrict their application in the workplace environment (sophisticated hardware,

high cost, non-portable). All movements are required to be performed in the capture space

of the optoelectronic or the magnetic field of the electromagnetic systems, which makes the

application of these systems spatially limited [3]. These limitations raise the need for devel-

oping reliable and accurate wearable motion capture systems employing wearable sensors.

Wearable sensors have been recognized as a promising solution for conducting in situ

measurements that were previously limited only to the laboratory environments. These sen-

sors are available in various types for measuring physiological and movement data such as

heart rate, blood pressure, respiratory rate, muscle activity, kinematic, and kinetic data,

which are the most common signals of interest for different applications [14]. The extensive

range of potential applications of these sensors is due to the substantial amount of informa-

tion that can be collected using them. They have been used in sport and training [15, 16],

clinical and home rehabilitation [17, 18, 19], health, wellness initiatives, and safety monitor-

ing [20, 21, 22, 23, 24, 25, 26], social interaction improvement [27, 28, 29], and occupational

safety and health monitoring. For the last application, wearable sensors measuring move-

ment data are of special interest. They can provide valuable physical activity information

for monitoring and preventing LBP, which is among the most costly health care problems

in the society today [1].

Employing wearable sensors would overcome the limitations of non-wearable systems.

These inexpensive sensors eliminate the spatial limitations of non-wearable devices. Electro-

goniometers, capacitive strain-based sensors, textile piezoresistive strain sensors, fiberoptic

sensors, accelerometers, and inertial measurement units (IMU) are among the most common

wearable sensors [3, 30, 31]. Among these, Electrogoniometers have been the first systems

being used as wearable devices. Lumbar Motion Monitor(LMM) and CUELA systems are

some of the very earliest devices working based on electrogoniometers [32, 33]. They have

been employed in several studies for motion tracking [34, 35, 36] and are shown to have

a superior level of accuracy for in situ data collections. Hybrid systems have been used
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more recently in which electrogoniometers have been combined with accelerometers and

gyroscopes to improve the performance [37]. However, these systems are bulky, uncomfort-

able for extended use, and interfere with worker performance [38]. Consequently, developing

wearable platforms for unobtrusive accurate continuous real-time monitoring of the trunk

motion has been an active focus of research studies in the past years. The proposed plat-

form should be unobtrusive and accurate, so it can be used reliably for prolonged periods

in different professions.

Considering these requirements for the wearable platform, two different prominent types

of sensors have been investigated as the possible solutions:

• Inertial-based motion tracking

• Strain-based motion tracking

The integration of these sensors has become easy and unobtrusive due to the recent ad-

vances in their underlying technology. They can be implemented as part of the cloth and

create a wearable motion tracking platform that is seamlessly combined with the users’

normal daily clothing. This is a great advantage that makes the application of these sensors

unobtrusive for the user. The development and improvement of these systems have there-

fore been a compelling topic of research. Inertial-based motion tracking is mainly performed

using acceleration and angular velocity information in combination with the magnetic field

measurements; while in the strain-based approach, different sensors such as capacitive strain

sensors, strain gauges, printed piezoresistive strain sensors, and fiber piezoresistive sensors

have been used to measure the strain pattern change in the fabric. This change can then

be correlated with the desirable kinematic angles of the body that induces the change. Be-

sides these two common types of sensors, there are other types that have limitedly been

investigated:

• Fiber-optic Sensors: Fiber-optic sensors are bending sensors that measure the den-

sity of light passing through the fiber which changes proportionally with respect to

the bending angle and can be used for measuring the angle [31, 39].
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• Inductive-based sensors: An additional type of sensor is the inductive-based sensor.

Similar to the fiber-optic based sensors, this sensor relies on the amount of change of

inductance induced in the sensor because of the body posture change [40].

• Strain-gauge Sensors: Other solutions have included more obtrusive devices that

attached several strain gauge sensors to the user’s skin [41, 42, 43]. In these applica-

tions of the sensors, the shifting between the sensor and the user’s skin is minimized

and the results of motion tracking is improved. However, the application of these sen-

sors are limited to the clinical environment where clinicians are available for attaching

and detaching the sensors to the specific areas on the user’s skin.

• Other Sensors: Air-filled tubes and dosimeters are other types of sensors which act

as pressure sensors and capacitive-based sensors respectively and have been used for

joint angle measurement [44, 45].

Among the two common types of sensors, the former inertial-based one has been well

studied and different aspects of employing this type of sensor have been investigated in

several studies [3, 46, 47]. The application of this sensor has been shown to have limitations

that hinder its widespread use in all environments. For the later strain-based approach,

there have been fewer studies focused on the development of this approach [47]. However,

one significant aspect of using this type of sensor is its fabric integration method. Printing

the sensor on the fabric has been the earliest and most simple integration of piezoresistive

sensors into the fabric [48, 49]. More recently, piezoresistive sensors have been produced in a

fiber shape with diameters close to those of the regular threads [50, 51]. This integration is

an excellent advantage of these sensors, which allows the seamless integration of the sensor

into the fabric structure by replacing the regular thread with the fiber sensor. Mokhlespour

et al. showed that users prefer a sensor integrated shirt as their activity monitoring platform

as such a system was rated superior to a whole-body IMU-based motion tracking system in

several aspects of usability [52]. However, these sensors also suffer from limitations such as

nonlinearity, hysteresis, and long transient time between different modes.
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Considering the advantages and disadvantages of the two prominent wearable motion

tracking sensors, the motivation for this thesis is to develop a wearable motion tracking

device that combines the two sensor types in a manner that compensates the drawbacks of

each type. The developed system should have the advantage of sensors being intrinsically

integrated into the clothing and also benefit from the kinematic information that IMU

sensors can provide for motion tracking.

1.2 Research Objectives

As mentioned in the previous section, lower back injury risk assessment is a multifactorial

problem which quantitative physical exposure measurement has been recommended as one

of the informative factors for assessing the risk of injury. Existing reliable motion capture

systems can not be used in the workplace environment for measuring this factor. A wear-

able platform capable of measuring the trunk kinematic information indoor and outdoor

would therefore be beneficial to both the workers and administrators for defining useful

interventions in the workplace to decrease or stop the LBP occurrence. This system should

provide unobtrusive accurate continuous real-time monitoring of the trunk motion for an

extended period. IMUs and fiber-strain sensors have been the two promising solutions for

developing such a wearable system. Although the application, performance, data processing

algorithms, limitations, and advantages of using IMUs have been well studied, the applica-

tion of fiber-strain sensors for monitoring 3-dimensional complex movements of the trunk

has yet to be evaluated. As a result, preliminary developing and testing of a wearable system

using fiber strain sensors for monitoring trunk movements was one of the objectives of this

thesis. Besides, it was hypothesized that since both IMU-based and strain-based systems

have intrinsic limitations in terms of their capabilities for tracking movement, combining

the two approaches in one platform and then fusing the data from the two types of sensors

together might improve the total performance of the system. As a result, the objectives of

this thesis are listed as follows:

6



Objective 1. Design and development of a wearable system using fiber strain sensors with

seamless integration of the sensors into the textile and investigation of its performance

in tracking 3-dimensional movements of the trunk.

Objective 2. Improving the performance of wearable motion tracking by developing an

algorithm for fusing the inertial-based and strain-based data in one platform in a way

that the two types of sensors compensate for each other drawbacks. The developed

algorithm should not be restrained to the trunk motion tracking, and hence, it should

be designed in such a way that could be implemented for all body joints. As a result,

no joint kinematic constraints should be employed for improving the estimation.

Figure 1.1 shows the scope of this work. For the data fusion algorithm, this work focuses

only on strain sensor and gyroscope data fusion where accelerometer and magnetometer data

are neglected. Although the last two sensors data suffer from dynamic noises, they can be

integrated into the developed algorithm so that the performance of the algorithm would

improve. This is out of the scope of this thesis and can be followed as the future work.

In an attempt to achieve these objectives, a study with 12 participants was conducted to

investigate the performance of both the developed system and the data fusion algorithm.

1.3 Scientific Contributions

The conducted research throughout this thesis contributes to the advancement of wearable

motion tracking by developing novel wearable devices and intelligent algorithms for analyz-

ing the wearable sensors’ data. Firstly, a novel wearable device employing a thread-like strain

sensor was designed and prototyped. The device is capable of measuring the 3-dimensional

relative angles of the trunk with respect to the pelvis. Secondly, the advantages and limita-

tions of strain sensors in wearable motion tracking were identified. Thirdly, a novel motion

tracking platform was introduced in this thesis. Despite the traditional approaches in the lit-

erature, the platform combines properties of both inertial-based and strain-based wearable

sensors to eliminate each sensor’s drawbacks which is an approach unlike anything currently

in the literature. The essential component of this platform is an original data fusion algo-
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Figure 1.1: The thesis scope and the direction of the future work

rithm, which was designed to interpret the sensors’ data. The results of this research led to

the following academic journal publications:

• A. Rezaei, T.J. Cuthbert, M. Gholami, C. Menon, "Application-Based Production

and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility

Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles", Sensors,

vol. 19, no. 19, p. 4288, 2019.

• A. Rezaei, M. Khoshnam, C. Menon, "Towards User-friendly Wearable Platforms for

Monitoring Unconstrained Indoor and Outdoor Activities", article in preparation.
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1.4 Outline

The body of this thesis is organized as the following chapters:

Chapter 3. In this chapter, the design of a smart garment using fiber core-sheath strain

sensors for monitoring 3-dimensional movements of the trunk is described, and a

machine learning algorithm is developed to use the strain sensors signals for estimation

the trunk Euler angles. The results of a study with 12 participants performing a set of

exhaustive trunk movements while wearing the developed smart garment are presented

in the chapter.

Chapter 4. This chapter describes the development of a novel data fusion filter employing

unscented Kalman filter and machine learning to fuse the strain sensor and gyroscope

sensor data in one single platform for compensating the drawbacks of each sensor

and improving the overall performance of wearable motion tracking. As a case study,

the same data set that was used in the previous chapter is used in this chapter to

investigate the performance of the proposed data fusion technique and compare its es-

timation of the trunk motion with the machine learning regressor algorithm developed

in the previous chapter.

Chapter 5. This chapter concludes the thesis by discussing how the objectives of the thesis

were achieved.
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Chapter 2

Background

The material of this chapter is excerpted, modified, and reproduced with permission from

the following papers that I co-authored:

• A. Rezaei, T.J. Cuthbert, M. Gholami, C. Menon, "Application-Based Production

and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility

Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles", Sensors,

vol. 19, no. 19, p. 4288, 2019.

• A. Rezaei, M. Khoshnam, C. Menon, "Towards User-friendly Wearable Platforms for

Monitoring Unconstrained Indoor and Outdoor Activities", article in preparation.

Sections of this chapter have been adapted from the above papers to fit the scope and

formatting of the thesis.

2.1 Inertial-Based Motion Tracking

Inertial-based motion tracking is performed employing the kinematic information measured

by inertial measurement units (IMU). IMU sensors are microelectromechanical(MEMS) sen-

sors consisting of an accelerometer, gyroscope, and magnetometer measuring linear acceler-

ation, angular velocity, and magnetic field strength, respectively. These sensors can capture

the orientation of the sensor with respect to the earth-fixed reference coordinate system [53].

IMU sensors are of great interest in wearable motion tracking because they are lightweight,

inexpensive, miniaturized, enduring(limited power consumption), and self-contained(they

can operate without the need for any external sources). They have consequently been used
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in several different applications including health, wellness, and safety monitoring [14], gait

analysis in clinical settings [54], human activity recognition [55], several medical applications

of wearable motion tracking such as stabilometry, instrumented clinical tests, and tremor

assessment [56]. Assuming that the physical characteristics of the MEMS sensors inside an

IMU are known, the accuracy of the estimated orientation of the IMU highly depends on

the algorithm exploited to fuse the information of these sensors. A significant concentration

of research has therefore been on developing these filters [57].

The sensors included inside an inertial measurement unit have complementary attributes

that can be used in a filtering algorithm to compensate for each sensor’s drawbacks. The

primary orientation estimation in IMU is conducted using the integration of angular velocity

measured from the triad gyroscope sensor from a known initial orientation. This integration

will lead to a considerable drift amount over a short time, even in a static posture of the

sensor with no movement because of the inherent gyroscope problem: low-frequency gyro

bias. If this bias value can be compensated, gyro sensor data integration can estimate the

correct orientation with high accuracy even in highly dynamic movements. On the other

hand, an accelerometer sensor can provide an accurate estimation in a static posture, but

its accuracy drops down in dynamic movements where the linear acceleration of the body

is added to the gravity acceleration measured by the sensor. As the different components of

acceleration are indistinguishable for the sensor, the estimated orientation is not accurate,

and the accelerometer estimation is hence only accurate in static or slowly moving objects.

Another drawback of the accelerometer sensor is that it can only measure the roll and

pitch Euler angles, as it uses the gravity acceleration vector as the reference. This problem

necessitates the utilization of a magnetometer sensor to estimate the heading angle. This

sensor has a similar problem in measuring the earth’s magnetic field. When there is no

ferromagnetic object close to the sensor, the magnetometer is accurate in estimating the

heading angle. However, in environments where ferromagnetic objects are available, which

is mostly indoor heading estimation, the accuracy of the estimation is prone to collapse.

Consequently, several different filtering approaches have been introduced to overcome every

single sensor’s disadvantages and provide an accurate overall orientation estimation.

11



2.1.1 Sensor Data Fusion Algorithms

Sensor data Fusion for estimating an optimal orientation has a long history, particularly for

guidance and control. Over time, three main approaches have been developed: deterministic

(least square) approaches, complementary filtering algorithm (frequency-based method),

and Kalman filtering [57, 58]. Among the three methods, Kalman filtering is a powerful

technique for combining multisensory data. As it is mentioned in [59, p.75], Kalman filtering

is "perhaps the perfect tool for elegantly combining multisensory fusion, filtering, and motion

prediction in a single fast and accurate framework." The focus of this thesis is therefore on

implementing a Kalman filtering approach for sensor data fusion.

Kalman Filtering

Kalman filtering approach is a solution for the general problem of state estimation when

direct measurement of the system states is not possible. As formulated in [60], the state

space modeling of a system in the discrete-time domain can be formulated as follows

x(tk+1) = f(x(tk),v(tk)) (2.1a)

y(tk) = h(x(tk),n(tk)) (2.1b)

in which vector x(tk) is the state vector and vector y(tk) is the measurement vector of the

system, the function f(x(tk),v(tk)) is the process model that projects the previous time

step state vector to the current state, and h(x(tk),n(tk)) is the measurement function which

maps the state vector to the measurement vector. Both these functions can be nonlinear

and time-variant. Considering they are both known, the exact value of the state vector can

not be calculated due to the noise vectors included in this formulation. The vectors v(tk)

and n(tk) are the process and measurement noise vectors, respectively. They are present

to account for all the disturbances and mismodelling that exist in the system. From the

practical point of view, the vector x is the unobserved vector which is immeasurable, and

the vector y is the only observed signal in the system. Having this formulation, the problem

of state estimation can be stated as: knowing the prior estimation of the state vector at

time tk as x(tk) and the measurements of the system at time tk+1 as y(tk+1), it is intended
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to estimate the value of the state vector xk+1. To solve this problem, it is assumed that the

noise vectors are white discrete noises with known probability density functions (PDF), and

are statistically independent. The initial state vector is assumed to be known with known

PDF at the initialization of the filter [57].

The original Kalman filtering approach introduced in [61] was for a linear system. In

the case of a linear system, the system model will be simplified to

x(tk+1) = Fx(tk) + v(tk) (2.2a)

y(tk) = Hx(tk) + n(tk) (2.2b)

The Kalman filtering suggests a recursive state estimation solution for x(tk+1) as expressed

as follows [62]

x̂(tk+1) = (prediction of x(tk+1)) +K(tk+1)[y(tk+1)− (prediction of y(tk+1))] (2.3a)

x̂(tk+1) = x̂−(tk+1) +K(tk+1)[y(tk+1)− y−(tk+1)] (2.3b)

x̂(tk+1) show the estimated value of x(tk+1). x̂−(tk+1) and y−(tk+1) are called a priori

estimate and are the predictions of the state and measurement calculated using the system’s

dynamic model (2.2) and the previous time step estimation of states (x̂(tk)). This recursive

filter is based on defining the K(tk+1) to find the optimal minimum mean squared error

for x(tk+1) assuming that y(tk+1) and x̂(tk) are Gaussian random variables. This is a

principal assumption for Kalman filter, since if the variables are Gauassian, they can be

characterized using only their mean vector and covariance matrix. As mentioned before,

the additive noises in 2.2 are assumed to be independent zero-mean white Gaussian with

known covariance matrices Q and R which can be time-variant. The Kalman filter process

is therefore as follows [57]:

1. Initialization: x̂(t0) and the initial covariance matrix of the state vector denoted as

P̂ (t0) should be known. A small value can be selected for P̂ (t0) for initialization of

the filter as it can be tuned to minimize the filter’s divergence time, but an accurate

estimation of the state vector is necessary for the correct performance of the filter.
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2. Time Update: In this step, a priori estimate of the state vector and its covariance

matrix are calculated.

x̂−(tk+1) = F (tk)x̂(tk) (2.4a)

P̂−(tk+1) = F (tk)P̂ (tk)F T (tk) +Q(tk) (2.4b)

3. Measurement Update: In this step, the measurement time update (ŷ−(tk+1)) and

its difference with the measured value from sensors(y(tk+1)) which is denoted as in-

novation (y(tk+1) − ŷ−(tk+1)), and the innovation covariance matrix are calculated:

ŷ−(tk+1) = H(tk+1)x̂−(tk+1) (2.5a)

w(tk+1) = y(tk+1)− ŷ−(tk+1) (2.5b)

Ŝ(tk+1) = H(tk+1)P̂−(tk+1)HT (tk+1) +R(tk+1) (2.5c)

4. State Correction: The last step of the filter is correcting a priori estimate of the

state vector by combining a priori estimate with the innovation using Kalman gain

and calculating a posteriori estimate of the state vector (as it is shown in 2.3):

K(tk+1) = P̂−(tk+1)HT (tk+1)Ŝ−1(tk+1) (2.6a)

x̂(tk+1) = x̂−(tk+1) +K(tk+1)w(tk+1) (2.6b)

P̂ (tk+1) = P̂−(tk+1)−K(tk+1)H(tk+1)P̂−(tk+1) (2.6c)

The preceding process is the Kalman filter process for a linear system. In practice, most

of the systems have a nonlinear state-space model. Consequently, several different versions

of the Kalman filter have been developed to overcome this problem. Extended Kalman
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filter (EKF), Unscented Kalman filter(UKF), and particle filters are some of these filters.

The most prevalent version is the EKF, which is an extension of the Kalman filter using

linearization of the model using Taylor’s series expansion. Considering equation 2.1 that the

system has n states andm output, then using the Jacobian matrix, the linearized state-space

model of the system is

F (tk) =


∂f1(x(tk))

∂x1
· · · ∂f1(x(tk))

∂xn

... . . . ...
∂fn(x(tk))

∂x1
· · · ∂fn(x(tk))

∂xn

 (2.7a)

H(tk) =


∂h1(x(tk))

∂x1
· · · ∂h1(x(tk))

∂xn

... . . . ...
∂hm(x(tk))

∂x1
· · · ∂hm(x(tk))

∂xn

 (2.7b)

At each step of the filter, the preceding Jacobian matrices are calculated using a posteriori

estimate of the last step of the filter to calculate a priori estimate of the current step. This

process increases the required computational power. Also, EKF accuracy degrades in points

where there is a high nonlinearity, and the Jacobian matrix is not a good linearized estimate

of the real function. As mentioned in [62], "These approximations, however, can introduce

large errors in the true posterior mean and covariance of the transformed (Gaussian) random

variable, which may lead to sub-optimal performance and sometimes divergence of the

filter." These limitations lead to employing other versions of the Kalman filter in which the

linearization problem has been solved in different approaches.

In this work, the Unscented Kalman filter(UKF) was used as the data fusion method.

While Extended Kalman Filter(EKF) relies on Jacobian matrix calculation for linearization,

UKF employs unscented transformation to calculate the mean and covariance matrix of a

Gaussian statistical variable when it undergoes through a nonlinear function. This method

preserves the statistical information accuracy and outperforms the EKF when the nonlinear

characteristics are strong. UKF provides a good estimation accuracy with a computational

complexity comparable with the EKF and other nonlinear filters. The details of this filter

are provided in Chapter 4.
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In the context of using Kalman filtering for orientation estimation by employing IMU

sensors, different state-space models have been employed [57, 63]. The typical approach is

to use the gyroscope data integration in the process model and the orientation calculated

from the accelerometer and magnetometer data in the measurement model of the filter.

This accelerometer/magnetometer based orientation is with respect to the inertial ground

frame, and several algorithms have been used for its calculation [64, 65]. Overall, roll and

pitch Euler angles estimations are provided from accelerometer and yaw, or heading angle is

provided from magnetometer data. In this work, accelerometer and magnetometer data are

discarded, and instead, it is hypothesized that strain sensor data can provide the required

estimation of the angle for Kalman filter. The details are discussed in Chapter 4.

2.1.2 Inertial-Based Motion Tracking Limitations

Several IMU units can be used together to form a wearable inertial motion capture (IMC)

system. Recently, IMC systems have been used in several kinematic information measure-

ment applications, tracking the lower extremities [66], spine [67, 68], and trunk [69]. How-

ever, important performance limitations of the IMCs have been reported [46, 70]. The IMC

performance accuracy was shown to decrease significantly by the movement characteristics

(movement complexity, range, speed, and period) [46, 53, 70, 71, 72, 73]. Fast complex

movements over long periods have higher errors compared to short, simple tasks [70, 74].

Besides, magnetometers are extremely sensitive to the ferromagnetic environmental distur-

bances and cause a considerable amount of error in IMU heading estimation [75, 76]. These

limitations restrict the prolonged application of IMCs for workplaces with ferromagnetic

objects present in the environment.

Consequently, as ferromagnetic objects are always available indoor, this limitation has

hindered the widespread application of IMCs for indoor motion tracking. In this thesis,

accelerometer and magnetometer sensors were replaced with strain sensors, so the flaws

that are introduced to the system because of using these sensors would be eliminated. This

method is a novel approach of wearable motion tracking which limited studies have studied

its feasibility. The next section describes the previous works focus on fusing IMU and strain

sensor data.
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2.2 Strain-Based Motion Tracking

Considering the mentioned limitations of IMC, the application of smart textiles has been

investigated as a substitute for IMC systems. Smart sensing textiles have sensors integrated

into the textile and have shown great potential for measuring human joint angles [50, 77]. In

this application, the strain sensor can be integrated into the textile at specific positions on

the garment that strain when movement occurs [78]. The application of these systems has

been applied for task classification, speech recognition, gait analysis, and planar movement

angle measurement [50, 77, 78, 79, 80, 81].

2.2.1 Machine Learning

Various algorithms have been employed for strain sensors signal processing. Among them,

machine learning algorithms are the most prevalent for this purpose. Support Vector Ma-

chines(SVMs), Neural Network, and Random Forest are frequently used for classification

and regression when processing strain sensor data. While random forest decides about the

samples by averaging the decision of a set of trained decision trees [82], support vector ma-

chines use some specific data points as support vectors, and use kernel functions for mapping

the data points to a space with higher dimension to make the data linearly separable [83].

Neural Networks are comprised of a set of layers, where each layer has a predefined number

of neurons or nodes. This algorithm works based on back-propagating the error in each step

of the training to find the weight and bias parameters which are then used for connecting

the neurons to each other [84].

Comparing these three algorithms, random forest has a superior performance in angle

estimation and task classification applications using smart textiles and strain sensors [50,

77, 85, 86]. Therefore, random forest regressor algorithm was selected for analyzing the

data in this work. Random Forest is an ensemble of decision trees each trained on a boot-

strap sample of training data. Boot-strap samples are generated by randomly selecting data

points from training data with replacement (i.e., one data point might be selected several

times) [87]. A decision tree is then built using each boot-strap sample, and a subset of

random features is used for splitting nodes of trees. Each tree generates a prediction of the
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angle, and random forest then chooses the final angle estimation by a majority vote between

the prediction of all trees. Compared to a single decision tree, random forest is robust to

overfitting on the training data, and has a smaller generalization error [87].

2.2.2 Feature Extraction and Selection

Feature extraction is a common technique when analyzing time series data, that can improve

the performance accuracy of the employed machine learning algorithm. In many applica-

tions, it is common for the number of features at each data point (depending on the size of

the selected window) to be the same or bigger than all of the observed data points. This may

lead to a problem called overfitting of the model during training. In these cases, dimension

reduction can be used by employing feature extraction. Additionally, feature extraction can

add new information to the data set that was not originally available from the observations.

The challenging part of the feature extraction is selecting the best possible features. When

prior knowledge of the domain is available, one can use this knowledge to extract the most

relevant features. However, in many cases such as in this thesis, there is no prior knowl-

edge of the domain available. In such cases, one possible solution is to employ a technique

called automatic feature extraction. In this approach, a massive feature set derived from

scientific literature is extracted from the data set. However, most of these features are not

informative, and employing them decreases the accuracy. Consequently, a feature selection

algorithm such as the greedy forward feature selection [88] or tree-based ranking [50] is then

applied to the extracted features. The feature selection algorithm grows a subset of features

by employing the training data set and by sorting the features based on their importance,

choosing the most important one as the first entry of the subset. The process is contin-

ued by adding more features and is terminated when a pre-defined termination criteria is

satisfied. This criteria depends on the employed feature selection algorithm. The selected

subset of features then provides the input for the machine learning algorithm. This feature

extraction-selection approach was conducted in chapter 3 of this thesis.
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2.2.3 Strain-Based Motion Tracking Limitations

The potential of smart sensing textiles for angle measurement in simple planar movements

and joints with one degree-of-freedom such as knee and fingers has been well established. The

application of these sensors for such joints has shown a promising accuracy [79]; however,

the feasibility of these systems for angle measurement in complex multiplanar movements

has yet to be evaluated. Due to the limitations of this type of sensor, which are hysteresis,

dependency on speed, drift, and nonlinearity, it is expected that the performance of the

sensors would degrade as the movements become more complex. A potential solution for

this problem might be the data fusion of these sensors with the typical IMU sensor for

overall performance improvement.

2.3 Inertial and Strain Sensor Data Fusion

As mentioned in the previous sections, there have been two prominent approaches for wear-

able motion tracking, both with their specific advantages and disadvantages. As sensor data

fusion improves the overall performance of the motion tracking in IMUs, adding strain sen-

sor data can furthermore overcome the defects of IMUs. However, the study of combining

the two types of sensors in one single platform has been limited in the literature. In [89], a

wearable system capable of estimating the local curvature and length of the spine was de-

veloped. This system comprised a set of piezoresistive strain sensors printed on the garment

and two accelerometers. The strain sensor behavior while undergoing stretch was modeled

as two phases of extending and shortening. A trigger signal was required to determine the

current phase of the sensor. This task was performed utilizing the tri-axial accelerometers

determining the flexion-extension angle of the spine. Consequently, accelerometer sensors

were used only as the trigger for choosing the governing model of the strain sensor, and

no data fusion algorithm was employed. In a more recent work [90], a platform combin-

ing e-textile goniometers and tri-axial accelerometers was used for knee angle estimation.

Considering the governing equation of the goniometer and the angles provided from ac-

celerometers, a Kalman filter was designed and tested for combining the two sensors’ data.

This study had several limitations. First, The performance of the developed algorithm was
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compared against the estimation of an inertial-based motion tracking system. The proposed

solution in this work was more complex than the employed reference angle measurement

system by adding the goniometer sensor. Their developed algorithm was feasible only for a

simple joint such as knee in which there is a robust geometrical constraint. The feasibility of

this algorithm for more complex joints such as trunk and hip was not clear. The developed

algorithm in this work was highly relying on the governing equation of the textile goniome-

ter. However, if this sensor was replaced with other textile-based strain sensors such as the

fiber strain sensor used in this thesis, the developed algorithm was impractical. Despite the

limitations, this work demonstrates the importance of the textile-based and inertial-based

data fusion for motion tracking, where the performance of the combined system was supe-

rior to the accuracy of both accelerometer or textile sensors employed separately. In another

work, IMU and textile-based goniometer sensors were combined to improve the accuracy

of detecting the position of the hand with respect to the sternum [91]. Data from the two

sensors were employed in a bi-articular model of the shoulder, and a direct data fusion of

the two types of sensors was not employed.

The previous work for fusing the two sensor types in one algorithm has been limited.

In the current work, a novel data fusion technique for employing the gyroscope and strain

sensor data is proposed. To avoid potential problems, this algorithm does not use the ac-

celerometer or magnetometer for data processing. Despite the previous works, no geometri-

cal constraints were utilized, so the application of this scheme can be expanded to all body

joints.
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Chapter 3

Measuring Tri-axial Trunk Motion
Angles: A Feasibility Study Using
Machine Learning and Wearable
Core-Sheath Fiber Strain Sensors

The material of this chapter is excerpted, modified, and reproduced with permission from

the following papers that I co-authored:

• A. Rezaei, T.J. Cuthbert, M. Gholami, C. Menon, "Application-Based Production

and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility

Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles", Sensors,

vol. 19, no. 19, p. 4288, 2019.

• A. Rezaei, M. Khoshnam, C. Menon, "Towards User-friendly Wearable Platforms for

Monitoring Unconstrained Indoor and Outdoor Activities", article in preparation.

Sections of this chapter have been adapted from the above papers to fit the scope and

formatting of the thesis.

3.1 introduction

In this chapter, the feasibility of using a fiber core-sheath strain sensor integrated into a

garment for measuring 3-dimensional kinematic angles of the trunk relative to the pelvis

in simple uniaxial and complex multiaxial movements is investigated. The design and de-

velopment of this smart garment are described, and the application of a machine learning
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algorithm to sensor signals for angle estimation is demonstrated. The performance of this

algorithm in a study with 12 participants performing simple to complex movements likely

to occur in real application scenarios is then evaluated.

3.2 Materials and Methods

3.2.1 Sensor Integrated Sleeveless Shirt

A sensor-integrated sleeveless shirt was developed to measure the 3-dimensional angles of

the trunk movements relative to the pelvis. The prototype was designed to be capable of

measuring the trunk kinematics data in a variety of movements, including the uniaxial and

multiaxial movements of the trunk. The following sections describe the elements of this

design.

Fiber Core-sheath Strain Sensor

The sensing element of the shirt was a fiber core-sheath strain sensor that was developed,

tested, and characterized in the Menrva Research group [51]. This sensor had a diameter

of ca. 0.45mm and the potential to be fully integrated into the fabric as a stitched thread.

It had a non-conductive core coated with conductive sheath. The non-conductive core was

produced by melt extrusion of Hytrel 3078 (DuPont, Kingston Canada) with a Filabot

EX2 extrusion system with a 0.4mm die set at a temperature of 190°C, producing 450µm

filaments spooling 30cm below the die onto a clean surface. The filament was then dip-coated

with a 50wt% mixture of carbon black and Hytrel 3078 in dichloromethane (5wt% Hytrel

3078 in dichloromethane) at a rate of 3.81cm/second wound onto a bobbin 1.83meters from

the exit of the coating solution. The coated filaments were then dried in vacuo at 60°C for

a minimum of 30 minutes. The sensors were then conditioned using a linear stage straining

with a sinusoidal wave pattern from 0-40% strain 100x at a strain rate of 10%s−1. This

sensor had a working range up to 30% strain. To protect the sensor from shorting when

exposed to conductive liquids or solids, an additional insulating sheath was applied. Figure

3.1 shows the fiber strain sensor prior(Figure 3.1a) and after(Figure 3.1b) embedding in the

fabric along with its performance characteristics.
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Figure 3.1: Fiber strain sensor with 450µm diameter that could be integrated into the
textile by stitching or weaving. a) Fiber sensor before embedding into the textile; b) Fiber
sensor after integration into the textile with stitches over the length of the sensor; c) Stack
plot of strain vs. time and resistance vs. time; d) Resistance vs. strain within the working
range of the sensor displaying the linearity of the resistance response (gauge factor=5); e)
Sensor response at a 1Hz frequency; f) Sensor resistance change at a 0.1 Hz frequency; g) 3
consecutive trapezoid cycles at 10, 20, and 30% strain.

As it can be seen in Figure 3.1d, the sensor’s resistance is correlated linearly with the

applied strain and changes by a factor of 5 versus the change in length (gauge factor). Fig-

ures 3.1e and 3.1f display the sensor’s resistance change in 1 Hz and 0.1 Hz and shows the

sensor has a more consistent performance at lower speeds. Figure 3.1g shows the sensor’s

resistance change while strained consecutively to 10%, 20%, and 30% strain. This character-

istic can be used to calculate the applied strain to the sensor using the change in resistance.
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In Figure 3.1g, using random forest method with the sensor’s resistance as input and the

corresponding strain value as output, the resistance followed the strain with a normalized

root mean squared error of 1.6% error. For the trunk movement angle measurement applica-

tion, the same correlation between the change in the resistance value and the joint angular

displacement was derived.

Sensor Placement

The working principle of this smart garment was to monitor fabric strain that occurs because

of the user’s motion. Mattmann et al. developed optical-based strain patterns of fabric on

the trunk back side area while performing 27 distinct movements using a grid of reflective

markers attached to the garment [92]. Within the patterns, there was consistent vertical

strain along the length of the spine during trunk flexion-extension and lateral bending.

Consmüller et al. used two strain gauge sensors strips attached to human skin on both sides

of the spine, and using the information of two strips, showed the upper body motions in

different anatomical planes were distinguishable [93]. Consequently, two strips of sensors,

each consisting of five 6cm strain sensors were integrated on both sides of the spine, covering

the lower and upper back in a garment (Figure 23.2). Each sensor strip was 6cm apart

from the spine. In addition to the information that each one of these two sensor strips

provided for detecting trunk flexion in forward bending, they can also be used for detecting

movements in two other planes (lateral bending and rotation) by calculating the difference

of the signals between the symmetrical sensors in the strips on either side of the spine. Using

the strain patterns by Mattmann et al. as a starting point and conducting further empirical

sensor placement tests, the placements shown in Figure 3.2 was found to provide the best

strain patterns for trunk twisting and lateral bending [92]. This placement resulted in more

sensitivity to rotation and lateral bending movements (as a result of more elongation of the

sensors) and was isolated from the trunk flexion movement (no elongation of the sensors).

In total, 18 sensors were integrated into the shirt for detecting all types of movements.
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Figure 3.2: Schematic illustration of the placement of 18 strain sensors on the garment.
Each short line shows one strain sensor. Two vertical strips of sensors in the box (a) provide
information for flexion, rotation, and lateral bending movements, whereas sensors in boxes
(b) and (c) are specifically for detecting rotation and lateral bending, respectively. These
sensors are isolated from the trunk flexion movement.

Smart Sleeveless Shirt

The sensor’s 450µm diameter could allow the integration into textiles by stitching or weav-

ing. This provided the potential to fabricate smart clothing with the sensors integrated

directly into the textile structure. In our prototype, we attached the sensor to fabric us-

ing stitches over the length of the sensor (Figure 3.1b). Wires were connected to the ends

of the sensor using conductive ink and rubber glue. A commercially available tight-fitting

sleeveless shirt for integrating the sensors was selected. Eighteen sensors were integrated

into the back side of the shirt to measure the strain pattern of the fabric. Shoulder and arm

movements cause significant unwanted strain pattern change in the fabric of sleeved shirts

[92, 94]. A sleeveless shirt Was intentionally chosen to reduce this unwanted change and

isolate the strain pattern associated with trunk motions.

One crucial challenge of using strain-based clothing for trunk motion detection is the

upward shifting of the garment at the waistline during movement. It has been shown pre-

viously that a 3 cm shift decreases the accuracy by more than 20% in an upper-body task
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Figure 3.3: The two-piece smart prototype with sensor integrated sleeveless shirt and shorts.
Sensors were integrated on the back side of the shirt into the textile. (a) A participant
wearing the prototype. Shirt was anchored to shorts with Velcro patches to minimize the
upward shift at the waistline; (b) Two reflective marker sets attached to participant C7 and
S1 vertebras for generating reference kinematic angles using motion capture system.

classification problem using a smart catsuit [92], and care should be taken to minimize any

waistline shift. The use of a leotard [95] or catsuit [78], or straps [79, 96] has been used

to minimize this slippage. In an attempt to anchor the shirt to minimize this slippage, a

two-piece prototype (shirts and shorts) was used that allowed anchoring of the shirt to the

shorts with Velcro patches. This allowed the comfortable extended use of this system under

normal clothing without the use of a leotard/catsuit with minimal slippage. Figure 3.3a

shows the two-piece prototype.
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3.2.2 Experimental Setup

A voltage divider was used for reading the change of resistance in sensors. Each sensor

was connected to a resistor to form a voltage divider with a 5V voltage source. The resistor

value was selected to match the base resistance of the sensor, ca. 10kΩ. Two data acquisition

boards (Models NI BNC-2110 and NI BNC-2111, National Instruments, Austin, TX, USA)

were used for reading voltage signals of all sensors. MATLAB R2017b (The MathWorks,

Inc., Natick, MA, USA) was used for data collection.

For collecting the trunk kinematics data, A Vicon motion capture system (Vicon, Oxford,

UK) was used. This system consisted of six infrared motion tracking cameras. Two sets of

reflective markers, each with five markers (8 mm diameter) were used to track objects. These

two marker sets were mounted on the participants’ spinal C7 and S1 vertebras. The markers’

cartesian coordinates information was used to generate the movements’ kinematic data.

Figure 3b shows the tracker markers attached to a participant’s back. A synchronization

signal from motion tracking system was used for synching the sensors and motion capture

data. Data from all components were recorded at a frequency of 100Hz.

3.2.3 Participants

To evaluate the performance of the prototype, 12 healthy male individuals were recruited

between the ages of 25 and 35. The experimental protocol was approved by the Office of

Research Ethics at Simon Fraser University. Prior to any data collection, written informed

consent was obtained from all participants. Table 3.1 provides the characteristics of the

participants.

Table 3.1: Participants characteristics

Participant
Age(years) 28(3.3)
Height(cm) 177(7.6)
Weight(kg) 75(9.8)
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3.2.4 Study Protocol

The data collection for each participant lasted for 1.25 hours, including the preparation

time. The shirt was anchored to the short at the waist level using three Velcro patches.

The positioning of the short was adjusted based on the participant’s feedback to ensure the

participants were comfortable during data collection. The participants were then asked to

stand upright on a flat floor with feet shoulder-width apart and arms hanging to the sides

of their body for the duration of the experiment. A 10s trial was then recorded in this static

posture. This trial was used for the standardization of all sensor data in the next trials.

The study protocol included four conditions of uniaxial movements and four conditions

of multiaxial movements. Table 3.2 provides a list of the movements’ conditions. Since

people’s common everyday movements include both uniaxial and multiaxial movements,

an exhaustive combination of the uniaxial movements was selected as part of the study

protocol. For each movement condition, participants were asked to perform the movement

in 3 separate trials, each of them with the self-selected speeds of slow, moderate, and fast. In

each trial, the movement was repeated 10 times. The range of motion of each repetition was

self-selected by the participant, with a limit of maximum comfortable angle. This resulted

in movements with different ranges of motion within each trial. For the random combination

movement condition, participants were asked to perform random combinations of all the

movements in a random order, with random ranges of motion for 60s. During all trials,

the participants were asked to perform the movements naturally and keep the self-selected

speed constant.

3.2.5 Data Analysis

Reference Angle Measurement

Trunk reference kinematics angles (Eulerian roll, pitch, and yaw angles) were calculated

using the mocap data. Two marker sets were attached to C7 and S1 vertebras. Mocap

provides the cartesian coordinates of the markers in each marker set. In each marker set,

local unit vectors X and Y were constructed using the coordinates data and unit vector Z

using the cross product of X and Y unit vectors (Figure 3.3b). The relative rotation matrix
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Table 3.2: Study protocol movement conditions and types

Trial Number Movement Condition Movement Type
1-3 Rotation(R) Uniaxial
4-6 Lateral Bending(LB) Uniaxial
7-9 Flexion(F) Uniaxial
10-12 Slouching(S) Uniaxial
13-15 Flexion + Lateral Bending(FLB) Multiaxial
16-18 Flexion + Rotation(FR) Multiaxial
19-21 Lateral Bending + Rotation(LBR) Multiaxial
22-24 Random Movement(RM) Multiaxial

between C7 and S1 then was computed:

C7
S1
R =


XC7 .XS1 XC7 .YS1 XC7 .ZS1

YC7 .XS1 YC7 .YS1 YC7 .ZS1

ZC7 .XS1 ZC7 .YS1 ZC7 .ZS1

 (3.1)

in which C7
S1
R denotes the relative rotation matrix, and XC7 , YC7 , ZC7 and XS1 , YS1 , ZS1

are the C7 and S1 coordinate frame unit vectors, respectively. Each cell of this matrix

was the inner product of the two vectors. Using this rotation matrix and the Z-Y-X Euler

angles convention, Euler angles Ψ (roll, flexion angle), Θ (pitch, rotation angle), and Φ

(yaw, lateral bending) around the lateral-medial, superior-inferior and anterior-posterior

axes were calculated. The relative orientation of trunk (C7) with respect to pelvis (S1) was

expressed using these three angles.

Accuracy of Reference Angle Measurement

The literature shows that 1 mm is considered standard for the Vicon motion capture system

error in calculating the position of each reflective marker [97]. Suppose that there are two

markers A and B, the absolute error for the position of each marker can be shown as follows:
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A =(a1 ± 1)̂i+ (a2 ± 1)ĵ + (a3 ± 1)k̂ (3.2a)

B =(b1 ± 1)̂i+ (b2 ± 1)ĵ + (b3 ± 1)k̂ (3.2b)

The vector ~X between the two markers can then be expressed as follows:

~X = (a1− b1±2)̂i+ (a2− b2±2)ĵ+ (a3− b3±2)k̂ = (x1±2)̂i+ (x2±2)ĵ+ (x3±2)k̂ (3.3)

Therefore, each component of vectors XC7 , YC7 , ZC7 , XS1 , YS1 , and ZS1 has a maximum

of 2 mm error. The angles Ψ, Θ, and Φ are calculated using the equation 3.1 and following

formulas:

Ψ = arctan
(
ZC7 .YS1

ZC7 .ZS1

)
(3.4a)

Θ =− arcsin(ZC7 .XS1) (3.4b)

Φ = arctan
(
YC7 .XS1

XC7 .XS1

)
(3.4c)

Suppose equations θ1 = arctan(a
b ) and θ2 = arcsin(a), in which a and b have an absolute

errors of ∆(a) and ∆(b), respectively. The absolute errors of θ1 and θ2 can then be calculated

as:

∆(θ1) = b

a2 + b2 ∆(a) + a

a2 + b2 ∆(b) (3.5a)

∆(θ2) = ∆(a)√
1− a2

(3.5b)
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Considering equations 3.4 and 3.5, the errors in calculating angles Ψ, Θ, and Φ can be

formulated as:

∆(Ψ) =(ZC7 .ZS1)∆(ZC7 .YS1) + (ZC7 .YS1)∆(ZC7 .ZS1)
(ZC7 .YS1)2 + (ZC7 .ZS1)2 (3.6a)

∆(Θ) = ∆(ZC7 .XS1)√
1− (ZC7 .XS1)2

(3.6b)

∆(Φ) =(XC7 .XS1)∆(YC7 .XS1) + (YC7 .XS1)∆(XC7 .XS1)
(YC7 .XS1)2 + (XC7 .XS1)2 (3.6c)

Equation 3.6 requires the absolute error of the inner products. This error was then

calculated using the equation 3.3 as follows:

~X. ~Y =((x1 ± 2)̂i+ (x2 ± 2)ĵ + (x3 ± 2)k̂).((y1 ± 2)̂i+ (y2 ± 2)ĵ + (y3 ± 2)k̂) (3.7a)

=((x1 ± 2)(y1 ± 2)) + ((x2 ± 2)(y2 ± 2)) + ((x3 ± 2)(y3 ± 2)) (3.7b)

=(x1y1 + x2y2 + x3y3)± 2(x1 + x2 + x3 + y1 + y2 + y3 + 6) (3.7c)

=(x1y1 + x2y2 + x3y3)±∆( ~X. ~Y ) (3.7d)

∆( ~X. ~Y ) =2(x1 + x2 + x3 + y1 + y2 + y3 + 6) (3.7e)

Overall, incorporating equations 3.6 and 3.7, the error of the reference relative orienta-

tion at each data point can be calculated. Following this approach, the reference error for

all collected data points in the three angles was less than 2°. However, as there is no other

system available that can provide a more accurate estimation of the relative orientation,

this error was neglected, and the reference angles were assumed to be accurate.

Signal Processing

The voltage signals collected from strain sensors had a high-frequency noise. To remove

this noise, A 10th order median filter was applied to the voltage signal of each sensor.

It has been reported that a 20Hz frequency was a suitable data collection frequency for
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monitoring normal human activities [98], and consequently, the data voltage signals were

then resampled to 20Hz.

Slight differences between the sensors’ base resistance resulted in differences between

the working voltage range of the sensors. Using the signal collected in the initial static trial,

each sensor signal was normalized using:

Si(t)normalized = Si(t)− Si,mean

Si,max
(3.8)

where Si(t) is the sensor i voltage signal at time t, Si,mean is the mean value of that sensor

voltage in the static trial, Si,max is the maximum value of the signal, and Si(t)normalized

is the normalized value of the signal in time t. Normalization brought all the signals from

different sensors in the same working range.

As the placement of the sensors on the back side of the shirt was symmetrical, the

difference between the signals of each symmetrical pair of sensors placed on the left and

right sides of the shirt back was added to the raw data. (∆vl−∆vr) shows this difference, in

which ∆vl and ∆vr are the left sensor signal and the corresponding symmetrical right sensor

signal, respectively. In addition to this difference, the derivative of the signals was added to

the raw data set. Adding these new signals provided the angle measurement algorithm with

more information for detecting multiaxial movements and improved the angle estimation

accuracy.

To generate the input for the angle measurement algorithm, a 1s sliding window was

used over the raw data signals. The window length was determined empirically by perform-

ing a grid search over windows with length 100ms to 3s to find the best performance in

estimating the angles. As described in chapter 2, a feature extraction-selection approach

was then applied to the raw signal data using the 1s sliding window. The extracted fea-

tures consisted of minimum, maximum, mean, variance, median, root-mean-square, sum

of absolute value, mean absolute deviation, wave length, and slope sign changes. Adding

more complex time and frequency domain features did not improve the performance of the

random forest regressor and these features were not consequently included in the feature
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subset. The extracted features, along with the raw data of the window, were then used as

inputs for the angle measurement algorithm.

A random forest regressor algorithm was used for the angle estimation algorithm to train

and test the model. Raw data, along with the extracted features, formed the input, and

the roll, pitch, and yaw angles formed the output of the random forest regressor. Python

scikit-learn machine learning package was used for training and testing the estimator model

[99].

Evaluation

The performance of the angle measurement machine learning algorithm was assessed by

comparing the predicted angle from the algorithm with the actual reference angle measured

from the motion capture system. The coefficient of determination (R2), the root mean

squared error (RMSE), and the normalized root mean squared error (NRMSE) were used

as the criteria for this comparison.

Using these criteria, the performance of the machine learning algorithm was validated in

an intra-subject analysis. In this evaluation approach, one separate model was trained and

tested for each subject. A 3-fold cross-validation method was employed to evaluate the per-

formance of the model. Each fold comprised all movement conditions with the same speed.

Consequently, there were three folds corresponding to slow, moderate, and fast movements.

In this 3-fold cross-validation approach, the model was trained using the data from two

folds and tested on the remaining fold. This was repeated until all three folds were selected

as the test set. The accuracy of the model was then determined by averaging the results of

all three folds.

3.3 Results

For each participant, one hour trunk motion data comprised of 24 different trials was col-

lected. Figure 3.4 shows a sample of the collected strain sensors voltage data and the corre-

sponding principal trunk kinematics angle in uniaxial trunk flexion (Figure 3.4a), rotation

(Figure 3.4b), and lateral bending (Figure 3.4c) movements. In each movement type, only

the relevant sensors of that movement type were strained so that the voltage patterns were
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different between different movement types. The range of motion was different between

different degrees of freedom ranging from 40° to 80°.

Figure 3.4: Unnormalized change of strain sensors voltage while performing three different
types of movement. As a result of the specific sensor placement, voltage change depended
on movement type, and in each specific movement, only sensors related to that movement
were strained. (a) Uniaxial flexion movement of the trunk; (b) Uniaxial rotation movement
of the trunk; (c) Uniaxial lateral bending of the trunk.

Averaged across all uniaxial and multiaxial movement conditions, random forest regres-

sor estimated the roll angle with R2= 0.94 ± 0.03, RMSE = 4.26°± 1.06°, and NRMSE =

5.04% ± 1.05%; the pitch angle with R2= 0.92 ± 0.03, RMSE = 3.52°± 0.73°, and NRMSE

= 4.65% ± 0.94%; and the yaw angle with R2=0.91 ± 0.03, RMSE = 3.40°± 0.62°, and

NRMSE = 5.71% ± 0.85% averaged over all participants. Table 3.3 shows the detailed

results of angle estimation for all participants, with an error ranging from 2.87% to 6.47%

for all 3 angles among all participants. While trunk flexion and lateral bending had errors

higher than 5%, the trunk rotation angle was estimated slightly better than the two other

angles with an error less than 5%.

Table 3.4 presents the detailed results of angle estimation in each movement condition

among all participants. Algorithm estimated the principal angles in uniaxial movements

accurately (R2 >0.97). As the movement became more complex, the error in estimating

angles increased with the maximum error happening in the random combination movement

condition (NRMSE between 7% and 10%).
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Table 3.3: Performance results of the algorithm in the detection of 3 angles of Ψ (flexion),
Θ (rotation), and Φ (lateral bending) for each participant (P).

Ψ Θ Φ

R2 RMSE
(deg)

NRMSE
(%) R2 RMSE

(deg)
NRMSE

(%) R2 RMSE
(deg)

NRMSE
(%)

P01 0.97 2.75 3.21 0.97 2.31 2.87 0.96 2.30 3.35

P02 0.92 5.80 5.70 0.91 4.48 4.84 0.90 4.63 6.10

P03 0.96 4.07 4.52 0.90 3.84 5.57 0.94 3.97 6.20

P04 0.97 2.61 3.89 0.89 Ĺ2.45 5.90 0.91 2.80 6.47

P05 0.95 3.69 5.10 0.90 4.06 5.10 0.88 3.46 6.07

P06 0.92 3.71 5.77 0.94 2.87 4.08 0.91 2.71 6.30

P07 0.85 4.04 6.64 0.88 3.46 5.54 0.88 3.24 6.30

P08 0.91 5.35 6.31 0.92 4.29 4.98 0.88 3.44 6.10

P09 0.96 5.37 4.58 0.93 4.32 4.96 0.93 3.63 5.53

P10 0.96 4.22 4.24 0.96 3.47 3.66 0.89 3.84 5.30

P11 0.94 3.89 5.99 0.96 3.24 3.43 0.93 3.12 5.33

P12 0.96 5.59 4.54 0.93 3.57 4.87 0.91 3.70 5.52

Mean 0.94
(0.03)

4.26
(1.06)

5.04
(1.05)

0.92
(0.03)

3.52
(0.73)

4.65
(0.94)

0.91
(0.03)

3.40
(0.62)

5.71
(0.85)

Table 3.5 reports the detailed performance of the algorithm for each of the three self-

selected speeds. Among the 3 angles, movements with moderate speed had the best perfor-

mance with the maximum accuracy (R2 = 0.96 in flexion angle) whereas fast movements

had lower angle estimation accuracy (R2 = 0.90 in rotation angle).

Figure 3.5 shows an exemplary comparison between the real and estimated principal

angles in 3 different uniaxial movements, whereas Figure 3.6 demonstrates all 3 angles in 4

multiaxial movement conditions. Random forest regressor estimation follows the actual angle

pattern in all complex movements (R2 >0.82). Flexion angle had the minimum decrease in

accuracy with R2 = 0.85 in the random combination movement condition.
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Table 3.4: Performance results of the algorithm in the detection of 3 angles of Ψ (flexion),
Θ (rotation), and Φ (lateral bending) for each participant (P).

Ψ Θ Φ

R2 RMSE
(deg)

NRMSE
(%) R2 RMSE

(deg)
NRMSE

(%) R2 RMSE
(deg)

NRMSE
(%)

R 0.94 3.23 3.91 0.97 1.66 2.41 0.94 2.45 3.73

LB 0.93 3.65 4.32 0.83 3.60 3.07 0.98 1.94 2.84

F 0.97 3.08 3.49 0.85 4.16 3.52 0.87 2.13 4.34

S 0.95 2.39 3.39 0.93 1.17 2.85 0.94 2.12 4.26

FLB 0.87 4.27 8.78 0.89 4.08 4.85 0.92 3.12 6.04

FR 0.92 4.60 7.10 0.87 4.36 6.83 0.82 3.02 8.03

LBR 0.92 4.29 7.25 0.86 4.26 5.83 0.97 3.38 5.42

RM 0.85 5.13 7.74 0.83 4.90 10.67 0.85 4.48 10.09

3.4 Discussion

Developing wearable motion capture systems for unobtrusive daily use is an ongoing chal-

lenge. Smart textiles are a promising solution for this problem. In this work, a smart sleeve-

less shirt was developed by integrating textile-based strain sensors into a commercially avail-

able garment. The aim was to investigate the feasibility of this smart garment in capturing

Table 3.5: Performance results of the algorithm in the detection of 3 angles of Ψ (flexion),
Θ (rotation), and Φ (lateral bending) for different speeds averaged across all participants

Ψ Θ Φ

R2 RMSE
(deg)

NRMSE
(%) R2 RMSE

(deg)
NRMSE

(%) R2 RMSE
(deg)

NRMSE
(%)

Slow 0.94 4.12 5.05 0.93 3.35 4.70 0.92 3.26 5.73

Moderate 0.96 3.61 4.55 0.94 3.12 4.09 0.93 3.03 5.10

Fast 0.92 5.06 5.82 0.90 4.12 5.25 0.88 4.02 6.55
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Figure 3.5: Exemplary comparison between the principal reference and estimated Ψ (flex-
ion), Θ (rotation), and Φ (lateral bending) angles in uniaxial movements. (a) Uniaxial flexion
movement; (b) Uniaxial rotation movement; (c) Uniaxial lateral bending movement.

Figure 3.6: Exemplary comparison between 3 kinematic reference and estimated Ψ (flexion),
Θ (rotation), and Φ (lateral bending) angles in multiaxial movements. Most estimation
errors happened in peaks where the algorithm cannot estimate the exact value. (a) Flexion
and lateral bending movement; (b) Flexion and rotation movement; (c) Lateral bending and
rotation movement; (d) Multiaxial random combination movement.
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all types of planar uniaxial and complicated multiaxial trunk motions to meet objective 1

of this thesis.

The results of this work showed a high agreement between the estimated angles using the

smart garment and the angles calculated from the motion capture system. All three angles

were estimated with an RMSE of less than 4.26° averaged over all movement conditions.

Cuesta et al. suggested that an error between 2° and 5° is likely to be regarded as an

acceptable accuracy for wearable systems while extra consideration is required for clinical

applications [100]. The accuracy of the proposed system fell in this range and may be

sufficient for a wearable motion capture system. Furthermore, there was a high correlation

between the estimated angle and real angle with an R2 higher than 0.91 for all angles. Similar

to other systems, this correlation was related to movement complexity [81]. These results

showed that in simple planar movements, the estimation followed the real pattern accurately.

As the movement became more complex, the level of agreement between the estimated and

real angles decreased, but RMSE error was yet below 5° for complex movements, which falls

in the acceptable range of accuracy.

The random forest regressor algorithm estimated the trunk flexion, rotation, and lateral

bending with RMSE of 4.26°, 3.52°, and 3.40°, respectively. There are several other systems

developed for wearable trunk motion tracking. LMM was one of the earliest developed wear-

able systems and was capable of measuring multiaxial movements of the lumbar part with

an error of 1.70° and 0.96°in the frontal and sagittal plane [32]. Considering the complexity

of the performed movements in this study, the results of this work is comparable (with

slightly higher error) to the LMM system for trunk angular motion measurement. However,

LMM is an exoskeleton measuring angles using mechanical connections, which makes the

system bulky, obtrusive, and inconvenient for the user to wear daily [101].

IMU-based motion captures are the most common wearable motion captures. Several

previous studies have investigated the validity of IMU-based systems for motion analysis

[46, 70]. Schall et al. reported accuracy of 4.1° to 6.6° for trunk motion monitoring during

a field-based study [101]. Samadani et al. reported errors less than 2° for trunk planar

angle measurement [74]. The results of this work compare well to the field-based study, but
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they fall lower than the Samadani et al. results. It should be emphasized that the data

collection protocol in the Samadani et al. report was simple, including only 5 repetitions of

planar movements while in other studies with more complicated protocol, an error between

2° to 5° was reported for these IMU-based systems [100]. Considering IMUs limitations of

susceptibility to magnetic disturbances and drifting over time[102, 103], the developed smart

shirt is comparable to IMU-based systems and superior for environments where magnetic

distortions are present. This is the case for most environments in which ferromagnetic

materials such as metals are found.

To the best of author’s knowledge, there have been limited studies investigating the

feasibility of smart garments based on textile-based sensors measuring angles during multi-

axial trunk motions. Mokhlespour et al. developed a smart undershirt, capable of measuring

planar lumbar movements with 1.3° error when measuring single degree-of-freedom move-

ments [79]. Therefore, no conclusions could be drawn about the application of their system

to daily usage where multiaxial movements are inevitable. Mattemann et al. developed a

smart catsuit using similar sensors for task classification, although no angle measurement

was completed [92]. Yamamoto et al. used stretch sensors fixed to the skin for measuring

complicated lumbar motion angles [42]. Complicated movements resulted in errors higher

than 10° in measuring trunk flexion-extension angle. This study showed superior results in

measuring trunk 3-dimensional angles while performing complicated movements. This shows

the feasibility of such smart systems for unobtrusive measurement of kinematic information

in multiplanar movements.

Among the 3 estimated kinematic angles, the pitch angle (corresponding to trunk ro-

tation) was estimated with 4.65% error. It has been previously shown that trunk rotation

angle was the most challenging to measurement [104]. Using IMU-based systems, this angle

was hard to measure because of the susceptibility of IMU sensors to magnetic distortion. As

a result, the developed system would be a solution for trunk rotation angle measurement

in environments with magnetic susceptibility.
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The accuracy of the prototype device did have dependence on the speed of movements,

although there was only minimal increase in error during fast movements by only 1.5° for

flexion, and 1° for rotation and lateral bending.

This study has some limitations and considerations that should be noted for future stud-

ies. First, only one medium size prototype for male participants was developed. However,

the participants’ body size was variable. Therefore, the prototype did not fit equally be-

tween participants (tighter vs. looser fitting). It is suspected that the reason for the weaker

performance of the algorithm for some participants could have been the looser fit of the gar-

ment. In future studies, prototypes should be produced for each participant, or participants

with similar builds should be selected to ensure proper prototype fit. Second, the developed

prototype utilized wires for signal transmission. Ideally, wireless data transmission would be

implemented into future prototypes. Third, all participants were young healthy individuals.

Including a variety of participants with respect to age should be considered. Fourth, the

feasibility of the system in an intra-subject approach was investigated. It would be advan-

tageous to develop subject-specific models for smart textile systems because this approach

has yielded improved results compared to inter-subject analysis [79]. While this is true, it

would be more practical to use such a system for the general population if the system has

one global pre-trained model that is trained with data from a sample group of individuals

and can be used for all users. This could be attained in future studies by performing spe-

cific calibration procedures prior to data collection. For example, Yamamoto et al. suggested

measuring sensor data in at least two accurate reference angles for each degree-of-freedom to

overcome the inter-subject problem [42]. Fifth, future studies considering more complicated

data collection protocols, including tasks such as walking, sitting, and material handling,

are required to investigate the feasibility of this system in real applications.

Overall, the developed smart tank top system was able to track multiaxial trunk move-

ments in 3 dimensions with an error less than 4.26°. This shows the great potential of smart

textile systems to be used as wearable motion tracking systems. This will provide us with

tools for long-term unobtrusive data collection from human movements. This data could
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supply useful information for applications such as developing personalized interventions to

decrease the occurrence of LBP among health care workers.

3.5 Summary

A smart garment prototype employing fiber strain sensors integrated into fabric was devel-

oped. The detailed design of this prototype was discussed, and its performance in tracking

trunk motions in an exhaustive set of movements was tested in a study with 12 partic-

ipants. A machine learning random forest regressor was trained and tested in a 3-fold

cross-validation approach. Averaging over all participants, this algorithm had 4.26°, 3.52°,

and 3.4° error in trunk flexion, rotation, and lateral bending. This chapter addressed the

first objective of the thesis in developing a strain-based motion tracking system. Despite

the inertial-based motion tracking systems which suffer from drifting over time due to the

application of the magnetometers, the developed strain-based prototype solved this prob-

lem. However, the complexity of the performed movements caused its accuracy to decrease,

demonstrating that further improvement of the strain-based motion tracking system is re-

quired for in situ applications of the system.
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Chapter 4

Towards User-friendly Wearable
Platforms for Monitoring
Unconstrained Activities

The material of this chapter is excerpted, modified, and reproduced with permission from

the following papers that I co-authored:

• A. Rezaei, T.J. Cuthbert, M. Gholami, C. Menon, "Application-Based Production

and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility

Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles", Sensors,

vol. 19, no. 19, p. 4288, 2019.

• A. Rezaei, M. Khoshnam, C. Menon, "Towards User-friendly Wearable Platforms for

Monitoring Unconstrained Indoor and Outdoor Activities", article in preparation.

Sections of this chapter have been adapted from the above papers to fit the scope and

formatting of the thesis.

4.1 Introduction

In this chapter, a novel data fusion algorithm for fusing the strain sensor and gyroscope

data is proposed to improve the overall accuracy of motion tracking in 3-dimensional move-

ments. As the accuracy of strain-based motion tracking decreased by the complexity of the

movements, the proposed data fusion algorithm should improve the accuracy in the complex

3-dimensional movements. To eliminate the susceptibility to environment magnetic fields,
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magnetometers were not employed in the proposed algorithm. In this chapter, the kine-

matic equation describing the relative movement between two dynamic reference frames

was discussed, and an unscented Kalman filter was developed for data fusion. The devel-

oped smart garment developed in the previous chapter, along with two gyroscope sensors

were employed, and the accuracy of the proposed data fusion algorithm was investigated in

a study with 10 participants. This chapter addresses the second objective of this thesis for

improving the overall accuracy of wearable motion tracking by combining the two prominent

types of wearable sensors.

4.2 Proposed Sensor Data Fusion Approach

IMUs are the most common type of wearable sensors and have been used to indirectly

calculate the relative orientation between the two sensors’ body-fixed coordinate frames F1

and F2. This desired relative orientation is calculated indirectly since each of the sensor

units’ intermediate orientation with respect to the inertial earth-fixed coordinate frame

G should first be calculated by employing gyroscope, accelerometer, and magnetometer

data and then be combined together to produce the relative orientation between F1 and

F2. This is mainly because of the accelerometer and magnetometer sensors, which in the

measurement update step of the Kalman filter, they can only provide an estimation of the

orientation with respect to the frame G. Kalman filter has therefore been applied to each

IMU unit sensors’ data separately to estimate the IMU’s intermediate orientation relative

to the earth-fixed inertial frame. However, other types of wearable sensors, such as strain

sensors, are capable of directly estimating the relative orientation.

In this work, it is proposed that if an estimation of the relative orientation between

the two IMUs is by some means available, this estimation could be combined with the

angular velocities of the two IMUs in one Kalman filter structure to improve the estimated

orientation and eliminate the need for accelerometers, magnetometers, and their associated

limitations. In the context of wearable sensors, textile integrated fiber strain sensors can

provide this estimation by employing machine learning approaches and have been used in

this work to test the proposed solution. The overall structure of this solution is shown in
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Figure 4.1: The gyroscope-strain sensor data fusion structure using machine learning and
UKF

Figure 4.1. An unscented Kalman filter was implemented to directly estimate the relative

orientation between the two dynamic coordinate reference frames F1 and F2, both with

nonzero angular velocity, eliminating the intermediate orientation calculation step. In this

approach, both sensors’ angular velocity vectors were coupled together as the input to the

time update step of the filter while the measurement update was provided to the filter using

the strain sensor information. A machine learning algorithm was applied to the strain sensor

signals to predict the relative orientation between the two sensor units. This prediction was

then used as the measurement update of the filter. Using this approach would consequently

substitute the two IMU units(six sensors) used in the conventional filtering approaches

with an array of fiber strain sensors integrated into the regular clothing and two gyroscope

sensors. Although the application of this algorithm for trunk motion tracking has been

represented in this chapter, this algorithm is a general solution and can be applied for

measuring all human joints kinematic information by fusing the data from two gyroscope

sensors and other types of wearable sensors, as long as they are capable of providing an

estimation of the relative desired orientation.
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4.3 Unscented Kalman Filter

4.3.1 Notation

Euler angles, rotation matrix, and unit quaternions are among the common representa-

tions of the orientation of a reference frame. In this work, unit quaternions were used for

representing the orientation and rotation of a reference frame, since they are a relatively

computationally efficient method and do not suffer from singularity problems in contrast

to the other two methods [105]. Considering the two frames F1 and F2, F2
F1q shows the

relative orientation of F2 with respect to F1. This is a unit quaternion with a norm of 1

and consists of a scalar part q4 and a vector part q = [q1, q2, q3]T and is defined as

F2
F1q =

q

q4

 = [q1 q2 q3 q4]T (4.1)

This quaternion has the equivalent rotation matrix F2
F1C. If F1u denotes the vector u in

frame F1, then F2u

0

 = F2
F1q ⊗

F1u

0

 ⊗ F2
F1q
∗ (4.2)

transforms the vector u to frame F2 denoted as F2u. In this formula, F2
F1q
∗ is the conjugate

of F2
F1q defined as

F2
F1q
∗ =

−q

q4

 (4.3)

and symbol ⊗ represents the quaternion multiplication, Similarly, vector F1u can be trans-

formed to F2 using the rotaion matrix with the equation F2u =F2
F1 C

F1u. The relationship

between this rotation matrix and the corresponding unit quaternion F2
F1q is as follows

F2
F1C = (2q2

4 − 1)I3×3 − 2q4bq×c + 2qqT (4.4)
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in which bq×c is a skew-symmetric function defined as

bq×c =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 (4.5)

4.3.2 Relative Orientation Kinematic Equation

The kinematic equation of the relative orientation between the two reference frames is

required for the UKF. Suppose that F2ωF2 is the angular velocity of the reference frame

F2 expressed in the same frame. Then the time derivative of the orientation of F2 with

respect to the inertial frame G with zero angular velocity is

F2
G q̇ = 1

2 Ξ(F2
G q) F2ωF2 (4.6)

where matrix Ξ(q) is defined as

Ξ(q) =

bq×c+ q4I3×3

−qT

 =



q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3


(4.7)

If the orientation of F2 was expressed with respect to the frame F1 which has the

angular velocity of F1ωF1, equation 4.6 should change to the following format

F2
F1q̇ = 1

2 Ξ(F2
F1q) F2ωF2F1 (4.8)

in which F2ωF2F1 is the relative angular velocity between the two frames expressed in the

frame F2. This equation and the rest of this section is adopted from [106]. Suppose the

variable ∆ω is defined as

∆ω = F2ωF2 − F1ωF1 = [∆ωx ∆ωy ∆ωz]T (4.9)
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and shows the difference between the two angular velocity vectors. The relative angular

velocity can then be stated as

F2ωF2F1 = F2ωF2 − F2
F1C

F1ωF1 = ∆ω + (I3×3 −F2
F1 C)F1ωF1 (4.10)

Substituting equation 4.10 in 4.8, the time derivative of the relative unit quaternion is

F2
F1q̇ = 1

2 Ξ(F2
F1q) ∆ω + 1

2 Ξ(F2
F1q) (I3×3 −F2

F1 C)F1ωF1 (4.11)

As it is shown in [106], the following relationships can be considered for any vector

bq×cbq×c+ qTqI − qqT = 03×3, q
TqqqT = qqTqqT (4.12a)

qqT bq×c = 03×3, bq×cqqT = 03×3 (4.12b)

Using these relationships, the term 1
2Ξ(F2

F1q) (I3×3−F2
F1C) in equation 4.11 can therefore

be simplified to

1
2Ξ(F2

F1q) (I3×3 −F2
F1 C) =

bq×c
01×3

 (4.13)

and therefore equation 4.11 can be simplified to

F2
F1q̇ = 1

2 Ξ(F2
F1q) ∆ω +

bq×c
01×3

 F1ωF1 (4.14)

Furthermore, equation 4.14 can be expressed in the following format

F2
F1q̇ = (1

2 Ω(∆ω) −

b F1ωF1×c 03×1

01×3 0

) F2
F1q = F (F2ωF2 ,

F1ωF1) F2
F1q (4.15)
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in which the matrix Ω(∆ω) is defined as

Ω(∆ω) =



0 ∆ωz −∆ωy ∆ωx

−∆ωz 0 ∆ωx ∆ωy

∆ωy −∆ωx 0 ∆ωz

−∆ωx −∆ωy −∆ωz 0


(4.16)

The formula F2
F1q̇ = F F2

F1q is a differential equation and describes the time derivative of

the orientation between two dynamic reference frames. Solving this equation in the discrete

format would allow calculating F2
F1q(tk) having F2

F1q(tk−1) and the angular velocity vectors of

the two frames at tk−1. The solution to this equation can generally be formulated as [107,

p. 40]
F2
F1q(tk) = Θ(tk, tk−1) F2

F1q(tk−1) (4.17)

Under the certain assumption that both angular velocities F2ωF2 and F1ωF1 were con-

stant during the time interval ∆t = tk− tk−1 between tk−1 and tk, the matrix F (F2ωF2 ,
F1ωF1)

would be constant and the term Θ(tk, tk−1) in equation 4.17 can be expressed in the form

of a matrix exponential as

Θ(tk, tk−1) = Θ(∆t) = exp(F∆t) = I4×4 + F∆t + 1
2!F

2∆t2 + 1
3!F

3∆t3 + · · · (4.18)

Assuming the value of ∆t is small, second and higher-order terms of ∆t are negligible,

and equation 4.17 can therefore be expressed as

F2
F1q(tk) = (I4×4 + F (F2ωF2 ,

F1ωF1) ∆t) F2
F1q(tk−1) (4.19)
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4.3.3 Gyro Sensor Modeling

Adopted from [108], the measured angular velocity ωm by gyro sensor in its local frame can

be written as follows

ωm = ωbody + b + vη (4.20a)

ḃ = uη (4.20b)

where ωbody is the real angular velocity of the frame, b is a random-walk process and shows

sensor bias vector, and vη and uη are independent white Gaussian processes with zero mean

and covariance matrices vσ2I3×3 and uσ2I3×3 respectively. vη shows gyro measurement noise

and uη depicts gyro bias change noise. Based on equation 4.20a, the bias compensated

angular velocity ω̂ is ω̂ = ωm − b = ωbody + vη. Integrating equation 4.20b propagates

the bias vector over time as follows

b(tk) = b(tk−1) + uη(tk−1) (4.21)

4.3.4 System Model

Process Model

The state vector x comprised the relative quaternion F2
F1q, frame F2 gyro bias vector bF2,

and frame F1 gyro bias vector bF1

x =


F2
F1q

bF2

bF1

 (4.22)

Using equations 4.19 and 4.21, the process model was


F2
F1q(tk)

bF2(tk)

bF1(tk)

 = A


F2
F1q(tk−1)

bF2(tk−1)

bF1(tk−1)

+ w(tk−1) (4.23)
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in which matrix A is

A =


I4×4 + F ∆t 04×3 04×3

03×4 I3×3 03×3

03×4 03×3 I3×3

 (4.24)

and was calculated using the bias compensated angular velocities F2ω̂F2(tk−1) and F1ω̂F1(tk−1).

The vector w(tk−1) is the process noise vector

w(tk−1) =


vw(tk−1)

uηF2(tk−1)
uηF1(tk−1)

 (4.25)

where vw(tk−1) demonstrates how both gyros’ measurement noise vectors vηF2 and vηF1

generate process noise vector by undergoing through the process model (equation 4.14).

This vector is equal to

vw(tk−1) = −∆t
2 [Ξ(F2

F1q(tk−1)) (vηF2(tk−1)−v ηF1(tk−1)) + 2

bq(tk−1)×c

01×3

 vηF1(tk−1)]

(4.26)

Assuming the two vectors vηF1 = [vηF1x,
v ηF1y,

v ηF1z]T and vηF2 = [vηF2x,
v ηF2y,

v ηF2z]T ,

equation 4.26 can therefore be expressed as

vw = −∆t
2



q4(vηF2x −v ηF1x)− q3(vηF2y +v ηF1y) + q2(vηF2z +v ηF1z)

q3(vηF2x +v ηF1x) + q4(vηF2y −v ηF1y)− q1(vηF2z +v ηF1z)

−q2(vηF2x +v ηF1x) + q1(vηF2y +v ηF1y) + q4(vηF2z −v ηF1z)

−q1(vηF2x −v ηF1x)− q2(vηF2y −v ηF1y)− q3(vηF2z −v ηF1z)


(4.27)

vw(tk−1), uηF2(tk−1), and uηF1(tk−1) are independent processes and the covariance of

the process noise w(tk−1) is therefore defined as

Q = E[wwT ] =


vQ 04×3 04×3

03×4
uσ2
F2I3×3 03×3

03×4 03×3
uσ2
F1I3×3

 (4.28)
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where the term vQ is the coavariance matrix of vw(tk−1) and is equal to vQ = E[vwvwT ]. As

defined before, it is known that E[vηF1
vηT
F1] = vσ2

F1I3×3 and E[vηF2
vηT
F2] = vσ2

F2I3×3.

The vector vw(tk−1) is also defined in the equation 4.27 and therefore its covariance can be

defined as

vQ = E[vwvwT ] =



Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44


(4.29)

which the terms in this matrix are calculated as follows

Q11 = ∆t2
4 (q2

4 + q2
3 + q2

2)(uσ2
F2 +u σ2

F1) (4.30a)

Q22 = ∆t2
4 (q2

3 + q2
4 + q2

1)(uσ2
F2 +u σ2

F1) (4.30b)

Q33 = ∆t2
4 (q2

2 + q2
1 + q2

4)(uσ2
F2 +u σ2

F1) (4.30c)

Q44 = ∆t2
4 (q2

1 + q2
2 + q2

3)(uσ2
F2 +u σ2

F1) (4.30d)

Q12 = Q21 = ∆t2
4 (−q1q2(uσ2

F2 +u σ2
F1)) (4.30e)

Q13 = Q31 = ∆t2
4 (−q1q3(uσ2

F2 +u σ2
F1)) (4.30f)

Q14 = Q41 = ∆t2
4 (−q1q4(uσ2

F2 +u σ2
F1)) (4.30g)

Q23 = Q32 = ∆t2
4 (−q2q3(uσ2

F2 +u σ2
F1)) (4.30h)

Q24 = Q42 = ∆t2
4 (−q2q4(uσ2

F2 +u σ2
F1)) (4.30i)

Q34 = Q43 = ∆t2
4 (−q3q4(uσ2

F2 +u σ2
F1)) (4.30j)

These terms can be simplified and be shown as

vQ = ∆t2
4



1− q2
1 −q1q2 −q1q3 −q1q4

−q2q1 1− q2
2 −q2q3 −q2q4

−q3q1 −q3q2 1− q2
3 −q3q4

−q4q1 −q4q2 −q4q3 1− q2
4


(uσ2
F2 +u σ2

F1) (4.31)
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Measurement Model

Measurement model relates the state vector x to the measurement vector y. The vector y

includes the Euler angles representation of the relative orientation between the two frames

F2 and F1 depicted as y = [ψ, θ, φ]T in which ψ, θ, and φ are roll, pitch and yaw angles

respectively. The measurement model has the general form of

y(tk) = H(x(tk)) + v(tk) (4.32)

in which H is a nonlinear function and vector v(tk) shows the measurement noise. Consid-

ering the ZY X convention for Euler angles, the function H is defined as follows

H(x(tk)) =


arctan(2q2q3 + 2q1q4

1− 2q2
1 − 2q2

2
)

arcsin(2q1q3 − 2q2q4)

arctan(2q1q2 + 2q3q4
1− 2q2

2 − 2q2
3

)

 (4.33)

Vector v(tk) is a white zero-mean Gaussian process which its covariance matrix is shown

as follows

R = E[vvT ] = mσ2I3×3 (4.34)

In this work, an estimation of the measurement vector y = [ψ, θ, φ]T was available from

the strain sensor and the matrix R value was set as a tuning parameter of the filter.

4.3.5 Unscented Kalman Filter

The UKF has two different forms in terms of how the states vector is formed. It can be in the

additive form or the augmented form [109]. Augmented form comprises adding the process

and the measurement noise vectors to the state vector and augmenting its dimension, while

in the additive form, these noises are only added in the system’s model equations. In this

work, the additive form of the UKF was adopted [110]. In the following, the steps of the

UKF are described.
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Initialization

State vector x is a random variable with mean value x̂ = E[x], the covariance matrix

P̂x = E[(x− x̂)(x− x̂)T ], and the length L. The initial value of these statistics are required

to start the recursive process of the UKF and were assumed to be known at time t0.

Sigma Vectors and Time Update

The UKF is based on generating sigma vectors to approximate the statistics of the output

of a nonlinear function having the statistics of its random input variables [62]. Sigma vectors

are a minimal set of carefully selected weighted vectors. Employing these points, the lin-

earization process which is an essential part of the EKF is eliminated. Herein, sigma points

were generated for the state vector x which undergoes through equations 4.23 and 4.32.

Assuming x̂(tk−1), P̂x(tk−1), and Q(tk−1) were known at time tk−1, 2L + 1 sigma vectors

were thus defined as the columns of a matrix X (tk−1) with the corresponding weights W c

and Wm [62, 110]. The column Xi with weights W c
i and Wm

i was calculated using

X0 = x̂(tk−1) (4.35a)

Xi = x̂(tk−1) +
(√

(L+ λ)(P̂x(tk−1) +Q(tk−1))
)

i
i = 1, · · · , L (4.35b)

Xi = x̂(tk−1)−
(√

(L+ λ)(P̂x(tk−1) +Q(tk−1))
)

i−L
i = L+ 1, · · · , 2L (4.35c)

Wm
0 = λ

L+ λ
(4.35d)

W c
0 = λ

L+ λ
+ 1− α2 + β (4.35e)

Wm
i = W c

i = λ

2(L+ λ) i = 1, · · · , 2L (4.35f)

where α is a scaling parameter ranging from a small number (10−3) to 1, λ = α2(L+κ)−L

in which κ is a secondary scaling parameter usually with 0 value, and β, with optimal value

2 for Gaussian variables includes the prior knowledge of x̂ into the process. In this work, α,

κ, and β were set to 10−3, 0, and 2 respectively. (
√

(L+ λ)(P̂x(tk−1) +Q(tk−1)))i is the ith

row of the matrix square root. The sigma vectors were then undergone the equation 4.23 to

generate a priori state estimate x̂−(tk) and covariance matrix P̂−x (tk) estimate at time tk.
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The steps are shown below

Xi(tk|tk−1) = AXi(tk−1) i = 0, · · · , 2L (4.36a)

x̂−(tk) =
2L∑
i=0

Wm
i Xi(tk|tk−1) (4.36b)

P̂−x (tk) =
2L∑
i=0

W c
i [Xi(tk|tk−1)− x̂−(tk)][Xi(tk|tk−1)− x̂−(tk)]T (4.36c)

Measurement Update

A priori estimate of ŷ(tk) shown as ŷ−(tk) was calculated using

Yi(tk|tk−1) = H(Xi(tk|tk−1)) i = 0, · · · , 2L (4.37a)

ŷ−(tk) =
2L∑
i=0

Wm
i Yi(tk|tk−1) (4.37b)

P̂y(tk) = R(tk) +
2L∑
i=0

W c
i [Yi(tk|tk−1)− ŷ−(tk)][Yi(tk|tk−1)− ŷ−(tk)]T (4.37c)

P̂xy(tk) =
2L∑
i=0

W c
i [Xi(tk|tk−1)− x̂−(tk)][Yi(tk|tk−1)− ŷ−(tk)]T (4.37d)

State Correction

Kalman filter needs a measurement of the system output at time tk (ŷ(tk)) to be incorpo-

rated into the filter process by computing an innovation vector as the difference between

the measurement of the system output and a priori estimate of it (ŷ(tk)− ŷ−(tk)). In this

work, it is proposed that this measurement should be provided to the filter by employing

a different type of sensor that can estimate the relative orientation of the two frames F1

and F2. Fiber strain sensors as a potential solution were used in this work, and a machine

learning algorithm with the sensors’ signals as the input and the relative orientation as
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the output estimated the vector ŷ(tk). A posteriori estimate of the state vector x̂(tk) and

covariance matrix P̂x(tk) can therefore be calculated as follows [110]

K = P̂xy(tk)P̂−1
y (tk) (4.38a)

x̂(tk) = x̂−(tk) +K(ŷ(tk)− ŷ−(tk)) (4.38b)

P̂x(tk) = P̂−x (tk)−KP̂y(tk)KT (4.38c)

Renormalization

The operations that comprise sums of variables and multiplications of variables by a scalar

in the UKF process do not preserve the unit norm constraint of rotation quaternions [109].

This leads to the accumulation of error and therefore filter failure. Consequently, different

modifications of the UKF were proposed for quaternionic systems to preserve the unit

constraint. The simplest solution is the brute-force normalization [109]. After a posteriori

estimate of the state vector is calculated, this estimation is normalized to satisfy the unit

constraint. In this work, brute-force normalization was employed, and the quaternion part

of the posterior state estimation was normalized using the following formula

F2
F1q̂ =

F2
F1q̂

||F2
F1q̂||

(4.39)

The term ||F2
F1q̂|| is the norm of the quaternion and defined as

||F2
F1q̂|| =

√
q2

1 + q2
2 + q2

3 + q2
4 (4.40)

4.4 Experimental Results

4.4.1 Experimental Setup

Despite the joints such as knee and elbow that can be assumed as a hinge joint, trunk,

and spheroidal joints, e.g., the ankle and the hip can have free 3-dimensional movements.

Strong geometrical constraints can not therefore be used straightforwardly to improve the

joint angle estimation for these joints. Accordingly, 3-dimensional complex movements of
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the trunk were selected to validate the performance of the proposed algorithm. Two Xsens

MTw Awinda IMUs(Xsens Technologies B.V.) and the wearable smart garment developed

in the previous chapter were employed for data collection. An optical motion capture sys-

tem(Vicon, Oxford, UK) with two reflective markers sets were used to generate the ground

truth relative orientation. Figure 4.2 shows the experimental setup. One IMU was attached

to the subjects’ C7 spinal vertebra, and the other one was attached to the S1 spinal vertebra.

A set of reflective markers was attached to each IMU to calculate the correct orientation

of the IMUs. The smart garment consisted of 18 strain sensors that measure the change of

the strain pattern in the garment induced by the trunk motion. This garment was designed

to measure the 3-dimensional kinematic angles of the trunk with respect to the pelvis using

the strain pattern change. The design and testing details of this smart garment was shown

in the last chapter. A random forest machine learning regressor algorithm with the raw

strain sensors signals and extracted features as the input and the optic-based Euler angles

of the relative orientation between the two IMUs as the output was trained and then tested

in a 3-fold cross-validation approach to have the estimation required for the proposed data

fusion algorithm in this work. Scikit-learn python package was used for conducting this

analysis [111].

The conducted experiments comprised 10 participants performing an exhaustive set of

uniaxial and multiaxial movements with three different speeds of slow, moderate, and fast.

The set of the movements is shown in Table 3.2. In an attempt to investigate the perfor-

mance of the different algorithms under harsh magnetic disturbances, all data collection

experiments were conducted in a biomechanics laboratory with disturbances causing severe

distortion in the magnetometer measured earth magnetic field.

Herein, our proposed data fusion algorithm (DF) was contrasted with two other data

fusion approaches to assess its performance. The first algorithm was the random forest ma-

chine learning algorithm (RF) using only the strain sensors [51], and the second approach

was the Xsens built-in Kalman filter (XKF) [112]. In the later approach, the filter was

applied to each IMU separately to generate its orientation using an accelerometer, magne-

tometer, and gyroscope data, and then the relative orientation was calculated. Root Mean
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Figure 4.2: The experimental setup used for collecting trunk motion data from IMU units
and smart garment with integrated fiber strain sensors.

Squared Error(RMSE) was used as the comparison metrics between the real and estimated

trunk Euler angles of roll(flexion movement), pitch( rotation movement), and yaw(lateral

bending movement).

4.4.2 Experimental Demonstration and Discussion

Table 4.1 represents the performance of the three algorithms for all participants in each

movement averaged over three speeds. Factors that determine the accuracy of orientation

estimation are movement environment and movement characteristics, including movement

speed, complexity, range, and period [53, 70, 71]. The data collection was therefore per-

formed in an environment with severe magnetic disturbance and comprised a series of sim-

ple to complex movements with three different speeds. As it can be seen in Table 4.1, the

magnetic disturbance has affected the XKF performance so that in the rotation movement,
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Table 4.1: Comparison of the movement tracking accuracy using 3 algorithms of random
forest (RF), XSens Kalam filter (XKF), and the proposed data fusion algorithm (DF)

RMSE

XKF RF DF

R
roll 1.50 3.23 1.21
pitch 5.72 1.66 1.70
yaw 4.17 2.45 1.60

LB
roll 1.26 3.65 1.42
pitch 5.46 3.60 1.35
yaw 3.28 1.94 1.59

F
roll 1.45 3.08 2.45
pitch 4.41 4.16 0.62
yaw 4.45 3.13 0.92

S
roll 3.33 2.39 2.89
pitch 3.24 1.17 1.35
yaw 2.43 2.12 1.56

FLB
roll 1.53 4.27 2.38
pitch 3.78 4.08 2.26
yaw 3.45 3.12 1.79

FR
roll 2.53 4.6 2.15
pitch 4.03 4.36 1.86
yaw 4.62 3.02 1.36

LBR
roll 1.99 4.29 2.06
pitch 3.90 4.26 1.62
yaw 4.22 3.38 2.08

RM
roll 3.78 5.13 3.07
pitch 5.57 4.90 3.01
yaw 6.97 4.48 2.93

Mean
roll 2.17 3.83 2.20
pitch 4.52 3.52 1.72
yaw 4.20 2.96 1.73
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the XKF has 5.72° error in estimating the rotation angle. It has been shown that the trunk

rotation angle is the most challenging angle to estimate using inertial sensors [104]. However,

both DF and RF had acceptable errors below 2° in estimating the trunk rotation angle. The

XKF significant higher error in rotation angle estimation is because of the susceptibility of

the magnetometers to the environment magnetic disturbances, which limits the application

of this filter in such condition.

Comparing movement conditions in Table 4.1, it is clear that as the movement becomes

more complex, the RF error level increases, ranging from 2° to 5°. This result shows that

movement complexity also affects the angle estimation in the RF algorithm. For the XKF

algorithm, errors in different movement conditions range from 1.50° to 6.97° with the maxi-

mum error in random movements. Our proposed data fusion technique has a constant error

level of below 3° between the simple and complex movements while most of the conditions

have errors less than 2°. This result indicates that the data fusion technique has eliminated

the movement dependency of angle estimation. This is an essential result for developing

reliable wearable motion tracking systems that can be used for in situ motion tracking.

Averaging over all movement conditions, the recommended data fusion algorithm esti-

mated trunk flexion, rotation, and lateral bending with errors of 2.20°, 1.72°, and 1.73° re-

spectively. It is recommended that an error of 2° and less is acceptable for the clinical

application of estimated kinematic angles with no further consideration [113]. The angle es-

timation of the DF is well under this limit in rotation and lateral bending angles and slightly

higher in the flexion movement. Average error of both XKF and RF algorithms is higher

than 2°, which means these results require more detailed consideration while interpreting

the estimated kinematic angles. Despite the complexity of movements, the DF algorithm

yielded a promising level of error in estimation of the relative orientation between the two

IMUs, which falls under the recommended limit and is well comparable with the previous

studies in IMU-based trunk motion tracking [104, 114].

Figure 4.3 illustrates the angle estimation of all the algorithms in a random movement

condition. Random movement is most likely how the user would use any wearable motion

tracking system. Including this type of movement is therefore a crucial testing for examining
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Figure 4.3: Comparison between the orientation estimation of the 3 different algorithms
with the reference values.

the performance of wearable motion tracking systems. As it can be seen in Figure 4.3,

the XKF filter estimation drifts from the real value over time whereas the RF algorithm

estimation follow the reference pattern with no drift. However, in a complicated movement

similar to this random pattern, RF error increases significantly. Removing the magnetometer

and fusing the strain sensors and gyroscopes data in our proposed algorithm improved the

basic RF estimation so that the roll, pitch, and yaw error decreased from 5.13°, 4.90°, and
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4.48° to 3.07°, 3.01°, and 2.93° respectively. This data fusion algorithm is a novel solution

for fusing data from different sensor types that have not previously been used in such a

unified manner.

In the proposed data fusion algorithm, both IMU sensors data were combined in one

UKF filter. Using the XKF for relative orientation estimation, the filter is applied to each

IMU unit separately, and then having the two absolute orientations, the relative orientation

between the two IMUs can be calculated. It was shown in the literature that applying the

filter to each IMU; it is possible to achieve a constant acceptable error of less than 1° for

each IMU absolute roll and pitch angles estimation [63]. However, heading estimation has

been a challenge because of the magnetometer susceptibility to environmental magnetic

disturbances. Different solutions such as magnetometer-free filters, magnetic mapping of

the environment prior to data collection and double step filters have been suggested in the

literature as possible solutions [63, 102, 104]. Yaw angle drift is however still present using

these methods and affects the relative orientation calculation. Figure 4.4 shows the error

drift of each two IMUs and the corresponding relative orientation error drift for the 3 Euler

angles. It can be seen that roll and pitch angles have constant minimal errors, but yaw error

drifts over time. When calculating the relative orientation, the yaw errors of the two IMUs

are projected on the relative roll and pitch angles. Consequently, although each IMU has

accurate roll and pitch angles, relative orientation roll and pitch angles are not accurate due

to the absolute yaw errors of the two IMUs. In the proposed algorithm, magnetometer and

accelerometer are replaced with strain sensors. Strain sensors are not accurate enough for

independent use in complex body movements, but they do not suffer from the drift problem,

and therefore DF algorithm eliminated the drift and outperformed the typical IMU sensor

data fusion algorithms.

4.5 Summary

A novel data fusion algorithm was developed and tested in a study with 10 participants

performing 1-dimensional to 3-dimensional trunk movements. Although the algorithm was

tested for trunk movements, it can be employed for any joints. This algorithm uses the two
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Figure 4.4: The roll, pitch, and yaw absolute error of the XKF algorithm in IMU 1 and 2
and the XKF-based relative orientation

gyroscope and strain sensors data and provides an estimation of the relative orientation

between the two dynamic reference frames of the gyroscopes. Averaged over all participants,

the algorithm estimated trunk flexion, rotation, and lateral bending with 2.20°, 1.72°, and

1.73° error which is a superior level of error considering the complexity of the conducted

movements. Contrasting with the common XKF and the random forest algorithm, the

proposed data fusion algorithm had an excellent improved performance where its errors were

significantly lower than the two other algorithms. This suggests the inertial and strain-based

data fusion as a solution for developing reliable, accurate wearable motion tracking systems

that can be used for indoor and outdoor applications. This chapter addressed the second

objective of this thesis for the overall wearable motion tracking performance improvement.
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Chapter 5

Conclusion

In this thesis, a wearable motion tracking system employing thread-like strain sensors inte-

grated inside a garment was developed for measuring trunk 3-dimensional kinematic angles.

Using a random forest regressor, this system detected trunk flexion, rotation, and lateral

bending angles with 4.26°, 3.52°, and 3.4° error, respectively. This showed the feasibility of

smart textile systems for measuring kinematic data of multiaxial movements. This system

can be useful for developing alternatives for typical wearable motion capture systems us-

ing only IMU sensors. However, this study demonstrated that using fiber strain sensors for

wearable motion tracking has limitations as the accuracy of the motion tracking was dif-

ferent between movement types. The algorithm showed high accuracy in planar movements

tracking the reference angle accurately, whereas in 3-dimensional movements, the accuracy

of movement tracking dropped down. The results of this study addressed the objective 1

of this thesis in developing and testing a strain-based motion tracking system. In the next

study, the performance of this developed system was further improved by developing a data

fusion algorithm for using the gyroscopes data for motion tracking.

Chapter 4 addressed the second objective of the thesis by proposing a novel data fu-

sion algorithm for relative orientation estimation between two dynamic coordinate frames

with nonzero angular velocities (local coordinated frames of IMUs). It was proposed that

the conventional approach of calculating the absolute orientation of each IMU unit with

respect to an inertial reference frame with zero angular velocity and further relative orien-

tation calculation between the two units using these absolute orientations can be replaced

with one unscented Kalman filter applied directly to the relative orientation estimation.
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This approach needs a measurement of the relative orientation, and since accelerometer

and magnetometer can only provide attitude measurements with respect to the inertial ref-

erence frame, it was suggested that other wearable sensors such as fiber strain sensors could

be used for generating this relative orientation. Consequently, this study suggested a data

fusion algorithm for fusing two gyroscopes data with a different type of sensor such as fiber

strain sensors capable of estimating the relative orientation. As required for the time update

step of the UKF, the dynamic reference frames relative orientation kinematic equation was

derived and further discretized to be used as the state-space model of the system. Using

this state-space model and the measurement updates generated from strain sensors signals,

a UKF was developed. To investigate the performance of the proposed algorithm, a study

with 10 participants performing 3-dimensional trunk movements was conducted, and the

proposed filter was applied to the neck and sacrum gyroscopes and a set of 18 strain sen-

sors data. The results of this filter were contrasted with other conventional filters, and the

proposed algorithm outperformed the other approaches in estimating trunk orientation an-

gles. Trunk movements were selected for this experiment as geometrical constraints can not

easily be used for filter performance improvement for the trunk. In addition, 3-dimensional

movements were included in the study as these movements will most likely happen in daily

living. The proposed solution estimated trunk flexion, rotation, and lateral bending with

2.20°, 1.72°, and 1.73° error, which is accurate enough to be used for clinical applications

with no further consideration.

IMUs and Strain sensors are the two prominent wearable sensors used for unconstrained

monitoring of activities. However, they both have limitations that have hindered their

widespread application. The overall conclusion of this thesis is that due to the limitations

of the inertial-based and strain-based motion tracking approaches, developing accurate,

reliable wearable solutions for unconstrained indoor and outdoor motion tracking would

therefore be feasible by employing the two types of sensor together so that they compensate

for each other drawbacks. This thesis further suggests an algorithm for data fusion of the

two types and demonstrates that the individual application of each wearable sensor would
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suffer from limitations and has lower accuracy in movement tracking, whereas the data

fusion algorithm outperforms both individual algorithms.
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