
Incorporating Computational Thinking and Coding in

BC Secondary Mathematics Classrooms

by

Yuan-Ting Erica Huang

B.Ed., University of British Columbia, 2011

B.Sc. (Hons.), University of British Columbia, 2006

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

Secondary Mathematics Education Program

Faculty of Education

© Yuan-Ting Erica Huang 2020

SIMON FRASER UNIVERSITY

Spring 2020

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

Approval

Name: Yuan-Ting Erica Huang

Degree: Master of Science

Title of Thesis: Incorporating Computational Thinking and
Coding in BC Secondary Mathematics
Classrooms

Examining Committee: Chair: Peter Liljedahl
Professor

 Nathalie Sinclair
Senior Supervisor
Professor

 Sean Chorney
Supervisor
Assistant Professor

 Rina Zazkis
Internal Examiner
Professor

Date Defended/Approved: March 10, 2020

iii

Ethics Statement

iv

Abstract

There has been considerable attention on the term “computational thinking” (CT) over

the past decade in the education community. With a global movement to include coding

in the school curriculum, British Columbia (BC) also introduced coding to the K-12

curriculum in 2016. There have been on-going discussions about what CT is, why we

should teach CT (and coding), and how we should teach it. However, there has been

little research on the current state of affairs in BC with respect to teacher practices

related to CT. By surveying, observing and interviewing BC secondary mathematics

teachers, this study focuses on teachers’ perspectives on how to incorporate CT and

involve coding in classrooms. Results showed that most teachers understood CT as

being about problem-solving skills. CT and coding have not been taught frequently but

are incorporated in various ways, primarily using block-based programming. Despite

challenges, teachers found that these CT and coding activities elicited a high-level

engagement and were accessible to a wide range of students.

Keywords: computational thinking; coding; mathematics education; computer science

education; STEM; BC curriculum

v

Acknowledgements

I would like to express my sincere gratitude to Dr. Nathalie Sinclair. Thank you for your

patience and guidance throughout this journey. Your wealth of knowledge, valuable

feedback and continued support contributed tremendously to this work.

I would also like to thank Dr. Sean Chorney for reviewing my thesis drafts. Thank you for

your thoughtful comments and attention to detail, which helped refining my thesis.

I would like to extend my gratitude to all my professors and fellow classmates in the

Secondary Mathematics Education program. I thoroughly enjoyed our conversations

about mathematics education and learned much from each and every one of you.

I am also grateful to all the teachers that participated in this study. Thank you for

providing insightful responses and welcoming me into your classrooms.

Moreover, I want to thank my students, who signed up for my Computer Science class in

grade 12 and shared memories of coding with the orange Scratch cat when I taught

them in Mathematics 8. Such enthusiasm motivated me to continue to explore

computational thinking and coding in mathematics education.

Finally, I would like to thank my family for the unconditional support in all my endeavors.

vi

Table of Contents

Approval .. ii
Ethics Statement .. iii
Abstract .. iv

Acknowledgements ... v

Table of Contents ... vi
List of Tables ... viii
List of Figures... ix

List of Acronyms .. x

Chapter 1. Introduction .. 1

Chapter 2. Related Literature ... 4

2.1. Introduction to Computational Thinking .. 4

2.2. Computational Thinking, Computer Science, Coding and Programming 7

2.3. Computational Thinking and Coding for K-12 Education .. 9

2.4. Computational Thinking and Coding in Mathematics Education 12

2.5. Research Questions .. 16

Chapter 3. Theory and Methods .. 17

3.1. Structuring Features of Classroom Practice Framework 17

3.2. Computational Thinking and Coding in BC Curriculum .. 20

3.3. Research Setting and Participants ... 22

3.4. Teacher Survey ... 22

3.5. Classroom Observations and Interviews .. 25

3.6. Data Analysis .. 27

Chapter 4. Analysis of Teacher Survey .. 28

4.1. Teacher Backgrounds ... 28

4.2. Resources for Computational Thinking and Coding ... 30

4.3. How Teachers Describe Computational Thinking .. 32

4.4. How Teachers Connect Computational Thinking and Coding to BC Mathematics
Curriculum ... 34

4.5. Motivations and Challenges ... 35

4.6. Computational Thinking and Coding Activities in Mathematics Classrooms 37

Chapter 5. Analysis of Individual Lessons ... 40

5.1. Teacher Backgrounds and Tools Used .. 40

5.2. Ada’s Lesson ... 42

5.3. Grace’s Lesson ... 50

5.4. Julia’s Lessons .. 58

Chapter 6. Cross-Case Analysis ... 67

6.1. Working Environment .. 67

6.2. Resource System .. 68

vii

6.3. Activity Format ... 70

6.4. Curriculum Script ... 71

6.5. Time Economy .. 73

6.6. Overall Experience .. 73

Chapter 7. Conclusions ... 76

7.1. Answering the Research Questions ... 76

7.2. Limitations and Implications ... 81

7.3. Final Reflections .. 81

References ... 84

Appendix A. Online Teacher Survey on SFU WebSurvey Interface 87

Appendix B. Post-Observation Teacher Interview Questions 92

viii

List of Tables

Table 1. Components of the Structuring Features of Classroom Practice
Framework ... 18

Table 2. Summary of Teacher Backgrounds .. 28

Table 3. Summary of Teachers' Familiarity with CT and Coding Tools 31

Table 4. Survey Results of How Teachers Connect CT and Coding to Core
Competencies .. 35

Table 5. Survey Results of How Teachers Connect CT and Coding to Curricular
Competencies .. 35

Table 6. Survey Results of How Teachers Connect CT and Coding to Curricular
Topics .. 35

Table 7. Key Coding Concepts Used in Participating Teachers' Activities 72

ix

List of Figures

Figure 1. Block-Coding Interface of Snap! ... 41

Figure 2. Block-Coding Interface of micro:bit ... 42

Figure 3. Sample Code in Snap! for Drawing an Equilateral Triangle 47

Figure 4. Sample Code in Snap! for Drawing Spiral Triangles 48

Figure 5. Grace's Examples Demonstrating Conditionals and Loops in MakeCode
 ... 52

Figure 6. Blocks and JavaScript Code in micro:bit’s MakeCode Interface 54

Figure 7. If-else-if-else Construct in the RPS Program .. 55

Figure 8. Sample Code for Partial Implementation of Fizz-Buzz 56

Figure 9. Student Mistake in Fizz-Buzz Implementation .. 57

Figure 10. Experiment Data from Julia's Class .. 63

Figure 11. micro:bit RPS tutorial - if block ... 64

Figure 12. micro:bit RPS tutorial - else block ... 64

x

List of Acronyms

ACM Association of Computing Machinery
ADST Applied Design, Skills and Technology
AP Advanced Placement
APCSA AP Computer Science A
APCSP AP Computer Science Principles
BC British Columbia
CAS Computing At School
CS Computer Science
CSTA Computer Science Teachers Association
CT Computational Thinking
DGS Dynamic Geometry Software
DME Dynamic Mathematics Environment
ISTE International Society for Technology in Education
MIT Massachusetts Institute of Technology
RPS Rock-Paper-Scissors
SFCPF Structuring Features of Classroom Practice Framework
SFU Simon Fraser University
STEM Science, Technology, Engineering and Mathematics

1

Chapter 1. Introduction

A fellow teacher Alicia invited me into her classroom as a guest, as we

collaborated on designing a coding task for her mathematics class.

I noticed Blaise when he entered Alicia’s class. He walked straight to the back of

the room and sat down. During the lab session, he worked by himself and did not

interact much with other classmates. While I circulated around the room, he turned to me

when I was close by, and said that the challenge was impossible to complete.

“How could you change the length of this?” He asked, pointing to an edge of a

shape his program drew on the screen.

I thought that he likely did not complete all the steps on the handout that led to

the final challenge. I flipped the page over and pointed to an earlier step that showed

how to use a variable.

Then Blaise seemed to have an “aha” moment and went back to work. Towards

the end of the class, he called Alicia over to show her what he had done. A few of his

classmates gathered around him to watch his demonstration. Blaise was the only

student in the class that solved the challenge. Alicia was excited and complimented him

after he explained the code and his reasoning.

After the class, Alicia and I talked about how the class went. She was happy

about the lesson, and this was also when I found out that Blaise was failing her

mathematics class.

Knowing that a struggling student had a chance to shine made my day.

As a rare computer science major among my colleagues, and a teacher with

experience working in the industry as a software developer, I have tried coding tasks in

mathematics classes since the first year the new BC curriculum was implemented.

However, at the time I was the only mathematics teacher at my school to do it. Very few

teachers shared the same enthusiasm. It was great to have a moment like this, a

reminder of what really motivated me to conduct this research in the first place. I

2

witnessed this repeatedly in my own classroom, but now I also saw it in another

colleague’s classroom.

Then I could not help but wonder, if programming could be such a powerful tool

to engage students, how come I am still doing this research, many years later after

Seymour Papert’s work on LOGO? How could teachers be better supported so that

more people are willing to incorporate coding in classrooms?

When the British Columbia (BC) Ministry of Education introduced coding in the

curriculum in 2016 (Silcoff, 2016), it was met with both excitement and skepticism. I was

one of the few mathematics teachers enthusiastic about this change, but I was also very

aware of many concerns, such as lack of resources, insufficient training, and an already

overcrowded curriculum, that this addition brought among teachers. A few years after

the implementation of the new curriculum, bringing coding into classrooms still seems far

from being entrenched in practice in BC classrooms, especially at the secondary level.

Before I began my graduate studies in the secondary mathematics education

program at Simon Fraser University (SFU), I tried several coding activities in my classes,

ranging from using “Hour of Code” (https://hourofcode.com/ca) tutorials to designing

coding tasks for a unit on algebra. These activities were met mostly with enthusiasm by

my students. The student engagement led me to believe that the effort was worthwhile.

However, I always felt that I needed to integrate coding into mathematics more naturally,

and I also wanted to help other colleagues do it.

As part of my course work, I had the opportunity to re-read Seymour Papert’s

Mindstorms: Children, Computers, and Powerful Ideas (1980). I also had the chance to

learn more about Wing’s (2006) paper on computational thinking (CT) that led to the

recent worldwide movement to include coding, or more generally computing, in school

curriculum. Moreover, through course projects I collaborated with colleagues, including

Alicia who I mentioned earlier, to create coding tasks for mathematics classrooms. My

interest started with coding in mathematics classrooms but expanded to include CT

more broadly. CT is a complex term. Although it appears in curriculum documents, its

meaning is not elaborated and widely shared. Having exposure to more theory, as well

as hands-on experience, I became more curious about the topic. There are many

relevant potential areas for research, such as the impact on students, lesson design and

3

technology usage, but I was especially interested in teachers’ perspectives of how to

incorporate CT and coding in classrooms. I believe that to see change in education,

teachers have to be heard and be involved in the process.

The main intent of this research is to better comprehend teachers’ understanding

of the term CT, interpretation of coding in the new curriculum and current practice

incorporating CT and coding in BC secondary mathematics classrooms. In Chapter 2, I

review related literature that discusses a variety of definitions of CT, clarify relevant

terms, and discuss CT and coding in the context of both mathematics education and K-

12 education. I then present my research questions. In Chapter 3, I explain the theory

and methods for this study, which include the theoretical framework utilized for data

analysis, descriptions of the survey and interview participants, as well as methods for

data collection and analysis. Throughout Chapters 4 and 5, I analyze the research data,

which consist of teacher survey, classroom observations and teacher interviews. In

Chapter 6, I present the cross-case analysis. Finally, I answer the research questions,

make conclusions and suggest future considerations in Chapter 7.

4

Chapter 2. Related Literature

There have been many studies on computational thinking and coding, as well as

how they are incorporated in classes. In this chapter, I first review literature on

computational thinking, whose definition is still not agreed upon, as the term may have

different meanings in different context. I then clarify relevant terms, including

computational thinking, computer science, programming and coding. Next, I focus on

literature related to computational thinking and coding in the K-12 context, as well as

studies in mathematics education. Finally, I present my research questions for this study.

2.1. Introduction to Computational Thinking

Computer scientist Jeannette Wing popularized the phrase “computational

thinking” (CT) in her influential article published in 2006; her work caught considerable

attention among the education community. Wing described CT as using fundamental

computer science concepts to solve problems. She considered CT a skill set applicable

to everyone, not just computer scientists; thus, she suggested adding it to reading,

writing and arithmetic as a new competency for students. After articulating the vision that

everyone can benefit from thinking like a computer scientist, Wing, along with colleagues

Cuny and Snyder (2011), more formally defined CT as “the thought processes involved

in formulating problems and their solutions so that the solutions are in a form that can be

effectively carried out by an information-processing agent” (p. 1).

Selby and Woollard (2014), to develop a more robust definition of CT, reviewed

literature on discussions of CT since 2006 and created criteria to evaluate frequently

used terms that are included in various definitions of CT. In their conclusion, they

described CT to be a cognitive process that reflects five abilities, which are elaborated

below.

• the ability to think in abstractions

• the ability to think in terms of decomposition

• the ability to think algorithmically

• the ability to think in terms of evaluations

5

• the ability to think in generalizations (p. 5)

Abstraction and decomposition, according to Selby and Woollard (2014), are two

key terms that showed up consistently in their review of definitions of CT. Wing (2006)

also highlighted these two practices as essential in tackling large, complex problems.

The Computing At School (CAS) group’s teachers’ guide for CT (2015), which Selby and

Woollard helped develop, used the example of the London Underground map, as an

everyday example to illustrate abstraction – the skill to hide unnecessary details and

represent data with important information. Through abstraction, a problem can be made

easier with simplified yet good representations. In computer science, abstraction can

occur at different levels, from using flowcharts when designing systems to choosing

appropriate data structures inside programs. The term decomposition, in computer

science, is breaking a problem down to small, manageable parts. A computer

programmer may implement many separate functions in a program. Writing an essay

involves outlining different parts – an introduction, body paragraphs and a conclusion.

Subdividing a problem into smaller, easier-to-solve ones is a technique used in solving

problems in other disciplines, and even in our daily lives.

 The abilities to think algorithmically, in terms of evaluations and in

generalizations are also commonly accepted as comprising CT. To think algorithmically,

to solve problems step by step, is what enables solving problems on a computer, or

more broadly, an “information-processing agent” which is the term used in Wing, Cudy

and Snyde’s definition (2011). Clearly defining a sequence of rules to be followed

precisely ensures that the solution works the same every time when executed by an

information-processing agent – which can be a computer, a robot, any kind of digital

device, or even a person. The ability to evaluate means the ability to find the best

solution – whether the solution is correct, efficient or user-friendly. Wing (2006) gave the

example of making trade-offs between time and space, power and storage when solving

computing problems. The ability to think in generalizations, to recognize patterns and

make connections, is also crucial to problem-solving. This skill is applied frequently in

mathematics classes. For example, CAS (2015) provided in their teachers guide the

example of students drawing polygons. After learning about drawing triangles, squares,

pentagons etc., the ability to generalize allow them to extend their learning to draw more

complex shapes such as a hexagon or an octagon.

6

While Wing’s article has been well received by educators, there is variability in

the interpretation of CT – viewpoints from teachers, industry and academia can be

different. For this research, Wing, Cudy and Snyde’s definition, with the set of CT

strategies highlighted by Selby and Woollard, will be used as the working definition of

CT. Non-academic resources often list Wing, Cudy and Snyde’s definition with four

characteristics of CT – abstraction, decomposition, pattern recognition (generalization)

and algorithms, leaving out evaluation. Sources cited on Wikipedia, such as British

Broadcasting Corporation (BBC) and Google for Education, used this set of

characteristics in their descriptions of CT. This may explain why that is what teachers

commonly see in CT teaching resources and at professional development workshops.

However, in Wing, Cudy and Snyde’s definition of CT, the solution to a problem should

be “effectively” carried out, which implies assessing the solution in the problem-solving

process.

Although the CT movement was ignited by Wing in 2006, the idea of CT started

much earlier. In 1962, computer scientist Alan Perlis advocated for teaching

programming to all students in colleges and universities to provide students “a step

toward understanding a ‘theory of computation,’ which would lead to students recasting

their understanding of a wide variety of topics (such as calculus and economics) in terms

of computation” (in Guzdial, 2008, p. 25). The term CT first appeared in Seymour

Papert’s book (1980). Papert pioneered the idea of supporting children develop

procedural thinking skills with the programming language, called LOGO, which he co-

invented with fellow artificial intelligence researchers Wally Feurzeig and Cynthia

Solomon. He had a grand vision of an educational system in which programming in

environments such as Turtle Geometry is leveraged as a learning tool for children.

Unlike most conventional school subjects, there is a strong push towards CT and

computer science education from the industry. Many technology giants have related

education outreach initiatives. As technology advances, computing is reshaping the

workplace, especially in science, technology, engineering and mathematics (STEM)

fields. Industry professionals may have a different interpretation of CT. For example,

Google’s Exploring Computational Thinking project defined CT as involving “a set of

problem-solving skills and techniques that software engineers use to write programs that

underlie the computer applications you use such as search, email, and maps” (Google

7

for Education, n.d.), with more emphasis on CT’s connection to implementing computer

applications.

Furthermore, some researchers in academia do not have the same views. Many

computer scientists have critical perspectives of the new CT movement ignited by Wing.

Denning (2009), for instance, suggested that CT is not “thinking like a computer

scientist” and argued that CT has a history in not only computer science but in all

sciences. He claimed that CT has already been known since the 1950s as “algorithmic

thinking” (p. 28). He also pointed out that the term CT appeared in discussions by

scientists when advocating for making computation the third approach to science, in

addition to theory and experiments. Thus, CT is an inadequate representation of CS,

and Denning was concerned about using it to promote CS. According to Guzdial, Kay,

Norris and Soloway (2019), little evidence supports Wing’s claim that learning about

computation helps students develop every-day problem-solving skills. They contended

that students may already encompass some of these skills through interactions with

computing everyday. The author provided several examples to illustrate their points. In

one of the examples, they pointed out that playing the video game Fornite involves

solving complicated problems such as navigating maps and managing ecological

systems. Players demonstrate CT skills such as abstraction and decomposition. The

authors better valued designing improved computing tools to provide environments that

support good thinking in general, over teaching CT in schools. While researchers such

as Denning and Guzdial had concerns or even did not see the need of the term CT, as a

K-12 educator, I still believe that weighing the advantages and disadvantages, teaching

CT in schools is worthwhile.

Even to this date, there is still on-going conversations about what CT is, why it

should be taught and how it should be taught. There may never be consensus because

different stakeholders have different goals and needs.

2.2. Computational Thinking, Computer Science, Coding
and Programming

While there is already confusion in defining CT, the problem becomes more

complex when many other related terms are used, such as computer science (CS),

coding and programming, all of which appear in many K-12 curriculum standards.

8

It is easy to mix up the ideas of computer science and computational thinking.

Computer science is usually seen a discipline, the study of knowledge of computing and

its applications; most universities have a department for computer science. On the other

hand, computational thinking, as Wing suggested, is a set of problem-solving skills. Wing

defined CS as “the study of computation — what can be computed and how to compute

it” (2006, p. 34) and described CT as a skill set that helps us “think like a computer

scientist” to solve problems.

It is also common to confuse CS with programming or coding, and this is a long-

term issue. Before the 1970s, CS was almost considered as equivalent to programming;

most of the courses in an undergraduate CS program were programming courses.

However, by 1986, Denning chaired a task force, commissioned by the ACM

(Association of Computing Machinery), that aimed to define CS as a separate discipline

and distinguish it from just programming. We are now already beyond the narrow view of

CS being the same as programming (Armoni, 2016).

Programming and coding are used (or misused) interchangeably nowadays, and

some argue that there is a distinction. A program is an entity that contains procedures,

or a sequence of computational instructions, that solve problems with a computer. A

piece of code refers to the written text, in the chosen programming language, that is part

of a program. From a computer programmer’s point of view, programming is broader

than coding. Programming means developing an executable program, implying having

more designing and problem-solving in the process. If creating a software application is

like writing a book, coding is merely writing sentences, whereas programming involves

writing, organizing and planning the chapters. Nevertheless, now the two terms are often

used as synonyms, especially in the K-12 education community and by the general

public. Many educational initiatives such as the Hour of Code and Canada Learning

Code promote “coding” when in fact, they aim to promote CS and even have some

activities that cover topics that do not involve programming, such as the internet, big

data and privacy. The main audience of this research project is K-12 educators, and the

term “coding” is widely understood as equivalent to computer programming; therefore, it

will be used in the way that is commonly understood unless otherwise specified.

Though the title of this study put CT and coding side by side, they are not

completely separated ideas. The relationship is not parallel; coding, or programming,

9

can be utilized as a vehicle to help students improve CT skills. As it is mentioned earlier,

Perlis and Papert both saw programming as a way to foster CT. When students

program, as they create, debug, iterate, and remix to solve problems, they are exposed

to CT skills (Lye & Koh, 2014). Nevertheless, understanding that programming is not the

only way to teach CT is essential. Some raised the concern that in practice, most CT

curricula focus on programming and do not specify CT strategies (Armoni, 2016).

Denning (2009) also showed concerns about this fascination of CT from people outside

the field; he anticipated that without a good grasp of what CT is, people may return to

understanding CS as being equivalent to programming. There are efforts to counter this

misperception, such as Computer Science Unplugged (http://www.csunplugged.org) and

cs4fn (http://www.cs4fn.org), which were created with the objective of providing teachers

resources to go beyond just coding, such as puzzles and activities that teach the binary

number system, cryptography and searching algorithms. In addition, the College Board

designed a new Advanced Placement (AP) Computer Science Principles course that

focuses on CT practices and provides students a broader understanding of computing;

only one of the seven big ideas of the course involves programming.

2.3. Computational Thinking and Coding for K-12 Education

Wing’s call to action of teaching CT certainly created a movement at the

university and college level. Locally, at the University of British Columbia, the CS

department redesigned its introductory course for non-CS majors and named it

“Computational Thinking”. The CT movement also gained traction in K-12 education.

Barr and Stephenson (2011) claimed that waiting until students are in college to

introduce CT concepts is no longer sufficient, as students nowadays are greatly

influenced by computing on a daily basis. Much of this push seemed to be driven by the

technology sector, which also influenced education policy makers. BC’s Ministry of

Education also added CT and coding in the latest curriculum revision; these changes are

elaborated and discussed in section 3.2.

Teachers are relatively new to integrating CT into pedagogical activities, and

there can be many different definitions of CT. Wing’s definition of CT has often been

criticized for its vagueness (Tedre & Denning, 2016). Therefore, according to Computer

Science Teachers Association (CSTA) and International Society for Technology in

Education (ISTE), it is important to “build consensus for an operational definition of

10

computational thinking that would be meaningful to an educator audience” (2011, p. 4).

Barr and Stephenson also stated that “passionate debate about the nature of computer

science or computational thinking may provide intellectual stimulation for those in the

computing fields. However, embedding computational thinking in K-12 requires a

practical approach, grounded in an operational definition” (2011, p. 144).

There has been a lot of discussions regarding establishing an operational

definition for CT to provide K-12 teachers a framework to incorporate CT in classrooms.

CSTA and ISTE (2011, p. 13), in collaboration with partners from higher education,

industry and K-12 education, developed a Computational Thinking Leadership Toolkit

and proposed the following definition:

“CT is a problem-solving process that includes (but is not limited to) the following

characteristics:

• Formulating problems in a way that enables us to use a computer and other
tools to help solve them

• Logically organizing and analyzing data

• Representing data through abstractions, such as models and simulations

• Automating solutions through algorithmic thinking (a series of ordered steps)

• Identifying, analyzing, and implementing possible solutions with the goal of
achieving the most efficient and effective combination of steps and resources

• Generalizing and transferring this problem-solving process to a wide variety of
problems.”

While this definition is considered to “present a rich portrayal of CT,” it is still

criticized for its vagueness about details (Tedre & Denning, 2016, p. 125). The last four

characteristics seem to align with abstraction, algorithmic thinking, evaluation and

generalization from the work by Selby and Woollard (2014). Formulating problems for

computers to solve is part of Wing’s ideas of CT. In her words, “[c]omputational thinking

is reformulating a seemingly difficult problem into one we know how to solve” (Wing,

2006, p. 33). This includes using abstractions, decomposition, etc. to represent problems

in new and different ways, ways that make problems easier to implement on computers.

To logically organize and analyze data, such as finding appropriate data structures,

performing statistical calculations and using visualizations, become an important part of

11

computing practices with the advancement of digital technology. One thing to note is that

this operational definition specific used the wording “include (but not limited to)” to allow

for extensions and variability in interpretations of CT.

To extend on the operational definition, Barr and Stephenson (2011) proposed a

model to provide K-12 teachers some concrete examples of how each of these CT

concepts can be applied across multiple core school subjects such as mathematics,

science, social studies and language arts. For example, abstraction in science class may

look like building a model to represent a physical entity; algorithmic thinking in

mathematics class is something students demonstrate when finding the greatest

common factor of two numbers. Viewing CT as a scientific practice, Weintrop et al.

(2016) also developed a CT taxonomy framework for K-12 mathematics and science

classrooms. With a broadened view of CT, their taxonomy includes practices in four

main categories: data, modeling and simulation, computational problem solving, and

systems thinking. Data practices, such as collecting, creating, manipulating, analyzing

and visualizing data, are crucial to all sciences. Modeling and simulation include using

computational models to understand concepts, as well as to find and test solutions.

Assessing, designing and constructing these models are important parts of CT practices,

too. The category of computational problem solving, while including many of the

strategies in our working definition, was developed with the perspective of solving

problems in the scientific domain. Programming, troubleshooting and debugging, which

are common practices in CS, were added as problem-solving strategies. As the study of

many scientific phenomena involve understanding and investigating large and

complicated systems, systems thinking, which can include studying a complex system

as a whole, understanding relationships between different components, communicating

about the system such as using visualizations and infographics, and defining systems

and managing its complexity. This taxonomy was proposed as a response to including

CT in school mathematics and sciences curricular materials, with the perspective of

using computation in mathematics and scientific context.

With the rise of block-based programming and easy access to free, online

programming environments and tools, there has been progress in incorporating CT and

coding at the K-12 level. Several of these programming tools, in various degrees, fit the

“low floor, high ceiling” guiding principle (Grover & Pea, 2013). One of the most popular

tools is Scratch (https://scratch.mit.edu) offered by the Media Lab at Massachusetts

12

Institute of Technology (MIT), which was inspired by LOGO and the work by Papert.

Scratch, a block-based, visual programming language and environment, is designed with

the intention of helping kids learn computer programming through creating fun projects

such as animations and games. AP Computer Science Principles (APCSP), which

emphasizes CT and complements the traditional AP Computer Science A (APCSA)

course that primarily focuses on programming in Java, has also gained popularity. The

total number of students taking the APCSP exam increased from 43,780 in 2017 to 70,

864 in 2018. The number of APCSP exam takers also exceeded the number of APCSA

exam takers for the first time in 2018. (College Board, 2018). CT and CS education

certainly made strides in recent years.

It would be reasonable to conclude that incorporating CT and coding in K-12

classrooms is valuable. CSTA and ISTE (2011) highlighted that not only could CT

potentially provide students an opportunity to develop problem-solving and critical-

thinking abilities, but it is also considered vital for future jobs, as computing plays an

increasingly prominent role in every industry. Moreover, CT and coding could possibly

support student learning in other disciplines. Despite the potential benefits and the

progress in research, CT and coding have not been fully integrated into K-12 education,

especially at the high school level. One of the major challenges is teacher training.

Preparing teachers, most of whom do not have background in CS, to include these

concepts in their teaching, can be a challenging task. The process would require system

change, encouragement of teacher engagement and development of resources (Barr &

Stephenson, 2011).

2.4. Computational Thinking and Coding in Mathematics
Education

Although the term CT was made popular by the CS education community, it has

deep roots in mathematics education. Wing (2006) also stated one of the characteristics

of CT is that it “[c]omplements and combines mathematical and engineering thinking” (p.

35). She recognized the connection between CS and mathematical thinking, and how

mathematics is fundamental to all sciences. Moreover, computation has become

increasing important in the discipline of mathematics and sciences, which is another

motivation to bring CT into mathematics learning (Weintrop et. al., 2016).

13

What motivated Papert (1980) to develop LOGO, was his vision for combating

mathematics phobia through creating a computerized learning environment that allows

children to explore mathematics with a student-centered, project-based approach. The

computer, in Papert’s opinion, can play a subordinate role to mathematics learning.

Papert claimed that the computer can help learners establish a new relationship with

mathematics. He believed that one of the powerful features of teaching with computers

is the feedback students receive. Students do not need to be told by the teachers

whether they are right; they could see themselves if the program worked as they

intended. Student, thus, are more willing to take risks and fix mistakes through

debugging their programs.

Papert created the “Turtle” – a “constructed computational object-to-think-with”

which existed within the LOGO programming environment (p. 11). With LOGO, Papert

proposed a new style of teaching geometry, which he called “a computational style of

geometry” (p. 55). Strongly influenced by psychologist Jean Piaget, Papert believed in

having children learn from exploring and constructing their own understanding, and his

vision was that students can acquire many different concepts in the LOGO environment,

not just in geometry, and the learning is not limited to mathematical ideas, either.

Papert’s work inspired generations of educators to explore his ideas.

Although there has been a lot of excitement about how CT can support

mathematics learning, there are relatively few studies. Specifically focus on computer

programming, Clement (1999) stated that early research results were conflicting, and

positive results could be inconsistent or limited. When LOGO first came out and was

considered by many educators as a potential medium to foster critical-thinking skills and

mathematical learning, studies conducted by the Bank Street College of Education,

showed that students programming with LOGO did not show improvement in planning

abilities and problem-solving skills that transfer to other context (Pea & Kurland, 1983).

With LOGO more integrated into schools, educators developed the perception that

programming was too difficult to have strong impact on mathematics learning (Benton et

al., 2016). Clement claimed that positive cases relied on prudently planned sequence of

programming activities; only exposure to programming would not have a positive effect

in mathematics learning.

14

The call for adding CT as a new competency to every child’s analytical ability, as

well as the advancement in educational computing tools, especially in block-based

programming such as Scratch, led to resurgence in the area of CT in mathematics

education. Some noteworthy efforts include Bootstrap based at Brown University

(https://www.bootstrapworld.org/), ScratchMaths (2016) by the University College of

London and the Lattice Land project by Pei, Weintrop and Wilensky (2018), and these

projects are elaborated below.

Schanzer, Fisler, Krishnamurthi and Felleisen (2015) stated that many projects

that aimed to improve student mathematics performance through computing project

were unsuccessful. They claimed transfer of learning mathematics from computing

projects did not occur because “[t]ransfer of learning between domains typically requires

both deep structural connections between the domains and explicit instruction in how to

apply concepts from one discipline in the other” (p. 616). With this in mind, they

developed Bootstrap, a programming curriculum that teaches students to create video

games using algebra and geometry. The curriculum is designed to teach specific

algebraic concepts, and students program in a functional programming language that

better reflects how variables and functions work in mathematics. Preliminary data of their

study suggested that Bootstrap improved student achievement on algebra word

problems from standardized mathematics examinations in the US. Later in a larger

study, Schanzer, Fisler and Krishnamurthi (2018) confirmed that students improved on

algebraic word problems with the Boostrap:Algebra module.

ScratchMaths by the University College of London is another project that aimed

to integrate CT and Math. It is a two-year math and CT based curriculum for students in

grade 5 and 6 (Benton et al., 2016). The study found that the ScratchMaths curriculum

had a positive impact on student learning of CT, especially for disadvantaged students.

However, the evaluation report stated that many schools did not complete the

mathematics portion of ScratchMaths; some teachers showed concerns regarding the

pressure of Key Stage 2 SATs, the national standardized assessment for students in

grade 6 in England. Based on the result from schools that fully implemented the

program, there was no evidence of improvement in students’ mathematics test results

(Education Endowment Foundation, 2018).

15

Taking an approach different from Bootstrap and ScratchMaths, which

emphasized programming, Pei et. al (2018) developed a project called Lattice Land as

part of Northwestern University’s CT-STEM project. Students explore geometry concepts

in a “mathematical microworld”, an idea inspired by Papert. Using a broader definition of

CT by Weintrop et al. (2016), students were said to apply CT skills in Lattice Land, such

as decomposition, abstraction, modelling and simulation. The design of project interface

was similar to dynamic geometry software (DGS) but focused on discrete geometry.

Their work demonstrated an example of connecting CT with mathematics, and the

authors concluded that a well-designed computing environment can support the learning

of the intersection of CT and mathematics habits.

Canadian researchers also made strides in CT in mathematics education.

Gadanidis (2017) showed how grade 3 and 4 teachers, with little experience in

programming and a variety of tools such as Scratch, the Repeating Patterns coding

environment and coded simulations in Python, can integrate CT and mathematics in

their classrooms. Savard and Freiman (2016) also conducted a study working with grade

5 to 7 students using robotics-based tasks. Their analysis indicated that student

performance depends on the type of feedback — mathematical, digital or socio-cultural,

and how students interpreted the feedback. They highlighted the concern that students,

used the trial-and-error strategy based on feedback from the robots, which may not

reflect understanding of the mathematics concepts. For example, instead of using their

discussions on circumference of the wheel and rotation time, students ended up

guessing and experimenting with parameter values to get the robot to move within the

time limit set by the task.

Incorporating CT and coding in mathematics education still requires much further

studies; study results have been tentative. Moreover, there is especially a lack of

research at the high school level. Analysis suggested that although the number of

studies in the area has grown, most studies are conducted by academics working in CS

departments, not from education. Moreover, studies tend to concentrate on teaching

programming, rather than supporting the learning of mathematical concepts (Hickmott et.

al., 2017).

16

2.5. Research Questions

Although CT and coding have become part of the BC curriculum, and some

teachers see the potential benefits, they may not put emphasis on CT and coding in

classrooms. If we want to realize the vision of incorporating CT and coding in more K-12

mathematics classrooms, we must investigate teachers’ current practice because 1) how

teachers understand CT determines how they implement it in the classroom and 2) we

need to meet teachers where they are if we would like to continue to make progress and

better our practice. How are mathematics teachers currently incorporating CT and

coding? What are we already doing well? How can we improve? For teachers that have

not tried it, what are some factors that have prevented them from trying?

I am interested in exploring how BC secondary mathematics teachers are

incorporating CT and coding in their classrooms. Specifically, I am interested in

answering the following questions:

• How do teachers understand "computational thinking" and interpret "include
coding" in the BC mathematics curriculum document?

• What kind of coding and CT activities are developed and used in BC
secondary mathematics classrooms?

• What challenges do teachers face and how can they be better supported in
incorporating CT and coding?

• To what degree are CT and coding integrated into BC teachers’ mathematics
classes?

17

Chapter 3. Theory and Methods

In this chapter, I introduce the Structuring Features of Classroom Framework

created by Ruthven (2009), the framework used to analyze this research. I then review

computational thinking and coding in the latest BC curriculum, which motivates this

research and provides context of the study. Next, I discuss the research setting and

provide information on the participants. Methods used for data collection, which include

surveying teachers, observing in classrooms and conducting teacher interviews, are

discussed in detail. Lastly, I offer an overview of how the data are analyzed.

3.1. Structuring Features of Classroom Practice Framework

This research aims to explore teachers’ current practice for incorporating CT and

coding in mathematics classrooms. As a pilot for this study, I made classroom

observations in two colleagues’ classes when they tried coding tasks with their students.

Soon after my first observation, I realized that I needed a more structured approach that

would enable me to find themes to focus on in a classroom observation. Although using

unplugged activities, activities that do not require computers, to incorporate CT and

coding in mathematics classrooms is possible, most of the time teachers utilize digital

technology. Thus, Ruthven’s (2009) Structuring Features of Classroom Practice

Framework (SFCPF), developed to help better understand technology integration in

mathematics classrooms, is utilized to support my analysis. This framework was chosen

as it focuses on teacher’s practice, whereas other theories may emphasize on the

technology use for student learning.

Ruthven’s framework identifies five key structuring features of a mathematics

classroom with technology integration: working environment, resource system, activity

format, curriculum script and time economy. It names different phenomena in a

technology-using classroom; each structuring feature was defined by Ruthven as follows

(2014, p. 12):

18

Table 1. Components of the Structuring Features of Classroom Practice
Framework

Structuring feature Defining characterisation

Working environment Physical surroundings where lessons take place, general technical
infrastructure available, layout of facilities, and associated organisation
of people, tools and materials

Resource system Collection of didactical tools and materials in use, and coordination of
use towards subject activity and curricular goals

Activity format Templates for classroom action and interaction which frame the
contributions of teacher and students to particular types of lesson
segment

Curriculum script Loosely ordered model of goals, resources, actions and expectancies
for teaching a curricular topic including likely difficulties and alternative
paths

Time economy Frame within which the time available for class activity is managed so as
to convert it into “didactic time” measured in terms of the advance of
knowledge

An example of how the conceptual framework was applied is an investigative

lesson with dynamic geometry, part of a Cambridge study in 2008 (Ruthven, 2009). The

teacher used interactive whiteboards and The Geometer’s Sketchpad (Jackiw, 2011), a

dynamic geometry software, in the lesson. The lesson involved students investigating

the property of the circumcentre of a triangle. For the working environment, Ruthven

observed how moving from a normal classroom to a computer suite could affect the

lesson and how new routines were developed related to operating the computers. In

terms of the resource system, Ruthven looked at how department policy of encouraging

teachers to explore possibilities and report to colleagues affected the teacher’s practice

and how the teacher found dynamic geometry complementing the usual geometric

constructions by hand for this lesson. The activity format, affected by the working

environment, followed the format of a teacher-led activity in the classroom and individual

student work in the computer suite. The teacher noted how the computer environment

supported his own interactions with individual students, but there was less of fostering

discussions during individual student activity. The teacher’s curriculum script originally

was based on experience working with students constructing perpendicular bisectors on

triangles by hand using compasses. Through experience teaching with technology, the

teacher expanded his curriculum script and highlighted the affordances of the ability to

drag and move the geometric figures. Lastly, Ruthven investigated the time economy

component, looking at the teacher’s perspective of time such as physical time it took to

move to the computer suite, didactic time and time invested to teach students a new

19

tool. These key features allowed for investigations into crucial aspects of a technology-

enriched mathematics classroom.

While Ruthven’s framework is useful in analyzing a mathematics classroom using

technology, a classroom incorporating a coding task differs in several aspects. These

differences call for modifications to the framework for the usage of this study. In

Ruthven’s original framework, the focus of curriculum script was on teacher moves

related to their pedagogical content knowledge in mathematics. Ruthven’s (2009) use of

the term “script” is “in the psychological sense of a form of event-structured cognitive

organisation” (p. 138). An example of part of a teacher’s curriculum script, from the case

study of the dynamic geometry lesson mentioned previously, would be a teacher move

of asking students what happens when an angle, formed by connecting the circumcentre

with two vertices of the triangle, was dragged towards 90 degrees. Reviewing the

lesson, the teacher commented on how this led to a class discussion and made him

realize the point would fall on the midpoint of an edge, an obvious property that never

occurred to him before. The technology helped expanding his available curriculum script

for this topic.

However, I realized in the pilot classroom observations that making distinctions

between mathematical content and coding related content is important. Through

classroom observations, it is evident that students in these classes make use of coding

concepts, such as conditionals and loops. Moreover, the classes tend to be more open-

ended and less structured than typical mathematics lessons. In a coding lesson,

teachers typically have the curricular tasks pre-organized in the format of a handout, or

use online tutorials provided by educational tools. Students spent most of the class time

to explore the coding task. There may not be much teacher guided instruction; therefore,

there could be very little to observe in the classroom in this regard. For the adapted

framework, which will be referred to henceforth as the adapted SFCPF, I would like to

focus more on learning objectives in the curriculum script component. The curriculum

script component in Ruthven’s framework is originally used for mathematics learning

outcomes, and the adapted SFCPF will include the analysis of coding concepts in the

mathematics lessons.

To assist with the analysis of learning objectives related to coding tasks, I use the

CT concepts identified by Brennan and Resnick (2012) from the MIT Media Lab,

20

developer of the phenomenally successful block-based programming platform Scratch.

The authors highlighted seven highly useful concepts in Scratch projects, and these key

concepts can be found in typical programming projects and in non-programming context

as well. The concepts are:

• sequences: an activity or task is expressed as a series of individual steps or
instructions that can be executed by the computer

• loops: a mechanism for running the same sequence multiple times

• parallelism: sequences of instructions happening at the same time

• events: something that triggers another thing to happen, such as a button click

• conditionals: the ability to make decisions based on certain conditions

• operators: provide support for mathematical, logical, and string expressions

• data: involves storing, retrieving, and updating values

These key concepts are taken into consideration as part of the curriculum script

component in the adapted SFCPF.

The adapted SFCPF enables me to answer the research questions by providing

a way to document the CT and coding activities developed and used in BC secondary

mathematics classrooms. All five components, especially activity format and curriculum

script, focus on investigating the lesson observed. The working environment, resource

system and time economy are facets surrounding a technology-using mathematics

classroom that potentially can pose challenges for teachers.

3.2. Computational Thinking and Coding in BC Curriculum

One of the research questions is about teachers’ reaction to BC’s new curriculum

related to CT and coding. The latest curriculum was introduced in 2016, and it includes

CT and coding in the areas of Applied Design, Skills and Technologies (ADST) and

mathematics. The addition involves two approaches, one is to create new, stand-alone

Computer Science 11 and 12 courses within the curricular domain of mathematics, and

the other is to integrate CT and coding into different courses. CS 11 and 12 under

mathematics were new courses developed to provide more university-aligned, rigorous

CS courses at the high school level. The term “computational thinking” first appeared in

21

ADST 6, though ideas from CT appear in younger grades. In the ADST stream, there is

more focus on projects and hands-on activities. The curriculum is defined based on

design thinking principles, such as ideating, prototyping and testing; there is no

elaboration on what programming concepts to be included. In the mathematics pathway,

coding is a suggested activity to develop the curricular competency of “reasoning and

analyzing” from grade 6 to 9 and “reasoning and modelling” starting in grade 10. CT is

considered a tool to help students develop logical thinking ability.

At the grade 11 level, CT is defined in the curricular documents, in both

Computer Science in mathematics and Computer Programming in ADST. The Computer

Science 11 and 12 courses cover most concepts that are covered in a typical

introductory CS course at the university level, with more mathematics content such as

use of computing for financial analysis and ways to model mathematical problems.

One thing to note is that even in the same curriculum standards, the definitions of

CT are slightly altered in different areas. In BC’s Computer Programming 11 and 12

under ADST, CT was described as “formulating problems and their solutions so they are

represented in a form that can be solved through an algorithmic process. Key

components are decomposition, patterns and generalizations, abstraction, and

algorithmic thinking.” On the other hand, in Computer Science 11 and 12 under

mathematics, CT was defined as “a thought process that uses pattern recognition and

decomposition to describe an algorithm in a way that a computer can execute.”

Elements from the most popular definition by Wing (2011) and characteristics described

by Selby and Woollard (2014) can be seen in both definitions.

There are numerous initiatives that support K-12 educators and give students

exposure to CT concepts and coding practices in BC. When the BC new curriculum was

introduced in 2016, the government provided a funding of six million dollars to support

introducing coding in the curriculum (BC Gov News, 2016). The federal government, with

its CanCode initiative, also funded projects from many organizations that support

Canadian youth and teachers in learning digital skills such as coding (Minister of

Innovation Science and Economic Development, 2019). Science World BC’s Tech-Up

project has delivered professional development workshops and teacher summer training

with the theme of CT since 2018. Other projects supporting BC teachers include Canada

Learning Code, Kids Code Jeunesse, Cybera and the Pacific Institute for Mathematical

22

Sciences, etc. However, it is unclear how many teachers have benefitted and how widely

spread CT and coding are in BC classrooms.

3.3. Research Setting and Participants

To better understand BC mathematics teachers’ current experience, it is crucial

to directly ask teachers about their perceptions and examine what happens inside

classrooms. The research questions are pursued through surveying teachers, observing

in classrooms and interviewing teachers after observations. The research is set in two

urban school districts in BC; participants are all secondary mathematics teachers in

these two districts. The data were collected from the spring and fall terms of 2019. The

school districts, as well as SFU’s Office of Research Ethics, gave approval to conduct

the research. The data collected included:

• Online survey administered to secondary mathematics teachers

• Field notes from classroom observations

• Audio recordings of teacher interviews

The surveys were sent out to contacts at all secondary schools in the two school

districts. After a three-month survey collection period, 19 responses by teachers from 13

different schools were received. Three teachers participated in the classroom

observations and interviews. The survey respondents teach a variety of mathematics

courses, and their teaching experience range from 3 to 24 years.

3.4. Teacher Survey

The survey was administered online using SFU’s online survey instruments. It

serves two purposes: 1) to gain information on teachers’ background, understanding of

the concept of CT and their current practice 2) to search for teachers to participate in the

classroom observation and interview portion of the study. Invitations were sent to school

principals, department heads, district mathematics coordinators, as well as colleagues I

connected with. The survey questions are listed below. The actual survey in the format

the participants saw in the online survey tool is included in Appendix A.

23

There are two types of questions, closed questions, such as rating or ranking

questions, as well as open-ended responses. The survey begins by asking the

participating teachers for some background information and offers them an opportunity

to indicate whether they are willing to participate in further study. The background

questions include:

• Which school do you teach at?

• How many years have you been teaching?

• What grades/courses do you currently teach?

• What other grades/courses (if any) have you taught in the past 3 years?

• Would you be willing to participate in further study after the survey, which may
involve a classroom visit and an interview?

• If you are willing to participate in further study, what would be the best way to
contact you?

The next part of the survey connects the idea of CT and coding to the latest BC

curriculum. The first question in this section gathers information on the teacher’s

familiarity with different tools. A four-point scale with “I Have Used This”, “I Would Like to

Try This”, “I Have Heard of This” and “I Have Not Heard of This” as headings is used.

This question also provides insights for the resource system component in the adapted

SFCPF, which was discussed in 3.1.

Question: Please indicate your familiarity with the tools for incorporating coding

and computational thinking in mathematics classes.

1. Unplugged activities, such as puzzles and board games

2. Text-based coding, such as Python, JavaScript, Java, etc.

3. Blocked-based coding, such as AppInventor, Scratch, Snap!, etc.

4. Web-based resources, such as Code.org, Hour of Code, Khan
Academy, etc.

5. Physical computing tools, such as Arduino, 3D printers, micro:bits,
Raspberry Pi, etc.

6. Dynamic geometry software, such as Desmos, Geogebra, The
Geometer’s Sketchpad, etc.

24

7. Mathematics-based software, such as Maple, Mathematica, MATLAB,
programmable calculators, etc.

8. Robots: Dots and Dash, LEGO Mindstorms, mBot, Spheros, etc.

9. Others. Please specify.

As there are a variety of tools that can be used for teaching CT and coding, they

are grouped into eight categories. There is an option for teachers to provide suggestions

of tools in the “others” category. After the survey is administered, it is found that for

option six, Dynamic Geometry Software (DGS) does not accurately categorize the

applications mentioned. Dynamic Mathematics Environment (DME), which is a broader

term and does not only focus on geometry, will be used in the analysis in later sections.

If this survey is used for further studies, DME will be used instead of DGS.

The following two questions connect to the core competencies, curricular

competencies and content areas in the BC curriculum. The feature of core competencies

is a major change to the redesigned curriculum; core competencies are embedded in all

courses and include thinking, communication and social and personal competencies.

The curricular competencies and content areas are both subject-specific. The first

survey question focuses on the competencies, whereas the second question

concentrates on the content, specific topics in mathematics.

Question: Please select the top 5 competencies in the BC curriculum you find

most relevant to coding and computational thinking.

Core Competencies

• Communication

• Creative Thinking

• Critical Thinking

• Positive Personal and Cultural Identity

• Personal Awareness and Responsibility

• Social Responsibility

Curricular Competencies

• Reasoning and Analyzing

25

• Understanding and Solving

• Communicating and Representing

• Connecting and Reflecting

Question: Please select the top 2 topics you feel are most relevant to coding and

computational thinking in math classes.

• Number Sense

• Patterns and Relations

• Spatial Reasoning

• Statistics and Probability

The last section consists of open-ended questions.

• How would you describe your background and comfort level in teaching
coding and computational thinking?

• How would you describe computational thinking?

• When you see coding as a suggested learning activity in BC’s new
mathematics curriculum, what comes to mind?

• What are some reasons why you may want to incorporate coding and
computational thinking in your mathematics classes?

• How frequently do you incorporate coding and computational thinking in your
math classes?

• If you have tried including coding and computational thinking activities in your
classes, describe an activity that you think was most successful.

3.5. Classroom Observations and Interviews

Participants were selected based on their willingness to participate, familiarity

with the topics of CT and coding, as well as their availability. Out of the 19 respondents,

11 of them left their contact information. In the end, three teachers participated in the

classroom observations and interviews.

26

Each teacher selected for the classroom observation chose one lesson to be

observed after discussion, and the observation lasted for the duration of the class

period, usually around seventy-five minutes. Each observation was followed by a

reflection interview.

During the classroom observations, notes were taken on the classroom

environment, teacher resources, structure of the lesson, tasks used, as well as highlights

of the lesson content. Then field notes were organized based on the adapted SFCPF.

The post-observation interview questions are listed below and included in

Appendix B. Participants’ responses to existing questions sometimes prompted

additional questions or clarifying questions. The interview started with some general

questions about the teacher’s overall experience:

• Overall, what did you like about this lesson?

• What challenges did you have, if any?

• If you can make one change to the lesson, what would it be?

Then the questions were organized into five categories based on the adapted

SFCPF. For the working environment, the question asked about one change that the

teacher could make with the intent to highlight the teacher’s major concern.

• If you can make one change to your classroom setup for this lesson, what
would it be?

The questions for the resource system purposely separated resources for CT

and coding learning outcomes from mathematics learning outcomes.

• What resources for coding and computational thinking did you use for this
lesson?

• What resources for the math learning outcomes addressed did you use for this
lesson?

Questions for the activity format and curriculum script again highlight the

comparison to the teacher’s typical mathematics lesson:

• How did you structure this lesson?

27

• Comparing to your typical math lessons, what do you think are some
differences in your lesson that incorporated coding, such as in the sequence
of the lesson, assessment, etc?

• What are some changes you made in your way of teaching, such as questions
posed, explanation of a concept, etc. teaching the same math concept in your
lesson that incorporate coding and computational thinking?

Finally, questions on time economy focused on how much time the teacher spent

to prepare the lesson and the teacher’s perception of whether the use of time in class

was effective.

• How much time did you spend planning this lesson?

• Are there parts of the lesson you feel were not effective use of time due to the
use of technology?

3.6. Data Analysis

The teacher survey consists of closed questions and open-ended responses. For

closed questions, I provide descriptions of the resulted statistics. For open-ended

responses, I find emerging themes and attend specifically to issues discussed in the

related literature in Chapter 2, such as how teachers view CT, how they talk about the

relation of mathematics and CT, and what type of CT and coding tasks they use.

 For the class observations and interviews, I analyze data from each individual

lesson using the adapted SFCPF. Field notes from the classroom observation are re-

organized according to the five structuring features. The post-observations interviews

are audio recorded and then transcribed; the information supplements the classroom

observations. Data from each individual lesson are first analyzed individually, and then

cases are cross-examined for similarities and differences.

28

Chapter 4. Analysis of Teacher Survey

In this chapter, I first provide background information about the teachers

participating in the survey. Next, I discuss the results on resources for teaching CT and

coding. What follows are how teachers describe CT and how they connect it to the BC

mathematics curriculum. Then, I present teachers responses motivations and challenges

for incorporating CT and coding. Last, I discuss the various examples of CT and coding

activities teachers provided.

4.1. Teacher Backgrounds

There is a good mix of novice and experienced mathematics teachers among the

19 participants. They teach a variety of mathematics courses from grade 8 to 12,

including calculus. Two teachers also teach science. In addition, two teachers teach

ADST courses such as Computer Programming 11, Digital Citizenship/ADST 8 and

Accounting 11.

Table 2 below shows a summary of teacher backgrounds based on their years of

teaching experience and comfort level with CT and coding. The comfort level is broken

into 3 categories primarily based on teachers’ answers to survey question 10, which

asks for the description of the respondent’s background and comfort level in teaching CT

and coding. I chose the open-ended question format to allow for elaboration; however,

as the responses presented teachers’ own perceptions, they could be open for

interpretation.

Table 2. Summary of Teacher Backgrounds

Years of
Experience

Number of
Teachers

Comfortable Somewhat
comfortable

Not Yet
comfortable

Have tried
coding in
math class

1-5 4 1 3 0 2

6-10 6 1 3 2 1

11-15 4 1 2 1 2

16-20 3 2 1 0 1

21-25 2 0 1 1 1

29

Teachers comfortable with CT and coding all stated it very clearly, whereas some

teachers that do not have as much experience with CT and coding may give responses

that require further analysis. Some responses are easier to categorize as somewhat

comfortable, for instance:

My comfort level for this topic will be 3 out of 5.

Comfortable teaching it with guidance, not comfortable alone.

For more ambiguous responses, I looked at answers from other survey

questions, such as the teachers’ knowledge of a variety of tools (question 6), how

frequent they use CT and coding activities (question 14) and if they have tried activities

in their classroom (question 15).

One teacher’s response to question 10 was just “entry level.” According to the

response to question 6, the teacher has used unplugged activities and block-based

coding tools. Also, the teacher claimed to have not done CT and coding often enough

and would like to do more. Moreover, the teacher gave the example of using strategy

games in class for question 15. The teacher seems to be confident and at least

somewhat comfortable in teaching CT and coding.

In another example, the teacher’s response was “I have become more interested

in this topic and have been learning about it recently.” According to the teacher’s

answers to question 14 and 15, the teacher has not yet tried any CT and coding

activities. For question 6, other than dynamic geometry software, the teacher indicated

no experience using any other tools. Based on the information, the teacher was

categorized as not yet comfortable teaching CT and coding.

Contrary to the common belief that younger teachers are more interested in the

topic, both the comfort level and experience level were fairly spread out among the 19

participating teachers. The summary in Table 2 showed that there are teachers trying

coding activities in mathematics classes, despite that they may only be somewhat

comfortable with CT and coding. Study by Gadanidis (2017) also found that teachers

with little coding experience can successfully integrate CT in mathematics. Two of the

teachers surveyed showed their willingness to learn coding and incorporate it in their

classes:

30

I have no background in coding, and learned through collaboration with

other math teachers who have some background in

coding/programming.

I am relatively new to teaching coding/computational thinking. I've done

hour of code with my classes for few years, and last semester was the

first year for me to include a mini unit (3 classes) of coding into my

math 8 classes.

Several teachers mentioned that they had experience with programming from a

long time ago, often from their undergraduate years.

Some coding experience but so long ago it doesn't feel relevant.

My only experience coding is [half-heartedly] teaching myself the basics

of LaTex one semester in Undergrad. So I have little background, and

awareness of how to build it into the curriculum beyond Excel.

[I] have taken 1st year computer science courses. [I] have done coding

in Microsoft excel for work.

Some of the tools mentioned such as LaTex and Microsoft Excel (or

spreadsheets in general), involve coding for specific purposes. This type of coding is

different from coding or programming in the discipline of Computer Science discussed in

Chapter 2 but is considered by a few teachers as a good way to introduce coding.

4.2. Resources for Computational Thinking and Coding

Table 3 below shows a summary of teachers’ familiarity with tools for CT and

coding from survey. It is important to note that these tools may be utilized to support

teaching CT and coding, but it depends on what tools are used and how they are used.

31

Table 3. Summary of Teachers' Familiarity with CT and Coding Tools

 I Have Used
This

I Would Like
to Try This

I Have Heard
of This

I Have Not
Heard of This

Unplugged activities, such as
puzzles and board games

16 2 1 0

Text-based coding, such as
Python, JavaScript, Java, etc.

3 7 9 0

Blocked-based coding, such as
AppInventor, Scratch, Snap!, etc.

6 8 4 1

Web-based resources, such as
Code.org, Hour of Code, Khan
Academy, etc.

8 6 3 2

Physical computing tools, such
as Arduino, 3D printers,
micro:bits, Raspberry Pi, etc.

6 5 7 1

Dynamic geometry software,
such as Desmos, Geogebra, The
Geometer’s Sketchpad, etc.

18 1 0 0

Mathematics-based software,
such as Maple, Mathematica,
MATLAB, programmable
calculators, etc.

9 6 4 0

Robots: Dots and Dash, LEGO
Mindstorms, mBot, Spheros, etc.

4 6 7 2

Most teachers are familiar with unplugged activities and dynamic mathematics

environment, which are already commonly used in mathematics classrooms. As

discussed in section 3.4, the wording is changed from dynamic geometry software

(DGS) to dynamic mathematics environment (DME) to more accurately reflect the tools

teachers are using.

For teachers that have tried coding, block-based programming and online

tutorials were popular choices among teachers. Three teachers that have used text-

based coding all teach Computer Science or Computer Programming; only one of the

them had the opportunity to introduce text-based coding in his or her mathematics

classes. The activity will be discussed in more details in section 4.6.

Two teachers indicated Microsoft Excel as a tool for incorporating CT and coding.

One teacher elaborated in his/her comment:

I've been working on building opportunities for students to practice

using Excel in Math 10 (budgeting, functions, etc.) as a soft introduction

to coding through applying cell functions.

32

One teacher used Explain Everything, a software application with an interactive

whiteboard that allows for collaboration. The teacher considered it a tool for teaching CT

as it involves everyday problem-solving skills.

Explain Everything on iPads documenting patterning and work with

physical manipulatives. Students needing to think about order and

orientation to document the concept or present a problem solution.

The additional examples of Microsoft Excel and Explain Everything raised

interesting questions. How do teachers interpret CT? Is entering formula into Microsoft

Excel considered coding? How teachers define CT determines what resource tools they

see as CT and coding tools.

4.3. How Teachers Describe Computational Thinking

The concept of CT, as discussed in Chapter 2, lacks a precise definition that is

commonly adopted by the education community. I am interested in how BC secondary

mathematics teachers understand and interpret the term CT. The wording of the survey

question was “How would you ‘describe’ computational thinking?” instead of “’define’

computational thinking” as this is anticipated to be a challenge.

Among the 19 responses, ten used the problem-solving rhetoric similar to Wing’s

description; some sample responses are:

Problem solving using systematic approach

Being able to identify what problem needs to be solved, and create an

algorithm or equation that can be used to help solve it.

An algorithmic approach to problem solving.

Most of the other answers mentioned one or a few aspects of CT, for example:

Generalizing patterns

breaking down a problem into solvable chunks and pathing it together

Thinking logically of the vast possibility of course combinations. Step by

step thinking, trial and error, a vehicle for teaching growth mindset

the ability to write down all the possible scenarios in a situation and be

able to follow a path to each possible outcome (like a tree diagram)

33

As discussed in 2.3, there has been a movement towards using unplugged

activities. Six of the 19 teachers mentioned the word “computer” in their descriptions of

CT, whereas one teacher specifically stated that teaching CT does not necessarily

require technology. There were some differences from the descriptions where

“computer” was included. The first three descriptions below focused on using the

computer as a tool for problem solving.

Using computer as aid for problem solving

solving problems by writing programs/expressions that a computer

software understands and executes?

Identifying a pattern or breaking a task or problem down into a series

of steps that can be implemented into an algorithm and executed by

either a computer or another autonomous system.

Two descriptions emphasized on communicating with the computer; using the computer

was the end goal.

It is a method to break down a task [so] that a computer is able to

execute the task.

Understanding the language to communicate to the computer to get it

to do things you want it to do.

One description echoed Wing’s message that CT means “thinking like a computer

scientist” (2006).

"computer" thinking - which involves the use of logic, analytical thinking,

communication, problem solving, pattern noticing/recognizing, etc.

Three descriptions stood out as unique. Two of the responses did not seem to be

influenced by the frequently referenced papers by Wing. The first description, connecting

“computational” to the use of quantities, is what I originally anticipated from mathematics

teachers. Some of skills such as pattern creations and algorithmic thinking are common

skills in both mathematics and computational thinking.

The understanding and use of quantities to represent the properties and

actions of objects and their relationship to each other. The numerical

objects are then combined, ordered and transformed to create patterns,

new objects, actions or sets of procedures.

The second description focused on the idea of design thinking, which is more inline with

the BC ADST curriculum.

34

I would assume it's related to design process thinking. Where you have

a goal based on a certain set of needs and you need to determine the

set of steps/other requirements to attain the goal.

While it is quite common for coding to be considered as a vehicle to teach CT, one

teacher thought otherwise:

Coding to me doesn't quite fit under computational thinking because I

think of coding as a specific way of communication (using a specific type

of language/ways to express an idea - almost like a specific "way" to

solve a problem).

In this comment, coding was viewed as a way of communication or expression. I

wonder if this has to do with the rise of block-based and visual programming, or if the

teacher thought of coding as writing code in languages such as the Hypertext Markup

Language (HTML) and Cascading Style Sheets (CSS) to create a web site, which

involves more creativity.

Overall, the teachers had varied responses, but most of them were under the

theme of problem-solving. Few CT concepts were mentioned, such as breaking down

steps (decomposition) and step-by-step thinking (algorithmic thinking) and pattern

recognition (generalization). One teacher responded with “limited experience” and two

indicated the lack of confidence in providing a description but still made attempts.

4.4. How Teachers Connect Computational Thinking and
Coding to BC Mathematics Curriculum

According to the survey results, the teachers associated CT and coding mostly to

the core competencies of creative thinking and critical thinking. For curricular

competencies, the teachers connected CT and coding to the curricular competencies of

reasoning and analyzing, as well as understanding and solving.

35

Table 4. Survey Results of How Teachers Connect CT and Coding to Core
Competencies

Communication 4

Creative Thinking 16

Critical Thinking 14

Positive and Personal Cultural Identity 1

Personal Awareness and Responsibility 0

Social Responsibility 3

Table 5. Survey Results of How Teachers Connect CT and Coding to
Curricular Competencies

Reasoning and Analyzing 18

Understanding and Solving 15

Communicating and Representing 9

Connecting and Reflecting 9

In terms of curricular topics, all 19 teachers chose “patterns and relations” as the

most relevant to CT and coding. This is anticipated, as generalization or pattern

recognition is considered one of the characteristics of CT by Selby and Woollard (2014).

Number sense and spatial reasoning tied for the second highest. It is surprising that with

the mention of experience with DME in the classroom, spatial reasoning is not

associated with CT as much. This is interesting because the root of CT in mathematics

education started with Papert’s (1980) “computational style of geometry” as described in

2.4 (p. 55). The results may imply that teachers are referring to the use of the graphing

features in DME when they teach algebra, and teachers’ responses to question 15,

which asks teachers to provide descriptions of a CT or coding activity they considered

successful, also confirm this idea.

Table 6. Survey Results of How Teachers Connect CT and Coding to
Curricular Topics

Number Sense 8

Patterns and Relations 19

Spatial Reasoning 8

Statistics and Probability 3

4.5. Motivations and Challenges

According to the survey results, there were a variety of reasons why teachers

may want to incorporate CT and coding in mathematics classes. The most mentioned

36

reason was that it supports mathematics learning. As discussed in section 2.5, studies

have shown mixed results, but many teachers have the impression that incorporating CT

and coding supports mathematics learning. Some felt that CT and coding have direct

connections to mathematics learning:

helps with algebra (input to output). helps with looking at situations in

a systematic way

I think there are definite direct applications with graphs and their

equations.

Creating meaningful connections for math concepts that now have a

context where the use is clearly valuable. Another opportunity to

practice problem analysis, reasoning and procedural ordering of steps.

It was mentioned in several comments that incorporating CT and coding makes

mathematics more relevant and fosters problem-solving skills. Some teachers

considered it a way to develop skills transferable to mathematics classes:

I would assume that it would help students to get better at logic and

problem solving which would translate to other parts of mathematics.

The step-by-step thinking ties in with math.

Two teachers discussed how the nature of coding supported the growth mindset

in learning. One of the teachers elaborated in the following comment, which echoed the

idea by Papert that from debugging their programs based on immediate feedback

provided by the computer, students are not afraid of making mistakes when they

program:

Students need help to see that making mistakes is part of the

development and learning process. This is a natural idea when students

need to debug a program and somehow does not have the "shame"

associated with it that getting a math problem wrong does.

Six teachers claimed that CT and coding are useful skills to have in real life, and

four teachers mentioned the career prospects associated with CT. Four teachers thought

it would be fun or exciting for students. Other reasons included increasing the variety of

classroom activities, helping students understand technology better, promoting CS and

increasing enrollment for the new Computer Science 11 course, etc.

Despite potential benefits, about half of the surveyed teachers stated that they

have rarely or not yet incorporated CT and coding in their classes. I asked, in survey

37

question 12, what comes to mind when teachers see coding as a suggested learning

activity in BC’s new mathematics curriculum. Though many agreed that this is a positive

change, some expressed concerns:

It makes me think they want actual coding languages to be taught

(which then makes me wonder how they want that done since we're

math teachers, not comp sci teachers, and would need training or

education to do this!)

where do i put it in my curriculum? what simple resources can i quickly

implement in my classroom? do i need to buy expensive coding "toys"

for my students to use?

In theory, I do like the idea. However, [based] on the current status in

my classrooms, I don't know if there is time to in cooperate

(incorporate) coding into my classroom.

worried about resources to support (computer lab availability, reliable

network)

Teach to what extent/level Any connection between coding and other

topics in the curriculum. Any resources available to teachers who do not

have background in coding?

Time, resources and training were the main concerns by teachers. In the

curriculum document for mathematics courses (except in Computer Science 11 and 12),

coding was included without elaboration. Two of the teachers specifically stated that

some clarity on how to connect coding with the curriculum would be helpful.

4.6. Computational Thinking and Coding Activities in
Mathematics Classrooms

There are a variety of activities teachers have been using in their classrooms. 13

teachers provided responses to question 15 and described a CT or coding activity that

they felt was most successful in their classes. Details of three of the examples that I had

the opportunities to observe will be discussed in Chapter 5.

Five teachers used activities with block-based coding as examples. For instance,

a teacher let his/her grade 8 students create a number guessing game using Scratch,

and the game is required to keep track of the number of guesses and let users know

when they get the correct number. The teacher specifically highlighted that students

need to plan first by writing procedures on paper before starting to program in Scratch.

38

Another teacher found using Sphero robots a fun and engaging activity. Students watch

online video tutorials from Sphero Education and learn how to move the robot and draw

squares. Students then are tasked with drawing other shapes such as equilateral

triangles and hexagons. As a final task, students complete a maze. The activity is very

similar to what people used to do with LOGO, but Sphero offers a much friendlier block-

based programming interface.

One teacher with extensive programming experience uses a text-based coding

activity with grade 9 students. The teacher chose the programming language Basic and

the Basic256 programming environment, which is an open-source program designed to

teach introductory programming in Basic. In this activity, students convert algebraic

expressions into code in Basic and run the computer program to evaluate these

expressions with values user enter. The teacher utilizes word problems from the

textbook as the programming exercises. In addition to writing the formulas and

converting them into code, students also need to create test cases to verify their work.

Six teachers gave non-coding examples of mathematical investigation activities

using the DME Desmos. Teachers provided examples of student exploration by creating

drawings and investigating different type of functions. Two sample responses were

shown below:

Desmos investigation into polynomial functions, very engaging, moving

visuals, students could work at their own pace.

Desmos activities where students see the connection between the

equations they write (the language) and the functions that show up on

the screen. They learn to adjust their equations and understand

conventions (e.g. 3^2 means three squared) that Desmos graphs use.

These teachers have perspectives similar to Pei et. al. (2018); activities in a non-

programming environment such as an DME, which is already commonly used in

mathematics classrooms, can support the development of CT skills. There is a great

overlap of mathematics habits and CT skills. DME is an interesting case. Barr and

Stephenson (2011), in their examples of how CT can be embedded in mathematics,

listed the Geometer’s Sketchpad as a tool along with a LOGO-like language and Python

code snippets, under the categorization of automation, which is not normally understood

as a CT skill in mathematics. This showed that how DME is connected to CT can be

interpreted very differently.

39

One teacher expressed the concern that, while the activity was engaging,

students may be solving problems by using guess-and-check. This also was seen in the

research by Savard and Freiman (2016), who indicated that students in their study, upon

receiving feedback from digital technology, heavily relied on the trial-and-error strategy,

which could limit students from thinking more deeply. The example provided in the

teacher survey, the Linear Marble Slide activity, is an explorative activity where students

adjust the linear equations, by changing the coefficients or the constant terms, to move

the lines on the graph (the “marble slides”) to the desired positions and orientations. The

teacher indicated in the survey response that this was not considered a successful CT

activity; because students, through this learning-by-tinkering approach, did not use the

mathematics learned to accomplish the task.

I am at the stage where I don't think any of my attempts have been

successful to the degree where I would like them to be. For instance,

many of my students have enjoyed working with the Linear Marble

Slides activity, but I've found that more often than not they are using

strategic guess and check rather than the knowledge they have

"learned" about equations of straight lines. They can answer the other

questions, but struggle with the "connect & reflect" competency, unless

the connection is made explicit.

One teacher described an unplugged “human coding” activity, which is often

seen at teachers’ professional development workshops on introduction to coding:

human coding - 3 ppl/grp person 1 - write instructions for a task person

2 - read out the instructions for the task person 3 - carry out the

instructions in attempt to complete the task

Other activities mentioned including board games, strategy games, guest

speakers and field trips.

Overall, teachers’ responses indicated that most of them understood CT as about

problem-solving. They do not often incorporate CT and coding in classrooms but have

tried a variety of tools, such as block-based coding and DMEs. Many teachers in this

study believe that incorporating CT and coding support mathematics learning; however,

time, resources and trainings are some of the barriers that prevent them from including

CT and coding in their classes. In the next chapter, I present results from classroom

observations and interviews with three of the teachers.

40

Chapter 5. Analysis of Individual Lessons

In this chapter, I first provide background information about the three participating

teachers and introduce the tools they used in the lessons observed. What follows is the

analysis of each teacher’s lesson based on the adapted SFCPF discussed in 3.1, as well

as discussions of each teacher’s overall experience.

5.1. Teacher Backgrounds and Tools Used

As part of this study, I had the great pleasure of working with three teachers,

Ada, Grace and Julia. I reached out to nine teachers who had provided contact

information in the survey, including three male teachers and six female teachers. It was

by coincidence that all three teachers available for further study are female. The data

used for analysis in this chapter mainly come from the classroom observations and

interviews, and much of teachers’ background information was from the teacher survey.

The teachers’ background information, such as years of teaching experience,

comfort level with CT and coding and what motivate them to incorporating CT and

coding in mathematics classes, was collected when they filled out the survey, Ada and

Grace have both taught for about six years, and both indicated that they are relatively

new to coding. Ada mentioned that she did some programming a long time ago, so the

programming languages and skills did not seem relevant. Grace has used online

tutorials from Hour of Code, and it was her first year to include a mini coding unit which

consisted of three lessons for her Mathematics 8 course. Julia is a more experienced

teacher, having taught for 17 years. She said she felt quite comfortable with coding and

would like to find natural ways to incorporate it into mathematics classes.

In all three cases, the teachers utilized block-based coding tools. The two tools

used by the three participating teachers were Snap! and micro:bits. Both are simple yet

powerful tools for teachers to incorporate coding in the classroom.

Snap!, previously known as Build Your Own Blocks, is an extended version of

Scratch and is a free, block-based educational graphical programming language. Similar

to Scratch, the Snap! editor is web-based and does not require any installation. As

shown in Figure 1 below, the interface contains an area for block commands on the left,

41

and in the middle is an area for the script, where blocks can be dragged onto to make

programs. The object users program is called a sprite, which is the computer graphics

element that the code is applied to. The sprite is like the turtle in LOGO – it is the object

to think with. The default sprite in Snap! is an arrowhead. The canvas on the top right is

where all the actions take place, based on how the sprite is programmed; the pane

below consists of features such as changing the sprite costume, updating the

background and adding sound. Snap! is supported by UC Berkeley and is used for the

university’s introductory CS course for non-CS major students.

Figure 1. Block-Coding Interface of Snap!

Micro:bit, or the BBC micro:bit, is a small programmable device with an LED

display. It is designed by BBC as a part of its “Make it Digital” initiative that promotes

computer science education (Cellan-Jones, 2015). Coding with micro:bits can also be

done in web browsers, either with the Microsoft MakeCode editor, which has a drag-and-

drop block coding interface, or with MicroPython, a Python programming environment

designed to run on a microcontroller. Figure 2 below shows the MakeCode interface for

micro:bit. On the left is a simulator of the micro:bit device; in the middle is a list of

categories for block commands; on the right is the script area for the code.

42

Figure 2. Block-Coding Interface of micro:bit

5.2. Ada’s Lesson

The coding activity Ada used was for her Mathematics 9 course, and Snap! was

the tool of her choice. The lesson was co-designed by a colleague I collaborated with

during the pilot of this study and myself. The lesson was a stand-alone lesson that was

an addition to Ada’s unit on similarity, and the class was primarily a lab session without

direct teacher instruction. The coding activity, the format of which is discussed later in

this section, involved students applying what they learned about angles in regular

polygons and repeatedly drawing shapes to make spirals. Ada made additions to the

lesson plan to tie in the topic of similarity. Based on Ada’s responses to the survey, she

wanted to include coding in her class because she sees it as opening up career paths

for students and increasing interest in the school’s new CS 11 course. Ada also believed

that CT and coding promote accuracy, rigour and creativity in student work.

Working Environment

Ada booked the computer lab for this lesson. The lab is very spacious, and there

are 30 computers, set up in six rows. It was quite easy to circulate around in the

classroom to answer students’ questions. Although it is now common to have

43

classrooms with built-in projectors, the computer lab at Ada’s school was not equipped

with a projector. She had the option of booking a portable projector, but she decided not

to go through the trouble and ran the lesson without one. In the interview after the

lesson, we had a discussion about how not having a projector affected her lesson:

EH: And in terms of the classroom environment, the lab environment, if

you could make a change, or several changes, to the classroom

setup, what would it be?

Ada: The physical setup. I would definitely have a projector.

Ada/EH: (laughs)

Ada: It is quite lacking in our lab.

EH: How would that change your lesson? If you had a projector, how

would you do things differently?

Ada: So… I… enforced a buddy system today so that they could look at

the color of coding on one screen while working on another

computer screen. If I had a projector I would do more teaching

rather than more self-guided activities because I could show

them the color on the screen at the time and get them to

produce a piece of code as a class together at the same time.

So I could pace the class with the intro for something on it a

little bit easier. I think had I had that today… I might have done

that for the first activity, show them the triangle.

EH: Okay.

Ada: And then allow them to go independent for the rest. Although…

saying that I think it’s very nice for them to get a break from

any teacher instruction at the beginning. They got right in to it.

I don’t think the lack of the projector really held us back at all.

So I don’t know… I’m almost in two minds as to whether setting

them completely free from the beginning… is maybe even

better than giving them a bit of direct instruction at the

beginning.

With the nature of coding lessons, it is certainly valuable to have a projector. Not

having the ability to do a demonstration, which was different from Ada’s normal

classroom setting, she chose the teaching strategy of having students work as pairs and

use two computers to complete the tasks. At first, she stated that she definitely needed a

projector. From her remarks, she stated that she would have demonstrated the first task

of drawing a triangle as the class. However, after some thoughts she felt that there were

advantages of just letting students work without any direct instructions, at least for this

particular activity, which was easily accessible without any teacher demonstration.

44

Resource System

Ada primarily used the original Snap! web site and modified the handout provided

to her. She added in tasks related to similar polygons. Ada mentioned that she actually

had the idea for quite a while, before I approached her about the study. When she first

saw Scratch, what immediately came to her mind was to create a mathematical learning

activity on polygons. Snap!, or block-based coding, visual programming environments in

general, provided a natural connection between curricular goals and coding for Ada. In

Papert’s work on LOGO, he also started with drawing shapes and working with angles in

Turtle Geometry. Ada elaborated on how her lack of coding experience prevented her

from trying earlier:

I didn’t go the spiral route at all, which was quite interesting for me to

see, but I definitely thought polygon activities with Scratch. But my lack

of coding experience, so it’s just this floating idea in a bubble until you

introduced Snap! and really made me have some hands-on experience

and made me a bit more comfortable with seeing how accessible it could

be, that I felt the idea was doable.

The digital tool Snap! provided Ada a way to extend her lessons on polygons and

similarity. Students did not learn new mathematics concepts but applied knowledge they

learned from previous classes. Ada commented on how visually seeing students work

offered an alternative method of assessing student understanding:

Did [the students] understand the angle measure needs to be the same?

Did they understand the side lengths have to be proportional? And yes,

because they are making it happen, visually.

The activity handout provided to Ada determined the activity structure of her

lesson. The handout was broken down into three parts. The introduction section

highlighted key features of the Snap! coding platform. There were five tasks, the difficulty

of which gradually increased. Within the tasks there were instructions and questions

guiding the thought processes for the students. For example, there were questions

asking students what a command does and instructions for students to try run the

program without it. These prompts replaced what a teacher normally does in teacher-

guided lectures in a typical classroom and allowed students to work on the tasks on their

own. Finally, there were two challenges; students needed to get Ada’s initials after

completing them. These challenges served as check points.

45

The handout provided to Ada used Snap!; thus the choice of tool was determined

for her. When Ada was asked if she would prefer Scratch, she brought up an interesting

point:

The interface [of Snap!] seems easier to me. I don’t know if that’ true,

but for me the interface for Snap! felt easier. And Scratch felt like… fluffy

orange cat… sometimes grade 8s and 9s don’t like to see things that

make them feel like they were in elementary school. They can have

quite a barrier to that.

In addition to user-friendliness, Ada also considered the look and feel of the

program. The orange cat that Ada referred to is the mascot and default sprite of the

Scratch program. In Snap!, the default sprite is an arrowhead. The target of the Scratch

program is indeed primarily children, whereas Snap! has been used in introductory CS

courses at the university level.

Activity Format

Ada started the class by asking students to pair up and giving them a few

minutes to read the instructions on the handouts. She gave students paper copies of the

handout and also made the digital version available on her class web site. As the

photocopies were in black-and-while, Ada instructed students to display the digital

version of the handout on one computer and complete the tasks in Snap! on another

computer. The introduction took just under ten minutes, and students had the rest of the

class, which was about an hour, to work on the activity. Ada did not do any

demonstration because she did not have a projector, and there was no direct instruction

for this lesson. Ada circulated around for the rest of the time to answer questions.

The activity started with students figuring out how to draw an equilateral triangle

in Snap! with some sample code on the handout. Students continued to draw a square

and then were challenged to draw two similar, but not congruent, regular polygons. The

polygons were required to have at least five vertices and must not overlap or be

connected by any extra lines.

Next, students created repeated patterns using nested loops to make

spirograph-like patterns; sample code was shown using triangles. With code, students

were able to automate the process of drawing many polygons, or drawing polygons of

many sides, which is harder to do by hand. In addition to making their own patterns,

46

students also were tasked to investigate more complex patterns and try to reproduce

them.

A few extensions were included on the handout. Originally there was an

extension task of playing with a spirograph design program. Ada added more prompts

for students to explore the Snap! program, including changing the sprite and

investigating commands students did not use in the activity.

There were two check points that Ada included – drawing two similar polygons

and drawing two congruent polygons simultaneously. Students were required to get

Ada’s signature after completing the tasks. When asked about assessment, she

commented:

We’ve never done a coding class before, at all. I could not confidently

say if it was going to go well. I don’t want assessment to be a stress

interfering myself or them.

Ada added that although the activity format is different from a usual mathematics

class, the way she assessed students during this lesson is often how she assesses

students in her class.

I do a lot of formative assessments from interacting with them, watching

what they are doing, and from hearing their conversations, so for myself

it’s just seeing what they are producing, hearing their discussions, and

getting a sense of is anyone really struggling, or is the class as a whole

really a group together and they are okay with the task. I think they

are.

Curriculum Script

The mathematics concepts underpinning Ada’s spiral polygons activity were

similarity and angles in regular polygons, which students learned previously in class.

Students were tasked to draw similar but not congruent shapes, demonstrating their

understanding of similarity. They also need to perform calculations of the interior angles

to draw regular pentagons, hexagons, etc. On the handout, Ada ensured that proper

mathematics terms were used, such as equilateral triangle, similar, congruent, exterior

angle, vertices, etc. Reflecting on the lesson, Ada noticed the difference in her

conversations with students:

I think in a regular math lesson we’re a little more caught up in the tiny

details in our conversation, whereas today it was more of a holistic

47

overview style of conversation. So for instance, when we were talking

about similarity in the classroom, we were very… we talked a lot about

the measure of the angles, congruent are the same, and the side lengths

are proportional…. And we used those words, you know the ratio, we

use proportional, we use angle measures… we didn’t use any of that

language today. And I did notice that. And I think a lot of that was

because… they were….. I didn’t need to because I can visually see.

Overall, the students did not have much trouble completing the tasks. The main

mathematics concept students had questions about was on exterior angles, especially

for the drawing of a regular pentagon. The use of exterior angles was implicitly pointed

out in the sample code. As shown in the figure below, students were asked to think

about why 120 degrees was used.

Figure 3. Sample Code in Snap! for Drawing an Equilateral Triangle

There were also other mathematics concepts required that were not directly

taught. For example, when students wrote code to repeatedly draw triangles to make a

spiral, they needed to keep in mind that a complete rotation is 360 degrees. As shown in

Figure 4, after each triangle is drawn, the sprite is turned by 15 degrees, thus it takes 24

triangles to make a full rotation. This was not explained on the handout. Students may

have to play with the numbers when they made their own patterns.

48

Figure 4. Sample Code in Snap! for Drawing Spiral Triangles

Regarding learning objectives for CT and coding concepts, the activity includes

several important concepts. The categorization by Brennan and Resnick (2012) outlined

in 3.1 is used for this analysis. In this activity, the key concepts include event,

sequences, loops, parallelism and data.

Event (using key presses) and sequences (ordering of the steps required to

complete the drawing) were utilized throughout. Loops were first introduced in the

drawing of regular polygons, and nested loops (a loop within a loop) were demonstrated

in the spiral triangles example, as shown in Figure 4. Event, sequences and loops are

three key concepts commonly used in simple coding projects. One task Ada added for

the activity was asking students draw two congruent shapes simultaneously. This

involves the concept of parallelism.

In terms of data, a variable was used to allow the change in the side length of the

shape. Ada noticed that this could be challenging for students as a variable in coding is

different from a variable in mathematics:

They stumbled upon the variable being named steps. I think I should

have seen that coming a bit more because the variable is normally a

letter. Just one letter. And the fact that it had a name meant they

weren’t clued into the fact that it was a variable.

This highlighted an interesting distinction. As Ada reflected on her experience

helping students, she realized that the naming convention is different, thus it may also

be hard for students to grasp the concept of a variable in coding at first. Also, unlike in

49

mathematics, the purpose of using a variable is not to represent an unknown or

changing value. The purpose is to store a piece of data, in this case the side length of

the polygon, so that it can be updated later. Ada commented that a variable can be

anything is a concept often missed, and she recognized the need to address that with

the students next time.

Time Economy

In terms of time, I noticed that the most of time in the classroom was used to

answer technical questions, especially since this was the first time students used the

Snap! interface. There was little time spent on directly teaching mathematics. The

activity was done after the unit on similarity. Also, prior to this lesson, Ada assigned

students homework on investigating angles in regular polygon. She felt confident that

students had all the mathematical tools for this activity.

Ada specifically pointed out the challenge with making extensions to the

worksheet for students who completed quickly. Some students finished early. I noticed

that two students brought up their own coding projects in Scratch when they completed

the activity. Ada felt maybe she could have challenged the students more, but she did

not have enough knowledge or experience with coding to push students more.

For the ones that completed the challenges easily because they had a

lot of coding experience, they did stay on task playing with coding, and

playing with the polygons, which was nice to see, but were they really

learning and pushing themselves, I don’t think they were. However, did

I feel I can guide them, in coding, to an activity to push themselves, no.

So my only way for putting students on track are pushing them more

mathematically and learning more mathematics would be removing

them from coding, which is not what I wanted to do, so I left. I think

they did a lot of beautiful, spiral polygons, beautiful polygon art work on

coding. Is it something they could have done yesterday? Probably. So

extension was lacking on my part, but none of them were off task.

From Ada’s remark, it seems like her main goal was to give students exposure to

coding. When she had the opportunity to challenge students to explore further in

mathematics, she did not want to take away the focus from coding. Overall, she was not

bothered by the time spent on using technology, helping students learn the Snap!

interface, etc. When asked about whether she felt time spent on technology questions

was effective use of her time, she commented that it is the cost of doing an activity

involving technology.

50

Overall Experience

All in all, Ada had a positive experience using the activity. She liked the student

engagement and thought the lesson was accessible to all her students. She pointed out

that her main challenge was not being able to answer student questions sometimes. Part

of it was unfamiliarity with the program. She gave the example of not realizing that the

canvas was a finite area, and she figured it out while working with a student.

Ada felt that something valuable coding brought to her class was a different

dynamic, when she was learning alongside the students:

The biggest, most impactful difference, is that I don’t know more than

some of my students. We have some quite… in my opinions they are

expert coders. I don’t know if that’s true because they are just levels

above me, and it makes a completely different dynamic. The students

see me as a learner along with them, which I think is very valuable. And

I don’t think they see enough adults trying to figure out along with them,

trying to work with them in solving the problem.

She saw the benefit of modelling problem-solving in the context that she did not

know more than the student, as this is uncommon in her regular mathematics classes.

5.3. Grace’s Lesson

Similar to Ada, Grace is a younger teacher with little background in coding.

Starting the 2018-2019 school year, she began to include in her Mathematics 8 course a

mini coding unit that consists of three lessons. She chose micro:bit as the tool for

coding. She also collaborated with the other two Mathematics 8 teachers at the school

so that all of them teach this coding unit. This was Grace’s second time implementing

the unit, and the lesson I observed was the third in the unit. Grace stated in her survey

that she wanted to incorporate coding in her mathematics classes because it is fun for

students. She considers it “a different type of math” and thinks it helps students develop

stronger problem-solving skills. Moreover, she believes that introducing CS in junior

years can catch more potential students.

In the first lesson of the unit, Grace introduced students to micro:bit and asked

students to go through two coding exercises to familiarize themselves with the tool.

Students went through the online micro:bit tutorial of Beating Heart (displaying the shape

of a heart on the LED display and making it flash) and implemented a simple counter

51

where the number displayed is increased or decreased according to button presses. In

the second lesson, students created a rock-paper-scissors (RPS) program by following

the micro:bit tutorial. In the last lesson, which was the lesson I observed, students

implemented a program called Fizz-Buss and explored other micro:bit tutorials.

Working Environment

The lesson was held in a regular classroom with a school laptop cart that had 30

laptops. Students worked independently but could collaborate with classmates. Desks

were put into pods of four to six desks each. The classroom is relatively small, and

Grace did point out space being an issue:

With that particular classroom, there isn’t a lot of room for me to walk

around, so if having a bigger size would be better for me to really be

able to sit beside a student and go over some of the concepts more

efficiently, whereas nowadays I felt like I’m hovering students’ backs,

because of the limited space.

She also mentioned the challenges of using laptops:

I guess it’s not a big thing, but distributing the laptops, I know for sure

there are ones that are not going to be working. So handing those out,

and then having to make sure that everyone has a laptop that’s working,

some of them have, what do you call, hmm, use of battery, that doesn’t

last throughout the class. Those are the little things that add up, and

make the lesson not as smooth as I wanted to.

Grace had a few options in terms of computer bookings; she could book the

computer lab, library computer stations or a laptop cart. Despite the disadvantage of her

classroom size and technical issues with the laptops, she still chose to book a laptop

cart. She talked about how being in the same classroom gave her some familiarity, and

she believed that it would be better for the students as well:

It was almost like, in a different surrounding, students were way too

ecstatic in that different surrounding, and they weren’t able to focus on

the coding part, and [I was] thinking maybe if they were in a familiar

space, it’s going to be easier for them.

She also mentioned that it would be great to have laptops in the regular

classroom year-round, instead of just a few times a year, recognizing that it may not be

feasible. She thought it would be convenient if opportunities arise to relate to some

52

coding, and laptops were available, students could just take out the laptops and try

something.

Resource System

In terms of teaching resources, Grace primarily relied the online tutorials from the

micro:bits web site. The school has a class set of micro:bits that she could use. While

planning the unit, she and two other teachers looked at some videos as teaching

resources. For this particular lesson, Grace showed a video featuring Bill Gates

explaining the if statement, one of the key coding concepts in this activity, and sharing

his experience learning computer programming when he was young. Grace also

participated in several coding workshops for teachers. For the main activity of the

lesson, she got the idea from a workshop she attended at Science World.

The micro:bit online tutorial was used during the previous lesson, where students

followed the instructions step by step to learn the concept of conditionals (if statements)

and loops. Here are two examples from Grace’s PowerPoint slides:

Figure 5. Grace's Examples Demonstrating Conditionals and Loops in

MakeCode

Grace created instructional materials in the same programming environment

MakeCode to show additional examples to reinforce the concepts, and the students, on

53

the day of observation, did a follow-up activity that did not rely on micro:bit’s online

tutorials. Grace did not want students to just be able to follow coding tutorials but can

apply what they learned with a new task.

Grace added that for her other grade 8 class, a university student comes to

volunteer. She would then have the ability to get the volunteer to work with a small group

of students that finished early and introduce a new task.

Activity Format

Similar to Ada’s class, the majority of Grace’s class time was spent on lab work.

Grace, however, explicitly taught two of the coding concepts – conditionals and loops.

She spent about five minutes doing an exercise with students, explaining how if

statements and loops work. Following the explanation, Grace showed a video. Students

then started working on the main task after about fifteen minutes of class time, and they

had about an hour to work. Grace circulated around to answer student questions during

the work period.

The main activity students were working on was Fizz-Buzz. Students

programmed the micro:bit to display numbers one to twenty. The micro:bit would display

an image (for instance, a smiley face) when the number is a multiple of three and display

another image when the number is a multiple of five. When the number is a multiple of

both three and five (or fifteen), it would display a third image. Otherwise, it would just

display the number. After about 35 minutes of working on the activity, most students got

their programs to work. Students had been working with the simulator instead of the

actual micro:bit device during this time. Some students that finished early went around

the class to helped others. Similar to Ada’s class, a few students brought up their own

coding projects in Scratch.

When there was about 20 minutes left, Grace showed on the projector screen

where to find other micro:bit tutorials, encouraged students to explore and gave a few

suggestions. At this time, she also told students they could come and get micro:bits to

try their program if they wanted to.

With about five minutes to the end of class, Grace introduced text-based coding

and pointed out the JavaScript button in the MakeCode environment, which displays

54

students’ programs in JavaScript code instead of the blocks. As shown in Figure 6

below, there are buttons for users to toggle between blocks and JavaScript code. The

figure shows the same program displayed in two different modes.

Figure 6. Blocks and JavaScript Code in micro:bit’s MakeCode Interface

Overall, Grace’s lesson used the format of starting with a short teacher-led

activity, showing a video, having students work on the main Fizz-Buzz activity and

allowing some exploration time. When reflecting on the lesson, Grace felt that one of the

main challenge was not having enough for students that finished early to work on:

I felt that there were students done really early, and I just encouraged

them to maybe help other students, or do something different with the

original code, you know, a little more complex, or… things like that. For

example, instead of using the repeat block, try using a while block… So

I felt a lot students were done early, and I didn’t have a lot to have them

work on, in terms of moving forward from there. But for the average

student, I think it was a good pace.

Grace did the lesson with all her grade 8 classes. The class I observed was the

Mathematics 8 Honours class; this class would get an extra day of coding and the

opportunity to create their own projects with micro:bits. Students also had the option of

doing text-based coding, following tutorials from CodeHS (https://codehs.com/), an

online platform that supports schools teach CS.

55

Curriculum Script

Unlike Ada’s lesson, Grace’s coding unit was not tied to a specific unit in her

Mathematics 8 course. Students needed to apply the concept of multiples in the Fizz-

Buzz activity. Grace mentioned that she briefly reviewed integer division and remainder

the day before, but students likely relied on what they already knew to complete the task.

For the learning objectives in CT and coding, Grace put her focus on conditionals

in her hook activity. She mentioned that she let students explore with the RPS activity on

the previous day, and she realized that a lot of students did not understand it, so she

decided to review the concept. As shown in Figure 5 before, Grace incorporated physical

actions such as standing up and clapping. She asked individual students questions like

“Why didn’t you stand up?” and “Why did you clap?” in the whole class discussion. She

explained the if-else if-else structure using an analogy: “You’re going to either one of the

categories. Think of it as filtering.” The use of if-else-if-else construct in the RPS

program is demonstrated below in Figure 7.

Figure 7. If-else-if-else Construct in the RPS Program

56

Below is a partial implementation of the Fizz-Buzz program. The variable count

keeps track the number from 1 to 20. The program displays a smiley face if count is a

multiple of 3; otherwise, it displays the number.

Figure 8. Sample Code for Partial Implementation of Fizz-Buzz

In addition to conditionals, the activity also required students to understand

sequences, loops, data and operators. As shown in Figure 8, there is a sequence of

steps to create a property functioning program – creating a variable for the number (line

2), checking if the number is a multiple of three (line 4), executing the code twenty times

(line 3), incrementing the number (line 9), etc. The order of the sequence is important. I

noticed few students making mistakes with this concept. For example, incrementing the

number outside the loop would result in the check being executed 20 times when the

number remained to be 1. Another mistake I noticed in the implementation of Fizz-Buzz

was with the number 15, which is both a multiple of 3 and a multiple of 5. A few student

used an incorrect sequence, as demonstrated in Figure 9 below, and then realized they

needed to check for 15 first; otherwise the program would execute the first if block

57

(because 15 is a multiple of 3). The immediate feedback gave students an opportunity to

think about the logical error they made.

Figure 9. Student Mistake in Fizz-Buzz Implementation

Grace found loops to be a relatively straightforward concept for students. She

went over the repeat block and the while block with students the previous class, and she

felt it was not difficult for students to understand the concept. I noticed that some

students did not use loops in the program; Grace pointed out that some students did not

have a good grasp of how to use a variable to store the number:

They are not really understanding how variables are being used. Not a

lot [of students], but I saw a few students to just manually have the

specific numbers print whereas I want the number to be a variable. So

few were not understanding how to utilize that.

Students also used both mathematical operations and logical operations. The

block “if remainder of count ÷ 3 = 0” involves both a mathematical operation (division)

and a logical operation (comparison), but the block, with plain English, made usage of

these operations intuitive for students.

58

Time Economy

In terms of time spent for planning, Grace worked with two colleagues at the

same school on a professional development day and created the PowerPoint slides for

the three-lesson unit. For this lesson, she spent about an hour the day before to add

extra slides for the activity. As for time spent in class, Grace did not feel that there was

ineffective use of time due to the use of technology.

Overall Experience

During the interview, Grace rated her lesson 3 to 3.5 on a scale of 5. Her main

challenge was not having enough for students to work on. She thought about giving

students an opportunity to create their own programs but there was not enough time for

students to start on it. Given this was her second time doing the unit, she felt that she

better understood where to spend more time on and mistakes students might make.

Grace also mentioned that she would like to try something new next year:

I think I want to change it up because I get a little bored with the same

activity. So maybe I’ll look for something that’s similar difficulty level

but that’s a little bit different… It would be nice to have those alligator

clips, or lightbulbs, something I add to the micro:bits, so it’s more

interesting. Cause otherwise I feel like the simulator does exactly the

same thing. You need to have something a bit more physical.

She felt that having students playing with the physical micro:bits was more

engaging, but using the buttons is the same in the simulator. What made the experience

different and more interesting was using the accelerometer in the RPS program on the

previous day. Students had fun shaking the actual micro:bit device to play rock-paper-

scissors. Overall, Grace’s experience was relatively positive, and she is willing to

challenge herself and try new activities with micro:bits next year.

5.4. Julia’s Lessons

Julia is an experienced teacher who feels comfortable with CT and coding but

has not done any technology supported CT activities with her classes for a long time.

She is looking for ways to incorporate coding in her classes. In Julia’s survey response,

she emphasized on how immediate feedback provided by technology can help students

develop into better problem solvers. After discussion, we co-planned the coding lessons

59

for her Mathematics 8 course, utilizing the micro:bit as a tool to support the learning of

probability.

The unit consists of four lessons. With permission from Grace, Julia used her

slides and modified them for her probability unit. On the first day, students were

introduced to the micro:bit tool, doing the same Beating Heart and counter tasks to get

familiar with the micro:bit device. In the second lesson, students made the RPS program

following the tutorial. The next day students created a coin-toss program, and they used

both the RPS and the coin-toss programs to conduct a probability experiment. For the

last lesson, Julia discussed the experiment with the students. I observed both the

second and the third lessons of the unit.

Working Environment

Julia made different arrangements for the two lessons. For the first lesson I

observed, students worked in their regular classroom with laptops borrowed from the

library. This was due to a mix up with another teacher when booking the computer lab,

but this turned out to work very well for Julia:

The lab I initially booked was mis-booked, miscommunications between

teachers, so I ended up… Our tech ended up putting us in our classroom

with laptops, which actually turns out to be a gift, because the students

were comfortable in the classroom, well-behaved and focused.

For the second lesson, the class started in the regular classroom. Students spent

about twenty minutes coding at the library computer stations and then returned to their

classroom for the probability experiment.

Resource System

In terms of resources, Julia used PowerPoint slides from Grace and familiarized

herself with micro:bits going over tutorials from the micro:bit web site. She also made

use of online videos. The video she showed on the day I observed was a video titled

“Why is Programming Important?” from Code.org. She used the video as a hook to

initiate a discussion with students why they might want to learn programming.

Julia borrowed a class set of micro:bits from Grace’s school. She commented on

the value of having the physical micro:bits:

60

One of the things about the microbit which I think is very important,

and I did not understand that until this lesson, was how important it is

to have the tangible piece. If I evaluated this independently of this

lesson, I would have said why would you bother with the microbit. You

got the simulator and you’re coding and you’re making them do

something. And the microbit, the physical object, increased

engagement. So it really helped kids see that code goes inside things,

which I know, but I can’t assume they know. And they actually

experienced it. And the fact that they used it to do a couple different

things is neat.

Knowing that micro:bit is compatible with Scratch, Julia also contemplated if she

would use Scratch instead. She concluded that she would still use the micro:bit

interface, as it helps students attend to the functionalities more:

Some of the kids would be exposed to Scratch, so being Scratch

compatible, might mean they would jump into it much faster. But on the

other hand, it was not a set of difficult programing tasks, and I think for

students to experience a different interface, is to also develop the

thinking piece… I think, if I was to run this again, I would still use the

micro:bit environment.

Julia also pointed out how features of MakeCode help her guide students

navigate the interface:

When I was working with kids there was that diamond, like all of the

pieces are shaded and color coded. That didn’t occur to me until I was

working with the students. Once I had that information in my head, it

made it a lot easier, you know, so I could adjust my questioning. Did

you notice that all the logic control… is pink? Or whatever the color was.

Did you see anything in the menu? So that allowed me to guide them a

bit better?

Julia believed that the technology supported her in teaching concepts in the

probability unit. The micro:bit tool itself did not teach the concept directly; Julia still had

to do the mathematics instruction. However, programming the micro:bit provided a

different context for the probability experiments she did with students in the past in two

ways: 1) The “random” coding block reinforced the concept of randomness and 2) there

is the flexibility to program the tool with different probability assignments and explored

the idea of unfairness.

At the beginning of the first lesson I observed, there were some technical issues

with student laptops. Julia had to get the school’s tech liaison teacher to help. She

commented on how the school has a fairly poorly maintained laptop cart, and laptops

61

were harder to control. Nevertheless, she would still prefer to have students using

laptops in her regular classroom for the familiar setting.

When being asked about resources, Julia also commented that she noticed the

class went much better when there were two adults in the room:

I think a resource [teacher] in the classroom to help would be huge. And

I’m pretty comfortable with a) classroom management and b) the

technology piece… but I found it very useful to have someone in the

classroom to help… I’m not sure if that’s a possibility but that might

speak to team teaching with other teachers.

Activity Format

The first of Julia’s lessons that I observed was similar in terms of structure

comparing to the other two teachers’ lessons. The class started with a video on why

programming is important from code.org as a hook. Students then worked on the RPS

program following the micro:bit tutorial. However, explicit mathematics instructions were

interweaved throughout the coding unit. When most students were done creating their

RPS programs, Julia gave students the next task and wrote on the board: “Make an

unfair game where all three events are not equally likely. You have a fair game. Now

make it an unfair game.” Towards the end of the class, students wrote their reflection

about what it means for a game to be unfair, and how their modification met their

definition. The breakdown in terms of time was as follows: the introduction took about 10

minutes, the main RPS task was about 35 minutes, the unfair game task took about 20

minutes and the student reflection was about five minutes.

The second day happened to be a shorter day, and the class period was only 55

minutes. Julia started the lesson with direct instructions and discussions with students

on theoretical and experimental probability. She then gave out instructions for the task,

which was for students to create both the RPS and coin toss programs on micro:bits.

Students worked in pairs, and one student would program a fair RPS game while the

other create the fair coin toss program. Julia demonstrated doing experiment with two

micro:bits simultaneously, and students were clear about what they were tasked to do.

Students headed to the library to work at the computer stations. The library was close to

Julia’s classroom, and it only took about 10 minutes from the beginning of the class to

having all students settled down in the library.

62

It only took about 20 minutes before the entire class came back to the classroom,

and Julia was pleasantly surprised by how quickly students were able to complete the

task and how much confidence they showed. After that, students started their

experiment by doing RPS and coin-tossing with micro:bits 20 times. Julia put a table

listing all possible outcomes on the whiteboard for each pair to report their data. Julia

then led a whole class discussion on the combined data.

When reflecting on the main RPS activity in the first lesson, Julia felt she would

also get students to collect data of the unfair case:

If I could do it again, when they did the RPS, I asked them about

whether the game was fair and make it unfair. I think I actually would

have asked them to collect some probability data. Rather than having

them relying on their intuitive sense.

Curriculum Script

Julia and I discussed the learning outcomes prior to the lessons. The lessons

focused on the curricular competency of reasoning and analyzing. Students used

technology to explore mathematical ideas and test conjecture. In terms of curricular

content, the activity supported the learning of theoretical and experimental probability

with two independent events.

Julia talked about how the activity gave her context to discuss the idea of

randomness:

What I saw when they started to do the analysis, was that the idea of

random wasn’t really well set. So they’re saying, it’s not doing it right.

You see I’m not getting any rocks, or I’m not getting any papers, or I’m

not getting any scissors. The take was, well it’s random dear, you’re not

gonna get rock, paper, scissors, rock, paper, scissors, just because your

program is set up that way. And that conversation I had more than once.

So I think it really did help… provided a different window on the concept

of randomness. I think it’s good foundation for our work with probability.

On the second day, Julia started the class by formally introducing the concept of

probability, talking about key terms such as sample space and favorable outcomes,

showing the notation and provided a few simple examples such as flipping a coin and

rolling a die. After students completed the experiment, the class engaged in a discussion

about what they notice about the combined data.

63

Figure 10. Experiment Data from Julia's Class

Students made some interesting observations, such as:

• The numbers (totals for the favorable outcomes) are all double digits

• None of the individual outcomes from the experiment of 20 trials are over 6

• The mean of the totals is 33; all the totals are close to this number.

These provided some interesting discussion points. Also, one group accidentally

did 22 trials instead of 20 trials, and Julia took the opportunity to discuss with students

why that is okay when calculating probability. Moreover, when students calculated

probability, some asked about how to convert 26/202 into a percentage. It gave students

an opportunity to revisit a concept they learned previously.

The same experiment can be done with students playing RPS and flipping coins.

However, Julia felt that with micro:bits, students had to think about the idea of a random

event, and they have the opportunity to explore fairness through the assignment of

probabilities to different events in the unfair case of RPS. It gave her some powerful

tools to engage in mathematical conversations with the students.

As for learning outcome for coding, the key concepts were sequences, events,

data, conditionals and operators. Sequences, events and operators were straight

forward concepts. With micro:bit’s accelerometer, students experienced the shake event,

which was fun for them.

64

Conditionals was a challenging concept for some students. Students had trouble

with the following steps in the tutorial shown in Figure 11, which combine several

instructions and usage of blocks from different categories:

Figure 11. micro:bit RPS tutorial - if block

When students press the + sign at the bottom of the if block, the else block

appears:

Figure 12. micro:bit RPS tutorial - else block

A few students were confused about “else” and did not connect it to the if

statement. I also noticed that one student, not following the tutorial, created the program

65

using three if blocks. Students were not explicitly taught the “if-else if-else” construct, but

upon reflection, Julia still liked having students learn this through exploration, as it is a

concept best learned in context.

As for the use of variable, Julia mentioned that she talked about this with the

students in a previous activity, which was to program buttons A and B on micro:bit to

make a counter that displays numbers:

At the end of the first day there was a counter I did. On A they increment

the counter, and on B they decrease the counter, and on AB they display

it. I pulled the class together at the end and did a debrief and introduced

the term initialize. Ask them why that’s part of the code… So what

happens instead if I set the counter to 0, I set counter to 15 what would

happen? So we did that debrief in the end after they played with it. And

you can see lightbulbs going on.

Students then in the RPS program, applied the idea with a variable hand, which

stores a random number from 1 to 3 and determines whether rock, paper or scissors is

displayed.

For operators, only the logical operator for comparison was used, which was

intuitive for students. As previously discussed, the interface helped Julia guide students

better to find the block. She was able to show students that the block was under logic

because of the diamond shape and teal color, not relying on her prior knowledge that the

comparison block would be under logic.

Time Economy

In terms of planning time, Julia spent about an afternoon and an evening to

prepare for the lessons. A little bit of the time was spent on creating the handouts, but

mostly she spent time to walk through the slides from Grace, screen the videos, and

coded the programs in micro:bits to make sure she’s comfortable.

As for time during class, Julia did not find inefficient use of class time. Despite

having technical difficulties, she felt it is the cost of doing something new, and not

beyond what she expects.

66

Overall Experience

Overall, Julia had a positive experience teaching the coding unit. Student

engagement was high, and students were swift in learning the set of basic coding skills

to complete their tasks.

I would say they were very proficient very quickly. That was very

impressive. Makes me sad I don’t see any other further places to do

more of this with them, but I think what it will do is change my… shift

my vision a bit so I’ll look for more opportunities for coding. And to even

have the coding inform the math.

Julia noticed that a student who typically does not enjoy math class showed

enthusiasm towards the activity. She also pointed out that coding provided enrichment

for high-achieving students:

My strongest students who I sometimes think get fed left a little bit

behind seems like fish with water with the coding, which really isn’t a

surprise. But it was nice to have something for them. And just to see

the kids, like quite enjoying themselves.

Julia mentioned that she wanted to be able to give students that needed a

challenge in Python:

I don’t think I would have a hard time coding in Python, but I haven’t

used Python. So that would be more of a stretch for me.

Given more time, she would also want to try something more complex with

micro:bit.

The three teachers Ada, Grace and Julia had positive experiences with their

lessons and showed interest in implementing the lessons again. In the next chapter, the

three cases are cross-examined based on the five key features from the adapted SFCPF

and teachers’ overall experience.

67

Chapter 6. Cross-Case Analysis

In this chapter, I compare three participating teachers’ lessons and cross-

examine the data according to five key features of the adapted SFCPF: working

environment, resource system, activity format, curriculum script and time economy. I

also find common themes that emerged from teachers’ overall experience of

incorporating CT and coding in mathematics classrooms. Moreover, I reflect on own

teaching practice, comparing with participating teachers’ experience.

6.1. Working Environment

The working environment can play an important role in teachers’ experiences

incorporating CT and coding activities in their mathematics classrooms. In the three

cases, there were a variety of working environments. Ada chose to book the computer

lab, Grace used laptops in the classroom, and Julia used a mix of laptops in the

classroom and computer stations at the library.

Grace highlighted the issue of space in her assigned classroom. I noticed during

the observations that both Ada’s lesson in the computer lab and Julia’s lesson at the

library allowed more space for teachers to walk around and help students. Comparing to

a typical mathematics lesson, teachers spent more time circulating around in the room,

and space, at least in Grace’s case, made a difference in her experience teaching the

lesson. Space is a factor teachers can consider for a lesson involving coding if options

are available.

Ada’s case demonstrated another factor from the working environment that could

have an impact, which is equipment. Ada taught in a setting that was different from her

normal classroom; the lab was not equipped with a projector. She adapted to the

situation and adjusted the activity format to deliver the lesson. In addition to working in

an unfamiliar environment, not having a projector increased the complexity of Ada’s

preparation work.

Both Grace and Julia pointed out how using laptops in their classrooms provided

a more familiar environment for the students, despite potentially having more technical

issues with laptops. The comment was intriguing to me, as I preferred teaching in the

68

computer lab more than using the laptop cart. As both teachers mentioned, laptop carts

tend to be not well-maintained, and I had encountered the issue of batteries, time taken

to administer and collect laptops, etc. I wonder if my experience both as a CS teacher

that regularly teach in the computer lab and a mathematics teacher that tend to do more

mathematics projects involving technology in the computer lab contribute to my

preference of booking a computer lab.

It was evident from teachers’ responses that they were thoughtful when choosing

the working environment, weighing the advantages and disadvantages. The teachers

were aware of how the decision could potentially have an impact on their lessons.

6.2. Resource System

All the teachers depended heavily on online resources to develop their lessons.

Both Snap! and micro:bit have an abundance of resources on their official web sites. The

increase in accessibility to more user-friendly, visual programming tools seemed to

enable the teachers, in spite of having little background knowledge, to try incorporating

coding in their mathematics classrooms. It is important that teachers are made aware of

the wealth of online resources to help them learn CT and coding as well as design

lessons.

As mentioned in 2.4, Benton et al. (2016) stated how educators found LOGO

programming too difficult. The large number of easily accessible resources to support

teachers were not around with LOGO. Block-based programming eliminated some

challenge in learning programming syntax for both the teachers and students. However,

the teachers were aware that text-based programming can provide more challenges to

the students. Grace introduced micro:bit’s functionality to switch to JavaScript and gave

her Mathematics 8 Honours students the option to explore online text-based

programming tutorials. Julia also showed a willingness to learn Python.

It is interesting that both Ada and Julia, when asked about resources,

commented on the block-based programming interface. Julia gave a good example of

how colour-coding of the blocks helped her guide students better. Both teachers, upon

reflection, thought they would continue to use the same tools instead of Scratch. As I

observed in the classrooms, there were students bringing up Scratch projects after they

69

completed assigned tasks; Scratch seemed to be a much more familiar tool for the

students. This showed that teachers deliberately made choices of the tools and

considered factors such as its appearance and functionalities.

Both Ada and Julia commented on how having the handout and PowerPoint

slides prepared for them helped them tremendously. For Ada who had the idea but may

not be confident enough to try coding before, being able to take an activity that another

teacher developed and add to it made implementing the lesson much easier. Grace’s

experience of co-designing the activities with colleagues also showed the importance of

collaboration. This was evident from the teacher survey as well, as seen in section 4.1,

where a teacher with no background in coding learned it from colleagues that had

experience in programming.

In terms of how these tools supported the curricular goals, Ada stated that with

coding in Snap!, she had a different way of checking student understanding. As quoted

in section 5.2, Ada saw students demonstrated if they understood similarity and angles

in regular polygons “because they are making it happen visually.” She did not need to

give a quiz that asks students if they know ratios of lengths for corresponding sides of

similar triangles are equal, or if they can find the interior angle of a regular pentagon.

Julia commented that having students program the micro:bit provided her a better

context to discuss randomness. As discussed in 5.4, Julia found that she had several

similar conversations regarding randomness, when the RPS program did not work as

students anticipated. The technology also allowed students to explore the idea of

fairness. If a regular coin were used or an RPS game were played, the weightings of the

outcomes could not have been modified.

In addition, another important resource is people that can support the class

during the lesson. All three teachers mentioned the collaborative nature of the coding

lessons; students who finished early were encouraged to help their peers. Moreover,

having other adults in the room can be beneficial. Grace gave the example of how

having a volunteer in her classroom for a different block could help with differentiation.

Julia also stated how much smoothly the lessons went when an additional adult was in

the room. I found this especially true with these two teachers using micro:bits and

laptops. There were a lot more responsibilities on the teachers – to sign out and collect

laptops and micro:bits, handle dead batteries, fix technical issues, etc. while answering

70

student questions. When I observed in the classroom, I played the observer-participant

role because having an extra person can make the experience better for both the

teacher and students.

6.3. Activity Format

A lesson involving coding is quite different from a typical mathematics lesson, in

which content delivery, in most cases, is through teacher-guided instructions. Each of

the lesson observed followed a similar format. They started with an introduction followed

by students working on coding tasks individually or in pairs. Grace and Julia added

videos as hooks for their lessons. For all of the teachers, the coding tasks were

delivered either through the pre-developed handout or online tutorials. They were

designed to be self-paced and pre-determined with some flexibility to make slight

modifications to fit teachers’ needs. Thus, the teachers were in a supporting role while

the students were coding, and the activity format naturally involved a large period of time

for student exploration.

Ada and Julia both gave minimal instructions on the coding part, whereas Grace

spent time to go over computing concepts. She made the choice of explicitly teaching

conditionals and loops, which was something she did differently comparing to when she

last implemented the same lesson. The time spent, which was only about five minutes,

was very short compared to usual mathematics instructions. Ada also commented that

next time she would highlight the concept of variable prior to students doing the tasks.

Julia, on the other hand, recognized that some students were unclear about the concept

of the conditionals, but still liked having students learn this through exploration. None of

the teachers, upon reflection, would change the activity format much and only make

small adjustments.

Although there were similarities to the three teachers’ activity structures, the level

of integration of mathematics was different. For Ada and Grace, the focus was more on

coding. Both teachers used tasks that involved mathematics concepts students

previously learned. Grace’s lesson was least connected to mathematics learning

outcomes; coding was done as a separate unit. Ada’s lesson was tied to a unit in

Mathematics 9 and there were more conversations about the mathematics involved, but

the lesson objective was more about exposure to coding. This was evident from Ada’s

71

remark that she did not want to take students away from coding and push them beyond

the prescribed learning outcomes in her mathematics unit.

In contrast, Julia’s lesson was most integrated in a unit in Mathematics 8, and

this made the activity structure design distinct from the other two teachers’ lessons. The

first lesson observed was still similar to the other two teachers’ lessons, as it was an

introduction to the RPS program. The second lesson, however, started with mathematics

instruction on probability, followed by a short work period for coding, and ended with

student experiment and discussion. If students were using actual coins and playing RPS

for the experiment instead of creating programs, the lesson structure would not change

much, but as Julia pointed out, coding added value to her lesson by providing the

opportunity for students to think about the idea of a random event and explore the

concept of fairness.

None of the teachers formally assessed the students with these activities. Both

Ada and Grace asked students to show them the programs they had made during the

lesson. Ada commented that coding was new, and she did not want assessment to be a

source of stress. Julia collected the student reflections, but it was more to inform her of

students’ exploration of ideas about probability. The teachers did not tie grades to the

coding activities. Coding seemed to be seen as an addition or enrichment activity,

instead of being part of the curriculum.

6.4. Curriculum Script

In terms of mathematical content of the lessons, both Ada and Julia commented

on their conversations with students. Ada highlighted how she had a different style of

conversations with students. She emphasized proper mathematical terminology in the

handout she gave students, but the technology offered a visual way for her to confirm

students’ mathematical understanding so that it was not necessary to use the same

vocabulary in their conversations. Julia pointed out how having students create the coin

and RPS programs on micro:bits sparked different conversations about randomness and

unfairness. If real coins and RPS were used for the probability experiment, students

would have no opportunity to change the probability weighting of the possible outcomes.

With the incorporation of coding, the teachers’ curriculum scripts changed comparing to

72

their normal mathematics lessons, and the technology stimulated good discussions on

the same mathematics topic.

As for key coding concepts, the following table shows a comparison of the three

teachers’ activities, based on the categorization by Brennan and Resnick (2012):

Table 7. Key Coding Concepts Used in Participating Teachers' Activities

 sequences loops parallelism events conditionals operators data

Ada ✓ ✓ ✓ ✓ ✓

Grace ✓ ✓ ✓ ✓ ✓

Julia ✓ ✓ ✓ ✓ ✓

Two concepts that students mainly had trouble with were conditionals and data.

Grace thus designed a short activity to review the “if-else if-else” construct, and Julia

pointed out that “else” was unfamiliar to students. In terms of data, as all three teachers’

lessons were introductory to coding, variable was the only type of data used. Ada

highlighted how the different naming convention of a variable may be confusing to

students, and Grace pointed out that some students did not know how to utilize the

variable to store data and manually print out the values they needed.

Although the teachers described CT as related to problem-solving, they focused

on coding concepts when they thought about CT learning outcomes, and I did not

observe them explicitly teach computing practices. As shown in the teacher survey, most

teachers talked about problem-solving and characteristics such as breaking down

problems (decomposition), pattern recognitions (generalization), etc. Both Grace and

Julia, like many of the teachers surveyed, stated that helping students develop problem-

solving skills as a motivation to teach CT and coding. However, CT strategies were not

evident in teachers’ curriculum script. During the sessions, I also did not observe explicit

teaching of computing practices such as testing and debugging, which were mentioned

in teacher surveys. This is not surprising. The BC mathematics curriculum documents

merely add “include coding” without elaboration, and the term CT only exists in CS 11

and 12 courses. Also, the teachers seemed to assume that students learn CT practices

through attending their work on coding tasks, although many research studies have

shown transferring of problem-solving skills does not happen automatically, as

discussed in Chapter 2. Focusing on programming and not explicitly teaching CT

practices is one of the reasons Armoni (2016) critiqued the CT movement.

73

6.5. Time Economy

In Ruthven’s analysis (2009), time economy was more related to how much more

time it took for the technology to be incorporated into the mathematics classrooms. This

was not as relevant in Ada’s and Grace’s cases, as the teachers had set aside time to

do the coding activities. From Grace’s response that she wished to have laptops

available in the classroom throughout the year so that she could do more coding, it was

implied that she found coding to be a valuable use of her class time. In Julia’s situation,

as she integrated coding into her probability unit, she likely spent a few additional days

than she normally would. Nevertheless, she also expressed interest in doing more

coding. Julia wished she could find more places in the course to do more; this comment

may imply that incorporating CT and coding requires extra planning, or that perhaps it

requires re-thinking of the curricular concepts to make them more amenable to coding

activities. None of the three participating teachers were concerned about taking time

away from covering mathematics concepts. This contrasts with one of the teachers,

quoted in section 4.5, had not tried coding on the grounds that there was not enough

time to incorporate it in his or her classroom.

Despite having to spend time on technical issues, the teachers seemed to feel

that the overhead was the cost of incorporating technology and did not find it inefficient

use of class time.

6.6. Overall Experience

Upon reflection, all three teachers felt positively about coding and expressed

interest in doing the lessons again. A few common themes emerged from the teachers’

overall experience implementing coding lessons in their mathematics classrooms, which

were high student engagement, accessibility to a wide range of students and lack of

extensions.

In all three of the classrooms I observed, students were enthusiastic and highly

engaged in the activities. The tangibility of micro:bits especially seemed to make the

experience exciting for students. The first thing Grace said in the survey about her

motivation to include coding was because it is fun for students. Julia also commented

that “anytime you get engagement there’s more learning” during the interview. One can

74

argue that enjoyment does not necessarily imply learning. Nevertheless, in all three

cases, the teachers were thoughtful about the potential affordances coding had on

supporting learning. The student experience would be different if the teachers just let

students go through online coding tutorials, which could also be engaging, but lack the

mathematics connections teachers could help students make.

The coding lessons were able to reach a wide range of students. I noticed that

students were able to get started immediately in all three classes. Ada commented on

how the lesson was accessible to all her students. Everyone was able to enter the

activity very easily, but the activity still provided a challenge. The stronger students, in

Julia’s words, felt like “fish in water” with coding. However, there were a few students

who normally did not engage in mathematics classes that also enjoyed the activities.

Julia noticed that her students were proficient very quickly and showed a lot of

confidence. This was also something I observed in my own classes with coding. As

Grover and Pea (2013) claimed, many of the programming environments for learning

were developed with the “low floor, high ceiling” principle, and lessons observed in the

three classrooms were all self-paced and designed for students with no background in

coding. Thus, the lessons were able to reach students at different levels.

 While coding provided enrichment for high-achieving students, all three

teachers highlighted the lack of extensions as a major challenge when they incorporate

coding. In Ada’s remark, she felt some of the students were “expert coders”. Grace also

felt that the pace was good for the average students, but she did not have a lot for

students who finished early to work on. Julia also wished she was able to provide

extension in Python, despite not knowing the programming language. All three teachers

actually planned for extensions in their lessons. For Ada, there were additional Snap!

tasks she added to the handout. Grace and Julia both encouraged students that finished

to try other micro:bit tutorials. However, the teachers seemed to feel that these

extensions were not enough. Ada stated that she did not have enough programming

knowledge to guide the students and provide more challenges. Julia, who is more

experienced and confident in her ability to learn a new programming language, still found

learning enough Python programming to support the advanced students too

overwhelming a task. Grace’s example of using the CodeHS Python tutorial for her

Honours class the following day showed that teachers may not have enough background

75

knowledge or time to devise advanced extensions and had to rely on something that was

already developed.

To summarize, there were some similarities in differences in the teachers’

experiences and implementations of CT and coding lessons. After analyzing the data, in

the next chapter, I address the research questions from section 2.5 and conclude the

study.

76

Chapter 7. Conclusions

In this chapter, I address the research questions outlined in section 2.5. Then, I

discuss the limitations and implications of the study. Lastly, I reflect on what I learned

from the research both as a teacher and as a researcher.

7.1. Answering the Research Questions

The main purpose of this study was to investigate teachers’ perspectives and

practice of incorporating CT and coding in secondary mathematics classrooms. After

analyzing data from the teacher survey, classroom observations and interviews, the

research questions can now be answered.

How do teachers understand "computational thinking" and interpret "include coding" in

the BC mathematics curriculum document?

Only five out of 19 survey respondents felt comfortable about teaching CT and

coding, but most teachers provided a description of their interpretation of CT. The theme

of problem-solving emerged in teachers’ responses, which demonstrated the influence of

Wing’s (2006) article. Teachers may not have read Wing’s work, but through many

professional development workshops and a large number of resources developed since

the CT movement started, teachers’ views seem to be indirectly impacted by Wing.

Several CT practices were mentioned, such as breaking down steps (decomposition),

step-by-step thinking (algorithmic thinking) and pattern recognition (generalization).

These practices are not specific to CT and are also seen in mathematics classrooms.

Six of the 19 teachers included the word “computer” in their descriptions of CT.

The responses that connected usage of computer to CT mainly in two ways: 1) using the

computer as a tool for problem solving and 2) learning to use the computer. A teacher

specifically stated that teaching CT does not require technology. Though it was not

obvious from the teachers’ descriptions, few teachers gave examples of unplugged

activities when asked to describe CT tasks used in their classrooms.

Although coding is often considered as a vehicle to teach CT, none of the

teachers included the term coding or programming in their description. Some teachers

77

commented that CT is breaking down a task so that a computer is able to execute, which

could imply coding or programming, but the connection was not explicit. A teacher even

considered coding more as a way of communication or expression and not fitting under

CT.

According to the survey results, teachers associated CT and coding mostly to the

core competencies of creative thinking and critical thinking. For curricular competencies,

teachers primarily connected CT and coding to the curricular competencies of reasoning

and analyzing, as well as understanding and solving. In terms of curricular topics, all 19

teachers chose “patterns and relations” as most relevant, but the three teachers

observed implemented coding activities connected to other topics such as spatial

reasoning and probability. A variety of examples that connected to other curricular topics

were also provided.

Using block-based programming and online tutorials as resources for coding was

popular. While most teachers understood coding as computer programming, some

teachers highlighted a different type of coding, such as writing formula in Excel, as an

introduction to coding. In my opinion, this different type of coding is also a good way to

introduce “coding” in mathematics classes; it certainly fits the curricular competency of

using logic and pattern recognition, under which coding is found in the curriculum

document. Coding of this type may even have a closer connection to the discipline of

mathematics.

From this data, it seems like teachers are beginning to use or at least to think

about CT and coding. Most teachers saw the connections between CT and

mathematics, and I was a little surprised by how the theme of problem-solving emerged

from the responses. As a mathematics teacher, I had anticipated that my colleagues

would connect CT more to ideas such as number sense, statistics or data; however, only

one teacher mentioned the word “quantities” in the response. This may indicate how the

CT movement was successful in broadening the audience to K-12 teacher, and despite

not having a consensus on the definition of CT, having this agreed understanding of CT

being about problem-solving, provides us with a set of common ideas to work with, and

may be helpful in bringing more teachers on board. Teachers may not yet connect the

idea of coding to CT, but it is encouraging to see colleagues, who may not have

78

background in CS, being willing to try coding and include it as part of their mathematics

classrooms.

What kind of CT and coding activities are developed and used in BC secondary

mathematics classrooms?

Teachers provided a wide range of examples of CT and coding activities in

mathematics classrooms. Non-coding examples included strategy games, board games,

field trips, guest lectures, mathematical investigation activities using DME, an unplugged

“human coding” activity, etc. Among these examples, DME is noteworthy as it is already

a tool commonly used in mathematics classrooms. As discussed in 4.6, it fosters CT

skills not unique from mathematics learning. This raises an interesting question. To

enhance the current practice of teaching CT, should teachers focus on explicitly teaching

CT strategies when using DME, or should teachers seek to include other tools that are

not already part of the mathematics teaching practice?

Coding activities were primarily block-based. Only one out of the 19 teachers

used text-based programming in the classroom. Teachers observed demonstrated three

interesting coding activities in mathematics classes: Ada’s spiral polygon activity,

Grace’s Fizz-Buzz game and Julia’s RPS and coin-flip probability experiment. Other

block-based programming examples provided included a number guessing game in

Scratch and Spheros robot programming. With a broader definition of coding, some

teachers also used writing formula in spreadsheets as a way to introduce coding.

There are many follow-up questions I can ask upon learning about these

activities. Once teachers feel comfortable with these activities, would they want to

include more? How could we assess students’ learning of CT? Are there CT and coding

activities appropriate for higher grades?

What challenges do teachers have and how can they be better supported in

incorporating CT and coding?

Teachers faced many challenges with the new initiative of incorporating CT and

coding. According to the survey, teachers were mainly concerned about time, resources

and training. From the classroom observations, the working environment and resource

system were impactful to teachers’ experience. Teachers had to adjust their activity

79

formats and adapted to new curriculum script to fit the nature of a lesson involving

technology. Teachers had to deal with the issue of space, lack of proper equipment,

technical issues and additional responsibilities that came with the use of technology.

Despite the challenges, all three teachers had positive experience and were willing to

implement these lessons again.

Time did not seem like a major issue for the teachers that already incorporate CT

and coding in classrooms. Teachers understood that there was a cost for using

technology. However, with many other topics to teach in the curriculum, teachers also

did not go beyond just a few lessons that incorporated CT and coding in a year. Time

was a factor that prevented some teachers from trying. It seemed like if teachers believe

in the value of incorporating CT and coding and are supported in terms of resources

such as pre-made handouts, tools like micro:bits at their schools, colleagues to

collaborate with, they are more likely make time for it. At which level to include coding is

a factor as well, it is much easier to do so at the grade 8 and 9 level, whereas

incorporating coding at the senior levels, where there are more learning outcomes to

cover, and more difficult mathematics concepts to connect with, can be challenging. It

may be easier to find time and make connections to content in grade 8 and 9

mathematics classes.

Though many teachers agreed that including coding is a positive change, some

clarity in the Ministry of Education’s curriculum document on how to connect coding with

the curriculum would be helpful. From the survey, while some teachers have found ways

to implement CT and coding lessons in the classroom, some teachers still wonder about

where to put CT and coding in the curriculum, and what simple resources they can use

so they can get started more easily. Professional development is essential to the

success of an educational change, and from teacher responses, teachers are not just

looking for simple introductory resources for coding, but thoughtful use of CT and coding

that can be embedded in mathematics learning and connected to curricular topics.

Time and resources became less concerning when support could be provided to

the teachers. Teachers were more willing to try when there were resources provided to

them and collaboration with other colleagues. All three teachers in the classroom

observations wished for more resources for extensions so that students with experience

in programming could still be challenged. Moreover, people can be valuable resources

80

as well. Having an additional supporting teacher in the room to team teach can help

facilitate differentiated learning and reduce the burden on the teacher with the

technology use in class.

To what degree are CT and coding integrated into BC teachers’ mathematics classes?

Based on the survey result, many teachers that currently incorporate CT and

coding do it at most a few times in a school year. Ada, Grace and Julia demonstrated

three examples of classrooms that incorporated coding. Ada’s coding lesson was a

stand-alone lesson and extension for a particular unit. Grace’s lesson was part of a

separate coding unit in the course. Julia’s lesson was more blended into her probability

unit. All these lessons, as well as many examples provided by other teachers, were

additions to their curriculum. And while the lessons that were used came ready-made, all

three teachers put thoughts into these lessons, not just sitting students in front of

computers with online tutorials and claiming that they have included CT and coding.

 However, this also shows that to systematically integrate CT and coding into

secondary classrooms similar to projects like ScratchMaths or Bootstrap can be very

challenging. ScratchMaths was a two-year program offered at the elementary level.

Bootstrap, while implemented with grade 8 and 9 students, was offered as a separate

class on top of the regular mathematics class. For this reason, I chose "incorporating"

over "integrating" for the title of this research because I felt that “integrating” might imply

doing CT (and coding) throughout the course or blending it into our teaching practice.

What teachers have done so far appear to be adding CT and coding to courses. Unless

executed in special programs, incorporating CT and coding beyond the current level of

integration teachers are doing seems difficult with the current school system. When

teachers introduced coding in the classroom, it is likely some students’ first exposure to

coding, so it is hard for teachers to go beyond the basic level. The mathematics

curriculum itself can play a role. A mathematics curriculum designed to work well with

CT and coding could potentially improve the level of integration. This then raises the

question of how much of the curriculum could change to allow for better integration of CT

and coding.

81

7.2. Limitations and Implications

This study is relatively small in scale, with 19 survey respondents and three

classroom observations as well as teacher interviews. It is also inevitable that the

teachers responding to the survey tend to be ones that have already shown interest in

the topic, so their views may not be representative of the teacher population in BC.

Perhaps with a larger study, we would be able to see a wider range of teachers’

perceptions of CT and coding and activities in mathematics classrooms. Furthermore, all

participating teachers work in urban school districts in BC, and a study done in rural

areas in the province may lead to different results. In addition, all three lessons observed

were in grade 8 or 9 classes and focused on block-based coding. As claimed by a few

teachers in the survey, it is more challenging to find appropriate CT and coding tasks for

higher grades. It would also be interesting to observe in classes that utilized text-based

programming or non-programming CT tasks.

Future research might look at how teachers across BC are implementing CT and

coding in secondary mathematics classrooms on a larger scale. It would also be

interesting to find out how many mathematics teachers in BC are currently using coding

as a tool after the new curriculum was introduced. As there seemed to be no explicit

teaching of CT strategies in teachers’ implementation of coding lessons in the classes

observed, I am also curious how mathematics teachers teach CT in the CS 11 and 12

courses, where CT was part of the curriculum standards. How do they teach CT

specifically? How do they assess students’ learning of CT? This study highlights the

issue that official curriculum documents have added coding without specifying how to

include it in the curriculum. In addition, I am also curious if and how traditional teaching

resources such as textbooks address CT and coding.

7.3. Final Reflections

As I embarked on the journey of this research, I learned much both as a teacher

and as a researcher.

Participating teachers’ thoughtful survey responses and interview comments, as

well as lessons I observed in the classrooms, made me reflect on my own teaching

practice. I learned from my fellow teachers particular teaching practices like classroom

82

management techniques and activity design. I also noticed more specific CT and coding

practices such as if students are using trial-and-error instead of mathematics

understanding, what lesson ideas have been explored and how to structure a

mathematics lesson to include CT and coding. These are all very valuable to me.

Ruthven’s SFCPF (2009) helped me realize the variety of factors that affected

our different pedagogical decisions when incorporating CT and coding. Something that

stood out for me was the wide range of working environments teachers are in. Seeing

another colleague teach in a computer lab without a projector was eye-opening, and

quite often as teachers we have to be able to adapt quickly to different situations. It was

also interesting to see three different approaches in terms of the activity format when

including coding as part of a mathematics classroom. In addition, through working with

other teachers and presenting professional development workshops, I realized that for

my colleagues who may not have background in CS, to incorporate CT and coding in

their classrooms is more challenging than I anticipated. Teachers can often get started,

but it would be challenging to go beyond the basics and provide extensions.

I have also grown as a researcher. The process of reviewing the constantly

growing literature on CT and coding was fruitful and rewarding, though at times it is

confusing to find many distinct perspectives. I now consider CT an evolving concept. I

have gained a better understanding of the history of CT and coding in education, and I

am surprised by the tension between different stakeholders as well as the critiques on

CT and coding initiatives. I began this research with great enthusiasm to help other

teachers incorporate coding in mathematics classrooms, and this study enabled me to

take a step back and use a more critical lens to examine the recent movement of CT and

coding in education.

While high student engagement and accessibility to a wide range of students are

enough reasons for me to continue incorporating CT and coding in mathematics classes,

one thing I would like to do, and want to encourage my colleagues to try, is to use what

we learned about CT and teach CT practices more explicitly. This is not something I

observed in the study or did in my own classroom before, but I believe that it would be

valuable to the students. Decomposition, abstraction, generalization, etc. are not new

ideas, but naming these problem-solving strategies helps us become more aware of

them when moments of teaching opportunities arise. If I could offer a suggestion to

83

teachers with no experience and want to try CT and coding in classrooms, I would

recommend collaborating with other colleagues and starting with ready-made, block-

based coding resources with grade 8 and 9 classes. I hope that the three cases in the

study provided inspirations and good examples of lesson ideas.

As there has not been known prior studies on CT and coding in BC since the

introduction of the new curriculum in 2016, I hope that this study will raise interests

among my colleagues and encourage more intentional incorporation of CT and coding in

mathematics classrooms. I also hope that the study demonstrated that despite

challenges, teachers showed willingness to incorporate CT and coding in classrooms. If

CS education researchers and curriculum developers can support teachers by

developing teaching resources and offering professional development opportunities, and

if school districts and the Ministry of Education can provide more support for better

resources and working environments, I think more teachers would bring CT and coding

into their mathematics classrooms.

84

References

Armoni, M. (2016). Computing in schools – Computer science, computational thinking,
programming and coding: the anomalies of transitivity in K-12 computer science
education. ACM Inroads, 7(4), 24–27. https://doi.org/10.1145/3011071

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is
involved and what is the role of the computer science education community?
ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905

BC Gov News. (2016, June 10). $6 million to help connect students with coding, new
curriculum and computers. Retrieved from
https://news.gov.bc.ca/releases/2016PREM0065-000994

Benton, L., Hoyles, C., Noss, R., & Kalas, I. (2016). Building mathematical knowledge
with programming: insights from the ScratchMaths project. In Proceedings of
Constructionism 2016, 25-32.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Paper presented at the American
Educational Research Association, British Columbia, Canada.

British Columbia Ministry of Education. (2016). BC’s New Curriculum. Retrieved from
https://curriculum.gov.bc.ca/curriculum/

Cellan-Jones, R. (2015, March 12). The Micro Bit - can it make us digital? BBC News.
Retrieved from https://www.bbc.com/news/technology-31859283

Clements, D.H. (1999). The future of educational computing research: The case of
computer programming. Information Technology in Childhood Education Annual,
1, 147–179.

College Board. (2018). Student score distributions. Retrieved from https://secure-
media.collegeboard.org/digitalServices/pdf/research/2018/Student-Score-
Distributions-2018.pdf

Computer Science Teachers Association & International Society for Technology in
Education. (2011). Computational Thinking: Leadership Toolkit (1st ed.)
Retrieved from https://id.iste.org/docs/ct-documents/ct-leadershipt-
toolkit.pdf?sfvrsn=4

Denning, P. (2009). The profession of IT Beyond computational thinking.
Communications of the ACM, 52, 28–30

Education Endowment Foundation. (2018). ScratchMaths: Projects. Retrieved from
https://educationendowmentfoundation.org.uk/projects-and-
evaluation/projects/scratch-maths/

85

Gadanidis, G. (2017). Five affordances of computational thinking to support elementary
mathematics education. Journal of Computers in Mathematics and Science
Teaching 36(2), 143–151.

Google Education. (n.d). Exploring Computational Thinking. Retrieved from
https://www.google.com/edu/programs/exploring-computational-thinking/

Government of Canada. (n.d). CanCode. Retrieved from
https://www.ic.gc.ca/eic/site/121.nsf/eng/home/

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of
the field. Educational Researcher, 42(1), 38–43.

Guzdial, M. (2008). Paving the way for computational thinking. Communications of the
ACM, 51(8), 25–27.

Guzdial, M., Kay, A., Norris, C. & Soloway, E. (2019). Computational thinking should just
be good thinking. Communications of the ACM, 62(11), 28-39.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human
Behavior, 41, 51–61.

Papert S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY:
Basic Books.

Pea, R. D. & Kurland, D. M. (1983). On the cognitive and educational benefits of
teaching children programming: A critical look. - New Ideas in Psychology, 1(3).
Elmsford, NY: Pergammon. 137-168

Pei C., Weintrop D. & Wilensky U. (2018). Cultivating computational thinking practices
and mathematical habits of mind in Lattice Land, Mathematical Thinking and
Learning, 20:1, 75-89.

Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration in
classroom practice: The example of school mathematics. Education &
Didactique, 3(1), 131-149.

Minister of Innovation Science and Economic Development. (2019). CanCode. Retrieved
from https://www.ic.gc.ca/eic/site/121.nsf/eng/home

Selby, C. C., & Woollard, J. (2014). Computational thinking: the developing definition.
Presented at the SIGCSE 2014, Atlanta. Retrieved from:
http://eprints.soton.ac.uk/356481/

Savard, A. & Freiman, V. (2016). Investigating Complexity to Assess Student Learning
from a Robotics-Based Task. Digit. Exp. Math. Educ. 2016, 2, 93–114.

86

Schanzer, E. Fisler, K., & Krishnamurthi, S. (2018). Assessing Bootstrap:Algebra
students on scaffolded and unscaffolded word problems. Proceedings of the 49th
ACM Technical Symposium on Computer Science Education – SIGCSE’ 18, 8-
13. https://doi.org/10.1145/3159450.3159498

Schanzer, E., Fisler, K., Krishnamurthi, S., & Felleisen, M. (2015). Transferring skills at
solving word problems from computing to algebra through Bootstrap.
Proceedings of the 46th ACM Technical Symposium on Computer Science
Education – SIGCSE ’15, 616–621. https://doi.org/10.1145/2676723.2677238

Silcoff, S. (2016, January 17). B.C. to add computer coding to school curriculum. The
Globe and Mail. Retrieved from https://www.theglobeandmail.com/technology/bc-
government-adds-computer-coding-to-school-curriculum/article28234097/

Tedre, M., & Denning, P. (2016). The long quest for computational thinking. Proceedings
of the 16th Koli Calling Conference on Computing Education Research,
November 24-27, 2016, Koli, Finland: pp. 120 – 129.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., & Trouille, L. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of
Science Education and Technology, 25(1), 127–147.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–36.

Wing, J. (2011). Computational thinking — what and why? The Link Magazine, Spring.
Carnegie Mellon University, Pittsburgh. Retrieved from
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

87

Appendix A.

Online Teacher Survey on SFU WebSurvey Interface

88

89

90

91

92

Appendix B.

Post-Observation Teacher Interview Questions

General Questions

• Overall, what did you like about this lesson?

• What challenges did you have, if any?

• If you can make one change to the lesson, what would it be?

Working Environment

• If you can make one change to your classroom setup for this lesson, what
would it be?

Resource System

• What resources for coding and computational thinking did you use for this
lesson?

• What resources for the math learning outcomes addressed did you use for this
lesson?

Activity Format

• How did you structure this lesson?

• Comparing to your typical math lessons, what do you think are some
differences in your lesson that incorporated coding, such as in the sequence
of the lesson, assessment, etc?

Curriculum Script

• What are some changes you made in your way of teaching, such as questions
posed, explanation of a concept, etc. teaching the same math concept in your
lesson that incorporate coding and computational thinking?

Time Economy

• How much time did you spend planning this lesson?

• Are there parts of the lesson you feel were not effective use of time due to the
use of technology?

