Cloud-edge Collaboration for

Cost-effective Video Service Provisioning
by
Yifei Zhu

M.Phil., Hong Kong University of Science and Technology, 2015
B.Sc., Xi’an Jiaotong University, 2012

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science

Faculty of Applied Science

© Yifei Zhu 2019
SIMON FRASER UNIVERSITY
Fall 2019

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name:
Degree:

Title:

Examining Committee:

Date Defended:

Yifei Zhu
Doctor of Philosophy (Computing Science)

Cloud-edge Collaboration for Cost-effective Video
Service Provisioning

Chair: Ouldooz Baghban Karimi

Lecturer

Jiangchuan Liu
Senior Supervisor
Professor

Qianping Gu
Supervisor
Professor

Mohamed Hefeeda
Internal Examiner

Professor

School of Computing Science

Jianwei Huang

External Examiner

Professor

Department of Information Engineering
The Chinese University of Hong Kong

December 10, 2019

ii

Abstract

The advances of personal computing devices and the prevalence of high-speed Internet ac-
cess have pushed video streaming services into a new era. One of its representative examples
is crowdsourced livecast services where numerous amateur broadcasters lively stream their
video contents to viewers around the world. For video service providers, processing these
multimedia contents is inherently resource-intensive, time-consuming, and consequently ex-
pensive. The demand for low latency to guarantee interactivity in these emerging services
further challenges the prevalent cloud-based solutions. In this thesis, we start by revealing
the potentials of offering cost-effective low-latency video services both at the cloud and
the edge side through analyzing the traces collected from real-world applications. We then
examine the feasibility of an instance subletting service at the cloud side, where idle cloud
resources can be traded. The performance of such a service is examined from both theo-
retical and practical perspectives. To satisfy the low-latency requirement in the emerging
interaction-rich video services, we propose a crowd transcoding solution, which fully relies
on powerful users to finish transcoding. To further improve the stability of such a distributed
computing system, we then propose a cloud-crowd collaborative solution, which combines
redundant end viewers with the cloud to perform video processing tasks cost-effectively.
Novel probabilistic auction mechanisms are designed to facilitate this solution with desir-

able economic properties guaranteed.

Keywords: Cloud computing; Edge computing; Multimedia; Resource allocation

iii

Dedication

To my parents and my girlfriend(my future wife, too).

iv

Acknowledgements

First and foremost, I am greatly grateful to my senior supervisor, Prof. Jiangchuan Liu
for his tremendous support and invaluable guidance throughout my studies. Prof. Liu has
offered me great freedom in research problem selection and has been instrumental in teaching
me, to name just a few, how to conduct organized and efficient research, how to focus on the
critical parts of a research problem. These along with other insightful guidance and vision
sharing motivate me and prepare me to become an independent researcher.

I also owe sincere thanks to Prof. Dan Wang for his mentorship during my research
assistantship at Hong Kong Polytechnic University. I had a great time there and learned a
lot in research approaches from the discussion with Prof. Wang and Dr. Wei Bao from the
University of Sydney. May Hong Kong join with mainland China to develop better.

I am grateful to the other members of my committee: Prof. Qianping Gu as my su-
pervisor, Prof. Mohamed Hefeeda as my internal examiner, Prof. Jianwei Huang as my
external examiner, and Dr. Ouldooz Baghban Karimi as the committee chair, who provided
constructive comments to my thesis.

I would also like to thank Prof. Zhi Wang and Prof. Yong Cui from Tsinghua University,
Prof. Feng Wang from the University of Mississippi who have provided invaluable feedbacks
to some of my research papers. Their comments greatly helped me improve my manuscript.

I would like to give my gratitude to the colleagues in Prof. Liu’s NetMedia lab, Silvery
Di Fu, Dr. Cong Zhang, Dr. Xiaoyi Fan, Dr. Wei Gong, Dr. Xiaogiang Ma, Dr. Lei Zhang,
Miao Zhang, Fangxin Wang, Yutao Huang, Dr. Jihong Yu, Jia Zhao, Chi Xu, Yuchi Chen,
Qiyun He, Dr. Ryan Shea. I will always cherish the brainstorm and discussion moments
with them. These wonderful friends make my Ph.D. life colourful and inspire me constantly.

I would also love to express my sincere gratitude to my master degree’s supervisor at
Hong Kong University of Science and Technology, Prof. Bo Li, who brought me to network-
ing research and introduced Simon Fraser University and Prof. Jiangchuan Liu to me. After
my graduation, he kept offering me invaluable career advice, which I deeply appreciate.

Last but not least, I would like to express my earnest gratitude to my parents and my
girlfriend, Dr. Wengian Ren, for their constant support, love, and encouragement, without
which I would not hold on and succeed through this mental and physical challenging research
journey. I would like to thank my parents again for providing me with the best education

possible.

Table of Contents

Approval

Abstract

Dedication

Acknowledgements

Table of Contents

List of Tables

List of Figures

1

Introduction
1.1 Cost-effective Vidoe Service Provisioning
1.2 Summary of Contributions

1.3 Thesis Organization

Preliminary
2.1 Resource Allocation and Pricing

2.2 Mechanism Design: Auction as an Example

Cloud Instance Subletting for Resource Utilization Optimization

3.1 Background and Related Work L.

3.2 System Model and Problem Formulation
321 System Model
3.2.2 Auction in the Secondary Market: Problem Formulation

3.3 Mechanism Design under Static Supply
3.3.1 Mechanism Design
3.3.2 Theoretical Analysis

3.4 Mechanism Design under Dynamic Supply
3.4.1 Mechanism Design

3.5 Evaluation e

vi

ii

iii

iv

vi

ix

T o =

3.5.1 Trace-driven Simulations: the Case of Static Supply
3.5.2 Trace-driven Simulations: the Case of Dynamic Supply
3.6 Practical Challenges and Prototype Validation

3.7 Summary ...

Exploiting Crowd for Low Latency Transcoding

4.1 System Model and Problem Formulation
4.1.1 Why Delay Matters for Video Services in the New Era?
4.1.2 System Model
4.1.3 Problem Formulation 0oL,

4.2 Crowd-based Video Transcoding
4.2.1 Baseline Scheduler with Flexible Transcoding Viewers
4.2.2 Comprehensive Scheduler,
4.2.3 Online Implementation

4.3 Performance Evaluation o oL
4.3.1 Trace-driven Simulation Configurations and Metrics
4.3.2 Evaluation Results 0o

4.4 System-level Evaluation
4.4.1 Prototype Setup
4.4.2 System Performance Results.

4.5 Related Work

4.6 SUMMATY ot et e e e

Towards Reliable Cloud-Crowd Collaborative Transcoding

5.1 Challenges and Principles oL
5.1.1 Why a Cloud-Crowd Collaborative System?
5.1.2 Why Redundancy Helps?

5.2 System Model and Problem Formulation
5.2.1 System Model
5.2.2 Social Welfare Maximization for Cloud-Crowd Collaboration

5.3 Mechanism Design for Cloud-Crowd Collaborative Transcoding
5.3.1 Transcoding the Broadcasting Workloads in C2
5.3.2 Transcoding the Pre-recorded Video Workloads in C2

5.4 Evaluation
5.4.1 Dataset and Experiment Settings
5.4.2 Sensitivity Analysis
5.4.3 Comparison with Baseline Methods

5.5 Related Works e

5.6 SUMMATY v v e e e e e e

vii

38
38
38
39
40
42
43
44
47
50
50
ol
o7
o7
o7
99
99

6 Conclusion, Lessons Learned, and Future Work

6.1 Summary of Contributions
6.2 Lessons Learned and Future Works
Bibliography

Appendix A Proof

Al
A2
A3
A4
A5

Proof of Theorem 1.
Proof of Theorem 2.
Proof of Theorem 3.
Proof of Theorem 4.
Proof of Theorem 5.

viii

81
81
82

85

List of Tables

Table 3.1 Table of notation
Table 4.1 Table of notation

Table 5.1 Table of important notations

ix

List of Figures

Figure 3.1

Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5
Figure 3.6

Figure 3.7
Figure 3.8

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 5.1
Figure 5.2

Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

Design space and the position of sublettable instance: Maximum
achievable capacity € {High, Medium, Low}. SI for EC2 spot in-
stances, PI for GCE preemptable instances, OI for on-demand in-
tances, and BI for GCE burstable instance.
Auction market in our instance subleting system
Adversary situations because of the time constraint
Hlustration of price discount and stage separation (initial price P,
Tj = 16, tymin = 2, no requests are admitted)

Performance comparison in the static supply case
Dynamic demand and supply in our market and a snapshot of an
instance

Performance comparison in the dynamic supply case

Prototype performance on web and batch workloads

System overview
Illustration of the online strategy
Stability analysis under different budget levels when V/C=200 . . .

Cost comparison under different V/C values

Impact of budget on stability and cost

Impact of waiting threshold on stability and cost

Stability and delay analysis in the Planetlab-based prototype

Effects of local popularity on latency reduction
Redundancy illustration: simultaneous redundancy for broadcast-
ing live video workloads and sequential redundancy for pre-recorded
video workloads
Cloud-Crowd system overview
Impact of redundancy level (varying B)
Impact of timeslot size
Performance comparison for broadcasting workloads (B =2)

Performance comparison for pre-recorded video workloads (B =2) .

13
15
22

23
28

30
32
35

39
47
52
o4
95
o6
o8

61

63
65
73
74
76
78

Chapter 1

Introduction

1.1 Cost-effective Vidoe Service Provisioning

The advances of personal computing devices and the prevalence of high-speed Internet
access have generated unprecedented amount of video traffic. Global Internet based traffic
is expected to reach 4.8 ZB by 2022 [11]. Among this, videos are the dominant data format,
which stand for 82% of all consumer Internet traffic. Specifically, live video, contributed
by the emerging crowdsourced live streaming services, is becoming the prominent video
format chosen by users to share their lives with the world. Live videos will account for
17 percent of video traffic by 2022 and will have increased 15-fold from 2017 to 2022 [11].
In the crowdsourced live streaming services, numerous amateur broadcasters lively stream
their video contents to viewers around the world every second, every where. Fellow viewers
watching the same channel constantly interact with each other and the channel broadcaster
through chatting messages. Twitch TV, one of the most successful examples, hosted over two
million broadcasters per month and supported 9.7 million daily active viewers in 2016 [85].

Video service providers need to transcode same video content, either VoD or live videos,
into different quality versions and distribute the appropriate version to better match the
varying network conditions of end users and provide the best possible user experience [62].
These transcoding tasks are CPU-intensive and require significant hardware. Cloud thus
becomes a natural choice for most providers to conduct such compute-intensive transcoding
tasks due to its elasticity and the “pay-as-you-go" billing model. For example, Netflix builds
its whole video transcoding and delivering infrastructure in the cloud [12]. After acquired
by Amazon, Twitch has also finished its migration of online chatting servers to the AWS in
2016 and keep expanding its server capacity to meet the transcoding demand.

However, the cost of cloud-based video processing is still high in that the massive num-
ber of videos need to be processed and current cloud-based solution is not efficient when
facing temporally varying video workloads. The massive number of concurrent live channels,
heterogeneous source contents and device configurations of end users in the interactive live

streaming services generate a substantial amount of transcoding tasks. For example, overall

Twitch hosted over 2 million unique monthly broadcasters in 2017, and 355 billion minutes
of livecast has been watched. These video contents all has to be transcoded first before they
are consumed by the viewers. As a result, even a cloud-based approach becomes signifi-
cantly expensive. Real-world service providers such as Twitch TV only provide transcoding
services to a small portion of premium broadcasters, and only extend this service to normal
broadcasters when there is extra capacity.

On the other hand, despite the fact that video service providers, as cloud users, are
busy scaling up and out their rented cloud instances to meet their demands, the resource
utilization of their instances is far from being efficient. This inefficiency, in turn, incurs
extraneous expenditure to them. For example, Netflix reported one of its Amazon EC2
clusters had reserved 5x more instances overnight to support peak-time services; during
off-peak times, more than 1500 3.4xlarge EC2 instances are mostly unused [3], translating
into almost $2000 unnecessary costs per hour [1]. In general, instance underutilization can
occur in both temporal and spatial domains [32]. In the former case, it occurs when cloud
users purchase instances for a fixed amount of time (i.e., the billing cycle, ranging from
minutes to years) but make no use of them during certain time intervals. As a matter
of fact, in reality, video providers usually choose long-term cloud instances, a.k.a reserved
instances to save cost and guarantee resource provisioning. The latter may happen when
the users are running workloads with heterogeneous demands on various resources (e.g.,
CPU becomes underutilized when running memory-bound applications).

Jointly solving instance underutilization in both spatial and temporal domains is chal-
lenging for both users and cloud providers. Existing studies have focused on dynamically
provisioning cloud resources [100][103], an approach that allows customized instance types
to mitigate underutilization in the spatial domain only. Fine-grained pricing schemes have
also been investigated in academia [54] and adopted by some cloud providers (e.g., Mi-
crosoft Azure), in which instances are billed in a shorter time interval. Users in turn can
timely turn off their underutilized instances to avoid extra charges. It unfortunately pre-
cludes users from purchasing long-term instances with significant price discounts from the
wholesale market of the cloud providers [2].

Considering the great potential of underutilized instances owned by cloud users, like Net-
flix example we mentioned before, Instance subletting service has been suggested [22][14],
which allows sporadic users to sublet their underutilized instances to others in need. If
carefully designed, this service can make instance owners monetize their underutilized in-
stances without introducing unnecessary downtime, and meanwhile make other users or
users within same organization enjoy low-cost and high-quality computing resources. Being
a complement and extension to the current cloud market, it has great potentials towards
building an efficient and sustainable cloud ecosystem.

In addition to the low utilization of the resources and high cost of processing these

videos, the requirement on streaming latency in the interactive environment created by the

emerging crowdsourced applications is even more stringent, as high latency severely affects
the viewer-broadcaster, and viewer-viewer interactive experience [98]. While the cloud server
may be far away from the live source, which inevitably causes higher streaming latency. We
thus want to seek more cost-efficient, low-latency solutions to provision compute resources
to better serve these videos.

Edge computing is an architecture that uses a collaborative multitude of end-user clients
or near-user edge devices to carry out a substantial amount of storage or computational
workload [25]. It is a complementary component of cloud computing by extending the cloud
computing paradigm to the network edges. While cloud is still the mainstream choice for
deploying large-scale virtual infrastructure, centralized datacenter-based cloud is now mi-
grating toward a hybrid mode with edge assistance [86]. Looking deeper into these crowd-
sourced livecast service (CLS) platforms, we observe the abundant computational resources
residing in edge viewers. Advanced processors (e.g., Intel i7), powered with dedicated video
transcoding core like Intel Quick Sync, are becoming the main stream setting for desktops,
especially among high-end game devices. According to Steam, 50% of its PCs have 4 physical
CPUs; 8.93% of processors operate at 3.7 GHz and above; 74.76% of PCs runs DirectX 12
GPUs [10]. The computing power of mobile devices is increasing even more surprisingly, like
Apple’s newly released A10 Fusion chip achieves close to workstation-level performance in
the single-thread situation [8]; Google leverages mobile devices to run text recommendation
training in its Gboard app [68]. As a successful game-oriented CLS provider, 65% of Twitch
viewers come from desktop computers [84]. Even if we only focus on its high end devices, the
transcoding performance of these devices (e.g., i7 4 GHz, 4 cores, 16 GB, built-in GPU with
Intel QuickSync) is already comparable to, sometimes even better than, compute-optimized
instances (e.g., c4.8xlarge) in the public cloud [7]. In addition, unlike traditional live
streaming services where viewers of popular streams tend to be evenly distributed [64], geo-
distribution of viewers for a specific broadcaster is highly skewed (48% of broadcasters have
their viewers totally in the same province/state [66]) in our studied CLS platform. Since
most viewers that consume a channel are located in the same region as the broadcaster,
allowing local viewers to transcode streams will greatly reduce the communication distance
from broadcasters to viewers. Inspired by this observation and the massive viewer base in
these services, combining these viewers (crowd) with the cloud to do transcoding seems to
be a promising solution.

However, several challenges need to be handled in both cloud subletting and cloud-crowd
transcoding solutions. In the cloud subletting services, A core issue is to allocate limited
instances to be sublet efficiently and determine the trading price accordingly. An auction
appears to be a natural candidate due to its efficiency in allocating scarce resources and
its capability in deciding the market-based prices [104][102]. Instance subletting, however,
presents a series of new challenges that are yet to be addressed in the existing auction

designs. Previous auctions make decisions given a static known supply and only deal with

the online arrival of bidders [100][103][45]. In instance subletting, given the dynamic arrivals
of underutilized instances, the supply of auction is largely unknown and fluctuates, too. In
addition, instances cannot stay in the market forever. These instances also have distinct
deadlines for subletting, after which they will be reclaimed by their original owners. As
such, these extra time constraints also need to be dealt with in auction. Furthermore, by
allowing multiple users to share a single instance, instances are no longer traded as the
classical one-to-one exchange, but many-to-one exchange, which makes the pricing of co-
located requests even more challenging.

In the cloud-crowd collaborative computing case, since transcoding inevitably costs ex-
tra power and bandwidth consumption, viewers’ willingness to take on such tasks varies
from person to person. Though we notice the formation of channel-oriented online commu-
nities, involving these viewers into taking computational intensive transcoding tasks still
needs much stronger incentives to guarantee eventual performance. Thus we recruit quali-
fied viewers to take on these tasks and incentivize them with monetary rewards. Providing
this incentive in a cost-efficient way requires the valuations of viewers for taking these tasks,
which unfortunately are private and depend on their own profiles in most cases. In addition,
even if they accept these tasks, their uncertainty in completing the tasks presents another
challenge since viewers may not guarantee continuous transcoding for the whole live session
or fail to complete the task due to their heterogenous computing power. Furthermore, quan-
tifying these uncertain behaviours may require private information which creates cost as
well; namely, this uncertainty information is also private. The heterogeneity and uncertainty
of viewers as well as their private status all present serious challenges in viewer selection

and pricing.

1.2 Summary of Contributions

In this thesis, we start by revealing the potentials of offering cost-effective low-latency video
services both at the cloud and edge side through analysing traces from Google, Twitch, and
Yinke. We then present an instance subletting service at the cloud side to allow idle cloud
resource trading. We systematically examine the instance subletting service from both theo-
retical and practical perspectives [107][106]. We start by revealing that the algorithmic side
of our auction in the secondary market for subletting is a unique multiple multi-dimensional
knapsack problem (MMKP)! that has yet to be addressed in existing auction mechanisms.
We present an online auction mechanism with a carefully designed pricing function based
on the real-time availability of resource usage. We show that the solution provides the best

provable competitive ratio with static supply, and guarantees truthfulness and individual

'MMEKP solely refers to multiple multi-dimensional knapsack problem in this paper, not multiple-choice
multi-dimensional knapsack problem used in some application scenarios.

rationality simultaneously. Large scale simulations driven by real traces demonstrate that
our solution can achieve significant performance gains in social welfare and cost. We then
extend our algorithms to the dynamic supply scenario, where the supply of the underutilized
instances in our system also changes over time. We improve our mechanisms by incorporat-
ing a discount strategy to mimic the effect of the earliest deadline first policy in real-time
scheduling without sacrificing other economic properties. We further discuss the practi-
cal issues and demonstrate an EC2 based prototype implementation, which offers seamless
and low-overhead operation thanks to the latest containerization techniques (Docker [4] in
particular).

To satisfy the low-latency requirement, we further propose a crowd transcoding solution
to allow viewers in the system to accomplish the transcoding tasks [108]. We designed
an efficient data-driven threshold to filter out unstable viewers. Budget-constrained task
assignment algorithms are then proposed for both offline and online scenarios.

To further offer reliable services, we devise redundancy strategies accordingly to different
workload types. To pass the asymmetric information barrier in cost and uncertainty, we
incorporate their statistical descriptions into our bidding language, design truthful auctions
to recruit stable viewers and reward them with the right amount of incentive [109]. The
mapping we present from our studied social welfare maximization problem to the min-cost
flow problem not only guarantees optimal social efficiency but also is capable of absorbing
different capacity requirements. We prove that our designed mechanisms guarantee social

efficiency, incentive compatibility, and individual rationality in expectation.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

e Chapter 2 presents a brief introduction of resource allocation, pricing, and the differ-

ences of mechanism design, taking auction as an example, to classical game theory.

e Chapter 3 begins with the related work in providing low cost or high utilized cloud.
It then presents the system model and problem formulation for a promising instance
subletting services, where auction is used for price determination and resource alloca-
tion. Mechanisms are designed specifically for the static supply and dynamic supply

situation in such a service.

e Chapter 4 presents a fully crowd solution to provide low cost transcoding services

without violating the budget constraint.

e Chapter 5 presents a cloud-crowd solutions, where both cloud and redundant crowd
are used to mitigate uncertainty. Novel mechanisms are designed to incorporate this

uncertainty and guarantee economic properties.

e Chapter 6 summarizes our works, presents the lessons learned and pinpoints several

interesting future directions.

Chapter 2

Preliminary

2.1 Resource Allocation and Pricing

Capacity and demand keep fighting with each other, determining how the services are
provided. If there is always extra capacity, we can then adopt the most simplified approach
to arrange resources so that the quality of services since congestion and delay is no longer
a problem. But in most cases, even if the cloud service provider keeps adding capacity
into its existing datacenter, the capacity is still behind the demand. It is also not efficient
to prepare resources for the peak demand only. To efficiently use the limited resources,
dedicated control measures need to be taken.

Pricing is intertwined with resource allocation in system design because current resource-
consumption based pricing is particularly sensitive to how the cloud system utilizes its
resources. Researchers in [92] identifies the importance of pricing in distributed system
design and points out that optimizing profit from the provider’s perspective may lead to
sub-optimal system throughput.

Resource allocation problem usually can be formulated as the following optimization
problem [71]:

maxz Ur(zy),Rx <c (2.1)
T

Normally, the problem strives to maximize certain objection function as a function of
the allocation decision x,. Tasks have resource constraints and the system has a capacity.
The amount of resources a task eventually allocated (R) should not exceed the resource
capacity C. Other constraints like placement constraint, budget constraint, QoS constraint
are also possible. Placement constraint could be the specific kernel version or hardware
architecture. This requirement arises because deep down there is heterogeneity in machines
in the clusters or from the need for application optimization [78]. When we consider the
market aspect, tasks can further have budget constraints. Different application types, like

streaming applications, may also have specific QoS constraints to ensure their performance.

Fairness is a common goal of a scheduler in resource sharing clusters. Researchers work
on policies to determine the fair share for each job or queues. Resource allocation follows first
come first serve, a finished task will free its allocated resources, and these freed resources are
then allocated to the waiting tasks in the queue to make sure that their allocated amount
is the fair amount. Queues operating at the fair share or lower than fair share is not pre-
emptive. For one dimension resources, there are also two types of fairness definitions: basic
fairness where all players get an equitable share of resources is applicable when all players
hold the same preference level towards the resources. The other type is extended fairness,
cloud computing involves multiple types of resources. Thus the definition of fairness in
multi-dimensional cases also varies [55] [46]. Existing cloud services, especially TaaS, still
treat computing resources as a unidimensional resource, without allowing users to customize
their VMs. These two approaches require different approaches.

How to define fairness in the multi-dimensional settings has been extensively studied in
recent years due to the demand from the cloud computing scenarios. The seminal work [44]
assumes the admission decision has been made, it strives to reach fairness and strategy-proof.
Existing works on fairness assume jobs all follow a fixed pricing scheme and only consider
fairness allocation. Researchers in [55] presents two sets of functions unifying efficiency and
fairness together. Users can modify the parameter in the designed fairness functions to
match their own efficiency-fairness tradeoff levels. The efficiency studied in this paper is the
sum of all dominant share resources gained by all users. It assumes the knowledge of utility
function and did not try to elicit it from users. In an auction, social efficiency is specially
considered as we will see in the next section.

The resource allocation problem naturally comes with an economical interpretation,
especially in linear programming scenarios. The following presents the formulation of the

resource allocation problem in its simplest form, followed by its dual problem. [79].

maXZCixi,Zai,jxi < b; (2.2)
i i

min Z bjyj; Z aj.5Y5 > C; (23)
J J

where dual variable y can be interpreted as marginal value of resource i in production
economy. We choose an item only if its hidden value is greater than its cost as stated
in the constraint. While the connection between the pricing and allocation seems really
straighforward in single dimension scenario, their connection becomes much more difficult
to find especially when additional application-specific constraints. like budget constraints
are added.

2.2 Mechanism Design: Auction as an Example

Auction is a branch of mechanism design, which serves as an integral part of modern microe-
conomics. Auction has a long history and even starts long before the formalisation of game
theory. It is arguably the most successful application of game theory in the real world, and
is widely used in selling antiques, houses, construction projects, spectrum, etc. The majority
of game theory focuses on analysing the existence of equilibrium assuming the full complete
information of all players. In contrast, an auction is used in the incomplete information
scenario, namely, all players in the game only have knowledge of its payoff function without
knowing that of others, so called private valuation. This uncertainty regarding values is an
inherent feature of auctions and brings a substantial difference in how players in the auction
play this game. Accompanied by it is the introduction of signalling, namely, what kind of
information will each player reveal to others. This signal decision usually includes in a bid.
Based on some assumptions in the distribution of signals or bids, auction theory studies
whether equilibrium exists in an auction and how to reach this equilibrium.

There are two roles in an auction: bidder and auctioneer. Depending on the design
of auction, bidders can be buyers or sellers or both, and submit bids to the auctioneer.
Auctioneer collects these bids and makes two types of actions based on the rules designed by
the system designer: allocation rules and payment rules. An allocation rule determines who
will get the item of all collected bids. The payment rule determines how much this winner
has to pay out of all collected bids. Based on the direct revelation principle, the designer just
needs to design mechanisms to ask for users to directly report their private value. A good
auction design also desires several properties: incentive compatibility, individual rationality,
social efficiency, revenue maximization. Incentive compatibility means that the expected
payoff of a bidder telling the truth is at least greater or equal to the expected payoff of a
bidder reporting otherwise. Individual rationality means that the expected payoff of a user
winning the auction is at least zero, which guarantees the incentive for the player to join
the auction. Social efficiency guarantees that the eventual allocation maximizes the sum of
all utility of all players. We also call such mechanism as an efficient mechanism. Revenue
maximization guarantees that the eventual allocation maximizes the received payment of
all players. We call such a mechanisms as an optimal mechanism.

In addition to auction approach, other approaches including nash bargaining solutions
[96], dynamic pricing [53] [90], negotiation [16], shapley value [23] etc. have also been used in
determine price and resource allocation. Recognizing benefit of price in allocating resources,
the work in [53] combines dynamic pricing with inter-datacenter bandwidth allocation, tar-
geting at maximizing social welfare. Shapley value in the cooperative game theory can also
be used to determine the price and reach a sense of fairness, as opposed to auction. Re-
searchers in [23] uses multi-dimensional bin-packing to maximize social welfare, then apply

shapely value to split the social welfare determining the price for the buyers. Fairness and

other strategic manipulations, other than truthfulness can be guaranteed. It is not strategy-
proof, instead it provides proximate fairness guarantees and shows a way to determine the

allocation [23].

10

Chapter 3

Cloud Instance Subletting for
Resource Utilization Optimization

3.1 Background and Related Work

In TaaS cloud computing, most of the current IaaS providers view the commodity unit as a
single VM, in that the users just need to tell how many VMs it wants. This further combines
with the time dimension. Users are charged by the per-hour fees (changed to per-minute
basis in 2017 for on-demand Amazon AWS instances). Existing IaaS providers also provide
several types of low-cost instance options other than their regular instances! to attract cost-
conscious users. This pricing advantage is usually accompanied with constrained instance
capability, which are further realized in two ways: (1) low-cost instances are interruptible
and can be reclaimed by the provider at its will, like spot instances in EC2 and preemptible
instances in Google Compute Engine (GCE). (2) low-cost instances are configured with
small base capacity only and can burst to higher capacity opportunistically, like burstable
instances? in GCE. Instance subletting services discussed in this paper are implemented
using market-based auction mechanism and offers a different SLA in both time and spatial
dimensions compared with existing instance options, making it a complementary part to
the existing cloud market. For example, unlike preemptive spot instances, instance sublet-
ting services offer nonpreemptive instances where accepted instances are guaranteed to run
without interruption during its requested period. Unlike small sized burstable instances,
instances in instance subletting services have larger base capacity. The difference in these
two service models fundamentally separates target user groups and presents new theoret-
ical challenges in resource allocation. Fig.3.1 presents a more intuitive illustration to our
design space and the position of our sublettable instance in it. In addition, as the first large

scale attempt in applying market-based pricing on preemptible VM provisioning, pricing

1On-demand and reserved instances

2f1-micro instances in GCE get 0.2 of a vCPU and can burst up to a full vCPU for short periods.

11

in spot instance has been discovered to be not truly market-driven [13], which can induce
complex strategic behaviour (e.g., untruthful bidding) of users. We strive to design auction
mechanisms where truthful bidding is the dominant strategy for all users.

Attracted by the low cost of existing spot instances and reserved instances, novel cloud
services complementing current cloud ecosystem have also become a focal point of the
recent academic literature. Brokerage is a popular approach that takes benefit of reserved
instances [50][93]. Wei et al. [93] propose to use a broker to resale the reserved instance
bought from the cloud provider to the users. They focus on making reservation decisions
at the supply side to reduce the total cost of a broker. Qiu et al.[76] study the interaction
between private clouds and a broker, and formulate the trading problem as a Stackelberg
game, which deprives the pricing power of the users. Yi et al. [97] incorporate fulfilment
ratio requirements of batch jobs to maximize the revenue of the provider. Other works try
to exploit spot instances through building a platform from a system’s perspective without
taking pricing issues and strategic behaviours into consideration [34][82]. Some preliminary
results on subletting services have been presented with the focus only on the static supply
situation. We study a more realistic scenario with the dynamic supply case and also examine
the feasibility of subletting services from the practical perspective.

A large group of cloud providers, including the 5th IaaS provider Rackspace and some
small niche cloud providers like, VPS.NET 3, still offer on-demand instances in an hourly
rate or even longer. Users’ continuous attraction to the personalized services provided there
and the fear of vendor lock-in all make these users possible sources for the instance subletting
service. The supply of our service is not restricted to on-demand instances only, rather any
type of instances with explicit leasing period can come to our service. For example, reserved
instances usually need commitment in 1 or 3 years. The marketplace for reserved instances
trades instances in the unit of month, which are still too coarse for exploiting hourly or
even minutely fluctuations.

Most of the previous literature focuses on studying dynamic resource provisioning from
a single cloud service provider’s perspective [100][103][102]. As one of the early works, Zhang
et al. [99] propose an online auction mechanism for allocating a single type of resource in the
cloud. Zhang et al. [102] further study the multi-dimensional resource provisioning prob-
lem. They consider the operation cost in this model, and design deterministic/randomized
auction mechanisms to maximize social welfare and revenue. These works assume that the
service provider has a static resource capacity on the supply side and consider at most the
online arrival of instance requests. For multi-dimensional scenarios, they consolidate mas-
sive resources into a monolithic resource pool without either distinguishing the underlying
barriers between different servers or considering the actual request placement process. While

the computing resources in our system are contributed by distributed sporadic users, even

3VPS.NET: https://www.vps.net/

12

Cloud Instance Provisioning

Dynamic price Static price
|

Preemptable Non-preemptable Preemptable Non-preemptable

I I I I
High Medium Low High Medium Low High Medium Low High Medium Low

Sl Pl Ol Bl

Figure 3.1: Design space and the position of sublettable instance: Maximum achievable
capacity € {High, Medium, Low}. SI for EC2 spot instances, PI for GCE preemptable
instances, OI for on-demand intances, and BI for GCE burstable instance.

the resource capacity can be dynamically changing which increases the challenge in auction
design further [19]. In addition, we can no longer ignore the underlying instance barrier to
place the requests like before. Otherwise, severe resource fragmentation problems occurs to

indivisible instances, leaving the system useless.

3.2 System Model and Problem Formulation

3.2.1 System Model

The instance subletting service can be implemented either in the major IaaS market or in
a secondary market operated by another third-party platform. In the former,laaS users can
directly purchase sublettable instances offered by the major cloud provider. They can also
purchase instances, e.g., on-demand or reserved instances from the existing cloud markets,
e.g., Amazon EC2, and sublet them in another secondary market, if in the latter case. In the
instance subletting service, IaaS users purchase instances from cloud markets. As mentioned
earlier, instances can be underutilized in the temporal and/or spatial domains. In order to
allow them to compensate for their investment and increase utilization further, any users
with underutilized instances can sublet and monetize their instances. The instance sublet-
ting service can be implemented either in the major IaaS market or in a secondary market
operated by another third-party platform. In the former, TaaS users can directly purchase
sublettable instances offered by the major cloud provider. They can also purchase instances,
e.g., on-demand or reserved instances from the existing cloud markets, e.g., Amazon EC2,
and sublet them in another secondary market, if in the latter case. As mentioned earlier,
instances can be underutilized in the temporal and/or spatial domains. In order to allow
them to compensate for their investment and increase utilization further, any users with
underutilized instances can sublet and monetize their instances. We assume there are M in-
stances for sublet in this market. Each instance consists of R types of resources (e.g., CPU,

memory). We index each type of resources in an instance as r where » € R. The capacity

13

of resource r in an instance j € M is denoted as Cj. Each instance j joins the market at
time 7Y and has a deadline 77, for sublet, after which the instance will be collected back
to its owner.

We strive to design practical mechanisms for our instance subletting service. Especially,
from the perspective of mechanism design, we need to find a balance between the complexity
for users to obtain instances and the efficiency for a provider in allocating instances. Even
after we choose auctions as our trading mechanism, we still want to minimize the number of
involving parties in the trading process, e.g., bid collection, accounting, and fully maximize
resource utilization. For rational subletters within a single subletting instance market, any
further incomes towards their underutilized instances would compensate for their loss due
to underutilization and correspondingly reduce their cost of ownership. Joining this market
thus becomes the dominant strategy. The payment policy for the subletters then becomes
orthogonal to our one-sided auction design. Situations may change when we have multiple
subletting service providers. Subletters therein start to gain more bargaining power and
have the need to further increase their payoffs by leveraging this competition. Under these
situations, double auction may become reasonable as service providers try to shift some
power towards the subletter side to encourage participation. However, the utilization under
such conditions could be worse since some possible allocations may be hindered by the
mismatch in bid value between the subletters and the buyers. Therefore, in this paper, to
improve the utilization and reduce the complexity in the implementation, we adopt one-
sided forward auctions.

In our one-sided auction, the instance subletting service provider acts as an auctioneer
selling these M instances to N buyers through auctions. Fig.3.2 provides an overview of
this auction market. Each buyer i € N comes to the market at time ¢i and acts as a bidder
bidding for an instance to meet its computing demand. This demand is specified from two
aspects: resource configuration for its intended instance, and the minimum running time for
this instance, denoted as < d_’;, t; > where r € R. Each buyer ¢ then attaches a bid valued at
b; along with its requirement < d_f, t; >. These bids are sent to the auctioneer. Since each
bid corresponds to a request of a bidder, we use bid and request interchangeably in this
paper.

After receiving a bid ¢, the auctioneer decides immediately whether to accept this bid
or not, and the amount of price p; this bid should be charged if accepted. Buyers behind
the accepted bids will be allocated to the instance as specified in their bid. The minimum
running time requirement ¢; turns into a service level agreement (SLA) between the service
provider and this buyer ¢. To be specific, our instance subletting service provider commits
to make this instance available to this buyer within the bid-defined running time ¢; without
interruption. This commitment applies separately to each accepted bid.

In addition, the winning buyer ¢ pays the corresponding price p; to the auctioneer. We

denote the private valuation of buyer i for having its intended instance as v;. The utility

14

i . Rt . Tj
£ Request i Bid Instancej | >
T TJ'+1
- H H S
e Bid Auctioneer Instance j+1:
s Allocatio :
Request i+1 » ~ 4 Requesti+1| |
~ % Payment :
. : | peq
| Request i
() id goTTmeeosoememesees : :l
€ || Requestn Bi {Instancem | 3
- v LV o

Figure 3.2: Auction market in our instance subleting system

of a buyer i follows commonly used quasi-linear utility form, which in turn is defined as
u; = v; — p; if this buyer wins this instance with price p;, and zero otherwise. Since we
are studying a strategic environment, buyers in such environment may choose to misreport
their bids other than their true valuation to improve their utility; truthfulness becomes the
cornerstone in a well-managed auction. It is crucial because only after eliciting the true
valuation from the buyers can a mechanism achieves social efficiency. In addition, a buyer’s
utility should be non-negative to guarantee their incentive to join the auction, known as
individual rationality in the auction theory. We present the formal definitions of these three

goals in the following:

Definition 1. An auction achieves truthfulness if the dominant strategy for each player in
the auction is to report its true valuation. Namely, reporting its true valuation generates
the optimal utility: u(v;) > u(b;), Vb; # v;.

Definition 2. An auction achieves individual rationality if the utility of the selected player

is non-negative, namely, u(b;) > 0.

Definition 3. An auction achieves social efficiency if the sum of utilities of all players and

auctioneers are maxrimized.

As can be seen, our instance subletting service only involves buyers directly participating
in the auction in order to minimize users’ effort to devise complex bidding mechanisms for
their instances and maximize resource utilization. Correspondingly, since this is a one-sided
auction, social welfare naturally is the sum of utilities of buyers and the utility of the
auctioneer (also acts as the seller with online supply contributed by the subletting users).

Social welfare becomes the sum of valuations of all buyers after the prices cancelled out.

15

Table 3.1: Table of notation

Symbol | Description

M number of instances
N number of requests
R total types of resources

7 capacity of resource r in instance j
L,,U, | Lower and upper bound of per unit valuation for resource r
U Lower and upper bound of L,, U, across all resources
i minimum requested time of bid ¢
tt start time of request %
timin time unit in dynamic case

T sublet deadline for instance j

d; demand of resource type r in a bid ¢

v; valuation of bid %

Arj marginal price of resource r in instance j
z; usage ratio of resource r in instance j

;i charging price for request i

U; utility of request ¢

Notice that the cost for the users to sublet their underutilized instances is the monetary
cost determined once they purchase these instances. This cost becomes constant once they
determined their own usage time and decide to join the subletting service to monetize their

underutilized instances. Important notations are summarized in Table. 3.1 for clarity.

3.2.2 Auction in the Secondary Market: Problem Formulation

The implementation of the instance subletting system involves challenges from both the
theoretical and the practical sides. We first examine its theoretical aspect. We start from
analyzing its offline scenario with all the information available in advance, and focus on
maximizing social welfare of the system, which is defined as the sum of utilities of all
buyers and auctioneer, to ensure system-wide efficiency and stability. We introduce a binary
variable z; ;, which equals 1 if a request 4 is allocated to instance j or equals 0 if this request
is rejected by our system. In the offline situation, our problem can be formally formulated

as follows:

16

max Z Z x; Vi (3.1)

iEN jJEM

st. Y @y <LVieN (3.2)
JEM
Y diz; <CiNreRVjeM (3.3)
1EN
tiwiy <Tay —t.,Vie N,Vje M (3.4)
zij € {0,1} (3.5)

Under truthful bidding, we have the objective value as 3, >, x; ;b;. Constraint (3.2)
indicates that each user request can only be allocated to one instance; Constraint (3.3)
indicates that the total requests allocated on an instance cannot consume more resources
than the capacity of this instance in all resource types; and Constraint (3.4) indicates
that the selected instance should have enough remaining time to guarantee the continuous
running of its hosted requests.

Since understanding the structure of our problem is helpful for us to devise the auction
mechanism in the following section, we here prove that our social welfare maximization

problem is NP-hard in Theorem. 1.

Theorem 1. The offline social welfare maximization problem, in its general form, is NP-
hard.

The offline problem studied here is essentially a MMKP problem. Both knapsacks (in-
stances) and items (requests) are defined by multi-dimensional size vectors, and we have
multiple knapsacks to choose from. We can easily reduce an instance of multi-dimensional
knapsack problem, an NP-hard problem [58] into an instance of this problem to prove that
our problem is also NP-hard. The detailed proof can be found in the Appendix.

Considering the online situation of our problem, it is known that the online knapsack
problem is inapproximable to within any non-trivial multiplicative factor in general cases
[20]. Fortunately, in our scenario, the value reflected in bid value under the truthful mecha-
nism does not have to be arbitrarily large. We can interpret it as the willingness to pay for
our subletting service, which is upper bounded by the on-demand instance price, since any
clearing price higher than the price of this alternative will drive buyers to the on-demand
instance. Under such condition, we present an a—competitive mechanism in the following

Sec. 3.3 and further extend it to handle dynamic supply situation in Sec. 3.4.

3.3 Mechanism Design under Static Supply

In this section, we first study the static supply scenario where all instances are already in

the marketplace in the beginning and only buyers arrive over time. Since we have the static

17

supply situation here, there is no notion of time limit (leasing deadline) on each instance in
this scenario any more. Otherwise, the lifetime of the whole market is determined by the
instance with the longest leasing time, leaving our market no way to sustain.

Notice that simply integrating capacities of multiple knapsacks (instances) into a unified
one, transforming our problem into the knapsack problem that previous works target at,
does not solve our original problem. Consider the following small example: given two items
with weight 1 and 3, the result of allocating these two items into two knapsacks with
capacity 2, 2 respectively is obviously not the same as that of allocating these two into a
single knapsack with capacity 4 after the simple capacity integration. Therefore, the internal
barriers between different instances need to be handled properly.

A wide range of real world problems, like resource allocation problems [102][99], secre-
tary problems [20], and keyword auctions [36], can be formulated into variants of knapsack
problem. The online versions of these problems attract more attention among researchers
due to their greater application potential. Buchbinder et al. in [27] propose an online deter-
ministc algorithm for the fractional packing problem. Their result implies an O(In(U/L))
competitive* ratio when there is only one packing constraint. Zhang et al. [99] propose
an O(In(U/L))-competitive algorithm for the packing problem in which the valuation type
of user varies. Chakrabarty et al. [36] propose O(In(U/L))-competitive algorithms for the
knapsack problem and multi-choice knapsack problem, and later translate them to bid-
ding strategies for budget constrained bidders in ad auction. Zhang et al. [102] reach a
O(In(U/L))-competitive algorithm for the knapsack problem with extra cost functions in
its objective function. As a more complicated variant of knapsack, it is still unclear whether
there exist online algorithms to solve our studied MMKP problem with a similar O(In(U/L))
competitive ratio. Leveraging the primal-dual scheme, we design an effective algorithm and
prove that it is (In(U/L)+1)-competitive with static supply. We then design pricing schemes
to complement it into an auction mechanism, guaranteeing truthfulness and individual ra-
tionality. We present the detailed design of our mechanism based on the primal-dual scheme

in the following.

3.3.1 Mechanism Design

The primal-dual approach has been widely used to reveal the pricing attribute in a problem
from the economical perspective [74]. We leverage a primal-dual scheme with Lagrangian
relaxation for the social welfare maximization and we show that the specific structure of
this problem leads to a competitive online mechanism.

We introduce non-negative Lagrangian multipliers A\ = {\, j,7 € R,j € M} for all r,j

pairs in constraints (3.3). Since our Lagrangian relaxation problem is the upper bound of

4U, L mentioned in this paragraph are all limits of certain input factors in their scenarios. Big O notation
omits other constant factors considered in their scenarios.

18

our original problem, we have the Lagrangian dual problem as: min P(A) s.t. A > 0. where
P()) is defined as:

max Y > wighi+ Y Y Ay(C] =) diwiy)

€N jeM reRjeM €N

st. > @y <LVieN (3.6)
JEM
zij € {0,1} (3.7)

A subproblem then emerges for each request ¢ from this dual problem.

max > wij(bi — > Arjdi) (3.8)

JjEM reR

st Y @ <1 (3.9)
JjEM
z;; € {0,1} (3.10)

Observing this subproblem, we can interpret A, ; as the unit price for each type of
resource 7 in instance j. If we define p; = > A, ;d], it indeed represents the price charged
to request i from instance j. In other words, the subproblem essentially chooses the right
instance to maximize the utility of a request i. Once we have interpreted the dual variable
as the marginal price, the difficulty in online implementation lies in how to update this
dual variable. In fact, the crux of designing a competitive algorithm lies in determining the
appropriate threshold to absorb the worthwhile inputs so that the desired outcome can be
reached. To be specific, we need to design a marginal price updating function such that the
platform does not accept too many low-value bids in the beginning, leaving no room for
those high-value bids coming in the future. It also should not be too conservative to leave
the overall resources underutilized in the end.

2

We introduce a usage ratio zj where z; = %’jd; to reflect the level of used resources of
type r in current instance j. As we have mentioned, in our case, we can interpret the upper
bound of a bidding price as the on-demand instance counterpart. Accordingly, we define L”
and U" as the lower /upper bound of user’s value per unit of resources respectively. We have
U =maxU",r € R. For each type of resources, we design our unit price updating function
as follows:

A=) = (UTe/LT)% (L Je). (3.11)

Our problem in static supply is similar to the previous dynamic resource provisioning
problem . Different price updating function could lead to different competitive ratio. Our
mechanism provides a cleaner price updating function and the best possible competitive
ratio in our problem setting. The intuition behind defining a unit price updating function

like this is that when the usage ratio 2z} starts with zero, the marginal price is set to be

19

smaller than the unit price lower bound. It ensures that the price is low enough to accept
as many bids as possible. With the increasing of z;, instance becomes more and more
conservative to admit new requests. This marginal price as a selection threshold built from
previous selected bids also guarantees that only relatively high value bid can be admitted.
Once z; equals one, the marginal price is set to be the upper bound of the user’s value per
unit of resources. Under such circumstance, no bid can win the auction, guaranteeing the
capacity constraint is satisfied. Otherwise, the charging price will be greater than their bid
value, violating individual rationality.

After having the updated unit prices (dual variables), we can again make allocation
and pricing decisions in the primal problem. We allocate request ¢ to instance j iff ¢ doesn’t
overfill the instance j, and instance j provides the maximum utility to request i. The detailed
algorithm is presented in Algo. 8. Notice that when there is more than one instance offering
the same utility to the request, we allocate the request to the most similar instance, where
this similarity is calculated as the dot product of two examined resource vectors in Euclidean
spaces, denoted as Sim(). This strives to keep the relative relationship of resources in the
chosen instance, avoiding to use up a single type of resource, keeping the competence of
a instance for future use. We next prove that our mechanism can guarantee truthfulness,

individual rationality and a tight competitive ratio.

Algorithm 1 Online auction mechanism (OA)
1: Initiate A(z) = (Ue/L)*(L/e),z;; =0,L",U"
2: while Receiving bid 7 do
3: Calculate utility:u; = b; — 32 A(2])d]

T

4 j* = argmax;(u;), V]

5: if u; > 0 then

6: if |j*| > 1 then

7: J* = argmax . (Sim(j*, 1))
8: end if

9: L= = 1

10: DPi = Z)\(z{)df

11: else '

12: Tij = 0

13: end if

14: end while

3.3.2 Theoretical Analysis

Theorem 2. Our online auction mechanism guarantees individual rationality and truthful-

ness in bid value.

20

Our mechanism is truthful because its pricing scheme falls into the family of sequential
posted price mechanisms [30]. The decision process also guarantees the individual rational-

ity. Detailed proofs of all important theorems in the following can be found in the Appendix.

Theorem 3. Our online pricing mechanism provides a-competitive in social welfare with

a=1In(U/L)+1.

We prove the competitive ratio of our MMKP problem based on the monotonicity of
our pricing function, which is derived from the primal-dual scheme. Detailed proof can be

found in Appendix.
Theorem 4. The competitive ratio of our online algorithm is tight.

We prove the tightness of our algorithm by comparing it with the classical knapsack
problem (one-dimension, one knapsack). Since our problem is a general problem of classical
knapsack problem, based on the conclusion in [36] that any deterministic algorithms for
solving classical knapsack problem (one-dimensional, one knapsack) cannot be better than
In(U/L) + 1, we can prove that In(U/L) + 1 is the best possible competitive ratio for
our MMKP problem. Detailed proof can be found in Appendix. Our mechanisms therefore
improve the competitive ratio of the state-of-the-art deterministic auction mechanism [102],

and provide a cleaner price updating function.

3.4 Mechanism Design under Dynamic Supply

We next extend the solution to consider dynamic supply situation in which even the capacity
of instance pool is unknown and fluctuates. Users with idle instances arrive overtime. These
instances are of different sizes and only available within the user specified time for subletting.
Requests also come dynamically requiring different sizes of instances and time requirements.

Time plays a crucial role in this context, which also makes the problem much more
complicated. Unlike other resources, the remaining lifetime (if regarded as a resource) in
each instance is reusable as long as other resource requirement satisfy. Take the simple case
in Fig.3.3 as an example. In the left subfigure, a request m is rejected due to the high
price of instance i, while a feasible instance j may be available in the near future. In the
right subfigure, when request m arrives, there are two instances, instance ¢ and instance
j available (satisfying both time and resource constraints). If we accept request m and
allocate it to instance j, the unit price in instance j may increase so high that the later
request n will be rejected by j; and due to SLA violation, instance ¢ is unable to serve it,
either.

The introduction of the time component makes our problem similar to the real-time
scheduling problems in real-time systems, like in an operating system, different tasks with
varying computation time and deadline compete to win the occupation of processors. Cor-

respondingly, a line of research works focus on allocating single dimensional resource, e.g.,

21

Regq m Reg m Regn

| .
Instance j

|
| .
: Instance j

Instance i |
Time Time

FS-4-—--F

Instance i

\/
\j

Figure 3.3: Adversary situations because of the time constraint

CPU computing time [52], [18], [29] or homogeneous instance® [90] in cloud environment.
Jain et al. in [52] study preemptive job scheduling problems under parallelization limits in
an offline fashion. Azar et al. in [18] study preemptive job scheduling problems under soft
deadlines. Chawla et al. in [29] study the resource scheduling problem in stochastic settings
with the known distributions on the demand side. Wang et al. in [90] study selling homoge-
neous instances with customer defined reservation time. These works all try to circumvent
known lower bound by adding extra assumptions on either deadline, resource types, distri-
butions, etc. They relate more to spot instance services or the job scheduling problem in
Hadoop-like computing framework from the application perspective. The initial positioning
of our services separates us with spot instance and these works in that: (1) preemption is
not allowed; (2) users can customize the size of their multi-dimensional instances; (3) we
request instant decision-making and resource accessing without any delay; (4) the proposed
mechanism can handle the game theoretic environment and solve the pricing problem simul-
taneously; (5) most importantly, not only instance requests, those sublettable instances also
arrive online. Unfortunately, we first have to present a negative result under our dynamic
setting situation here.

We present a practical heuristic algorithm based on our previous mechanism after that.

Theorem 5. No deterministic truthful mechanism can achieve better than (U/L)-approzimation

to social welfare.

We prove this negative result by examining two adversary cases when both sides of our

markets are online. Detailed proof can be found in Appendix.

3.4.1 Mechanism Design

Naturally, we need to incorporate time in our decision making process. To be specific, we
plan to save those long-lived instances so that they can meet better bids, and fully exploit

the capacity of those soon-expired ones. In the previous example, if we allocate request

SNumber of instances is the only input in demand

22

O
[O
———0
1 1 1 1 1 1 1 l 1 1 1 l 1 ‘ 1
0 8 12 14 1?

Figure 3.4: Illustration of price discount and stage separation (initial price P, Tj = 16, tyin =
2, no requests are admitted)

m to the soon expired instance ¢, the instance j may be able to serve request n as well.
Such a design idea also echoes with the earliest deadline first policy in real-time scheduling.
On the other hand, in order to guarantee truthfulness, we still need to select the instance
with the largest utility with respect to a request. Nonetheless, naively allocating requests
to the instance with the earliest deadline and with the largest utility could bring conflicting
decisions.

Hence, we modify the unit price updating function in a way that our market will discount
the price of resources in an instance with the elapse of time. Through proper reducing the
price as the function of the remainnig time, we could make the instances with the earliest
deadline more easily to be selected under the utility maximization goal. In the meantime,
reducing the unit price means we are lowering the threshold of admitting new requests.
Without sacrificing social welfare too much, ideally, we want the discounts to be quite
small at first. As times elapses, discounts become more and more aggressive. Inspired by
equity evaluation in portfolio management [24], we incorporate a discount strategy here.
We assume the minimum task time is ¢,,;, (it can also be set as the system unit time,
here we study a general case). An instance can never accommodate any requests when the
remaining lifetime of this instance becomes smaller than t¢,,;,. We separate an instance

with the lifetime T = Tc‘gdl — T7 into |log,
T;

tmin

t:znj + 1 stages in the time unit of ¢,,;,. For

stage ¢ where ¢ € {1,2..|log, |}, unit price is discounted at time step t; where t; =
T, , T

T; — gllosz 7] “tmin at the scale of D; = 2'/ gl) (as in percent off).

Therefore, we have our new unit price updating function as follows:
Az, t) = (U"e/L")*(L"/e)(1 — Dy) (3.12)

As can be seen, we increase discount exponentially as the elapse of time. In the last stage,
when the remaining time is t,,;,, the price has become small enough to accommodate any

requests if resources permit. Fig.3.4 illustrates how our design discounts the unit price

23

during the lifetime of an instance given no requests are admitted during its lifetime. Details

of the algorithm for dynamic supply can be found in Algo. 2.

Theorem 6. Our online auction mechanism guarantees individual rationality and truthful-

ness in bid value in the dynamic supply situation.

The proved competitive ratio in the static case is not guaranteed here since we cannot
guarantee that the value of the rejected bid is too low to all the instances in the total
timespan and the uncertainty in instance supply. But our mechanism can still guarantee
truthfulness and individual rationality, two crucial properties for a mechanism to handle
strategic players. Furthermore, the simulation results illustrate that the social welfare is
also improved in most cases, proving this to be an efficient heuristic improvement. The
proofs of truthfulness and individual rationality are similar to the proofs of Theorem.2
since important principles used in proving these two properties are not violated. Thus we
omit them here.

In addition, as for the truthfulness in lifetime, if the instance subletting service is pro-
vided by the same service provider selling the original instances (major market scenario),
the service provider will have the complete information about the lifetime of the instances,
leaving no room for misreporting in instance lifetime. In other cases, subletters will not sub-
mit lifetime claims larger than the true lifetime because it incurs another round of billing
cycle. They also have no incentive for declaring their instance lifetime shorter than the true
lifetime because it deprives the opportunity to further amortize the cost of owning these

instances.

3.5 Evaluation
Experimental Settings

Our evaluation uses Google Cluster trace [5] consisting of 3,535,030 entries, reporting each
tasks’ ID, active time and resource demand (CPU, memory; normalized to values between
0 and 1) in an approximately 6 hours period. We identified 176,580 unique tasks after
removing the reported anomalies and merging entries of the same task. We then sampled
requests and instances from these task entries with varying sample rates. For each request,
we derive the resource demands and time requirements directly from the entries of a task.
Its bid value b; is further calculated based on its resource demands d} and a unit resource

valuation variable v" randomly generated from 0 to U", namely,

b= div',v" €[0,U"] (3.13)

For simplicity and consistency with the data trace, we assume an instance has the

maximum allowable resource capacity specified in the trace (namely 1.0). To simulate the

24

Algorithm 2 OA under dynamic supply

1: while t < T do

2: while Receiving bid ¢ do

3 Calculate utility:u; = b; — > A(2], t)d}
4 J* = argmax;(u;),Vj

5: if u; >0and ¢; < (ngl — t) then
6 if |7*| > 1 then

7 Jj* =arg minj*(Tj;l —t)
8

9

end if
: Tg 5 = 1
10: pi = > A(2],t)d]
11: else '
12: Tij; = 0
13: end if

14: end while

15: while Receiving an instance j do
16: Initiate A\(z,t) = (L" /e)

17. end while

18: if t =t; then

. T; .
19: Update discount and time step: D; = 2D;, t; =T, — gllos2 ﬁJ_Ztmm
20: Update unit price: A\(2],t) = (Ue/L)*(L/e)(1 — D;)
21: end if

22: end while

25

amount of available resources in each instance, i.e., how much resources the user wishes
to sublet, we extract the CPU and memory usage information from a sampled task entry
Dj, and apply the formula: C7"* = 1.0 — 1.0 x D™ /(D" 4 D*“™) to get available CPU.
We compute the available amount of memory likewise. The simulated sublet instance can
in turn preserve the CPU-to-memory usage ratio information of the data trace. We do
not include disk nor networking resources in our simulation, because unlike the pricing of
CPU and memory, the pricing of disk and networking are usually decided by the resource
consumption, not based on instance type [1]. We vary the total number of bids from 1000 to
8000 with an increasing number of instances to ensure the rejected requests on the baseline
algorithm stay lower than 50%. In the static supply simulation, the simulator reads in

requests chronologically based on their start time.

Services Compared and Performance Metrics

We compare our service with two dominant commercial services: the spot instance service
and the reserved instance service, and two other close-related works on cloud pricing in
[105] and [90]. Our solution is further compared with the optimal solutions obtained from
an ILP solverS. Since the spot instance service actually has a proprietary pricing scheme,
we adopt a straight forward implementation of its released approach’. Only when a request
with a bid value greater than the current spot price can the request be admitted into
an instance. Once we allocate a request to an instance, we set its charging price and the
corresponding spot price of this instance as the value of the lowest bid residing in that
instance®. The reserved instance service adopts a fixed pricing scheme. The fixed price
for a reserved instance is set to be 70 percent of its on-demand instance based on the
difference between the price of a m4.large instance (default reserved instance type) in 1-
year term to its on-demand counterpart [1]. As for two other close related research works,
they all determine the posted price based on the utilization of the resources in their contexts.
Zhou et al. in [105] propose online auction mechanisms for dynamically Provisioning cloud
resources with Soft Deadlines and operation costs. We directly implement their proposed
mechanisms under hard deadline and zero provisioning costs situation as a comparison.
Wang et al. in [90] propose mechanisms to Sell Reserved Instances in cloud, where users’
request on provisioning deadline can be tight or delayable and prices for instances are
determined based on how many instances have been sold (single dimension). We select their
mechanisms under the tight deadline situation as a comparison. We further calculate the

prices for our multi-dimensional subletting instances by summing the price of each resource

SPuLP: https://pythonhosted.org/PuLP/
"http://docs.aws.amazon . com/AWSEC2/latest/UserGuide/how-spot-instances-work.html

8The spot price for the first request is its bid.

26

https://pythonhosted.org/PuLP/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-spot-instances-work.html

up based on their single-dimensional pricing scheme. For notation convenience, we refer to
the first one as PSD and refer to the latter as SRI.

Since works in [105] and [90] all focus on proposing pricing schemes for the traditional
instance trading scenarios with a fixed capacity from a theoretical perspective, we also
examine their performances under two important economical metrics: social welfare and
cost saving: social welfare and cost saving, where social welfare is the sum of valuations of
all accepted requests and cost saving is the average cost reduction rate for users to finish
their tasks compared with the on-demand counterparts. The former reflects how efficient
the underlying mechanism in a service is in allocating limited resources; the latter measures
how much benefit a service brings to bidders. To complement the study of our service,
we further discuss the practical challenges in our subletting services including the system

performance overhead in Section.3.6, which have not been covered in those works.

3.5.1 Trace-driven Simulations: the Case of Static Supply

Fig.3.5a and Fig.3.5 illustrate the results in the static supply case. First, we compare the
performance of our online mechanism with the offline optimal solution in Fig.3.5a. Overall
the ratio tends to become smaller with the increase of the number of bids. It starts at
slightly above 7 across all U values at 100 bids and plunges to 4 when the bids are 600. This
is because the higher the total demand of resources, the more instances are provisioned; as
shown in Eq. (3.8), an instance with the lowest price is chosen for each coming bid, hence
the solution space becomes larger with more instances. As such, more allocation options are
available, which leads to better performance.

Next, we compare the achieved social welfare of our instance subletting service with other
instance options and research works in Fig.3.5a. As can be seen, the reserved instance service
achieves considerably less social welfare than the other four services in most cases because
its fixed pricing scheme cannot adapt to the changes in demand. To be more specific, we find
that it rejects more requests than the other four; namely, it creates the overpricing problem
for more requests than its alternatives. The rest four approaches presented in Fig.3.5a adopt
dynamic pricing, which aims at efficiently reflecting market situations. Interestingly, the
social welfare of the spot instance service drops at 7000 bids. It is because that, once the low-
value bids are accepted, they directly affect the spot price. We find that instances directed
by this low spot price accept 7% more low-value bids than that in other bid settings, leaving
instances no room for future high-value ones. On the other hand, our instance subletting
service still outperforms the spot instance service by 32.4% in social welfare when bid
number reaches 8000. The underlying problems in static supply situation we study here is

also similar to the scenarios that SRI and PSD targets at’. The instance subletting service

9Notice that differences also exist as we elaborated before. We implement the key ideas of both mechanisms
and adapt them to our scenario.

27

S, 6
0, %
Y 9D

Number of Bids

3 , S
> — Q
o A8 &
%mmsuw 00
cmnnow Q
\ S

m, — m 3

Yo Te] o Te] o

(qV] - ~—

aJeJ|9\\ [B100S

(a) Social welfare with varying bid numbers

% ,
’ \ F <
x 1 a5 |4
4 P
/ os
n wn 00
RTINS SRS
1 I
Q
!). ¢ Q
’ * - n_-_. \OUO
1 —_—
I 83
" 05 |
(%)
V_N t & *
'
Q
1 Q
\)
px x 10
. ! 00
: Q
”* * T 1V
- S
B % * N
O O O O O O O O O o o
O OO 0O NN O O < O AN

(°%) ebeUBDIag

Number of Bids
(b) Cost saving with varying bid numbers

Figure 3.5: Performance comparison in the static supply case

28

achieves 31.9% more social welfare than SRI in 8000 bids. However, the gap between our
mechanism with the PSD is very small in the static supply situation. The close gap between
these two originates from the similar primal-dual scheme and the price update function they
choose. We will demonstrate later that our mechanisms outperform PSD in the dynamic
supply case after the improvement.

We further compare the cost saving generated by these five services. Overall spot in-
stances, PSD, and our instance subletting service all bring over 83% cost saving to users.
Cost saving of SRI stays around 60%. Though our instance achieves less cost saving than
PSD and spot instances at 8000 bids, it generates 28.3% more utility than spot price at this
time. After comparing the transactions, we find that this difference is mainly because the
instance subletting service at this setting accepts more bids than the spot instance one. For
average utility per bidder, the instance subletting service is 18% less than the spot instance
service. In fact, thanks to this extra number of accepted requests, the instance subletting
service also attains 63.1% more revenue than the spot instance service at 8000 bids.

The fixed price adopted by reserved instances extracts more surplus from the bidder
side, leaving the accepted bidders less utility. This extreme surplus turns out to bring
the largest revenue to the seller side. In reality, our studied instance subletting service is
expected to complement the fixed-price model, rather than fully replace it. Researchers in
[38] have already proved that a hybrid market (coexistence of both spot instances and fixed-
price instances) always maximizes the provider’s profit, even if it decreases their revenue.
This claim still holds true for our envisioned scenario, where both fixed-price instances and
instance subletting services exist!®. What is more, in a highly competitive public cloud

market, social welfare would be preferred to guarantee user base.

3.5.2 Trace-driven Simulations: the Case of Dynamic Supply

Experimental Settings

For the dynamic scenario, we use the same trace and settings except that we now incorporate
the time attributes for all sublet instances and requests. Time unit in our simulation is set
as the minimum time unit in the Google cluster trace, 300 seconds. A request or instance

will be pushed into the simulator when its start time arrives. An instance will remain active,

capable of accommodating requests, until its leasing deadline is reached.

Results and Discussion

The dynamic arrivals of both requests and instances greatly complicate our scheduling. In
Fig.3.6a, we first depict the demand and supply relationship in this dynamic supply situation
using CPU as an example (N = 5000, M = 200). The solid line denotes the fluctuation of

10Preemption or not does not affect this general result

29

4
0 Instant-demand - - - -

/> Cumulative-demand - -
30 //7;‘ Supply —— |
jZ 1
c
D
Time (minutes)
(a) Overview of demand/supply on CPU
200 P 100
:t/x/")"—"‘—"‘—’\
150 75
°
S 100 50 2
a &
CPU-Unit-Price —m— 8
Mem-Unit-Price —»— k.
30 ¢ CPU-Usage —f3— ']25
Mem-Usage —»—
0 0

O H D D B H D v

Time (minutes)

(b) Dynamics of price and usage ratio in an instance

Figure 3.6: Dynamic demand and supply in our market and a snapshot of an instance

30

the total available CPU, i.e., the supply, in each time unit. Both dashed lines denote the
requested demand of CPU, where the one sitting on the bottom represents instantaneous
demand, the demand from the requests that just arrive in the current time unit; the other
represents cumulative demand, the total demand that our platform is facing taking all active
requests into account. The shaded area denotes the difference between cumulative demand
and supply. The supply is almost always higher than the instantaneous demand, however, it
is overwhelmed by the cumulative demand, especially during the 30-145 minutes timespan.
As commonly occurs in reality, this exceeding amount of demand tests if an auction is
well designed or not, because it needs to ensure that the highly scarce resources are well
allocated.

Fig.3.6b illustrates the interaction between prices and resources of a 75-minute-long
instance in our instance subletting service. Its memory usage grows close to 100% between
5 minutes to 30 minutes. The unit price of memory, in turn, doubles in the first 10 minutes
and remains at this high price for another 20 minutes, making the instance quite selective
to admit new requests. The latter half of its life cycle is where our discount strategy starts
to take effect. The memory usage fluctuates due to the admission of new requests, and price
drops generally with the elapse of time to attract bids, which successfully allows memory
to be fully utilized in the last 5 minutes. Similar trends also happen on the CPU usage.
Memory is the obvious capping resource on this instance, thereby both the CPU’s usage
and price stay relatively low.

We now present the comparison of our instance subletting service with two dominant
service models, reserved instances and spot instances, and two related studies, SRI and PSD,
in this dynamic environment. In terms of social welfare (Fig.3.7a), the subletting service
achieves the highest performance. The difference to spot instance service increases from 0.3%
at 1000 bids to 7.7% at 8000 bids. The expansion of this gap illustrates the efficiency of our
mechanism in picking out the valuable requests when the solution space is large. Recall that,
to further handle the dynamics from the demand side, we devise the multi-stage discount
strategy. It guides the requests to soon-expired instances and saves long-lived instances for
the future using the invisible hand, price. Our result shows that the multi-stage discount
based mechanism gains over 10% more social welfare than the discount-free version in all
above 5000 bids situations. Overall, two research works for comparison all perform better
than the dominant service models, reflecting a trade-off of complexity in allocation process
and efficiency in allocation results happened in real world implementation. The difference
to SRI increases from 11% at 1000 bids to 38% at 8000 bids. The instance subletting service
also keeps achieving 7% more social welfare than the state of the art approach, PSD, in all
the bid-over-2000 cases. This proves the efficiency of our multi-stage discount policy.

We demonstrate average cost savings of these five services in Fig.3.7b, which is defined as
the savings of an instance over its on-demand counterpart. The cost saving of the reserved

instance repeatedly stays at 30% due to its price setting. The cost saving of the spot

31

x103

Social Welfare

30
el Reserved
o5 | B 7 SRI 7
B Spot
PSD
20 | Sublet |
15 i |
10 g Ve
B K
B K3 S
5 3 &
RH g B 8
KK % 5 b
& H Kk i H b
0 & : .
% Q@ 9@ 9 D

Number of Bids

(a) Social welfare with varying bid numbers

100;—----—--—.-----—-

Figure 3.7: Performance comparison in the dynamic supply case

(b) Cost saving with varying bid numbers

32

90 Fo = Ton
oM - e —x- —X— %
80 i | e
4
@o, 70 . _*' Reserved —4— PSD
o oo SRl =X~ Sublet - m—
> 60 Spot = ¥ - 7
T
8 40
!Gh,) Il Il Il Il Il
0_ L) L) L) L) L]
20
o ! ! ! ! ! !
7, < & 7 S 6 = &
Q [(@) Q (&) (@) (o) (@)
00 00 00 00 00 00 00 00
Number of Bids

instances ranges from 64% to 93% with the average at 78%, which also accords with the
official cost saving information about the spot instance service!!. Our instance subletting
service outruns two other commercial service models and related research works in all cases
and steadily stays above 98%. The closing gap between the spot instance and our service is
because the introduction of more bids brings higher possibility in having low spot price. It is
worth noting that the presented performance of spot instances is the best possible case. The
performance of spot instances in real life would be worse under the same rules. In reality,
each type of instance in each region follows the same spot price. In our case, we create a
spot price for each individual spot instance regardless of their region or type. According to
the price discrimination principle in pricing theory, such a fine-grained pricing approach is
better at adapting to the fluctuations of the demand and supply than the real-world spot
instance setting. Similar to the performance in social welfare, our service keeps achieving
over 10% more cost saving than SRI in all cases(except bid number = 1000), and 3% more
cost saving than PSD.

As a conclusion, from both the static and dynamic simulations, our proposed online
auction mechanisms can indeed attain high overall system performance under real-world

workload patterns.

3.6 Practical Challenges and Prototype Validation

The proposed auction mechanism is a general framework: it is not tied to a specific imple-
mentation of instance subletting service. Still we are keen in pointing out a few practical
concerns that we found critical in implementing such service. This will not only allow us
to inspect our modeling assumptions in the theoretical part but also further complement
our mechanism into a fully integrated service. To this end, we built a prototype of instance
subletting service on Amazon EC2 public cloud. But before presenting our prototypes and
experiment results, we will first list out the challenges and concerns in what follows.

The crux of implementing the subletting service lies in enabling multiple users to share
an instance. Specifically, the platform should provide an API for hosting users to quantify
the amount of resources they prepare to sublet and allocate the right amount of instance
resources for each tenant user. (Challenge 1). In addition, the platform should maintain
an isolated runtime environment for each tenant user, ensuring they can use only their
own share of resources and preventing them from interfering each other (Challenge 2).
Furthermore, the platform should be capable of managing a large cluster of instances,
including the dynamics of instance joining and leaving, and providing a consistent view
of the cluster states for the auction mechanism (Challenge 3). Given these challenges,

we believe that the latest container technology is a promising tool for implementing the

"https://aws.amazon.com/ec2/spot/

33

https://aws.amazon.com/ec2/spot/

subletting service. Container is a lightweight, application-oriented virtualization technology
that is becoming increasingly popular among public cloud providers [28].

Container meets the design requirements of our auction mechanism (by addressing the
above challenges); although other forms of implementation, like nested virtualization, would
be possible, too. To address Challenge 1 and 2, the subletting system (in this case, our pro-
totype) leverages cgroups module in the container to enforce each workload only use their
own resource allocation share. The cgroups module defines a collection of kernel controllers
for system resources including CPU, memory, network, etc. These controllers are assigned
to the container runtime in the form of function hooking. As such, the hosting users can now
specify how much resource share are made available to the tenant users, and the platform
will refer to these specifications when it receives new resource requests. When the container
starts running, those hooks ensure that the container does not use more than it is allowed
to use. Meanwhile, every container will be associated with a unique set of resource identi-
fiers for its PID, IPC, network, and file system etc., known as the namespace isolation,
a feature that provides isolated runtime environments for in-container workloads. We use
Docker [4] in our prototype to perform container-related operations.

To address Challenge 3, we leverage the Amazon EC2 container service (ECS), featuring
a cluster state management module. Specifically, the module will run a consensus-based
transactional journal to keep track of the cluster state information, maintaining a consistent
view on the pool of instances. The ECS service also provides a customizable scheduler
module allowing us to implement our auction mechanism.

We preliminarily evaluate the prototype with two typical types of cloud workloads: multi-
tier web applications and batch workloads. We chose the RuBBoS!'? multi-tier web server
benchmark for the web application. We emulate the web client using Apache Benchmark
and use a load balancer to dispatch the web requests to servers. We use sysbench as the
batch workload, and the invocations of sysbench are independent from each other. On each
sublet instance, we run these workloads inside containers, one for the web server and the
other for the batch job.

For the web application, we consider the average request rate and the average web
request completion time. These two metrics correspond to the throughput and latency
performance of the web application. We are also interested in how these metrics change as
the service scales out to having more sublet instances. To do this, we keep the cluster under
load by constantly submitting buyer requests that comprise these two types of workloads. In
fact, each round of our experiments can be regarded as the static supply case in Sec.3.3. We
obtained the baseline performance for the web application by running a single web server

on an on-demand instance without using container. The baseline performance for the batch

12RUBBoS Bulletin Board Benchmark: http://jmob.ow2.org/

34

Millisecond

Request rate (#/s)

Second

Figure 3.8: Prototype performa?ﬁ5(:e on web and batch workloads

3500
3000
2500
2000
1500
1000

500

10-Conn e

100-Conn
1000-Conn s

PAVAVAVAVAS

Number of Sublet Instances

(a) Avg. web request completion time

7000

10-Conn

6000

100-Conn ez
1000-Conn

5000

4000

3000

2000

1000

16.8
16.7
16.6
16.5
16.4

16.3
7

XXXA

XX

X

X2

o &5 &4 %

Number of Recycled Instances

(b) Avg. web request rate

Sublet —e— Baseline — =

S 0 <% %

Number of Sublet Instances

(c) Avg. batch task completion time

P>
%

workload is likewise obtained, except it is run inside a container with specified resource
usage, which allows us to examine whether Challenge 1 and 2 are addressed.

The average request completion time in the web application is reported in Fig.3.8a.
Compared to the baseline, the completion time of web requests is much increased under one
sublet instance. This is an expected case for workloads using the instance subletting, because
other running workloads on the same host are also consuming resources. Fortunately, this
deficiency can be remedied by placing additional web servers when more instances are
available. The performance of web application catches up with the baseline from 5 sublet
instances. In Fig.3.8b, the throughput performance also sees similar improvement with the
increase of sublet instance. While adding more web servers to sustain high performance
may sound costly, the total monetary cost of acquiring these sublet instances can still be
much lower than the original instance as described in Sec.3.5. Specifically, as a common
challenge, application service providers would need to properly scale their services in the
face of bursty workloads (e.g., a flash crowd). This is usually done through autoscaling
at VM-granularity or overprovisioning VMs. In our instance-subletting platform, because
containers allow finer-grain resource offerings that can be provisioned much faster than VMs,
provisioning can happen just-in-time and with smaller resource consumption, e.g., when we
detect surging queue-depth at the load balancer, and hence the cost of overprovisioning can
be greatly reduced.

Note that with the increased throughput, though the latency of completing all requests
will certainly be shortened, the per-request latency may not. For example, Fig.3.8a shows
the 10 sublet instance setup can still give worse per-request latency performance than the
baseline. This is because the load balancer can add an extra queuing delay to each request.
Users can opt in more powerful load balancer to remedy such latency. Also, we observed
that the 1000 connection setup yields lower performance than the 100 connection one as
our emulated client becomes the bottleneck when the concurrent connection is high.

For the batch workload, as shown in Fig.3.8c, with sublet instances, the batch workload
performance makes no statistically significant difference (< 1%) as compared to the baseline.
This shows that containerization did allow us to enforce the resources usage guarantees.
Note that sysbench has a fairly stable resource requirements across its runs. In reality, a
batch workload may have variable resource demands. Due to the use of container, if the
batch workload running inside exceeds the resource usage, the workload will get throttled.
Therefore, the owners of such workloads should tailor their container requests accordingly
to achieve expected and meaningful performance.

Overall, these initial results are promising, suggesting that instance subletting with our
online auction mechanism can indeed be built on current public cloud with minimal impact
on users’ perceived performance. Before concluding, it is worth discussing a few additional
concerns that may limit the real-world deployment of instance subletting. Though we have

yet to explore these issues on our current prototype, we do observe technological trends that

36

can help alleviate these issues. First, both container and nested virtualization solutions may
result in OS tie-ins, because certainly not all OSes support these technologies. OS tie-ins
could limit the types of workloads that can be run on the instance subletting service.
Fortunately, standardization efforts in the container technology, e.g., the Open Container
Initiative [6], demonstrate the on-going trend across OS vendors to support containers. In
addition to Linux distributions, which natively support containers, other major OSes such
as Windows are adding kernel supports for containers. This trend is thus one of the key
reasons we chose containers in the prototype and the modelling assumption.

Meanwhile, it is also worth investigating how to effectively implement our allocation
mechanism. Our prototype relies on Amazon ECS’s default replication scheduler to allo-
cate the benchmark workloads, which supports replacing the scheduling policy with user-
supplied, customized ones. In our future work, we plan to port our simulator’s allocation
mechanism to the ECS scheduler and perform end-to-end, system-level evaluation over the
instance subletting service.

In addition, though higher server utilization may lead to higher power usage to the
providers, increasing it is critical to maximize the energy efficiency because server power
consumption responds differently to varying utilization levels [21]. Higher resource utiliza-
tion can help cloud providers to amortize their capital better. So overall, we believe an
instance subletting service is promising as cloud providers can exploit subletting services
as another form of differentiated, value-added service to attract diverse user groups, gain

extra revenue.

3.7 Summary

In this chapter, we systematically examined instance subletting, a new cloud service that
explores the idle resources from users, making them available to the public. Instance sub-
letting offers a trading market for low-cost yet high-quality instances with enforced service
level agreement on time. The market works with dynamic demand, and more importantly,
it has a dynamic supply and time constraint on each item, which is not available in past
products and studies. We presented an online auction mechanism with provable truthfulness
and individual rationality, as well as the best possible competitive ratio with known supply
information. We then extended it to cope with dynamic supply. Large scale simulations have
indicated that our mechanism can achieve near optimal social welfare with significant cost

savings. Its feasibility has been further validated through an Amazon EC2 based prototype.

37

Chapter 4

Exploiting Crowd for Low Latency
Transcoding

In this chapter, we first examine the importance of latency in processing live videos. We
then discuss the possibility of providing low-cost, small latency transcoding services through
involving the computational power from end viewers. We further illustrate the overall archi-
tecture of our cloud-edge collaborative system and formally formulate the studied problem
in our systems. Several budget constrained online and offline algorithms are proposed after
that. Our PlatnetLab-based experiment and trace-driven simulations further proved the

superiority of our online scheduler.

4.1 System Model and Problem Formulation
4.1.1 Why Delay Matters for Video Services in the New Era?

Traditional video streaming services, like Youtube, strive to make their videos startup
quickly and play with less rebuffering. Researchers have shown that viewers start to aban-
don videos after 2 seconds startup time in these traditional video streaming services [60)].
High latency in playout delay greatly increases the abandon rate of viewers, making users
less engaged in videos, and eventually harm the profit of content providers. For interactive
live streaming services, it is the interaction feature that makes delay play an even more crit-
ical role. In twitch-like interactive streaming services, the interaction among viewers and
between viewers and broadcasters also require bandwidth-hungry video streams to match
its pace with other communication channels like audio and messages, otherwise users may
become frustrated by other early spoilers or fail to fully engage in this participatory commu-
nity. Undesirable interaction with peer viewers and the broadcasters can even drive viewers
to abandon current channels [47]. In addition, applications like Twitch and Periscope allow
viewers to express their enjoyment to certain content (using like or heart button). These
positive feedbacks can help broadcasters to modify their content to better match viewers’

tastes and attract more viewers. While mismatching between likes and streaming scenes

38

Cloud

Fog = Fog
o
>
Q Bid 2 Bid Sv
@ 2 @S>
=1 g
Viewer oa Viewer
- E“ Bid & Bid @
L@Q\j Payment & Transcoding Payment & Transcoding‘uj\/
Viewer Viewer

RPN

Broadcaster Broadcaster Broadcaster

o

Figure 4.1: System overview

could generate false positive feedbacks to the broadcasters, which greatly affects the infor-
mation value hidden in these messages [89]. Latency plays a more significant role in this
interactive live streaming services. It is, however, not easy to reduce it considering the scale
and heterogeneity of this system. With naive deployment on cloud, 90% users have an in-
teraction latency over 200 ms [91]. Several other research works have also indicated that
with current cloud infrastructure, cloud is unable to satisfy the strict latency requirements
in interactive live streaming services [35]. Researchers therefore are actively seeking for new

approaches or architectures to reduce the interaction delay for viewers.

4.1.2 System Model

Globally, our system is divided into multiple regions, where each region has its own re-
gional datacenter (also referred to as “regional server”) for ingesting source videos, assign-
ing transcoding tasks to viewers or cloud, recollecting transcoded video and forwarding the
processed streams for further delivery. Fig. 5.3 shows the overall design. Specifically, source
live streaming contents are first collected by the regional server through protocols such as
RTMP (Real Time Messaging Protocol). Several viewers will then be selected for taking
video transcoding tasks according to certain criteria. Unmatched tasks after this selection
or during the live streaming process will be sent to dedicated cloud transcoding servers if
no further satisfiable transcoding viewers can be found locally (results in cross-region as-
signment). The selected viewers and cloud servers transcode video contents into different

quality versions, and send them back to the regional datacenter. Finally, the transcoded

39

video is forwarded to other regional datacenters to serve all viewers. As can be seen, in our
system, the computation processes for transcoding are distributed among the selected edge
viewers and cloud; The decision process for selecting valid users is finished in each regional

server.

4.1.3 Problem Formulation

We now consider specifically the incentive issue, which includes viewer selection and pay-
ment determination, in the above scenario. Intuitively, transcoding tasks can always be
satisfied by viewers in our overwhelming viewer pool. However, in reality, the viewer and
broadcaster numbers are highly dynamic over time. In both a single region and the whole
global system, independent users may come, stay in the system for a distinct amount of
time, and leave by their will. Causal selection cannot guarantee the involvement of highly
qualified viewers and may cause a large number of reassignments, leading to high system
overhead for recalculation and short absence of the target quality version during the reas-
signing period.

On the other hand, it is difficult to determine the right price to motivate these viewers
since viewers have their own private cost functions. Casually setting a fixed price could lead
to the overpricing or underpricing problem which either incurs a huge cost for the service
provider or fails to provide enough incentives to motivate viewers. What is more, the sum of
payments for all selected viewers is constrained by the limited budget for each channel since
we are seeking a cost-effective design for video transcoding services. Therefore, efficiently
utilizing this budget to fully motivate viewers and recruit qualified viewers is what we are
aiming at.

We thus propose an auction-based approach to facilitate the transcoding task assign-
ments from channels to the crowd of viewers and determine the payment for these transcod-
ing viewers at the same time. Dynamic prices generated by auctions can help us fully mo-
tivate users while at a low cost in the competitive environment thanks to our large viewer
pool. Carefully designed selection algorithms can also ensure us to select the appropriate
viewers to take the transcoding tasks. For each region, we denote the live video channels
as a set C' = {c1,ca,...,cn }, and viewers as V = {v1, vy, ..., v, }. Each channel ¢; € C has a
budget B; which is part of the revenue from advertisements, and R; is the total number of
transcoded video representations required for a channel ¢;. Independent viewers have their
private cost functions for taking the tasks, and they make strategic decisions to maximize
their individual utility w;, which follows the classical quasi-linear form. The utility of viewer
1 at time ¢ is

p; —m; if v;isselected
U; =
0 otherwise

40

p; is the payment to viewer v; and m; is the cost for users to transcode the corresponding
channel. Under truthful bidding, m; equals to b;.

Each viewer v; submits its bid b; based on its own valuation function for taking such a
task. After receiving the bid, the regional server acting as an auctioneer makes the assign-
ment and payment decisions. Notably, the arrival/departure time and the cost function of
each viewer are private, and may only be known to itself. Similarly, the arrival/departure
time of each channel is also private. In other words, at time ¢, the scheduler has no knowl-
edge of any incoming channels or viewers, neither does it know if any channel/viewer is
going to terminate/leave soon. Therefore, the auctioneer must have an online mechanism
to determine the task assignment and payment as each bidder emerges to play.

As we have argued previously, stability is a critical factor for choosing viewers to take
our transcoding tasks. Viewers should be able to continue offering transcoding services
during the channel streaming session without leaving. We first need to extract stable users
from the viewer pool. Based on our previous study, we set a waiting threshold only after
passing which can the viewer be qualified as stable, and be selected into our candidate
pool. This threshold is determined by maximizing the mathematical expectation of the
non-stop transcoding time of all viewers [48]. Further, to differentiate the stability level
among these candidates, we need to have a more fine-grained metric of stability. We use
a simple yet effective method which jointly considers the average online duration (d) and
standard deviation (o) of a viewer’s online record. We use a linear combination of them to
represent the stability D. In our simulation the default A is set to 0.8 as it gives the best

result.

D(vi):)\~a7,-—(1—)\)~ai; A€ (0,1);
Besides stability, latency obviously should also be optimized explicitly in this interactive
streaming services. Therefore, we propose our quality of viewer metric as follows:

N — D)y
S(vi) = In(1+;)P

where v and f is the weight for each component in our metric, lying between 0 and 1. When
B8 =0, v =1, we only maximize the stability of all selected viewers, and vice versa. The
intuition for defining the stability of users in this form is inspired by the fact that, a longer
average online duration indicates the viewer tends to stay longer, and a smaller standard
deviation means such behavior is more consistent [48]. The effect of latency on quality of
viewers uses the widely adopted logarithmic function to reflect the decrease of marginal
quality degradation due to the increase of latency.

Our objective thus is to find desirable and affordable viewers to take transcoding tasks.
Let S(v;) be the estimated quality of viewer v; in terms of taking transcoding tasks. We
introduce a set of 0-1 variable x; ; for each pair of viewer and channel. Variable z; ; equals

one if viewer v; is assigned for channel c¢;. Let X denote the total selected viewer set; ¢;

41

Table 4.1: Table of notation

Symbol | Description

V; viewer ¢

b; bid value of viewer
S(v;) | quality of viewer 4

i price charged to viewer %

B; budget allocated for channel j
Imin | maximum allowed transcoding time
l; transcoding time of viewer ¢

and p; are the total transcoding time and payment per unit time of viewer v;. Iy, is the
minimum delay requirement for a satisfying transcoding process. The formal formalization

is as follows:

max Z S(vi)wi j (4.1)

s.t. Zpitixi,j < Bj,VBj (42)
%

Zzivj <1,VieV (43)
J

lixi,j < lmm,vxi’j eX (4.4)

zij € {0, 1} (4.5)

In constraint (4.2), the sum of all payments of a channel in the streaming period should
be smaller than its planned budget. In constraint (4.3), each viewer can take at most one
transcoding task to mitigate the risk of unreliable transcoding brought by viewers and
guarantee transcoding performance. In constraint (4.4), the transcoding time of selected
viewers should be less than the minimum requirement to guarantee high quality interactive
live streaming. We further summarize the important notations used in this chapter for

convenience in Table. 4.1.

4.2 Crowd-based Video Transcoding

In this section, we first study two offline situations and then extend our proposed algorithms
to a more generic online scenario. In the first offline case, there is no strict requirement on
the number of transcoding viewers for each channel, which means, given the budget limit,
a channel ¢; could have less than R; transcoding viewers. The scheduler makes best-effort
decisions to assign most stable candidates while providing reasonable payments. In the
second offline case, the requirement on the number of transcoding viewers for each channel

is strict, which means that each channel should have R transcoding viewers unless there is

42

no such possibility. In both offline cases, we assume the scheduler has the bid information
from all candidates before the assigning process. Studying the offline scenario gives us
the understanding to this problem, especially in complexity, optimality, and provides the
baseline situations for us to compare with the online case. Furthermore, since more and more
personal livecast applications start to allow broadcasters to upload pre-recored content and
publish later, like "Uploads" function in Twitch released in late 2016. Our solution in offline
scenarios also work for these type of transcoding tasks that are more tolerant to latency
brought by decision making, and can wait until all bids information are collected. Finally, we
further consider the online situation where the candidates comes to the system sequentially,

and the scheduler has to make a decision on-the-fly.

4.2.1 Baseline Scheduler with Flexible Transcoding Viewers

In this subsection, we consider the first case of the proposed problem where there is no
strict requirement on the number of transcoding viewers for each channel. With the budget
constraint, the crux of designing a good algorithm lies in how to efficiently use the limited
budget, and filtering out the valuable viewers. We adopt a variant of the proportional share
mechanism introduced in [80], which serves as the basis for budget-constrained viewer re-
cruitment. To be specific, when a new transcoding request from a starting channel c; arrives,
the scheduler first generates a threshold according to the bid, estimated quality information
of all candidates, and the given budget as summarized in Algorithm 4. The resulted thresh-
old p represents the reasonable price per unit quality value. The main scheduling algorithm
(shown in Algorithm 3) first orders all candidates in decreasing order of estimated quality
(line 2), and attempts to choose them in a greedy manner: the most desirable candidate is
examined first. For each candidate, the scheduler first checks whether its bid is worthwhile
for its estimated quality and budget allow such reasonable payment S(v;) * p. If it is desir-
able and affordable, then select this viewer, pay the corresponding payment, and skip the
current one if not worthwhile (line 8-9). Note that in the algorithm S(X) represents the
total quality of candidate set X. Here, we simply sum up the quality of every candidate in
X to get S(X) as we formulated before, While other methods, e.g., monotone submodular
function, can also be applied. Budget and payment here are all represented as price per
unit time. Eventually, we pay viewers according to its transcoding service time as well as
its price per unit time.

Since the baseline scheduler chooses the most stable candidates until either R assign-
ments are made or it is running out of budget, it may lead to a great number of cross-region
assignment (turning to cloud) especially when the budget is low. On the other hand, since
there is a portion of candidates not worthwhile judged by the threshold price, some stable
candidates are not selected, which is undesirable when only few candidates are available.

This is the performance compromise we have to make given the limited budget constraint.

43

The baseline scheduler runs in linear time complexity of N, namely O(N), where N is the

total number of qualified candidates.

Algorithm 3 Baseline Scheduler

1: Input: Budget B; for channel ¢; and number R of transcoding viewers required
2: Sort V in decreasing order of its estimated quality S(v;)
3: count < 0, index < 0, X; < 0

4: p + GetThreshold(B;)

5: while count < R do

6: index < index + 1

7. wv; < V]index] and b; is the bid of v;

8: if b; < S(UZ) *p < Bj — ZJ:EXJ' Pz then

9: pi < S(v;) *p
10: Xj<—XjU{’Ui}
11: else
12: p; <0
13: end if

14: end while
15: return X

4.2.2 Comprehensive Scheduler

Now we consider the second case where the requirement on the number of transcoding
viewers for each channel has to be fulfilled unless impossible. The problem thus becomes
to choose R viewers such that their quality is maximized while the sum of their bids does
not exceed the given budget. We can view this problem as a variant of classical Knapsack
problem. If the price is pre-determined by the auctioneer, given the budget constraint, we
are choosing viewers from the candidate pool to maximize the total value of the selected
viewers (sum of quality metrics). We can easily extend the baseline scheduling algorithm
into a dynamic programming algorithm (shown in Algorithm 5) to solve it optimally with
the same payment rule. The key part of this algorithm relies on the three-dimensional table
table, where table[i, B,r] represents the maximum total estimated quality we could have
considering first ¢ candidates with budget B for r assignments. For every transition, there
are two cases (line 8 and line 11), representing (1) current candidate is not worthwhile, or
not affordable, or not needed as all assignments are fulfilled, and (2) current candidate can
be attempted for the assignment, respectively. More specifically, the time complexity of this
approach is O(NBR), where N is the total number of candidates, B is the budget and R
is the number of transcoding viewers needed.

Computational efficiency is extremely important for a delay-sensitive system like our
studied one, while our pseudo-polynomial algorithm may take a long time if the given
B is large and the minimum budget metric is small. We therefore improve it with an

efficient comprehensive algorithm using the specifically selected data structures, as shown

44

Algorithm 4 GetThreshold

Input: Budget B;

Sort V' in decreasing order of S(v;)/b;

X<+ 0,i+0

while b; < S(v;)B/S(X Uwv;) do
X+~ XUy
1 1+1

end while

p < B/S(X)

return p

in Algorithm 6. Similar to the baseline scheduler, the comprehensive scheduler calculates
the price threshold and orders all candidates (line 2-3). Then, in each round, it pushes the
remaining most stable candidate into a priority queue with its reasonable payment as key
(line 10-16), and smaller keys means higher priority. Prior to each round, the scheduler
checks whether the budget can afford the cheapest R candidates in the priority queue (line
7-9), and assigns these candidates if affordable. Finally, if we could not afford R cheapest
ones among all candidates, we select as many cheapest candidates as we can. As the priority
queue is normally implemented with heap, and R usually is a small and constant number,
the worst case time complexity of Algorithm 6 is O(Nlog(N)), where N is the total number
of candidates. We next show Algorithm 6 can provide an optimal solution under the given
payment rule in certain situations.

Notice that when a user abandons the transcoding task during the process of transcod-
ing, the system will select the next possible candidate according to the price threshold. If
the budget is running out or no users satisfy the threshold, cloud will be evoked to guarantee

the stability of transcoding processes, which incurs higher cost.

Theorem 7. Algorithm 6 can provide an optimal solution under the given payment rule, if
the bids from viewers are randomly distributed and the number of viewers N is sufficiently

large.

Proof. We prove the above theorem by considering two cases, i.e., when the budget B; is
sufficiently large, and when it is not. In the first case, with a sufficiently large budget, the
optimal solution would choose the top R most qualified candidates whose b; is no more
than its p;, to maximize the total estimated quality. Since algorithm 6 attempts from the
most stable candidates as well, it ends up with exactly the same schedule as the optimal
one, as it terminates once it finds the top R candidates are affordable. In the second case,
the budget is not able to afford the top R most stable candidates. Given the sufficiently
large N and viewers’ Pareto Distribution against their quality, the optimal solution will
contain a set of candidates where the sum of their payment is exactly Bj, as the payment
is proportional to the quality. On the other hand, algorithm 6 will choose R candidates
with quality % where p is GetThreshold(B;). Again, the bids of these candidates are no

45

Algorithm 5 Psudo-polynomial optimal approach

1: p < GetThreshold(B))

2: for 4 from 1to N do

3 pi=p*S(u)

4: end for

5: initialize table as a three-dimensional table

6: for B from 1 to B; do

7. for ¢from 1to N do

8: for r from 1 to R do

9: if b; > p; or p; > B or r == 0 then
10: table[i, B,r] < tableli — 1, B, r|
11: else
12: vl[i, B, r] < max(tableli — 1, B, r|, S(v;)+
13: table[i — 1, B — p;,r — 1))
14: end if
15: record such transition in a backtrack table
16: end for
17: end for
18: end for

19: backtrack and return the whole schedule

Algorithm 6 Comprehensive Scheduler with Strict Number of Transcoding Viewers

1: Input: Budget B;

2: p < GetThreshold(Bj), i + 1

3: Sort V in decreasing order of S(v;)

4: Denote Q as a priority queue, where items with smaller value will be at front
5: while ¢ <n do

6: minCost < the sum of top R reasonable prices in Q

7 if minCost < B; then

8 select these R viewers and return

9

else
10: pi = S(vi) *p
11: if b; < p; then
12: push v; into Q with its reasonable price p; as key
13: end if
14: 14 1+1
15: end if

16: end while
17: select top R’ viewers from @) which is the maximum number of viewers B; can afford,
return

46

------- ¢ ¢ ¢ ¢ @ Arrival bids

Stability ranking

\]j \‘b \[\[\ﬂ \L
A I
Lo s Highest individual
Lowest individual stability l & bili
Rank threshold, stability
Scheduler trying to assign first R candidates moving towards
with smallest bid, if payment affordable left every step

Bid Array containing candidates filtered by Inserting filtered candidates into Bid Array
rank threshold, in increasing order of bid

Figure 4.2: Illustration of the online strategy

more than their reasonable payment (b; < p;). The scheduling result will have the same
total quality as optimal one. Such selection is also guaranteed to be made since bids from
viewers are randomly distributed (so that at each quality some candidates have their bids
larger than the reasonable payment and some others do not) and the number of viewers NV
is sufficiently large (so that we can find R candidates at the given quality level with its bid
no more than its reasonable payment). Therefore, under the given condition, algorithm 6

will have an optimal result. O

4.2.3 Online Implementation

So far we have discussed the problem in an offline manner, which assumes that we have the
whole knowledge of bid before the selection process. However, the real-world scenario could
be more complex, we cannot wait until all bids are collected from the viewers and make
the decision after that. In fact, in our interactive live streaming services, the arrivals of new
channels require instant selection of viewers. Therefore, an online algorithm is needed to
make the selection decision on-the-fly.

In this online situation, our objective remains the same, which is to find R affordable
candidates who are as qualified as possible. However, we do not know the arriving time and
order of the responding bids from candidates, yet we could not wait for all candidates to

respond as it may take too long. We observe one key difference between our online scenario

47

and most other classic online problems, e.g., generalized secretary problems, is that we
indeed know how good these candidates are as we know their individual quality. Therefore,
when receiving responses, we can place the corresponding candidates in an array according
to their quality rank, and we set a rank threshold representing the lower bound of candidates
we accept. The rank threshold is initialized to be extremely strict so that only top ranked
(most qualified) candidates can be considered, and we loose it over time.

The above mechanism is illustrated in Fig. 4.2, and described in Algorithm 7 in detail.
At the beginning (line 1), the scheduler sends requests to all available qualified candidates
and waits for responses. It also initializes an empty array A of size N (line 2), where Ali
will be used to hold the i*" ranked candidate when it responds. A dynamic array bidArray
is also initialized (line 3), which is initially empty and used keep inserted candidates in
increasing order of their bids. The rankT hreshold is set to 1 at the beginning, meaning we
only consider the first ranked candidate when we start. We loose the rankThreshold by 1
every time a new response is received (line 7). In the meanwhile, if the candidate at the new
rank threshold position has already responded, insert it into the bid Array (line 8-10). Then
we add the responding candidate into its corresponding position in A (line 11), and if its
rank is smaller than the rank threshold, insert it into the bidArray as well (line 12-14). At
the end of each round, we check if we can afford cheapest R currently considered candidates
in the bidArray, and make such assignment if we can (line 15-18). In terms of the payment,
the main difference between the online scenario and the offline scenario is, we cannot know
the cost performance, or the threshold, of all candidates, and therefore could not provide
the reasonable payment to those selected candidates. Instead, for each selected candidate,
we use the bid of next more expensive candidate in the bidArray as the payment (line 15-
16), to maintain truthfulness. This pricing schemes falls into the generalized second price
scheme, where the bidder in i-th position pays the bid of the (i+1)-th bidder [87] . Similar
to the offline case, when users abandon the transcoding task, we choose the next affordable
users in the bid array to fill in, and turn to cloud if no users satisfied the constraints.

Designing mechanisms to handle the strategic players in the auction usually boils down
to designing algorithms in a certain restricted way. As can be seen from our algorithms,
all above mentioned schedulers are 1) computationally efficient, given their non-exponential
time complexity; 2) individually rational, as the payment is always higher than or equal
to the bid, leaving selected viewers non-negative utility value; 3) budget feasible, since
each assignment is made only after we make sure that the payment does not exceed the
given budget; and 4) truthful, as the payment is either pre-determined (for the baseline
and comprehensive schedulers), or an uncertain number larger than the bid (for the online
scheduler). Being independent from the bid value of bidder itself, our payment scheme falls
into the posted price schemes. These schedulers can also be easily deployed at reassignment

time, and we only need to set R to 1 and set B; to the left budget.

48

Algorithm 7 Online Scheduler

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Scheduler broadcast the transcoding request with the description of the job to all qual-
ified stable viewers

Initialize an empty array A of size IV, where N is the number of total qualified stable
viewers

Initialize a dynamic array bidArray

Initialize rankT hreshold <+ 1

while t < timeout do

Let respondingCandidate be the candidate returning a response
rankThreshold < rankT hreshold + 1
if A[rankThreshold] is not empty then
Insert A[rankT hreshold] into bidArray,
with A[rankThreshold).bid as the sorting key
end if
AlrespondingCandidate.rank] <— respondingCandidate
if respondingCandidate.rank < rankT'hreshold then
insert respondingCandidate into bidArray,
with respondingCandidate.bid as sorting key
end if
if sumO fBid(bidArray[2 to 1+ R]) < B; then
Assign bidArray|l to R], for each assigned candidate bidArrayli],
provide payment bidArray(i + 1];
return

end if

22: end while
23: select top R’ viewers from bidArray, where R’ is the maximum number of viewers the

budget Bj can afford, return

49

4.3 Performance Evaluation

To evaluate our framework, we have conducted extensive simulations using large scale data
captured by Twitch API. We first briefly introduce the selected datasets, and present the

methodology as well as the evaluation results after that.

4.3.1 Trace-driven Simulation Configurations and Metrics

For the simulation, we mainly used the channel-based viewer trace data captured with
Twitch API containing the join/leave record of viewers in certain channels from January 25
to February 27, 2015. Each entry includes the viewer ID, time of the action and the action
type (“Join” or “part”). In total, we collected 11,314,442 “JOIN” records and 11,334,140
“PART” records. The selected part of the record contains 270,105 unique viewers, and this
partial viewer trace has the same trend as that of the entire record we captured. Since current
video transcoding services offered by Amazon, the dominant player in cloud industry, still
could not offer live streaming transcoding. Interactive live streaming service providers just
purchase instances in IaaS to implement their transcoding services. Therefore, we use the
price of default instance type, m4.large instance, as the cost for transcoding a task. For
each viewer, we randomly assign a bid between 0 and 2 times the price of cloud instance
to represent the minimum reward this viewer is willing to receive in order to conduct the
transcoding work. As for channels, since the top 10% channels attract around 98% of the
total viewers, we only regard these top 10% channels as our targeted channels, which we will
provide transcoding services to. We then scale up/down the channel trace to have different
viewer to channel ratios (referred as viewer-to-channel ratio, or V/C ratio) based on the
record of all channels we captured, which was recorded every five minutes, from February
2015 to June 2015. In such time-based record we have the detailed information of all live
channels during the captured period, such as the total channel number and viewer number,
which are used to estimate the average channel to viewer ratio in our simulation. Also, each
channel will be assigned with a random budget. To test the performance of our approach
under different financial circumstances, we have generated 5 groups of test data at different
budget levels. Generally, the budget of a channel is set to be proportional to the viewer
number of that channel.

We use re-assignment number, cross region assignment number, and cost as our per-
formance metrics. Re-assignment number changes when viewers abandon their transcoding
tasks in the middle of streaming process, and the service provider has to find new viewers to
take these tasks. Re-assignment brings system overhead, especially latency for reassigning
and short absence of the target quality version during the reassigning period. Cross region
assignment number changes when no qualified viewers can be found locally under the cur-
rent budget level, and the service provider has to turn to cloud for help. Cost is defined as

the sum of payments to finish all transcoding tasks. We thus want these metrics as small

50

as possible. We evaluate our system performance under different budget constraints and

viewer /channel ratios.

4.3.2 Evaluation Results

For comparison, we implemented the baseline scheduler, the comprehensive scheduler, and
the online scheduler, under a variety of budget levels and V/C ratios. The existing industry
solutions apply a pure cloud solution, which is far more expensive than our cloud-edge
collaborative solutions. The difference in cost could reach over 80%, and thus we omit
it here and only compare the performances of our solutions under different offline/online
scenarios.

We first conduct simulation to see the number of cross-region assignments under various
conditions. Regarding to different V/C ratios, the results of three schedulers are similar in
respect to their relative performance. Thus we only report the results when V/C' = 200 in
Fig. 4.3a. Notably, the advantage of the comprehensive scheduler under low budget level,
compared to the baseline scheduler, is more remarkable at higher V/C ratio. From Fig 4.3a,
we can easily see that both offline approaches (baseline and comprehensive) perform sim-
ilarly at high budget level. On the other hand, the difference becomes obvious when the
budget is scarce, in which case the comprehensive scheduler has better performance. The
online scheduler however has much better performance, as it only has 1/6 to 1/3 cross-region
assignments of the offline strategies. Interestingly, this however is mainly because the online
mechanism does not have the requirement on the cost performance for each candidate, so
that all candidates with different bid value (even those with too high bid) can be chosen.

In terms of the reassignment, as can be seen from Fig. 4.3b, the results of the baseline
scheduler and the comprehensive scheduler again are similar, and are around 50% higher
than that of the online scheduler, except the case where the budget level is extremely low.
The lower reassignment count at budget level 10 is mainly caused by the high cross-region
assignment count, such that many assignments are not initially made locally and thus will
not trigger reassignment later. The results of the online scheduler however remain the same
across all budget levels, indicating that it has more stable performance once the assignment
is made.

We also measure the cost of our approaches under different budget levels and V/C ratios.
As shown in Fig. 4.4a, Fig. 4.4b and Fig. 4.5a, once again we see the results being very
similar under different V/C ratios. The baseline scheduler and comprehensive scheduler have
similar costs under different budget levels, while the online scheduler has upto 50% higher
cost than the previous two. Notice that the online scheduler achieves lower reassignment
and cross-region assignment counts than other offline approaches, but has higher cost. This
is because the payment made to the viewers are determined differently in offline scheduler
and online scheduler. On the other hand, offline schedulers can decide the optimal cost

with all bids information in place. While for the online scheduler, since there is no oracle

o1

3

- [IBasdine
L [Comprehensive| |
” 600 B Online
5 o0l]
= 500
£
7 400]
c
o)
S300]
3 200! ,
@)
B HI. HI- HI- |
0
10 20 30 40 50
Average budget level (V/C=200)
(a) Cross-region assignment
600
500 - M 0 N N 1
£ 400+ .
@
2 _
c
5 300 1
d
X 200+]
100+ [IBaseline i
[Comprehensive
[l Online
0

10 20 30 40 50
Average budget level (V/C=200)

(b) Reassignment count with different budget

Figure 4.3: Stability analysis under different budget levels when V/C=200

52

knowledge on the arrival of bids, the payment is greatly influenced by the arriving patterns,
which makes the cost higher than the offline situations.

Additionally, for the online scheduler in particular, we compare its average result with
the optimal case and worst case. The optimal case is where the responding candidate come
in decreasing order of quality, while the worst case is the opposite. Fig. 4.5b shows the
results of reassignment count. We see the average result is much closer to the optimal case
than to the worst case, especially at high budget level. This also confirms the overall great
performance of the online scheduler. Note that, the optimal case here can also be regarded
as an offline deployment of the online scheduler.

In short, the online scheduler has significantly better performance compared to the other
two, in terms of reassignment count and cross-region assignment count, while without having
extra cost overall. Interestingly, the online scheduler however benefits from being not able to
calculate the threshold p in the online manner, such that it has more freedom to choose more
stable candidate, even with partially overmuch payment. The results also indirectly reveal
that the threshold-based mechanism of making reasonable assignment/payment based on
cost performance, which is suitable for crowdsourced work in general, may not be suitable
in our scenario.

We further measures the reassignment and cross-region assignment count with low bud-
get and median V/C ratio, under different waiting threshold, as such settings provide the
most obvious result. From Fig. 4.6a, we clearly see the trade-off between cross-region as-
signment and reassignment for each scheduler, as in all results they always go towards the
opposite directions. The baseline scheduler and comprehensive scheduler have similar re-
sults, while the comprehensive scheduler has sightly higher reassignment count but much
lower cross-region assignment count. The online scheduler has much better performance in
terms of both metrics. With higher the budget level, the results remain similar overall but
the difference between the baseline and comprehensive approach become smaller.

Additionally, we present the total cost of different approaches with median budget level
in Fig. 4.6b. Again, we see the baseline and comprehensive approach have similar results,
which increase as the waiting threshold goes up. This is mainly because with a higher
waiting threshold, the selected candidates have higher quality and thus higher reasonable
payment, leading to higher cost overall. The online scheduler however, has lower cost as
waiting threshold increases. This is mainly caused by the increasing number of cross-region
assignment, which is the dominant factor in this scenario. In conclusion, the large viewer
base and V/C ratio allow us to have a larger waiting threshold upto 200 minutes, and the
online scheduler is much less affected by the change of waiting threshold compared to the

other two schedulers.

53

x 108

2 \
[]Basdine
[T Comprehensive
B Online
15F] 1
7 _
o _
s 1f I
°
l_
0.5r 1
0
10 20 30 40 50
Average budget level (V/C=200)
(a) Cost of different approaches (V/C=200)
4 x10°
[IBaseline
3.5 |-] Comprehensive]
I Online
3r _ |
25+ __ |
%}
38 _
T 20 T
S
15r 1
1 L -
05 1
0
50

10

20 30 40
Average budget level (V/C=120)

(b) Cost of different approaches (V/C=120)

Figure 4.4: Cost comparison under different V/C values

54

x 108

10 w
[]Basdine
[T Comprehensive
g - [EEOnline]
B 6 (] 1
38 _
o
(s}
F o4t]
2 L 4
0
10 20 30 40 50
Average budget level (V/C=80)
(a) Cost of different approaches (V/C=80)
2000 w
[1Optimal Case
n [Average Case
5 Il Worst Case
£ 1500 1
=
G 1000 - i
o)
el
S
5
=
® 5001 i
e}
|_
0
10 20 30 40 50

Average Budget Level (V/C=120)

(b) Extreme cases of the online scheduler

Figure 4.5: Impact of budget on stability and cost

55

3000 ‘
—A— Cross-region(baseline)
-0~ Reassginment(baseline)
2500 |-a- Cross-region(comprehensive))
-0 Reassginment(comprehensive)
0 —&— Cross-region(online)
c 2000 |-o- Reassginment(online))
B
o 1500 - 3
o
S
S
Z 1000+ 3
500 raa]
0 1 1 1 1 1
0 200 400 600 800 1000 1200
Waiting threshold (minutes)
(a) Different waiting threshold with low budget
6
38 % 10
3.6+]
34+ 3
g 32+ 3
o
® 3 I
S
2.8 3
261 y
——Baseline
24+ —&—Comprehensive| -
—¥*—Online
22 1 1 1 1 1
0 200 400 600 800 1000 1200

Waiting threshold (minutes)
(b) Total cost under different waiting threshold

Figure 4.6: Impact of waiting threshold on stability and cost

56

4.4 System-level Evaluation
4.4.1 Prototype Setup

We implemented a prototype of our framework with online scheduler on the PlanetLab.
In our prototype, we use 5 PlanetLab nodes with similar network conditions as regional
servers, 2 in North America (NA), 1 in Asia and 2 in Europe (EU), and other nodes as
viewers. In total 377 nodes are used. During the experiment, each viewer node imitates an
actual viewer behavior by joining the nearest regional server at a random time, staying for
a duration according to the Pareto distribution, and leaving. Each viewer also submits a bid
randomly. The regional server keeps track of all stable candidates, and assign transcoding
assignment with a payment calculated at the same time. The selected candidates use ffmpeg
to transcode a high quality video sent from the regional server using TCP, into a low quality
versions, which are then sent back to the server. We use a 3.5Mbps 1080p video as our source

video and set 2.5Mbps 720p as the target quality. Each video slice is of 1 second.

4.4.2 System Performance Results

We first measure the percentage of stable viewers in the system after it runs for 60 minutes.
As shown in Fig. 4.7a, with a 60-minute waiting threshold, around 60% of the online viewers
are stable, after the system stabilized at around 30 minutes. The two red lines show that
the portion of stable viewers is always between 49% and 76%, which also confirms our
simulation results. The experiment scheduling result, in terms of reassignment, cross-region
assignment and cost, is similar to that of our large-scale simulation. This is expected given
that in both simulations and experiments the viewers statistically follow the same shifted
Pareto Distribution. We therefore focus on the streaming performance. Fig. 4.7b shows
the streaming delay variance perceived by five regional servers. We see that the streaming
latency in North America is much lower than that in other regions. This reveals that viewers
watching distinct quality versions of the same channel may perceive highly different delay,
which severely affects the online interaction between broadcasters and viewers. For example,
viewers with lower latency may become spoilers describing a scene (in chat) which is going
to be watched by others a few seconds later. Also, given the delay variance within the same
region, the reassignment even itself may introduce a new delay difference, which may freeze
the streaming for a short period. A solution to such issue is to introduce a short pre-set
delay for each channel, as well as a penalty to the scheduler when assigning candidates with
highly variant delays.

In short, our experiment shows the feasibility of the proposed framework, and confirms
the simulation results. It on the other hand also indicates the potential issues caused by the

candidate delay variance, which calls for further enhancement as mentioned above.

57

0.8

0.67

041

Percentage of stable candidates

0 i i i i
0 20 40 60 80 100
Time
(a) Stable viewer ratio along measured time
80

o)
=)

Percentage
N
S

[\
=)

I ' B 0-5 sec |
[]5-10sec
_ ‘ N [110-15 sec||
O II

NAl NA2 Asia EUl EU2
Regional server

(b) Streaming delay in different regions

Figure 4.7: Stability and delay analysis in the Planetlab-based prototype

58

4.5 Related Work

The wide popularity of Twitch-like applications indicates the emergency of novel interactive
live streaming services, where massive immature broadcasters stream their contents through
ordinary video devices over the Internet. Some pioneer works have studied such emerging
system from both social perspective (e.g., online community) [57] [47] [83] and the techni-
cal perspective (e.g., streaming performance, user experience) [17] [75]. Attracted by the
elasticity in computing power and “pay-as-you-go" billing model, cloud naturally becomes
the choice for supporting such service. Chen et al. [31] design cloud leasing strategies to
optimize cloud site allocation for geo-distributed broadcasters. However, for CLS platforms
with massive broadcasters but charge nothing from the viewers, cloud-based approaches are
expensive. He et al. [48] have studied the potential of edge viewers in the CLS systems, and
put forward a viewer transcoding framework based on voluntary participation of viewers.
Nevertheless, altruistic assumption or naive fixed price incentive approach could not fully
motivate users to take these computation-intensive tasks and truly reduce cost.

Auctions have been widely used to solve the incentive problems in various scenarios, like
crowdsourcing, spectrum sharing, P2P networks, etc. For crowdsourced tasks, Singer et al.
[80] have used auctions for providing incentive with budget constraints. The context-specific
requirements in our personal livecast applications make their approaches cannot be directly
applied to our scenario. For instance, they target at minimizing payment or maximizing
tasks, while we focus on maximizing the quality of users for conducting the transcoding
services. For P2P networks, a taxation-based incentive mechanism is proposed to guarantee
fairness, efficiency, and incentive in layered video coding [51] . Maharjan et al. [67] stud-
ies cloud-enabled multimedia crowdsourcing, and drive the optimal reward for recruiting
broadcasters to do multimedia-based tasks based on the knowledge of utility functions. Un-
like this utility based approach, our auction approach does not rely on the knowledge of
utility function and tries to make decisions using the bid information as well as the user his-
tory statistics. There are few research works on addressing incentive problems in interactive
streaming context. A recent work studies the same cloud-edge transcoding services in per-
sonal livecast applications[109]. They focus on applying redundancy principle to improve
the reliability of this service and maximizing the expected social welfare. Different from
works in the pure distributed networks and the recent works in livecast transcoding, we
studied the incentive issue with budget constraint to maximize the quality of users directly

to improve stability and reduce latency.

4.6 Summary

In this chapter, we proposed low-latency, cost-efficient mechanisms for transcoding big video
data in the personal livecast applications. Specifically, we examined the potential of involv-

ing end viewers into transcoding big video data from massive broadcasters to lower the

59

computation cost and reduce latency. Our mechanisms assign qualified viewers to channels
for transcoding tasks and determine the right amount of money to motivate them under the
budget constraints. Our large-scale trace-driven simulation proved the superiority of the on-
line scheduler, while our PlanetLab-based experiment further revealed a series of potential

issues and suggested corresponding enhancements for practical deployment.

60

Chapter 5

Towards Reliable Cloud-Crowd
Collaborative Transcoding

In our previous chapter, involving one viewer for taking one transcoding task may still be
unstable considering the dynamics of viewers as can be observed in the evaluation results.
In this chapter, we explore the possibility of recruiting multiple viewers to take one task,
increasing its reliability through redundancy. Mechanisms need to be carefully designed for
such a many-to-one mapping situation, especially considering the uncertain behaviours of
viewers.

In the following chapter, Section 5.1 discusses the challenges for having a cloud-crowd
collaborative system. Section 5.2 presents the formal formulation of our problem and other
desirable goals. Section 5.3 presents the detailed mechanism design for broadcasting work-
loads. We evaluate our design through trace-driven simulations in Section 5.4. Section 5.6

summarizes the whole chapter.

5.1 Challenges and Principles
5.1.1 Why a Cloud-Crowd Collaborative System?

Most CLS platforms start primarily as a place to watch livestreamed contents and re-
cently have began to diversify their content sources. Take Twitch for example, broadcasters

normally livestream their game content to viewers and interact with them through chat

| |
Broadcaster & >0 Cloud Broadcaster & >0 Cloud
Server Server
[]
Viewer for
Viewers CDN Viewers Transcoding
CDN

Figure 5.1: Effects of local popularity on latency reduction

61

messages. Besides these broadcasting workloads, Twitch also enables "Uploads" in late 2016,
allowing broadcasters to upload pre-recorded content and publish later [9], to which we re-
fer as pre-recorded video workloads. For both types of workloads, the heterogeneous source
formats and network /viewer device configurations require videos to be transcoded into mul-
tiple representations. However, they have different requirements for transcoding processes.
For broadcasting workloads, each live session requires non-stop transcoding service with low
latency, so that viewers can receive their desired video formats with small startup delay and
keep interacting with broadcasters with no interruptions. Pre-recorded workloads, however,
are interruption-tolerant as long as the user-defined playback deadline is met. The diversity
of service types without a doubt increases the demand for computational resources and
calls for more efficient cost management to meet heterogeneous Quality of Service (QoS)
requirements.

For CLS, involving crowd into the transcoding processes is expected to greatly reduce
latency. Though cloud providers keep opening up new service regions in recent years, the na-
ture of centralized datacenter-based cloud determines that the distribution of broadcasters
and viewers in existing CLS platforms is far more diverse than these datacenters. There-
fore, the distance between broadcasters to the closest cloud datacenter can still be too far
to meet latency requirements. 90% users could have an over 200 ms interaction latency with
the naive deployment on cloud [91]. What is more, after carefully examining the viewer-
broadcaster trace we have, unlike the traditional live streaming services where viewers of
popular streams tend to be evenly distributed [64], geo-distribution of viewers for a specific
broadcasters is highly skewed (48% of broadcasters have their viewers totally in the same
region) in our studied CLS services!. Since most viewers that consume a stream locate in
the same region as the broadcasters, allowing local viewers transcode the same stream will
greatly reduce the communication distance from broadcasters to viewers. Fig.5.1 illustrates
how latency reduction can be achieved by allowing local crowd to transcode the local stream
thanks to the local popularity of some channels. In addition to latency reduction, reducing
cost is another benefit that a Cloud-Crowd collaborative system could bring. Current cloud
providers possessing strong pricing power offer rigid pricing schemes for cloud users. It is
difficult to incorporate new pricing polices or bargain with the cloud to get reasonable prices
for different use cases. While hiring viewers gives us flexible pricing power, viewers with dif-
ferent levels of willingness to pay can be guided into much lower trading prices under the
proper pricing mechanism without hurting their own interest at the same time.

If we want to totally rely on distributed crowds, their reliability still can be the top con-

cern like previous peer-based distributed systems. Without the strict Service Level Agree-

!We suspect that it is because the content in CLS is more user-generated rather than the big event focused
live streaming like before. Viewers are more interested in knowing the broadcasters in their proximity driven
by the social purpose.

62

[

A
100% Viewer 3

Viewer 1 o
1t lew + 3 P s
i L] Viewer 2
r'Y Viewer 2 3 g (
L] @ Viewer 1 .
Live session Deadline _
Time
Broadcasting live video Pre-recorded video

Figure 5.2: Redundancy illustration: simultaneous redundancy for broadcasting live video
workloads and sequential redundancy for pre-recorded video workloads

ments (SLA) like they formed between cloud providers and cloud users, it is hard to build
a reliable system, especially for our CLS. As a practical system, facing tasks with QoS re-
quirements and dynamic supply of computational power from viewers, it is still a wise choice
to combine crowd with cloud. This hybrid mode allows us to extend the cloud computing
paradigm to network edges with end user clients serving as a complementary component of

cloud computing.

5.1.2 Why Redundancy Helps?

Although assigning transcoding tasks to viewers may help reduce cost and latency, involving
these viewers actually presents unique challenges for each workload type. First, to lower the
acceptance barrier of such system, we envision that viewers would only do transcoding when
they are surfing CLS platforms, which means that their duration for transcoding varies. Un-
like entirely relying on cloud where instances are guaranteed by strict SLA, analysis of our
trace shows that the duration of viewers for staying in the platform follows Pareto distribu-
tion with varying parameters. This heterogeneous participation behaviour greatly challenges
the broadcasting transcoding workloads, since assigning tasks to unstable viewers definitely
makes the transcoding inconsistent. Second, task execution performances of viewers (e.g.,
total task execution time) greatly vary due to their heterogeneous computing power. The
diverse task execution time greatly challenges pre-recorded video workloads since assigning
tasks to random viewers may make tasks miss their deadlines.

The redundancy principle has been widely applied to mitigate uncertainty and improve
system performances in distributed systems [81, 43, 77, 88]. In our scenario, we devise differ-
ent redundancy strategies for different types of workloads. Broadcasting live video workloads
value continuous transcoding without any interruptions; Pre-recorded video workloads value
finishing the transcoding before a overall deadline. Correspondingly, we recruit redundant
viewers simultaneously to mitigate viewers’ uncertainty in broadcasting workloads so that
redundant viewers can instantly compensate for the loss brought by the free rider, and re-

cruit redundant viewers sequentially to mitigate viewers’ uncertainty in pre-recorded video

63

workloads so that redundant viewers can fill in to guarantee finishing the task before the
deadline. For instance, as illustrated in Fig.5.2, for a broadcasting task in the left subfigure,
assume that each viewer ¢ has its own probability p; for leaving the system within a given
session period. Introducing one more redundant viewer, viewer 2, to work along with the
initial viewer, viewer 1, changes the probability of successfully transcoding a live session
without interruption from 1 — p; to 1 — p1po. For pre-recorded video workloads in the right
subfigure, assume that each worker has an individual probability for finishing the task be-
fore deadlines reflecting its heterogeneous computing power and load situations. Assigning a
pre-recorded video task to a viewer, viewer 1, with smaller capability (usually with smaller
cost as well) first, followed by a more powerful one, viewer 2, may be more cost efficient
than simply assigning this task to the viewer with the strongest computing power, viewer 3.
It is also worth noting that deploying redundant instances at different regions to guarantee
the continuity of the transcoding has already become an option in major streaming host-
ing service platforms, like Wowza. But apart from the simultaneous redundancy, we also
consider the sequential redundancy for pre-recorded workloads, more importantly, how to
incorporate these solutions into our auction design when interacting with the independent,

self-interest viewers.

5.2 System Model and Problem Formulation

5.2.1 System Model

Globally, our system is divided into multiple regions, where each region has its own regional
datacenter (referred to as “ingress server”) for ingesting source videos, assigning transcoding
tasks to viewers or cloud. The streaming segments after being transcoded are forwarded to
CDN for further delivery. Fig. 5.3 illustrates the overall design of our cloud-crowd transcod-
ing system. Specifically, source broadcasting contents are first collected by the ingress server
through protocols such as RTMP (Real Time Messaging Protocol). Several viewers will then
be selected for transcoding according to certain criteria. Unmatched tasks after this selection
or during the broadcasting process will be sent to cloud if no further satisfiable transcod-
ing viewers can be found locally. The selected viewers and cloud servers transcode video
contents into different quality versions and send them to CDN serving all viewers.

A live session with source format 1080p60fps will be transcoded into 720p60fps, 720p301ps,
540p30fps, etc., according to current twitch settings. Each representation of this live session
represents a task that needs to be transcoded in our scenario. We leverage similar streaming
test module like Twitch Inspector? in the existing Twitch platform to evaluate the network
performance of viewers. Only viewers passing the minimum bandwidth requirement can be

added into the candidate pool. After this initial capability evaluation, we have a viewer

*https://inspector.twitch.tv

64

https://inspector.twitch.tv

& red

Crowd .
Broadcaster Viewer
Ny .
\ []
@0 (W :
Broadcaste ° N ~
r = / Cloud | = N =l & Ql
ﬁj \ I ‘ ' N Viewer
ngress
Broadcaster server gv CDN

0
=
o

S =\

Broadcaster Viewer

Figure 5.3: Cloud-Crowd system overview

set N = {1,2...,|N|} and a transcoding task set M = {1,2,...,|M|} in our system. Let
ci,j denote the cost of viewer ¢ € N for taking a transcoding task j € M in broadcasting

workloads, and p! j denote the probability for failing to complete task j, namely viewer i

d
(2%

for the cost of viewer 7 in taking the pre-recorded video task j and pi’j for the probability

leaves the platform before the end of its serviced transcoding task j. Slmllarly, we have ¢

of completing its assigned task before the deadline. The cost of viewers reflecting their will-
ingness to accept the task can be influenced by various factors, like their regional electricity
price, making their willingness vary from person to person.

Each viewer thus has a type 6; = (c],p]) where 7 € {l,d} represents the total type set
of workload. Specifically, (c},pl) = {(c§7j,p§7j),Vj € M} for broadcasting tasks; (c?,pd) =
{(cg o pgl’j),Vj € M }Yfor pre-recorded video tasks. Let 6; = (¢7,p7) denote the declared type
(bid) of viewer i since selfish viewers may misreport their types to gain better utility. Let
0_; = (61,...,6;—1,0i11,...,0n) be the profile types of all viewers except i, and (6;,0_;)
completes the whole profile of all viewers, . We adopt the direct revelation principle in
mechanism design to design auctions since it provides clear input information and allows
us to focus on devising direct mechanisms in our auction. Following the direct revelation
principle, a mapping function 7, which includes an allocation mechanism (also known as
social choice function) f and a payment mechanism A, maps collected types to result R.
01 x03%...x0, — R in our auction mechanism. Given one collected type input, the allocation
and payment results of all viewers, (f1, fa, SN AL A2y)\‘N|), form one resulting result
r € R. Since the selected viewer may leave the transcoding task during the transcoding

process or fail to complete the transcoding task before the deadline probabilistically, we

65

Table 5.1: Table of important notations

Symbol Definition
s auction mechanisms, including f and A
Iy A allocation policy, payment policy

T workload type set
0; = (p,c) | type of viewer i, including uncertainty p and cost ¢

Vi valuation for task j
w(m(f)) | expected social welfare under current profile type 6
B; redundancy capacity of task j
~ eventual execution result
Cij cost of viewer ¢ in taking task j

denote the eventual task execution result as a vector -y, where v; € ~ is 1 if the task j
allocated to viewers is completed, 0 otherwise. The utility for viewer ¢ follows commonly
used quasi-linear utility form and is denoted as u; = E{\(6;,v) — ci(fi(0;))}. Utility for the
ingest server, acting as the auctioneer, is E{>;c s V;j(0i,7) — Xien A(0i,77)}. The valuation
for a transcoding task j, Vj, can be defined as any valuable metrics that are important
to service provider measured in currency, like possible revenue of this channel. The social
welfare in turn is @W(n(0)) = E{>;cp Vi(0,7) — Zien ci(fi(6:))}. Social welfare can be
regarded as a generalization of common performance metrics, such as utilization, to a setting
with utility-weighted tasks and operation costs.

A good mechanism is expected to satisfy social efficiency, individual rationality and
incentive compatibility. We summarizes important notations in Table 5.1 and present the
formal definition of these desirable properties in the following for clarification and proof

purpose.

Definition 4. A mechanism is ex-post incentive compatible, if for every bidder i and val-
uation type 0; = (cI,cl), declaring their true type 0; is the best response given all other

players declare their true type 0_;. Namely,
ui(ﬂ-(c;r’ Cziapzﬂpzi)) > Uz(”(éﬁ Czivﬁ;‘rapzi))

Definition 5. A mechanism is ex-post individual rationality, if for every bidder i, any
profile type 0; = (], cl) and 0_;, its expected utility is always non-negative if being selected.

Namely,
E{Ui(ﬂ'(cz, Czlap:7pzl))} Z 0

Definition 6. A mechanism achieves ex-post social efficiency, if, given any profile types 6
, its allocation policy f* maximizes the sum of utilities of all bidders and auctioneer in the

system in expectation. Namely,

Ep{w(m(0;,0-:))} > Ep{w(r(0;,0-:))}

66

5.2.2 Social Welfare Maximization for Cloud-Crowd Collaboration

In our studied cloud-crowd collaborative system, we aim at maximizing the system wide
utility, social welfare, in expectation given the private cost and uncertainty for finishing
different type of workloads. To help describe our formulation, we introduce a set of 0-1
variable z7 ; for each pair of viewer and task. Variable z7 ; equals one if viewer v; is assigned
for task j of type 7. B is maximum number of viewers allowed for each task j. We formally

formulate our problem in the following:

max E{Y Vj(0.9) = X ai(fi(6))} (5.1)

jeM ieN
st Y], < BjVje MVr (5.2)
z; € {0,1},Vi, B; € Z* |V (5.3)

Constraint (5.2) denotes that the number of viewers selected for a task j should be
smaller than the required redundancy capacity; Previous works in cloud-based transcoding
propose methods to estimate the transcoding resources needed by each transcoding task,
and assign tasks to instances within their capability during the task assignment process[17].
Thanks to the abundant candidate pool from the crowd, we design our system to require each
viewer only transcode one task of one type at one time to simplify the complex estimation
process. If we choose to multiplex multiple tasks on a single viewer, we can easily relax
this constraint to other values which does not affect the mechanism we proposed to get the

optimal solution.

5.3 Mechanism Design for Cloud-Crowd Collaborative Transcod-
ing

5.3.1 Transcoding the Broadcasting Workloads in C2

We first demonstrate how to design mechanisms to handle broadcasting workloads and apply
the redundancy principle to improve social welfare further. For broadcasting workloads,
each live session requires non-stop transcoding service with low latency, so that viewers can
constantly receive their desired video formats. To guarantee this continuity in transcoding
service, it is suboptimal to just select one viewer for transcoding one representation of a
channel and start selecting another new viewer after the previous viewer abandons task
abruptly. In contrast, having multiple viewers transcode one representation of a channel
simultaneously can greatly improve social welfare and guarantee availability of the live
session at all representations.

Following direct revelation principle, if we want to involve uncertain viewers into our

transcoding process, explicitly asking for their probabilities of completing those transcoding

67

tasks seems to be the most straightforward approach. However, self-interested viewers may
misreport their probability, claiming to be more competent than they really are, to win
the rewards. Even worse, the classical auction mechanism, like VCG mechanism, cannot be
directly applied to our scenario to guarantee truthfulness in bidding due to its deterministic
nature. Naively adding probability into it can jeopardize the truthfulness of the whole
mechanism [71]. In our game theoretic scenario, each viewer knows its own probability
for finishing a task and the auctioneer knows the actual execution result of each task.
Our objective hence is to design a probabilistic auction mechanism to guarantee desirable
economic properties, like incentive compatibility in cost and likelihood for finishing the
transcoding and maximize social welfare at the same time.

Our mechanism, presented in Algorithm 8, has two parts: the allocation mechanism
and the payment determination mechanism. For the allocation part, we select viewers to
transcode our tasks so that the expected social welfare of the whole system can be maxi-
mized. We need to solve our problem optimally, since any non-exact solution can harm the
incentive compatibility and individual rationality of our mechanism as we will see in the
proof. After observing that every scheduling decision binds with a quantifiable cost, we plan
to adopt a graph-based declarative description to our problem. However, finding the appro-
priate graph structure to encode the constraints and our goals is not that straightforward.
Bipartite matching with NV and M on each side can describe one-to-one channel-to-task
assignments, but fails to capture the redundancy design in our mechanism. Simply adding
dummy task on one side cannot reflect different contribution to the social welfare due to
different combinations of viewers-task pair. By adding another set of vertex other than
source/sink, N, and M, we manage to represent our social welfare maximization problem
into a min-cost flow problem.

We refer to the viewers that being selected for a task as the viewer group setting for this
task. Given a set of viewers IV, a set of transcoding task M, and the constraints defined in
formulation, we construct a flow network G = {NUDUM U{s,t}, E}, where D represents
possible combinations for all tasks (vy,va, ..., V) B|), VYv; € N. The supply of s and the demand
of t are all |[M| in value. The capacity of any edge between D and M is set to be 1. The
cost of any edge between D and M is set to be —u, = V(1 — Hpﬁ’j) —>.i¢ij,VjEN,Vie
D. Notice that normally a min-cost flow problem works when all costs are non-negative.
We can transform edges with negative cost to edges with non-negative cost using edge
reversal transformation techniques. After transforming to min-cost flow problem, based on
the integral flow theorem [15], we know that our min-cost flow problem can be solved
optimally. Equivalently, our social welfare maximization problem can be optimized, given
the truthful telling from viewers.

Achieving incentive compatibility in the uncertainty of viewer behaviour thus becomes
the key challenge of our whole mechanism. We solve this by binding payment for a viewer

with the actual outcome of its assigned transcoding task, namely, whether the allocated

68

task for this viewer has been successfully transcoded or not. Specifically, the payment for
a selected viewer i would be the expected social welfare of others (excluding the cost of 7)
minus the expected social welfare without the existence of viewer at all, w(x(c' ;, pt, 6_;)) —
w(m(0—;)), if viewer i finished this task. The first item in this payment formula excludes the
cost of its own to avoid manipulation. The dependence of payment on real execution result
further guarantees incentive compatibility. If the selected task is not successfully transcoded,
our mechanism incurs a penalty for this viewer, which equals the expected social welfare
without the existence of viewer, —w(m(6_;)). This penalty is necessary for us to prove the
incentive compatibility in uncertainty. Since some tasks may fail to find desirable viewers
and uncertain viewers may still leave the task during the transcoding process, we use cloud
to guarantee a continuous transcoding process. Cloud thus is treated as a special bidder in

our system whose cost is a public information.

Algorithm 8 The auction mechanism for C2

1: //The allocation mechanism

2: for all task j in M do

3: Construct a flow network G = {N UM UD U {s,t}, E}

4: Select B; viewers for each task j based on the solution of min-cost flow problem
arg mine y (3 cost(e)),Ve € E

5. end for

6: //The payment mechanism:

7: while a live session ends or a channel reaches its publishing deadline do
8: if 7, =1 then

0 N=w(r(c,pl0-0) —wr(0-0), Vi € {ilf; = 5}

10: else

11: A= —@(W(Q_i)),Vi S {Z‘fz = j}

12: end if

13: end while

Before the formal proof, we use a small, simplified example to help understand how our
mechanism works in one task scenario, even though our previous mechanism is designed to
work under multiple tasks scenarios. Suppose we have one broadcasting task of value 10,
two viewers, A and B, with type (2, 0.3) and (4, 0.2) respectively, where the second term is
the probability of this viewer leaving the task within the assigned session. The redundancy
level of task is 1. The optimal strategy thus is to choose viewer A with the expected social
welfare 5 (social efficiency). The payment for viewer A is 10 — (0.8 x 10 — 4) = 6 if it
succeeded, and -4 otherwise. Its expected utility becomes 0.7 x 6 — 0.3 x 4 —2 = 0.1, which
is greater than 0 (individual rationality). Even if B lies about its probability as 0, claiming
that it will stick to the transcoding to the end, it actually has a negative expected utility:
0.8 x5 —0.2x5—4=—1, which prevents it from doing that (incentive compatibility).

Theorem 8. Our proposed auction mechanism guarantees social efficiency in expectation.

This theorem is obvious since we solve our problem optimally.

69

Theorem 9. Our proposed auction mechanism guarantees ex-post individual rationality.

Proof. We start by again observing the expectation of utility of a viewer 7, when declaring
(ck, 2,
4 = B{W(n(cL;, p},0-0),7) — w(m(0—;)) — c;(fi(6:)} =

E{w(n(ci, pi,0-1),7)} — E{w(n(6-:))}.

Due to the optimality of our allocation mechanism, we have W ((cl, pt, 0_;),v) > w(7(0_;)),

which proves that the expected utility of a viewer is non negative. O

Theorem 10. Our proposed auction mechanism guarantees ex-post incentive compatibility

in expectation.

Proof. Since we are targeting at ex-post incentive compatibility, assume other viewers all
submit true types (¢l i pl_i), we need to show that for viewer 4, its expected utility when
declaring (cé,pﬁ) is not less than the utility when declaring (éﬁ,ﬁﬁ) The utility of 4, when
declaring (ch,pl), is ui = B{Ab:7) — ci(fi(0))} = BAW(r(cly, bl 0_1), %) — W(n(6_1)) —
¢i(fi(0;:))}. Social welfare component based only on the assignment of 7(6_;) is independent
of i. We therefore focus on the rest, E{w(r(c";,p!,0_i,7)) — i} which just forms the
expectation of the expected social welfare E{w(m(c!, pt,0_;))}. Since social welfare depends
on the eventual task execution result and our mechanism calculate the optimal result, we
have E{w(r(ci, pt,0_;)) > E{w(n (&, pL,0_;))}. That competes the proof. O

5.3.2 Transcoding the Pre-recorded Video Workloads in C2

We then demonstrate how our mechanism can handle pre-recorded video workloads with a
different redundancy strategy. Unlike broadcasting videos, the uploaded short videos only
need to be transcoded before a certain deadline. Specifically, we define the SLA on how
quickly the uploaded videos need to be available in defined representations as the dura-
tion of a video/constant time [61]. The transcoding time of each video depends on various
factors like its duration, complexity of scenes, computating power of viewers. Due to effi-
cient performance isolation and mature virtualization techniques, most of previous works
assume the performance of instances are homogeneous and stable. In contrast, viewers in
C2 obviously have heterogenous computing power, not to mention that the competition
with local workloads also makes the transcoding time even more unpredictable. This het-
erogeneous task execution time greatly challenges decision making in assigning pre-recorded
video workloads. Most of previous works deterministically estimate the transcoding time to
do further allocation, where methods range from simple linear model [59] to complex neural
networks [40]. Considering the difficulty in deterministically estimating transcoding time in
practice, Zhang et.al in [101] take empirical approaches that treat the transcoding time as

a distribution. In this paper, we also assume the transcoding time on a viewer follows its

70

own distribution from a statistical perspective, given its device configurations, a video task
and its targeted resolution.

Recall that c - denotes the cost of viewer i in taking the pre-recorded video task j
and p . for the probablhty of completing its assigned task before the deadline. Facing this
prlvate information, our goal is to select viewers to complete the task before the deadline.
Since each selected viewer may finish the task any time and transcoding pre-recorded videos
allows interruptibility, it is suboptimal to select redundant viewers to transcode the same
video concurrently in the beginning anymore. On the contrary, since a viewer may not
finish the task before the deadline, it could help if we invoke another viewer when we
think that the previous viewer will miss the deadline. In short, our problem becomes which
viewers to select, and when redundant viewers can be selected to help finishing the task.
The order of viewers for each task also matters now, we thus denote the permutation of all
viewer grouping setting options as D’, replacing the combination result D in the previous

broadcasting workloads. For pre-recorded video tasks, the expected social welfare is

w(n(0;,0-:)) = > (V;A-[[a-pE)) = D e H)

JEN €D’

In our scenario, if the distribution of transcoding time is public information and has the
memoryless property, like the exponential distribution, we may derive a closed form solution
for invocation time given viewer group settings. However, it turns out that distributions of
transcoding time do not necessarily have this property, like the Gamma distribution found in
[101]. Without having distribution with memoryless property or even without knowing the
distribution information of viewers at all, calculating which viewers to choose and when to
select redundant viewers is NP-hard, while solving it sub-optimally endangers our incentive
compatibility. To guarantee our mechanism is still incentive compatibility, we design our
auction to operate in discrete time slots, where the duration of one time slot is determined
according to the duration of channels. In addition, due to limited bandwidth capacity,
management complexity, and diminishing marginal gain by having extra viewers, each task
J in our system is upper bounded by B;. These two settings in turn reduce the feasible
solution space. According to theoretical results in [70], it is then possible to run the optimal
algorithm on this restricted solution space to achieve the incentive compatibility. Based on
this, we can now find out the optimal viewer group setting and the time to invoke redundant
viewers in polynomial time. Calculating payment for each selected viewer still follows the
policy we defined in the previous section only with different calculations for expected social

welfare.

Theorem 11. After reducing the solution space through time discretion and bounding redun-
dancy level, our proposed auction mechanism still guarantees ex-post incentive compatibility

in expectation.

71

Since the determination of time slot and redundancy level is independent of viewers’
type, and our mechanism still finds out the optimal solution under this restricted solution
space (range), namely, our mechanisms find the maximal solution in its range, according to
[70], no viewer can increase its social welfare by misreporting. Our mechanism still guaran-
tees ex-post incentive compatibility.

We will use another toy example to demonstrate how our mechanism work under pre-
recorded video workloads. Suppose we have one transcoding task of value 10, lasting 40
mins. In a 1/2 SLA requirement, this task is expected to be transcoded within 20 mins
after upload. The time slot duration in our system is set to be 10 mins. We also have
three viewers, A, B, and C with type (2,0.3),(4,0.8), (3,0.6), where the probability in the
second item reflects the probability of finishing the task within 10 mins. When we just
greedily select one viewer with the largest expected social welfare to fulfil the task, viewer
B with expected social welfare 10 x 0.8 — 4 = 4 is our choice. However, if we introduce one
more redundant viewer, the optimal choice becomes either BC' or C'B, all with expected
social welfare 4.6. Take BC' as example, the expected social welfare of selecting these two is
10x (1 —-0.2%x0.4) —4 —3 x 0.2 =4.6. This in turn gives us larger social efficiency. Notice
that viewer C' will be invoked only if viewer B failed to finish the task at the end of the
first time slot.

The known worst-case complexity bound on the min-cost flow problem for a graph with
E edges and V nodes is O{ ElogV (E+Vliog(V'))}[73]. Since our system has far more viewers
than broadcasting channels, the overall complexity for running the mechanism in broad-
casting workloads is O{NPlog(N)}. Similarly, for pre-recorded video workloads, covering
at most T time slots, we have the overall complexity equal O{|N|BTP~1}.

5.4 Evaluation

5.4.1 Dataset and Experiment Settings

We collected the channel/broadcaster trace through Twitch’s public API from January
25 to February 27, 2015. This public API provides the game name, viewer number, and
some other related information of every broadcast channel. In the mean time, we further
captured the channel-based viewer trace through connecting to the Internet Relay Chat
(IRC) interface offered by Twitch. This trace contains over 10 million join/leave records
of viewers in certain channels in the same period. We use the price of the instance type,
m4.large, as the cost for transcoding a task in the cloud. m4.large instance is also the
default instance in the transcoding benchmark tests of major streaming hosting providers.
Bids are generated randomly between 0 and this price. Viewers with the bid value higher
than the cloud cost lose its competitive advantage with the cloud as the system can be return
back to the existing cloud-based solution and we are looking for a cost-efficient solution.

The value of a channel is calculated proportional to its accumulated popularity, number

72

“
%b@b@
BRI
RRXRRX]

o o o o o

o Yo} o o

Al ~— -~

uNOo2 Juswubisseal abelany

3500 4000 4500 5000

3000

Number of channels

(a) Average reassignment count in broadcasting workloads

NN

=1

OTOTTOTTOTeTeTOeTee
BRI
B RS]

Z=)
o2eols

o

=

o
=
B
R
RS

ZRIRS
oZateletete

=
X

=2

RRRRERRRRIRINes]
IR IR,
AR
R

o]
RIS
s
R

b4
Hioeossrasssensess

R
atstatesatoretetetet
Dotetotetetetetotetet

B=3 cooood

250 B

o o o o o

o Y] o o

(qV] -~ ~—

unoo |1e} ebeiany

3500 4000 4500

3000

Number of channels

(b) Average fail count in pre-recorded video workloads

Figure 5.4: Impact of redundancy level (varying B)

73

1400

§ 1200
S /*’*/*—/—*
o 1000 | 8
S 800 ’j///i ° ° ’
& Z/
? 600
§ 400 [IM|=3000 —&—
o IM|=3500 —<—
Z 200 IM|=4000 ——
0 | M|=4500
5 10 15 20 25
Time slot size
(a) Average service cost at different channels
2 ‘ ‘
o 0] M[=3000 —o—
S \ IM[=3500 —>—
= X\ |[M|=4000 —*—
2 1500 IM|=4500
q
S
O
o
7]
Q
(o))
o
(]
>
<
0 ! ! !
5 10 15 20 25

Time slot size

(b) Average social welfare at different channels

Figure 5.5: Impact of timeslot size

74

of viewers watching this channel over the entire time span. Default SLA on transcoding
deadline in pre-recorded video workloads is defined to be 1, namely a 150-minute duration
video uploaded at time t is expected to be available in ¢ + 150 time.

Uncertain behaviour For broadcasting workloads, the probability for transcoding an
entire live session is derived from the Pareto distribution with its parameters varying from
0.5 to 0.9 as observed in our trace. This varying likelihood for completing the task reflects
the heterogenous behaviour of viewers in taking our tasks. For pre-recorded video workloads,
we follow the same statistical model as in [101] where transcoding time of a specified file is
determined by its size and a random variable t reflecting the transcoding time of a unit size
segments. The distribution of t can be modelled by a Gamma distribution function in their
study, with the shape parameter ranges from 4.868 to 5.209, and the scale parameter ranges
from 0.101 to 0.145. Since not all viewers are capable of taking the transcoding tasks, we
sample only 1% of viewers from our enormous viewer pool to simulate the eligible viewers
3

Baseline For broadcasting workloads, we compare our solution with a fully cloud-based
approach and a stability-based method where viewers are selected greedily based on its
average historical duration per cost [49]. Similarly, our baseline algorithm in pre-recorded
video workloads is another greedy algorithm, greedy-efficiency, which selects viewers with
the largest probability for finishing the task within the deadline per cost. We set a static
price as thirty percent of the cloud counterpart to motivate viewers in the stability-based
and greedy-efficiency approach.

Metrics To examine the performance of C2, we measure two important metrics: social
welfare and total service cost for both two types of workloads. The first one is the ultimate
optimization goal in our mechanism, reflecting the overall system efficiency. The second
one is the overall cost for covering the transcoding demand of all channels. In addition,
specifically for broadcasting workloads, we also measure reassignment count, which measures
the number of times all transcoding viewers leave the assigned transcoding process. This
reflects the stability of our system. Similarly, for pre-recorded video workloads, we measure
the fail count, which denotes the number of times a channel missed the transcoding deadline.
The reassignment count and the fail count can also be regarded as the metric for the
quality of services for our transcoding service, as the reconnection due to reassigment in
the broadcasting workloads could lead to livecast freezing and failing to transcode the video
before the deadline in the pre-recorded video workloads violates the service-level-agreement

promised by the service.

3According to the Steam and Twitch statistics, roughly 2% Twitch users have PCs with 4-core CPUs
operating at 3.7GHz and above, and DirectX 12 GPUs. Sampling 1% of viewers here is a conservative choice
to test the performance of C2.

75

Stability-based

mmmmm Pure cloud

K
X
o

to%e

J
%

=3
086!

%

7
o2etetete

%%

=
K

OO SOOI OaTesoss
R ey
IR
R R RS

R

TR
]
KRR

RO
QXY
RIS
RS

3000 r
© 2500

1so

90

1500
1000
500

o
o
o
Al

INIBS abeiany

1500 2000 2500
Number of channels

1000

500

(a) Average service cost

R TR RILIXLS

o00s:
R

QK

OO SOOI AT TOTOsHs

K]

QKK
FOOLPIILRLIOIIOLNIONINIIN

Stability-based ez

KRR

rieisledoieisie

ExEETER]
RN

C2 ==
[V

RS

05
R

PRRRAIRRE:
XK

TS

e

XS

R

(4p] Al —

alej|am [e100S abeliany

1500 2000 2500
Number of channels

1000

500

(b) Average social welfare

m
~—
0
]
o]
i)
<
—

Q
=

=Y0]
=
+~
n
o]
O
e
o]
Q
—
e}
—
£

1501

Performance compari

Figure 5.6

76

5.4.2 Sensitivity Analysis

We first conduct sensitivity analysis to see the impact of time slot size and redundancy level
on system performance, and then compare the performance of C2 with baseline approaches.

Impact of redundancy level Fig. 5.4 presents the impact of the redundancy level
on different workload types. For broadcasting workloads in Fig. 5.4a, introducing one more
redundant viewer can already reduce up to 65% reassignment than the baseline situation.
This advantage sustains over 55% in the B = 2 cases. This gain diminishes as the redundant
level increases. The average gain for increasing one more redundant viewers changes from
56% (B =1 to B = 2) to around 25% (B = 2 to B = 3), and eventually drops to 5%
(B = 3 to B = 4). For pre-recorded video workloads in Fig. 5.4b, introducing one more
redundant viewer achieves around 70% less fail count reduction. The marginal benefit of
introducing extra redundant viewers also decreases from 70% to 25% on average. In reality,
small redundancy level like (B=2) may be suffice already considering the extra bandwidth
cost involved for having one more redundant viewer per task. Different tasks with different
values can be set with different redundancy level to guarantee the balance between cost and
stability.

Impact of time slot size We next examine the impact of time slot size on service cost
and social welfare in pre-recorded video workloads in Fig. 5.5. Service cost for transcoding
the specified number of channels increases with the increase of time slot size. Correspond-
ingly, social welfare of C2 decreases with the increase of time slot size. A smaller time slot
means we can determine when to select redundant viewers in much finer granularity, which
consequently leads to higher social welfare. Similar to the effect of redundant viewers, we
also observe the decreasing of marginal performance gain in service cost and social welfare
cases. On the other hand, setting time slot size too small will greatly increase the solution
space, which could further increase the scheduling overhead. Therefore, it also suggests that
sequential redundancy with coarse time slot granularity is suffice to guarantee the quality

of service of the pre-recorded video workloads.

5.4.3 Comparison with Baseline Methods

Fig. 5.6a presents the service cost for transcoding specified numbers of channels in broadcast-
ing workloads. C2’s exploitation of normal viewers significantly reduces cost when compared
with pure cloud implementation (e.g., by ~ 93% compared to EC2 on-demand instance)
and outperforms static pricing schemes used in stability approach (by & 86%). This demon-
strates the superiority of dynamic pricing in incentivizing viewers without introducing severe
underpricing or overpricing problems. Fig. 5.6b demonstrates that C2 achieves 58% to 62%
more social welfare than the stability-based approach. We omit the graphical presentation
of reassignment count in these situations due to the excess advantage in C2. The reassign-

ment count of the stability-based approach ranges from 220 times in 480 channels to 877

77

T
ey G2

T5.............&
R
SRS SSI IS SISO

Greedy-efficiency

tolateletetetels

R
K
K
R
K:
K
K

9%
2atels

%

mmmmm Pure cloud

zs
o2

=
&

1800

1600 |
1400 |
1200
1000
800
600
400

1S00 82IAI8S abelany

4500 5000

4000
Number of channels

3500

3000

(a) Average service cost

Greedy-efficienc{/ s

C2 =—x1

N

s ostoss

e oo teo e

S
SRR,

B s
1Raotototetetetetetototototototetetetetototok

R

RN

25000

20000
15000
10000

5000

alej|am [e100S abeliany

3500 4000 4500 5000
Number of channels

3000

(b) Average social welfare

2)

Figure 5.7: Performance comparison for pre-recorded video workloads (B

78

times in 2500 channels. On the other hand, C2 just experiences reassignment 8 times in the
2500 cases. It is because that C2 does not rely on average duration history to filter reliable
viewers, instead it directly elicits true probability of finishing the task from viewers.

For pre-recorded video workloads, C2 achieves over 28% service cost reduction in most
cases than the pure cloud approach except when channel number reaches 5000 in Fig. 5.7a.
The average service cost of C2 usually is around 10% more than that of greedy-efficiency
approach. Notably, C2 in this setting procures two viewers for each transcoding task. With a
little more investment in recruiting redundant viewers, C2 achieves at least 41% more social
welfare than the greedy-efficiency approach in Fig. 5.7b. The social welfare gain even reaches
100% more than the greedy-efficiency approach when channel number is 4500. Thanks to the
efficient invocation of redundant viewers, C2 is capable of finishing much more transcoding
tasks than the greedy-efficiency approach when comparing the average fail count. When the
system has 2500 channels, C2 only misses the deadline for 30 times, as compared to 344
times in the greedy-efficiency approach. Overall, C2 keeps achieving 5 times less fail count

than the greedy approach.

5.5 Related Works

Attracted by the elasticity in computing power and the “pay-as-you-go" billing model, cloud
naturally becomes the choice for supporting video transcoding services [41, 17, 65]. Aparicio-
Pardo et al. in [17] study the appropriate target representations for transcoding to maximize
viewers’ satisfaction. Chen et al. in [31] propose a generic cloud renting framework to min-
imize leasing cost through service migration. Gao et al. in [41] present a dynamic resource
provisioning algorithm to minimize the transcoding cost based on task preemption. Li et
al. in [63] propose a on-demand video transcoding system to save up the transcoding cost
while maintaining a robust QoS for viewers.

Driven by the high cost in cloud transcoding, researchers have also studied novel ar-
chitectures to help reduce transcoding cost [94, 61]. Krishnappa et al. in [61] outsource
transcoding tasks to CDN and leverage online transcoding to improve user experience. The
involvement of viewers brings unprecedented level of uncertainty and heterogeneity to com-
puting resources which seldom appears in previous SLA guaranteed clouds. The altruistic
assumption or naive fixed price incentive approaches also could not fully motivate users to
take these computation-intensive tasks and truly reduce cost. In addition, peer transcod-
ing in P2P systems shares some familiarity with our work in leveraging peer nodes to do
transcoding [95]. However, these works mainly focus on how a tree structure can be con-
structed by peer information exchange in a distributed way. Our system still keeps a global
control plane on task scheduling; essentially, each viewer still works as a powerful node to
transcode alone. We focus on addressing the heterogeneity and uncertainty issues by using

auction to do task allocation and incentive provisioning. What is more, cloud component is

79

indispensable to our system due to its critical role in keeping stability and availability for
our applications. Our solution echoes with the emerging paradigm of edge computing [42],
while we do not rely on extra deployment of dedicated edge servers. Our mechanism also of-
fers insights to scheduling in other distributed computing infrastructures with heterogenious
computing power and under the control of different entities.

Auctions have been widely used to solve the resource allocation problem and incentive
issues in varies application scenarios, like crowdsourcing [39], spectrum allocation [33], etc. It
strives to elicit the private information from players through bidding and determines the ap-
propriate reward as incentive. Since most previous auction mechanisms treat user behaviour
as a static status, they are no longer applicable to our scenario due to the stochastic viewer
computing behavior. We instead take a statistical description towards this uncertainty and
incorporate it into our bidding language. There are few research works on addressing incen-
tive problems in video streaming context. We tailor our mechanisms to explicitly meet the
requirements of our studied applications.

The most related work [49] studies a fully crowd transcoding approach. They select stable
altruistic viewers based on the knowledge of viewer distribution. An extension of this work
[108] incorporates auction to provide incentive, but they only apply the existing mechanism
and neglect the uncertain behaviour of viewers after taking the tasks, which could lead
to frequent reconnection and reassignment. We propose a cloud-crowd solution to better
guarantee the practicality of the system and assume no knowledge in viewers’ distribution.
Novel auction mechanisms incorporating the redundancy principle are designed further to

improve stability.

5.6 Summary

In this chapter, we presented a novel transcoding system, C2, with a hybrid architecture
which combines the computing power of cloud and crowd together to accomplish transcod-
ing tasks in the emerging crowd-interactive livecast systems. Facing the heterogeneity of
viewers and the asymmetric information situation, we designed truthful auction mecha-
nisms to select stable viewers for transcoding and tailor redundancy strategies for different
types of workloads. We further proved theoretically that our proposed mechanism achieves
social efficiency, individual rationality, and ex-post incentive compatibility. The trace-driven
simulation demonstrated that our system achieves higher social welfare and lower service

cost than the pure cloud solution.

80

Chapter 6

Conclusion, Lessons Learned, and
Future Work

In this chapter, we conclude this thesis by summarizing its contribution in Section 6.1,
reflect the lessons learned from the design and implementation of our solutions and discuss
the possible future directions for cost-effective multimedia service provisioning in Section
6.2.

6.1 Summary of Contributions

In this thesis, we designed systems to offer cost-effective multimedia services, especially
transcoding services, via exploiting the hidden compute power located in the hand of in-
dependent users. We reveal the potential in these users to improve resource utilization,
cost-efficiency, and latency through examining the traces from the real-world applications.
We apply an algorithmic, game-theoretic approach to jointly provide incentive and system
performance. Specifically,

In cloud instance subletting, we examine the feasibility of subletting underutilized in-
stances to other users with small demand, so that the resource utilization could be improved
further. Our mechanisms provide the best possible competitive ratio in the static case and
beat the state-of-the-art commercial solutions in the more practical dynamic case. We fur-
ther prototyped such a service based on the emerging container techniques, demonstrating
negligible performance loss in such a nested design.

In crowdtranscoding, we involve unstable viewers into the system to provide low la-
tency transcoding services demanded by the emerging crowdsourced livecast services. Our
proposed algorithms successfully select stable users without violating the budget constraint.

In cloud-edge collaborative transcoding, we further incorporate the uncertainties of view-
ers into the mechanism design process and mitigate the effect of such uncertainty on the

systems by applying the redundancy principle. Our proposed probabilistic auction mecha-

81

nisms successfully improve the stability of a cloud-edge collaborative transcoding system.

Eventually, it delivers a cost-effective stable transcoding service.

6.2 Lessons Learned and Future Works

We now first present several lessons learned over the process of conducting this research.
We then present our thoughts on possible directions in the future.

No universal solution Our cloud subletting services and the collaborative transcoding
services all demonstrate the great potential of dynamic pricing in cost reduction, resource
utilization improvement in the cloud scenarios. Such a potential can only be unleashed by
carefully designing the corresponding mechanisms to provide enough incentive and satisfy
the context-dependent constraints simultaneously (e.g., dynamic multiple multiple knap-
sacks in cloud subletting, uncertain viewers in the collaborative transcoding cases). The
selected economic properties in our thesis are usually economic efficiency, individual ratio-
nality, and truthfulness. There are other important properties like collusion-free, fairness.
We regard mechanisms that satisfy these extra properties as the future work.

Existing researchers usually solve resource allocation problems and pricing problems
independently. Their pricing solutions mainly aim at maximizing the provider’s revenue
or profit given the knowledge of user’s utility function. Their resource allocation solutions
mainly focus on allocating resources fairly among multiple admitted users or allocate re-
source requests into the minimum number of servers to increase resource utilization. On
the other hand, pricing has always been advocated by economists as a powerful tool to lead
the market, influences demand and supply, and allocate resources more efficiently. In previ-
ous communication networks, services are governed by several monopolies, and the growth
of demand is quite predictable. Price thus is usually determined based on potential com-
petition, not real competition. In contrast, the convenience in accessing computing power
through thes cloud has freed the demand of users; advanced communication technology en-
ables users to signal their voice, more flexible pricing schemes become a possible option to
confront the exponential growth in demand. Separation pricing from engineering scheduling
problem gives up the opportunity to influence users’ demand to achieve greater engineering
goals like more efficiency in resource utilization, alleviating server burden, etc. Obviously,
there is no panacea of mechanisms that can handle all incentive-involving problems. Identi-
fying the unique characteristics in different scenarios, formulating them into mathematical
languages, and solving them using algorithmic game theory, is challenging and interesting,
and serve as the key contribution to this field.

Need for simplicity In the short term, we believe that what possibly could barrier
novel pricing schemes from being deployed is its complexity in rules. A pricing scheme with
desirable economic properties could have a bigger impact if it is also relatively simple and

easy to understand to human beings in the current stage. For most users, they are more

82

accustomed to easy pricing schemes (e.g., fixed pricing), which are easy for users to finish
cost management and planning. Though co-designing pricing with resource allocation has
great potential in improving social welfare and resource utilization. Researchers in [72] have
already argued that, in communication networks, when service costs decrease, providers
will primarily consider improving usage, which usually requires simple pricing schemes.
This motivation prevails over the need to operate a network at high utilization levels. This
may still hold true for cloud computing.

The author is not indicating that flexible pricing (e.g., auction-based pricing) is useless
in real life. In fact, we can easily find such systems in ride-sharing, ad selling for search
engines, and even cloud computing (Amazon AWS). However, it may not be reasonable
to assume that such a dynamic pricing scheme will replace the static ones. Rather, the
author believes that novel pricing schemes like these would serve as the complement to the
mainstream pricing schemes. Even further, with the decreasing barriers in signalling for
users due to the increasing advances in communication techniques. Providers can access
real, accurate feedback from users so that their preference can be revealed like in Uber case.
With the advances in machine learning techniques, the software agent that automate this
complex bidding or bargaining process may further make these complicated, yet effective,
pricing schemes more prevalent.

Need for fairness Though auction demonstrates its great capability in efficiently allo-
cating resources and determining the price. There is a concern that the allocation outcome
determined by this utilitarian approach resulting in a large difference in pay-off among
agents. If considering the repetition of auctions, when a subgroup of users keeps experienc-
ing failure in each round, namely, starvation for some players, it may further affect their
motivation in joining the further auction, which may degenerate the competitiveness of the
environment. Therefore, fairness (envy-free) starts to attract researchers’ attention even
from an auction approach perspective.

For future work, the evolve of the cloud services and the form of the multimedia services
all generate new opportunities and problems that calls for attention.

Practical cloud-edge systems for low-latency services The emerging interaction-
rich or mission-critical applications, including AR, autonomous driving, etc., all require
low-latency support from the computing and networking infrastructure. This direction could
further be divided into two dimensions: cloud-side optimization and cloud-edge collabora-
tion. In the first one, cloud itself is evolving from lower-level Infrastructure-as-a-service (e.g.,
virtual machines) to higher-level function-level services (e.g., serverless computing). Server-
less computing is expected to dominant cloud computing services due to its better auto-
scaling, platform flexibility, and fine-grained pricing schemes. The application of serverless
computing to the emerging low-latency applications, like live video analytics services still
needs further studying. One of the key challenges is that cloud providers provide serverless

computing at a higher abstraction level, which makes performance modeling and prediction

83

more difficult. This further hinders the performance improvement for serverless computing
to support low-latency services. In the second dimension, edge computing has been widely
recognized as a promising solution to offer low-latency services. However, considering the
limited computation capacity and the uncertain network environment, how to provide sta-
ble, efficient computing services to those computation-hungry, low-latency applications also
needs further studying.

Data-driven mechanism design The convenient of signalling users’ preference makes
it convenient for researchers to collect users’ preference. Based on data collected, it is pos-
sible for researchers to incorporate data driven stochastic model into their mechanism, and
design Bayesian based mechanism where approximate truthfulness can be guaranteed. Fur-
thermore, emerging applications present new requirement for resource provisioning. Among
these, the temporal requirement is the most critical one [56]. How to design mechanisms to
guarantee these new requirements is also interesting and challenging. Combinatorial auction
in the context of cloud computing is still an open challenge. Besides, apart from auctions,
more user-friendly mechanisms are still needed to offer high quality service. Recent works
in auction incorporate the idea of learning approach to predict user’s hidden valuation.
Nazerzadeh et.al in [26] utilize machine learning to derive the whole valuation space. Com-
binatorial mechanisms are further adapted to guarantee efficiency. The profit maximization
problem is modelled as a multi-armed bandits problem in [69]. Deng et.al in [37] discuss
the trade-off between exploitation and exploration when learning to achieve revenue maxi-
mization.

System and networking for machine-centric video applications As machines
now has the capability to process the data and make decisions on their own, previous
protocols that target at improving the quality of service for human users cannot perfectly
serve the requirements from these machine-centric systems anymore. For example, previous
Dynamic Adaptive Streaming over HT'TP (DASH) protocol aims at providing smooth video
playback at the client side via adaptively streaming video chunks with maximum allowable
bitrate under the constraint of varying network conditions. For live video analytics systems
deployed in smart city scenario, the ultimate goal is to answer content-based queries (e.g.,
searching for a target for Amber Alert) with high accuracy, low cost, and low latency.
Transmitting a video chunk from a camera with the maximum allowable bitrate may not
be necessary if this video chunk is similar with previously transmitted video chunks from
the same camera or similar chunks from other cameras in the proximity. This decision
could reduce workloads, save more cost and reduce latency, without introducing too much
accuracy loss. Therefore, algorithms and protocols need to be tailored further to serve the

coming machine-centric intelligent system.

84

Bibliography

[12]

[13]

Amazon ec2 pricing. https://aws.amazon.com/ec2/pricing/.
Amazon EC2 Reserved Instance Marketplace. http://goo.gl/myvRvr.

Creating your own EC2 spot market. http://techblog.netflix.com/2015/09/
creating-your-own-ec2-spot-market.html.

Docker. https://www.docker.com/.

Google cluster data. http://googleresearch.blogspot.com/2010/01/
google-cluster-data.html.

Open Container Initiative. https://www.opencontainers.org/.

Wowza Transcoder Performance Benchmark. https://www.wowza.com/docs/
wowza-transcoder-performance-benchmark, 2015.

The iPhone’s new chip should worry Intel. http://www.theverge.com/2016/9/16/
12939310/iphone-7-al0-fusion-processor-apple-intel-future, 2016.

Uploads Open Beta: Help shape the future of Uploads on Twitch. https://blog.
twitch.tv/uploads-open-beta-now-live-aec0e19259897s£37518783=1, 2016.

Steam Hardware Survey: March 2017. http://store.steampowered.com/hwsurvey,
2017.

Cisco Visual Networking Index. https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
white-paper-c11-741490.html, 2019.

Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz
Steiner, and Zhi-Li Zhang. Unreeling netflix: Understanding and improving multi-cdn
movie delivery. In IEEE INFOCOM, 2012.

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. De-
constructing amazon ec2 spot instance pricing. ACM Transactions on Economics and
Computation, 1(3):16, 2013.

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. The
rise of raas: the resource-as-a-service cloud. Commun. of the ACM, 57(7), 2014.

Ravindra K Ahuja, Thomas L. Magnanti, and James B Orlin. Network flows: theory,
algorithms, and applications. 1993.

85

https://aws.amazon.com/ec2/pricing/
http://goo.gl/myvRvr
http://techblog.netflix.com/2015/09/creating-your-own-ec2-spot-market.html
http://techblog.netflix.com/2015/09/creating-your-own-ec2-spot-market.html
https://www.docker.com/
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
https://www.opencontainers.org/
https://www.wowza.com/docs/wowza-transcoder-performance-benchmark
https://www.wowza.com/docs/wowza-transcoder-performance-benchmark
http://www.theverge.com/2016/9/16/12939310/iphone-7-a10-fusion-processor-apple-intel-future
http://www.theverge.com/2016/9/16/12939310/iphone-7-a10-fusion-processor-apple-intel-future
https://blog.twitch.tv/uploads-open-beta-now-live-aec0e1925989?sf37518783=1
https://blog.twitch.tv/uploads-open-beta-now-live-aec0e1925989?sf37518783=1
http://store.steampowered.com/hwsurvey
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

[16]

[17]

18]

[19]

[20]

[21]

[22]

[28]

[29]

[30]

Bo An, Victor R. Lesser, David E. Irwin, and Michael Zink. Automated negotiation
with decommitment for dynamic resource allocation in cloud computing. In 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),
Toronto, Canada, May 10-14, 2010, Volume 1-3, pages 981-988, 2010.

Ramon Aparicio-Pardo, Karine Pires, Alberto Blanc, and Gwendal Simon. Transcod-
ing live adaptive video streams at a massive scale in the cloud. 2015.

Yossi Azar, Inna Kalp-Shaltiel, Brendan Lucier, Ishai Menache, Joseph Seffi Naor,
and Jonathan Yaniv. Truthful online scheduling with commitments. In Proc. ACM
EC 2015.

Moshe Babaioff, Liad Blumrosen, and Aaron Roth. Auctions with online supply. In
Proc. ACM EC, pages 13-22, 2010.

Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Online
auctions and generalized secretary problems. ACM SIGecom Exchanges, 7(2), 2008.

Luiz André Barroso and Urs Hélzle. The case for energy-proportional computing.
Computer, 40(12), 2007.

Azer Bestavros and Orran Krieger. Toward an open cloud marketplace: Vision and
first steps. IEEE Internet Comput., 18(1), 2014.

Gideon Blocq, Yoram Bachrach, and Peter Key. The shared assignment game and
applications to pricing in cloud computing. In Proc. international conference on
Autonomous agents and multi-agent systems, pages 605—612. International Foundation
for Autonomous Agents and Multiagent Systems, 2014.

Zvi Bodie, Alex Kane, and Alan J Marcus. Essentials of investments. McGraw-Hill,
2013.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, pages 13-16. ACM, 2012.

Gianluca Brero, Benjamin Lubin, and Sven Seuken. Probably approximately efficient
combinatorial auctions via machine learning. In AAAI pages 397405, 2017.

Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and
packing problems. In European Symposium on Algorithms, pages 689-701. Springer,
2005.

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
Borg, omega, and kubernetes. Commun. of the ACM, 59(5), 2016.

Shuchi Chawla, Nikhil R Devanur, Alexander E Holroyd, Anna R Karlin, James B
Martin, and Balasubramanian Sivan. Stability of service under time-of-use pricing.
In Proc. ACM STOC 2017.

Shuchi Chawla, Jason D Hartline, David L Malec, and Balasubramanian Sivan. Multi-
parameter mechanism design and sequential posted pricing. In Proc. ACM STOC
2010.

86

[31]

32]

[33]

[34]

[35]

[36]

[40]

[41]

[42]

[43]

[44]

[45]

Fei Chen, Cong Zhang, Feng Wang, and Jiangchuan Liu. Crowdsourced live streaming
over the cloud. In Proc. IEEE INFOCOM, 2015.

Liuvhua Chen and Haiying Shen. Consolidating complementary vms with
spatial /temporal-awareness in cloud datacenters. In Proc. IEEE INFOCOM, 2014.

Yanjiao Chen, Jin Zhang, Kaishun Wu, and Qian Zhang. Tames: A truthful auction
mechanism for heterogeneous spectrum allocation. In Proc. IEEE INFOCOM, pages
180184, 2013.

N. Chohan et al. See spot run: Using spot instances for mapreduce workflows. In
Proc. USENIX HotCloud, 2010.

Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. The brewing
storm in cloud gaming: A measurement study on cloud to end-user latency. In Proc.
IEEE NetGames, page 2. IEEE Press, 2012.

Deeparnab, Yunhong Zhou, and Rajan Lukose. Budget constrained bidding in key-
word auctions and online knapsack problems. In Proc. WIWWW. 2007.

Xijaotie Deng, Tao Xiao, and Keyu Zhu. Learn to play maximum revenue auction.
IEEE Transactions on Cloud Computing, 2017.

Ludwig Dierks and Sven Seuken. Cloud pricing: the spot market strikes back. In The
Workshop on Economics of Cloud Computing, 2016.

Zhenni Feng, Yanmin Zhu, Qian Zhang, Lionel M Ni, and Athanasios V Vasilakos.
Trac: Truthful auction for location-aware collaborative sensing in mobile crowdsourc-
ing. In Proc. IEEE INFOCOM, pages 1231-1239, 2014.

Guanyu Gao, Han Hu, Yonggang Wen, and Cedric Westphal. Resource provisioning
and profit maximization for transcoding in clouds: A two-timescale approach. IEEE
Trans. Multimedia, 2016.

Guanyu Gao, Yonggang Wen, and Cedric Westphal. Dynamic resource provisioning
with qos guarantee for video transcoding in online video sharing service. In Proc.

ACM MM, pages 868-877, 2016.

Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo Hi-
gashino, Adriana lamnitchi, Marinho Barcellos, Pascal Felber, and Etienne Riviere.
Edge-centric computing: Vision and challenges. ACM SIGCOMM Computer Com-
munication Review, 45(5):37-42, 2015.

Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, and Esa
Hyytia. Reducing latency via redundant requests: Exact analysis. ACM SIGMET-
RICS Performance Evaluation Review, 43(1):347-360, 2015.

A. Ghodsi et al. Dominant resource fairness: Fair allocation of multiple resource types.
In Proc. USENIX NSDI, volume 11, pages 24-24, 2011.

Gagan Goel, Vahab Mirrokni, and Renato Paes Leme. Clinching auctions with online
supply. Games and Economic Behavior, 2015.

87

[46]

[47]

[48]

[49]

Ajay Gopinathan, Zongpeng Li, and Chuan Wu. Strategyproof auctions for balanc-
ing social welfare and fairness in secondary spectrum markets. In INFOCOM, 2011
Proceedings IEEE, pages 3020-3028. IEEE, 2011.

William A Hamilton, Oliver Garretson, and Andruid Kerne. Streaming on twitch:
fostering participatory communities of play within live mixed media. In ACM CHI,
2014.

Qiyun He, Cong Zhang, and Jiangchuan Liu. Utilizing massive viewers for video
transcoding in crowdsourced live streaming. In IEEE Cloud, 2016.

Qiyun He, Cong Zhang, and Jiangchuan Liu. Crowdtranscoding: Online video
transcoding with massive viewers. IEEE Transactions on Multimedia, 19(6):1365—
1375, 2017.

Ashraf Anwer Hossain and Eui-Nam Huh. Refundable service through cloud broker-
age. In Proc. IEEE CLOUD, 2013.

Hao Hu, Yang Guo, and Yong Liu. Peer-to-peer streaming of layered video: Effi-
ciency, fairness and incentive. IEEE Transactions on Circuits and Systems for video
Technology, 21(8):1013-1026, 2011.

Navendu Jain, Ishai Menache, Joseph Seffi Naor, and Jonathan Yaniv. Near-optimal
scheduling mechanisms for deadline-sensitive jobs in large computing clusters. ACM
Transactions on Parallel Computing, 2(1):3, 2015.

Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Brendan Lucier, and Ishai Men-

ache. Dynamic pricing and traffic engineering for timely inter-datacenter transfers.
SIGCOMM, 2016.

Hai Jin, Xinhou Wang, Song Wu, Sheng Di, and Xuanhua Shi. Towards optimized
fine-grained pricing of iaas cloud platform. IEEE Trans. Cloud Comput., 3(4), 2015.

Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. Multiresource allocation:
Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM Transactions on
Networking (TON), 21(6):1785-1798, 2013.

Ian A Kash and Peter B Key. Pricing the cloud. IEEE Internet Computing, 20(1):36—
43, 2016.

Mehdi Kaytoue, Arlei Silva, Loic Cerf, Wagner Meira Jr, and Chedy Raissi. Watch
me playing, I am a professional: a first study on video game live streaming. In ACM
WWW, 2012.

Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. 2004.

Seungcheol Ko, Seongsoo Park, and Hwansoo Han. Design analysis for real-time video
transcoding on cloud systems. In Proc. ACM SAC, pages 1610-1615, 2013.

S Shunmuga Krishnan and Ramesh K Sitaraman. Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs. IEEE/ACM
Transactions on Networking, 21(6):2001-2014, 2013.

88

[61]

[62]

[63]

[65]

[66]

Dilip Kumar Krishnappa, Michael Zink, and Ramesh K Sitaraman. Optimizing the
video transcoding workflow in content delivery networks. In Proc. ACM MMSys,
pages 37-48, 2015.

Baochun Li, Zhi Wang, Jiangchuan Liu, and Wenwu Zhu. Two decades of internet
video streaming: A retrospective view. ACM Trans. on Multimedia Comput., Com-
mun., and Appl., 9(1s):33, 2013.

Xiangbo Li, Mohsen Amini Salehi, Magdy Bayoumi, Nian-Feng Tzeng, and Rajkumar
Buyya. Cost-efficient and robust on-demand video transcoding using heterogeneous
cloud services. IEEE Transactions on Parallel and Distributed Systems, 29(3):556—
571, 2018.

Zhenyu Li, Gaogang Xie, Mohamed Ali Kaafar, and Kave Salamatian. User behavior
characterization of a large-scale mobile live streaming system. In Proc. ACM WWW,
pages 307-313, 2015.

He Ma, Beomjoo Seo, and Roger Zimmermann. Dynamic scheduling on video
transcoding for mpeg dash in the cloud environment. In Proc. ACM MMSys, 2014.

Ming Ma, Lei Zhang, Jiangchuan Liu, Zhi Wang, Weihua Li, Guangling Hou, and
Lifeng Sun. Characterizing user behaviors in mobile personal livecast. In ACM NOSS-
DAV, pages 4348, 2017.

Sabita Maharjan, Yan Zhang, and Stein Gjessing. Optimal incentive design for cloud-
enabled multimedia crowdsourcing. IEEE Trans. Multimedia, 18(12):2470-2481, 2016.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics, pages 1273-1282, 2017.

Hamid Nazerzadeh, Renato Paes Leme, Afshin Rostamizadeh, and Umar Syed. Where
to sell: Simulating auctions from learning algorithms. In Proceedings of the 2016 ACM
Conference on Economics and Computation, pages 597-598. ACM, 2016.

Noam Nisan and Amir Ronen. Computationally feasible vcg mechanisms. J. Artif.
Intell. Res.(JAIR), 29:19-47, 2007.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic game
theory, volume 1. Cambridge University Press Cambridge, 2007.

Andrew Odlyzko. Internet pricing and the history of communications. Computer
networks, 36(5-6):493-517, 2001.

James B Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
research, 41(2):338-350, 1993.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algo-
rithms and complexity. Courier Corporation, 1982.

Karine Pires and Gwendal Simon. Dash in twitch: Adaptive bitrate streaming in live
game streaming platforms. In ACM VideoNext, 2014.

89

[76]

[77]

[78]

[81]

[82]

[83]

Xuanjia Qiu, Chuan Wu, Hongxing Li, Zongpeng Li, and Francis Lau. Federated
private clouds via broker’s marketplace: A stackelberg-game perspective. In Proc.
IEEE CLOUD, 2014.

Nihar B Shah, Kangwook Lee, and Kannan Ramchandran. When do redundant re-
quests reduce latency? IEEE Trans. Commu., 64(2):715-722, 2016.

Bikash Sharma, Victor Chudnovsky, Joseph L Hellerstein, Rasekh Rifaat, and Chita R
Das. Modeling and synthesizing task placement constraints in google compute clusters.
In Proceedings of the 2nd ACM Symposium on Cloud Computing, page 3. ACM, 2011.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

Yaron Singer and Manas Mittal. Pricing mechanisms for crowdsourcing markets. In
Proceedings of the 22nd international conference on World Wide Web, pages 1157—
1166. International World Wide Web Conferences Steering Committee, 2013.

S Stein, EH Gerdinga, AC Rogersa, K Larson, and NR Jennings. Algorithms and
mechanisms for procuring services with uncertain durations using redundancy. Arti-
ficial Intelligence, 175:2021-2060, 2011.

Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and Prashant Shenoy.
Spoton: A batch computing service for the spot market. In Proc. ACM Eurosys, 2015.

John C Tang, Gina Venolia, and Kori M Inkpen. Meerkat and periscope: I stream, you
stream, apps stream for live streams. In Proc. ACM CHI, volume 16, pages 4770-4780,
2016.

Twitch. Twitch retrospective 2015. https://wuw.twitch.tv/year/2015, 2015.
Twitch. Twitch 2016 Retrospective. https://www.twitch.tv/year/2016, 2016.

Luis M Vaquero and Luis Rodero-Merino. Finding your way in the fog: Towards a
comprehensive definition of fog computing. ACM SIGCOMM Computer Communi-
cation Review, 44(5):27-32, 2014.

Hal R Varian. Position auctions. international Journal of industrial Organization,
25(6):1163-1178, 2007.

Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Rat-
nasamy, and Scott Shenker. Low latency via redundancy. In Proc. ACM CoNEXT,
pages 283-294, 2013.

Bolun Wang, Xinyi Zhang, Gang Wang, Haitao Zheng, and Ben Y Zhao. Anatomy
of a personalized livestreaming system. In Proc. ACM IMC, pages 485-498, 2016.

Changjun Wang, Weidong Ma, Tao Qin, Xujin Chen, Xiaodong Hu, and Tie-Yan Liu.
Selling reserved instances in cloud computing. In IJCAI 2015.

Haiyang Wang, Ryan Shea, Xiaoqgiang Ma, Feng Wang, and Jiangchuan Liu. On
design and performance of cloud-based distributed interactive applications. In Proc.
IEEE ICNP, pages 37-46, 2014.

90

https://www.twitch.tv/year/2015
https://www.twitch.tv/year/2016

[92]

[93]

[94]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Hongyi Wang, Qingfeng Jing, Bingsheng He, Zhengping Qian, and Lidong Zhou. Dis-
tributed systems meet economics: pricing in the cloud. 2010.

Wei Wang, Di Niu, Baochun Li, and Ben Liang. Dynamic cloud resource reservation
via cloud brokerage. In Proc. IEEE ICDCS, 2013.

Zhi Wang, Lifeng Sun, Chuan Wu, Wenwu Zhu, and Shigiang Yang. Joint online
transcoding and geo-distributed delivery for dynamic adaptive streaming. In Proc.
IEEE INFOCOM, 2014.

Jui-Chieh Wu, Polly Huang, Jason J Yao, and Homer H Chen. A collaborative
transcoding strategy for live broadcasting over peer-to-peer iptv networks. IFEFE
Transactions on Circuits and Systems for Video Technology, 21(2):220-224, 2011.

Xiaomeng Yi, Fangming Liu, Zongpeng Li, and Hai Jin. Flexible instance: Meeting
deadlines of delay tolerant jobs in the cloud with dynamic pricing. In Proc. IEEE
ICDCS, 2016.

Xiaomeng Yi, Fangming Liu, Zongpeng Li, and Hai Jin. Flexible instance: Meeting
deadlines of delay tolerant jobs in the cloud with dynamic pricing. In Proc. IEEE
ICDCS, 2016.

Cong Zhang and Jiangchuan Liu. On crowdsourced interactive live streaming: a
twitch. tv-based measurement study. In ACM NOSSDAV, 2015.

Hong Zhang, Bo Li, Hongbo Jiang, Fangming Liu, Athanasios V Vasilakos, and
Jiangchuan Liu. A framework for truthful online auctions in cloud computing with
heterogeneous user demands. In Proc. IEFE INFOCOM. 2013.

Linquan Zhang, Zongpeng Li, and Chuan Wu. Dynamic resource provisioning in cloud
computing: A randomized auction approach. In Proc. IEEE INFOCOM, 2014.

Weiwen Zhang, Yonggang Wen, Jianfei Cai, and Dapeng Oliver Wu. Toward transcod-
ing as a service in a multimedia cloud: Energy-efficient job-dispatching algorithm.
IEEE Trans. vehicular technology, 63(5):2002-2012, 2014.

Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis CM Lau. On-
line auctions in iaas clouds: Welfare and profit maximization with server costs. In
IEEE/ACM Transactions on Networking, 2017.

Xiaoxi Zhang, Chuan Wu, Zongpeng Li, and Francis C M Lau. A truthful (1-¢)-
optimal mechanism for on-demand cloud resource provisioning. In Proc. IEEE IN-
FOCOM, 2015.

Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang, and Xinyu Wang. How
to bid the cloud. In Proc. ACM SIGCOMM, 2015.

Ruiting Zhou, Zongpeng Li, Chuan Wu, and Zhiyi Huang. An efficient cloud mar-
ket mechanism for computing jobs with soft deadlines. IEEE/ACM Trans. Netw.,
25(2):793-805, 2017.

Y. Zhu, S. Fu, J. Liu, and Y. Cui. Truthful online auction for cloud instance subletting.
In Proc. IEEE ICDCS 2017.

91

[107]

[108]

[109]

Yifei Zhu, Silvery D Fu, Jiangchuan Liu, and Yong Cui. Truthful online auction
toward maximized instance utilization in the cloud. IEEE/ACM Transactions on
Networking, 26(5):2132-2145, 2018.

Yifei Zhu, Qiyun He, Jiangchuan Liu, Bo Li, and Yueming Hu. When crowd meets
big video data: Cloud-edge collaborative transcoding for personal livecast. IFEFE
Transactions on Network Science and Engineering, 2018.

Yifei Zhu, Jiangchuan Liu, Zhi Wang, and Cong Zhang. When cloud meets uncertain
crowd: An auction approach for crowdsourced livecast transcoding. In Proc. ACM
MM, pages 1372-1380, 2017.

92

Appendix A

Proof

A.1 Proof of Theorem 1

We present a polynomial-time reduction from the multidimensional 0-1 Knapsack Problem,
an NP-hard problem [58]. The multidimensional Knapsack problem is defined as:

maxeiCi s.t. Za,;’jxi < bj,Vj; €; € {0, 1}. (Al)
7)

Consider a special case of our problem. When we have only one instance and this instance
stays in the market long enough to satisfy all time requirements, our problem becomes:

maxZa:ivi s.t. Zdle < Cj,Vj; T € {O, 1}. (A?)

Therefore, if there exists an algorithm that can solve our problem optimally and efficiently,
we can also solve this Knapsack problem in the same way, which is, however, NP-hard.

A.2 Proof of Theorem 2

The unit price for bid 7 only depends on the past demand usage, and independent of current
bid value itself. These are all generalized necessary conditions to ensure truthfulness [71].
Besides that, upon receiving each request, our selection process always maximize the utility
for each bidder and accepts this bid if its utility is greater than zero as can be seen in
our dual subproblem. Therefore, our mechanism falls into the family of sequential posted
price mechanisms, where the auctioneer posts the price to a bidder and bidder responds
accordingly to maximize its utility. Under such take-it-or-leave-it pricing scheme, a bidder
can not improve its utility further after our generated maximized utility option by untruthful
bidding [30]. Specifically, if the bidding price is higher than its true valuation, this bidder
may receive a negative utility, which prohibits it from doing it. If the bidding price is lower
than the true valuation, it may not pass the threshold, leading to possible failure in auction.
Therefore, bidders have no incentive to misreport its bid value. Our mechanism in turn is

93

truthful. As for individual rationality, because we let z; ; = 1 only if the utility for each
bidder is non-negative, our pricing scheme thus naturally guarantees individual rationality.

A.3 Proof of Theorem 3

In the static supply scenario, our studied problem is a multiple multi-dimensional knapsack
problem, where instances are the knapsacks. Given an input sequence 7, we have our algo-
rithm (OA) terminate filling 21, 2o, Z3,...2,, percent of M instances, respectively. Notice
that each Z;(i € M) is comprised of {Z],r € R}. We denote S be the set of requests picked
by the algorithm, this corresponds to Si,Ss...5, for each instance respectively. Similarly, we
use S* denote the request set selected by the optimum. Let W] =3, q ~g+ dj be the com-
mon weight (resource demand) of requests j in type r in instance i, and P; = 2 jesings U
be the common value of requests in instance i. According to our algorithm, if a request j is
not admitted, then its value is less than -, A(z])d} < 32, A(Z])dj, for all i. We further let
v(Si\S7) = Yje(s,\s7) vj in instance i.

Due to the monotonicity of function A, we have

OPT(n) _ 3P+ 3, MZ)(C — W)

A3
OAl) = (Pt o(5\87) A
Since we have for all i, P; > 37, 3" icgng+ A2 ;)d;. We thus have
(2 X A+ 2 MZ0)(CF = W)
OPT(T]) < i T jesSns* <A4)

OA(n) — 22 X2 Alz)df +v(5\S5Y))

i T jESNS*

The formular on the right hand side (RHS) is less than and equal to ZZ%T%;Z&)&:) 7

dr r . . .
Each item in the denominator 3> A(z] ;)& = A(2] ;) Q2] = % via an integration.
‘]ES,L), i .

Therefore, we have the RHS in (A.4) less than and equal to In(U/L) + 1, where U =
max U,.,Vr € R. That completes our proof.

A.4 Proof of Theorem 4

Our studied MMKP problem is a generalization of online knapsack problem. Chakrabarty
in [36] et al. already prove that the lower bound of any deterministic online algorithm for
online knapsack problem is at least In(U/L)+1 based on Yao’s minimax principle. If we have
a online algorithm that can achieves a competitive ratio smaller than In(U/L) + 1 for our
studied problem, we can also achieve the same lower bound for the online knapsack problem.
By contradiction, we know that In(U/L) 4+ 1 is also the lower bound for our studied MMKP
problem. Thus the competitive ratio of our online algorithm is tight. That completes the
proof.

94

A.5 Proof of Theorem 5

We prove this negative result by examining all possible decisions a deterministic mechanism
can take towards the adversary cases when two sides of our markets all online. Given an
arriving instance and an arriving request, if the capacity of this instance is allowed to take
the request, any deterministic mechanisms have to decide if this request is allocated to the
instance or not, a binary decision without probability. If the mechanism allocates this request
to the instance, it could happen that the next arriving request with U/L times more value
is rejected since no more instances arrive and capacity is not big enough to accommodate
one more request. Similarly, if the mechanism decides not to allocate this request to the
instance, it could happen that the first arriving request has the largest valuation (U/L times
more) than the rest following requests, and no more instances arrive further. Therefore, any
deterministic mechanism cannot handle these two adversarial situations simultaneously.
This completes the proof. Randomized mechanisms or mechanisms with extra knowledge
in supply/demand distributions may help further improve the situation. We plan to study
these two directions in our future work.

95

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Cost-effective Vidoe Service Provisioning
	Summary of Contributions
	Thesis Organization

	Preliminary
	Resource Allocation and Pricing
	Mechanism Design: Auction as an Example

	Cloud Instance Subletting for Resource Utilization Optimization
	Background and Related Work
	System Model and Problem Formulation
	System Model
	Auction in the Secondary Market: Problem Formulation

	Mechanism Design under Static Supply
	Mechanism Design
	Theoretical Analysis

	Mechanism Design under Dynamic Supply
	Mechanism Design

	Evaluation
	Trace-driven Simulations: the Case of Static Supply
	Trace-driven Simulations: the Case of Dynamic Supply

	Practical Challenges and Prototype Validation
	Summary

	Exploiting Crowd for Low Latency Transcoding
	System Model and Problem Formulation
	Why Delay Matters for Video Services in the New Era?
	System Model
	Problem Formulation

	Crowd-based Video Transcoding
	Baseline Scheduler with Flexible Transcoding Viewers
	Comprehensive Scheduler
	Online Implementation

	Performance Evaluation
	Trace-driven Simulation Configurations and Metrics
	Evaluation Results

	System-level Evaluation
	Prototype Setup
	System Performance Results

	Related Work
	Summary

	Towards Reliable Cloud-Crowd Collaborative Transcoding
	Challenges and Principles
	Why a Cloud-Crowd Collaborative System?
	Why Redundancy Helps?

	System Model and Problem Formulation
	System Model
	Social Welfare Maximization for Cloud-Crowd Collaboration

	Mechanism Design for Cloud-Crowd Collaborative Transcoding
	Transcoding the Broadcasting Workloads in C2
	Transcoding the Pre-recorded Video Workloads in C2

	Evaluation
	Dataset and Experiment Settings
	Sensitivity Analysis
	Comparison with Baseline Methods

	Related Works
	Summary

	Conclusion, Lessons Learned, and Future Work
	Summary of Contributions
	Lessons Learned and Future Works

	Bibliography
	Appendix Proof
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

