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Abstract

Lattice walks in cones have many applications in combinatorics and probability theory. While
walks restricted to the first quadrant have been well studied, the case of non-convex cones and
three-dimensional walks has been systematically approached recently. In this thesis, we extend the
analytic method of the study of walks and its discrete harmonic functions in the quarter plane to
the three-quarter plane applying the strategy of splitting the domain into two symmetric convex
cones. This method is composed of three main steps: write a system of functional equations satisfied
by the generating function, which may be simplified into one single equation under symmetry con-
ditions; transform the functional equation into a boundary value problem; and solve this problem
using conformal mappings. We obtain explicit expressions for the generating functions of walks and
its associated harmonic functions. The advantage of this method is the uniform treatment of mod-
els corresponding to different step sets. In a second part of this thesis, we explore the asymptotic
enumeration of three-dimensional excursions confined to the positive octant. The critical exponent
is related to the smallest eigenvalue of a Dirichlet problem in a spherical triangle. Combinatorial
properties of the step set are related to geometric and analytic properties of the associate spherical
triangle.

Keywords: Enumerative combinatorics; Lattice walks in cones; Discrete harmonic functions; Gen-
erating functions; Boundary value problem; Conformal mapping.
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Résumé

Les marches sur des réseaux dans des cônes ont de nombreuses applications en combinatoire et
en probabilités. Tandis que les marches restreintes au quart de plan ont été très étudiées, le cas
des cônes non convexes et des marches en trois dimensions n’a été systématiquement approché
que récemment. Dans cette thèse, nous étendons la méthode analytique à l’étude des marches et
ses fonctions harmoniques discrètes dans le quart de plan au trois quarts de plan en appliquant la
stratégie de couper le domaine en deux cônes symétriques convexes. Cette méthode est composée de
trois parties : écrire un système d’équations fonctionnelles satisfait par la fonction génératrice, qui
peut être réduit à une seule équation sous des conditions de symétrie ; transformer cette équation
fonctionnelle en problème frontière ; et finalement résoudre ce problème à l’aide de transformations
conformes. Nous obtenons des expressions explicites pour la fonction génératrice des marches et
ses fonctions harmoniques associées. L’avantage de cette méthode est un traitement uniforme des
modèles correspondant à des ensembles de pas différents. Dans la deuxième partie de la thèse,
nous explorons l’asymptotique de l’énumération des excursions tridimensionnelles dans l’octant
positif. L’exposant critique est relié à la plus petite valeur propre d’un problème de Dirichlet dans
un triangle sphérique. Les propriétés combinatoires de l’ensemble de pas peuvent être reliées aux
propriétés géométriques et analytiques du triangle sphérique associé.

Mots clés : Combinatoire énumérative ; Marches sur des réseaux dans des cônes ; Fonctions
harmoniques discrètes ; Fonctions génératrices ; Problème frontière ; Transformation conforme.
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Chapter 1

Introduction

Five trajectories of Dyck 100 step walk

In this thesis we are interested in combinatorial and probabilistic aspects of walks restricted
to cones. From a combinatorial point of view we present results on the enumeration of walks in
three-quarter plane and positive walks in dimension three. From a probabilistic viewpoint, we are
interested in discrete harmonic functions associated to random walks in the three-quarter plane.
As we shall see, random walks and harmonic functions are complementary topics and enrich one
another. We present in this introduction main questions and topics in the study of lattice walks
and discrete harmonic functions. This chapter also includes a list of our original contributions and
a presentation of the main structure of the thesis.

1.1 Lattice walks

Consider the D-dimensional integer lattice ZD and a finite set S ⊂ ZD. A walk is a sequence of
incremental jumps from a given step set S. A walk of length n can be encoded byW = W1W2 . . .Wn

with Wi ∈ S. The walk is with small steps when S ⊂ {−1, 0, 1}D, and is said to be with large or big
steps otherwise. In dimension 1, the only non-trivial small step walks have jumps in S = {−1,+1}
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)
Figure 1.1 – Walks in various cones
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(b) N2
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(c) N3

Figure 1.2 – Some cones of restriction

(see Figure 1.1a). When they are positive, these walks are called Dyck paths and are widely studied
in combinatorics. In two dimensions, we can depict the step set with an arrow diagram: for example
the North direction (0, 1) is denoted by ↑, whereas the South-West step (−1,−1) is represented
as $. Some of two dimensional step sets have names, which we will use within this thesis. We
summarize all of this terminology in Table 2.1. A walk model is a set of allowable steps S together
with a region to which the walk is confined (usually a cone). For example, in dimension one, a walk
can be restricted to the positive axis, in dimension two to the quarter plane, in dimension three to
the positive octant (see Figure 1.2).

Enumeration of lattice walks in cones is a central problem in combinatorics and probability
theory. One of the first uses of lattice paths was the study of the ballot problem [19, 4] where
an election is held between two candidates A and B. We suppose that the candidate A wins the
election with a votes and that the candidate B receives b < a votes. An interesting problem is the
probability that the candidate A will be strictly ahead of B throughout the counting. This question
can be translated into lattice path enumeration: we are interested in the number of Dyck paths
which never touch the x-axis, where the step (1, 1) models a vote for the candidate A and (1,−1)
a vote in favor of the candidate B. Many other discrete Markov chains can be modeled by random
walks, as for instance the famous gambler ruin problem (see Section 1.2). Random walks can also
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model biology populations [24, 47] such as the Galton-Watson process (which was introduced to
investigate the extinction of family names) and birth-and-death processes (which can be related to
Dyck paths where the step +1 stands for the birth and−1 for the death), queues [50, 81, 80, 102] (see
Section 3.4.1) or Markov order-book in finance [51]. Random walks can be linked to representation
theory [20, 22, 21, 23, 59] and potential theory [98, 91, 35]. Numerous combinatorial objects can be
encoded by walks: maps [16], graphs [126], Young tableaux [86], partitions [97], permutations [2, 70].
This variety of examples and applications justifies the profuse interest given to walks in cones.

Many studies have been done on small step lattice paths restricted to a quadrant with various
methods and techniques: combinatorics [109, 41, 106, 107], complex analysis [72, 99, 113, 74, 100,
101], probability theory [58], computer algebra [31, 29], Galois theory of difference equations [62,
61, 63, 60]. Each of these approaches reinforces the other in many ways. Three main topics are
developed:

1. Exact expressions for the generating function of the number of walks. The generating function
can be expressed as infinite series [109], positive part extractions of diagonals [41], contour
integrals on quartics [74, 113], integrals of hypergeometric functions [29];

2. Asymptotic behavior of the number of excursions. Let qSi,j(n) be the number of n-steps excur-
sions joining (0, 0) to (i, j) with step set S within the quadrant. When n goes to infinity, the
behavior of qSi,j(n) is known [41, 74, 58, 34]. Although the full picture is still incomplete, the
asymptotics of the total number of walks is also obtained in several cases [41, 74, 58, 66, 29];

3. Nature of the trivariate generating function. A complete classification has been done for some
convex cones. In the quarter plane, the generating function is D-finite (that is, satisfies a linear
differential equation with polynomial coefficients) if and only if a certain group of birational
transformations is finite [41, 31, 100].

In the whole plane, the half-plane [10] and the quarter plane (intersection of two half planes),
walks are well understood and their structure have been deeply explored. Recently, some variations
of such walks have been developed: walks with larger steps [28] or inhomogeneous walks [12, 127, 45].
Another natural generalization is to consider other domains of restriction and determine how the
framework of walks is different from the quarter plane in this new region.

1.2 Harmonic functions

At first sight, the topic of discrete harmonic functions could seem disjoint from the enumeration
of walks in Section 1.1, but as we shall see, they are strongly related.

A continuous harmonic function is a function for which the standard Laplacien ∆f is zero. For
example, in dimension two, if f is a harmonic function on an open set U ⊂ R2, then f is twice
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R-differentiable and
∆f = ∂2f

∂x2 + ∂2f

∂y2 = 0.

Continuous harmonic functions are important functions in analysis, in particular in the resolution
of partial differential equations. These functions are strongly related to holomorphic functions and
are in particular infinitely differentiable in open sets. They satisfy interesting properties such as,
for example, the maximum principle, the mean value property and in the case of non-negative
harmonic functions, Harnack’s inequalities.

What about discrete harmonic functions? The simplest discrete Laplacian in dimension two is
defined by

∆f(x, y) = f(x− 1, y) + f(x+ 1, y) + f(x, y − 1) + f(x, y + 1)− 4f(x, y). (1.1)

Discrete harmonic functions have, in particular, first been studied in the mid 20th century by
Ferrand [76] and Duffin [65]. After some decades, because of their applications in discrete com-
plex analysis, probability of absorption at absorbing states of Markov chains or the Ising model,
mathematicians like Smirnov [119] have been interested in discrete harmonic functions. Let us
add that discrete harmonic functions satisfy multivariate linear recurrence relations [42], which are
ubiquitous in combinatorics.

Let (Xn)n≥0 be a Markov chain. If P is the probability matrix which describes the transitions
of (Xn)n≥0, then an associated harmonic function is defined by

Pf = f.

To give an elementary example, let (Xn)n≥0 be a positive random walk with small steps. We
denote by p ∈ (0, 1) the probability to perform a right move and q = 1− p a left move (see Figure
1.3). By definition, the associated discrete harmonic function f which vanishes at 0 satisfies Pf = f ,
where

P =



. . . . . . . . .

. . . 0 p 0

. . . q 0 p
. . .

0 q 0 . . .
. . . . . . . . .


.

Thus {
f(i) = pf(i+ 1) + qf(i− 1), ∀i ≥ 1
f(0) = 0.
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0 i i+ 1i− 1

pq

Figure 1.3 – Step probability for a random walk in N

The characteristic polynomial of this induction is px2 − x+ q = 0, with roots 1 and q/p. There are
two different cases:

(i) q
p 6= 1. The roots are distinct and

 f(i) = a+ b
(
q
p

)i
, ∀i ≥ 1,

f(0) = a+ b = 0
a, b ∈ R.

Then for all i ≥ 0, f(i) = a

(
1−

(
q
p

)i)
, a ∈ R.

(ii) q
p = 1. Then 1 is a root of degree two and

{
f(i) = a+ bi, i ≥ 1,
f(0) = a = 0

a, b ∈ R.

Then for all i ≥ 0, f(i) = bi, b ∈ R.

Harmonic functions are computed up to a multiplicative constant.
Consider the simple random walk restricted to N2. The probabilities to make a right, up, left,

down move are all equal to 1/4. Associated discrete harmonics function are defined by

∀(i, j) ∈ N2, f(i, j) = cij, c ∈ R,

and we can easily check that such functions satisfy the discrete Laplacian defined in (1.1). Heuris-
tically, we can consider that the simple random walk in N2 is the cartesian product of two simple
random walks in N [112] whose structure emerges as well in the product form of the harmonic
function expression.

Discrete harmonic functions appear in the computation of probability of absorption at absorbing
states of Markov chains as well. Consider a gambler with initial fortune of i gold coins1. At every
step, the gambler bets 1 gold coin and wins with probability p and loses with probability q = 1−p.
Let Sn be the fortune of the gambler at time n. We have{

Sn = i+
∑n
k=1Xk, if Sn−1 > 0

Sn = 0 otherwise,

1one can pick her or his favorite currency!
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Figure 1.4 – Random walk (Tn)n∈N. This is a Doob transform of a simple random walk over N

where Xk are the random variables defined by

Xk =
{

1 with probability p;
−1 with probability q.

In other words, (Sn)n∈N is a random walk starting at i > 0 absorbed at 0. Let

hi = Pi[∃n ≥ 0 : Sn = 0]

be the probability for the gambler to be ruined in a finite time, or with a random walk point of
view, the probability for the walk to be absorbed at 0 starting from i. Because (Sn)n≥0 is a Markov
chain, for i ≥ 1 we have

hi =Pi[∃n ≥ 0 : Sn = 0]

=Pi[∃n ≥ 0 : Sn = 0|X1 = 1]P[X1 = 1]

+ Pi[∃n ≥ 0 : Sn = 0|X1 = −1]P[X1 = −1]

=pPi+1[∃n ≥ 0 : Sn = 0] + qPi−1[∃n ≥ 0 : Sn = 0]

=phi+1 + qhi−1,

and

h0 = P0[∃n ≥ 0 : Sn = 0] = 1.

Notice that the transition matrix of (Sn)n≥0 is defined by

P = (P (i, j))i,j∈N =


1 0 0 · · · · · · · · ·
q 0 p 0 · · · · · ·
0 q 0 p 0 · · ·
... . . . . . . . . . . . . . . .

 ,

and h = (hi)i≥0 satisfies Ph = h. Then h is a harmonic function associated to (Sn)n≥0.
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Harmonic functions are also a main object in Doob transformations, which are a standard
procedure in probability. From a Markov process and an associated harmonic function we can
define a new random process. For example, let (Sn)n∈N be a simple random walk over Z. The
function V defined by V (i) = i (i ∈ N) is a discrete harmonic function for (Sn)n≥0, for the same
reason as for (ii) above. We define (Tn)n∈N from (Sn)n∈N by P [Tn+1 = i+ 1 | Tn = i] = V (i+1)

2V (i) = i+1
2i ,

P [Tn+1 = i− 1 | Tn = i] = V (i−1)
2V (i) = i−1

2i .

The process (Tn)n∈N is a random walk over N∗. From a simple non-constrained random walk (Sn), we
get a constrained random walk (Tn). However, this new random walk is not spatially homogeneous
(the transition probabilities depend on the space position of the random walk), see Figure 1.4.

In general, finding (positive) harmonic functions is a difficult problem, as hard as solving a
multivariate recurrence. Explicit expressions for positive harmonic functions of random walks in
the quarter plane are given in [114]. In Chapter 4, we obtain an algebraic explicit expression for
harmonic functions associated to random walks avoiding a quadrant.

1.3 Structure of the thesis

The structure of this thesis is schematically summarized in Figure 1.5.

Chapter 2 can be seen as an introductory guide for the other chapters. We present tools and
techniques used in the study of enumeration of walks together with results for walks restricted in
a quadrant. One of the main objects, called the kernel of the walks, is a bivariate polynomial of
degree two which encodes the step set of the walks and appears in various functional equations. The
kernel is central in the analytical method for the resolution of walks via boundary value problems.
We finally recall the notion of group of the walks and review the nature of generating functions of
lattice paths.

Chapter 3 presents original results on walks avoiding a quadrant with an analytic approach.
The advantage of this method is the uniform treatment of models corresponding to different step
sets. After splitting the three quadrants into two symmetric convex cones, the method is composed
of three main steps: write a system of functional equations satisfied by the counting generating
function, which may be simplified into one single equation under symmetry conditions; transform
the functional equation into a boundary value problem; and finally solve this problem, using a
new concept of anti-Tutte’s invariant. The result is a contour-integral expression for the generating
function. Such systems of functional equations also appear in queueing theory, namely, in the Join-
the-Shortest-Queue model (still open in the non-symmetric case), or in the study of walks with
large steps [75, 28].
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Ch. 2 – Preliminaries

Ch.3 – Walks avoiding
a quadrant

based on [115]

Ch. 4 – Harmonic functions
in three quadrants
based on [122]

Ch. 5 – 3-Dimensional positive
lattice walks
based on [26]

Figure 1.5 – Chapter 2 introduces essential materials for the other chapters of this document. Chapter 3
and Chapter 4 present related ideas and techniques on walks in the three-quarter plane and can somehow
be linked. Chapter 5 on walks in dimension three is independent of Chapters 3 and 4

Chapter 4 presents original results on positive discrete harmonic functions with Dirichlet con-
ditions in three quadrants. We extend the method in the quarter plane – resolution of a functional
equation via boundary value problem using conformal gluing function – to the three quarter plane
applying the strategy of splitting the domain into two symmetric convex cones. We obtain an
explicit simple expression for the harmonic functions of random walks avoiding a quadrant.

Chapter 5 presents original results on the critical exponent of the asymptotic enumeration of
three-dimensional excursions confined to the positive octant. In N3, the number of models to con-
sider is huge: more than 11 million. The same natural topics for walks in quarter the plane extend
to walks in N3: exact expression for the generating function of walks, nature of this generating
function and asymptotic behavior. We first review the group classification, the Hadamard factor-
ization and recall some asymptotic results. The critical exponent can be expressed as a function of
the smallest eigenvalue of a Dirichlet problem in a spherical triangle. Combinatorial properties of
the step set are related to geometric and analytic properties of the associated spherical triangle.
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1.4 Contributions

Chapters 3, 4 and 5 are based on original contributions. We itemize them in order of appearance
in this thesis.

• On walks avoiding a quadrant, with K. Raschel.
The Electronic Journal of Combinatorics, 26(P3.31):1–34, 2019;
arXiv:1807.08610:1-32
In this article we develop an analytic approach for the enumeration of walks avoiding a
quadrant and obtain contour-integral expression for the generating function of walks.

• Discrete harmonic functions in the three-quarter plane.
arXiv:1906.08082:1-26, 2019.
In this article we obtain an explicit algebraic expression for the generating function of har-
monic functions associated to random walks avoiding a quadrant.

• 3D positive lattice walks and spherical triangles, with B. Bogosel, V. Perrollaz and K.
Raschel.
arXiv:1804.06245:1-41, 2018.
The critical exponent can be related to the smallest eigenvalue of a Dirichlet problem in a
spherical triangle. In this article, we link combinatorial properties of the step set to geometric
and analytic properties of the associated spherical triangle.
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Chapter 2

Preliminaries

A Gessel 10,000 step walk in the quarter
plane

As we have seen in Chapter 1, the study of lattice walks can be divided into three principal
questions 1, 2 and 3. We present in this chapter tools and techniques which answer them. Unless
explicitly mentioned, all walks will have small steps, i.e., jumps in {−1, 0, 1}2\(0, 0). A priori, there
are 28 = 256 step sets (see Table 2.1 for some examples). In the whole plane or the half-plane [10],
walks are well understood. In the quarter plane

Q =
{

(i, j) ∈ Z2 : i ≥ 0 and j ≥ 0
}

= N2, (2.1)

see Figure 1.2b, Bousquet-Mélou and Mishna [41] have reduced this number to 79, removing the
empty walk and models equivalent to walks in the half-plane, then identifying isomorphic models
as symmetric models for example.

Consider walks with step set S. We denote by qi,j(n) the number of paths within Q of length
n, starting at (0, 0) and ending at (i, j). The generating function of walks restricted to a quadrant

10



A−(y)x−1 A0(y) A+(y)x B−(x)y−1

B0(x)

B+(x)y

Figure 2.1 – Decomposition of the inventory polynomial (2.4)

Q(x, y) is defined by
Q(x, y) =

∑
n≥0

∑
(i,j)∈N2

qi,j(n)xiyjtn, (2.2)

with 0 < t < 1/|S| to ensure series convergence when the formal power series are interpreted as
functions.

2.1 Exact expressions for the generating functions of the walk

2.1.1 Functional equations

In most of the methods, the starting point is to reduce the (enumerating or probabilistic)
problem to the resolution of a functional equation. Classically, a functional equation is derived
from the construction of a walk by adding a new step at the end of the walk at each stage.

We introduce the inventory Laurent polynomial for the step set S defined by

S(x, y) =
∑

(i,j)∈S
xiyj . (2.3)

Examples of two-dimensional inventory polynomials are given in Table 2.1. Let us write1

S(x, y) = A−(y)x−1 +A0(y) +A+(y)x = B−(x)y−1 +B0(x) +B+(x)y. (2.4)

The term A−(y)x−1 (resp. B−(x)y−1) represents the steps in the negative x-direction (resp. y-
direction), A0(y) (resp. B0(x)) is for steps without x-direction (resp. y-direction) and A+(y)x
(resp. B+(x)y) stands for steps with positive x-direction (resp. y-direction), see Figure 2.1.

Plane case. Let P (x, y) be the generating function of walks in the plane Z2. Walks in Z2 can be
empty, with generating function 1, or can be composed of a walk in Z2 added with a new step from

1Note that the notations are slightly different from those in [41]. For more consistence between the walks in two
dimensions in Chapters 2 and 3 and walks in three dimensions in Chapter 5, we rather use in the whole thesis the
notations of [27].
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# Name of the model Arrow diagram Inventory S(x, y)

1.1 Simple x+ y + x−1 + y−1

1.2 Diagonal xy + x−1y + x−1y−1 + xy−1

1.4 King x+ xy + y + x−1y + x−1 + x−1y−1 + y−1 + xy−1

2.1 Tandem x+ x−1y + y−1

2.3 Kreweras xy + x−1 + y−1

2.4 Reverse Kreweras x+ y + x−1y−1

2.5 Double Kreweras x+ xy + y + x−1 + x−1y−1 + y−1

3.1 Gessel x+ xy + x−1 + x−1y−1

3.2 Gouyou-Beauchamps x+ x−1y−1 + x−1 + xy−1

Table 2.1 – Terminology of some two-dimensional walks. We follow the numbering from [41].

the step set, that is tS(x, y)P (x, y). The functional equation of walks in the plane is then

P (x, y) = 1 + tS(x, y)P (x, y). (2.5)

The plane case, and more generally the unconstrained case in ZD, is definitely the simplest case:
an expression of P (x, y) can directly be derived from the functional equation (2.5). For example,
for the simple step set (see model 1.1 in Table 2.1), P (x, y) = 1

1−t(x+x−1+y+y−1) .

Half-plane case. Consider now walks restricted in the half-plane Z×N with generating function
G(x, y). A walk ending in the upper half-plane can be empty, with generating function 1, can be
composed of a half-plane walk added with a new step giving tS(x, y)G(x, y) and walks going out
of the cone tB−(x)y−1G(x, 0) need to be removed. The functional equation of walks restricted to
the upper half-plane can be written as

G(x, y) = 1 + tS(x, y)G(x, y)− tB−(x)y−1G(x, 0). (2.6)

12
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i i+ 1i− 1

xx−1

Figure 2.2 – Positive walk in dimension one

This equation is slightly more complex than the plane case (2.5). However, because the positive
constraint is on only one axis, walks in the a half-plane can be related to walks in N (see Figure 1.2a).
Let us point out that even if both problems have a one-dimensional constraint, generating functions
of walks in the half-plane have three variables x, y and t (unlike the one dimensional case with
two variables x and t) and is therefore a slightly more complicated problem. Let us present here a
resolution of one-dimensional constraint walk.

We consider the walk with step inventory S(x) = x+ x−1 over the positive half-line. Let qi(n)
be the number of walks starting at the position i, of length n and Q(x) its generating function
defined by

Q(x) =
∑
i,n≥0

qi(n)xitn.

By a step by step construction (see Figure 2.2), we can write the following functional equation

Q(x) = 1 + t(x+ x−1)Q(x)− tx−1Q(0),

which can be rewritten as
Q(x)K(x) = −x+ tQ(0), (2.7)

with the kernel defined by K(x) = tx2 − x+ t which vanishes at x = x1 and x = x2 defined by

x1 = 1−
√

1− 4t2
2t = t+ t3 + 2 t5 +O

(
t7
)
,

x2 = 1 +
√

1− 4t2
2t = t−1 − t− t3 − 2 t5 +O

(
t6
)
.

We evaluate the functional equation (2.7) at x = x1 and we get2 Q(0) = x1/t. Finally

Q(x) = −x− x1
K(x) = 1− 2xt−

√
1− 4 t2

(2x2 + 2) t2 − 2xt = 1 + xt+ (1 + x2)t2 + (2x+ x3)t3 +O
(
t4
)
.

Quadrant case. We derive a functional equation for Q(x, y) defined in (2.2) by taking into
account all possible endpoints in the quadrant. We illustrate this construction with Figure 2.3 in
the particular case of the king walk. The empty walk 1 ends in the quadrant. Then, we may add

2Being a power series, Q(0) can not be expressed in terms of x2.
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a step from S to walks ending in the quadrant, yielding in (2.8) the term tS(x, y)Q(x, y), see the
third picture in Figure 2.3. Walks going out of the quadrant need to be removed, giving rise in (2.8)
to the terms tB−(x)y−1Q(x, 0) (positive x-axis) and tA−(y)x−1Q(0, y), see the fourth and the fifth
pictures in Figure 2.3. We finally add the term tδ−1,−1x

−1y−1Q(0, 0) which was subtracted twice,
corresponding to the rightmost picture in Figure 2.3. In the general case, for a step set S we end
up with the functional equation (where δ−1,−1 = 1 if (−1,−1) ∈ S and 0 otherwise):

Q(x, y) = 1 + tS(x, y)Q(x, y)− tB−(x)y−1Q(x, 0)− tA−(y)x−1Q(0, y)

+ tδ−1,−1x
−1y−1Q(0, 0). (2.8)

Unlike the half-plane case (2.6), the functional equation in the quadrant case (2.8) involves both
Q(x, 0) and Q(0, y) sections. This functional equation can be solved with various methods, each
of them giving a different expression for the generating function of walks, see references in topic 1
of Section 1.1. We present in Section 2.1.2 an analytic method to solve the functional equation of
walks in the quadrant (2.8) and get explicit integral expressions for the generating function Q(x, y).

= + − − +

Figure 2.3 – Illustration of the functional equation (2.8) for the example of the king walk. We construct a
walk by adding a new step (in dotted red) at each stage. The right-hand side describes the different ways to
end in the positive quadrant making sure to remove the walks going out of quadrant

The large step case is more complicated and involves more terms (see [28, Sec. 2]). In dimension
two, where Q(x, y) is the generating function of walks in the quadrant, xiQi,−(y) (resp. yjQ−,j)
counts walks ending at abscissa i (resp. ordinate j), and Qi,j the length generating function of
walks ending at (i, j), the functional equation can be written as3

Q(x, y) = 1 + tS(x, y)Q(x, y)

− t
∑

(k,l)∈S
xkyl

 ∑
0≤i<−k

xiQi,−(y) +
∑

0≤j<−l
yjQ−,j(x)−

∑
0≤i<−k
0≤j<−l

xiyjQi,j

 . (2.9)

Three-quadrant case. The construction of the functional equation of the generating function
of walks in the three-quadrant C(x, y) (see (3.1)) is similar to the previous cases. We illustrate this
construction with Figure 2.4 in the particular case of the king walk. Let δ−1,−1 = 1 if (−1,−1) ∈ S

3In this thesis we take the convention K(x, y) = −xyK̃(x, y), where K̃(x, y) is the kernel defined in [28, Sec. 2].
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and 0 otherwise. The empty walk 1 ends in the three-quadrant, see the first picture in Figure
2.4 as well as walks in the three-quadrant to which we add a step from S with generating func-
tion tS(x, y)Q(x, y), see the second picture in Figure 2.4. Walks going out of the three-quadrant
tB−(x)y−1C−0(x−1) and tA−(y)x−1C0−(y−1) need to be removed, see the third and the fourth
pictures in Figure 2.4. We finally add the term tδ−1,−1x

−1y−1Q(0, 0) which was subtracted twice,
corresponding to the rightmost picture in Figure 2.4. This gives the following formal functional
equation

C(x, y) = 1 + tS(x, y)C(x, y)− tB−(x)y−1C−0(x−1)− tA−(y)x−1C0−(y−1)

+ tδ−1,−1x
−1y−1C(0, 0). (2.10)

Due to convergence issues when the formal power series are interpreted as functions, the three-
quadrant case is however more complicated and therefore more difficult to work with. Walks in
three-quadrant are developed in Chapter 3.

= + − − +

Figure 2.4 – Different ways to end in the three-quadrant (example of the king walk)
Illustration of the functional equation (2.10) for the example of the king walk. The right-hand
side describes the different ways to end in the three-quadrant making sure to remove the walks

going out of the three-quadrant

2.1.2 Analytic method in the quadrant case

We present here the analytic approach of [113] which consists in transforming the functional
equation (2.8) into a boundary value problem on a curve depending on the step set. The result is a
contour-integral expression for the generating function. In the 70’s Malyshev in Russia then Fayolle
and Iasnogorodski in France first used an analytic method via boundary value problem to solve
a functional equation satisfied by generating functions of stationary probability of random walks
[72].

The kernel of the model (2.12) is a main object we can use to transform a functional equation
into a boundary value problem. We are interested in the Riemann surface of the zeros of the
polynomial K(x, y). The zeros of the kernel are defined by two algebraic functions (2.16), one over
the complex plane Cx and the other over Cy. Each of these functions has branches which, when they
are evaluated between two branch points, define the curves of the boundary value problem. More
details on this method can be found in [72, 113].
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Kernel and functional equation. We start from the functional equation (2.8). After multipli-
cation by xy, we get

K(x, y)Q(x, y) = −xy + tB−(x)xQ(x, 0) + tA−(y)yQ(0, y)− tδ−1,−1Q(0, 0), (2.11)

where the polynomial on the left-hand side

K(x, y) = xy [tS(x, y)− 1] (2.12)

is called the kernel of the walk. It encodes the elements of S (the steps of the walks). In the 2D
small step case, K(x, y) is a polynomial of degree two in x and y. We can rewrite it as:

K(x, y) = ã(y)x2 + b̃(y)x+ c̃(y) = a(x)y2 + b(x)y + c(x), (2.13)

where4: {
a(x) = tx

∑
(i,1)∈S x

i; b(x) = tx
∑

(i,0)∈S x
i − x; c(x) = tx

∑
(i,−1)∈S x

i;
ã(y) = ty

∑
(1,j)∈S y

j ; b̃(y) = ty
∑

(0,j)∈S y
j − y; c̃(y) = ty

∑
(−1,j)∈S y

j .
(2.14)

We also define the discriminants in x and y of the kernel (2.12):

d̃(y) = b̃(y)2 − 4ã(y)c̃(y) and d(x) = b(x)2 − 4a(x)c(x). (2.15)

The discriminant d(x) (resp. d̃(y)) in (2.15) is a polynomial of degree three or four. Hence it admits
three or four roots (also called branch points) x1, x2, x3, x4 (resp. y1, y2, y3, y4), with x4 =∞ (resp.
y4 =∞) when d(x) (resp. d̃(y)) is of degree 3.

Lemma 1 (Sec. 3.2 in [113]). Let t ∈ (0, 1/|S|). The branch points xi, which depend on t, are real
and distinct. Two of them (say x1 and x2) are in the open unit disc, with x1 < x2 and x2 > 0. The
other two (say x3 and x4) are outside the closed unit disc, with x3 > 0 and x3 < x4 if x4 > 0. The
discriminant d(x) is negative on (x1, x2) and (x3, x4), where if x4 < 0, the set (x3, x4) stands for
the union of intervals (x3,∞) ∪ (−∞, x4). Symmetric results hold for the branch points yi.

4The kernel K(x, y) coefficients and the inventory polynomial S(x, y) coefficients are simply related:

a(x) = txB+(x), b(x) = tB0(x)− x, c(x) = txB−(x).

Similar equalities hold for ã(y), A+(y), b̃(y), A0(y), c̃(y) and A−(y).
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x1 x2 x3 x4

(a) Cut plane C \ ([x1, x2] ∪ [x3, x4]), with x4 > 0. Model with step set {E,NE,NW,SW,S}, t = 1/6

y1 y2 y3y4

(b) Cut plane C \ ([y1, y2] ∪ [y3, y4]), with y4 < 0. Model with step set {E,NE,NW,SW,S}, t = 1/6

Figure 2.5 – The functions X0(y) and X1(y) are meromorphic on C \ ([y1, y2] ∪ [y3, y4]);
The functions Y0(x) and Y1(x) are meromorphic on C \ ([x1, x2] ∪ [x3, x4])

Let Y (x) (resp. X(y)) be the algebraic function defined by the relation K(x, Y (x)) = 0 (resp.
K(X(y), y) = 0). Obviously with (2.13) and (2.15) we have

Y (x) = −b(x)±
√
d(x)

2a(x) and X(y) =
−b̃(y)±

√
d̃(y)

2ã(y) . (2.16)

The function Y has two branches Y0 and Y1, which are meromorphic on the cut plane C\ ([x1, x2]∪
[x3, x4]) (see Figure 2.5). On the cuts [x1, x2] and [x3, x4], the two branches still exist and are
complex conjugate (but possibly infinite at x1 = 0, as discussed in Lemma 2). At the branch points
xi, we have Y0(xi) = Y1(xi) (when finite), and we denote this common value by Y (xi).

Fix the notation of the branches by choosing Y0 = Y− and Y1 = Y+ in (2.16). We further fix the
determination of the logarithm so as to have

√
d(x) > 0 on (x2, x3). Then [72, Eq. (5.3.8)] we have

|Y0| ≤ |Y1| (2.17)

on (x2, x3), and as proved in [72, Thm 5.3.3], the inequality (2.17) holds true on the whole complex
plane and is strict, except on the cuts, where Y0 and Y1 are complex conjugate.

A key object is the curve L defined by

L = Y0([x1, x2]) ∪ Y1([x1, x2]) = {y ∈ C : K(x, y) = 0 and x ∈ [x1, x2]}. (2.18)

By construction, it is symmetric with respect to the real axis. We denote by GL the open domain
delimited by L and avoiding the real point at +∞. See Figure 2.6 for some examples. Furthermore,
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x1 x2 x3 x4

C(0, 1)

M

Cy

y1 y2 y3

C(0, 1)

L

Cx

(a) Gessel’s model (t = 1/8)

x1x2 x3 x4

M

Cy

y1y2 y3 y4

L

Cx

(b) Simple model (t ∈ (0, 1/4))

Figure 2.6 – The curves L andM for two models

let L0 (resp. L1) be the upper (resp. lower) half of L, i.e., the part of L with non-negative (resp.
non-positive) imaginary part. Likewise, we defineM = X0([y1, y2]) ∪X1([y1, y2]).

Lemma 2 (Lem. 18 in [17]). The curve L in (2.18) is symmetric with respect to the real axis. It
intersects this axis at Y (x2) > 0.

If L is unbounded, Y (x2) is the only intersection point. This occurs if and only if neither (−1, 1)
nor (−1, 0) belong to S. In this case, x1 = 0 and the only point of [x1, x2] where at least one branch
Yi(x) is infinite is x1 (and then both branches are infinite there). Otherwise, the curve L goes
through a second real point, namely Y (x1) ≤ 0.

Consequently, the point 0 is either in the domain GL or on the curve L. The domain GL also
contains the (real) branch points y1 and y2, of modulus less than 1. The other two branch points,
y3 and y4, are in the complement of GL ∪ L.

Remark 3. When the walk is symmetric (i.e., when S(x, y) = S(y, x)) the curves L andM are the
same. Furthermore, for any model satisfying S(x, y) = S(x−1, y) = S(y, x) (such as the simple step
set), the curves L andM are the unit circle C(0, 1) for all t ∈ (0, 1/4) (see Figure 2.6b).

Lemma 4 (Cor. 5.3.5 in [72]). We have the following automorphism relations:

X0 : GL \ [y1, y2]→ GM \ [x1, x2] and Y0 : GM \ [x1, x2]→ GL \ [y1, y2]
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a

b

U
Φ+

Φ−

Figure 2.7 – Left and right limits on the open contour U

are conformal and inverse of one another.

Let us apply the properties of the kernel (2.12) to the functional equation (2.11). The function
c(x)Q(x, 0) can be holomorphically continued from the open unit disc D to the domain GM ∪ D
[113, Thm 5]. Then, we evaluate the functional equation (2.11) at x = X0(y) for y close to [y1, y2]:

X0(y)y − c(X0(y))Q(X0(y), 0)− c̃(y)Q(0, y) + tδ−1,−1Q(0, 0) = 0.

Letting y go to any point y∗ of [y1, y2] with a positive (resp. negative) imaginary part, we obtain
two new equations with x = limX0(y) when y → y∗ + i0+, x ∈M,

xY0(x)− c(x)Q(x, 0)− c̃(Y0(x))Q(0, Y0(x)) + tδ−1,−1Q(0, 0) = 0,

x̄Y0(x̄)− c(x̄)Q(x̄, 0)− c̃(Y0(x̄))Q(0, Y0(x̄)) + tδ−1,−1Q(0, 0) = 0.

Taking the difference of the two equations and using the automorphism relation of Lemma 4 we
obtain

c(x)Q(x, 0)− c(x̄)Q(x̄, 0) = Y0(x)(x− x̄), x ∈M. (2.19)

With the regularity condition of c(x)Q(x, 0) and the boundary condition (2.19), we say that
the function c(x)Q(x, 0) satisfies a boundary value problem. This kind of boundary problem is also
called a Riemann boundary value problem with a shift of the variable (in our case (2.19), the shift
x denotes the complex conjugate of x).

Riemann boundary value problem. In this paragraph we present the main formulas used
to solve a Riemann boundary value problem5. Our main references are the books of Gakhov [83,
Chap. 2] and Lu [104, Chap. 4].

Suppose that U is an open, smooth, non-intersecting, oriented curve from a to b, see Figure 2.7
for an example. Throughout, for z ∈ U , we will denote by Φ+(z) (resp. Φ−(z)) the limit of a function
Φ as y → z from the left (resp. right) of U , see again Figure 2.7.

Definition 5 (Riemann BVP). Let U be as above. A function Φ satisfies a BVP on U if:

5Boundary Value Problem is abbreviated as BVP.
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• Φ is sectionally analytic, i.e., analytic in C \ U ;

• Φ has finite degree at∞ (the only singularity at∞ is a pole of finite order), and Φ is bounded
in the vicinity of the extremities a and b;

• Φ has left limits Φ+ and right limits Φ− on U ;

• Φ satisfies the following boundary condition

Φ+(z) = G(z)Φ−(z) + g(z), z ∈ U , (2.20)

where G and g are Hölder functions6 on U , and G does not vanish on U .

Let us recall the so-called Sokhotski-Plemelj formulas, which represent a crucial tool to solve
the BVP of Definition 5.

Proposition 6 (Sokhotski-Plemelj formulas). Let U be as above, and let f be a Hölder function
on U . The contour integral

F (z) = 1
2iπ

∫
U

f(u)
u− z

du

is sectionally analytic on C\U . It admits left and right limits values F+ and F−, which are Hölder
functions on U and satisfy, for z ∈ U ,

F±(z) = ±1
2f(z) + 1

2iπ

∫
U

f(u)
u− z

du,

where the very last integral is understood in the sense of Cauchy-principal value, see [83, Chap. 1,
Sec. 12]. This is equivalent to the following equations on U :

F+(z)− F−(z) = f(z),

F+(z) + F−(z) = 1
iπ

∫
L

f(u)
u− z

du.
(2.21)

We also define the following important quantity:

Definition 7 (Index). Let U be as above and let G be the function (continuous on U) as in (2.20).
The index χ of the BVP of Definition 5 is

χ = indU G = 1
2π [argG]U = 1

2iπ [logG]U = 1
2iπ

∫
U

G′(u)
G(u) du.

6A function f satisfies the Hölder condition on a curve U if there exists positive constants µ and M such that for
any two points t1, t2 of U , |f(t2)− f(t1)| ≤M |t2 − t1|µ.
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Plainly, χ represents the variation of argument of G(u) when u moves along the contour U in
the positive direction.

The main result is the following, see [104, Chap. 4, Thm 2.1.2]:

Theorem 8 (Solution of Riemann BVP). Let U and χ be as above. Define also

Γ(z) = 1
2iπ

∫
U

logG(u)
u− z

du,

X(z) = (z − b)−χ exp Γ(z),

ψ(z) = 1
2iπ

∫
U

g(u)
X+(u)(u− z) du,

where the left limits X+, Γ+ of X, Γ are related by

X+(z) = (z − b)−χ exp Γ+(z),

and Γ+ can be computed with the help of Sokhotski-Plemelj formulas, see Proposition 6. Three cases
must be distinguished:

(a) if χ ≥ 0. The solution of the BVP of Definition 5 is given by, for z /∈ U ,

X(z)ψ(z) +X(z)Pχ(z), (2.22a)

where Pχ is an arbitrary polynomial of degree χ.

(b) if χ = −1. The solution of the BVP of Definition 5 is given by, for z /∈ U ,

X(z)ψ(z). (2.22b)

(c) if χ < −1 and the following solvability conditions hold

1
2iπ

∫
U

g(u)uk−1

X+(u) du = 0, k = 1, . . . ,−χ− 1.

The solution of the BVP of Definition 5 is given by, for z /∈ U ,

X(z)ψ(z). (2.22c)

Our boundary condition (2.19) with shift on a closed contour does not look like the boundary
condition (2.20) on an open contour. The key to get back to this type of boundary condition is to
introduce a particular conformal mapping for GM.
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x

x̄

x− iε

x̄ + iε

z
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X(y1) X(y2)

θ

−θ

w

v

U
w(X(y2)) w(X(y1))

w(z)
w(x)

v+(u)

v−(u)

w(x− iε)

w(x̄ + iε)

θ

−θ

Figure 2.8 – Conformal gluing function from GM to C \ U

Definition 9 (Conformal gluing function). A function w is said to be a conformal gluing function
for the set GM if:

• w is meromorphic in GM and admits finite limits onM;

• w is bijective on GM to the cut plane C \ U ;

• for all x onM, w(x) = w(x).

Respectively, we define w̃ to be a conformal gluing function for the set GL.

Let w be a conformal gluing function for the set GM in the sense of Definition 9, and let U
denote the real segment

U = w(M).

(With this notation, w is a conformal map from GM onto the cut plane C \ U .) The segment U is
oriented such that the positive direction is from w(X(y2)) to w(X(y1)), see Figure 2.8.

Define v as the inverse function of w. The latter is meromorphic on C\U . Following the previous
notation and [72], we denote by v+ and v− the left and right limits of v on U . The quantities v+

and v− are complex conjugate on U , and more precisely, since w preserves angles7, we have for
u ∈ U and x ∈M0

8, {
v+(u) = v+(w(x)) = x,

v−(u) = v−(w(x)) = x,

see Figure 2.8 for an illustration of the above properties.

7 As a conformal function w preserves orientations (and in particular angles, see Figure 2.8)

8M0 is the upper half of the curveM i.e., the part above the real axis.
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With the conformal mapping defined in Definition 9, we can transform the Riemann boundary
value problem (2.19) on the countourM into a Riemann boundary value problem on a segment U ,
see Figure 2.8. We have

c
(
v+(u)

)
Q
(
v+(u), 0

)
= c

(
v−(u)

)
Q
(
v−(u), 0

)
+ Y0(v+(u))

(
v+(u)− v−(u)

)
, u ∈ U . (2.23)

Finding w or w̃ is generally not an easy problem. It is as difficult as finding a conformal map
of a given domain. Kurkova and Raschel in [99] and Raschel in [113] found explicit expressions of
w and w̃. In the small step case, the curvesM and L are quartic plane curves and this structure
allows to get expressions of w and w̃ involving elliptic Weierstrass functions. For some models, it
degenerates into a rational expression (for example for the simple walks we can take w(x) = x+ 1

x),
whereas for the Gessel’s walks, the function w is more complicated but algebraic. In the case of an
infinite group, w is non-D-finite [113].

Contour-integral expression. From Theorem 8, solving (2.23) yields to a contour-integral ex-
pression of c(x)Q(x, 0). Up to an additive function of t, we have for u ∈ U :

c(v(u))Q(v(u), 0) = 1
2iπ

∫
U

v+(s)Y0(v+(s))− v−(s)Y0(v−(s))
s− u

du. (2.24)

With the change of variable s = w(x), up to an additive function of t, we have for x ∈ GM:

c(x)Q(x, 0) = 1
2iπ

∫
M
zY0(z) w′(z)

w(z)− w(x) dz. (2.25)

We deduce the following theorem:

Theorem 10. Consider walks with small steps restricted to the quarter plane. The generating
function Q(x, y) has the explicit expression:

Q(x, y) = c(x)Q(x, 0)− c̃(y)Q(0, y)− tδ−1,−1Q(0, 0)− xy
K(x, y) , (2.26)

where:

1. For x ∈ GM, y ∈ GL,

c(x)Q(x, 0)− c(0)Q(0, 0) = 1
2iπ

∫
M
zY0(z)

[
w′(z)

w(z)− w(x) −
w′(z)

w(z)− w(0)

]
dz (2.27)

c̃(y)Q(0, y)− c̃(0)Q(0, 0) = 1
2iπ

∫
L
zX0(z)

[
w̃′(z)

w̃(z)− w̃(x) −
w̃′(z)

w̃(z)− w̃(0)

]
dz. (2.28)
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2. If c(0) = 0 (when (−1, 1) /∈ S), then

Q(0, 0) = lim
x→0

1
2iπc(x)

∫
M
zY0(z) w′(z)

w(z)− w(x) dz. (2.29)

3. If c(0) 6= 0 (when (−1, 1) ∈ S), then for any (x0, y0) such that |x0| ≤ 1, |y0| ≤ 1 and
K(x0, y0) = 0,

Q(0, 0) = 1
t

[c(x0)Q(x0, 0) + c̃(y0)Q(0, y0)− x0y0] . (2.30)

Example of the simple walk. We apply the previous theorem on the simple step set:
S = {(1, 0), (0, 1), (−1, 0), (0,−1)} (see Table 2.1). This model is symmetric (S(x, y) = S(y, x))
hence the polynomial K(x, y) satisfies K(x, y) = K(y, x). In this example, we have:

{
a(x) = tx; b(x) = tx2 + t− x; c(x) = tx;
ã(y) = ty; b̃(y) = ty2 + t− y; c̃(y) = ty.

(2.31)

The branches of X and Y of the kernel are:

X(y) = 1− t(y + y−1)±
√

(1− t(y + y−1))2 − 4t2
2t (2.32)

and
Y (x) = 1− t(x+ x−1)±

√
(1− t(x+ x−1)2 − 4t2
2t . (2.33)

The functional equation satisfied by the generating function is:

K(x, y)Q(x, y) = txQ(x, 0) + tyQ(0, y)− xy. (2.34)

The model is symmetric and M and L are both the circle C of center (0, 0) and radius 1 (see
Figure 2.6b). We can take w(z) = w̃(z) = 1

2

(
z + 1

z

)
, and w has a pole at 0. Thanks to Theorem 10,

we have the following result:

Q(x, y) = 1
K(x, y)

(
−xy + 1

2iπ

∫
C

z2 − 1
z

Y0(z)
[ 1
z + z−1 − x− x−1 + 1

z + z−1 − y − y−1

]
dz
)

= 1
K(x, y)

(
−xy + 1

2iπ

∫ 2π

0

(
e2iθ − 1

)
Y0(eiθ)

[ 1
2 cos(θ)− x− x−1 + 1

2 cos(θ)− y − y−1

]
dz
)
.

Notice that the computation of Q(x, y) consists mainly to compute a trigonometric integral. After
an expansion in series of this last equation in Maple (which serves to perform a consistency check
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on the previous integral expression), we have:

Q(x, y) = 1 + (x+ y) t+
(
x2 + 2x y + y2 + 2

)
t2 +

(
x3 + 3x2y + 3x y2 + y3 + 5x+ 5 y

)
t3

+
(
x4 + 4x3y + 6x2y2 + 4x y3 + y4 + 9x2 + 16x y + 9 y2 + 10

)
t4 +O

(
t5
)
,

which matches with a direct enumeration of walks.

2.2 Asymptotic results

Denisov and Wachtel describe in [58, Sec. 1.5] the asymptotic behavior of the number of n-
excursions restricted to a d-dimensional cone. In dimension two, Bostan, Raschel and Salvy [34]
made explicit the computation of the exponential growth and the critical exponent.

Theorem 11. Let S ⊂ {0,±1}2 be the step set of a walk in the quarter plane, which is not contained
in a half-plane. Let e(n) denote the number of excursions of length n with steps in S, and let S(x, y)
denote the characteristic polynomial of S defined by

∑
(i,j)∈S

xiyj. The system

∂S

∂x
= ∂S

∂y
= 0

has a unique solution (x0, y0) ∈ (0,∞)2. Then, define

ρ := S(x0, y0), c =
∂2S
∂x∂y√
∂2S
∂x2 · ∂

2S
∂y2

(x0, y0), α = 1 + π

arccos(−c) . (2.35)

Then, there exists a constant K > 0, which depends only on S, such that:

• If the walk is aperiodic,
e(n) ∼ K · ρn · n−α.

• If the walk is periodic (then of period p equals to 2 or 3), then e(m) = 0 if m 6= pn and

e(pn) ∼ K · ρpn · (pn)−α.

The quantity ρ is an algebraic number called the exponential growth, and the real number α
is the critical exponent. In the next paragraphs, we review the works on these two parameters
in dimension two. In dimension one, formulas for walks restricted to the positive half-line are
known [10]. Unrestricted walks have exponent 0 and unrestricted excursions (paths which join two
given points) have exponent 1

2 . Dyck walks (positive walks in dimension one, see Section 1.1) have
exponent 1

2 and Dyck excursions have exponent 3
2 .
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Let us give an application of Theorem 11 for Kreweras step set (see model 2.3 in Table 2.1).
The inventory polynomial is defined by S(x, y) = xy + x−1 + y−1. The unique positive solution to
the system  ∂S

∂x = y − 1
x2 = 0

∂S
∂y = x− 1

y2 = 0

is (x0, y0) = (1, 1). We have then

ρ = S(1, 1) = 4, c = 1√
2
x3 · 2

y3

∣∣∣∣∣∣
(x,y)=(1,1)

= 1
2 , α = −1− π

arccos(−1/2) = −5
2 .

Exponential growth. The values of ρ for small step quadrant walks are numerically conjectured
by Bostan and Kauers in [30]. Theses conjectures are proved by Bousquet-Mélou and Mishna [41]
and Fayolle and Raschel [74]. In dimension three, Bacher, Kauers and Yatchak [6] give experimental
results about the exponential growth. Exact expressions of the exponential growth are given by
Denisov and Wachtel in [58].

Critical exponent. The total number of walks for the simple walks case in a cone of opening
angle η has exponent π

2η [58]. In the same angular sector, the number of excursions for the simple
walks has exponent π

η + 1 [58]. Theorem 11 gives an explicit formula for λ and is systematically
computed in [34]. In the same article, the authors prove that in the case of the 51 nonsingular walks9

with infinite group, the number α is not a rational number, which implies the non-D-finiteness of
the generating function of walks in the quadrant. In dimension 3, the critical exponent can be
expressed as a function of the smallest eigenvalue of a Dirichlet problem in a spherical triangle,
which can be computed algorithmically (and easily) in terms of the model S. This last point is
developed in Chapter 5.

2.3 Classification of lattice walks

2.3.1 Group of the walk

A group structure can be defined for walks with small steps and properties of the groups induce a
classification of the walks according the order of the group. This group is first defined by Malyshev in
[105] for probabilistic applications (namely the study of the stationary distribution of Markov chains
with small steps in the quarter plane). It has also been used to solve various enumeration problems
(walks, permutations or set partitions, see [41, Sec. 1.2] and references therein) by generating

9These are models which differ from the following five step sets {NE,NW, SE}, {N,NW,SE}, {E,NE,N,NW, SE},
{E,N,NW, SE} and {NE,N,NW, SE} (see the classification of [41]). A singular step set has each step (i, j) ∈ S
satisfyingi+ j ≥ 0. See the hypothesis (H) in Section 5.1 under which we do another description of a singular model.
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(x, y)

(x−1, y) (x, y−1)

(x−1, y−1)

φ ψ

ψ φ

Figure 2.9 – Orbit of (x, y) under the group G in the simple walk case

multiples equations to work with. This notion of group only depends on the steps of the walks
(thus not on the region of restriction). The group G(S) of the walk is a group of bi-rational
transformations generated by:

 φ(x, y) =
(
x−1A−(y)

A+(y) , y
)
,

ψ(x, y) =
(
x, y−1B−(x)

B+(x)

)
,

(2.36)

where A−(x), A+(x), B−(y), B+(y) are defined in (2.4). For example, consider the simple step set
(see Table 2.1). The inventory polynomial S(x, y) = x + y + x−1 + y−1, then Φ(x, y) = (x−1, y)
and Ψ(x, y) = (x, y−1). The orbit of (x, y) under the group G gives three new elements (x−1, y),
(x−1, y−1) and (x, y−1) (see Figure 2.9), then G(S) is of order 4.

When the model is a walk in a Weyl chamber, the group of the model corresponds to the Weyl
group and exists in higher dimension (see Section 5.2.2 for the dimension three). In dimension
two, the group generated by φ and ψ is isomorphic to a dihedral group of order 2n, with n ∈
{N \ {0, 1}} ∪ {∞}. The order of the group for the 79 models is computed by Bousquet-Mélou and
Mishna in [41]: there are 23 models with a finite group (16 of order 4, 5 of order 6 and 2 of order
8) and 56 models with infinite order. To find the order of a finite group, it suffices10 to compute
the orbit of (x, y) by Φ and Ψ. On the other side, showing that the orbit is infinite can be difficult.
In [41, Sec. 3], Bousquet-Mélou and Mishna use a valuation argument for five step sets and a fixed
point argument for the remaining case of infinite group.

Remark 12. The polynomial of the steps S(x, y) is left unchanged by the action of φ and ψ.
However, not all transformations of (x, y) that leave S(x, y) unchanged are in G(S). Indeed, let
S = {(1, 0), (0, 1), (−1, 0), (0,−1)}, the transformation (x, y) → (y, x) leaves S(x, y) unchanged,
but does not belong to G(S).

In the case of large steps in dimension two, the notion of group does not exist anymore. However
Bostan, Bousquet-Mélou and Melczer extend the small step terminology of orbit, which can be seen
as the generalization of the group [28, Sec. 3] to big step models. As the group in the small-step

10Luckily enough, the (finite) orders are small!
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(x, y)

(x, y1) (x, y2)

(x1, y1) (x1, y) (x1, y2)

(x2, y1) (x2, y2)

(x2, y)

Figure 2.10 – Orbit of (x, y) when S(x, y) = x2 + y + x−1 + y−2. We have followed the convention of [28]
with dashed (resp. solid) edges for 1-adjacency (resp. 2-adjacency)

case, the orbit notion allows to produce numerous variations of the functional equation which can
be used to find an expression of the generating function of the walks. In the small step case, the
inventory polynomial S(x, y) is unchanged by the action of the group G(S). The pairs φ(x, y),
ψ(x, y) are adjacent to (x, y): they give the same value to the inventory polynomial S(x, y) and
they have one coordinate in common. For example, in the simple walk case, (x−1, y) and (x, y−1)
are adjacent to (x, y) (see Figure 2.9). The orbit of (x, y) is its equivalence class with respect to
the transitive closure of the adjacency relation.

For example, let S(x, y) = x2 + y + x−1 + y−2. Solving S(x, y) = S(X, y) in X gives the 1-
adjacent elements (i.e., adjacent with respect to the first coordinate) to (x, y), namely (x1, y) and
(x2, y) where x1,2 = −x2±

√
x4+4x

2x . On the other side, solving S(x, y) = S(x, Y ) in Y gives (x, y1) and

(x, y2), with y1,2 = 1±
√

4y3+1
2y2 , which are the 2-adjacent elements to (x, y). Then we find the pairs

(x1, Y ) adjacent to (x1, y), and so on. We end up with an orbit sum composed of nine elements,
see Figure 2.10.

The notion of group exists as well for model with small steps in higher dimension. The case of
the three-dimensional walks is developed in Section 5.2.2.
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2.3.2 Nature of the generating function of the walk

Generating functions of walks11 can be classified by their nature12. A function can be rational,
algebraic, D-finite13, D-algebraic or hypertranscendental. These families have interesting closure
properties and one has the following hierarchical chain

rational  algebraic  D-finite  D-algebraic

The nature of a function gives some indications on the combinatorial structure it describes. For
example, a subclass of algebraic functions called N-algebraic consists of those functions which can
be generated by a context-free grammar [9].

Let F (t) =
∑
n≥0 f(n)tn be a formal power series. In addition to the classification of functions,

knowing the nature is interesting for the properties it induces on the coefficients f(n) of its series.
Let p be the period of the coefficients f(n).

Rational functions. The function F (t) is rational if there exist P (t) and Q(t) two polynomials
in t such that

F (t) = P (t)
Q(t) .

The coefficients f(n) satisfy linear recurrence relations with constant coefficients, and for n big
enough

f(pn) ∼ αµpn(pn)γ ,

with α and µ algebraic over Q and γ a non-negative integer. For example, let f(n) = Fn, the
Fibonacci number. The function

∑
n≥0 Fnt

n = t
1−t−t2 is rational, the coefficients Fn satisfy the

well-known linear recurrence Fn = Fn−1 + Fn−2 with F0 = F1 = 1 and Fn ∼ ϕn√
5 , where ϕ = 1+

√
5

2
is the golden ratio. The generating function of the number f(n) of non-self-intersecting n-paths
starting at (0, 0) with step set {(1, 0), (−1, 0), (0, 1)} is rational as well, see [120, Sec. 4.1.3].

Algebraic function. The function F (t) is algebraic of degree d if there exist polynomials (Pi(t))di=0
such that

P0(t) + P1(t)F (t) + · · ·+ Pd−1(t)F d−1(t) + Pd(t)F d(t) = 0.

Equivalently, F (t) satisfies a non trivial polynomial equation P (t, F (t)) = 0 with P (t,X) ∈ C [t,X]
of degree d in its second variable. An algebraic function of degree 1 is rational. The coefficients

11or more generally, any generating functions which enumerates discrete objects (e.g., trees, words).

12References on this topic can be found in [120, Ch. 4], [121, Ch. 6] and in [79, Ch. IV, Ch. VII, App. B].

13one can also say holonomic.
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f(n) satisfy linear recurrence relations with polynomial coefficients, and

f(pn) ∼ αµpn(pn)γ ,

with α and µ algebraic over Q and γ =∈ Q \ {−1,−2, . . . }. For example, let f(n) =
(2n
n

)
. The

function F (t) =
∑
n≥0

(2n
n

)
tn is algebraic because (1 − 4t)F 2(t) − 1 = 0. The coefficients f(n)

satisfy the relations f(n + 1) = 2(2n+1)
n+1 f(n) and thanks to the Stirling formula, we easily have

f(n) ∼ 4nn−1/2
√
π

.

D-finite function. The function F (t) is D-finite if it is solution of a linear differential equation
The function F (t) is D-finite of order d if there exist polynomials (Pi(t))di=−1 such that

P−1(t) + P0(t)F (t) + P1(t)F ′(t) + · · ·+ Pd−1(t)F (d−1)(t) + Pd(t)F (d)(t) = 0.

The coefficients f(n) satisfy linear recurrence relations with polynomial coefficients, and a subclass
of functions called G-functions [37, Sec. 1] has asymptotic behavior

f(pn) ∼ αµpn(pn)γ (log(pn))j ,

where α, µ, γ are algebraic over Q and j is a non-negative integer. Ordinary generating functions of
lattice walks are G-functions. For example, let f(n) = n!. The formal power series F (t) =

∑
n≥0 n!tn

satisfies the equation t2F ′(t) + (t− 1)F (t) + 1 = 0 and thus is D-finite of order 1. The coefficients
f(n) satisfy the relation f(n+ 1) = (n+ 1)f(n) and f(n) ∼

√
2πn

(
n
e

)n (Stirling formula).

D-algebraic function. The function F (t) is D-algebraic if it satisfies an algebraic differential
equation. The function F (t) is D-algebraic of order d if there exists a polynomial P (t,X0, X1, . . . , Xd)
∈ C [t,X0, X1, . . . , Xd] such that

P (t, F (t), F ′(t), . . . , F (d−1)(t), F d(t)) = 0.

For example, the function F (t) = 1
cos(t) is D-algebraic (but not D-finite) and satisfies the equation

F (t)F ′′(t)− 2 (F ′(t))2 − F (t)2 = 0. Less is known about this class of D-algebraic functions.

Hypertranscendental function. The function F (t) is hypertranscendental if it is not D-algebraic.
The Gamma function Γ(t) =

∫∞
0 xt−1e−x dx and the Riemann zeta function ζ(t) = 1

Γ(t)
∫∞

0
xt−1

ex−1 dx
are famous hypertranscendental functions.

Each class of functions can be generalized to the multivariate case. For example, if F is a D-finite
multivariate series, then F needs to satisfy one differential equation per variable.
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Small steps walks in the quadrant
(79)

|G| =∞
(56)

not-decoupled
(47)

not-D-algebraic

decoupled
(9)

D-algebraic

|G| <∞
(23)

OS 6= 0
(19)

D-finite

OS = 0
(4)

Algebraic

Table 2.2 – Classification of walks with small steps in the quadrant

Let us now recall results on the nature of the generating function of walks in cones. In Z2, the
generating function is rational in the case of unrestricted walks and is algebraic for walks restricted
to a half plane ([10] and [43, Prop. 2]). What about the walks restricted to the quadrant? At
first sight, it is natural to think that quadrant walks have D-finite generating functions. However,
Bousquet-Mélou and Petkovšek proved in [43] that the length generating function of knight’s walk
(with step set S = {(−1, 2), (2,−1)}) in the quarter plane starting at (1, 1) is not D-finite, and
Mishna and Rechnitzer in [109] give two examples of non-D-finite small step walks in a quadrant.

Mishna started in [108] an algebraic classification for generating functions of walks with step set
of cardinality three and conjectured the equivalence between the finiteness of the group and the D-
finiteness of the generating function of walks [108, Conj. 1]. Bousquet-Mélou and Mishna [41] proved
with combinatorial tools that 22 of the 23 models with finite group are D-finite and conjectured that
the remaining 56 models with infinite group have a non-D-finite generating function. The missing
case with finite group, known as the Gessel’s walks, was more difficult than the other 22 to deal
with. In parallel, using computer algebra, Bostan and Kauers [30] found again experimentally this
classification of small step walks in the quadrant.

In 2001, Gessel made the conjecture that the number of excursions in the quarter plane for
the Gessel step set satisfies a linear recurrence relation. Proving that the generating function of
Gessel’s walks is algebraic is not obvious at the first sight: the asymptotic of its coefficients is
4n/n2/3, making the generating function non-N-algebraic, thus not related to a nice and simple
combinatorics structure. The conjecture of Gessel has been proven, using computer computations,
in 2008 by Kauers, Koutschan and Zeilberger in [94]. In parallel, Kauers and Bostan in [31] get for
the first time an explicit expression for the generating function of the Gessel’s walks. A year later,
using an analytic method, a contour-integral expression of the generating function of the walks
is given by Kurkova and Raschel in [99]. The first human proof (i.e., without using a computer)
has been given by Bostan, Kurkova and Raschel in 2013 [32]. In 2016, Bousquet-Mélou gives an
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elementary solution of Gessel’s walks in the quadrant [38] and the same year, along the study of the
simple walk in the three quarter plane, Bousquet-Mélou gets another proof of Gessel’s conjecture
via the reflection principle [40].

Kurkova and Raschel proved in [100] that the 51 of the 56 models with infinite group have a non-
D-finite trivariate generating function. An alternative proof is given by Bostan, Raschel and Salvy
in [34], using the non-D-finiteness of the generating function of excursions Q(0, 0). The univariate
generating function of the number of walks for the 5 remaining cases, called singular walks, has
been proven to be non-D-finite by Mishna and Rechnitzer in [109] for two cases and by Melczer
and Mishna in [106] for the last three cases.

Finally, quadrant-walks are D-finite if and only if the associated group is finite. In addition to
Gessel’s step set, three other models are algebraic, namely the Kreweras trilogy. In [101], Kurkova
and Raschel show that the generating function is algebraic as long as a certain sum is zero. This sum,
denoted by the Orbit sum14, is obtained by the action of the group G(S) defined in Section 2.3.1
on the functional equation (2.11). More recently, in [17], Bernardi, Bousquet-Mélou and Raschel
present the notion of Tutte’s invariant for proving algebraicity and can be even extended for proving
D-algebraicity: the existence of a decoupling function is equivalent to algebraicity in the case of a
finite group and to D-algebraicity in the case of an infinite group. Using Galois theory of difference
equations, Dreyfus, Hardouin, Roques and Singer find back the D-algebraicity of nine cases with
infinite group and prove the hypertranscendence of the 47 other models with infinite group [62].
The complete classification of walks in a quadrant is sumarized in Table 2.2.

14Orbit Sum is abbreviated as OS.
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Chapter 3

Walks avoiding a quadrant1

A random 10,000 step walk in the three
quarter plane

3.1 Introduction

Two-dimensional (random) walks in cones are very natural both in combinatorics and probability
theory: they are interesting in their own right and also in relation to other discrete structures. As
we have seen in Section 1.1 and Chapter 2, most of the attention has been devoted to the case of
convex cones and one now has a very good understanding of these quadrant models, most of the
time via their generating function, which counts the number of walks of length n, starting from a
fixed point, ending at an arbitrary point (i, j) and remaining in the cone (see (2.2)). Throughout
the present chapter, all walk models will be assumed to have small steps, i.e., jumps in {−1, 0, 1}2.

1This chapter is mainly from [115].
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Given the vivid interest in combinatorics of walks confined to a quadrant, it is very natural
to consider next the non-equivalent case of non-convex cones, as in particular the union of three
quadrants

C = {(i, j) ∈ Z2 : i ≥ 0 or j ≥ 0},

see Figure 3.1. Following Bousquet-Mélou [40], we will also speak about walks avoiding a quadrant.
Although walks avoiding a quarter plane have many common features with walks in a quarter
plane, the former cited model is definitely much more complicated. To illustrate this fact, let us
recall [40] that the simple walk (usually the simplest model, see model 1.1 in Table 2.1) in three
quadrants has the same level of complexity as the notoriously difficult Gessel’s model (see model
3.1 in Table 2.1) [31, 39] in the quadrant!

Three-quadrant walks have been approached only recently. In [40], Bousquet-Mélou solves the
simple walk and the diagonal walk (see model 1.1 and model 1.2 in Table 2.1 for a representation of
these step sets) starting at various points. She obtains an exact expression for the generating func-
tion and derives several combinatorial identities, among which a new proof of Gessel’s conjecture
via the reflection principle. Mustapha [111] computes the asymptotics of the number of walks of
length n in the case of zero-drift small step sets as well as the asymptotics of the number of excur-
sions for all small step models, following [58, 34] (interestingly and in contrast with combinatorics,
the probabilistic results [58, 111] on random walks in cones do not really depend on convexity).
Using an original connection with planar maps, Budd [46] obtains various enumerating formulas for
planar walks, keeping track of the winding angle. These formulas can be used to enumerate simple
walks in the three-quarter plane [46, 110].

In this chapter we present the analytic approach of [71, 72, 113] applied to walks in three
quadrants, thereby answering a question of Bousquet-Mélou in [40, Sec. 7.2].

Strategy. Once a step set S is fixed, our starting point is a functional equation satisfied by the
generating function

C(x, y) =
∑
n≥0

∑
(i,j)∈C

ci,j(n)xiyjtn, (3.1)

where ci,j(n) counts n-step S-walks going from (0, 0) to (i, j) and remaining in C. Stated already
as (2.10), this functional equation translates the step-by-step construction of three-quadrant walks
and takes into account the forbidden moves which would lead the walk into the forbidden negative
quadrant. At first sight, this equation is very similar to its one-quadrant analogue (we compare
the equations (2.10) to (2.8) in Section 2.1.1), the only difference is that negative powers of x and
y arise: this can be seen in the definition of the generating function (3.1) and on the functional
equation (2.10) as well, since the right-hand side of the latter involves some generating functions
in the variables 1

x and 1
y . This difference is fundamental and the methodology of [41, 113] (namely,
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performing algebraic substitutions or evaluating the functional equation at well-chosen complex
points) breaks down, as the series are no longer convergent.

Figure 3.1 – Splitting of the three-quadrant cone in two wedges of opening angle 3π
4

The idea in [40] is to see C as the union of three quarter planes, and to state for each quadrant
a new equation, which is more complicated but (by construction) may be evaluated. Our strategy
follows the same line: we split the three-quadrant in two convex cones (of opening angle 3π

4 , see
Figure 3.1) and write a system of two functional equations, one for each domain. The drawbacks
of this decomposition is that it increases the complexity:

• There are two functional equations instead of one;

• The functional equations involve more unknowns (corresponding to the diagonal and close-
to-diagonal terms) in their right-hand sides, see Section 3.2.

On the other hand:

• The fundamental advantage is that the new equations may be evaluated—and ultimately will
be solved;

• Unexpectedly, this splitting of the cone (see Figure 3.1) allows us to relate the combinatorial
model of walks avoiding a quadrant to an interesting class of space-inhomogeneous walks,
among which a well-known problem in queueing theory: the Join-the-Shortest-Queue (JSQ)
model, see Section 3.4.1.

Main result: a contour-integral expression for the generating function. Throughout this
chapter we will do the following assumption:

(H) The step set S is symmetric (i.e., if (i, j) ∈ S then (j, i) ∈ S) and does not contain the jumps
(−1, 1) and (1,−1).

An exhaustive list of which step sets obey (H) is given on Figures 3.2a and 3.2b. We are not able to
deal with asymmetric walks (as we are unable to solve the asymmetric JSQ model, see Section 3.4.1),
because of the complexity of the functional equations. The jumps (−1, 1) and (1,−1) are discarded
for similar reasons: they would lead to additional terms in the functional equation (see Figure 3.6).
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Simple walk Kreweras

Reverse Kreweras Union Kreweras
(a) Symmetric models with a finite group. The no-
tion of group associated to a model is recalled in
Section 2.3.1

(b) Symmetric models with infinite group

Figure 3.2 – Symmetric models with no jumps (−1, 1) and (1,−1)

Our main result is a contour-integral expression for the diagonal section

Dϕ(x) =
∑

n≥0,i≥0
ci,i(n)xitn.

We shall see later that knowing Dϕ(x) actually suffices to give a complete solution to the problem
(i.e., to find an expression for C(x, y) in (3.1)). Let us postpone to Theorem 15 the very precise
statement, and instead let us give now the main idea and the shape of the solution. We will show
that

Dϕ(x) = w′(x)f(w(x))
∫
g(z, w(z)) w′(z)

w(x)− w(z) dz, (3.2)

where f and g are algebraic functions. The integral in (3.2) is taken over a quartic curve, constructed
from the step set of the model. The function w is interpreted as a conformal mapping for the domain
bounded by the quartic (see Section 2.1.2), and its algebraic nature heavily depends on the model
under consideration: it can be algebraic (finite group case) or non-D-finite (otherwise).

Five consequences of our main results. Our first contribution is methodology: we show that
under the symmetry condition (H), three-quadrant walk models are exactly solvable, in the sense
that their generating function admits an explicit (contour-integral) expression (3.2).

The second point is that our techniques allow to compare walks in a quadrant and walks in
three quadrants. More precisely, it is proved in [113] that the generating function counting quadrant
walks ending on the horizontal axis can typically be expressed as

f̃(x)
∫
g̃(z) w′(z)

w(x)− w(z) dz, (3.3)
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with the same function w as in (3.2) but different functions f̃ (rational) and g̃ (algebraic). Though
simpler, Equation (3.3) is quite similar to (3.2). This similarity opens the way to prove combinatorial
formulas relating the two models.

Our third corollary is a partial answer to two questions raised by Bousquet-Mélou in [40],
that we briefly recall: first, could it be that for any step set associated with a finite group, the
generating function C(x, y) is D-finite? Second, could it be that for the four step sets [Kreweras,
reverse Kreweras, union Kreweras (see Figure 3.2a) and Gessel (model 3.1 in Table 2.1)], for which
[the quadrant generating function] is known to be algebraic, C(x, y) is also algebraic?

The expression (3.2) rather easily implies that if w is algebraic (which will correspond to the
finite group case, see Section 2.3.1), the generating function D(x) is D-finite, being the Cauchy
integral of an algebraic function. On the other hand, when the group is infinite the function w is
non-D-finite by [113, Thm 2], and the expression (3.2) uses non-D-finite functions (note, this does
not a priori imply that D(x) itself is non-D-finite, but does provide some evidence).

Next, although we do not solve them, the expression (3.2) provides a way to attack the following
questions:

• Starting from the integral (3.3), various asymptotic questions concerning quadrant models
are solved in [74] (asymptotics of the excursions, of the number of walks returning to one
axis, etc.). Similar arguments should lead to the asymptotics of walks in three quadrants.
Remember, however, that the asymptotics of the excursion sequence is already found in [111].

• A further natural question (still unsolved in the quadrant case) is to find, in the finite group
case, a concrete differential equation (or minimal polynomial in case of algebraicity) for the
generating function, starting from the contour integrals (3.2) or (3.3). It seems that the
technique of creative telescoping could be applied to the contour integral expressions.

• Several interesting (and sometimes surprising) combinatorial identities relating quadrant
walks to three-quadrant walks are proved in [40] (in particular, a proof of the former Gessel’s
conjecture by means of simple walks in C and the reflection principle). Moreover, Bousquet-
Mélou asks in [40] whether C(x, y) could differ from (a simple D-finite series related to)
the quadrant generating function by an algebraic series? Taking advantage of the similarity
between (3.2) and (3.3) provides a starting point to answer this question.

Finally, along the way of proving our results, we develop a noteworthy concept of anti-Tutte’s
invariant, namely a function g such that (y denoting the complex conjugate number of y ∈ C)

g(y) = 1
g(y) (3.4)

when y lies on the contour of (3.2). The terminology comes from [17], where a function g satisfying
g(y) = g(y) is called a Tutte invariant and is strongly used in solving the models. Originally,
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Tutte introduced the notion of invariant to solve a functional equation counting colored planar
triangulations, see [123]. Tutte’s equation is rather close to functional equations arising in two-
dimensional counting problems. Interestingly, a function g as in (3.4) appears in the book [50],
which proposes an analytic approach to quadrant walk problems (the latter is more general than
[72] in the sense that it works for arbitrarily large positive jumps, i.e., not only small steps). In
[50] it is further assumed that g(y) = g(y), so that with (3.4) one has |g(y)| = 1, and g may be
interpreted as a conformal mapping from the domain bounded by contour of (3.2) onto the unit
disc.

Equations with (too) many unknowns. What about asymmetric models? From a functional
equation viewpoint, the latter are close to random walks with big jumps [75, 28] or random walks
with catastrophes [11], in the sense that the functional equation has more than two unknowns in
its right-hand side. One idea to get rid of these extra terms is to transform the initial functional
equation, as in [40], where Bousquet-Mélou solves the simple and diagonal models, starting from
non-symmetric points ((−1, 0), for instance). Another idea, present in [28], is to extend the kernel
method by computing weighted sums of several functional equations, each of them being an algebraic
substitution of the initial equation. However, finding such combinations is very difficult in general.

From the complex analysis point of view [72, 113, 75], equations with many unknowns become
systems of boundary value problems, which seem not to have a solution in the literature. It is also
shown in [72, Chap. 10] that the asymmetric JSQ is equivalent to solving an integral Fredholm
equation for the generating function, but again, no closed-form expression seems to exist.

Structure of the chapter. In Section 3.2, we write various functional equations in the 3π
4 -cone

(Lemma 13) and present a change of variable ϕ (3.9) which simplifies the resolution of the problem.
In Section 3.3, we state a boundary value problem (BVP) satisfied by the diagonal generating

function (Lemma 14) and solve this BVP (Theorems 15 and 16). We also give a list and properties
of conformal mappings used in Theorems 15 and 16.

In Section 3.4.1, we suppose that the step set is not necessarily symmetric anymore. We set a
system of functional equations and relate the problem of walks in the three quadrants to inhomo-
megeous walks and JSQ model.

3.2 Functional equations for the 3π
4 -cone walks

In this section and in the remainder of this chapter, we shall use two different step sets, S and
Sϕ2. The first one, S, will refer to the main step set, corresponding to the walks in the three-quarter

2For the sake of consistency throughout this thesis, notation in this chapter are slightly different from the ones in
[115] where for example Ŝ stand for S and S stands for Sϕ.
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L(x, y)

U(x, y)

D(x, y)Du(x, y)

D`(x, y)

Figure 3.3 – Decomposition of the three-quarter plane and associated generating functions

plane we are counting. The second step set, Sϕ, is associated to S after the change of variable (3.9).
Quantities with a ϕ-tag will be associated to the step set Sϕ, for instance the kernel Kϕ(x, y). In
order not to make the notation too heavy and because in this case there is no possible ambiguity,
the only exception to this rule will be the coefficients ci,j(n), which will always correspond to S.
Thereafter, unless explicitly mentioned, we will only consider symmetric models starting at (0, 0),
but notice that our study can be easily generalized to arbitrary diagonal starting points.

Having said that, we start by splitting the domain of possible ends of the walks into three parts:
the diagonal, the lower part {i ≥ 0, j ≤ i − 1} and the upper part {j ≥ 0, i ≤ j − 1}, see Figure
3.1. We may write

C(x, y) = L(x, y) +D(x, y) + U(x, y), (3.5)

where

L(x, y) =
∑
i≥0
j≤i−1
n≥0

ci,j(n)xiyjtn, D(x, y) =
∑
i≥0
n≥0

ci,i(n)xiyitn and U(x, y) =
∑
j≥0
i≤j−1
n≥0

ci,j(n)xiyjtn.

Let δi,j = 1 if (i, j) ∈ S and 0 otherwise.

Lemma 13. For any step set which satisfies (H) and walk that starts at (0, 0), one has

K(x, y)L(x, y) = −1
2xy + txy

(
δ−1,−1x

−1y−1 + δ−1,0x
−1
)
L0−(y−1) + 1

2 tδ−1,−1D(0, 0)

− xy
(
−1

2 + t

(1
2(δ1,1xy + δ−1,−1x

−1y−1) + δ0,−1y
−1 + δ1,0x

))
D(x, y), (3.6)

with L−0(y−1) =
∑
n≥0,j≤−1 c0,j(n)yjtn.
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Proof. The decomposition in (3.5) expresses C(x, y) as a sum of three generating functions. Thanks
to the symmetry of the step set and the fact that the starting point lies on the diagonal, U(x, y) =
L(y, x) and C(x, y) is written as the sum L(x, y) +D(x, y) + L(y, x) of two unknowns. We further
introduce the generating functions

D`(x, y) =
∑

n≥0,i≥0
ci,i−1(n)xiyi−1tn and Du(x, y) =

∑
n≥0,i≥0

ci−1,i(n)xi−1yitn,

which respectively count walks ending on the lower (resp. upper) diagonal, see Figure 3.3.
Classically [41], one constructs a walk by adding a new step at the end of the walk at each stage.

We first derive a functional equation for L(x, y) by taking into account all possibilities of ending in
the lower part:

• We may add a step from S to walks ending in the lower part, yielding below in (3.7) the
term t(

∑
(i,j)∈S x

iyj)L(x, y), see the second picture on Figure 3.4 in the particular case of the
simple walk;

• Walks coming from the diagonal also need to be counted up, giving rise in (3.7) to the term
t(δ1,0x+ δ0,−1y

−1)D(x, y) (third picture on Figure 3.4);

• On the other hand, walks going out of the three-eighth plane need to be removed, yield-
ing the terms t(δ−1,0x

−1 + δ0,1y)D`(x, y) (from the lower diagonal) and t(δ−1,0x
−1 +

δ−1,−1x
−1y−1)L0−(y−1) (from the negative y-axis), see the fourth and fifth pictures on Figure

3.4;

• We finally add the term tδ−1,0x
−1∑

n≥0 c0,−1(n)y−1tn which was subtracted twice, corre-
sponding to the rightmost picture on Figure 3.4.

We end up with a first functional equation:

L(x, y) = t
∑

(i,j)∈S
xiyjL(x, y) + t(δ1,0x+ δ0,−1y

−1)D(x, y)− t(δ−1,0x
−1 + δ0,1y)D`(x, y)

− t(δ−1,0x
−1 + δ−1,−1x

−1y−1)L0−(y−1) + t(δ−1,0x
−1)

∑
n≥0

c0,−1(n)y−1tn. (3.7)

Before we prove the second equation

D(x, y) = 1 + t(δ1,1xy + δ−1,−1x
−1y−1)D(x, y)− tδ−1,−1x

−1y−1D(0, 0)

+ 2t(δ−1,0x
−1 + δ0,1y)D`(x, y)− 2tδ−1,0x

−1 ∑
n≥0

c0,−1(n)y−1tn, (3.8)

let us remark that we can we can eliminate D`(x, y) from (3.7) using (3.8) and get (3.6), thereby
completing the proof of Lemma 13.
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= + − − +

Figure 3.4 – Different ways to end in the lower part (example of the simple walk)

= + − + −

Figure 3.5 – Different ways to end on the diagonal (example of the simple walk)

This second equation (3.8) is obtained by writing all possibilities of ending on the diagonal, as
illustrated on Figure 3.5 for simple walks:

• we first count the empty walk, giving the term 1;

• we add the walks remaining on the diagonal t(δ1,1xy+δ−1,−1x
−1y−1)D(x, y), the walks ending

on the diagonal coming from the upper part t(δ0,−1y
−1 + δ1,0x)Du(x, y) and those coming

from the lower part t(δ−1,0x
−1 + δ0,1y)D`(x, y);

• finally, walks going out of the domain need to be removed, giving tδ−1,−1x
−1y−1D(0, 0),

tδ0,−1y
−1∑

n≥0 c−1,0(n)x−1tn and tδ−1,0x
−1∑

n≥0 c0,−1(n)y−1tn.

Thanks to the symmetry of the step set, the number of walks coming from the upper part is the
same as the number of walks coming from the lower part: t(δ0,−1y

−1 +δ1,0x)Du(x, y) = t(δ−1,0x
−1 +

δ0,1y)D`(x, y) and tδ0,−1y
−1∑

n≥0 c−1,0(n)x−1tn = tδ−1,0x
−1∑

n≥0 c0,−1(n)y−1tn.

In order to simplify the functional equation (3.6), we perform the change of variable

ϕ(x, y) = (xy, x−1). (3.9)

Then (3.6) becomes

Kϕ(x, y)Lϕ(x, y) = cϕ(x)Lϕ(x, 0)− x
(
xãϕ(y) + b̃ϕ(y)

2

)
Dϕ(y) + 1

2 tδ−1,−1xDϕ(0)− 1
2xy, (3.10)
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Model Image under ϕ Model Image under ϕ

Table 3.1 – Transformation ϕ on the eight symmetric models (with finite group on the left and infinite group
on the right) without the steps (−1, 1) and (1,−1). In particular, the simple walk is related by ϕ to Gessel’s
model. After [40], this is another illustration that counting simple walks in three-quarter plane is related to
counting Gessel walks in a quadrant

where Kϕ(x, y) = xy(t
∑

(i,j)∈ϕ(S) x
i−jyi − 1) = xK(ϕ(x, y)), Lϕ(x, 0) =

∑
n≥0,j≥1 c0,−jx

jtn and
similarly

Lϕ(x, y) = L(ϕ(x, y)) =
∑
i≥1
j≥0
n≥0

cj,j−i(n)xiyjtn and Dϕ(y) = D(ϕ(x, y)) =
∑
i≥0
n≥0

ci,i(n)yitn. (3.11)

The change of coordinates ϕ simplifies the resolution of the problem, as the functional equation
(3.10) is closer to a (solvable) quadrant equation; compare with (2.11). We have

Sϕ = ϕ(S) = {(i− j, i) : (i, j) ∈ S}.

For the reader’s convenience, we have represented on Table 3.1 the effect of ϕ on the symmetric
models of Figures 3.2a and 3.2b. We also remark on Figure 3.6 that the presence of anti-diagonal
jumps (−1, 1) or (1,−1) would lead to the bigger steps (−2,−1) or (2, 1); this is the reason why
they are discarded.

ϕ−→

Figure 3.6 – The diagonal model is transformed by ϕ into a model with bigger steps
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3.3 Expression for the generating functions

3.3.1 Main results and discussion

The first and crucial point is to prove that the diagonal Dϕ(y) in (3.11) satisfies a boundary
value problem (BVP), in the sense of the lemma below, the proof of which is postponed to Section
3.3.3. Let D denote the open unit disc, d̃ϕ be the discriminant (2.15) and GLϕ be the open set
delimited by the curve Lϕ (2.18).

Lemma 14. The function Dϕ(y) can be analytically continued from the unit disc3 to the domain
D∪GLϕ and admits finite limits on Lϕ. Moreover, Dϕ(y) satisfies the following boundary condition,
for y ∈ Lϕ: √

d̃ϕ(y)Dϕ(y)−
√
d̃ϕ(y)Dϕ(y) = y − y. (3.12)

In the remainder of the chapter, we prove Lemma 14 in two different ways, leading to the contour-
integral expressions of Dϕ(y) given in Theorem 15 and Theorem 16 below. Let us first remark that
contrary to the usual quadrant case [113], the prefactor

√
d̃ϕ(y) in front of the unknown Dϕ(y) is

not meromorphic in GLϕ , simply because it is the square root of a polynomial, two roots of which
being located in GLϕ (see Chapter 2, Section 2.1.2). This innocent-looking difference has strong
consequences on the resolution:

• Due to the presence of a non-meromorphic prefactor in Equation (3.12), solving the BVP of
Lemma 14 requires the computation of an index (in the sense of Section 3.3.4 and Definition 7).
This index is an integer and will be non-zero in our case, which will increase the complexity
of the solutions. In Theorem 15 we solve the BVP by taking into account this non-zero index.

• A second, alternative idea is to reduce to the case of a meromorphic boundary condition,
and thereby to an index equal to 0. To do so, we will find an analytic function fϕ with the
property that √

d̃ϕ(y)√
d̃ϕ(y)

= fϕ(y)
fϕ(y) (3.13)

for y ∈ Lϕ, see Section 3.3.5 for more details. Such a function fϕ allows us to rewrite Equa-
tion (3.12) as

fϕ(y)Dϕ(y)− fϕ(y)Dϕ(y) = fϕ(y)√
d̃ϕ(y)

(y − y), (3.14)

which by construction admits a meromorphic prefactor fϕ(y). In Theorem 16 we solve this
zero-index BVP by this technique.

3Because t ∈ (0, 1/|S|), we already know that Dϕ(y) is holomorphic in D.
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Although they represent the same function Dϕ(y) (and so should be equal!), it will be apparent
that the expressions obtained in Theorems 15 and 16 are quite different, and that the second one
is simpler. However, we decided to present the two resolutions, as we think that they offer different
insights on this boundary value method, and also because it is not obvious at all to be able to solve
an equation of the form (3.13) and thereby to reduce to the zero-index case. Recall (Section 2.1.2
and see Figure 3.9) that Lϕ,0 is the upper half of the curve Lϕ and let wϕ be a conformal gluing
function in the sense of Definition 9 for GLϕ 4.

Theorem 15. Let wϕ be a conformal gluing function with a pole at yϕ,2. For any step set S
satisfying (H), the diagonal section (3.11) can be written, for y ∈ GLϕ,

Dϕ(y) = Ψ(wϕ(y))
2iπ

∫
Lϕ,0

z − z√
d̃ϕ(z)

w′ϕ(z)
Ψ+(wϕ(z))(wϕ(z)− wϕ(y)) dz,

with 
Γ(wϕ(y)) = 1

2iπ

∫
Lϕ,0

log


√
d̃ϕ(z)√
d̃ϕ(z)

 w′ϕ(z)
wϕ(z)− wϕ(y) dz,

Ψ(y) = (y − Yϕ(xϕ,1)) exp Γ(y).

The left limits Ψ+, Γ+ of Ψ, Γ are related by

Ψ+(y) = (y − Yϕ(xϕ,1)) exp Γ+(y)

and the left limit Γ+ can be computed with the help of Sokhotski-Plemelj formulas, that we have
recalled in Proposition 6 of Section 2.1.2.

All quantities are defined relatively to the step set Sϕ = ϕ(S) after the change of coordinates
(3.9).

We now turn to our second main result.

Theorem 16. Let wϕ be a conformal gluing function with a pole at yϕ,2, with residue r. For any
step set S satisfying (H), the diagonal section (3.11) can be written, for y ∈ GLϕ,

Dϕ(y) =
−w′ϕ(y)

√
r√

d̃′ϕ(yϕ,2)(wϕ(y)− w(Yϕ(xϕ,1)))(wϕ(y)− w(Yϕ(xϕ,2)))
1

2iπ

∫
Lϕ

zw′ϕ(z)√
wϕ(z)− wϕ(yϕ,1)(wϕ(z)− wϕ(y))

dz.

4Unlike the usual notation (see Definition 9), in the interest of simplification, in this chapter w is a conformal
gluing function for the set GL (instead of GM).
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All quantities are defined according to the step set Sϕ = ϕ(S).

Remark 17. Here are some comments about these results:
• First, it is important to notice that having an expression for Dϕ(y) is sufficient for character-

izing the complete generating function C(x, y). Indeed, one is easily convinced that

C(x, y) = Lϕ(ϕ−1(x, y)) +Dϕ(ϕ−1(x, y)) + Lϕ(ϕ−1(y, x)),

with 

Lϕ(x, y) = 1
Kϕ(x, y)

(
cϕ(x)Lϕ(x, 0)− x

(
xãϕ(y) + 1

2 b̃ϕ(y)
)
Dϕ(y)− 1

2xy
)
,

Lϕ(x, 0) = x

cϕ(x)

(1
2Yϕ,0(x) +

(
xãϕ(Yϕ,0(x)) + 1

2 b̃ϕ(Yϕ,0(x))
)
Dϕ(Yϕ,0(x))

)
,

ϕ−1(x, y) = (y−1, xy).

• Regarding the question of determining the algebraic nature of the diagonal series Dϕ(y),
the expression in Theorem 16 is much simpler than that of Theorem 15. Indeed, the integrand as
well as the prefactor of the integral of Theorem 16 are algebraic functions of y, z, t and wϕ (and
its derivative) evaluated at various points. In addition, let us recall from [113, Thm 2] that w is
algebraic if and only if the group is finite, and non-D-finite in the infinite group case. See Table 3.2
below for some implications. On the contrary, based on the exponential of a D-finite function, the
integrand in Theorem 15 is a priori non-algebraic.

Model Nature of w Nature of Q(x, y) Nature of C(x, y)

rational [113] D-finite [41] D-finite by [40] and Thm 16

algebraic [113] algebraic [41] D-finite by Thm 16; algebraic?

non-D-finite [113] non-D-finite in t [34] non-D-finite in t [111];
non-D-finite in x, y [100, 61] non-D-finite in x, y?

Table 3.2 – Algebraic nature of the conformal mapping w, the quadrant generating function Q(x, y) and the
three-quarter plane counting function C(x, y)

• Lemma 14 states that the function Dϕ(y) can be analytically continued to the domain D∪GLϕ .
This is apparent on the first statement (using properties of contour integrals). This is a little bit
less explicit on Theorem 16, because of the prefactor.

• Theorem 15 (resp. Theorem 16) will be proved in Section 3.3.4 (resp. Sections 3.3.5 and 3.3.6).
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3.3.2 Simplification and series expansion in the reverse Kreweras case

In this part we apply Theorem 16 to reverse Kreweras walks in the three-quarter plane: we first
make explicit all quantities appearing in the statement of Theorem 16, then we explain how to
deduce the series expansion

Dϕ(0) = 1 + 4 t3 + 46 t6 + 706 t9 + 12472 t12 + 239632 t15 + 4869440 t18 +O
(
t24
)
, (3.15)

obtained here by direct enumeration. Let us recall that the coefficients in front of tn are the c0,0(n),
which count the numbers of reverse Kreweras walks of length n, starting and ending at (0, 0) and
confined to the three-quarter plane.

This symmetric model has the step set S = {(1, 0), (0, 1), (−1,−1)}, see Figure 3.2a. The change
of variable ϕ defined in (3.9) transforms it into Kreweras step set, see Figure 3.2a and Table 3.1,
with Sϕ = {(1, 1), (−1, 0), (0,−1)}.

Computation of various quantities. The kernel defined in (2.12) for Kreweras step set is
Kϕ(x, y) = xy(t(xy + x−1 + y−1)− 1). With the notation (2.14) and (2.15), we have

aϕ(x) = tx2, bϕ(x) = t− x, cϕ(x) = tx, dϕ(x) = (t− x)2 − 4t2x3,

and by symmetry ãϕ = aϕ, b̃ϕ = bϕ, c̃ϕ = cϕ and d̃ϕ = dϕ.
The branch points xϕ,1 and xϕ,2 (resp. yϕ,1 and yϕ,2) are the roots of dϕ (reps. d̃ϕ) in the open

unit disc, such that xϕ,1 < xϕ,2 (resp. yϕ,1 < yϕ,2). We easily obtain
xϕ,1 = yϕ,1 = t− 2 t5/2 + 6 t4 − 21 t11/2 + 80 t7 − 1287

4 t17/2 +O(t10),

xϕ,2 = yϕ,2 = t+ 2 t5/2 + 6 t4 + 21 t11/2 + 80 t7 + 1287
4 t17/2 +O(t10).

We further have

d̃′ϕ(yϕ,2) = 2 t5/4 − 3
2 t

17/4 − 8 t23/4 − 603
16 t

29/4 − 174 t35/4 +O
(
t41/4

)
.

We finally need to compute Yϕ(xϕ,1) and Yϕ(xϕ,2). By (2.16) these quantities may be simplified as

Yϕ(xϕ,1) = −
√
cϕ(xϕ,1)
aϕ(xϕ,1) = −

√
1
xϕ,1

and Yϕ(xϕ,2) =
√
cϕ(xϕ,2)
aϕ(xϕ,2) =

√
1
xϕ,2

.

Expression of the conformal gluing function. As we shall prove in Lemma 21, the following
is a suitable conformal mapping:

wϕ(y) =
(1
y
− 1
W

)√
1− yW 2,
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where W is the unique power series solution to W = t(2+W 3). In particular, W ∼ 2t. As Theorem
16 is stated for a conformal gluing function with a pole at yϕ,2 and not at 0, we should consider
instead ŵϕ(y) = 1

wϕ(t)−wϕ(yϕ,2) . We will further need the following expansions:



W = 2 t+ 8 t4 + 96 t7 + 1536 t10 +O
(
t11
)
,

wϕ(yϕ,1) = 1
2 t
−1 + 2 t1/2 − t2 + 3t7/2 +−7 t5 + 115

4 t13/2 − 90 t8 + 3247
8 t19/2 +O

(
t11
)
,

wϕ(yϕ,2) = 1
2 t
−1 − 2 t1/2 − t2 − 3 t7/2 − 7 t5 − 115

4 t13/2 − 90 t8 − 3247
8 t19/2 +O

(
t11
)
,

ŵϕ(Yϕ(xϕ,1)) = −t− 2 t4 − 18 t7 +O
(
t10
)
,

ŵϕ(Yϕ(xϕ,2)) = −t− 4 t5/2 − 18 t4 − 86 t11/2 − 418 t7 − 4131
2 t17/2 +O

(
t10
)
,

w′ϕ(yϕ,2) = t−1 − 2 t1/2 − 5/2 t2 − 6 t7/2 − 169
8 t5 − 75 t13/2 − 4957

16 t8 − 1251 t19/2 +O
(
t11
)
.

Explicit expression of Dϕ(y). We apply now Theorem 16 and obtain

Dϕ(y) =
−ŵ′ϕ(y)√

(ŵϕ(y)− ŵϕ(−1/√xϕ,1))(ŵϕ(y)− ŵϕ(1/√xϕ,2))d̃′ϕ(yϕ,2)w′ϕ(yϕ,2)
1

2iπ

∫
Lϕ

zŵ′ϕ(z)√
ŵϕ(z)− ŵϕ(yϕ,1)(ŵϕ(z)− ŵϕ(y))

dz,

where Lϕ is the contour defined in (2.18), represented on Figure 3.7. Since ŵϕ(0) = 0 and ŵ′ϕ(0) = 1
(remember that wϕ has a pole at y = 0), evaluating at y = 0 the expression above yields

Dϕ(0) = −1√
ŵϕ(−1/√xϕ,1)ŵϕ(1/√xϕ,2)d̃′ϕ(yϕ,2)w′(yϕ,2)

1
2iπ

∫
Lϕ

zŵ′ϕ(z)√
ŵϕ(z)− ŵϕ(yϕ,1)ŵϕ(z)

dz.

(3.16)
The integrand in the right-hand side of the above equation is analytic on GL \ [yϕ,1, yϕ,2]. Hence
by Cauchy’s integral theorem, the contour Lϕ may be replaced by the unit circle C(0, 1), which
simplifies the computations.

Expression of Dϕ(0) as a function of W . We could directly make a series expansion of Dϕ(0)
in t. However, for greater efficiency of the series expansion computation, we will first express Dϕ(0)
in terms of W , expand this integral in a series of W and finally get back to a series in t. The
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1y1y2Y (x1) Y (x2)
C(0, 1)

L

Figure 3.7 – The curve L for Kreweras model, for t = 1/6

generating function of excursions, Dϕ(0), can be written as

Dϕ(0) = −

√
wϕ(yϕ,1)− wϕ(yϕ,2)√

ŵϕ(−1/√xϕ,1)ŵϕ(1/√xϕ,2)d̃′ϕ(yϕ,2)w′ϕ(yϕ,2)

1
2iπ

∫
Lϕ

zw′ϕ(z)√
P − Swϕ(z) + wϕ(z)2

dz,

(3.17)
with 

S = wϕ(yϕ,1) + wϕ(yϕ,2) =
√

2P − 1
4W 2 (W 6 − 20W 3 − 8),

P = wϕ(yϕ,1)wϕ(yϕ,2) = (1−W 3)3/2

W 2 .

(3.18)

In order to derive (3.17), we start by writing the integrand of (3.16) in terms of wϕ:

∫
Lϕ

zŵ′ϕ(z)√
ŵϕ(z)− ŵϕ(yϕ,1)ŵϕ(z)

dz = −
√
wϕ(yϕ,1)− wϕ(yϕ,2)

∫
Lϕ

zw′ϕ(z)√
(wϕ(z)− wϕ(yϕ,1))(wϕ(z)− wϕ(yϕ,2))

dz.

Then, note that d̃ϕ(y) = −4t2(y − yϕ,1)(y − yϕ,2)(y − yϕ,3) = −4t2(y − yϕ,1)(y − yϕ,2)
(
y − 1

W 2

)
,

thus we have yϕ,1 + yϕ,2 = 1
4t2 −

1
W 2 and yϕ,1yϕ,2 = W 2

4 . On the one hand, we can deduce that

P =
(

1
yϕ,1
− 1
W

)(
1
yϕ,2
− 1
W

)√
(1− yϕ,1W 2)(1− yϕ,2W 2)

= −(W − 2t)(W − 3t)
W 5t2

√
W 6t2 −W 2 + 8t2.
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On the other hand,

S2 =
(
1− yϕ,1W 2

)( 1
y2
ϕ,1
− 2
yϕ,1W

+ 1
W 2

)
+
(
1− yϕ,2W 2

)( 1
y2
ϕ,2
− 2
yϕ,2W

+ 1
W 2

)
+ 2P.

Both equations can be simplified into (3.18), using several times the identity t(2 +W 3)−W = 0.

Series expansion. Let us first expand in t the factor in front of the integral in (3.17); we get

−

√
wϕ(yϕ,1)− wϕ(yϕ,2)√

ŵϕ(−1/√xϕ,1)ŵϕ(1/√xϕ,2)d̃′ϕ(yϕ,2)w′ϕ(yϕ,2)
= −1

t
+O

(
t10
)
.

(One could even prove that the left-hand side of the above equation is identically equal to −1
t .)

Then the factor in the integral in (3.17) may be written as

zw′ϕ(z)√
P − Swϕ(z) + wϕ(z)2

=− 1
2z W +

(
− 1

4z2 + z

4

)
W 2 − 1

8z3 W
3 +

(
− 1

16z4 + 3z2

16

)
W 4

+
(
− z

32 −
1

16z2 −
1

32z5

)
W 5 +

(
− 3

32 z3 −
1

64 z6 + 5 z3

32

)
W 6

+
(
−z

2

32 + 1
64 z −

3
32 z4 −

1
128 z7

)
W 7

+
(

1
64 z2 −

1
256 z8 −

5
64 z5 −

z

128 + 35 z4

256

)
W 8

+
(
− 1

512 z9 −
15

256 z6 −
15 z3

512

)
W 9 +O

(
W 10

)
and then we integrate the latter on the unit circle (the only terms which contribute are the 1/z-
terms). Coming back to a series in t we obtain

1
2iπ

∫
C(0,1)

zw′ϕ(z)√
P − Swϕ(z) + wϕ(z)2

dz

= −t− 4 t4 − 46 t7 − 706 t10 − 12472 t13 − 239632 t16 − 4869440 t19 +O
(
t21
)
.

Finally, putting every ingredients in order, we deduce (3.15).

3.3.3 Proof of Lemma 14

We first start to prove the boundary condition (3.12) and in a second part we prove the analytic
continuation.
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• Assuming that Dϕ(y) may be continued as in the statement of Lemma 14, it is easy to prove
the boundary condition (3.12). We evaluate the functional equation (3.10) at Yϕ,0(x) for x
close to [xϕ,1, xϕ,2]:

− 1
2xYϕ,0(x) + cϕ(x)Lϕ(x, 0)− x

(
xãϕ(Yϕ,0(x)) + 1

2 b̃ϕ(Yϕ,0(x))
)
Dϕ(Yϕ,0(x)) + 1

2 txDϕ(0) = 0.
(3.19)

We obtain two new equations by letting x go to any point of [xϕ,1, xϕ,2] with a positive (resp.
negative) imaginary part. We do the subtraction of the two equations and obtain (3.12).

• We now prove the analytic continuation. We follow the same idea as in [113, Thm 5]. Starting
from (3.10) we can prove that

2cϕ(Xϕ,0(y))Lϕ(Xϕ,0(y), 0) +Xϕ,0(y)
√
d̃ϕ(y)Dϕ(y)−Xϕ,0(y)y + tXϕ,0(y)Dϕ(0) = 0

for y ∈ {y ∈ C : |Xϕ,0(y)| < 1} ∩ D, and then

2cϕ(Xϕ,0(y))
∑

n≥0,j≥0
c0,−j−1(n)Xϕ,0(y)jtn +

√
d̃ϕ(y)Dϕ(y)− y + tDϕ(0) = 0

for y ∈ {y ∈ C : |Xϕ,0(y)| < 1 and Xϕ,0(y) 6= 0} ∩ D which can be continued in GLϕ ∪ D.
Being a power series, Dϕ(y) is analytic on D and on (GLϕ ∪D)\D, Dϕ(y) may have the same
singularities as Xϕ,0 and

√
d̃ϕ(y), namely the branch cuts [yϕ,1, yϕ,2] and [yϕ,3, yϕ,4]. But none

of these segments belong to (GLϕ ∪ D) \ D, see Lemma 2. Then Dϕ(y) can be analytically
continued to the domain GLϕ ∪ D. Using the same idea, we can prove that Dϕ(y) has finite
limits on Lϕ. From (3.19), it is enough to study the zeros of xãϕ(Yϕ,0(x)) + 1

2 b̃ϕ(Yϕ,0(x))
for x in [xϕ,1, xϕ,2]. Using the relation Xϕ,0(Yϕ,0(x)) = x valid in GMϕ (see [72, Cor. 5.3.5])
shows that it recurs to study the zeros of d̃ϕ(y) for y ∈ (GLϕ ∪ D) \ D. None of these roots
(yϕ,1, yϕ,2, yϕ,3, yϕ,4) belong to the last set, then Dϕ has finite limits on Lϕ.

3.3.4 Proof of Theorem 15

The function
√
d̃ϕ(y)Dϕ(y) satisfies a BVP of Riemann-Carleman type on Lϕ, see Lemma 14.

Following the literature [72, 113], we use a conformal mapping to transform the latter into a
more classical Riemann-Hilbert BVP. Throughout this section, we shall use notation and results of
Section 2.1.2.

More precisely, let wϕ be a conformal gluing function for the set GLϕ in the sense of Definition 9,
and let Uϕ denote the real segment

Uϕ = wϕ(Lϕ).

(With this notation, wϕ is a conformal mapping from GLϕ onto the cut plane C \Uϕ.) The segment
Uϕ is oriented such that the positive direction is from wϕ(Yϕ(xϕ,2)) to wϕ(Yϕ(xϕ,1)), see Figure 3.9.
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Define vϕ as the inverse function of wϕ. The latter is meromorphic on C \ Uϕ. Following the
notation of Section 2.1.2 and [72], we denote by v+

ϕ and v−ϕ the left and right limits of vϕ on Uϕ,
see Figure 3.9.

Then (3.12) may be rephrased as the following new boundary condition on Uϕ:

Dϕ(v+
ϕ (u)) =

√
d̃ϕ(v−ϕ (u))√
d̃ϕ(v+

ϕ (u))
Dϕ(v−ϕ (u)) +

v+
ϕ (u)− v−ϕ (u)√
d̃ϕ(v+

ϕ (u))
. (3.20)

As explained in Section 2.1.2 (see in particular Definition 7), the first step in the way of solving
the Riemann-Hilbert problem with boundary condition (3.20) is to compute the index of the BVP.

Proposition 18. The index of
√
d̃ϕ(v−ϕ (u))√
d̃ϕ(v+

ϕ (u))
along the curve Uϕ is −1.

Proof. First of all, let us recall that when L is a closed curve of interior GL and G is a non-constant,
meromorphic function without zeros or poles on L, then

indLG = 1
2iπ

∫
L

G′(z)
G(z) dz = Z − P,

where Z and P are respectively the numbers of zeros and poles of G in GL, counted with multiplicity.
Applying this result to the function dϕ(y), which in GLϕ has no pole and exactly two zeros (at

yϕ,1 and yϕ,2 — remember that yϕ,3 and yϕ,4 are also roots of dϕ(y) but are not in GLϕ), we have
indLϕ d̃ϕ(y) = 2, see Figure 3.8 for an illustration.

We get then

indUϕ

√
d̃ϕ(v−ϕ (u))√
d̃ϕ(v+

ϕ (u))
= indUϕ

√
d̃ϕ(v−ϕ (u))− indUϕ

√
d̃ϕ(v+

ϕ (u))

= − indLϕ,1
√
d̃ϕ(y)− indLϕ,0

√
d̃ϕ(y)

= − indLϕ
√
d̃ϕ(y)

= −1
2 indLϕ d̃ϕ(y)

= −1.

With Theorem 8, we deduce a contour-integral expression for the function Dϕ(vϕ(u)), namely

Dϕ(vϕ(u)) = Ψ(u)
2iπ

∫
Uϕ

v+
ϕ (s)− v−ϕ (s)√
d̃ϕ
(
v+
ϕ (s)

) 1
Ψ+(s)(s− u) ds.

With the changes of variable u = wϕ(y) and s = wϕ(z), we easily have the result of Theorem 15.
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Figure 3.8 – Plot of d̃ϕ(y) when y lies on Lϕ, in the case of Gessel’s step set

3.3.5 Anti-Tutte’s invariant

Our aim here is to find a function fϕ, analytic in GLϕ with finite limits on Lϕ, satisfying the
decoupling condition (3.13), namely√

d̃ϕ(y)√
d̃ϕ(y)

= fϕ(y)
fϕ(y) , ∀y ∈ Lϕ.

Indeed, such a function is used in a crucial way in Theorem 16.
Before giving a systematic construction of a function fϕ as above, we start by an example. For

Gessel’s model5, we easily prove that the function

gϕ(y) = y

t(y + 1)2

satisfies gϕ(Yϕ,0)gϕ(Yϕ,1) = 1, and so for x ∈ [xϕ,1, xϕ,2] it also satisfies the condition (3.4) in
Section 3.1. As in Theorem 19 below, we deduce that

fϕ(y) = gϕ(y)
g′ϕ(y) = y(y + 1)

y − 1

satisfies the decoupling condition (3.13).
However, a simple rational expression of fϕ as above does not exist in general. Instead, our

general construction consists in writing fϕ in terms of a conformal mapping. Our main result is the
following.

5Let us recall that the simple model is changed into Gessel’s model after the transformation ϕ.
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Yϕ(xϕ,1) Yϕ(xϕ,2)GLϕ

Lϕ,0

Lϕ,1

y

ȳ

wϕ h ◦ lϕ

g

Uϕ

v+
ϕ (u)

v−ϕ (u)

wϕ(Yϕ(xϕ,2)) wϕ(Yϕ(xϕ,1)) 1D

Figure 3.9 – Conformal gluing functions from GLϕ
to C \ Uϕ and conformal mappings from GLϕ

to the unit
disc D

Theorem 19. Let gϕ be any conformal mapping from GLϕ onto the unit disc D, with the property
that gϕ(y) = gϕ(y). Then the function fϕ defined by

fϕ = gϕ
g′ϕ

satisfies the decoupling condition (3.13). Moreover, fϕ is analytic in GLϕ and has finite limits on
Lϕ.

Finally, defining h(z) = −z +
√
z2 − 1 and letting wϕ be a conformal gluing function as in

Definition 9, one can choose

gϕ(y) = h

(
2

wϕ(Yϕ(xϕ,2))− wϕ(Yϕ(xϕ,1))

(
wϕ(y)− wϕ(Yϕ(xϕ,1)) + wϕ(Yϕ(xϕ,2))

2

))
, (3.21)

see Figure 3.9.

To obtain the expression of gϕ in (3.21) for a given model, we refer to the list of conformal
mappings wϕ provided in Section 3.3.7.

Proof. We first prove that if gϕ is a conformal mapping from GLϕ onto the unit disc D with the
property that gϕ(y) = gϕ(y), then fϕ = gϕ

g′ϕ
satisfies the decoupling condition (3.13). First, for

x ∈ [xϕ,1, xϕ,2] one has

gϕ(Yϕ,0(x))gϕ(Yϕ,1(x)) = gϕ(Yϕ,0(x))gϕ(Yϕ,0(x)) = gϕ(Yϕ,0(x))gϕ(Yϕ,0(x)) = |gϕ(Yϕ,0(x))|2 = 1.

Differentiating the identity gϕ(Yϕ,0(x))gϕ(Yϕ,1(x)) = 1, one finds on [xϕ,1, xϕ,2]

fϕ(Yϕ,0(x))
fϕ(Yϕ,1(x)) = −

Y ′ϕ,0(x)
Y ′ϕ,1(x) .
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To conclude the proof, we show that on [xϕ,1, xϕ,2]√
d̃ϕ(Yϕ,0(x))√
d̃ϕ(Yϕ,1(x))

= −
Y ′ϕ,0(x)
Y ′ϕ,1(x) . (3.22)

To that purpose, let us first consider x ∈ GMϕ\[xϕ,1, xϕ,2]. Differentiating the identityK(x, Yϕ,0(x)) =
0 in (2.13) yields

Y ′ϕ,0(x)(2aϕ(x)Yϕ,0(x) + bϕ(x)) = −(a′ϕ(x)Yϕ,0(x)2 + b′ϕ(x)Yϕ,0(x) + c′ϕ(x)). (3.23)

First, it follows from Section 2.1.2 that 2aϕ(x)Yϕ,0(x)+bϕ(x) = −
√
dϕ(x). Moreover, differentiating

(2.13) in x and using the relation Xϕ,0(Yϕ,0(x)) = x valid in GMϕ (see [72, Cor. 5.3.5]) shows that
the right-hand side of (3.23) satisfies

a′ϕ(x)Yϕ,0(x)2 + b′ϕ(x)Yϕ,0(x) + c′ϕ(x) = −
√
d̃ϕ(Yϕ,0(x)).

Then for x ∈ GMϕ \ [xϕ,1, xϕ,2], Equation (3.23) becomes

−
√
dϕ(x)Y ′ϕ,0(x) =

√
d̃ϕ(Yϕ,0(x)).

To complete the proof of (3.22), we let x converge to a point x ∈ [xϕ,1, xϕ,2] from above and then
from below, and we compute the ratio of the two identities so-obtained. The minus sign in (3.22)
comes from that

lim
x↓[xϕ,1,xϕ,2]

√
dϕ(x) = − lim

x↑[xϕ,1,xϕ,2]

√
dϕ(x),

see Section 2.1.2.

Our second point is to show that the function gϕ in (3.21) is a conformal mapping from GLϕ onto
the unit disc D, which in addition is such that gϕ(y) = gϕ(y). This is obvious from our construction
(3.21), since as illustrated on Figure 3.9, gϕ = h◦lϕ◦wϕ is the composition of the conformal mapping
wϕ from GLϕ to the cut plane C \ [wϕ(Yϕ(xϕ, 2)), wϕ(Yϕ(xϕ, 1))] by the conformal mapping

lϕ(z) = 2
wϕ(Yϕ(xϕ,1))− wϕ(Yϕ(xϕ,2))

(
z − wϕ(Yϕ(xϕ,1)) + wϕ(Yϕ(xϕ,2))

2

)
(3.24)

from the same cut plane to the cut plane C\ [−1, 1] and by the conformal mapping h from C\ [−1, 1]
onto the unit disc.

The third item is to prove that fϕ has finite limits on Lϕ, for any initial choice of conformal
mapping gϕ. We may propose two different proofs of this fact. First, we could prove that the function
fϕ constructed from the particular function gϕ in (3.21) has the desired properties (this follows from
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a direct study). Then as any two suitable conformal mappings gϕ,1 and gϕ,2 are necessarily related
by a linear fractional transformation

gϕ,1 = αgϕ,2 + β

γgϕ,2 + δ
,

it is easily seen that all functions have indeed the good properties. We could also use a very general
statement on conformal mapping. Namely, any conformal mapping which maps the unit disc onto
a Jordan domain (the domain GLϕ) with analytic boundary (our curve Lϕ) can be extended to
a univalent function in a larger disc, see [68, Sec. 1.6]. As the extension is univalent, it becomes
obvious that the derivative g′ϕ in the denominator of fϕ cannot vanish.

3.3.6 Proof of Theorem 16

Our main idea here is to reformulate the initial boundary condition (3.12) as (3.14), with the
help of a function fϕ which is analytic in GLϕ , admits finite limits on Lϕ and satisfies on Lϕ
the decoupling condition (3.13). Using Lemma 14 and Theorem 19, we deduce that fϕ(y)Dϕ(y) is
analytic in GLϕ and has finite limits on Lϕ. As a consequence, fϕ(y)Dϕ(y) satisfies a Riemann-
Carleman BVP with index zero (in the sense of Definition 7). Similarly to Section 3.3.4 and using
again a conformal gluing function, we transform the latter BVP into a Riemann-Hilbert BVP on
an open contour, whose solution is

Dϕ(y)fϕ(y) = 1
2iπ

∫
Lϕ

zfϕ(z)√
d̃ϕ(z)

w′ϕ(z)
wϕ(z)− wϕ(y) dz + c, (3.25)

where c is constant in y, but may depend on t (as recalled in Theorem 8 from Section 2.1.2, the
solutions to a BVP of index zero are determined up to one constant). Notice that fϕ cancels at
yϕ,2 (the unique pole of wϕ) and the integral in the right-hand side of (3.25) as well, it follows that
c = 0.

We now simplify the integrand in (3.25). First, noting that h satisfies the simple differential
equation h′ = −h√

z2−1 , we obtain with our notation (3.24)

fϕ = gϕ
g′ϕ

= h(w̃ϕ)
w̃′ϕh

′(w̃ϕ) = −

√
w̃2
ϕ − 1
w̃′ϕ

= −

√
(wϕ − wϕ(Yϕ(xϕ,1)))(wϕ − wϕ(Yϕ(xϕ,2)))

w′ϕ
.

Furthermore, the conformal gluing function wϕ satisfies the following differential equation

d̃ϕ(z)w′ϕ(z)2 = (wϕ(z)− wϕ(Yϕ(xϕ,1)))(wϕ(z)− wϕ(Yϕ(xϕ,2)))(wϕ(z)− wϕ(yϕ,1)), (3.26)
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see [72, Sec. 5.5.2.2]. Taking the square root of (3.26) in the neighborhood of [yϕ,2, yϕ,3]∩GLϕ gives

−
√
d̃ϕ(z)w′ϕ(z) =

√
(wϕ(z)− wϕ(Yϕ(xϕ,1)))(wϕ(z)− wϕ(Yϕ(xϕ,2)))(wϕ(z)− wϕ(yϕ,1)),

as wϕ is decreasing on [yϕ,2, yϕ,3] ∩ GLϕ . It follows that

fϕ(z)√
d̃ϕ(z)

= 1√
wϕ(z)− wϕ (yϕ,1)

.

The proof of Theorem 16 is complete.

Remark 20. The differential equation (3.26) is only true for the conformal gluing function wϕ whose
expression is given in Section 3.3.7, with a pole at yϕ,2. If instead we have at hand a function wϕ
with a pole at y0 6= yϕ,2 (for example y0 = 0, as in Lemma 21), we can consider ŵϕ = 1

wϕ−wϕ(yϕ,2) ,
which instead of (3.26) satisfies the differential equation

d̃ϕ(z)ŵ′ϕ(z)2 = d̃′ϕ(yϕ,2)w′ϕ(yϕ,2) [ŵϕ(z)− ŵϕ(Yϕ,0(xϕ,1))]

[ŵϕ(z)− ŵϕ(Yϕ,0(xϕ,2))] [ŵϕ(z)− ŵϕ(yϕ,1)] .

3.3.7 Expression and properties of conformal gluing functions

A crucial ingredient in our main results (Theorems 15 and 16) is the function wϕ(y), which we
interpret as a conformal mapping from the domain GLϕ onto a complex plane cut along an interval,
see Section 2.1.2. In this section, we recall from [113, 17] an explicit expression as well as some
analytic properties of this function for the transformed models in Table 3.1, first in the finite group
case, then for infinite group models.

Let us recall that if w is a suitable6 mapping, then any αw+β
γw+δ is also a suitable mapping, as

soon as αδ − βγ 6= 0. Therefore, all expressions hereafter are given up to such a fractional linear
transform.

Finite group models. We start by giving an expression of the conformal mapping w(y) for the
Kreweras trilogy of Figure 3.2a. Let W = W (t) and Z = Z(t) be the unique power series satisfying

W = t(2 +W 3) and Z = t
1− 2Z + 6Z2 − 2Z3 + Z4

(1− Z)2 . (3.27)

Lemma 21. Let W and Z as in (3.27). The function

w(y) =
(1
y
− 1
W

)√
1− yW 2

6In the sense of Definition 9
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is a conformal mapping for Kreweras model. Likewise, a conformal mapping for reverse Kreweras
model is given by

w(y) = −ty
3 + y2 + t

2yt − 2y2 − yW 2 −W
2yW

√
1− yW (W 3 + 4)/4 + y2W 2/4.

Finally, a conformal mapping for double Kreweras model is

w(y) =
√

1− 2yZ(1 + Z2)/(1− Z)2 + Z2y2 (Z(1− Z) + 2yZ − (1− Z)y2)
2yZ(1− Z)(1 + y)

+ Z(1− Z)2 − Z2(−1 + 2Z + Z2)y + (1− 2Z + 7Z2 − 4Z3)y2 − Z(1− Z)2y3

2y(1 + y)Z(1− Z)2 .

Notice that the functions w given in Lemma 21 all have a pole at y = 0.

Proof. Expressions for w are given in [113, Thm 3 (iii)], but some quantities in the latter statement
(namely α, β, δ and γ, all depending on t) are not totally explicit. So to derive the above expressions
of w, we will rather use a combination of the works [41] and [17]. Indeed, algebraic expressions of
Q(0, y) in terms of y and t are obtained in [41] for the three Kreweras models (see Prop. 13, Prop. 14
and Prop. 15 there). On the other hand, an alternative formulation of Q(0, y) as a rational function
of w(y), y and t is derived in [17] (see Thm 23 and Tab. 8 there). The formulas of Lemma 21 are
obtained by equating the two expressions.

An expression for w(y) for Gessel’s model is obtained in [99, Thm 7].

Infinite group models. In the infinite group case, the function w is not algebraic anymore (it is
even non-D-finite, see [113, Thm 2]). As L is a quartic curve [72, Thm 5.3.3 (i)], w can be expressed
in terms of Weierstrass’ elliptic functions (see [72, Sec. 5.5.2.1] or [113, Thm 6]):

Lemma 22 ([72, 113, 17]). The function w defined by

w(y) = ℘1,3
(
− ω1 + ω2

2 + ℘−1
1,2(f(y))

)
(3.28)

is a conformal mapping for the domain GL, and has in this domain a unique (and simple) pole,
located at y2. The function w admits a meromorphic continuation on C \ [y3, y4]. It is D-algebraic
in y and in t.

The differential algebraicity is shown in [17, Thm 33]. The remaining properties stated in
Lemma 22 come from [72, 113], see e.g. [113, Thm 6 and Rem. 7].
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Let us now comment on the expression (3.28), following the discussion in [17, Sec. 5.2]. First,
f(y) is a rational function of y whose coefficients are algebraic functions of t:

f(y) =


d̃′′(y4)

6 + d̃′(y4)
y − y4

if y4 6=∞,

d̃′′(0)
6 + d̃′′′(0)y

6 if y4 =∞,

where d̃(y) is the discriminant (2.15) and y4 is one of its roots.
The next ingredient in (3.28) is Weierstrass’ elliptic function ℘, with periods ω1 and ω2:

℘(z) = ℘(z, ω1, ω2) = 1
z2 +

∑
(i,j)∈Z2\{(0,0)}

( 1
(z − iω1 − jω2)2 −

1
(iω1 + jω2)2

)
.

Then ℘1,2(z) (resp. ℘1,3(z)) is the Weierstrass function with periods ω1 and ω2 (resp. ω1 and ω3)
defined by:

ω1 = i

∫ y2

y1

dy√
−d̃(y)

, ω2 =
∫ y3

y2

dy√
d̃(y)

, ω3 =
∫ y1

Y (x1)

dy√
d̃(y)

.

These definitions make sense thanks to the properties of the yi’s and Y (xi)’s (see [17, Sec. 5.1]).
If Y (x1) is infinite (which happens if and only if neither (−1, 0) nor (−1, 1) are in S), the integral
defining ω3 starts at −∞. Note that ω1 ∈ iR+ and ω2, ω3 ∈ R+.

Finally, as the Weierstrass function is not injective on C, we need to clarify our definition of
℘−1

1,2 in (3.28). The function ℘1,2 is two-to-one on the fundamental parallelogram [0, ω1) + [0, ω2)
(because ℘(z) = ℘(−z+ω1 +ω2)), but is one-to-one when restricted to a half-parallelogram—more
precisely, when restricted to the open rectangle (0, ω1)+(0, ω2/2) together with the three boundary
segments [0, ω1/2], [0, ω2/2] and ω2/2 + [0, ω1/2]. We choose the determination of ℘−1

1,2 in this set.

3.4 Further objectives and perspectives

3.4.1 Asymmetric step sets, inhomogeneous walks and JSQ model

Asymmetric step sets and inhomogeneous walks. Let us consider a walk with a non-
necessarily symmetric step set S. We still require that the jumps (−1, 1) and (1,−1) do not belong
to S. In this case, instead of one functional equation, we will get a system of two functional equa-
tions, one for the generating function of walks ending in the lower part L(x, y) and another one
for the generating function ending in the upper part U(x, y) (see 3.5). Both equations involve the
generating function of walks ending in the diagonal D(x, y). We can easily write a similar equation
to (3.7) for the generating function U(x, y) by taking into account all possibilities of ending in the
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ϕU

ϕL

Figure 3.10 – Solving a walk model in the three-quadrant cone is equivalent to solving a space inhomogeneous
model in a half-plane

upper part and get

U(x, y) =t
∑

(i,j)∈S
xiyjU(x, y) + t(δ0,1y + δ−1,0x

−1)D(x, y)− t(δ0,−1y
−1 + δ1,0x)Du(x, y) (3.29)

− t(δ−1,−1x
−1y−1 + δ0,−1y

−1)U−0(x) + tδ0,−1y
−1 ∑

n≥0
c−1,0(n)x−1tn.

Without the symmetry, instead of (3.8), the functional equation for D(x, y) becomes

D(x, y) =1 + t(δ−1,−1x
−1y−1 + δ1,1xy)D(x, y)− tδ−1,−1x

−1y−1D(0, 0) (3.30)

+ t(δ0,−1y
−1 + δ1,0x)Du(x, y)− ty−1 ∑

n≥0
c−1,0(n)x−1

+ t(δ−1,0x
−1 + δ0,1y)D`(x, y)− tx−1 ∑

n≥0
c0,−1(n)y−1tn.

By multiplying by xy then mixing equations (3.7) and (3.30) as well as the equations (3.29) and
(3.30), we get the system of functional equations (note that is the step set is symmetric, then
U(x, y) = L(y, x) and both equations in (3.31) are the same)

L(x, y)K(x, y) = −xy −
[
t
(
δ−1,−1 + δ1,0x

2y + δ0,−1x+ δ1,1x
2y2)− xy]D(x, y)

+t (δ−1,−1 + δ−1,0y)L0−(y)− t
(
δ0,−1x+ δ1,0x

2y
)
Du(x, y)

+tδ0,−1
∑
n≥0 c−1,0(n)tn + tδ−1,−1D(0, 0).

U(x, y)K(x, y) = −xy −
[
t
(
δ−1,−1 + δ0,1xy

2 + δ−1,0y + δ1,1x
2y2)− xy]D(x, y)

+t (δ−1,−1 + δ0,−1x)U−0(x)− t
(
δ−1,0y + δ0,1xy

2)D`(x, y)
+tδ−1,0

∑
n≥0 c0,−1(n)tn + tδ−1,−1D(0, 0).

(3.31)

To simplify the system (3.31), we apply a change of variable as follows: every section above the
diagonal will have the change of variable ϕU and we apply ϕL to every section below the diagonal

59



(a) Solving a symmetric walk model in the three-quadrant cone is equivalent to solving a walk in the quarter
plane reflected on the y-axis

(b) Walks in the quarter plane with weights on the boundary

Figure 3.11 – Symmetric walk in the three-quadrant and walk with weights on the boundary

such that ϕU transforms the upper part {j ≥ 1, i ≤ j − 1} into the left quadrant {i ≤ −1, j ≥ 0}
and ϕL transforms the lower part {i ≥ 1, j ≤ i − 1} into the right quadrant {i ≥ 1, j ≥ 0} (see
Figure 3.10). Thanks to these changes of variable, walks in the three-quadrant can be seen as walks
in the half plane with two different step sets in each quadrant (see again Figure 3.10). On the
y-axis, the step set is composed of mixed steps from the step sets of the left and right quadrants.
We are not able to solve yet this asymmetric case, which has in fact the same issues and level of
complexity as the non-symmetric JSQ, model still unresolved [1]. This difficulty of asymmetric step
sets appears as well in the study of discrete harmonic functions in the three-quarter plane which
we present in Section 4.6.1.

In particular, starting with a symmetric step set in the three-quarter plane, say the simple walk,
one obtains (with the terminology of Table 2.1) Gouyou-Beauchamps’ model in the left quadrant
and Gessel’s model in the right one, see Figure 3.11a on the left7. This model is equivalent to study
Gessel’s step set in the quadrant reflected on the y-axis, see Figure 3.11a on the right. A related
model is studied in [12, 127]: in these articles, the authors work on walks in the quadrant with
different weights on the boundary, see Figure 3.11b, and give some results on the nature of the
generating function of such walks.

7The symmetry condition implies compatibility between the groups of the two models after changes of variables.
Indeed, if S and S ′ are two step sets differing by one of the eight symmetry of the square (in your case, the models
are symmetric with respects to the y-axis), then the groups G(S) and G(S ′) are isomorphic [41, Lem. 2].
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(a) An example of spatially inhomogeneous model
studied in [35, 111, 45]

(b) Block inhomogeneous model in the plane

Figure 3.12 – Various kinds of inhomogeneous models

A related, simpler model (that we do not solve in the present chapter) would be to split the full
plane into two half-planes and a boundary axis, to consider in each of the three regions a (different)
step set, and to solve the associated walk model, see Figure 3.12b.

Some other space inhomogeneous walk models have been investigated in [35, 111, 45], but
this notion of inhomogeneity does not match with ours. Indeed, a simple but typical example in
[35, 111, 45] consists in dividing Z2 into the odd and even lattices, and assigning to each point of
the even (resp. odd) lattice a certain step set S fixed a priori (resp. another step set S ′), see Figure
3.12a.

Join-the-Shortest-Queue model. Suppose that there are two lines (see Figure 3.13), each of
them with a service time exponentially distributed of rate r1 and r2 and that the customers arrive
according to a Poisson process. The clients choose the shortest queue and if both lines happen to
have the same length, the costumers pick one or the other with probability p1 or p2. A common
question in queuing theory is to obtain closed-form expression for the stationary distribution.

Arrivals Departures

Figure 3.13 – The JSQ model can be represented as a system of two queues, in which the customers choose
the shortest one (the green one, on the picture)

This JSQ problem can be modeled by random walks in the quarter plane split into two octants
(cones of opening angle π

4 ), each axis representing the length of a line. The JSQ is called symmetric
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Line 2

Line 1

Both lines have same length

Service time are equal

The customers choose the
shortest queue

(a) Walk model for symmetric JSQ
Line 2

Line 1

Costumer chooses line 1

Costumer chooses line 2

Costumer in line 1 is served

Costumer in line 2 is served

The customers choose the
shortest queue

(b) Walk model for asymmetric JSQ

Figure 3.14 – Walk model for JSQ

when the service times are equal and the probability to pick one or the other line is the same (that
is, when r1 = r2 and p1 = p2 = 1/2). With a random walk point of view, it means that the walk
is symmetric and homogeneous (see Figure 3.14a). This symmetric case is solvable, see [1, 82, 102]
and [72, Chap. 10] for references. However, in general, the service times depend on the servers
(r1 6= r2) and the transition probabilities are different in the upper and lower octants. In this case,
one speaks about spatially inhomogeneous random walks, and of the general asymmetric JSQ (see
Figure 3.14b). Surprisingly, the non-symmetric JSQ is still an open problem. Let us briefly notice
that quadrant walks could also be treated with a JSQ approach, by decomposing the quarter plane
into two octants as on Figure 3.14a, see e.g. [102] for asymptotic results and Section 4.5.

3.4.2 Nature of the generating functions of walks avoiding a quadrant

As mentioned previously, there is a complete classification of the nature of the generating
functions of walks in the quadrant (see Table 2.2). It is therefore natural to get interested in the
nature of the generating functions of walks avoiding a quadrant and continue the classification. Let
us emphasize that to prove that the generating function C(x, y) is algebraic, it suffices to prove the
algebraicity of Dϕ(y). Indeed, thanks to the functional equation (3.6), if the generating function
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Dϕ(y) = D(x, y) is algebraic, then L(x, y) and U(x, y) by symmetry are algebraic as well. Finally,
C(x, y) is also algebraic (see the decomposition (3.5)).

Conjecture 23. The generating function of walks for the Kreweras trilogy (see Figure 3.2a) in
three quadrants is algebraic.

The algebraic nature of Dϕ(0) (see (3.16) for the example of Reverse Kreweras) can be proven
using the creative telescoping, which can provide the minimal polynomial. This is an ongoing project
with A. Bostan and K. Raschel.

An other complementary ongoing work with T. Dreyfus, M. Mishna and K. Raschel consists
in extending the analytical approach of [101] to walks in the three-quadrant. This method has
been applied in [32] to the Gessel step set in the quadrant and has given the first human proof of
the algebraicity of this model. The general idea is to make an analytic version of the orbit sum
in [41]. In this case, we can directly remark that a zero orbit sum is equivalent to an algebraic
generating function. Furthermore, this method systematically gives an infinite series expression for
the generating function of the walks [101, Thm 1.2], in both case of a finite and infinite group.
Furthermore, the strategy and the tools developed in [62] allow us to make the following conjecture

Conjecture 24. The generating function of walks with infinite group in Figure 3.2b in the three-
quadrant are D-transcendental.

Although it is not directly inspired by our work, let us end this chapter with one last conjecture
related to the starting point of the walks avoiding a quadrant.

Conjecture 25. Consider an arbitrary finite group step set S (not necessarily satisfying (H) but
with small steps). The generating function for walks in three quadrants C(x, y) is algebraic as soon
as the starting point (i0, j0) ∈ C is such that i0 = −1 or j0 = −1.

This conjecture is motivated by an analogy with the quarter plane, in which the following result
holds: a finite group model (having group G) with starting point at (i, j) is algebraic if and only if
the orbit-sum ∑

g∈G
(−1)gg(xi+1yj+1)

is identically zero, see [41, 31, 100]. Taking i = −1 in the sum above (which obviously is not possible
in the quadrant case!) yields a zero orbit-sum—more generally, the orbit-sum of any function
depending on only one of the two variables x, y is zero.
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Chapter 4

Discrete harmonic functions in three
quadrants1

A simple random 10,000 step walk in the
quarter plane

4.1 Introduction

As we have discussed in Chapter 1, discrete harmonic functions appear naturally in the study
of random walks in cone. For instance, harmonic functions arise in the asymptotic behavior of
excursions in a cone. Let e0→x(n) be the number of n-walks with step set S, starting at the origin

1This chapter is mainly from [122].
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and ending at x within a given cone. Then [58, Eq. (12)]2

e0→x(n) ∼ κ · V (x) · ρn · n−α, n −→∞

where V is a discrete harmonic function, ρ and α are respectively the exponential growth and the
critical exponent, both defined in Section 2.2. Furthermore, the growth of the harmonic function
V turns out to be directly related to the critical exponent α, thus studying and understanding
harmonic functions allows us to get information on the asymptotic behavior of walks restricted to
a cone.

In the two-dimensional continuous case, a continuous harmonic function is a function for which
the standard Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 is zero (see Section 1.2). For example, the function ln(x2+y2),
which appears in potential analysis, is harmonic in R2 \ (0, 0). With polar coordinates, in the cone
{r exp(it) : 0 ≤ r < ∞, 0 ≤ t ≤ η} of opening angle η, u(r, t) = rπ/η sin

(
π
η t
)
is the unique (up to

multiplicative constants) positive harmonic function equal to zero on the boundary.
In the two-dimensional discrete case, consider the simplest Laplacian operator

f(i+ 1, j) + f(i, j + 1) + f(i− 1, j) + f(i, j − 1)− 4f(i, j).

The function f(i, j) = i is positive harmonic in the right half plane and equal to zero on y-axis. In the
positive quadrant, the function f(i, j) = ij is positive harmonic with Dirichlet boundary conditions.
What about harmonic functions in the three-quarter plane? Surprisingly, harmonic functions in the
three-quarter plan have more complex expressions, see Equations (41) and (42). Unlike the two
last examples, the three quadrants is not a convex cone and finding positive harmonic functions is
more complicated. Although the difference between the intersection of two half-planes (the quarter
plane) and union of two half-planes (the three-quarter plane) seems geometrically insignificant at
first sight, this is not in any way the same in a combinatorial and probabilistic point of view (see
Chapter 3). In this chapter, we present a systematic approach to find positive discrete harmonic
functions in the three-quarter plane with Dirichlet conditions3.

Context. In the discrete case, planar lattice random walks in cones occupy a central position in
probability and combinatorics. Harmonic functions play an important role in probability theory.
Doob h-transform is a way to build conditioned random processes in cones from a random process
and a positive harmonic function vanishing on the boundary of the cone. Finding positive harmonic
functions for random processes is therefore a natural objective in the study of confined random

2In our case of bounded step set, the following identity holds for any arbitrary starlike cone.

3In this chapter, the discrete harmonic functions vanishe on the boundary.
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walks. There are very few ways to compute discrete harmonic functions (see [114] and references
therein).

Most of walks studies have been done on the quadrant, or more generally in convex cones. A
natural generalization is to consider other domains of restriction and determine how the framework
of (random) walks is different from the quarter plane to this region. Recently, non-convex cones, in
particular the three-quarter plane

C = {(i, j) ∈ Z2 : i ≥ 0 or j ≥ 0}, (4.1)

have been examined, see Chapter 3. Unlike the quarter plane, where generating functions involve
only positive powers of the variables, in the three-quarter plane we face both positive and negative
powers of the variables, giving rise to convergence issues. A natural strategy consists of cutting the
three quadrants in some convex cones in which the generating functions are convergent. In [40],
Bousquet-Mélou sees the three-quarter plane as the union of three quadrants and obtains results
for the simple and diagonals walks avoiding a quadrant. Integral expressions for the generating
function of walks avoiding a quadrant with symmetric step sets are derived (see again Chapter 3),
where the three-quarter plane is seen as the union of two symmetric convex cones of opening angle
3π/4. Asymptotics of the number of excursions of walks with small steps in the three-quadrant
is computed in [111] by Mustapha. In that article, Mustapha expresses the critical exponent of
harmonic functions in three quadrants as a function of the critical exponent of harmonic functions
in a quadrant. When this exponent is not rational, then the generating function of walks is not
D-finite and [111, Thm 1.3] proves that the generating function of the walks of the 51 non-singular
step sets with infinite group are not D-finite in the three-quarter plane (recall that neither are they
in the quadrant).

In this chapter, we find an explicit expression for generating functions of discrete harmonic
functions associated to random walks avoiding a quadrant with a mixed approach of [114] and
Chapter 3. We focus on the analytic approach developed in [114], which consists in writing a
functional equation for the generating function for a fixed harmonic function, transforming this
functional equation into a boundary value problem and finally solving this problem, which results
in an explicit expression for the generating function. We begin by making some assumptions on
both the random walks and discrete harmonic functions for these random walks.

(H1) The walk is homogeneous inside the cone with transition probabilities {pi,j}−1≤i,j≤1 to the
nearest neighbors;

(H2) The transition probabilities are symmetric (pi,j = pj,i) and p0,0 = p−1,1 = p1,−1 = 0;

(H3) In the list p1,1, p1,0, p1,−1, p0,−1, p−1,−1, p−1,0, p−1,1, p0,1, there are no three consecutive zeros;

(H4) The drifts are zero:
∑
−1≤i,j≤1 ipi,j = 0 and

∑
−1≤i,j≤1 jpi,j = 0.
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We first suppose with (H1) the random walks to be homogeneous with small steps, which
therefore provide us techniques and tools developed in [72]. Moreover, with assumption (H2)4,
we suppose the walks to be symmetric with no anti-diagonal jumps. The third hypothesis (H3)
is not essential in the study, but automatically excludes degenerate cases which could have been
studied with easier methods. Finally, we assume the walks to have zero drifts with (H4). Note that
the zero and non-zero drifts are two very different frameworks [66], and most results are given in
the non-zero drift case. Furthermore, (H4) makes the random walks hit the negative axes almost
surely. Figure 4.1 illustrates a possible transition probabilities set which satisfies (H1), (H2) and
(H3). We will use the combinatorial step set terminology (see Table 2.1): the simple model is when
p1,0 = p1,0 = p−1,0 = p0,−1 = 1/4, Gouyou-Beauchamps model (see Figure 4.11) has p1,0 = p−1,1 =
p−1,0 = p1,−1 = 1/4 and Gessel model (see Figure 4.9) has p1,0 = p1,1 = p−1,0 = p−1,−1 = 1/4.
In addition, we ask the associated discrete harmonic functions f = (f(i, j))(i,j)∈C to satisfy four
properties:

(P1) For all i ≥ 1 or j ≥ 1, f(i, j) =
∑
−1≤i0,j0≤1 pi0,j0f(i+ i0, j + j0);

(P2) If i ≤ 0, f(i, 0) = 0 and if j ≤ 0, then f(0, j) = 0;

(P3) If i > 0 or j > 0 then f(i, j) > 0.

We also make the hypothesis (P4) which, as we shall see (Remark 33), will be automatically satisfied
for positive harmonic functions associated to symmetric step sets.

(P4) For all (i, j) ∈ C, f(i, j) = f(j, i).

The first property (P1) is the harmonicity condition, the second one (P2) is the zero condition
on the boundary, the third one (P3) is the positivity condition within the cone and the last one (P4)
is a symmetry condition (coming then from (H2)). In other words, we are interested in symmetric
positive discrete harmonic functions for symmetric random walks with small steps constrained to
the boundary of C. Thereafter, for such a fixed harmonic function f , we consider its generating
function

H(x, y) =
∑

(i,j)∈C
f(i, j)xi−1yj−1. (4.2)

We observe here one of the main difficulties of the three quadrants: the series H(x, y) is not
convergent. Thereafter, we may see this object as a formal series.

Method. Working in non-convex cones, here in particular in the three-quarter plane, raises con-
vergence problems. Indeed, it is not difficult to write a functional equation from the properties of

4Note that the hypothesis p0,0 = 0 is not restrictive.
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p1,0p−1,0

p−1,0
=

p0,−1

p1,0
=
p0,1

p1,1

p−1,−1

Figure 4.1 – Models satisfying (H1), (H2) and (H3)

harmonicity (P1) and vanishing conditions on the boundary (P2). However, even if this functional
equation (4.19) seems close to the quarter plane case (4.16) solved in [114], it is in fact fundamen-
tally different: the three quadrants case involves negative powers of x and y making the series not
convergent anymore. To remedy this difficulty, we follow the same strategy as in Chapter 3: we
divide the three quadrants into two symmetric convex cones and the diagonal (see Figure 3.3) and
write a system of two functional equations (one for each cone). At first sight, this cut increases
even more the level of difficulty: we have now two functional equations and more unknowns to
deal with, but in the particular case of symmetric harmonic functions and symmetric transition
probabilities, the system is composed of twice the same equation and the problem can be seen as
a slightly different variation of the quadrant case (see Figure 4.8). In this symmetric case, we are
able to use the tools and methods of [114]: transform the functional equation into a boundary value
problem, solve it and write an explicit expression for the generating function. Finally, let us point
out that this method of splitting the domain in two octants can also be applied in the quadrant in
the symmetric case, and allows us to give alternative proofs of [114].

Main results. Our main result is an expression for the diagonal section

D(x, y) = Dϕ(xy) =
∑
i≥1

f(i, i)xi−1yi−1,

in Lemma 44. Let w̃ϕ be a conformal mapping (see Section 4.4.1, w̃ϕ depends on the step set and
satisfies an algebraic differential equation and can be simply expressed in terms of sine and arcsine
functions) and Gϕ an explicit algebraic function defined from w̃ϕ. The generating function D(x, y)
of discrete harmonic functions not necessarily positive (satisfying (P1) and (P2)) can be expressed
as

D(x, y) = P (w̃ϕ(xy))
Gϕ(xy) , P ∈ R[y]. (4.3)
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In particular, taking P of degree 1, we get the unique positive discrete harmonic function (satisfying
(P1), (P2) and (P3)), see Theorem 41.

This expression of Dϕ(y) suffices to get a complete solution to the problem and Theorem 42
gives a formal explicit expression forH(x, y). This formal series is expressed with the kernelK(x, y),
a polynomial in x and y, and two conformal mappings Wϕ(x) and W̃ϕ(y). Each quantity depends
on the transition probabilities of the random walk.

As mentioned earlier (see Section 1.2), for the simple step set, the positive discrete harmonic
function in the half-plane is given by f(i, j) = i with critical exponent 1. In the quadrant, the
positive discrete harmonic function is given by f(i, j) = ij with critical exponent 2. In this case,
the value of the critical exponent in the quadrant (intersection of two half-planes) is twice the value
of the critical exponent in the half-plane. Along our study, we find similar relations on harmonic
functions in various quadrants (see Lemma 38 and Equation (4.66)) and the critical exponent. The
growth of harmonic functions can be expressed from the angle θ defined by [73, Sec. 1.2]

θ = arccos


−

∑
−1≤i,j≤1

ijpi,j√√√√√
 ∑
−1≤i,j≤1

i2pi,j

 ·
 ∑
−1≤i,j≤1

j2pi,j




. (4.4)

For example, the growth of the positive harmonic function in the quadrant is π/θ. In the three-
quarter plane, Mustapha [111, Eq. 1.4] proves that the critical exponent of the harmonic function
is π/(2π − θ) = π/(2θϕ). In this chapter, we show that after the decomposition of the three
quadrants and the changes of variables, the random walk in the three quadrants is equivalent to an
inhomogeneous random walk in the half-plane (see Figure 4.14), with associated angle θϕ = π−θ/2
in each quadrant (see Figure 4.2a). We also recover the factor two between walks in the quadrant
and walks in the half plane: in the quarter plane, the critical exponent is π/θ = π/(2θψ). With the
same reasoning as the three quadrants case, a random walk associated with angle θ can be seen as
an inhomogeneous random walk in the half-plane, with associated angle θψ = θ/2 in each quadrant
(see Figure 4.2b).

Structure of the chapter. In Section 4.2, we start with underlining an important tool used in
this analytic study of harmonic functions of random walks with small steps. This object, denomi-
nated by K(x, y), is called the kernel of the walks and is a polynomial of degree 2 in x and y which
encodes the transition probabilities of the walk. In the second part, we review results on discrete
harmonic functions in the quarter plane.

In Section 4.3, we set up various functional equations for generating series of harmonic functions
in the three-quarter plane involving the kernel K(x, y).
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θ
π − θ

2π − θ
2

(a) Three-quarter plane case

θ θ
2

θ
2

(b) Quarter plane case

Figure 4.2 – A random walk with a step set of associated angle θ in the three quadrants (resp. the quadrant)
has critical exponent π

2π−θ (resp π
θ ). Such a walk can be seen as an inhomogeneous random walk in the

half-plane with a step set of associated angle π − θ
2 (resp. θ

2 ) in each quadrant.

In Section 4.4, we express explicitly generating functions of harmonic functions for some models
of random walks. To come to these results, we transform a functional equation (built in the previous
section) into a boundary value problem in Subsection 4.4.2, and the solution process of this problem
can be found in Subsection 4.4.3. The resolution of the boundary value problem involves conformal
gluing functions, introduced in Subsection 4.4.1. We end this part with the application of the results
to the example of the simple random walks (Subsection 4.4.4).

In Section 4.5, we apply this decomposition of the domain into two convex cones to symmetric
harmonic functions of symmetric random walks in the quadrant and find partially the same results
as [114].

In Section 4.6, we suppose that we do not have the symmetry of the transition probabilities of
the walks. We are still able to build kernel functional equations, but unfortunately there are too
many unknowns and we are not able to solve this difficult problem yet.

4.2 Preliminaries

The objects introduced in the following Section 4.2.1 may seem similar to Section 2.1.2. However,
in Section 2.1.2 the Riemann surface defined by the zeros of the kernel is of genus 1 whereas in
Section 4.2.1 it is of genus 0. The properties of the kernel are then slightly different in both cases.
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4.2.1 Kernel of the random walks

The kernel of the random walks, denoted by K(x, y), is an important object of the study. It
appears in the various functional equations of this section, and we use it later to transform a
functional equation into a boundary value problem. The kernel is characterized by the transition
probabilities of the associated random walk by

K(x, y) = xy

 ∑
−1≤i,j≤1

pi,jx
−iy−j − 1

 . (4.5)

The kernel is a polynomial of degree two in x and y (consequence of (H1) and (H3)) and can be
written as5

K(x, y) = α(x)y2 + β(x)y + γ(x) = α̃(y)x2 + β̃(y)x+ γ̃(y), (4.6)

where {
α(x) = p−1,−1x

2 + p0,−1x; β(x) = p−1,0x
2 − x+ p1,0; γ(x) = p0,1x+ p1,1;

α̃(y) = p−1,−1y
2 + p−1,0y; β̃(y) = p0,−1y

2 − y + p0,1; γ̃(y) = p1,0y + p1,1.
(4.7)

We also define the discriminants in the x-plane and in the y-plane:

δ̃(y) = β̃(y)2 − 4α̃(y)γ̃(y), δ(x) = β(x)2 − 4α(x)γ(x). (4.8)

The discriminant δ(x) (resp. δ̃(y)) is a polynomial of degree three or four (this is a consequence
of (H2)). Hence there are four branch points x1, x2, x3, x4 (resp. y1, y2, y3, y4), with x4 = ∞ (resp.
y4 =∞) when δ(x) (resp. δ̃(y)) is of degree 3.

Example 26. For the simple random walk (model with transition probabilities p1,0 = p0,1 = p−1,0 =
p0,−1 = 1

4), the kernel is K(x, y) = xy
[

1
4
(
x+ y + x−1 + y−1)− 1

]
.

Lemma 27 (Sec. 2.3 in [72] and Sec. 2.5 in [114]). The branch points xi are real and

|x1| ≤ x2 = 1 = x3 ≤ |x4| ≤ ∞. (4.9)

More precisely, we have x1 ∈ [−1, 1) and x4 ∈ (1,∞) ∪ {∞} ∪ (−∞,−1]. Furthermore, on the real
line, δ(x) is negative if and only if x ∈ (x1, x4) \ {1}. Symmetric results hold for the yi, roots of
δ̃(y).

5We follow the notations of [114] which are slightly different from the usual ones in [72]. Indeed, [114] points out
that the kernel in (4.5) is the reciprocal one of the kernel Q(x, y) in [72]: K(x, y) = x2y2Q(1/x, 1/y).
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x1 1 x4

Figure 4.3 – Cut plane C \ [x1, x4]

Let Y (x) (resp. X(y)) be the multivalued solution to K(x, Y (x)) = 0 (resp. K(X(y), y) = 0).
These algebraic functions can be written as

Y (x) = −β(x)±
√
δ(x)

2α(x) and X(y) =
−β̃(y)±

√
δ̃(y)

2α̃(y) . (4.10)

Over the x-plane, the function Y has two branches Y0 and Y1, both meromorphic on C \ [x1, x4]
(see Figure 4.3). We fix the notation by choosing Y0 = Y− and Y1 = Y+. On the whole of C (see [72,
Thm 5.3.3]),

|Y0| ≤ |Y1|. (4.11)

On the segment [x1, 1], Y0(x) and Y1(x) are complex conjugate and at the branch points xi, we
have Y0(xi) = Y1(xi) (when finite), and this common value is denoted by Y (xi). We introduce the
curve L by

L = Y0([x1, 1]) ∪ Y1([x1, 1]) = {y ∈ C : K(x, y) = 0 and x ∈ [x1, 1]}. (4.12)

We denote by GL the domain bounded by L which contains y1. Figure 4.4 presents examples
of the curve L for the simple (p1,0 = p0,1 = p−1,0 = p0,−1 = 1/4) and Gouyou-Beauchamps
(p1,0 = p−1,1 = p0,−1 = p1,−1 = 1/4) case.

Lemma 28 (Lem. 6.5.1 in [72]). The curve L in (4.12) is symmetric with respect to the horizontal
axis, smooth except at Y (1) = 1 where it may have a corner point. At this point, the angle between
the curve and the segment [y1, 1] is given by (4.4).

Remark 29. The quotient

c =

∑
−1≤i,j≤1

ijpi,j√√√√( ∑
−1≤i,j≤1

i2pi,j

)
·
( ∑
−1≤i,j≤1

j2pi,j

) (4.13)

is the coefficient of correlation of the walk (compare with Section 2.2) and is related to the angle
theta given in (4.4) by θ = arccos(−c).
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1y1Y (x1)

θ θ

1y1Y (x1)

Figure 4.4 – The curve L for Gouyou-Beauchamps model (on the left) and for the simple model (on the
right). In the case of Gouyou-Beauchamps model θ = π/4, and in the case of the simple model, the curve is
simply the unit circle and θ = π/2

Similarly, we define the curve M = X0([y1, 1]) ∪ X1([y1, 1]), and the same symmetric results
and notations hold. One has the following automorphism relations (see [72, Sec. 5.3]):

X0 : GL \ [y1, 1]→ GM \ [x1, 1] and Y0 : GM \ [x1, 1]→ GL \ [y1, 1]

are conformal and inverse of one another. In particular, we have then X0(Y (x1)) = x1 and
Y0(X(y1)) = y1.

4.2.2 Previous results on discrete harmonic functions in the quarter plane

In this section we review results [114] on discrete harmonic functions in the first quadrant

Q = {(i, j) ∈ Z2 : i ≥ 1 and j ≥ 1}. (4.14)

In this case, we assume that random walks satisfy the hypotheses (H1), (H3), (H4). We also ask
the associated discrete harmonic functions to have the properties (P̃1), (P̃2), (P̃3) where

(P̃1) For all i ≥ 1 and j ≥ 1, f̃(i, j) =
∑
−1≤i0,j0≤1 pi0,j0 f̃(i+ i0, j + j0);

(P̃2) If i ≤ 0 or j ≤ 0, then f̃(i, j) = 0;

(P̃3) If i > 0 and j > 0 then f̃(i, j) > 0.

Functional equation. The generating function of such harmonic functions f̃

H̃(x, y) =
∑
i,j≥1

f̃(i, j)xi−1yj−1 (4.15)
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H̃00

H̃(x, y)

H̃−0(x)

H̃0−(y)

Figure 4.5 – First quadrant and associated generating functions

satisfies the functional equation equation [114, Sec. 2.3]

K(x, y)H̃(x, y) = K(x, 0)H̃−0(x) +K(0, y)H̃0−(y)−K(0, 0)H̃00, (4.16)

where

H̃−0(x) =
∑
i≥1

f̃(i, 1)xi−1, H̃0−(y) =
∑
j≥1

f̃(1, j)yj−1 and H̃0,0 = f̃(1, 1). (4.17)

Example 30. Let us check the previous functional equation (4.16) with the simple random walk
and it associated harmonic function f(i, j) = ij [112]. The kernel in Example 26 can be factored
into K(x, y) = y

4 (x− 1)2 + x
4 (y − 1)2 and we check

K(x, y)H̃(x, y) =
[
y

4(1− x)2 + x

4 (1− y)2
] 1

(1− x)2(1− y)2

= y

4(1− y)2 + x

4(1− x)2 = K(x, 0)H̃−0(x) +K(0, y)H̃0−(y).

Boundary value problem. Using the properties of the kernel in Section 4.2.1, the functional
equation (4.16) satisfied by the generating function H̃(x, y) (4.15) can be transformed into a
boundary value problem. The function H̃−0(x) satisfies the following boundary value problem [114,
Sec. 2.4]

(i) H−0(x) is analytic in GM;

(ii) H−0(x) is continuous on GM \ {1};

(iii) For all x ∈M \ {1}, K(x, 0)H̃−0(x)−K(x̄, 0)H̃−0(x̄) = 0.
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Explicit expression for the generating function. The function H̃−0(x) has the following
explicit expression

H̃−0(x) = µ
w(x) + ν

K(x, 0) , (4.18)

where w is a conformal mapping vanishing at 0 (see Section 4.4.1), and the constants ν and µ are
defined by

ν = −w (X0(0)) , µ = f̃(1, 1)×


2p−1,1
w′′(0) if p1,1 = 0 and p0,1 = 0,
p0,1
w′(0) if p1,1 = 0 and p0,1 6= 0,
− p1,1
w(X0(0)) if p1,1 6= 0.

Example 31. For the simple random walk case, w(x) = −2x
(1−x)2 , ν = 0, and µ = f̃(1, 1) × 1/4

−2 .
Finally

H̃−0(x) = f̃(1, 1)
(1− x)2 .

In the following sections we apply the three-step method of [114]– write a functional equa-
tion for the generating function of harmonic functions; transform this equation into a boundary
value problem; and finally solve this boundary value problem and get an explicit expression of the
generating function – to harmonic functions in the three-quarter plane.

4.3 Kernel functional equations

4.3.1 A first functional equation

From the properties (P1) and (P2), we deduce a functional equation satisfied by the generating
function H(x, y) defined in (4.2) for random walks under the hypothesis (H1)

K(x, y)H(x, y) = K(x, 0)H−0(x−1) +K(0, y)H0−(y−1)−K(0, 0)H0,0, (4.19)

where

H−0(x−1) =
∑
i≤0

f(i, 1)xi−1, H0−(y−1) =
∑
j≤0

f(1, j)yj−1 and H0,0 = f(1, 1). (4.20)

This equation looks similar to the functional equation for discrete harmonic functions of random
walks in a quadrant (4.16). As noted above, the structure of equations (4.19) and (4.16) is the same
except that in the case of (4.19) there are infinitely many terms with positive and negative powers
of x and y. As noticed in Chapter 3, this difference is not anecdotal, the series are not convergent
anymore (for instance, it is not possible to evaluate them) and almost all the methodology of [41,
113] can no longer be performed.
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L(x, y)

U(x, y)

D(x, y)Du(x, y)

D`(x, y)

Figure 4.6 – Decomposition of the three-quarter plane and associated generating functions

This difficulty appears as well in the study of counting walks avoiding a quadrant and in order
to avoid this situation, in [40] Bousquet-Mélou views the three-quarter plane as the union of three
quadrants and with a combinatorial approach, gets results on the simple and the diagonal walks.
In Chapter 3, the three quadrants are split in two symmetric convex cones of opening angle 3π

4 . In
this chapter, we follow the same strategy as in Chapter 3.

4.3.2 Functional equations in the 3π
4 -cones

The cone C is cut into three parts: the lower part {i ≥ 1, j ≤ i − 1}, the diagonal {i = j} and
the upper part {j ≥ 1, i ≥ j−1}. Let L(x, y) (resp. D(x, y) and U(x, y)) be the generating function
of harmonic functions evaluated in the lower part (resp. diagonal and upper part), see Figure 4.6.
By construction, we have

H(x, y) = L(x, y) +D(x, y) + U(x, y), (4.21)

where

L(x, y) =
∑
i≥1
j≤i−1

f(i, j)xi−1yj−1, D(x, y) =
∑
i≥1

f(i, i)xi−1yi−1

and U(x, y) =
∑
j≥1
i≤j−1

f(i, j)xi−1yj−1.

Lemma 32. For any random walks with properties (H1) and (H2), the generating function L(x, y)
satisfies the following functional equation

K(x, y)L(x, y) = −
(
p0,1x+ p−1,0x

2y + 1
2
(
p1,1 + p−1,−1x

2y2 − xy
))

D(x, y)

+ (p1,0y + p1,1)L0−(y−1) + 1
2p1,1f(1, 1), (4.22)
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3π
2

(i, j) −→ (−j, i)

3π
2

Figure 4.7 – Various cones of opening angle 3π
2 , see Remark 33. On the left the cone {R exp(is) : 0 ≤ R <

∞, 0 ≤ s ≤ 3π
2 } and the right the cone {R exp(is) : 0 ≤ R <∞,−π2 ≤ s ≤ π}

with L0−(y−1) =
∑
j≤−1 f(1, j)yj−1.

Remark 33. The symmetry of both the random walks (H2) and the harmonic function (P4) are
crucial. In fact, we can directly observe the symmetry of the positive discrete harmonic function in
the case of a symmetric random walk.

Let S(n) be a symmetric random walk in the three quadrants and τ(i,j) the exit time of the
random walk starting at (i, j) from C. Writing (p, q) = (r cos(t), r sin(t)), the harmonic function for
the Brownian motion in the cone {R exp(is) : 0 ≤ R < ∞, 0 ≤ s ≤ 3π

2 } of opening angle 3π
2 (see

Figure 4.7) is
u 3π

2
(r, t) = r2/3 sin

(2
3 t
)
, t ∈

[
0, 3π

2

]
.

After the change of variable (i, j) 7→ (−j, i) =
(
r cos

(
t+ π

2
)
, r sin

(
t+ π

2
))

(see again Figure 4.7),
the harmonic function for the Brownian motion avoiding the negative quadrant is

u(r, t) = r2/3 sin
(2

3

(
t+ π

2

))
, t ∈

[
−π2 , π

]
.

This harmonic function is symmetric in the left cone of Figure 4.7 with respect to the diagonal
(u
(
r, π4 − t

)
= u

(
r, π4 + t

)
). Moreover, there is a direct link between the positive discrete harmonic

function V and the harmonic function u for the Brownian motion (see [58, Lem. 12]):

V (i, j) = lim
n→∞

E
[
u((i, j) + S(n)); τ(i,j) > n

]
, (i, j) ∈ C.

The exit time τ(i,j) and the harmonic function u are both symmetric in the symmetric cone C.
Therefore the positive discrete harmonic function V is symmetric as well.

The positivity of the harmonic function is crucial to deduce its symmetry from the symmetry
of the random walk. Let us give the following counter-example, again in the three quadrants: the
non-symmetric function f(i, j) = i2 − j2 is harmonic for the symmetric simple walks. Note that
this function is not positive everywhere in the three quadrants.

Proof of Lemma 32. Thanks to (P1) and (P2), we can easily write a functional equation for L(x, y)
and D(x, y). Let Du(x, y) (resp. D`(x, y)) be the generating function of a harmonic function eval-
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uated in the upper (resp. lower) diagonal:

Du(x, y) =
∑
i≥1

f(i− 1, i)xi−2yi−1 and D`(x, y) =
∑
i≥1

f(i, i− 1)xi−1yi−2.

We have

L(x, y) =

 ∑
−1≤i,j≤1

pi,jx
−iy−j

L(x, y) +
(
p0,1y

−1 + p−1,0x
)
D(x, y)

−
(
p0,−1y + p1,0x

−1
)
D`(x, y)−

(
p1,0x

−1 + p1,1x
−1y−1

)
L0−(y−1) + p1,0x

−1f(1, 0)y−1, (4.23)

D(x, y) =
(
p1,1x

−1y−1 + p−1,−1xy
)
D(x, y)− p1,1x

−1y−1f(1, 1) +
(
p1,0x

−1 + p0,−1y
)
D`(x, y)

− p1,0x
−1f(1, 0)y−1 +

(
p0,1y

−1 + p−1,0x
)
Du(x, y)− p0,1y

−1f(0, 1)x−1. (4.24)

Due to the symmetry of the cut and the random walks (pi,j = pj,i, hypothesis (H2)), we can simplify
the last equation and get

D(x, y) =
(
p1,1x

−1y−1 + p−1,−1xy
)
D(x, y)− p1,1x

−1y−1

+ 2
(
p1,0x

−1 + p0,−1y
)
D`(x, y)− 2p1,0x

−1f(1, 0)y−1. (4.25)

Plugging (4.25) into (4.23) and multiplying by xy, we get (4.22).

In Equation (4.22), the bivariate generating function L(x, y) is related to the bivariate generating
functionD(x, y) and the univariate generating function L0−(y−1). In order to simplify the functional
equation (4.22), we perform the following change of variable (introduced as well in Chapter 3)

ϕ(x, y) = (xy, x−1). (4.26)

Equation (4.22) is transformed into

Kϕ(x, y)Lϕ(x, y) = −
[
xα̃ϕ(y) + 1

2 β̃ϕ(y)
]
Dϕ(y) +Kϕ(x, 0)Lϕ(x, 0) + 1

2p1,1f(1, 1), (4.27)

with 
K (ϕ(x, y)) = 1

xKϕ(x, y),
L (ϕ(x, y)) = xLϕ(x, y) = x

∑
i,j≥1 f(j, j − i)xi−1yj−1,

D (ϕ(x, y)) = Dϕ(y) =
∑
i≥1 f(i, i)yi−1,

(4.28)

and
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Kϕ(x, y) = αϕ(x)y2 + βϕ(x)y + γϕ(x) = α̃ϕ(y)x2 + β̃ϕ(y)x+ γ̃ϕ(y),

δ̃ϕ(y) = β̃ϕ(y)2 − 4α̃ϕ(y)γ̃ϕ(y), δϕ(x) = βϕ(x)2 − 4αϕ(x)γϕ(x). (4.29)

Example 34. The function f(i, j) = ij is harmonic (non positive) in the three quarter plane for
the simple random walks case. We have

Kϕ(x, y) = y

4(1− x)2 + 1
4(1− xy)2, α̃ϕ(y) = y(1 + y)

4 , β̃ϕ(y) = −y.

Moreover,
Lϕ(x, y) = − x+ (x− 2)y

(1− y)3(1− x)2 , and Dϕ(y) = 1 + y

(1− y)3 .

The functional equation (4.27) is satisfied

Kϕ(x, y)Lϕ(x, y) = −(1 + x2y2 + (x2 − 4x+ 1)y)((x− 2)y + x)
4(1− y)3(1− x)2

= −
[
xα̃ϕ(y) + 1

2 β̃ϕ(y)
]
Dϕ(y) +Kϕ(x, 0)Lϕ(x, 0).

The functional equation (4.27) now has a closer structure to the functional equation in the
quadrant (4.16) (see Figure 4.8), and to solve this problem, we can use some tools stated in [114].
The significant difference is the mixed factor in x and y in front of Dϕ(y), whereas in the quarter
plane case, see Equation (2.11), the generating function H̃(x, y) is decomposed into a sum of two
univariate functions: one section on the x-axis, namely K(x, 0)H̃(x, 0), and the other on the y-
axis, namely K(0, y)H̃(0, y). This functional equation (4.27) holds at least for |x| < 1 and |y| < 1.
Indeed, in [114, Sec. 2], it is proved that for any positive discrete harmonic function f̂ in the quarter
plane,

∑
i≥1 f̂(i, 1)xi−1,

∑
j≥1 f̂(1, j)yj−1 and further K(x, y)

∑
(i,j)∈Q f̂(i, j)xi−1yj−1 are bounded

at least on {(x, y) ∈ C2 : |x| < 1, |y| < 1}. We can finally deduce that Kϕ(x, y)Lϕ(x, y), Dϕ(y) and
Lϕ(x, 0) are bounded at least for |x| < 1 and |y| < 1 as well.

Remark 35. Note that in (H2), we exclude non-zero probabilities p−1,1 and p1,−1. Indeed, as noted
in Section 3.2, after the change of variable ϕ, we would end up with random walks with non-zero
probabilities p−2,−1 and p2,1 respectively for big jumps of vector (−2,−1) and (2, 1). Note that the
analytic theory for walks with big steps is still incomplete [50, 49].

4.4 Expression for the generating functions

We start this section with the introduction of an important conformal gluing function W (x)
that maps the domain GM to the complex plane cut along a segment. We use a similar method to
the one in Chapter 3 and transform the functional equation (4.27) into a boundary value problem,
which is a problem involving both regularity and boundary conditions. Finally we solve this problem
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Lϕ(x, y)

Dϕ(y)

D`
ϕ(y)

Lϕ(x, 0)

Figure 4.8 – Lower convex cone after the change of variable

and end up with an explicit expression for the generating function H(x, y). The boundary value
problem satisfied by the generating function Dϕ(y) and ultimately the generating function H(x, y)
will be both expressed in terms of W . Further, all quantities with a ϕ-tag are objects defined from
the changed random walks with kernel Kϕ(x, y), as in Section 4.3.2.

4.4.1 Conformal gluing function

LetW be a conformal gluing function for the set GM. By Definition 9, the functionW is injective
in GM, analytic on GM and satisfies W (x) = W (x) for x ∈ M, as soon as W (x) is defined and
finite. Moreover, W has an infinite value at least on one point ofM (or else W would be constant,
see [114, Lem. 4]). In this chapter, we choose W to be infinite at 1 (if Wm is a conformal gluing
function taking the value ∞ anywhere else on M, then we can consider W = 1/(Wm −Wm(1))).
The expression of such a function is computed in [73, Sec. 2.2]. Let

T (x) = 1√
1
3 −

2f(x)
δ′′(1)

, f(x) =
{

δ′′(x4)
6 + δ′(x4)

x−x4
if x4 6=∞,

δ′′(0)
6 + δ′′′(0)x

6 if x4 =∞.
(4.30)

Then
W (x) =

[
sin
(
π

θ

[
arcsin(T (x))− π

2

])]2
, (4.31)

with θ defined in (4.4). Moreover, there exists c 6= 0 such that for x in the neighborhood of 1,

W (x) = c+ o(1)
(1− x)π/θ

. (4.32)
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As in [73, Sec. 2.2] and [114, Sec. 3.4], the expression ofW (x) in (4.31) is valid only for |T (x)| ≤ 1.
When |T (x)| ≥ 1, writing arcsin(T ) = π/2± i ln(T +

√
T 2 − 1), we can write

W (x) = −1
4

[(
T (x) +

√
T (x)2 − 1

)2π/θ
− 2 +

(
T (x)−

√
T (x)2 − 1

)2π/θ
]
. (4.33)

Lemma 36. The functionW defined in (4.31) has a zero at x1 and is equal to 1 at X(y1). Moreover,
for x ∈ GM, it satisfies the following non-linear differential equation

δ(x)W ′(x)2 =
(
π

θ

)2 (−δ′′(1)
2

)
W (x)(1−W (x)). (4.34)

Proof. We start from (4.31). After differentiation and squaring, we can write

W ′(x)2 =
(
π

θ

)2 4T ′(x)2

1− T (x)2W (x)(1−W (x)). (4.35)

The strategy now is to write δ(x) in its factored form (remember that δ has four roots x1, 1, 1, and
x4 if δ is of degree 4). If x4 = ∞, then T (x)2 = 1−x1

1−x and if x4 6= ∞, then T (x)2 = (1−x1)(x4−x)
(x4−x1)(1−x) .

In both cases, 4T ′(x)2

1−T (x)2 = − δ′′(1)
2δ(x) (and δ′′(1) < 0). We also note that T (x1) = 1 which implies that

W (x1) = 0 (and becauseW is injective, it is the only zero). The only zero ofW ′ is at X(y1) (see [17,
Sec. 5.3]), and from (4.35), we deduce that W (X(y1)) = 1.

Similarly, we define W̃ a conformal gluing for GL. We show that W and W̃ are strongly related
as

W̃ (Y0(x)) = −W (x) + 1.

Indeed, see [113, Thm 6 and Rem. 6]6, W̃ (Y (x)) is a conformal gluing for GM but may not be the
one defined by (4.31). However, we know for sure that W̃ (Y (x)) = aW (x) + b, with a, b ∈ C. By
plugging in x = x1 and x = X(y1), we deduce a = −1 and b = 1.

Thereafter, we are interested in a conformal gluing function which vanishes at 0. We consider
w defined by

w(x) = W (x)−W (0). (4.36)

The function w is a conformal gluing function in the sense of Definition 9 with a pole at 1, vanishes
at 0, and satisfies the differential equation (which can be easily derived from (4.34))

δ(x)w′(x)2 =
(
π

θ

)2 (
−δ
′′(1)
2

)
(w(x) +W (0)) (w(X(y1))− w(x)) . (4.37)

6In fact, in [113, Rem. 6], it is said that if W is a suitable mapping, then any aW (x)+b
cW (x)+d with a, b, c, d ∈ C such that

ad− bc 6= 0 is also a suitable mapping. In our case, we are interested in a mapping with a pole at 1. As Y (1) = 1, by
letting x go to 1, we get c = 0. Hence we only need to find a and b such that W̃ (Y (x)) = aW (x) + b.
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Remark 37. Let w̃ (resp. wϕ and w̃ϕ) be a conformal gluing function for GL (resp. GMϕ and GLϕ)
which vanishes at 0. Similar results and properties hold for those functions.

The conformal gluing functions wϕ and w̃ϕ are defined from θϕ which can be computed with (4.4)
and transition probabilities ϕ(pi,j) = pi−j,i. The angles θϕ and θ are simply related (see Figure 4.2a),
as stated in the following lemma. Relations between θ and θϕ will be ultimately interpreted as
relations between the growths of harmonic functions.

Lemma 38. The angle between the curve Lϕ and the segment [yϕ,1, 1] is given by

θϕ = π − θ

2 , (4.38)

with θ defined in (4.4).

Proof. With c defined in (29), we have θ = arccos(−c). Similarly, we write θϕ = arccos(−cϕ).
Thanks to hypotheses (H2) (symmetry condition) and (H4) (zero-drift condition), we have p1,0 +
p1,1 = p−1,0 + p−1,−1 and the coefficient c can be simplified as

c = p1,1 + p−1,−1
2(p1,0 + p1,1) .

On the other side, the coefficient cϕ can be written as

cϕ =
∑
−1≤i,j≤1(i− j)ipi,j√(∑

−1≤i,j≤1(i− j)2pi,j
)
·
(∑
−1≤i,j≤1 i

2pi,j
) = 1

2

√
p1,0 + p−1,0
p1,0 + p1,1

.

We have then

cϕ =
√

1− c
2 ⇒ θϕ = arccos

(
−
√

1− c
2

)
= π − 1

2 arccos(−c) = π − θ

2 .

4.4.2 Boundary value problem

Lemma 39. The generating function Dϕ(y) can be analytically continued from the unit disc D to
the domain GLϕ ∪D and is continuous on GLϕ \ {1}. Moreover, for all y ∈ Lϕ \ {1}, Dϕ(y) satisfies
the following boundary condition

gϕ(y)
g′ϕ(y)Dϕ(y)− gϕ(ȳ)

g′ϕ(ȳ)Dϕ(ȳ) = 0, (4.39)

where gϕ is defined below in (4.42) and w̃ϕ is a conformal gluing function defined in Section 4.4.1.

Remark 40. The boundary condition (4.39) is the homogeneous version of the boundary condition
for the enumeration of walks avoiding a quadrant (3.14). However, unlike the boundary value
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problem for the enumeration case, in Lemma 39 the function Dϕ(y) has a pole at y = 1 (which is
a point of the curve Lϕ) making Theorem 8 not usable.

Note also that the structure of the boundary value problem in Lemma 39 is very close to the
boundary value problem stated in the quarter plane case, see Section 4.2.2.

Proof. We first assume the analyticity and continuity of Dϕ(y) and we begin to prove the boundary
condition (4.39). We start to evaluate the functional equation (4.27) at Y0,ϕ(x) for x close to [xϕ,1, 1):

0 = −
[
xα̃ϕ(Yϕ,0(x)) + 1

2 β̃ϕ(Yϕ,0(x))
]
Dϕ(Yϕ,0(x)) +Kϕ(x, 0)Lϕ(x, 0) + 1

2p1,1f(1, 1). (4.40)

By letting x go to any point of [xϕ,1, 1] with a positive (resp. negative) imaginary part, we obtain
two new equations. After making the difference between these two equations, we get:[

X0(y)α̃(y) + 1
2 β̃(y)

]
Dϕ(y)−

[
X0(ȳ)α̃(ȳ) + 1

2 β̃(ȳ)
]
Dϕ(ȳ), y ∈ Lϕ \ {1}.

With (4.10) this last equation can be simplified as√
δ̃ϕ(y)Dϕ(y)−

√
δ̃ϕ(ȳ)Dϕ(ȳ) = 0, y ∈ Lϕ \ {1}. (4.41)

This boundary condition is the homogeneous equation of the boundary condition in Lemma 14
with the same difficulty, which does not appear in previous works, to deal with a non-meromorphic
prefactor in GLϕ , namely

√
d̃(y) in (4.41). Therefore we follow the same strategy as in Section 3.3.5

and introduce the function gϕ defined in GLϕ by

gϕ(y) = h

(
2w̃ϕ (Yϕ(xϕ,1))

w̃ϕ(y) − 1
)
, (4.42)

with h(y) = −y +
√
y2 − 1 and w̃ϕ defined in Section 4.4.1. The function gϕ/g′ϕ is analytic in GLϕ ,

has finite limits on Lϕ and the condition
√
δ̃ϕ(y)√
δ̃ϕ(ȳ)

= gϕ(y)/g′ϕ(y)
gϕ(ȳ)/g′ϕ(ȳ) (the argumentation is very closed

to Section 3.3.5 then we refer the reader to this section for the details). Finally, the boundary
condition (4.41) can be rewritten as (4.39).

With the same reasoning as Section 3.3.3, we can prove that Dϕ(y) is analytic in GLϕ , has
finite limits on Lϕ \ {1} and then is continuous on GLϕ \ {1}. We start with proving the ana-
lytic continuation of Dϕ(y) from the unit disc D to GLϕ . From the functional equation (4.27), for
y ∈ {y ∈ C : |Xϕ,0(y)| ≤ 1} ∩ D},

2Kϕ (Xϕ,0(y), 0)Lϕ (Xϕ,0, 0) +
√
δ̃(y)Dϕ(y) + p1,1f(1, 1) = 0.
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The latter equation defined on GLϕ∩D can be continued in GLϕ∪D. The generating function Dϕ(y)
is analytic on D, and on

(
GLϕ ∪ D

)
\ D, Dϕ(y) has the same singularities as

√
δ̃ϕ(y) and Xϕ,0(y),

namely the branch cut [y1, y4]. However, this segment does not belong to
(
GLϕ ∪ D\D

)
, then Dϕ(y)

can be analytically continued to GLϕ . Then we prove that Dϕ(y) has finite limits on Lϕ \{1}. From
equation (4.40), we only need to study the zeros of xα̃ϕ (Yϕ,0(x)) + 1

2 β̃ϕ (Yϕ,0) for x in [xϕ,1, xϕ,2].
Thanks to the relation Xϕ,0(Yϕ,0(x)) = x valid in GMϕ (see [72, Cor. 5.3.5]), it recurs to study the
zeros of δ̃ϕ for y in

(
GLϕ ∪ D

)
\ D. The discriminant δ̃ϕ vanishes at yϕ,1, 1, yϕ,4 and only 1 belongs

to the last set. Then Dϕ(y) has finite limits on Lϕ \ {1}.

4.4.3 Solution of the boundary value problem

In this section we solve the boundary value problem stated in Lemma 39 and obtain in Theo-
rem 41 an explicit expression for the generating function Dϕ(y) =

∑
i≥1 f(i, i)yi−1. Finally, The-

orem 42 gives a formal expression of the generating function H(x, y) =
∑

(i,j)∈C f(i, j)xi−1yj−1.
Along the proof of Theorem 41, we also state Lemma 44 which gives an expression for Dϕ(y) for a
family of harmonic function non necessarily positive.

Theorem 41. The generating function Dϕ(y) can be written as

Dϕ(y) = −f(1, 1)
w̃′ϕ(0)

π

θϕ

√√√√− δ̃′′ϕ(1)
2δ̃ϕ(y)

√
1− W̃ϕ(0)

√
W̃ϕ(y), (4.43)

with θϕ, w̃ϕ(y) and W̃ϕ defined in Subsection 4.4.1 and δ̃ϕ in (4.29).

Theorem 42. Let f be a harmonic function associated to a random walk in the three-quarter plane
with hypotheses (H1), (H2), (H3) and (H4). The generating function H(x, y) of f can be formally
written as the finite sum of convergent generating functions (see (4.21))

H(x, y) = −f(1, 1)
w̃′ϕ(0)

π

θϕ

√
1− W̃ϕ(0)

√
−
δ̃′′ϕ(1)

2

 1
K(x, y)


√

1−Wϕ(y−1) +
√

1−Wϕ(x−1)
2

−

√
W̃ϕ(xy)√
δ̃ϕ(xy)

((
x−1 + y−1

)
α̃ϕ(xy) + β̃ϕ(xy)

)+

√
W̃ϕ(xy)√
δ̃(xy)

 . (4.44)

Remark 43. In equation (4.44), up to the multiplicative constant −f(1,1)
w̃′ϕ(0)

π
θϕ

√
1− W̃ϕ(0)

√
− δ̃′′ϕ(1)

2 ,
the terms

1
K(x, y)

−
(
y−1α̃ϕ(xy) + 1

2 β̃ϕ(xy)
)

√
δ̃ϕ(xy)

√
W̃ϕ(xy) +

√
1−Wϕ(y−1)

2

 ,
√
W̃ϕ(xy)√
δ̃ϕ(xy)

,
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and 1
K(x, y)

−
(
x−1α̃ϕ(xy) + 1

2 β̃ϕ(xy)
)

√
δ̃ϕ(xy)

√
W̃ϕ(xy) +

√
1−Wϕ(x−1)

2

 ,
contribute respectively for the generating functions L(x, y) in the lower cone {i ≥ 1, j ≤ i− 1}, the
diagonal D(x, y) and the generating function U(x, y) in the upper cone {j ≥ 1, i ≤ j − 1}.

Lemma 44. Let gϕ and Dϕ be as in Lemma 39. Then there exists a polynomial P ∈ R[y] such that

gϕ(y)
g′ϕ(y)Dϕ(y) = P (w̃ϕ(y)). (4.45)

Proof of Lemma 44. The conformal gluing function w̃ϕ(y) defined in Subsection 4.4.1 transforms
the domain GLϕ into the complex plane cut by the segment Iϕ = [w̃ϕ(Yϕ(xϕ,1)), 1). Let w̃−1

ϕ be the
inverse function of w̃ϕ. We denote by w̃−1

ϕ (z)+ and w̃−1
ϕ (z)− the left and right limits of w̃−1

ϕ on Iϕ.
The latter are complex conjugate on I. Let

∆ϕ(y) = 1
gϕ(y)
g′ϕ(y)Dϕ(y)

and Zϕ =
{
z ∈ Iϕ : gϕ

g′ϕ
Dϕ ◦ w̃−1(z) = 0

}
.

The set Zϕ is finite, otherwise by the principle of isolated zeros, gϕ(y)
g′ϕ(y)Dϕ(y) would be equal to zero

on the whole of GLϕ . Let Nϕ be the cardinal of Zϕ. Thanks to Lemma 39, we have

{
∆ϕ ◦ w̃−1(z)+ −∆ϕ ◦ w̃−1(z)− = 0 ∀z ∈ Iϕ,
∆ϕ ◦ w̃−1 is analytic on C \ Iϕ,

which implies that ∆ϕ ◦ w̃−1 is holomorphic in C. Furthermore, as ∆ϕ ◦ w̃−1
ϕ (z)−

∑
z0∈Zϕ

1
(z − z0) is

bounded in C, then by Liouville’s theorem, the latter is constant in the whole complex plane. In
addition there exists a polynomial P of degree Nϕ such that

(
gϕ
g′ϕ
Dϕ

)
◦w̃−1

ϕ (z) = P (z), hence (4.45).

Proof of Theorem 41. In particular take P of degree one in (4.45), the generating function Dϕ(y)
can be written as

Dϕ(y) = µ
w̃ϕ(y) + ν

gϕ(y)/g′ϕ(y) . (4.46)

The expression of gϕ(y)
g′ϕ(y) where the function g is defined in (4.42) can be simplified into gϕ(y)

g′ϕ(y) =
w̃ϕ(y)

√
w̃ϕ(Yϕ(xϕ,1))−w̃ϕ(y)

w̃′ϕ(y)
√
w̃ϕ(Yϕ(xϕ,1))

. Furthermore, as the function wϕ is decreasing7 on (Xϕ(yϕ,1), 1), taking

7Indeed, wϕ is injective on (Xϕ(yϕ,1), 1) and wϕ(Xϕ(yϕ,1)) = 1 > 0 = wϕ(1).
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the square root of (4.37) gives

√
δ̃ϕ(y)w̃′ϕ(y) = −π

θ

√
−
δ̃′′ϕ(1)

2

√
w̃ϕ(Yϕ(xϕ,1))− w̃ϕ(y)

√
w̃ϕ(y) + W̃ϕ(0).

Then, thanks to equation (4.32), there exists a cg 6= 0 such that for y in the neighborhood of 1,

gϕ(y)
g′ϕ(y) = − w̃ϕ(y)

w̃ϕ (Yϕ(xϕ,1))
θϕ
π

√
d̃ϕ(y)√

− d̃′′ϕ(1)
2

√
w̃ϕ(y) + W̃ϕ(0)

= cg + o(1)
(1− y)π/(2θϕ)−1 .

and finally, there exists a c′D 6= 0 such that

Dϕ(y) = c′D + o(1)
(1− y)π/θϕ−π/(2θϕ)+1 = c′D + o(1)

(1− y)π/(2θϕ)+1 = c′D + o(1)
(1− y)π/(2π−θ)+1 . (4.47)

If P is a polynomial of degree n 6= 1, then Dϕ(y) = c′D+o(1)
(1−y)(2n−1)π/(2π−θ)+1 thus the asymptotics of

the coefficients of Dϕ(y) do not match [111, Eq. (1.4)]. Therefore, by uniqueness of the positive
harmonic function, P is a polynomial of degree one.

Going back to (4.46) and noticing that gϕ(0)/g′ϕ(0) = 0, we deduce ν = −w̃ϕ(0) = 0. Then,
computing the first term in the expansion of (4.46) at y = 0, we find µ = f(1,1)

w̃′ϕ(0) .

Remark 45. In [111], Mustapha computes the asymptotics of the number of small steps walks
excursions in the three-quarter plane. In particular, his Equation (1.4) shows that the polynomial
exponent αC in the three quadrants can be easily expressed as a function of the critical exponent
αQ in the quadrant. From this equation we have for y close to 1, a constant cH 6= 0 such that
H(x, 0) = cH+o(1)

(1−x)π/(2π−θ) , and we deduce that there exists cD 6= 0 such that Dϕ(y) = cD+o(1)
(1−y)π/(2π−θ)+1 .

Let us point out that the positivity of the harmonic function (property (P3)) is crucial in the proof
of asymptotic results in [111].

Proof of Theorem 42. The expression of Dϕ(y) in Theorem 41 suffices to calculate H(x, y). Indeed,
to have an expression of H(x, y), we only need to have one of D(x, y) and L(x, y) (thanks to the
symmetry of the problem we have U(x, y) = L(y, x)). We begin by plugging in Yϕ,0(x) to the
functional equation (4.27) and get

Kϕ(x, 0)Lϕ(x, 0) = −1
2

(√
δ̃ϕ(Yϕ,0(x))Dϕ(Yϕ,0(x)) + p1,1f(1, 1)

)

= −f(1, 1)
2

 1
w̃′ϕ(0)

π

θϕ

√
−
δ̃′′ϕ(1)

2

√
1− W̃ϕ(0)

√
1−Wϕ(x) + p1,1

 . (4.48)

Together with (4.27), we can write an expression of Lϕ(x, y) and thanks to the symmetry, we get for
free an expression of Uϕ(x, y) = Lϕ(x−1, y), and with a series expansion of Lϕ(x, y), Uϕ(x, y) and
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Dϕ(y), the value of f(i, j) for all (i, j) ∈ C. In order to write a formal expression of the generating
function H(x, y) defined in (4.2), we can use the following relations

Kϕ

(
y−1, 0

)
Lϕ(y−1, 0) = K(0, y)L0,−(y−1) and Dϕ(xy) = D(x, y),

and from them we can write

K(x, y)L(x, y) = −f(1, 1)
w̃′ϕ(0)

π

θϕ

√
1− W̃ϕ(0)

√
−
δ̃′′ϕ(1)

2−
(
y−1α̃ϕ(xy) + 1

2 β̃ϕ(xy)
)

√
δ̃ϕ(xy)

√
W̃ϕ(xy) +

√
1−Wϕ(y−1)

2

 . (4.49)

We have now all the ingredients to write an expression of H(x, y) as in (4.44).

4.4.4 Example of the simple random walk

In this subsection, we apply the results of Subsection 4.4.3 to the simple random walk. The
change of variable ϕ defined in (4.26) transforms the simple random walk into the Gessel random
walk (see Figure 4.9). We first need to compute the angle θϕ and the conformal gluing functions
Wϕ, W̃ϕ and w̃ϕ. Then we get an expression for Dϕ(y) and Lϕ(x, 0) and end up with a series
expansion of H(x, y).

The simple walk is defined by p1,0 = p−1,0 = p0,−1 = p0,1 = 1
4 . We easily have θ = π

2 and
together with (4.38), we deduce θϕ = 3π

4 . From Equations (4.5) and (4.28), the kernel after the
change of variable is defined by

Kϕ(x, y) = xy

(1
4x+ 1

4x
−1 + 1

4xy + 1
4x
−1y−1 − 1

)
, (4.50)

{
αϕ(x) = x2

4 ; βϕ(x) = 1
4x

2 − x+ 1
4 ; γϕ(x) = 1

4 ;
α̃ϕ(y) = 1

4y(y + 1); β̃ϕ(y) = −y; γ̃ϕ(y) = 1
4(1 + y).

(4.51)

Conformal gluing functions. On one side, we have



δϕ(x) = (x2−6x+1)(x−1)2

16 ,

x4 = 3 + 2
√

2,
δ′ϕ(x4) = 3

√
2 + 4,

δ′′ϕ(x4) = 11
2 + 3

√
2,

δ′′ϕ(1) = −1/2,
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Figure 4.9 – Simple random walk (left) and Gessel random walk (right)

we have then Tϕ(x) =

√
3 + 2

√
2− x

1− x

√
2

2
√

2 +
√

2
, and finally

Wϕ(x) = 1
4 −

(
√

2− 1)4/3

16(√
3 + 2

√
2− x+

√
x(3 + 2

√
2)− 1

)8/3
+
(√

3 + 2
√

2− x−
√
x(3 + 2

√
2)− 1

)8/3

(1− x)4/3 . (4.52)

On the other side, 

δ̃ϕ(y) = −y(y−1)2

4 ,

y4 = ∞,
δ̃′′ϕ(0) = 1,
δ̃′′′ϕ (0) = −3/2,
δ̃′′ϕ(1) = −1/2,

we have then T̃ϕ(y) = 1√
1− y , and finally

W̃ϕ(y) = −
(
y − 2√y + 1

) (
1−√y

)2/3 + (2 y − 2) 3
√

1− y +
(√
y + 1

)2/3 (
y + 2√y + 1

)
4 (1− y)4/3 (4.53)

w̃ϕ(y) = W̃ϕ(y). (4.54)

Series expansion of Dϕ(y) and Lϕ(x, 0). Noticing that w̃ϕ(0) = −16/9, W̃ϕ(0) = 0, thanks to
Theorem 41, we have

Dϕ(y) = f(1, 1)3
8

√
W̃ϕ(y)√
δ̃ϕ(y)

= f(1, 1)
(

1 + 44
27y + 523

243y
2 + 17168

6561 y
3 +O

(
y4
))

. (4.55)
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Thanks to (4.48) with Kϕ(x, 0) = 1/4, we have

Lϕ(x, 0) = f(1, 1)3
4

√
1−Wϕ(x) (4.56)

= f(1, 1)
(

3
√

3
8 + 1

2x+
(

1−
√

3
3

)
x2 +

(
145
54 −

4
√

3
3

)
x3 +O

(
x4
))

.

Series expansion of Lϕ(x, y). To begin with, we write an expression of Kϕ(x, y)Lϕ(x, y).
With (4.27), we get

Lϕ(x, y) = 1
Kϕ(x, y)

(
−
[
x

1
4y(y + 1)− 1

2y
]
Dϕ(y) +Kϕ(x, 0)Lϕ(x, 0)

)
(4.57)

= f(1, 1)
[

3
√

3
8 +

(
2− 3

√
3

8

)
y +

(
34
27 + 3

√
3

8

)
y2 +O

(
y3
)

+
(

1
2 +

(
−3

2 + 3
√

3
2

)
y +

(371
54 − 3

√
3
)
y2 +O

(
y3
))

x

+
(

1−
√

3
3 +

(
1−
√

3
24

)
y +

(
145
√

3
24 − 9

)
y2 +O

(
y3
))

x2 +O
(
x3
)]
.

Remark 46. More generally, for any polynomial P of degree n in Lemma 44, we get harmonic
functions satisfying (P1) and (P2) (but not necessarily (P3)). Let us give an example with a
polynomial P of degree 3.

The harmonic function f(i, j) = ij is a positive harmonic function for the simple walk in the
quarter plane. In the three-quarter plane, this function is still harmonic, but does not satisfy (P3).
However, there exists a polynomial P as in (4.45) such that Dϕ(y) =

∑
i≥1 f(i, i)yi−1 = 1+y

(1−y)3 . A
quick study of exponent in the same idea of Section 4.4.3 shows that P should be of degree 2. Then
there exists (a, b, c) ∈ R3 such that

gϕ(y)
g′ϕ(y)Dϕ(y) = aw̃ϕ(y)2 + bw̃ϕ(y) + c. (4.58)

We have gϕ(y)
g′ϕ(y) = w̃ϕ(y)

√
1−w̃ϕ(y)

w̃′ϕ(y) , and evaluating this last equation at y = 0 gives c = 0. Then,
dividing by w̃ϕ(y) and letting y go to 0 gives b = − 9

16 . Finally, examining the first and second term
of the expansion of (4.58) at y = 0 gives a = 3

4 . Vice versa, letting P (y) = 3
4y

2 − 9
16y, when we

develop Dϕ(y) in series, we find

Dϕ(y) = 1 + 4 y + 9 y2 + 16 y3 + 25 y4 +O
(
y5
)
, (4.59)

which matches with
∑
i≥1 i

2yi−1.
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L̃(x, y)

Ũ(x, y)

D̃(x, y)D̃u(x, y)

D̃`(x, y)

Figure 4.10 – Decomposition of the quadrant and associated generating functions

4.5 Discrete harmonic functions in the split quadrant

Even if discrete harmonic functions of random walks in the quarter plane are already studied
in [114], we want to point out that the strategy of splitting the domain into three parts (the
upper part, the diagonal and the lower part) can also be performed in the quarter plane Q defined
in (4.14) to get explicit expressions of harmonic functions. We suppose that random walks satisfy
the hypotheses (H1), (H2), (H3), (H4), and associated discrete harmonic functions f̃ the properties
(P̃1), (P̃2), (P̃3). The generating function of such harmonic functions is defined in (4.15). We split
the quadrant Q in three parts: the lower part {i ≥ 2, 1 ≤ j ≤ i − 1}, the diagonal and the upper
part {j ≥ 2, 1 ≤ i ≤ j − 1}. As in (4.21), by construction we have

H̃(x, y) = L̃(x, y) + D̃(x, y) + Ũ(x, y), (4.60)

where L̃(x, y) =
∑

i≥2
1≤j≤i−1

f̃(i, j)xi−1yj−1 denotes the generating function of harmonic functions

evaluated in the lower part, D̃(x, y) =
∑
i≥1

f̃(i, i)xi−1yi−1 for harmonic functions evaluated in the

diagonal and Ũ(x, y) =
∑
j≥2

1≤i≤j−1

f̃(i, j)xi−1yj−1 for harmonic functions evaluated in the upper part

(see Figure 4.10).
We can write a functional equation for each section and finally get a functional equation in

terms of L̃(x, y), L̃−0 and D̃(x, y).

Lemma 47. For any random walks with properties (H1) and (H2), the generating function L̃(x, y)
satisfies the following functional equation

K(x, y)L̃(x, y) = −
(
p0,1x+ p−1,0x

2y + 1
2
(
p1,1 + p−1,−1x

2y2 − xy
))

D̃(x, y)

+ (p0,1x+ p1,1) L̃−0(x) +
(
p0,1x+ 1

2p1,1

)
f̃(1, 1), (4.61)
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with L̃−0(x) =
∑
i≥2 f̃(i, 1)xi−1.

In order to simplify the last functional equation (4.61), we apply the following change of variables

ψ(x, y) = (x, x−1y). (4.62)

The equation (4.61) is changed into

Kψ(x, y)L̃ψ(x, y) = −
[
xα̃ψ(y) + 1

2 β̃ψ(y)
]
D̃ψ(y) +Kψ(x, 0)L̃ψ(x, 0) +

(
p0,1x+ 1

2p1,1

)
f̃(1, 1),

(4.63)
with 

K (ψ(x, y)) = 1
x
Kψ(x, y),

L̃ (ψ(x, y)) = xL̃ψ(x, y) = x
∑
i,j≥1

f̃(i+ j, j)xi−1yj−1,

D̃ (ψ(x, y)) = D̃ψ(y) =
∑
i≥1

f̃(i, i)yi−1,

(4.64)

and

Kψ(x, y) = αψ(x)y2 + βψ(x)y + γψ(x) = α̃ψ(y)x2 + β̃ψ(y)x+ γ̃ψ(y),

δ̃ψ(y) = β̃ψ(y)2 − 4α̃ψ(y)γ̃ψ(y), δψ(x) = βψ(x)2 − 4αψ(x)γψ(x). (4.65)

The angle θψ is also simply related to θ (see Figure 4.2b) as

θψ = θ

2 . (4.66)

The scheme of the proof is the same as the proof of Lemma 38. Writing θψ = arccos(−cψ), we have
cψ = −

√
1−c

2 , hence (4.66). The functional equation (4.63) is very close to the functional equation
in the three-quarter plane (4.27), the only difference is the additional term p0,1x. We can then write
a similar boundary value problem as Lemma 39.

Lemma 48. The generating function D̃ψ(y) is analytic in GLψ and continuous on GLψ \ {1}.
Moreover, for all y ∈ Lψ \ {1}, D̃ψ(y) satisfies the following boundary condition

gψ(y)
g′ψ(y)D̃ψ(y)− gψ(ȳ)

g′ψ(ȳ)D̃ψ(ȳ) = 0, (4.67)

where gψ(y)
g′
ψ

(y) = w̃ψ(y)
√
w̃ψ(Yϕ(xψ,1))−w̃ψ(y)

w̃′
ψ

(y)
√
w̃ψ(Yψ(xψ,1))

and w̃ψ is a conformal gluing function defined in Subsec-
tion 4.4.1.
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Figure 4.11 – Simple random walk (left) and Gouyou-Beauchamps random walk (right)

Moreover, the expression of D̃ψ(y) is the same as in the three-quarter plane and we have the
following theorem, which is a quarter plane equivalent to Theorem 41.

Theorem 49. The generating function Dψ(y) can be written as

D̃ψ(y) = f̃(1, 1)
w̃′ψ(0)

π

θψ

√√√√− δ̃′′ψ(1)
2δ̃ψ(y)

√
w̃ψ(Yψ(xψ,1))

(
w̃ψ(y) + W̃ψ(0)

)
, (4.68)

with θψ, w̃ψ(y) and W̃ψ defined in Subsection 4.4.1 and δ̃ψ in (4.65).

From the expression of D̃ψ in (4.68) and the functional equation (4.63), we get an expression
for L̃ψ(x, 0):

Kψ(x, 0)L̃ψ(x, 0) = −1
2
f̃(1, 1)
w̃′ψ(0)

π

θψ

√
−
δ̃′′ψ(1)

2

√
1− W̃ψ(0)

√
1−Wψ(x)− (p0,1x+ 1

2p1,1)f̃(1, 1),

(4.69)
and from (4.32) there exists k 6= 0 such that, for x in the neighborhood of 1,

Kψ(x, 0)L̃ψ(x, 0) = K(x, 0)L̃(x, 0) = k + o(1)
(1− x)π/(2θψ) = k + o(1)

(1− x)π/θ
. (4.70)

This asymptotic results matches that in [114].
We end this section with the example of the simple random walk. The application ψ changes

the simple random walk into the Gouyou-Beauchamps random walk (see Figure 4.11). In order to
compute L̃(x, 0), we need to calculate θψ, δ̃ψ, w̃ψ and Wψ. We easily have θψ = π

4 and



δ̃ψ(y) = −y(y−1)2

4 ,

y4 = ∞,
δ̃′′ψ(0) = 1,
δ̃′′′ψ (0) = −3/2,
δ̃′′ψ(1) = −1/2,

we have then W̃ψ(y) = −16y(y + 1)2

(1− y)4 .
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On the other side, we have



δψ(x) = (x2−6x+1)(x−1)2

16 ,

x4 = 3 + 2
√

2,
δ′ψ(x4) = 3

√
2 + 4,

δ′′ψ(x4) = 11
2 + 3

√
2,

δ′′ψ(1) = −1/2,

we have then Wψ(x) = 1− 64x2

4(x− 1)4 .

Finally, noticing that K(x, 0) = x
4 and that H̃(x, 0) = f̃(1, 1) + L̃(x, 0), from (4.69) we get

H̃(x, 0) = f̃(1, 1)
(1− x)2 , (4.71)

and this result matches the computation in [114, Eq. 2.6].

4.6 Further objectives and perspectives

4.6.1 Non-symmetric case

In this section (except clearly stated) we suppose that the probability transitions of the random
walks we consider are not symmetric and a priori neither is the harmonic function. In other words,
the random walks satisfy hypotheses (H1), (Ĥ2), (H3) and (H4) with

(Ĥ2) We assume that the transition probabilities p0,0, p−1,1, and p1,−1 are all equal to zero.

and discrete harmonic functions associated to these random walks satisfy the properties (P1), (P2),
(P3) but not necessarily (P4).

Like in Section 4.3.2, we split the three-quadrant into two symmetric convex cones of opening
angle 3π

4 , and split the generating function H(x, y) into three generating functions: L(x, y) for
harmonic functions in the lower part, D(x, y) for harmonic functions on the diagonal and U(x, y)
for the ones in the upper part (see (4.21)). Since we do not have the symmetry condition anymore,
instead of one functional equation as in Lemma 32, we end up with a system of two functional
equations.

Lemma 50. For any random walks with property (H1), the generating functions L(x, y) and U(x, y)
satisfy the following system of functional equations

K(x, y)U(x, y) = −
(
p1,0y + p0,−1xy

2 + p1,1 + p−1,−1x
2y2 − xy

)
D(x, y)

+ (p0,1x+ p1,1)U−0(x−1)−
(
p1,0y + p0,−1xy

2)D`(x, y)
+p1,1f(1, 1) + p1,0f(1, 0),

K(x, y)L(x, y) = −
(
p0,1x+ p−1,0x

2y + p1,1 + p−1,−1x
2y2 − xy

)
D(x, y)

+ (p1,0y + p1,1)L0−(y−1)−
(
p0,1x+ p−1,0x

2y
)
Du(x, y)

+p1,1f(1, 1) + p0,1f(0, 1).

(4.72)
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L(x, y)

U(x, y)

D(x, y)Du(x, y)

D`(x, y)

ϕU

ϕL

LϕL
(x, y)UϕU

(x, y)

DϕL
(y) = DϕU

(y)

Du
ϕU

(y) D`
ϕL

(y)

Figure 4.12 – Decomposition of the three-quarter plane, associated generating functions and changes of
variable

Remark 51. Notice the symmetry between x and y in (4.72). In the case of a symmetric random
walk (i.e., if pi,j = pj,i) the two functional equations are the same. Indeed, in this case, the positive
harmonic function is symmetric as well (see Remark 33) and in particular we also have U(x, y) =
L(y, x). The first equation of the system of equations (4.72) becomes then

K(y, x)L(y, x) =−
(
p0,1y + p−1,0xy

2 + p1,1 + p−1,−1x
2y2 − xy

)
D(y, x)

+ (p1,0x+ p1,1)L0−(x−1)−
(
p0,1y + p−1,0xy

2
)
Du(y, x)

+ p1,1f(1, 1) + p0,1f(0, 1).

Proof. The strategy of the proof is similar to the proof of Lemma 32. In addition to the functional
equations for L(x, y) and D(x, y), see (4.23) and (4.24), we can write a functional equation for
U(x, y):

U(x, y) =

 ∑
−1≤i,j≤1

pi,jx
−iy−j

U(x, y) +
(
p1,0x

−1 + p0,−1y
)
D(x, y)

−
(
p−1,0x+ p0,1y

−1
)
Du(x, y)−

(
p0,1y

−1 + p1,1x
−1y−1

)
U−0(x−1) + p0,1y

−1f(0, 1)x−1. (4.73)

Mixing equations (4.23), (4.73) and (4.24) and multiplying by xy, we get (4.72).

In this system of two functional equations, the bivariate generating function U(x, y) (resp.
L(x, y)) is related to the bivariate generating functions D(x, y), D`(x, y) (resp. Du(x, y)) and the
univariate generating function U−0(x−1) (resp. L0−(y−1)). In order to simplify this system of func-
tional equations, we perform two changes of variables, ϕL for the lower part and ϕU for the upper
part with

ϕU (x, y) = (x, x−1y) and ϕL(x, y) = (xy, x−1).
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These changes of variables transforms the upper part {j ≥ 1, i ≤ j − 1} into the left quadrant
{i ≤ −1, j ≥ 0} and the lower part {i ≥ 1, j ≤ i − 1} into the right quadrant {i ≥ 1, j ≥ 0} (see
Figure 4.12). Note that the diagonal is changed by both ϕL and ϕU into the positive y-axis (see
again Figure 4.12). The step set is changed as well, and walks in the three-quadrant can be seen as
inhomogeneous walks in the half plane with two different step sets in each quadrant and a mixed
step set on the positive y-axis (see Figure 4.13). Other type of inhomogeneous walks are studied
in [35, 45], see Section 3.4.1.

After the changes of variables, the generating functions become

K (ϕU (x, y)) = 1
x
KϕU (x, y),

U(ϕU (x, y)) = xUϕU (x, y) = x
∑

i0≤−1,j0≥1
f(i0 + j0, j0)xi0−1yj0−1,

Du(ϕU (x, y)) = x−1Du
ϕU

(y) = x−1 ∑
i0≥1

f(i0 − 1, i0)yi0−1,

D (ϕU (x, y)) = DϕU (y) =
∑
i0≥1

f(i0, i0)yi0−1 = DϕL(y) = D(ϕL(x, y)),

K (ϕL(x, y)) = 1
x
KϕL(x, y),

L (ϕL(x, y)) = xLϕL(x, y) = x
∑

i0,j0≥1
f(j0, j0 − i0)xi0−1yj0−1,

D`(ϕL(x, y)) = xD`
ϕL

(y) = x
∑
i0≥1

f(i0, i0 − 1)yi0−1,

(4.74)

with the following relations

D`(ϕU (x, y)) = xy−1D`
ϕL

(y) and Du(ϕL(x, y)) = x−1y−1Du
ϕU

(y). (4.75)

We apply these changes of variables to the system of functional equations (4.72) and get

KϕU (x, y)UϕU (x, y) = −
(
p1,0x

−1y + p0,−1x
−1y2 + p1,1 + p−1,−1y

2 − y
)
DϕU (y)

+
(
p0,1x

2 + p1,1x
)
UϕU (x, 0)− (p1,0 + p0,−1y)D`

ϕL
(y)

+p1,1f(1, 1) + p1,0f(1, 0),
KϕL(x, y)LϕL(x, y) = −

(
p0,1xy + p−1,0xy

2 + p1,1 + p−1,−1y
2 − y

)
DϕL(y)

+ (p1,0 + p1,1x)LϕL(x, 0)− (p0,1 + p−1,0y)Du
ϕU

(y)
+p1,1f(1, 1) + p0,1f(0, 1).

(4.76)

Writing

KϕU (x, y) = αϕU (x)y2 + βϕU (x)y + γϕU (x) = α̃ϕU (y) + β̃ϕU (y) + γ̃ϕU (y),

δ̃ϕU (y) = β̃ϕU (y)2 − 4α̃ϕU (y)γ̃ϕU (y), δϕU (x) = βϕU (x)2 − 4αϕU (x)γϕU (x),
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Figure 4.13 – Random walks avoiding a quadrant (on the left) can be seen as walks in the half plane with
probability transitions ϕU ((pi,j)−1≤i,j≤1) in the left quadrant and ϕL((pi,j)−1≤i,j≤1) on the right quadrant
(on the right)
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p−1,0p1,0
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Figure 4.14 – Random walks with symmetric probability transitions avoiding a quadrant can be seen as
random walks reflected on the y-axis and constrained by the x-axis

KϕL(x, y) = αϕL(x)y2 + βϕL(x)y + γϕL(x) = α̃ϕL(y) + β̃ϕL(y) + γ̃ϕL(y),

δ̃ϕL(y) = β̃ϕL(y)2 − 4α̃ϕL(y)γ̃ϕL(y), δϕL(x) = βϕL(x)2 − 4αϕL(x)γϕL(x),

the previous system can be written as

KϕU (x, y)UϕU (x, y) = −
(
x−1γ̃ϕU (y) + β̃ϕU (y)

)
DϕU (y) + γϕU (x)UϕU (x, 0)

−γ̃ϕL(y)D`
ϕL

(y) + p1,1f(1, 1) + p1,0f(1, 0),
KϕL(x, y)LϕL(x, y) = −

(
xα̃ϕL(y) + β̃ϕL(y)

)
DϕL(y) + γϕL(x)LϕL(x, 0)

−α̃ϕU (y)Du
ϕU

(y) + p1,1f(1, 1) + p0,1f(0, 1).

(4.77)

Unfortunately, due to number of unknown functions, we are not able to solve this system of
functional equations yet. Let us end this section by pointing out that the split cone along the
diagonal can also be related to the Join-the-Shortest-Queue model, see Section 3.4.1.

In the symmetric case (symmetry of the random walks and hence symmetry of the unique
positive harmonic function), the study of harmonic functions of random walks in the three quadrants
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is then equivalent to the study of harmonic functions of random walks reflected on the y-axis and
constrained by the x-axis in the positive quadrant (see Figure 4.14). Articles [12, 127] work on
problem in the same vein: their authors study walks in the quadrant with different weights on the
boundary, see Figure 3.11b.

4.6.2 Non-positive harmonic functions

As we have seen in this chapter, lots of work have been done on positive discrete harmonic
functions. In the non-zero drift case (when (H4) is not satisfied), there are infinitely many positive
harmonic functions whereas in the zero drift case there exists exactly one (up to a multiplicative
constant) non-zero positive harmonic function. In the quadrant and the three-quadrant, the gen-
erating function of the harmonic function can be written as a polynomial P of a conformal gluing
function w (see [114, Sec. 3.1] and Lemma 44). When the degree of P is minimal (of degree 1 then),
we can determine the unique positive harmonic function. When the polynomial P is of degree more
than 1, we get a set of non-positive (or signed) harmonic function (see Remark 46). It is therefore
natural to get interested in non-positive harmonic functions. Let us give a (non-exhaustive and
non-hierarchical) list of some reasonable questions:

Question 52. Is every harmonic function (not necessarily positive) completely determined by the
polynomial P?

Question 53. What is the structure of non-positive harmonic functions and how many are they?

Question 54. Every harmonic function in the quadrant is harmonic in the three-quadrant. How
does the cone of restriction affect the structure of signed harmonic functions?

Question 55. What are the properties of non-positive harmonic functions?

This is an ongoing project with É. Fusy, K. Raschel and P. Tarrago.
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Chapter 5

3-Dimensional positive lattice walks
and spherical triangles1

A random 10,000 step walk in the positive
octant

5.1 Introduction

As we have seen in Chapter 1, the enumeration of lattice walks is an important topic in com-
binatorics. In addition to having various applications, it is connected to other mathematical fields
such as probability theory. Recently, lots of consideration have been given to the enumeration of
walks confined to cones. We will typically be considering walks on Zd that start at the origin and
consist of steps taken from S, a finite subset of Zd. Most of the time we will constrain the walks in
the orthant Nd, with N denoting the set of non-negative integers {0, 1, 2, . . .}.

1This chapter is mainly from [26].
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(a) Motzkin paths in N
S = {(1, 1), (1, 0), (1,−1)}

(b) Random walk in N2

S = {(±1, 0)}2 \ {(0, 0)}

Figure 5.1 – Walks in N and N2

In dimension one (Figure 5.1a) there is essentially one unique cone (the positive half-line), and
positive (random) walks are very well understood, see in particular [18, 10].

Following the seminal works [72, 41], many recent papers deal with the enumeration of 2D walks
with prescribed steps confined to the positive quadrant (Figure 5.1b). In the case of small steps
(S included in {0,±1}2), various results have been obtained: exact and asymptotic expressions
[41, 30, 34] (see Section 2.2), classification of the generating function according to the classes
rational, algebraic, D-finite [41], non-D-finite [100, 34], and even non-differentially algebraic [62]
(see Section 2.3).

In dimension three, determining whether the equivalence of the dimension two (see Table 2.2)
between D-finiteness of the generating function and finiteness of the symmetry group holds or not
remains an open problem. More generally, much less is known on 3D lattice walks confined to the
non-negative octant N3. An intrinsic difficulty lies in the number of models to handle: more than
11 million [27] (compare with 79 quadrant models). The first work is an empirical classification
by Bostan and Kauers [30] of the models with at most five steps. Then in [27], Bostan, Bousquet-
Mélou, Kauers and Melczer study models of cardinality at most six. They introduce key concepts:
the dimensionality (1D, 2D or 3D) of a model, the group of the model, the Hadamard structure
(roughly speaking, it is a generalization of Cartesian products of lower dimensional models). These
notions will be made precise in Section 5.2.2. Furthermore, the authors of [27] classify the models
with respect to these concepts and compute, in various cases (but only in presence of a finite group),
the generating function

O(x, y, z) =
∑

i,j,k,n≥0
oi,j,k(n)xiyjzktn, (5.1)
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(a) From left to right: the simple walk, Kreweras 3D model, a (1, 2)-type Hadamard model and a (2, 1)-type
Hadamard model. The models are the same ones as in Figure 5.2b. These pictures are courtesy of Alin
Bostan
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· · ·

· • ·
• •
· • ·

· · ·
· • ·
· · ·

· · ·
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· · ·

· • ·
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· · ·

· · ·
· · ·
· · •

• · ·
• • •
· · •

• · ·
• •
· · •

• · ·
• • •
· · •

· • •
• • ·
• · •

· • ·
• ·
· · •

· • •
• • ·
• · •

(b) For each model, the first diagram shows steps of the form (i, j,−1), the second the steps (i, j, 0), and the
third the steps (i, j, 1). The models are the same ones as in Figure 5.2a. These cross-section views were first
proposed in [30, 27]

Figure 5.2 – Various 3D step sets. As these perspective drawings of Figure 5.2a might be difficult to read,
we will prefer the cross-section views of the step sets as in Figure 5.2b

where oi,j,k(n) is the number of n-step walks in the octant starting at the origin (0, 0, 0) and ending
at position (i, j, k). The techniques used in [27] to solve finite group models are the algebraic kernel
method and computer algebra (using the guessing-and-proving paradigm).

The classification (in particular with respect to the finiteness of the group and the Hadamard
structure) of the 3D small step models with arbitrary cardinality is pursued in the articles [6, 64,
128, 95]. Table 5.2 reproduces this classification.

Asymptotics of the excursion sequence. Let us finally recall (see Section 2.2) a result of
Denisov and Wachtel [58], which is fundamental to our study. It proves in a great level of generality
the following asymptotics for the excursion sequence eA→B(n), i.e., the number of n-step walks in
the octant starting (resp. ending) at A ∈ N3 (resp. B ∈ N3). If A and B are far enough from the
boundary, as n→∞,

eA→B(pn) = κ(A,B) · ρpn · n−α · (1 + o(1)), (5.2)

where κ(A,B) > 0 is some constant, ρ ∈ (0, |S|] is the exponential growth, α > 0 is the critical
exponent and p ∈ N is the period of the model, i.e.,

p = gcd{n ∈ N : oA→B(n) > 0}. (5.3)

The asymptotics expression (5.2) is proved in [58] in the aperiodic case (p = 1) and commented
in [67, 28] for periodic models (p > 1). For exact hypotheses and a discussion, see Theorem 58 in
Section 5.2.3 and the comments following the statement.

Most of the time we shall assume that
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(H) The step set S is not included in any half-space {y ∈ Rd : 〈x, y〉 ≥ 0} with x ∈ Rd \ {0},
〈·, ·〉 denoting the classical Euclidean inner product. In this case, we say that the walks are
non-singular.

The quantities ρ and α in (5.2) are computed in [58]. First, ρ is the global minimum on Rd+ of the
inventory (or characteristic polynomial)

χS(x, y, z) = χ(x, y, z) =
∑

(i,j,k)∈S
xiyjzk (5.4)

and is thus well understood and easily computed (it is an algebraic number). On the other hand, the
computation of α is much more elaborate: applying the results of [58] (see in particular Equation (12)
there) readily gives, under the hypothesis (H), an expression for the critical exponent. Let λ1 be
the smallest eigenvalue Λ of the Dirichlet problem for the Laplace-Beltrami operator ∆S2 on the
sphere S2 ⊂ R3 {

−∆S2m = Λm in T,
m = 0 in ∂T,

(5.5)

T = T (α, β, γ) being a spherical triangle (see Figure 5.3 for an illustration). Then, the critical
exponent have the following expression

α =
√
λ1 + 1

4 + 1. (5.6)

Note that the spherical triangle T can be computed algorithmically (and easily) in terms of the
model S, see Theorem 58 for a precise statement.

Concerning the algebraic nature of the 3D generating function (5.1), a few results are known: in
the finite group cases solved in [27], the generating function is always D-finite. On the other hand,
the article [64] proves that for some degenerate (in the sense of the dimensionality) 3D models,
the excursion generating function O(0, 0, 0) is non-D-finite, by looking at the asymptotic behavior
of the excursion sequence and showing that α in (5.2) is irrational, extending the work [34]. Does
there exist a non-degenerate 3D finite group model with a non-D-finite generating function (5.1)?
The 3D Kreweras model of Figure 5.2a could provide such an example. The 3D simple walk in the
complement of an octant is also conjectured to admit a non-D-finite generating function, see [111,
Sec. 4].

Structure of the chapter and main contributions. In Section 5.2 we start by presenting all
needed definitions and first properties of 3D models. In particular, we associate to each model a
spherical triangle, which captures a lot of combinatorial information. Results in that section come
from [58, 27, 6, 95].
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(a) A particular spherical triangle with two right
angles (these triangles will eventually correspond
to Hadamard models)

β

γ

α

(b) A generic triangle with angles α, β, γ

Figure 5.3 – Spherical triangles

In Section 5.3 we first recall properties of spherical triangles and the principal eigenvalue of a
Dirichlet problem. This section gathers also some elementary facts on spherical geometry.

In Section 5.4 we give the exact value of the angles of a spherical triangle. We also present
further features of the covariance matrix as well as the construction of a walk model from a given
spherical triangle.

Section 5.5 is at the heart of this chapter. Our result deals with Hadamard models (mostly
with infinite group, as finite group Hadamard walks are solved in [27]). They have birectangular
triangles, as in Figure 5.3a. Finite (resp. infinite) group Hadamard models correspond to angles
β such that π

β ∈ Q (resp. π
β /∈ Q). Hadamard models are quite special for combinatorial reasons,

as explained in [27], but also for the Laplacian: to the best of our knowledge, their birectangular
triangles are the only triangles (with the exception of the tiling triangles described in Lemma 64)
for which one can compute the spectrum. We deduce the critical exponent α and show that (most
of) infinite group Hadamard models are non-D-finite. This is the first result on the non-D-finiteness
of truly 3D models.

In Section 5.6 we classify the models with respect to their triangle and the associated principal
eigenvalue, and compare our results with the classification in terms of the group and the Hadamard
property obtained in [27, 95]. Finite group models correspond to triangular tilings of the sphere S2.
The simplest example is the simple walk with steps

S = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},

see Figure 5.2b (leftmost). Its triangle has three right angles, namely α = β = γ = π
2 in Figures 5.3

and 5.4a. A second example is 3D Kreweras model, with step set

S = {(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1)},
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(a) Tiling of the sphere by equilateral triangles
with right angles. It is associated to the simple
walk

(b) The tetrahedral partition of the sphere. It cor-
responds to Kreweras 3D model

π
2

(c) Decomposition of the circle by regions of open-
ing angle π/2, associated to the simple model.
This is a 2D version of Figure 5.4a.

2π
3

(d) Decomposition of the circle by of regions open-
ing angle 2π/3, associated to the Kreweras model.
This is a 2D version of Figure 5.4b.

Figure 5.4 – Various tilings of the sphere and the circle. See Figure 5.13 for further examples of tilings

see Figure 5.2b (left). The associated triangle is also equilateral, with angles 2π
3 , this corresponds

to the tetrahedral tiling of the sphere, see Figure 5.4b. Let us recall that in dimension two, the
coefficient arccos(−c) (see (2.35)) is rational in the case of finite groups models, which correspond
to partition the circle in circular sector (see Figures 5.4c and 5.4d).

We exhibit some exceptional models, which do not have the Hadamard property but for which,
remarkably, one can compute an explicit form for the eigenvalue; this typically leads to non-D-
finiteness results.

Although we will not consider these issues here, let us mention that we can also see the dimen-
sionality on the triangle. In the case of 2D models, the triangles degenerate into a spherical digon,
see Section 5.8.4 (in particular Figure 5.20).

In Section 5.7 we present our last result which is about generic infinite group models. Even if
no closed-form formula exists for λ1, we may consider λ1 as a special function of the triangle T
(or equivalently of its angles α, β, γ, as in spherical geometry a triangle is completely determined
by its angles), and with numerical analysis methods, obtain approximations of this function when
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evaluated at particular values. The techniques developed in Section 5.7 are completely different from
the rest of the paper. Notice that for some cases, approximate values of the critical exponents have
been found by Bostan and Kauers [30], Bacher, Kauers and Yatchak [6], Bogosel [25], Guttmann [88],
Dahne and Salvy [53]. See Section 5.7.1 for more details.

Finally, the Section 5.8 proposes various extensions and remarks.

5.2 Preliminaries

In this section we introduce key concepts to study 3D walks. We are largely inspired by the
paper [27], which gives a functional equation of walks in the positive octant (Section 5.2.1) and
classifies three-dimensional walks according to the dimension of a model, the group of a model, or
the Hadamard structure (Section 5.2.2). The thorough classification presented in Section 5.2.2 is
done in the papers [6, 95] and the fundamental asymptotic results of Section 5.2.3 can be found in
[58]. We follow the notations of [27].

5.2.1 Functional equation

With the same strategy as for 2D walks (see Section 2.1.1), a functional equation for the
generating function O(x, y, z) (5.1) can be easily derived describing how a 3D walk in the positive
octant can be built. The inventory Laurent polynomial of S defined in (5.4) can be written as

χ(x, y, z) = A−(y, z)x−1 +A0(y, z) +A+(y, z)x

= B−(x, z)y−1 +B0(x, z) +B+(x, z)y (5.7)

= C−(x, y)z−1 + C0(x, y) + C+(x, y)z.

The term A−(y, z)x−1 (resp. B−(x, z)y−1 and C−(x, y)z−1) represents the steps in the negative x-
direction (resp. y-direction and z-direction), A0(y, z) (resp. B0(x, z) and C0(x, y)) is for steps with-
out x-direction (resp. y-direction and z-direction) and A+(y, z)x (resp. B+(x, z)y and C+(x, y)z)
stands for steps with positive x-direction (resp. y-direction and z-direction). Let us introduce

D−(z) =
∑

(−1,−1,k)∈S
zk, E−(y) =

∑
(−1,j,−1)∈S

yj , F−(x) =
∑

(i,−1,−1)∈S
xi,

which represent respectively the steps with negative xy-direction, xz-direction and yz-direction.
We also define ε = 1 when (−1,−1,−1) ∈ S and 0 otherwise.

Walks in the 3D octant can be empty with generating function 1, or can be walks in the octant
to which we add a step from S, that is tχ(x, y, z)O(x, y, z). We need to remove the walks going
out from the plane yz (resp. xz and xy) with generating function tx−1A−(y, z)O(0, y, z) (resp.
ty−1B−(x, z)O(x, 0, z) and tz−1C−(x, y)O(x, y, 0)). However, we have removed twice some walks
going out from the z-axis (resp. y-axis and x-axis) and thus we need to add tx−1y−1D−(z)O(0, 0, z)
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(resp. tx−1z−1E−(y)O(0, y, 0) and ty−1z−1F−(x)O(x, 0, 0)). Finally, we remove the walks out of
the octant with generating function εtx−1y−1z−1O(0, 0, 0). This construction is also known as
the inclusion-exclusion principle. The generating function O(x, y, z) satisfies then the following
functional equation [27, Sec. 4.1].

O(x, y, z) = 1 + tχ(x, y, z)O(x, y, z) (5.8)

− tx−1A−(y, z)O(0, y, z)− ty−1B−(x, z)O(x, 0, z)− tz−1C−(x, y)O(x, y, 0)

+ tx−1y−1D−(z)O(0, 0, z) + tx−1z−1E−(y)O(0, y, 0) + ty−1z−1F−(x)O(x, 0, 0)

− εtx−1y−1z−1O(0, 0, 0).

5.2.2 Classification of three-dimensional walks

Dimension of a model. Let w = w1w2 . . . wn be a walk of length n with increments wi in S.
The walk w ends in the positive octant if and only if the following three linear inequalities hold:

∑
s∈S

assx ≥ 0,
∑
s∈S

assy ≥ 0,
∑
s∈S

assz ≥ 0, (5.9)

where as is the multiplicity of s = (sx, sy, sz) in w. Notice that the walk w remains in the octant if
the multiplicities observed in each of its prefixes satisfy these inequalities.

Definition 56 ([27]). Let d ∈ {0, 1, 2, 3}. A model S is said to have dimension at most d if there
exist d inequalities in (5.9) such that any |S|-tuple (as)s∈S of non-negative integers satisfying these
d inequalities satisfies in fact the three ones. We define accordingly models of dimension (exactly)
d.

· · ·
· · ·
· · ·

· · ·
· •
· • ·

· · ·
· • ·
· · •

(a) d = 0

· · ·
· · ·
• · ·

· · ·
· ·
· • ·

• · ·
· · ·
· · •

(b) d = 1

· • ·
· · ·
· · ·

· · ·
· ·
• · ·

· · ·
· · •
• · ·

(c) d = 2

· · ·
· • ·
· · ·

· • ·
• ·
· · ·

· · ·
· · ·
· · •

(d) d = 3

Figure 5.5 – Four-step models of various dimensions [27, Fig. 1]

See Figure 5.5 for an illustration of Definition 56. Models of dimension 0 have a step set S ⊂
{0, 1}3 \ {(0, 0, 0)} making the positive octant restriction removable (A−, B−, C−, D−, E− and
F− are all equal to zero in (5.8)). In this case, the generating function of the walk is rational and
O(x, y, z) = 1

1−tS(x,y,z) . Models of dimension 1 are in fact walks confined to a half-space. These
models are characterized in [27, Sec. 2.1] and the generating function of the walk is algebraic. Less
is known for models of dimension 2 (walks confined to the intersection of two half-spaces) and of
dimension 3. Proposition 2.5 of [27] gives the number of models having dimension 2 or 3, with no
unused step (that is, a step that is never used in a walk confined to the octant), and counted up
to permutations of the coordinates, ending up with the number 11,074,225 in Table 5.2. In what
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(x, y, z)

(x−1, y, z) (x, y−1, z) (x, y, z−1)

(x−1, y−1, z) (x−1, y, z−1) (x, y−1, z−1)

(x−1, y−1, z−1)

φ
ψ

τ

ψ
τ φ φτ

ψ

φ
ψ

τ

Figure 5.6 – Orbit of (x, y, z) under the group G in the simple walk case

follows we will be principally considering models of dimension 3, and in fact only a subclass of
them: most of the time we will assume the hypothesis (H) stated in Section 5.1.

Group of the model. This group was first introduced in the context of 2D walks, see Sec-
tion 2.3.1 and turns out to be very useful. If S is 3-dimensional then it has a positive step in
each direction and A+, B+ and C+ defined in (5.7) are all non-zero. The group of S is the group
G = 〈φ, ψ, τ〉 of birational transformations of the variables (x, y, z) generated by the following three
involutions: 

φ(x, y, z) =
(
x−1A−(y,z)

A+(y,z) , y, z
)
,

ψ(x, y, z) =
(
x, y−1B−(x,z)

B+(x,z) , z
)
,

τ(x, y, z) =
(
x, y, z−1C−(x,y)

C+(x,y)

)
,

(5.10)

where A±(y, z), B±(x, z), C±(x, y) are defined in (5.7). For example, consider the simple step set
with S(x, y, z) = x+y+z+x−1 +y−1z−1. Then Φ(x, y, z) = (x−1, y, z), Ψ(x, y, z) = (x, y−1, z) and
τ(x, y, z) = (x, y, z−1) and the group G(S) is of order 8 (see Figure 5.6). We refer to [27, Sec. 2.4]
for more details on the group.

The classification of the models according to the (in)finiteness of the group is known, see Table
5.2. Let us also reproduce [95, Tab. 1].

Hadamard structure. Hadamard models are introduced in [27] (see in particular Section 5
there). These are 3-dimensional models which can be reduced to the study of a pair of models, one
in Z and one in Z2, using a Hadamard product of generating functions.

There are two types of Hadamard models: the (1, 2)-type and the (2, 1)-type. More generally,
in arbitrary dimension d there is the notion of (D, δ)-Hadamard model, with D + δ = d, see [27,

2A Coxeter group is a group generated by reflections. For instance, Weyl groups and the dihedral group are Coxeter
group.
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Group Number of models Group Number of models
G1 = 〈a, b, c | a2, b2, c2〉 10,759,449 G7 = 〈a, b, c | a2, b2, c2, (ab)4〉 82
G2 = 〈a, b, c | a2, b2, c2, (ab)2〉 84,241 G8 = 〈a, b, c | a2, b2, c2, (ab)3, (bc)3〉 30
G3 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)2〉 58,642 G9 = 〈a, b, c | a2, b2, c2, acbacbcabc〉 20
G4 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)3〉 1,483 G10 = 〈a, b, c | a2, b2, c2, (ab)3, (cbca)2〉 8
G5 = 〈a, b, c | a2, b2, c2, (ab)3〉 1,426 G11 = 〈a, b, c | a2, b2, c2, (ca)3, (ab)4, (babc)2〉 8
G6 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)4〉 440 G12 = 〈a, b, c | a2, b2, c2, (ab)4, (ac)4〉 4

Table 5.1 – Various infinite groups associated to 3D models. Notice that the presentations of the groups
are not certified: it is not excluded [95] that further relations exist, but then involving more than 400
generators. With the exception of G9, G10 and G11, all groups are Coxeter groups2. Most of the time, but
not systematically, one can take a = φ, b = ψ and c = τ

• · •
· • •
• • ·

• · •
· •
• • ·

• · •
· • •
• • ·

(a) A (1, 2)-type Hadamard model

• · •
· · •
• • ·

· • ·
• •
· • ·

• · •
· · •
• • ·

(b) A (2, 1)-type Hadamard model

Figure 5.7 – Hadamard models

Sec. 5.2]. Back to the dimension 3, the (1, 2)-type corresponds to models for which the inventory
(5.4) can be written under the form

χ(x, y, z) = U(x) + V (x)T (y, z). (5.11)

The (2, 1)-type corresponds to

χ(x, y, z) = U(x, y) + V (x, y)T (z). (5.12)

The number of Hadamard models (with the additional information on the type) can be found in
Table 5.2.

For each type, an example is presented in Figure 5.7: for the (1, 2)-type we have χ(x, y, z) =
U(z) + V (z)T (x, y) (permutation of the variables in the definition (5.11)), with U(z) = z + z−1,
V (z) = z + 1 + z−1 and T (x, y) = x + xy−1 + x−1y−1 + x−1y + y (scarecrow 1 model, see Figure
5.8). For the (2, 1)-type we have taken U(x, y) = x + x−1 + y + y−1 (the 2D simple walk, see
Figure 5.8), V (x, y) = x+xy−1 +x−1y−1 +x−1y+ y (scarecrow 1 model, see again Figure 5.8) and
T (z) = z + z−1.

Hadamard models extend Cartesian products of walks: Cartesian products (or equivalently
independent random walks in the probabilistic framework) correspond to taking U(x) = 0 in (5.11)
or U(x, y) = 0 in (5.12). Notice that Hadamard models in dimension 2 are always D-finite [28],
even with large steps.

107



Simple walk Kreweras Gessel Scarecrow 1 Scarecrow 2 Scarecrow 3

Figure 5.8 – Some 2D models. The three scarecrows are named after [34, Fig. 1]

Models
(11,074,225)

|G| =∞
(10,908,263)

non-3D Ha.3D Hadamard
(58,642)

(2,1)
(57,690)

(1,2)
(672)

both
(280)

|G| <∞
(165,962)

non-3D Ha.3D Hadamard
(2,187)

(2,1)
(1,798)

(1,2)
(84)

both
(305)

Table 5.2 – Classification of 3D walks (of dimension 2 and 3) according to the finiteness of the group and the
Hadamard property [95]. The numbers of (non-)Hadamard models refer exclusively to dimension 3 models.
Hence among the non-3D Hadamard models one can find models of dimensionality 2 having a (degenerate)
Hadamard decomposition. A model labeled “both” is simultaneously (1, 2)-type and (2, 1)-type Hadamard.
The total number of models is computed in [27], the number of (in)finite groups in [27, 64, 95] and the
refined statistics on 3D Hadamard models in [93]

5.2.3 Formula for the exponent of the excursions

We now explain that the exponent α in (5.2) is directly related to the smallest eigenvalue of a
certain Dirichlet problem on a spherical triangle. Let us start with a simple definition:

Definition 57 ([15]). A spherical triangle on S2 is a triple (x, y, z) of points of S2 that are linearly
independent as vectors in R3. We denote it by 〈x, y, z〉.

See examples in Figures 5.3 and 5.4. The points x, y, z are the vertices of 〈x, y, z〉. By the sides
of 〈x, y, z〉 we mean the arcs of great circle determined by (x, y), (y, z) and (z, x).

The following result gives a method to compute the critical exponent; several explanatory
remarks may be found below the statement.
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Theorem 58 ([58]). Consider an irreducible walk3 with step set S satisfying (H) and let χ be its
inventory (5.4). The system of equations

∂χ

∂x
= ∂χ

∂y
= ∂χ

∂z
= 0 (5.13)

admits a unique solution in (0,∞)3, denoted by (x0, y0, z0). Define

a =
∂2χ
∂x∂y√
∂2χ
∂x2 · ∂

2χ
∂y2

(x0, y0, z0), b =
∂2χ
∂x∂z√
∂2χ
∂x2 · ∂

2χ
∂z2

(x0, y0, z0), c =
∂2χ
∂y∂z√
∂2χ
∂y2 · ∂

2χ
∂z2

(x0, y0, z0) (5.14)

and introduce the covariance matrix

cov =


1 a b

a 1 c

b c 1

 . (5.15)

Let S denote a square root of the covariance matrix, namely

cov = SSᵀ. (5.16)

Consider the spherical triangle T = (S−1R3
+)∩S2. Let λ1 be the smallest eigenvalue of the Dirichlet

problem (5.5) on T . Then for A and B far enough from the boundary ∂T , the asymptotics (5.2) of
the number of excursions going from A to B holds, where the exponential growth

ρ = min
(0,∞)3

χ (5.17)

and the critical exponent α in (5.2) is given by (5.6).

Before sketching the proof of Theorem 58, let us comment its hypotheses. First, under (H) the
characteristic polynomial is strictly convex and coercive4 on (0,∞)3 and hence there is a unique
global minimizing point (x0, y0, z0), which satisfies (5.13).

The covariance matrix (5.15) is positive definite, this is a direct consequence of (H) (the rank of
the covariance matrix describes the dimension of the subspace in which the random walk evolves).

The matrix S−1 has full rank and hence T = (S−1R3
+) ∩ S2 is a spherical triangle (see our

Definition 57), bounded by the three great-circle arcs (S−1ei)∩ S2, with ei denoting the ith vector
of the canonical basis.

3 This irreducibility hypothesis means that for any two points in the space Z3, there exists a path connecting these
points.

4A function f : Rn → R is coercive if lim‖x‖→∞ f(x) = +∞

109



The choice of the square root in (5.16) is not relevant: if cov = S1S
ᵀ
1 = S2S

ᵀ
2 then obviously

S1 = MS2, where M is an orthogonal matrix, and the two associated spherical triangles are
isometric (and in particular they have the same angles).

The boundary of the spherical triangle is piecewise infinitely differentiable. Under this assump-
tion, the spectrum of the Laplacian for the Dirichlet problem (5.5) is discrete (see [48, p. 169]), of
the form 0 < λ1 < λ2 ≤ λ3 ≤ · · · .

The asymptotics (5.2) is proved in [58] under the assumption that the walk is strongly aperiodic
(see the lattice assumption in [58, p. 999]), i.e., irreducible and aperiodic in the sense of the Markov
chains. The aperiodicity is defined by p = 1 in (5.3). Two remarks should be made:

• As explained in [28], an extra-assumption (namely, a reachability condition) has to be made.
There is indeed in [28] the example of a 2D walk which is strongly aperiodic but such that no
excursion to the origin is possible, due to the (ad hoc) particular configuration of the steps.
We could easily construct a 3D analogue such that o(0, 0, 0;n) = 0 for all n.

• The second point is about periodic models (p > 1 in (5.3)), which stricto sensu are not
covered by [58]. It is briefly mentioned in [67] that the main asymptotics (5.2) still holds true.
A detailed discussion of the periodic case may be found in [28].

As our point is not to state Theorem 58 at the greatest level of generality, we have stated it under
rather strong hypotheses, namely that A and B are far enough from the boundary (this is sufficient
for the reachability condition).

Sketch of the proof of Theorem 58. This proof follows a certain number of steps that we now briefly
recall. For more details we refer to the presentation of [34] (see Section 2.3 there, see also [58]).
Following Denisov and Wachtel [58, Sec. 1.5], the main idea is to write the number of excursions
(see (5.1)) as a local probability for a random walk5, namely,

o(i, j, k;n) = |S|nP
[
n∑
`=1

(X(`), Y (`), Z(`)) = (i, j, k), τ > n

]
, (5.18)

where {(X(`), Y (`), Z(`))} are i.i.d copies of a random variable (X,Y, Z) having uniform law on
the step set S, i.e., for each s ∈ S, P[(X,Y, Z) = s] = 1/|S|, and where τ is the first hitting time
of the translated cone (N ∪ {−1})3. At the end we shall apply the local limit theorem [58, Thm 6]
for random walks in cones. The latter theorem gives the asymptotics of (5.18) for normalized
random walks, in the sense that the increments of the random walks should have no drift, i.e.,∑
s∈S P[(X,Y, Z) = s] · s = 0, and a covariance matrix (5.15) equal to the identity.

5where P [A,B] stands for P [A ∩B].
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If the model we consider has a non-zero drift, it is rather standard to perform an exponential
change of measure so as to remove the drift (this is known as the Cramér transform). Let s =
(s1, s2, s3) ∈ S. Define the triplet (X1, Y1, Z1) by

P[(X1, Y1, Z1) = s] = xs10 y
s2
0 z

s3
0

χ(x0, y0, z0) .

Under our hypothesis (H), the drift of (X1, Y1, Z1) is zero if and only if (x0, y0, z0) is solution to
(5.13), which we now assume.

To have a model with a covariance matrix equal to the identity, we first normalize the variables
by

(X2, Y2, Z2) =

 X1√
E[X2

1 ]
,

Y1√
E[Y 2

1 ]
,

Z1√
E[Z2

1 ]

 ,
so that the variances of the coordinates are 1, and more generally the covariance matrix of (X2, Y2, Z2)
is given by (5.15). Writing cov = SSᵀ as in (5.16) and

X3

Y3

Z3

 = S−1


X2

Y2

Z2

 ,
we obtain that (X3, Y3, Z3) has an identity covariance matrix, since S−1 ·cov · (S−1)ᵀ is the identity.
If (X,Y, Z) is defined in the octant R3

+, then (X3, Y3, Z3) takes its values in the cone S−1R3
+.

Remarkably, the probability on the right-hand side of (5.18) can be expressed in terms of the
random walk with increments (X3, Y3, Z3). For instance, for (i, j, k) equal to the origin,

P
[
n∑
`=1

(X(`), Y (`), Z(`)) = (0, 0, 0), τ > n

]
=

(
χ(x0, y0, z0)
|S|

)n
P
[
n∑
`=1

(X3(`), Y3(`), Z3(`)) = (0, 0, 0), τ3 > n

]
,

with τ3 denoting the exit time from the cone S−1R3
+. Using (5.18) and applying [58, Thm 6] finally

gives the result stated in Theorem 58.

5.3 Spherical triangles and Dirichlet eigenvalues

5.3.1 Computing the principal eigenvalue of a spherical triangle

There are very few spherical triangles (and more generally, few domains on the sphere, see
Section 5.3.3 and Section 5.3.4) for which we can explicitly compute the first eigenvalue λ1 of the
Dirichlet problem (5.5). As a matter of comparison, let us recall that (to our knowledge, see also
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[14]) there does not exist in general a closed-form expression for the analogous problem for flat
triangles.

Back to spherical triangles, there essentially exists a unique case for which an explicit expression
for λ1 is known: the case of two angles π

2 as in Figure 5.3 (these triangles are called birectangular).
Then according to [125, Eq. (36)] (or [124, Sec. IV]) the smallest eigenvalue is

λ1 =
(
π

β
+ 1

)(
π

β
+ 2

)
. (5.19)

Let us give three relevant cases in the range of application of formula (5.19):

• The 3D simple random walk (Figure 5.2b): then β = π
2 and λ1 = 12, which with (5.6)

corresponds to α = 9
2 (in accordance with the intuition 3× 3

2 , i.e., three independent positive
1D excursions).

• More generally, finite group Hadamard models. They correspond to β ∈ πQ. They represent
tiling groups of the sphere. See Section 5.6 for more details.

• Last but not least, all Hadamard models, even with infinite group (typically β /∈ πQ); see
Section 5.5.

Let us continue this section with interesting properties and facts about spherical triangles and
the principal eigenvalue of a Dirichlet problem.

5.3.2 Elementary spherical geometry

Our main source is the book [15] by Berger. Spherical triangles have been introduced in Defi-
nition 57. A spherical digon is a domain bounded by two great arcs of circles, see Figure 5.20 and
[15, 18.3.8.2].

A natural operation in spherical geometry is to take the polar spherical triangle; see [15, 18.3.8.2]
and [15, 18.6.12] for more details that we briefly recall below.

Definition 59 (polar triangle). Let 〈x, y, z〉 be a spherical triangle in the sense of Definition 57.
Define the triplet (x′, y′, z′) by the conditions

〈x′, y〉 = 〈x′, z〉 = 0, 〈x′, x〉 > 0,
〈y′, z〉 = 〈y′, x〉 = 0, 〈y′, y〉 > 0,
〈z′, x〉 = 〈z′, y〉 = 0, 〈z′, z〉 > 0.

Then 〈x′, y′, z′〉 is a spherical triangle, called the polar triangle of 〈x, y, z〉.

The polar transformation is involutive, and the equilateral right triangle is invariant. There is
no simple formula relating the eigenvalues of a spherical triangle to that of its polar triangle. See
Figure 5.9 for examples.
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Figure 5.9 – Two triangles (color red) and their polar triangles (in blue), see Definition 59

Interestingly, polar cones already appear in [85] (resp. [84]) to compute the exponential decay
of the survival probability of random walks (resp. the exponential decay and the critical exponent
of the Brownian survival probability) in cones.

5.3.3 Some properties of the principal eigenvalue

Our main reference here is the book [54] of Dauge.

Monotonicity and regularity of the eigenvalues.

Lemma 60 (Lemma 18.5 in [54]). Let T1 and T2 be two simply connected domains on S2. If T1 ⊂ T2

then
λ1(T1) ≥ λ1(T2).

In particular, as any spherical triangle is included in a half-sphere (whose principal eigenvalue
equals 2), one has the universal lower bound

λ1(T ) ≥ 2

for any spherical triangle T . (By (5.6), this implies that the critical exponent α should be bigger
than 5

2 .)
Classical arguments in perturbation theory for operators [92] state that analytic perturbations

of the operator induce analytic perturbations of the eigenvalues, see in particular [90, Lem. 2.1] in
our context.

Lemma 61. The function λ1(T ) = λ1(α, β, γ) is analytic in the angles α, β, γ.

A consequence of Lemma 61 is that a generic triangle has an irrational (and even transcendental)
principal eigenvalue λ1.

Lemma 62. As one of the angles goes to 0, λ1 goes to infinity.

Proof. Lemma 62 is a simple consequence of Lemma 60 and the fact that each spherical triangle
can be included in any of the digons determined by its angles. Indeed, suppose the triangle T has
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an angle equal to α. Then T is included in the digon Dα with angle α and

λ1(T ) ≥ λ1(Dα) = π

α

(
π

α
+ 1

)
.

We can notice immediately that if α→ 0 then the first eigenvalue of T goes to infinity.

Revolution cones. We now compute the spectrum of a revolution cone (or solid angle) in ar-
bitrary dimension d ≥ 2. Let us introduce some notation. We fix a half-axis A in Rd and for any
x 6= 0 denote by θ(x) ∈ [0, π] the angle between the axes A and ~x. By definition, the revolution
cone with apex angle ζ is (see Figure 5.10)

K(ζ) = {x ∈ Rd \ {0} : θ(x) ∈ [0, ζ)}. (5.20)

Its section on the sphere is the disc C(ζ) = K(ζ) ∩ S2.

Lemma 63 (Proposition 18.10 in [54]). The spectrum of C(ζ) is the set of positive ν(ν + d − 2)
for which there is m ∈ N such that Pmν (cos ζ) = 0, where Pmν denotes the mth Legendre function of
the first kind.

Notice that [54, Prop. 18.10] computes the spectrum of the cone K(ζ), not of its section C(ζ).
However the eigenvalues λi(K) of a cone K are directly related to the eigenvalues of its section
C = K ∩ S2, namely (see, e.g., [54, 18.3])

λi(K) =

√
λi(C) +

(
1− d

2

)2
+
(

1− d

2

)
. (5.21)

A few remarkable spherical triangles. Consider triangles with angles(
π

p
,
π

q
,
π

r

)
, with (p, q, r) ∈ (N \ {0, 1})3 .

As recalled in [13, 54], the only possible triplets are

• (2, 3, 3) tetrahedral group;

• (2, 3, 4) octahedral group;

• (2, 3, 5) icosahedral group;

• (2, 2, r) dihedral group or order 2r ≥ 4

Each triplet above corresponds to a tiling of the sphere. See Figures 5.4 and 5.13 for a few examples.
Denote by T(p,q,r) the associated triangle when it exists.
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Lemma 64 (Theorem 6 in [13]). The eigenvalues of T(p,q,r) have the form ν(p,q,r)(ν(p,q,r) + 1), with
(`1, `2 ∈ N)

• ν(2,3,3) = 6 + 3`1 + 4`2;

• ν(2,3,4) = 9 + 6`1 + 6`2;

• ν(2,3,5) = 15 + 6`1 + 10`2;

• ν(2,2,r) = r + 1 + 2`1 + r`2.

5.3.4 Other cones

As we have seen in Theorem 58, computing critical exponents for walks in N3 (or in any cone
formed by an intersection of three half-spaces, by a linear transform) requires the computation of the
principal eigenvalue of a spherical triangle. More generally, we could consider walks confined to an
arbitrary coneK in dimension 3 or more (even so the natural combinatorial interpretation of positive
walks is lost), and ask whether there exists a closed-form expression for the principal eigenvalue.
However, only very few domains seem to admit such closed-form eigenvalues. Besides spherical
digons and birectangle triangles, there are for instance the revolution cones, see Figure 5.10. The
first eigenvalue (and in fact the whole spectrum) is described in Lemma 63. From an analytic
viewpoint, the domains leading to explicit eigenvalues have typically the property of separation of
the variables, see [117, 116] for more details.

5.4 The covariance matrix

5.4.1 Expression for the angles of the spherical triangle

The angles of the spherical triangle appearing in the main Theorem 58 are totally explicit in
terms of the correlation coefficients a, b and c defined in (5.14).

Lemma 65. Let α, β, γ be the angles of the spherical triangle T defined in Theorem 58, and a, b, c
as in (5.14). One has

α = arccos(−a), β = arccos(−b), γ = arccos(−c). (5.22)

Three remarks should be made.

• It is easily seen that the correlation coefficients a, b and c of Lemma 65 are algebraic numbers.
We can use the exact same algorithmic computations as in [34, Sec. 2.4.1] to deduce their
minimal polynomials.
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ζ

Figure 5.10 – The revolution cone (or spherical cap) K(ζ) of apex angle ζ

• The formulas given in Lemma 65 are the most natural generalization of the 2D situation,
where by [34] the spherical triangle is replaced by a wedge of opening angle arccos(−c), see
Figure 5.11.

• If (at least) two of the three correlation coefficients a, b and c are equal to 0, then the spherical
triangle is birectangular and conversely.

Proof of Lemma 65. Let cov be the matrix defined in (5.15). We easily obtain the Cholesky de-
composition cov = LLᵀ, with

L =


1 0 0
a
√

1− a2 0
b c−ab√

1−a2

√
1−a2−b2−c2+2abc√

1−a2

 . (5.23)

One deduces that

L−1 =


1 0 0
−a√
1−a2

1√
1−a2 0

ac−b√
1−a2

√
1−a2−b2−c2+2abc

ab−c√
1−a2

√
1−a2−b2−c2+2abc

√
1−a2√

1−a2−b2−c2+2abc

 . (5.24)

116



π
2 arccos(−c)

Figure 5.11 – After decorrelation of a 2D random walk, the quarter plane (left) becomes a wedge of opening
arccos(−c) (right), where c is the correlation coefficient of the driftless model

Denoting by (e1, e2, e3) the canonical basis of R3, the three points defining the triangle are

x = L−1e1
‖L−1e1‖

, y = L−1e2
‖L−1e2‖

, z = L−1e3
‖L−1e3‖

,

see the third comment following Theorem 58 or its proof (Section 5.2.3). Setting

xy = y − 〈x, y〉x
‖y − 〈x, y〉x‖

and xz, yx, yz, zx, zy similarly, we have by [15, 18.6.6] (giving the formulas for the angles of the
triangle 〈x, y, z〉)

α = arccos〈xy, xz〉, β = arccos〈yz, yx〉, γ = arccos〈zx, zy〉.

To conclude the proof it is enough to do the above computations in terms of a, b and c.

Notice that the above expression of L in terms of a, b and c is particularly simple, and thus
the proof of Lemma 65 is easily obtained. On the other hand, solving the equation cov = SSᵀ with
the constraint of taking a symmetric square root S happens to be much more complicated and less
intrinsic.

We end this section with further aspects and properties of the covariance matrix. We establish
a strong relationship between the cosine matrix of the angles and the Coxeter matrix of the group,
we then interpret the covariance matrix as a Gram matrix, and finally we show that it is possible
to realize any spherical triangle as a walk triangle.

5.4.2 Relation with the Coxeter matrix

Assume that there exists a presentation of the group G of Section 5.2.2 as

G = 〈a, b, c | a2, b2, c2, (ab)mab , (ac)mac , (bc)mbc〉,
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with mab = ∞ if there is no relation between a and b, and similarly for mac and mbc. (It is
not always possible to present the group G as above, see Table 5.1.) Following Bourbaki [36] we
introduce the two matrices


1 mab mac

mab 1 mbc

mac mbc 1

 and


1 − cos

(
π
mab

)
− cos

(
π
mac

)
− cos

(
π
mab

)
1 − cos

(
π
mbc

)
− cos

(
π
mac

)
− cos

(
π
mbc

)
1

 . (5.25)

The first one is called the Coxeter matrix, see Definition 4 in [36, Ch. IV]. The second one is used in
[36] to define a quadratic form, whose property of being non-degenerate characterizes the finiteness
of the group G, see Theorem 2 in [36, Ch. V].

Our point here is to remark the strong link between the matrix on the right-hand side of (5.25)
and the covariance matrix, which by Lemma 65 may be rewritten as the cosine matrix

1 − cos(γ) − cos(β)
− cos(γ) 1 − cos(α)
− cos(β) − cos(α) 1

 . (5.26)

There are, however, two differences between the matrices (5.26) and (5.25). The first one is that
in the infinite group case, all non-diagonal coefficients of the matrix (5.26) are in the open interval
(−1, 1), while if there is no relation between a and b (say), then mab = ∞ and − cos( π

mab
) = −1.

See [56] for a rather general study of cosine matrices (5.26).
The second difference is about the finite group case. Take any two step sets which are obtained

from one another by a reflection (see Figure 5.12 below for an example). Then the group has the
exact same structure and thus the matrix of [36] is unchanged. On the other hand, the matrix
(5.26) changes after a reflection (Kreweras on the left, reflected Kreweras on the right):

1 1
2

1
2

1
2 1 1

2
1
2

1
2 1

 and


1 −1

2 −1
2

−1
2 1 1

2

−1
2

1
2 1

 .

· · ·
· • ·
· · ·

· • ·
• ·
· · ·

· · ·
· · ·
· · •

· · ·
· • ·
· · ·

· • ·
· •
· · ·

· · ·
· · ·
• · ·

Figure 5.12 – On the left, Kreweras 3D model. On the right, the reflection of Kreweras 3D with respect to
the x-axis, which can be thought of as a 3D tandem model
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5.4.3 Polar angles and Gram matrix

It is possible to compute the angles between the three segments connecting the origin to the
vertices of the triangle 〈x, y, z〉. These angles may also be interpreted as the lengths A = yz, B = xz

and C = xy of the sides of the triangle. By [15, 18.6.12.2] they are the complements to π of the
polar angles (see Definition 59).

Lemma 66. Let O denote the origin (0, 0, 0). The angles between the vectors ~Ox, ~Oy and ~Oz are
given by

A = arccos
(

bc− a√
1− b2

√
1− c2

)
, B = arccos

(
ac− b√

1− a2
√

1− c2

)
,

C = arccos
(

ab− c√
1− a2

√
1− b2

)
.

As it should be, the quantity bc−a√
1−b2

√
1−c2 (and its cyclic permutations as well) in Lemma 66

belongs to (−1, 1). Indeed if bc ≥ a then

bc− a√
1− b2

√
1− c2

< 1 iff (bc− a)2 < (1− b2)(1− c2) iff 1− a2 − b2 − c2 + 2abc > 0.

The quantity 1 − a2 − b2 − c2 + 2abc is positive because it is the determinant of the covariance
matrix (5.15), which is assumed positive definite. In the case bc ≤ a we would prove similarly that

bc−a√
1−b2

√
1−c2 > −1.

Proof of Lemma 66. The angles are easily computed: if e1, e2 and e3 are the vectors of the canonical
basis and L−1 is as in (5.24),

〈L−1e1, L
−1e2〉 = ‖L−1e1‖ · ‖L−1ej‖ · cosC, (5.27)

and cyclic permutations of the above identities hold. The formulas stated in Lemma 66 follow from
(5.27), after having computed the norms and the dot products of the columns of L−1.

An alternative proof is to invert the covariance matrix (5.15) and to use the orthogonality
relations between the angles and their polar angles, see Definition 59.

Finally, we stress that the covariance matrix may be interpreted as the Gram matrix
〈u, u〉 〈u, v〉 〈u,w〉
〈u, v〉 〈v, v〉 〈v, w〉
〈u,w〉 〈v, w〉 〈w,w〉

 ,
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where u, v, w are the three vectors on the sphere which are the columns of the matrix


√

1−a2−b2−c2+2abc√
1−c2 0 0
bc−a√
1−c2 −

√
1− c2 0

b c 1

 .

5.4.4 The reverse construction

Our general construction consists in associating to every model of walks the covariance matrix
(5.15), and thereby a spherical triangle with angles α, β, γ as in Lemma 65. It is natural to ask
about the converse: is it possible to realize any spherical triangle as a walk triangle? The answer
turns out to be positive, if we allow weighted walks.

More specifically, let 〈x, y, z〉 be an arbitrary spherical triangle, having angles α, β, γ ∈ (0, π).
Introduce a, b, c ∈ (−1, 1) such that (5.22) holds. Let finally (U, V,W ) be a triplet of independent
random variables (actually, having non-correlated variables is enough) in R3 with unit variances.
Introduce the random variables 

Z

Y

X

 = L


U

V

W

 , (5.28)

where L is the matrix (5.23) appearing in the Cholesky decomposition of the matrix cov. Then
by construction the covariance matrix of (X,Y, Z) ∈ R3 is (5.15) and its spherical triangle has
angles α, β, γ. In conclusion, the random walk model whose increment distribution is the same as
the distribution of (X,Y, Z) given by (5.28) has a spherical triangle with generic angles α, β, γ.

5.5 Analysis of Hadamard models

We consider Hadamard models in the sense of Section 5.2.2. Let us briefly recall that these
models are characterized by the existence of a decomposition of their inventory (5.4) as follows:

χ(x, y, z) = U(x) + V (x)T (y, z) or χ(x, y, z) = U(x, y) + V (x, y)T (z).

As will be shown in Lemmas 67 and 71, such models admit a quite simple covariance matrix

cov =


1 0 0
0 1 c

0 c 1

 ,
allowing us to perform explicitly many computations. (Notice, however, that the above form for
the covariance matrix does not characterize Hadamard models, we construct counterexamples in
Section 5.6.4. These examples lead to the notion of exceptional models.)
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In particular, spherical triangles associated to Hadamard models are birectangular, i.e., two (or
three) angles are equal to π

2 , see Figure 5.3. These triangles are remarkable because they are the
only ones (with the exception of a few sporadic cases) for which a closed-form expression for the
principal eigenvalue is known. Finally, the exponent (5.6) of the excursion sequence is computed in
Propositions 68 and 72 below. Using similar techniques as in [34], one can rather easily study the
rationality of this exponent.

In the (1, 2)-type (Section 5.5.1), the 2D model associated to T (y, z) dictates the exponent, see
Proposition 68. In particular, we will see in Corollary 69 that if the 2D model has an irrational
exponent, then the 3D model is necessarily non-D-finite. To our knowledge, this is the first proof
ever of the non-D-finiteness of truly 3D models, making the Hadamard case remarkable. On the
other hand, (2, 1)-type Hadamard models (Section 5.5.2) are more subtle. Their exponents can be
computed from exponents of mixtures of two 2D models.

Although we will not do such considerations here, let us emphasize that most of the results in
this section hold for weighted walks with arbitrarily big steps: the only crucial point is the existence
of a Hadamard decomposition.

5.5.1 (1,2)-Hadamard models

Lemma 67. For any (1, 2)-type Hadamard model, the matrix cov in (5.15) takes the form

cov =


1 0 0
0 1 c

0 c 1

 , with c =
∂2T
∂y∂z√

∂2T
∂y2 · ∂

2T
∂z2

(y0, z0), (5.29)

where y0, z0 are defined in (5.13). (Notice in particular that c does not depend on the components
U and V in the Hadamard decomposition (5.11).)

Proof. Using the decomposition (5.11) in the last two equations of the system (5.13) gives

V (x)∂T
∂y

(y, z) = V (x)∂T
∂z

(y, z) = 0. (5.30)

As V (x) cannot be equal to 0, we obtain the autonomous system ∂T
∂y = ∂T

∂z = 0. Let (y0, z0) be its
unique solution. Moreover, the first equation in (5.13) leads to

U ′(x) + V ′(x)T (y0, z0) = 0

which (as T (y0, z0) > 0) has a unique solution x0. Using once again (5.11) as well as (5.30), we
deduce that

V ′(x0)∂T
∂y

(y0, z0) = 0,
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whence a = 0 and similarly b = 0 in the general formula for cov. The formula (5.29) for c is a direct
consequence of (5.14) and (5.11).

Our aim now is to compute the spherical angles in the Hadamard case. We use Lemma 65 to
deduce Proposition 68 below.

Proposition 68. The spherical triangles associated to (1, 2)-type Hadamard models have angles
π
2 ,

π
2 , arccos(−c) (as in Figure 5.3, left), with c defined in (5.29). The smallest eigenvalue λ1 of the

Dirichlet problem and the exponent α are respectively given by

λ1 =
(

π

arccos(−c) + 1
)(

π

arccos(−c) + 2
)
, α = π

arccos(−c) + 5
2 .

In order to completely characterize the excursion exponent we now compute c and α. This
happens to be done in [34]: for the 2D unweighted models under consideration, c is always algebraic
(possibly rational), and minimal polynomials in the infinite group case are provided in [34, Tab. 2].

For instance, for the first and second scarecrows in Figure 5.8 one has c = −1
4 , while c = 1

4 for
the last scarecrow. Moreover, by [34, Cor. 2], α is irrational for all infinite group models. This leads
to the following corollary.

Corollary 69. For any (1, 2)-type Hadamard 3D model such that the group associated to the step
set T is infinite, the series O(0, 0, 0) (and thus also O(x, y, z)) is non-D-finite.

We list below important comments on Corollary 69.

• First of all, Corollary 69 is (to the best of our knowledge) the first non-D-finiteness result
on truly 3D models (the 3D models considered in [64] have dimensionality 2 in the sense of
Definition 56, and thus do not satisfy the main hypothesis (H), which guarantees the existence
of a non-degenerate spherical triangle, see Section 5.8.4). It answers an open question raised
in [27, Sec. 9] (concerning the possibility of extending the techniques of [34] to octant models).

• In order to give a concrete application of Corollary 69, consider a model with arbitrary U
and V (provided that the model is truly 3D), and with T one scarecrow of Figure 5.8. This
3D model is non-D-finite since the 2D model associated with T has an infinite group by [41].

• Note that Corollary 69 can be extended to models with weights and arbitrarily big steps,
provided that the hypothesis on the infiniteness of the group be replaced by the assumption
that π

arccos(−c) is irrational. An algorithmic proof of the irrationality of such quantities is
proposed in [34, Sec. 2.4], and further applied to some weighted models in [64].

• Corollary 69 is a direct consequence of [34, Cor. 2], which states that for the 51 unweighted
non-singular step sets with infinite group in the quarter plane, the excursion exponent is
irrational. By [34, Thm 3] this implies that the series is non-D-finite.
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Remark 70 (Combinatorial interpretation of the exponent). For (1, 2)-type models, 3D excursions
may be decomposed as products of two lower dimensional excursions: a first excursion in the (y, z)-
plane with the inventory T and a second, 1D excursion in x. This can easily be read on the formula
of Proposition 68: writing

α =
(

π

arccos(−c) + 1
)

+ 3
2 ,

the exponent is interpreted as the sum of the exponent of the 2D model (see [34, Thm 4]) and of
the universal exponent 3

2 of a 1D excursion.

5.5.2 (2,1)-Hadamard models

Lemma 71. For any (2, 1)-type Hadamard model, the matrix cov in (5.15) takes the form

cov =


1 a 0
a 1 0
0 0 1

 , with a =
∂2 χ|z0
∂x∂y√

∂2 χ|z0
∂x2 ·

∂2 χ|z0
∂y2

(x0, y0), (5.31)

where x0, y0, z0 are defined in (5.13) and χ|z0 (x, y) = χ(x, y, z0).

Proof. We solve the system (5.13) in the z-variable first and obtain the point z0 characterized by
T ′(z0) = 0. We have then b = c = 0 in the covariance matrix cov. The first two equations of this
system read

∂U

∂x
(x, y) + T (z0)∂V

∂x
(x, y) = ∂U

∂y
(x, y) + T (z0)∂V

∂y
(x, y) = 0.

The pair (x0, y0) is the critical point associated to the mixture of models defined below in (5.32).

The following result is derived similarly as Proposition 68.

Proposition 72. The spherical triangles associated to (2, 1)-type Hadamard models have angles
π
2 ,

π
2 , arccos(−a) (as in Figure 5.3, left), with a defined in (5.31). The smallest eigenvalue λ1 of the

Dirichlet problem and the exponent α are respectively given by

λ1 =
(

π

arccos(−a) + 1
)(

π

arccos(−a) + 2
)
, α = π

arccos(−a) + 5
2 .

(2,1)-type Hadamard walks and mixing of 2D models. From a probabilistic point of view,
the (2, 1)-type is slightly more interesting than the (1, 2)-type. Many computations are indeed
related to the concept of mixtures of two 2D probability laws.

More precisely, the polynomials U(x, y) and V (x, y) in (5.12) both induce a law (or a model)
in 2D, which are mixed as below:

χ|z0 (x, y) = U(x, y) + T (z0)V (x, y), (5.32)
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the parameter z being specialized at z0, the latter being defined by T ′(z0) = 0.
In the combinatorial case, for a 3D model we must have T (z) = z + z−1, hence z0 = 1 and

T (z0) = 2. Equation (5.32) becomes U(x, y)+2V (x, y), which is the inventory of a 2D weighted walk
(with possible weights 0, 1, 2, 3). Remark that it is not the first appearance of weighted 2D walks
in the theory of (unweighted) 3D walks: in [27, Sec. 7] (see in particular Figure 5), 2D projections
of 3D models are analyzed, and these projections are typically weighted 2D walks; see also [96].

Computing a in (5.31). From a technical point of view, computing a and studying the rationality
of π

arccos(−a) requires the same type of computations as above for c and π
arccos(−c) (see Section 5.5.1).

For an illustration see Example 74 below. However, some difficulties may occur from the fact that
weighted steps are allowed:

• It is not possible to exclude that a model with infinite group has a rational exponent α
(this does not happen in the unweighted case [34], but may happen in the weighted case, see
examples in [28]).

• Knowing the critical exponents associated to U and V does not give much information on the
exponent of the mixture (5.32).

Applications and examples. We start with a result on non-D-finiteness, for a subclass of (2, 1)-
type Hadamard models.

Corollary 73. For any (2, 1)-type Hadamard 3D model such that the group associated to the step
set V is infinite, and U = V or U = 0, the series O(0, 0, 0) (and thus also O(x, y, z)) is non-D-finite.

Corollary 73 applies for several models, but the constraint of taking either U = V or U = 0 is
quite strong. We now construct a more elaborate example.

Example 74. Let U, V be any of the first two scarecrows of Figure 5.8 (possibly the same ones).
These models have zero drift (meaning that the sum of the steps over the step set is zero), and thus
critical point (1, 1), and an easy computation shows that they have the same covariance matrices.
Then for any T (x) = t1x+ t0 + t−1x

−1, the associated (2, 1)-type Hadamard model defined by (5.12)
is non-D-finite.

5.6 Triangle and principal eigenvalue classifications of the models

5.6.1 Motivations and presentation of the results

In this section we would like to classify the 11, 074, 225 models with respect to their triangle
and the associated principal eigenvalue. The central idea is that there is a strong link between the
group (as defined in Section 5.2.2) and the triangle. To understand this connection, we propose a
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novel, natural and manipulable geometric interpretation of the group, as a reflection group on the
sphere. More precisely, we will interpret the three generators of the group as the three reflections
with respect to the sides of the spherical triangle. We shall present three main features:

• Finite group case (Section 5.6.2): we interpret the group G as a tiling group of the sphere, see
Table 5.3 as well as Figures 5.4 and 5.13. We also explain a few remarkable facts observed in
the tables of [6], on the number of different asymptotic behaviors.

• Infinite group case (Section 5.6.3): the existence of a relation between the generators of the
group can be read off on the angles. The simplest example is the relation (ab)m = 1, which
on the triangle will correspond to an angle equal to kπ/m for some integer k. In particular,
all triangles from the group

G3 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)2〉

of Table 5.1 (Hadamard models) will have two right angles.

• Exceptional models (Section 5.6.4): for some infinite group models (a few hundreds of thou-
sands), some unexpected further identities on the angles hold—unexpected means not implied
by a relation between the generators, as explained above.

The most interesting case is given by some models in G1 and G2, which have a triangle
with exactly 2 right angles. Although these models do not have a Hadamard structure, their
triangle has the same type as classical Hadamard models, and the principal eigenvalue (and
hence the critical exponent) can be computed in a closed form.

There are also models with infinite group and three right angles (in this case, the exponent is
9
2 and cannot be used to detect non-D-finiteness). Let us finally mention that there are two
models with infinite group and having the same triangle as Kreweras 3D. See Theorem 77.

To summarize, classifying the triangles is close to, but different from classifying the groups. The
latter task has already been achieved in [6] (finite group case; we have reproduced their results in
Table 5.4) and [95] (infinite groups; see our Table 5.1), using a heavy computer machinery. However,
the group classification is more precise, in the sense that the spherical triangle does not determine
everything: infinite group models can have a tiling triangle, and Hadamard models are not the only
ones to have birectangular triangles.

5.6.2 Finite group case

Some aspects of the group. Let us recall a few applications of the concept of the group:
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(a) Tilings associated to the triangles with angles
π
3 ,

π
2 ,

2π
3

(b) Tilings associated to the triangles with angles
π
4 ,

π
3 ,

π
2

Figure 5.13 – Various tilings of the sphere. These triangles correspond to the lines 9 and 17 in Table 5.3

• When the group is finite and if in addition the orbit-sum of the monomial x1×· · ·×xd under
the group G, namely

OS(x1, . . . , xd) =
∑
g∈G

sign (g) · g(x1 × · · · × xd), (5.33)

is non-zero, one may obtain closed-form expressions for the generating function (as positive
part extractions). See [41] for the initial application of this technique, called the orbit-sum
method; it was further used in [96, 28].

• When the group is finite but the orbit-sum (5.33) is zero, it is still possible, in a restricted
number of cases, to derive an expression for the generating function, see [41, 96, 28] for
examples. The applicability of this technique is not completely clear.

• Last but not least, in dimension 2 there is an equivalence between the finiteness of the group
and the D-finiteness of the generating functions (this is a consequence of the papers [41, 31,
100] altogether).

Let us now examine each of the above applications in dimension 3. The first item is still valid,
as shown in [27, 128]. As in the 2D case, the second item only works for a few cases. For instance,
Figure 4 in [27] gives a list of 19 non-Hadamard 3D models with finite group and zero orbit-sum,
which are not solved at the moment. Finally, the third item is an open question. As an illustration,
all 19 previous models (including Kreweras 3D model) have a finite group, but as explained in [27,
Sec. 6.2], these models do not seem D-finite. In this case, the equivalence in the third item would
not be satisfied.
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Eigenvalue Exponent Nb tri. Angles Hadamard Order Group
1 4.261,734 3.124,084 2

[
2π
3 ,

3π
4 ,

3π
4

]
no 48 Z2 × S4

2 5.159,145 3.325,756 7
[

2π
3 ,

2π
3 ,

2π
3

]
no 24 S4

3 6.241,748 3.547,890 2
[
π
2 ,

2π
3 ,

3π
4

]
no 48 Z2 × S4

4 6.777,108 3.650,869 5
[
π
2 ,

2π
3 ,

2π
3

]
no 24 S4

5 70/9 23/6 41
[
π
2 ,

π
2 ,

3π
4

]
yes 16 Z2 ×D8

6 35/4 4 279
[
π
2 ,

π
2 ,

2π
3

]
yes/no 12 D12

7 12 9/2 1,852
[
π
2 ,

π
2 ,

π
2
]

yes 8 Z2 × Z2 × Z2

8 12.400,051 4.556,691 2
[
π
3 ,

π
2 ,

3π
4

]
no 48 Z2 × S4

9 13.744,355 4.740,902 7
[
π
3 ,

π
2 ,

2π
3

]
no 24 S4

10 20 11/2 172
[
π
3 ,

π
2 ,

π
2
]

yes/no 12 D12

11 20.571,973 5.563,109 2
[
π
4 ,

π
2 ,

2π
3

]
no 48 Z2 × S4

12 21.309,407 5.643,211 7
[
π
3 ,

π
3 ,

2π
3

]
no 24 S4

13 24.456,913 5.970,604 2
[
π
4 ,

π
3 ,

3π
4

]
no 48 Z2 × S4

14 30 13/2 41
[
π
4 ,

π
2 ,

π
2
]

yes 16 Z2 ×D8
15 42 15/2 5

[
π
3 ,

π
3 ,

π
2
]

no 24 S4

16 49.109,945 8.025,663 2
[
π
4 ,

π
4 ,

2π
3

]
no 48 Z2 × S4

17 90 21/2 2
[
π
4 ,

π
3 ,

π
2
]

no 48 Z2 × S4

Table 5.3 – Characterization of triangles and exponents associated to models with finite group. One can see
some eigenvalues appearing in Lemma 64 (the integers eigenvalues)

Our contribution. The following result is summarized in Table 5.3:

Theorem 75. Under the hypothesis (H), there are exactly 17 triangles that are associated to finite
groups. Each triangle corresponds to a particular eigenvalue computed in Table 5.3.

Proof. The proof of the above result of the triangles angles is computational (all computations are
done using symbolic tools and are exact) and is based on Theorem 58. In each case, the critical
point of the inventory function is found by solving (5.13). Once the critical point is found, we
compute the covariance matrix (5.15) and we use Lemma 65 to find the angles of the associated
spherical triangle.

Numerical tools related to this chapter are available on the webpage of the article [26].

Comments on Theorem 75. We have computed the critical exponents for each one of the
models corresponding to a finite group, using the fundamental eigenvalue of the associated spherical
triangles. In some cases the eigenvalues are known explicitly and are written in rational form in
Table 5.3. The computation procedure is described in Section 5.7. We believe that all digits shown
are accurate.
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Group Hadamard Non-Hadamard OS 6= 0 Non-Hadamard OS = 0
Z2 × Z2 × Z2 1,852 0 0

D12 253 66 132
Z2 ×D8 82 0 0
S4 0 5 26

Z2 × S4 0 2 12

Table 5.4 – Number of models with finite group. Note that OS refers to the orbit-sum defined in (5.33). The
original version of this table may be found in [6, Tab. 1]

It is remarkable that among all possible 17 exponents, each one is uniquely assigned to a partic-
ular spherical triangle. Moreover, each group can be realized as a reflection group for the associated
triangles, giving a connection between combinatorial and geometric aspects. More precisely, we
notice that all triangles associated to models with finite groups are Schwarz triangles, which means
that they can be used to tile the sphere, possibly overlapping, through reflection in their edges.
They are classified in [118] and a nice theoretical and graphical description can be seen on the
associated Wikipedia page [52]. The classification of Schwarz triangles also includes information
about their symmetry groups, which are seen to coincide with the combinatorial groups.

The triangle on the ninth line of Table 5.3 is exactly half of Kreweras triangle. Accordingly (and
this was confirmed by our numerical approximations) the principal eigenvalue of the models with
half Kreweras triangle equals the second smallest eigenvalue of Kreweras model.

Some remarks on the tables of [6]. In this paragraph we explain a few conjectural comments
which appear in the captions of Tables 2, 3 and 4 of [6].

First, Table 2 of [6] gives the guessed asymptotic behavior of the 12 models with group Z2×S4

and zero orbit-sum (see our Table 5.4). The first remark of [6] is that the critical exponent β of the
generating function O(1, 1, 1) seems to be related to the excursion exponent α by the formula

β = α

2 −
3
4 . (5.34)

(Notice that the remark in [6] is stated with +3
4 and not −3

4 ; the reason is that our critical exponents
are opposite to the ones in [6].) Let us briefly mention that (5.34) is indeed true and is a consequence
of Denisov and Wachtel results: by (5.6) (resp. [58, Thm 1]) one has

α =
√
λ1 + 1

4 + 1 and β = 1
2

(√
λ1 + 1

4 −
1
2

)
, (5.35)

for zero-drift models (which is the case of these models under consideration). This remark also
applies to [6, Tab. 3], giving the excursion asymptotics for the 26 models whose group is S4 and
orbit-sum zero (see again our Table 5.4).
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Figure 5.14 – Distribution of eigenvalues for triangles associated to the infinite groups G1, G2 and G3 from
Table 5.1

The second comment of [6] that we can easily explain is about the number of different critical
exponents. It is remarked in [6] that each exponent α seems to appear for exactly two models in
their Table 2, and that in their Table 3 there are only four different exponents (namely, −5.643,21,
−4.740,90, −3.650,86 and −3.325,75). This simply follows from the fact that in [6, Tab. 2] (resp.
[6, Tab. 3]) there are only six (resp. four) types of spherical triangles, which appear twice for the
second table.

5.6.3 Infinite group case

We have numerically computed for each model corresponding to an infinite group its associated
spherical triangle, the eigenvalue and thus the exponent. Details about numerical computations can
be found in Section 5.7.

As expected, the behavior is irregular (much more than in the finite group case) and the number
of distinct eigenvalues, leading to distinct exponents, is more important. Therefore, we do not
attempt to classify the models by the associated eigenvalues. In order to illustrate their repartition,
we show in Figure 5.14 the distribution of the eigenvalues for triangles associated to the models in
G1, G2 and G3. Points having y-coordinate zero represent the cases where the hypothesis (H) is
not satisfied.

As in the finite group case (Table 5.3), we may wonder if there is a connection between the
triangles associated to the models and their combinatorial group. The remark shown below strongly
indicates that the analogous proposition holds. In some cases, like for example when the triangle
has two angles equal to π/2, the realization of the infinite group as a symmetry group for the
triangle is more obvious.

Remark 76. All triangles associated to non-degenerate models with infinite groups satisfy the fol-
lowing property: the combinatorial group can be realized as a symmetry group of the triangle. We
have two possibilities:

• The generators a, b, c are the reflections with respect to the three sides of the triangle.
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• In cases where the first possibility does not hold, it suffices to replace one of the reflections
by its conjugate with respect to one of the other two (for example replace a by bab).

Remark 76 is justified using numerical computations made in Section 5.7. We notice that only
information on the angles is needed here (which can eventually be obtained using elementary
functions and algebraic numbers). Therefore the arguments below can be justified using symbolic
computations.

Summary of numerical observations justifying Remark 76. Every relation for the combinatorial group
of the model can be seen on the associated triangle.

For G1 there is nothing to prove: we may choose a, b, c to be the three reflections with respect
to the sides of the triangle, and no additional relation is required.

Among the 82,453 triangles associated to non-degenerate models of type G2, exactly 79,219 have
(at least) one right angle. Therefore, if a and b are reflections with respect to the sides adjacent
to the right angle, then (ab)2 = 1. The remaining 3,234 triangles have the property that for one
particular labeling a, b, c of the symmetries associated to the sides of the triangles, the composition
cacb is a rotation of angle π and therefore (cacb)2 = 1. Therefore, after a transformation of the type
a← cac described in [95], G2 is represented as a group of symmetries of the associated triangles.

All triangles associated to non-degenerate models in G3 have at least two angles equal to π/2,
and 40 among these have three right angles. Therefore, there is a labeling a, b, c of the reflections
for which (ab)2 = 1 and (ac)2 = 1.

For triangles associated to groups among G4, . . . , G11 (all models in G12 turn out to be included
in a half-space) the relations are not always immediately identifiable with geometric aspects related
to angles. One may find triangles with angles π/k for groups having relations of the type (ab)k = 1,
but this is not always the case. In order to validate these cases we use the following procedure:

(i) For a triangle T associated to a group Gn, n = 4, . . . , 11, for every one of the six permutations
of the reflections a, b, c, we construct the result of the transformations R(a, b, c)(T ), where R
varies among the relations of the group Gn. We test if the resulting triangle after the above
transformations coincides with the initial triangle. If this is the case for every relation R of
Gn then we have found a representation of Gn as a group of reflections.

(ii) If the above step fails, then we consider transformations of the type R(cac, b, c) where, as
before, a, b, c are reflections along the sides of the triangles and R varies among the relations
of Gn.

For G5, G7, G8, G9, G10, G11 the step (i) of the above procedure finds a permutation of basic symme-
tries which satisfies the group relations. This also works partially for G4 and G6. For all remaining
cases, the step (ii) finds a combination of reflections with one modification of the type a ← cac

such that Gn is represented again as a symmetry group of the triangle.
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5.6.4 Exceptional models

In this section we are interested in a family of models, which is remarkable in the sense that the
triangle has additional symmetries than those implied by the relations between the generators. We
identify models which are non-Hadamard and which have two right angles, providing additional
examples where we may compute exponents explicitly. Moreover, we identify triangles associated
to infinite groups with three right angles or three angles equal to 2π/3. Numerical investigations
show that:

• 200 models in G6, 837 in G4, 77,667 in G2 and 31,005 in G1 have exactly one right angle;

• 57,935 models in G3, 1,552 in G2 and 28,893 in G1 have exactly two right angles;

• 40 models in G3 and 563 models in G1 have three right angles (see Figure 5.15);

• 2 models in G4 and 3 models in G1 have three 2π/3 angles (see Figure 5.15).

We have used numerical tools to find the numbers of models in each category: we inspect the
triangles by using methods described in Section 5.7 and use a tolerance of 10−8 in order to classify
the angles of the triangle. Lists with steps corresponding to each one of the cases presented in the
above numerical result can be accessed on the web page of the article [26].

Some of these results are validated using symbolic computations, as underlined below.

Theorem 77. Among infinite group 3D models, there exist models for which the triangles have
exactly one, two or three right angles. There also exist models having three 2π/3 angles.

Proof. The cases of three right angles and three angles equal to 2π/3 are completely proved using
symbolic computations (using the same approach as in the proof of Theorem 75), i.e., 40 models
in G3 and 563 models in G1 have three right angles, and 2 models in G4 and 3 models in G1 have
three 2π/3 angles. Figure 5.15 provides a few examples. The existence of triangles with exactly one
right angle in G1, G2, G4 and G6 and triangles with exactly two right angles in G1, G2 and G3 is
validated symbolically.

• · ·
· · •
· • ·

· • •
• •
• • ·

• · ·
· · •
· • ·

• · ·
· • •
· • ·

· • •
• •
• • ·

• · ·
· • •
· • ·

• · ·
· • ·
· · ·

• · ·
· •
· • ·

· · ·
· · •
· • ·

· · ·
• • ·
· · ·

• • ·
· •
· · ·

· · ·
· · ·
· • •

Figure 5.15 – Left: two models with a group G3 and three right angles. Right: two models from G4 with
three angles of measure 2π

3

A first consequence of Theorem 77 is to illustrate that the spherical triangle does not determine
everything:

• infinite group models can have triangles which tile the sphere,
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• Hadamard models are not the only ones to admit birectangular triangles.

Note that the first phenomenon already appears in 2D: it is indeed possible to construct two-
dimensional models with infinite group and rational exponent, see, e.g., [28]. All known examples
have either small steps and weights (not only 0 and 1), or admit at least one big step. However,
restricted to the unweighted case there is equivalence between the infiniteness of the group and the
irrationality of the exponent [34].

A second consequence of Theorem 77 is the following:

Corollary 78. For all models with exactly two right angles (and a = b = 0), the exponent is given
by

α = π

arccos(−c) + 5
2 .

In particular if π
arccos(−c) /∈ Q then the model is non-D-finite.

• · ·
· · ·
· · •

· · ·
· ·
· · ·

• · ·
• • •
· · •

• · ·
· · ·
• · ·

• · •
· ·
· • ·

· · •
· · ·
· · •

Figure 5.16 – Two models having a group G2 (Table 5.1). Although these models do not have the Hadamard
structure, they admit birectangular triangles and thus explicit eigenvalues, providing examples of application
to Corollary 78

As an example, we prove that the two models of Figure 5.16 admit irrational exponents. We
present an alternative approach to the irrationally proof given in [34, Sec. 2.4].

Proof. Assume that arccos(−c) = p
qπ. Then obviously cos(q arccos(−c))− (−1)p = 0, and thus c is

a root of
f(x) = cos(q arccos(−x))− (−1)p, (5.36)

which is (up to an additive constant) a Chebychev polynomial. For the first (resp. second) model
in Figure 5.16, one has c =

√
7/3 (resp.

√
7/10), having respective minimal polynomials

P (X) = 9X2 − 7 and P (X) = 10X2 − 7. (5.37)

Since Chebychev polynomials have leading coefficient equal to powers of 2, this is the same for
f(x).

We recall that a polynomial in Z[X] is called primitive if its coefficients have no common factor.
We also recall that the product of two primitive polynomials is again primitive, by Gauss’ lemma.

Suppose that P is a primitive polynomial and that P divides, in Q[X], the polynomial f defined
in (5.36). Then there exists another polynomial Q ∈ Q[X] such that f = PQ. Suppose that Q does
not have integer coefficients. Then, let cQ be the least common multiple of the denominators of the
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coefficients of Q. In this way, the polynomial cQQ has integer coefficients and is primitive. Therefore

P · (cQQ) = cQf,

and since P and cQQ are both primitive, it follows that cQf is also primitive. This leads to a
contradiction if cQ > 1. Therefore Q ∈ Z[X].

We can now finish the proof and give the following general result: if P ∈ Z[X] is a primitive
polynomial and the leading coefficient of P is greater than 2 and is not a power of 2, then P cannot
divide f . Using the argument given in the previous paragraph we can conclude that f admits a
factorization of the type f = PQ with Q ∈ Z[X]. Therefore the leading coefficient of f is a product
of the leading coefficients of P and Q. Since the leading coefficient of P is greater than 2 and is not
a power of 2, it cannot divide the leading coefficient of f , which is a power of 2.

In particular, both polynomials in (5.37) are primitive and have leading coefficient greater than
2, but not a power of 2. Therefore they cannot divide f , and the exponent cannot be rational in
these cases.

5.6.5 Equilateral triangles

In spherical geometry, there exists an equilateral triangle with angles α for any α ∈ (π/3, π).
The limit case α = π/3 (resp. α = π) is the empty triangle (resp. the half-sphere).

Among the 11 million of models, we have numerically found 279 different equilateral triangles.
The most remarkable ones admit the angles π/2 (the simple walk), 2π/3 (Kreweras), arccos(1/3)
(polar triangle for Kreweras), arccos(

√
2 − 1) (the smallest equilateral triangle), 2π/5, 3π/5. It

seems that only the first one admits an eigenvalue in closed-form.
Except for the equilateral triangles with angles π/2 and 2π/3, which exist in G3 and G4, all

other equilateral triangles come from G1. The list of equilateral triangles in G1 and the list of all
possible angles observed can be consulted on the webpage of the article [26].

5.7 Numerical approximation of the critical exponent

5.7.1 Literature

In lattice walk problems (and more generally in various enumerative combinatorics problems),
it is rather standard to generate many terms of a series and to try to predict the behavior of the
model, as the algebraicity or D-finiteness of the generating function, or the asymptotic behavior of
the sequence. Having a large number of terms allows further to derive estimates of the exponential
growth or of the critical exponent. More specifically, in the context of walks confined to cones, it is
possible to make use of a functional equation to generate typically a few thousands of terms (the
functional equation corresponds to a step-by-step construction of a walk, see [27, Eq. (4.1)] for a
precise statement).
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One can find in [30, 6, 88] various estimates of critical exponents (contrary to the results
presented here, the estimates of [30, 6, 88] also concern the total numbers of walks—and not only
the numbers of excursions). In [30], Bostan and Kauers consider 3D step sets of up to five elements,
and guess various asymptotic behaviors using convergence acceleration techniques. Bacher, Kauers
and Yatchak go further in [6], computing more terms and considering all 3D models (with no
restriction on the cardinality of the step set). In [88], Guttmann analyses the coefficients of a few
models by either the method of differential approximants or the ratio method. The methods of [88]
for generating the coefficients and for analyzing the resulting series are given in Chapters 7 and 8
of [87].

We present here a finite element method which computes approximation of the critical exponent.
As we have previously seen, this critical exponent can be related to the smallest eigenvalue of a
Dirichlet problem in a spherical triangle associated to the step set of the walk. Some other techniques
of eigenvalue computation have the advantage of being applicable to any spherical triangle, not
necessarily related to a 3D model. Using the stereographic projection, the 3D eigenvalue problem
(5.5) can be rewritten as a 2D eigenvalue problem for a different operator. Since the stereographic
projection maps circles onto circles, the new domain is bounded by three arcs of circles and is thus
rather simple. However, as expected, the eigenvalue problem becomes more complicated and is a
priori not exactly solvable. See [78, 77] for more details (in particular [77, Eq. (2.12) and Fig. 3]).
In [53], the authors present a method for enclosing the principal eigenvalue of any triangle using
validated numerical techniques.

Finally, the authors of [103] describe a Monte Carlo method for the numerical computation of the
first Dirichlet eigenvalue of the Laplace operator in a bounded domain. It is based on the estimation
of the speed of absorption of Brownian motion by the boundary of the domain. Theoretically this
could certainly be used in our situation, but as in many probabilistic methods, it is hard to expect
a precision such as ours (typically, ten digits). In [103], the speed of convergence is of order 1/

√
(n)

by the Kolmogorov-Smirnov theorem.

5.7.2 Finite element method

We perform here a finite element method and compute precise approximations of the eigenvalue
(typically, 10 digits of precision). We make available our codes on the webpage of the article [26].
The finite element computation consists in a few standard steps (triangulation of the domain, see
Figure 5.17, assembly and the resolution of the discretized problem). For general aspects regarding
finite element spaces defined on surfaces, we refer to [69]. We underline the fact that the method
described below can be applied to general subsets of the sphere, not only for triangles. The precision
of the computation of the eigenvalue depends on the size of the triangulation. For example, we found
that the eigenvalue of the triangle associated to the Kreweras model is

λ1 = 5.159,145,642,470,
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Figure 5.17 – Triangulation of a spherical triangle using successive refinements

where we believe that all digits present are correct. This is very close to the result of Guttmann [88].
A method for computing eigenvalues of spherical regions using fundamental solutions was recently
proposed in [3] for smooth domains on the sphere. The singular behavior generated by the corners
of the triangles renders this method is not directly adapted to our needs. For more details on the
numerical method for the computation of the critical exponent we refer to [26].

5.8 Further objectives and perspectives

5.8.1 Walks avoiding an octant and complements of spherical triangles

Rather than counting walks confined to an octant, one could aim at counting walks avoiding
an octant (or equivalently, walks confined to the union of seven octants). This model is briefly
presented in [111, Sec. 4]. It is inspired by the dimension two case, where the model of walks
avoiding a quadrant has started to be studied (see Chapters 3 and 4, as well as [40, 111]). As we
have seen, the (geometric) difference between quarter plane and three-quarter plane first seems
anecdotal. However, the combinatorial complexity is much higher in the three quadrants; this is
well illustrated by the fact that the simple walk model in the three-quarter plane has the same level
of difficulty as quadrant Gessel walks, as shown by Bousquet-Mélou in [40].

Going back to walks in dimension three, we consider walks confined to the union of seven octants

R = {(i, j, k) ∈ Z3 : i ≥ 0 or j ≥ 0 or k ≥ 0},

see Figure 5.18 for an example of such a walk. With the usual strategy of constructing the walk step-
by-step (see Section 2.1.1 and Section 5.2.1), we can write a functional equation for the generating
function of walks avoiding the negative octant

R(x, y, z) =
∑
n≥0

∑
(i,j,k)∈R

ri,j,k(n)xiyjzktn,

where ri,j,k(n) is the number of path from (0, 0, 0) to (i, j, k) within R.
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(a) 3D representation of a walk
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x

(b) Projection on the xy-plane

z

x

(c) Projection on the xz-plane
z

y

(d) Projection on the yz-plane

Figure 5.18 – A 3D walk avoiding the negative octant

Let R0−−(y−1, z−1) =
∑
n≥0

∑
j≤−1,k≤−1 r0,j,k(n)yjzktn be the generating function of walks end-

ing in the negative yz-plane6 and R00−(z−1) =
∑
n≥0

∑
k≤−1 r0,0,k(n)zktn be the generating func-

tion of walks ending on the negative z-axis. We define similarly R−0−(x−1, z−1), R−−0(x−1, y−1),
R0−0(y−1) and R−00(x−1).

Walks avoiding the negative 3D octant can be empty with generating function 1 or can be
walks in R to which we add a step from S, that is tχ(x, y, z)R(x, y, z). Walks going out of R
from the negative yz-plane with generating function tx−1A−(y, z)R0−−(y−1, z−1) need to be re-
moved, as well as walks going out of R from the negative xz-plane and negative xy-plane with
generating functions ty−1B−(x, z)R−0−(x−1, z−1) and tz−1C−(x, y)R−−0(x−1, y−1). But we have
removed twice some walks going out from the negative z-axis (resp. negative y-axis and nega-
tive x-axis) and thus we need to add tx−1y−1D−(z)R00−(z−1) (resp. tx−1z−1E−(y)R0−0(y−1) and
ty−1z−1F−(x)R−00(x−1)). We end this construction with removing the walks out of R with gener-

6The negative yz-plane denotes points with negative y and z coordinates.

136



ating function εtx−1y−1z−1R(0, 0, 0). We get then

R(x, y, z) =1 + tχ(x, y, z)R(x, y, z)− tx−1A−(y, z)R0−−(y−1, z−1) (5.38)

− ty−1B−(x, z)R−0−(x−1, z−1)− tz−1C−(x, y)R−−0(x−1, y−1)

+ tx−1y−1D−(z)R00−(z−1) + tx−1z−1E−(y)R0−0(y−1) + ty−1z−1F−(x)R−00(x−1)

− εtx−1y−1z−1O(0, 0, 0).

This functional equation (5.38) seems similar to the octant case (5.8). However, we face here
the same difficulties as the two-dimensional case: the functional involves both positive and negative
powers of x, y and z giving rise to convergence issues. On the other side, it is clear from our
construction that the critical exponent α of the excursion sequence is given by the same formula
(5.6), where λ1 is now the principal eigenvalue of the Dirichlet problem (5.5) on the complement of
a spherical triangle.

We were not able to identify any non-degenerate spherical triangle for which the principal
eigenvalue of its complement is known to admit a closed form. A fortiori, we did not find any model
whose exponent of the excursion sequence in the seven octants has an explicit form. From that
point of view, one notices the same complexification phenomenon as in dimension 2.

Take the example of the simple walk, for which one should compute the principal eigenvalue
of the complement of the equilateral right triangle. Even for this very simple case, no closed-
form expression for λ1 seems to exist, and the exponent α is conjectured to be irrational, see
Conjecture 4.1 in [111]. Numerical computations show that α is approximatively equal to 0.660,44.

5.8.2 Walks avoiding a wedge

Let us now mention the combinatorial model of 3D walks avoiding a wedge7, see for example
Figure 5.19, which is a higher dimensional analogue of walks in the slit plane [44]. 3D walks avoiding
a wedge also appear as a degenerate case of the previous model of Section 5.8.1, when the triangle
collapses into a single great arc of circle.

From a spherical geometry viewpoint, the problem becomes that of computing the first eigen-
value for the Dirichlet problem on the complement of a portion of great arc of circle of some given
length in [0, π]. Such a problem is analyzed in [124, Sec. 6]. The extremal cases π and 0 are solved
in [124, Sec. 4], they correspond to λ1 = 3

4 (exponent 2) and λ1 = 0 (exponent 3
2), respectively.

Tables 7 and 8 of [124] provide approximate values of the fundamental eigenvalue for other values
of the arc length.

7That is walks avoiding a planar cone.
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Figure 5.19 – We can study 3D walks avoiding the half-plane (i, j, 0) where j ≥ 0.

5.8.3 Total number of walks

Throughout the article we have considered the asymptotics of the number of excursions (essen-
tially, the coefficients of O(0, 0, 0), see (5.1) and (5.2)), but other questions are relevant from an
enumerative combinatorics viewpoint, as the asymptotics of the total number of walks (regardless
of the ending position), or equivalently the coefficients of the series O(1, 1, 1).

Let us recall that it is still an open problem to determine, in general, the asymptotics as n→∞
of the coefficients of O(1, 1, 1). Assume that it has the form

[tn]O(1, 1, 1) = κ · ρn · n−β · (1 + o(1)). (5.39)

Recall from [85] that under the hypothesis (H), there exists (x∗, y∗, z∗) ∈ [1,∞)3 such that

min
[1,∞)3

χ = χ(x∗, y∗, z∗),

and then the exponential growth ρ in (5.39) is given by ρ = χ(x∗, y∗, z∗); compare with (5.17).
There are essentially three cases for which the critical exponent β in (5.39) is known:

• Case of a drift in the interior of N3 (β = 0);

• Zero drift (then β = α
2 −

3
4 , α being the critical exponent of the excursions (5.2));

• Case when the point (x∗, y∗, z∗) is in the interior of the domain [1,∞)3, i.e., x∗ > 1, y∗ > 1
and z∗ > 1 (in that case β = α).

In the first case (drift with positive entries), the exponent is obviously 0 by the law of large
numbers. In the second case the exponent β is given by the formula (5.35) proved in [58]. As recalled
in (5.34), β is a simple affine combination of α, namely β = α

2 −
3
4 . The last case is proved by Duraj

in [66]. The original statement of Duraj is in terms of the minimum of the Laplace transform of
the step set on the dual cone, but it is equivalent to the one presented above, after an exponential
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Figure 5.20 – A spherical digon is the domain bounded by two great arcs of circles

change of variables and using the self-duality of the octant N3. The hypothesis that the point
(x∗, y∗, z∗) is an interior point cannot be easily translated in terms of the drift; note, however, that
it contains the case of a drift with three negative coordinates. The intuition of the formula β = α is
that the drift being directed towards the vertex of the cone, a typical walk will end at a point close
to the vertex, and thus asymptotically the total number of walks is comparable to the number of
excursions.

5.8.4 Walks in the quarter plane and spherical digons

In this paragraph we briefly explain how the more classical model of walks in the quarter
plane enters into the framework of spherical geometry. In one sentence, spherical triangles become
degenerate and should be replaced by spherical digons, see Figure 5.20, for which the principal
eigenvalue (and in fact the whole spectrum) is known.

Indeed, given a 2D positive random walk {(X(n), Y (n))}, we can choose an arbitrary 1D random
walk {Z(n)} and embed the 2D model as a 3D walk {(X(n), Y (n), Z(n))}, with no positivity
constraint on the last coordinate. The natural cone is therefore N2 × Z, or after the decorrelation
of the coordinates, the cartesian product of a wedge of opening α and Z. On the sphere S2, the
section of the latter domain is precisely a spherical digon of angle α.

The smallest eigenvalue λ1 of a spherical digon is easily computed, see, e.g., [124, Sec. 5]:

λ1 = π

α

(
π

α
+ 1

)
.

The formula (5.6) relating the smallest eigenvalue to the critical exponent gives an exponent equal
to π

α + 3
2 . To find the exponent of the initial planar random walk we have to subtract 1

2 (exponent
of an unconstrained excursion in the z-coordinate), which by [58, 34] is the correct result.
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5.8.5 Exit time from cones for Brownian motion

All results that we obtain for discrete random walks admit continuous analogues and can be used
to estimate exit times from cones of Brownian motion. In the literature, one can find applications
of these estimates to the Brownian pursuit [117, 116]. As shown in [57, 5] (see in particular [5,
Cor. 1]), the exit time of a standard d-dimensional Brownian motion from a cone K behaves when
t→∞ as

Px[τ > t] = B1 ·m1

(
x

|x|

)
·
(
|x|2

2

)λ1(K)/2

· t−λ1(K)/2, (5.40)

where λ1(K) is equal to

λ1(K) =

√
λ1(C) +

(
1− d

2

)2
+
(

1− d

2

)

and λ1(C) is the principal eigenvalue of the Dirichlet problem on the section C = K ∩ Sd−1:

{
−∆Sd−1m = Λm in C,

m = 0 in ∂C.
(5.41)

In the asymptotics (5.40), m1 is the (suitably normalized) eigenfunction associated to λ1.
In the particular case of 3D Brownian motion, if the cone K is an intersection of three half-

spaces, the section C becomes a spherical triangle and the exponent in (5.40) is directly related to
the principal eigenvalue of a spherical triangle, which is the main object of investigation studied in
this paper.

Let us finally comment on the case of non-standard Brownian motion (in arbitrary dimension
d ≥ 2). First, the case of non-identity covariance matrices is easily reduced to the standard case,
by applying a simple linear transform (notice, however, that this implies changing the initial cone,
and therefore the domain of the Dirichlet problem). The situation is more subtle in the case of
drifted Brownian motion: various asymptotic regimes exist, depending on the position of the drift
with respect to the cone and the polar cone [84]. In some regimes the exponent in (5.40) involves
the principal eigenvalue λ1; in some other cases (e.g., a drift which belongs to the interior of the
cone) the exponent is independent of the geometry of the cone.

5.8.6 Further open problems

Besides the open problems listed in [27, Sec. 9], let us mention the following:

Singularity analysis. Is it possible to obtain similar results on non-D-finiteness of Hadamard
models using the Hadamard product of generating functions? This would mean to prove Corollaries
69 and 73 directly, at the level of generating functions.
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3D Kreweras model. This is clearly the model for which we can find the greatest number
of estimations in the literature; its triangle is equilateral with angle 2π/3. Let us quickly give a
chronological list (probably non-exhaustive):

• [5.15, 5.16] by Costabel (2008, [55])

• 5.159 by Ratzkin and Treibergs (2009, [117, 116])

• 5.1589 by Bostan, Raschel and Salvy (2012, [33])

• 5.162 by Balakrishna (2013, [7])

• 5.1606 by Balakrishna (2013, [8])

• 5.1591452 by Bacher, Kauers and Yatchak (2016, [6])

• 5.159145642466 Guttmann (2017, [88])

• 5.159145642470 by our result with a finite element method (see Section 5.7)

What is the exact value? Is it a rational number? The triangle associated to Kreweras model, which
corresponds to the tetrahedral partition of the sphere, is also related to minimal 4-partitions of S2,
see [89].
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big step, see large step
boundary value problem, 19
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branch function, 72
genus 1, 17
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BVP, see boundary value problem

conformal gluing function
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quadrant, 23
three-quadrant, 44
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D-algebraic function, 30
D-finite function, 30
diagonal walk, 12
dimension of a model, 105
Dirichlet problem, 101
double Kreweras walk, 12
Dyck walk, 2

Exceptional model, 131
exponential growth, 25, 100

functional equation
3D octant walks, 104

half-plane walk, 12
plane walk, 11
quadrant harmonic function, 74
quadrant walk, 13
three-quadrant harmonic function, 75
three-quadrant walk, 15

generating function
3D octant, 99
quadrant, 10
quadrant harmonic function, 73
three-quadrant harmonic function, 67
three-quadrant walk, 34

Gessel walk, 12
Gouyou-Beauchamps walk, 12
group

2D walk, 26
3D walk, 106
tiling of the sphere, 125

Hadamard walk, 106
harmonic function, 3, 64
hypertranscendental function, 30

index, 20
inventory polynomial

2D walk, 11
3D walk, 101

kernel, 16, 71
king walk, 12
Kreweras walk, 12

large step, 1
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covariance, 109
Coxeter, 117
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Gram, 119
model, see walk model

orbit sum, 32

principal eigenvalue, 111, 113

rational function, 29
reverse Kreweras walk, 12

simple walk, 12

small step, 1
spherical triangle, 108

angle, 115
polar angle, 119
polar triangle, 112

tandem walk, 12

walk, 1
walk model, 2
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