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Abstract 

In this study, the blade pitching motion on a representative (12 kW) vertical axis wind 

turbine (VAWT) is optimized over a wide range of operating conditions. The pitching is 

referred to as active blade pitching (ABP) when it is not constrained by a predetermined 

motion, while the operating condition is referred to as the tip speed ratio (TSR). 

Computational fluid dynamics (CFD) simulations are used to estimate the instantaneous 

torque produced by the VAWT blades. The torque is considered the system output and 

is dependent on the ABP which serves as the system input. 

This work initially used a preliminary ABP derived using an analytic model; the VAWT 

was then simulated at a TSR of 2.3 with fixed blades using an analytic-ABP strategy. 

The simulation with the analytic-ABP generated a 33.4% increase in torque output 

compared to the fixed pitch strategy simulation. 

The analytic-ABP curve was then approximated by a function of two variables, via 

parameterization of the ABP. The parameters of this ABP are the optimization variables 

of a response surface methodology (RSM) optimization, the objective function being the 

CFD “black-box” simulation and the output variable being the average torque of a blade. 

The optimization used a three-level full factorial design (FFD) as the design of 

experiment (DOE) strategy in order to sample the function with an initial set of points, 

generate a metamodel, and search for the optimum. The ABP derived from this method, 

termed the FFD-ABP, was simulated; the results show that it increased the torque output 

by 15.5% relative to the previous analytic-ABP. 

A new optimization procedure is proposed in this work. It starts from the simulation 

results of the analytic-ABP as well as +2° and −2° offset perturbations. The optimization 

procedure generates an optimal ABP using a modified quadratic regression metamodel 

over a discretized domain; the metamodel is updated with the response of the first 

optimal-ABP to generate a second optimal-ABP. The procedure is repeated until the 

ABP converges into a narrow band. The optimal-ABP simulations resulted in a 6.5% 

increase in torque output with fewer function calls compared to the previous FFD-ABP. 

The optimization procedure was extended to several TSRs and the data used to develop 

a governing function and power performance charts. The governing function was based 

on a novel nonlinear curve fit model and it estimated the pitch based on the TSR and 

azimuthal angle. The maximum power operation point is increased by 13% and the 

torque performance at low TSR is improved. 
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Chapter 1.  
 
Introduction 

Wind turbines are classified into vertical axis wind turbines (VAWTs) and 

horizontal axis wind turbines (HAWTs). Compared to HAWTs, VAWTs emit less noise, 

are easier to install and maintain owing to the on-ground generator, are omnidirectional, 

and can better handle turbulent winds [1]. However, VAWTs have lower efficiency 

compared to HAWTs and lift-based VAWTs, a subclass of VAWTs, cannot self-start [2]. 

Nonetheless, VAWTs offer an opportunity to expand wind energy extraction in 

nontraditional and urban environments. In HAWTs and VAWTs, the magnitude and 

direction of the instantaneous forces are a function of the angle of attack (AOA; i.e., the 

orientation of the blade relative to the effective wind flow). As will be seen later, the AOA 

of the individual blades changes as the VAWT rotates. Consequently, a single AOA may 

not generate optimal power. This makes the VAWT a good candidate for active blade 

pitching (ABP), in which the blades are cyclically pitched (rotated) about their axis to 

maximize the instantaneous torque [1,3]. 

1.1. Literature Review on Flow Modeling 

The blade element momentum theory (BEMT) [4], double multiple stream tube 

model (DMSM) [5,6], cascade models (CM) [7,8], and vortex models (VM) [9,10] are a 

few of the most representative analytic models used to calculate forces acting on wind 

turbine blades. These models have been widely used as a first approach to optimize 

VAWTs [11,12]. BEMT is a two-step analytic approach consisting of blade element 

theory (BET) and momentum theory (MT) analyses. BET extrapolates the forces acting 

on an elemental section of the blade in freestream to the entire blade while MT models 

the effective flow field approaching and leaving the VAWT based on a momentum 

balance, effectively modeling the flow field variation due to the very presence of the 

VAWT [4]. The DMSM is one of several models based on BEMT. Here the flow is 

divided into several streams parallel to the main flow, taking into account the flow 

variation between the upstream and downstream sections [13]. CM analysis begins by 

rearranging the blades in a horizontal line in a sequence known as a cascade; the 
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potential flow field with the induced velocity field of the wakes are then predicted with 

semi-empiric equations [7,8]. In VM analysis, the potential flow fields under the influence 

of the wake vorticity produced by the blade are replaced by lifting-line vortices and a new 

flow field is computed with analytic formulas [9,10]. A comprehensive review of these 

analytic models can be found in the literature [11,12].  

Kosaku et al. [14] used a BEMT model to develop a pitch control strategy for 

VAWTs for various tip speed ratios (TSRs), showing the dependence of the control 

function on the TSR. Zhang et al. [15] used another BEMT model to generate several 

performance curves and concluded that ABP can significantly improve the power 

coefficient at low TSRs. They noted, however, that if the TSR was already optimized for 

maximum power, active pitching resulted in only a small increase in the power 

coefficient. Chen et al. [1] got similar results and concluded that ABP would result in 

higher power at low TSRs. These studies determined that the pitching function was 

predominantly sinusoidal in shape with a positive pitch angle on the upwind area and 

negative pitch angles on the downwind area, and that the pitching magnitude decreased 

at high TSRs [1,15]. 

While analytic formulas require less computational effort to determine the 

pitching function, they fail to consider all physical phenomena. For instance, the very 

presence of the VAWT will result in vortices, wind slowdown or deflection close to the 

VAWT (i.e., the wind speed near the VAWT is less than the freestream velocity owing to 

the VAWT’s presence), linear and rotational momentum transfer to the wind domain, and 

viscous dissipation effects [11]. These physical phenomena are better handled by CFD 

simulations, with carefully set up CFD results very closely matching experimental ones 

[16]. However, simulating ABP control using CFD is rather challenging as it requires 

multiple rotating domains (as discussed later in the thesis), whereas past literature has 

predominantly focused on optimizing the performance of fixed-blade VAWTs. Howell et 

al. [17] showed that 2D and 3D simulations agree well with experimental results up to 

the experimental maximum power point. Their study suggests that 2D models can 

overpredict the torque at high TSRs while 3D models tend to underpredict it. A full 3D 

setup of the overall flow field on a straight-bladed VAWT was developed by Zhang et al. 

[16], who showed a close match with experimental results; hence CFD can predict 

VAWT performance. Rezaeiha et al. [18] studied the effect of fixed nonzero pitch angles 

on the power and torque of a VAWT. The study concluded that a positive fixed pitch 
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increased the torque in the section facing the wind while increasing negative torque on 

the downwind area, while negative pitch angles were shown to have the opposite effect. 

The study then optimized the fixed pitch angle for a particular TSR and VAWT geometry. 

Kirke et al. [19] studied a VAWT whose blades were pivoted at the leading edge, and the 

trailing edge was connected to a pitch amplitude ring that generated sinusoidal pitching 

of fixed magnitude. This study utilized both CFD simulations and experiments to 

establish the viability of the pitch amplitude ring. However, the study did not aim to 

optimize the pitching motion, and the effectiveness of the approach is limited to a narrow 

range of working conditions.  Abdalrahman et al. [20] proposed a pitch angle controller 

using a multilayer perceptron artificial neural network (MLP-ANN). The MLP-ANN is 

trained using the power coefficients obtained from fixed-blade CFD simulations. The 

controller then maps an optimal pitch angle for the current TSR and azimuthal angle 

using the MLP-ANN. It should be noted that the study does not truly optimize the 

pitching motion based on pitching CFD simulations but instead relies on fixed-blade 

simulations, which do not capture nonlinear secondary aerodynamic effects. 

Furthermore, their “optimum” is not a smooth function but several “fix pitch angles” within 

a given azimuthal angle range. 

1.2. Review of Metamodel-Based Optimization 

When performing optimization, we aim to manipulate a set of inputs known as 

design variables to maximize (or minimize) an objective function. Optimization requires 

multiple experiments or evaluations of computationally expensive models of the 

underlying system for different permutations of the design variables. Metamodeling 

techniques aim to speed up the optimization by constructing a simplified representative 

model of the system, the metamodel. This methodology is also known as “black-box 

optimization” as the physical model of the system can be unknown (or ignored) and the 

system is treated as a “black box.”  

We begin by simultaneously evaluating the underlying system at a predetermined 

set of points in the design space. These points may either be selected randomly or 

strategically with design of experiments (DOE) [21]. Since the metamodel needs to be 

either concave or convex for an optimum to exist, we typically use a second-order 

polynomial of the design variables as a metamodel [22]. We then determine the 

coefficients of the polynomial using regression analysis [23]. We can now determine the 
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optimal values of the design variable by applying our optimization algorithm to the 

metamodel. The system is evaluated again with the new optimal value of the design 

variable and the new response data is used to refine the metamodel. This procedure is 

repeated until the parameters converge to their optimal values. Figure 1.1 shows a block 

diagram for a black-box optimization. More information on metamodeling and DOE 

techniques can be found in Gunst et al. [24] and Box et al. [25]. 

 

Figure 1.1.  Block diagram, input and output data 

In this work, the VAWT system is simulated by a CFD model, which is the black-

box. The system output response will be dependent on the input stimulus, and will be the 

periodic torque produced by the blades; the input will be the periodic pitching of the 

blades. The optimization procedure collects input and output data to estimate a 

candidate input which is meant to maximize (or minimize) the output. 

1.3. Purpose and Motivation 

Most literature on ABP optimization for VAWTs uses analytical models. The 

literature that uses CFD simulations mainly addresses fixed-blade optimization, while 

those studies that do address ABP do not optimize but instead focus on a comparison 

with analytic and experimental models. The experimental literature on VAWTs is mainly 

for power performance testing, passive blade pitching testing (using strings or cams), 

and fixed-blade pitch optimization. In summary, the non-analytical models which do 

examine ABP do not present an optimization of the control function based on 

experimental or simulation data. 
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This work aims to improve VAWT performance by developing a procedure that 

optimizes the ABP using simulation data. To improve convergence speed, the analytical 

model computes a preliminary ABP; the model is derived from a blade element theory 

(BET) analysis [4] applied to VAWTs. Since the analytical model does not capture any 

secondary fluid dynamics, a CFD-based optimization procedure is used to refine the 

ABP; using a metamodel that is progressively updated with results from intermediate 

simulations. The metamodeling methodology allows us to run multiple simulations in 

parallel while significantly reducing the overall number of simulations required, as seen 

in earlier literature [26,27]. The optimization procedure is repeated for different TSRs in 

order to determine an optimal ABP as a function of the TSR. 

To the best of the author's knowledge, there are no metamodels procedures for 

ABP optimization on VAWTs via CFD simulations over a wide range of TSRs. These 

results have the potential to solve challenges in VAWT such as inability to self-start and 

also to improve maximum power output. Furthermore, the procedure currently using 

simulation data is compatible with experimental results by means of measuring 

instantaneous torque using piezoelectric sensors [28] [29]. 

1.4. Vertical Axis Wind Turbine Study Case 

A representative 12-kW VAWT has been chosen for this study; its parameters 

are summarized in Table 1.1. This model was chosen to match the model used in Kjellin 

et al. [30], whose experimental data is used in the validation study.  

Table 1.1. VAWT characteristics 

Parameter Variable Value 
Rated power  𝑃𝑉𝐴𝑊𝑇 12 kW 

Rated rotation speed  𝜔 127 rpm 
Rated blade tip speed ratio TSR 3.3 
Rated wind speed  U 12 m/s 
Number of blades Bld 3 
Swept area A 30 m2 
Turbine radius  R 3 m 
Turbine diameter  D 6 m 
Blade length (VAWT height) L (H) 5 m 
Chord length C 0.25 m 
Airfoil profile 

 
NACA 0021 
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A 3D schematic of the VAWT is shown in Figure 1.2. The airflow is characterized 

by the freestream wind speed 𝑈∞. The VAWT blades spin at a radius r from the center 

with a rotational speed 𝜔. The instantaneous linear velocity of a blade is 𝜔𝑟. 

𝑈∞

 

   

 

Figure 1.2.  H-Darrieus VAWT schematic 

Figure 1.3 shows a 2D section along the rotation axis with the upwind and 

downwind areas; this 2D model is used in this work to derive the analytic-ABP and for 

the rest of the CFD simulations. 

 

Figure 1.3.  2D VAWT model 

Upwind Downwind 

𝑈∞ 

𝜔 

𝑟 
𝜔𝑟 

𝜔 
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1.5. Thesis Outline 

Chapter 1 has summarized current research on VAWT analysis; these studies 

show that a performance increase in VAWTs is achieved when using a pitching strategy. 

Given the lack of research on ABP using simulations, this work proposes a CFD 

optimization methodology for VAWT ABP. Compared to a traditional optimization 

methodology, the procedure generated a better solution with fewer function calls, as 

demonstrated in the upcoming Chapters. 

Chapter 2 describes the CFD simulation setup. It begins with the mesh (Section 

2.1), in which the fluid domain around the VAWT is partitioned into embedded moving 

regions. The case setup in Section 2.2 is done in OpenFOAM 3.01 for a time-dependent 

(transient) simulation and dynamic mesh. A validation study for the airfoil (Section 2.3) 

compares the lift and drag coefficient generated by the simulations against experiments; 

the Reynolds number (Re) of the airfoil validation is equivalent to the VAWT blades in 

operation. The chapter ends (Section 2.4) with an experimental and simulation 

comparison of the VAWT’s power coefficient (𝐶𝑃) over a wide TSR operating range. 

In Chapter 3, a blade element model (BEM) is used to analyze the VAWT and 

develop an equation that estimates the VAWT torque based on the angle of attack (𝛼) of 

the blade. The model assumes freestream flow behavior at the blades at an 

instantaneous blade position with no secondary effects. An optimal pitch is computed 

based on the optimal angle of attack (𝛼𝑜𝑝𝑡), evaluated for a 360° blade cycle (in 1° 

increments) at a TSR of 2.3. The pitching function is termed analytic-ABP. Finally, 

simulations are run using the fixed-blade pitch strategy and the analytic-ABP strategy 

and we compare the steady-state blade torque given by the two simulations. 

Chapter 4 presents a traditional black-box optimization approach for the VAWT 

ABP. First, the analytic-ABP is approximated by a function of two variables, namely the 

optimization variables of a response surface methodology (RSM) optimization; the 

simulation is defined as the (black-box) objective function and the average torque of a 

blade as the output variable (to be maximized). The optimization used a three-level full 

factorial design (FFD) as design of experiment (DOE) strategy to determine the initial set 
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of points in the design space (needed to generate the quadratic metamodel). We term 

the ABP derived from this method the FFD-ABP. A simulation is run with this control 

strategy to obtain the steady-state blade torque. The new blade torque data is then 

compared with the data obtained previously in Chapter 3. 

Chapter 5 proposes a novel CFD optimization procedure. In contrast to Chapter 

4, a point-wise optimization is done on the ABP. The analytic-ABP is perturbed by ±2° at 

each azimuthal angle (in 1° increments) and a metamodel is constructed for each 

azimuthal position. The metamodels are used to generate a new optimal ABP (the first 

step of the procedure). The optimal ABP is simulated and the results are used to update 

the discretized metamodels and generate a second optimal ABP. The procedure is 

repeated until the optimal ABP converges into a narrow band. Finally, the steady-state 

blade torque is compared with the results obtained previously in Chapter 4. 

In Chapter 6 the procedure is extended for other TSR operating points. The new 

data is used to develop a governing function with a nonlinear curve fit model, and the 

VAWT torque and power performance charts are developed and discussed. 

The thesis concludes with Chapter 7, summarizing important results and 

suggesting future research to extend the scope of the present work. 



9 

Chapter 2.  
 
Computational Fluid Dynamics Setup 

This chapter describes the mesh setup and the computational parameters of the 

simulation. A 2D CFD model is used as 3D models are significantly more expensive. 

Next, the 2D CFD simulation results are compared to experimental results for a single 

airfoil and for a fixed pitch VAWT. The turbulence model, mesh density, and 

computational parameters thus validated are used in subsequent chapters. 

2.1. Mesh implementation 

In order to simulate ABP, the blades would need to simultaneously rotate about 

the axis of the VAWT and pitch (rotate) about their own axes. To this end, the domain is 

divided into multiple regions as shown in Figure 2.1. The relative dimensions were 

adapted from the computational domain used in Rezaeiha et al. [18]. While Rezaeiha et 

al. [18] used a domain height of 20×D with no-slip walls, we have used a domain height 

of 10×D with slip walls. While Rezaeiha et al. [18] used a downstream length of 25×D, 

we determined that a downstream domain length of 15×D is sufficient for the trailing flow 

turbulence to develop fully; further increase in the downstream domain distance did not 

affect simulation results. The boundary conditions for the mesh patches are listed in 

Table 2.1 

Table 2.1.  Boundary conditions 

B. C. Type Value Description 
Inlet (left) Velocity inlet TSR dependent Uniform fluid velocity at the wall 
Outlet (right) Pressure outlet 0 Uniform and zero at the wall 
Upper wall Fixed walls Slip condition No shear force at the wall 
Lower wall Fixed walls Slip condition No shear force at the wall 
Blades Moving wall No-slip condition Fluid velocity equal to the wall 
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Figure 2.1.  Computational domain for the VAWT (not to scale) 

The stationary region of the mesh is termed the “stator field.” For computation 

efficiency, this region is divided into a far-field region with coarse unstructured elements 

and a middle-field region where the elements become structured and progressively finer 

near the VAWT region. The moving regions of the mesh are subdivided into the “blade 

fields” and the “rotor field.” The blade fields consist of the blade walls and the regions 

immediately surrounding the blades and are made up of a very high element-density 

mesh. During the CFD simulation, the blade-field meshes are subject to the 

superposition of the rotation of the blade around the center of the VAWT and the ABP of 

the blades about their axes. The rotor field consists of the intermediary region between 

the stator field and the blade field. This region consists of unstructured circular mesh that 

rotates about the axis of the VAWT; the mesh elements become progressively finer near 

the blade-fields region. Figure 2.2 shows the mesh regions. The relative diameter of the 

blade field is set to 3×C; while Abdalrahman et al. [20] used a blade field diameter of 

1.6×C for their ABP simulations, we chose to increase this dimension in order to improve 

the transition from the rotor field to the blade fields. 
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(a) Stator far-field 

 

 
(b) Stator middle-field 

 

 
(c) Rotor field 

 
(d) Blade field 

Figure 2.2.  Mesh fields on the computational domain 

This multi-region mesh was implemented in Gmsh (v 2.8.5). The software was 

chosen because the scripting language of Gmsh allowed parametric mesh generation. 

The following files are used in generating the mesh:  

parameters.geo:  specifies the values of the following parameters: chord length, VAWT 

diameter, height, number blades, blade profile; mesh density instructions; and so on. It 

also specifies the dimensions of the fluid field domains surrounding the VAWT, the stator 

field, the rotor field, and the blades field. 

NACA4.geo: generates the blade profile and the circle envelope to fit into the rotor field 

into a mesh file called NACA4.msh. It also generates a highly structured boundary layer 

mesh surrounding the airfoil walls. 
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Rotor.geo: generates the rotor field (called Rotor.msh) and includes equally spaced 

areas for the blade fields and the circle envelope that fit into the stator field.  

Stator.geo: generates the stator field (Stator.msh) which includes the far-field stator and 

the near-field stator; basically, the fluid fields away from the VAWT.  

merge.awk: AWK script used to merge the individual mesh regions into a single mesh.  

The final merged mesh is imported into OpenFOAM using the gmshToFOAM command. 

The code for these script files can be found in Appendix D. 

2.2. Case Structure Setup  

2.2.1. Computational Parameters 

OpenFOAM (v3.0.1) was used to construct the CFD case as it is open source 

software, so no additional licenses were needed to run multiple simulations. The 

software is also available at a supercomputer facility located at Compute Canada.  

The CFD simulations use a Reynolds-averaged Navier–Stokes (RANS) model 

with a k-ω SST turbulence model. The simulations assume air to be an incompressible 

fluid and use a transient pimpleDyMFoam solver with a second-order scheme. The k-ω 

SST turbulence model was chosen because it accurately captures the flow both near the 

walls and in the freestream [18] [31]. Further, the flow can be assumed to be 

incompressible due to the flow speeds being well below Mach one [18][31]. The fluid 

properties of the air used in the simulation are presented in Table 2.2.  

Table 2.2.  Air transport properties 

Constant Description Value Units 

𝜌 Density 1.205 kg/m3 

𝜇 Dynamic viscosity 1.9137E−5 kg/ms 

𝜐 Kinematic viscosity 1.588E−5 m2/s 

𝑇𝑟𝑒𝑓  Temperature 300.0 K 

Default air properties values in OpenFOAM3.0.1 

The simulations used a variable time step constrained by a maximum Courant 

number (Co) of 8 at any given location in the mesh and any given time of the simulation. 

The Courant number can be interpreted as the local distance a fluid particle travels in a 
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given time step (i.e. local velocity × time step) relative to the mesh size [32]. A Co of 8 

offers a good balance between simulation speed and simulation stability (note that 

lowering the Co value also reduces the time step); a time-step independence study in 

Section 2.3 will show that the simulation reached stability for a Co of 8. The  2D model 

dimension follows the same VAWT physical characteristics presented in Table 1.1. In 

addition, Appendix A provides the OpenFOAM folder and file structure for this case.  

2.2.2. Tabulated Movement for Rotating Fluid Domains 

The pitching movements of the blade field meshes may not be expressible as a 

simple mathematical function (such as a sine or cosine). While it may be possible to use 

the harmonics of a Fourier series expansion, this approach is inaccurate, difficult to 

automate, and lacks flexibility (especially if a smooth acceleration ramp is needed at the 

beginning of the simulation). Hence the motion for the moving regions is read in a 

tabulated form in a text file by OpenFOAM. Figure 2.3 illustrates the structure of the 

tabulated data read by OpenFOAM. 

 

Figure 2.3.  Tabulated data file structure 

A script was written to automate the generation of this tabulated data. The script 

takes the ABP over one revolution, the TSR, the freestream wind velocity, and the radius 

of the VAWT as inputs, and writes out VAWT_Rotor.dat, VAWT_BldN1, VAWT_BldN2, 

and VAWT_BldN3.dat with explicit displacements and rotation data for Rotor, Blade 1, 

Blade 2, and Blade 3 respectively. Figure 2.4 illustrates a black-box diagram of the script 

file that generates the tabulated data, which can be reviewed in Appendix E. 

 
(
( 1( ( 1   𝑦1    1) (𝜃𝑥1  𝜃 1

  𝜃 1)))

( 2( ( 2   𝑦2    2) (𝜃𝑥2  𝜃 2
  𝜃 2)))

.

.

.
(  ( (     𝑦      ) (𝜃𝑥   𝜃  

  𝜃  )))

)

File structure with tabulated Data

 : Number of time points
t: Time Point
x: Position on global x coordinates
y: Position on global y coordinates
z: Position on global z coordinates
𝜃𝑥: Angle Position relative to the x 
axis on user specified pivot on 
fluid domain.
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VAWT_Rotor.dat file moves the rotor field and VAWT_BldN#.dat files move the blade fields. 

Figure 2.4.  Black-box diagram of the bash script for the tabulated data files 
 

2.2.3. Acceleration Profile 

It was desirable to provide a smooth acceleration at the beginning of the 

simulation, as shown in Figure 2.5. This profile was chosen to minimize vortices and 

high-velocity gradients due to sudden value changes in the velocity field. By reducing the 

initial transient phenomena, we speed up the transition to steady-state flow. 

 

Figure 2.5.  Motion profile within the tabulated data 
 

 

 

Bash Script file

“Tabulated Data Generator” 
for the mesh domain 

motion on the CFD model

Tabulated  data Motion 
for Fluid domains

VAWT_Rotor.dat

VAWT_BldN1.dat

VAWT_BldN2.dat

VAWT_BldN3.dat

Tip Speed Ratio

Blades Number

Rotor Length

Wind Speed

Pitching 
function file

TSR 

𝑈∞ 

L (H) 

Bld 

Tabulate data motion 

for fluid domains 

Bash script file 
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2.3. CFD Validation for NACA0021 Airfoil  

As mentioned earlier, we employ a 2D Reynolds-averaged Navier–Stokes 

equations (RANS) CFD simulation with a k-𝜔 SST turbulence model. The simulations 

used a transient pimpleDyMFoam solver with a variable time step determined by the 

Courant number. A NACA0021 with a chord length of 0.57 m is used in this validation 

study. Figure 2.6  provides the domain dimensions used in the simulations, which were 

adapted from Rezaeiha et al. [18]. The freestream wind velocity is set to 10 m/s with 

standard air properties at 27⁰ C at ground level resulting in a Reynolds number of 

360,000. This Reynolds number was chosen as representing the average Reynolds 

number experienced by the VAWT blades. The mesh was chosen to ensure that the 

dimensionless thickness parameter of the first layer y+ ≲ 8, and the maximum Courant 

number was set to 1. Figure 2.7 shows snapshots of the mesh near the airfoil. 

 

Figure 2.6. Domain dimensions for airfoil validations 

 

Figure 2.7. High-density mesh snapshots, cell count ≈ 274,000 

c: Chord length 
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The lift and drag coefficients of a NACA0021 airfoil are attained via CFD 

simulations for angles of attack from 0° to 25°. The mesh independence study is done by 

proportionally increasing the number of elements over the whole domain. For 

simulations with fixed Courant numbers, increasing mesh density decreases the 

simulation time step, so that the simulation also becomes insensitive to lower time steps 

(time-step independence). The dimensionless parameter y+ measures the thickness of 

the mesh cells at the wall boundaries relative to the boundary layer thickness; the value 

of y+ is estimated by semi-empirical formulas derived from flat plate boundary layer 

theory. OpenFOAM computes the forces at the walls differently depending on the value 

of y+, and we expect the simulations to be sensitive to this parameter. For low y+ values 

(close to 1 or lower), the cells slice the laminar interface of the boundary layer, while for 

y+ > 1, the cell will be thicker than the laminar interfaces of the boundary layer and 

OpenFOAM will use a different algorithm to compute forces. Figure 2.8 shows two y+ 

values subject to study. 

 

Figure 2.8. Boundary layer cells thickness: y+ = 8 (left), y+ = 0.8 (right) 

Figure 2.9 shows the mesh independence study and Figure 2.10 compares the 

CFD results for a high mesh with experimental results for y+ = 0.8. Similarly, Figure 2.11 

presents a mesh independence study and Figure 2.12 a CFD versus experiment 

comparison for y+ = 8.  

For angles below the maximum lift, the CFD results for 𝐶𝐿  are within 3% of the 

experimental values for y+ = 0.8 and within 4% of the experimental values for y+ = 8. As 

we approach and exceed the critical angle of attack (where aerodynamic stall occurs, 

15⁰ in this case), the error reaches a maximum of 18% at 22⁰ for y+ = 0.8 and of 8% at 

20⁰ for y+ = 0.8. When examining the CD values, we see that the CFD overpredicts the 

occurrence of aerodynamic stall and also overpredicts the drag coefficients by about 
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16%. While in the experiments, stall occurs abruptly at 15⁰ (as apparent from the sudden 

increase in CD), the CFD simulation exhibits a gradual transition between 15⁰ and 20⁰. 

This may be attributed to smooth back vacuum bubble development, also seen and 

discussed in studies [17,33,34]. The parameter of y+ = 0.8 will not be used for the 

succeeding VAWT simulations since it has a higher computational demand compared to 

y+ = 8, the later having less error over a wide range of angles of attack. 

 

Figure 2.9. Mesh independence study, Re = 360,000, wall cells at y+ = 0.8; lift 
coefficient (left) and drag coefficient (right) 

  

Figure 2.10. Simulation versus experiment comparison, Re = 360,000, wall cells 
at y+=0.8; lift coefficient (left) and drag coefficient (right) 

Simulation versus Experiments 

Mesh Independence Study 
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Figure 2.11. Mesh independence study, Re = 360,000, wall cells at y+ = 8; lift 
coefficient (left) and drag coefficient (right) 

  

Figure 2.12. Simulation versus experiment comparison, Re = 360,000, wall cells 
at y+ = 8; lift coefficient (left) and drag coefficient (right) 

2.4. VAWT CFD 2D Simulation and Experimental Data 

The mesh was constructed based on the discussion in Section 2.1 and the CFD 

simulations were set up as discussed in Section 2.2. The TSR was varied from 4.5 to 1.5 

by varying the wind speed from 3.98 m/s to 11.9 m/s while keeping the rotation speed at 

5.97 rad/s. This method of varying the TSR was chosen to match those adopted in the 

validation study in Kjellin et al. [30]. For a TSR range of 3.8 to 4.5, the torque results 

were found to reach steady state after 16 revolutions, while only 8 revolutions were 

needed for the TSR range of 1.5 to 3.3. The simulation time step is automatically 

selected by OpenFOAM to ensure a maximum Courant number (Co) of 8. 

Mesh Independence Study 

Simulation versus Experiments 
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2.4.1. Mesh and Time-Step Independence 

To test for mesh independence and time independence, simulations were run for 

three cases: i) mesh with 163,666 cells for Co = 8; ii) mesh with 117,356 cells for Co = 8; 

and iii) mesh with 117,356 cells for Co = 4 (at TSR = 2.3, 2.8, 3.3, 3.8, 4.3, 4.5). The 

VAWT average torque (𝑇𝑐𝑓𝑑) is collected from the CFD simulations and the power 

coefficient 𝐶𝑃 is computed using equations (2.1) and (2.2). Note that 𝑇𝑐𝑓𝑑 corresponds to 

the sum of all three blades’ average torques. Figure 2.13 presents the power 

performance curves and the results show a variation of less than 3% between the three 

cases, indicating both mesh and time independence. 

𝐶𝑇 =
𝑇𝑐𝑓𝑑

0.5𝜌𝐴𝑟𝑈∞
2 (2.1) 

𝐶𝑃 = 𝐶𝑇 × TSR (2.2) 

 

Figure 2.13. Simulation mesh and time-step independence study 

Table 2.3 shows the data output for the group of simulations evaluated for a 

mesh with 163,666 cells and Co = 8. 
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Table 2.3. Simulation results, y+ = 8, Co = 8, mesh of 163,666 cells 

TSR 𝑼∞ [m/s] 𝝎 [rad/s] Revs 𝑻𝒄𝒇𝒅 [Nm] 𝑪𝑻 𝑪𝑷 

4.5 3.98 5.97 16 71.056 0.0827 0.3723 

4.3 4.16 5.97 16 84.505 0.0901 0.3872 

3.8 4.71 5.97 16 134.39 0.1117 0.4244  

3.3 5.42 5.97 8 195.95 0.1228 0.4053 

2.8 6.39 5.97 8 255.55 0.1154 0.3232 

2.3 7.78 5.97 8 240.18 0.0732 0.1683 

1.5 11.9 5.97 8 179.03 0.0026 0.0380 

2.4.2. CFD Validation Using Previously Published Experiments  

We compare the CFD results for the mesh with 163,666 elements and Co = 8 

with experimental results provided in Kjellin et al. [30]. Figure 2.14 shows the schematic 

of the H-Darrieus VAWT; the design choices are discussed in Solum et al. [35]. The 

VAWT has a height (H) of 5 m, a chord length (C) of 25 cm with a NACA0021 profile 

pitched at 2° outward, and a diameter (D) of 6 m (or radius r = 3 m), providing a cross-

section swept area (A) of 30 m2. To reduce the tip vortex losses and drag, the ends of 

the blades are tapered to 60% of the chord length; the transition is uniform and starts 1 

m away from the edge, as shown in Figure 2.15(a). Each blade is connected by two 

struts that have a NACA0025 profile that shortens at the end, with chord length 320 mm 

close to the hub and 200 mm at the end. The mounting angle of the struts is 17.6° as 

shown in Figure 2.15(b). 

 

Figure 2.14.  H-Darrieus rotor VAWT 



21 

 

Figure 2.15. Real design considerations for a) blades and b) struts 

The effective torque 𝑇𝑒𝑓𝑓, which will be used to determine the Cp, is calculated 

from 𝑇𝑐𝑓𝑑 as follows:  

𝑇𝑒𝑓𝑓 = 𝜂𝑐ℎ𝑜𝑟𝑑 × 𝜂𝑣𝑜𝑟𝑡𝑒𝑥 × 𝑇𝑐𝑓𝑑 − 𝑇𝐷𝑟𝑎𝑔𝑠𝑡𝑟𝑢𝑡𝑠  (2.3) 

where 

𝜂𝑐ℎ𝑜𝑟𝑑  is the compensation factor for the variation in the chord length, 

𝜂𝑣𝑜𝑟𝑡𝑒𝑥 is the compensation factor to account for tip vortexes, and 

𝑇𝐷𝑟𝑎𝑔𝑟𝑜𝑑  is the drag torque experienced by the struts. 

Now for a given airfoil, as will be seen later in equation (3.17), the torque 

produced is proportional to the product of the chord length C and the blade length L (and 

also the VAWT height H). Consequently, the torque would scale with the chord length. 

Using the data provided by Kjellin et al. [30], the chord length is given by 

𝐶

𝐶𝑐𝑒 𝑡𝑒𝑟
= {

0.6 + 0.4 × (1 −  ) 0 ≤  < 1
1  1 ≤  < 4
0.6 + 0.4 × (5 −  ) 4 ≤  ≤ 5

 (2.4) 

This yields an average 𝐶 𝐶𝑐𝑒 𝑡𝑒𝑟⁄ = 0.92. Hence a multiplier 0.92 will be used to 

compensate for blade surface reduction. 
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𝜂𝑐ℎ𝑜𝑟𝑑 = 0.92 (2.5) 

Solum et al. [35]  have calculated the tip vortex losses analysis of the 12-kW 

VAWT using a modified Prandtl lifting-line theory [36] [37]. They reported that the 

maximum tip vortex losses resulted in a 16% reduction in the overall power output. 

Hence, 

𝜂𝑣𝑜𝑟𝑡𝑒𝑥 = 1− 0.16 = 0.84 (2.6) 

Solum et al. [35] do not provide sufficient explanation of the struts drag. We 

therefore use a BET model to determine the drag torque (Appendix B provide further 

description of this procedure). Using (3.11) on an elemental area, the elemental torque is 

given by  

𝑑𝑇𝐷𝑟𝑎𝑔1−𝑟𝑜𝑑 = 1
2⁄ 𝜌(𝜔𝑟)2𝐶𝑑−𝑠𝑡𝑟𝑢𝑡𝑟 × 𝑑𝐴 (2.7) 

Owing to the configuration of the struts,  

𝐶𝑠𝑡𝑟𝑢𝑡 = 324.14 − 41.4𝑟 (2.8) 

𝑑𝐴 = 𝐶𝑠𝑡𝑟𝑢𝑡
𝑑𝑟

cos(17.6°)
 (2.9) 

𝑅𝑒 =
𝜌(𝜔𝑟)𝐶𝑠𝑡𝑟𝑢𝑡

𝜇
 (2.10) 

Hence the drag torque for a single rod is given by 

𝑇𝐷𝑟𝑎𝑔1−𝑟𝑜𝑑 =
𝜌𝜔2

2cos (17.6°)
∫ 𝑟3𝐶𝑑𝐶 × 𝑑𝑟

𝑟=3

𝑟=0.1

 (2.11) 

The drag coefficients are taken from static drag tables for NACA0025 [38], and 

by substituting 𝜔 = 5.97 rad/s we find the drag of a single strut rod to be 1.5 Nm. Hence, 

the total drag torque for all six struts is given by  

𝑇𝐷𝑟𝑎𝑔𝑠𝑡𝑟𝑢𝑡𝑠 = 6 × 𝑇𝐷𝑟𝑎𝑔1−𝑟𝑜𝑑 = 6 × 1.5 Nm = 9 Nm (2.12) 
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The effective power coefficient 𝐶𝑃 for the CFD simulation (obtained by using 𝑇𝑒𝑓𝑓) 

is compared with the experimental work of Kjellin et al [30]. The experiment used the 

averaging method of bins recommended by International Standard IEC 61400-12-1, the 

measured data is used to create a curve with an error band, shown in Figure 2.16. As 

discussed before, the experimental measurements and the simulation data were taken 

by letting the VAWT rotate at fixed speed while measuring the freestream wind speed, 

and the 𝐶𝑃 is computed following that strategy. The CFD power coefficient curve agrees 

well with experimental results up to the point of maximum power. 

 

Figure 2.16. Comparison of experimental and CFD results 

The deviations at higher TSR (3.8 in Figure 2.16) can be attributed to 

phenomena not captured by the current analysis: The interaction of the center shaft and 

struts with the flow pattern in the downwind section of the VAWT, which affects the 

torque produced by the blades during the backswept phase, and the incoming flow 

interaction with the struts, which affects the total struts drag. In earlier studies the 

authors also attribute differences among the results of 2D simulations, 3D simulations, 

and experiments to tip vortex losses and center shaft and struts drag [17] and [19]. It 

should be noted that these explanations were not verified numerically. For the purpose 

of this work, the current analysis provides a non-exhaustive numerical approach to 

compensate for 3D effects in 2D simulation data. Finally, the compensated CFD results 

maintain the experiment tendencies within a narrow range over a wide range of TSRs. 
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Figure 2.17 and Figure 2.18 show the normalized velocity and pressure fields 

respectively corresponding to a TSR of 3.3. 

 

Figure 2.17.  Normalized velocity field with fixed 2° pitch, TSR = 3.3, θ = 0°, time t 
= 10.9 s 

 

Figure 2.18.  Normalized pressure field with fixed 2° pitch, TSR = 3.3, θ = 0°, time t 
= 10.9 s 
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This chapter has described in detail the simulation setup, and the CFD case was 

compared with experimental data, showing a remarkable correlation. Based on those 

results, the simulations can be expected to be accurate enough to predict VAWT 

performance under ABP. We assume that the performance changes in the VAWT 

simulations under ABP will produce a similar trend in the physical design. The 

groundwork of this thesis is now established, and the ABP models for VAWT are ready 

for simulation.  

The next chapters will describe and develop ABP models, which will control the 

mesh motion on the simulations (as explained in Section 2.2). The simulations will be 

used to generate results such as the torque profile and average torque produced by a 

VAWT blade. Finally, the torque results allow us to compare and assess the 

performance of several ABP strategies. 

 
 



Chapter 3.  
 
Preliminary Active Blade Pitching for VAWT 

This chapter provides a theoretical analysis of VAWTs using Glauert's blade 

element theory [4]. The analytical model allows a preliminary ABP to be computed. This 

model does not capture complex secondary fluid dynamics, yet the control function 

derived from this model shares many characteristics (as well as its general shape) with 

the control functions derived from other more complex models. 

3.1. Blade Element Model Development  

Consider the system shown in Figure 3.1 representing a preliminary kinematic 

diagram for a VAWT blade. The airfoil is rotating at an angular velocity 𝜔⃗⃗  at a position 𝑟  

from the rotation center, and it interacts with the freestream wind velocity 𝑈⃗⃗ ∞. Here, 𝜃 

denotes for the azimuthal angle (relative to the x coordinates), 𝛼0 denotes for the angle 

of attack at zero pitch, and ∅  is the angle of the effective wind velocity experienced by 

the blade 𝑈⃗⃗ 𝑒𝑥𝑝 (relative to the x coordinates). 

−𝜔x𝑟 

𝑈𝑒𝑥𝑝

𝑈∞

 

 

 

∅

∅

𝛼0

𝜃

𝑈∞

𝑈𝑒𝑥𝑝 = 𝑈∞ − 𝜔x𝑟 

𝜃 = ∅ + 𝛼0 + 90

𝛼0

 

Figure 3.1.  VAWT kinematics diagram, for any azimuthal angle  

The effective wind velocity 𝑈⃗⃗ 𝑒𝑥𝑝 can be written as a function of 𝑈⃗⃗ ∞, 𝜔⃗⃗ , and 𝑟  as 
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 𝑈⃗⃗ 𝑒𝑥𝑝 = 𝑈⃗⃗ ∞ − 𝜔⃗⃗ × 𝑟  (3.1) 

Note that the TSR is defined as 

 TSR =
  

𝑈∞
 (3.2) 

By resolving 𝑈⃗⃗ 𝑒𝑥𝑝 we find that 

 𝑈𝑒𝑥𝑝𝑥 = 𝑈∞(1 + TSR sin𝜃) (3.3) 

 𝑈𝑒𝑥𝑝𝑦 = −𝑈∞TSR cos𝜃 (3.4) 

The magnitude, 𝑈𝑒𝑥𝑝, and the angle, ∅, of 𝑈⃗⃗ 𝑒𝑥𝑝 are given by 

 ∅ = ∠𝑈⃗⃗ 𝑒𝑥𝑝 = a ctan (
−TSR cos 𝜃 

 1 + TSR sin 𝜃 
) (3.5) 

 𝑈𝑒𝑥𝑝 = |𝑈⃗⃗ 𝑒𝑥𝑝| = √𝑈exp𝑥
2 +𝑈exp𝑦

2 = 𝑈∞√1 + 2TSR sin𝜃 + TSR2 (3.6) 

In the absence of blade pitching, the chord line of the blade is oriented along the 

tangential direction (as seen in Figure 3.1). This angle of attack at zero pitch, 𝛼0, can be 

given by 

 𝛼0 = 𝜃 − ∅ − 90° (3.7) 

Taking (3.5) into (3.7) and resolving 𝛼0 with trigonometric identities, 

 𝛼0 = a ctan (
−cos 𝜃

sin𝜃 + 𝑇𝑆𝑅
) (3.8) 

Next, when the blade is pitched by an angle 𝜃𝑝 relative to the tangential direction, 

the angle of attack α is given by  

 α = 𝛼0 + 𝜃𝑝 (3.9) 

The lift and the drag force can be calculated as  

 𝐹𝐿(𝑎, 𝑅𝑒𝐿) =
1

2
𝜌𝑈𝑒𝑥𝑝

2 𝐴𝐵𝑙𝑑 × 𝐶𝐿(𝑎, 𝑅𝑒𝐿) (3.10) 

 𝐹𝐷(𝑎, 𝑅𝑒𝐿) =
1

2
𝜌𝑈𝑒𝑥𝑝

2 𝐴𝐵𝑙𝑑 × 𝐶𝐷(𝑎, 𝑅𝑒𝐿) (3.11) 
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where 𝐶𝐿(α, 𝑅𝑒𝐿) and 𝐶𝐷(α, 𝑅𝑒𝐿) denote the local lift and drag coefficients 

respectively and can be obtained from experimental data found in literature, while 𝐴𝐵𝑙𝑑  

denotes for the reference area of the blade (chord length C times VAWT height H). The 

local Reynolds number 𝑅𝑒𝐿 is given by 

 𝑅𝑒𝐿 =
𝜌|𝑈⃗⃗ 𝑒𝑥𝑝|𝐶

𝜇
 (3.12) 

Since the lift force 𝐹𝐿 is perpendicular to and the drag force 𝐹𝐷 is along the wind 

direction, we will define a new coordinate system with x′ oriented along 𝑈⃗⃗ 𝑒𝑥𝑝, shown in 

Figure 3.2 and Figure 3.3. Notice that x′ is rotated at by −∅ relative to the original x-axis. 

The coordinates of the center of the blade located at 𝑟1⃗⃗⃗    can be given as   

 𝑟1  = (𝑟 cos 𝜃) cos ∅ + (𝑟 sin 𝜃) sin∅ (3.13) 

 𝑟1𝑦  = −(𝑟 cos 𝜃) sin ∅ + (𝑟 sin 𝜃) cos ∅ (3.14) 

For a symmetric and subsonic airfoil such as the NACA0021, the pressure center 

of the lift and drag forces are approximately a quarter ahead of the chord center for most 

angles of attack [39]. The components of the force center located at 𝑟2⃗⃗  ⃗ can be given as 

 𝑟2  = 𝑟1 + (𝐶/4) cos(180° + 𝑎) (3.15) 

 𝑟2𝑦  = 𝑟1𝑦 + (𝐶/4) sin(180° + 𝑎) (3.16) 

The total torque for a blade can be written as 

 𝑇𝐵𝑙𝑑  = 𝐹𝐿 ∙ 𝑟2𝑥 − 𝐹𝐷 ∙ 𝑟2𝑦 =
1

2
𝜌𝑈𝑒𝑥𝑝

2 𝐴𝐵𝑙𝑑 × (𝐶𝐿 ∙ 𝑟2𝑥 − 𝐶𝐷 ∙ 𝑟2 )   (3.17) 

From a cursory analysis of equation (3.8), two cases emerge for the frame 

rotation described earlier. For 90° < 𝜃 < 270°, corresponding to the upwind area of the 

VAWT, 𝛼0 > 0. Hence, 𝜃 − ∅ > 90° from equation (3.7) and this case is depicted in 

Figure 3.2. For 0° < 𝜃 < 90° or 270° < 𝜃 < 360°, corresponding to the downwind area of 

the VAWT,  𝛼0 < 0 . Therefore, from equation (3.7) 𝜃 − ∅ < 90°, as shown in Figure 3.3. 

We can see from Figure 3.2 (front swept force diagram) that for the VAWT to 

generate positive torque the lift force needs to be directed downwards and from Figure 
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3.2 (back swept force diagram) that the lift need to be directed upwards. As a result, if 

the fixed pitch angle is to be optimized for the upwind swept phase it would be 

detrimental for the downwind section, while a fixed pitch optimized for the downwind 

swept phase will be suboptimal for the upwind section. Therefore, in order to get 

maximum performance in both sections, ABP is necessary. 

𝐶/4

𝑈𝑒𝑥𝑝

  

  

  

𝜃 − ∅

𝛼0

  

  

  

 

Figure 3.2.  VAWT force diagram for upwind sweep ( 𝟗𝟎° < 𝜽 <  𝟕𝟎°) 

𝑈𝑒𝑥𝑝

  

  

  

𝜃 − ∅

  

  

  
𝛼0

 

Figure 3.3.  VAWT force diagram for downwind sweep ( 𝜽 < 𝟗𝟎° or 𝜽 >  𝟕𝟎°) 
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3.2. Blade Element Model Implementation 

To obtain an ABP function, we first need to find the optimal attack angle 𝛼𝑜𝑝  of a 

blade; this is done by an exhaustive search of equation (3.17) and the optimization can 

be framed as determining 𝛼 to maximize the torque at a fixed 𝜃 and TSR.  

 𝑇𝐵𝑙𝑑𝑚𝑎𝑥
= max 

𝛼
 𝑇𝐵𝑙𝑑 = max 

𝛼
[
1

2
𝜌𝑈𝑒𝑥𝑝

2 𝐴𝐵𝑙𝑑 × (𝐶𝐿 ∙ 𝑟2𝑥 − 𝐶𝐷 ∙ 𝑟2 )] (3.18) 

𝛼𝑜𝑝𝑡(𝜃) = a gmax
𝛼

  𝑇𝐵𝑙𝑑  (3.19) 

Once the optimal angle of attack, 𝛼𝑜𝑝𝑡, is computed, the optimal pitch angle 𝜃𝑝𝑜𝑝𝑡  

is given by 

𝜃𝑝𝑜𝑝𝑡 = 𝛼𝑜𝑝𝑡 − 𝛼0 (3.20) 

As discussed earlier, the lift and drag coefficients 𝐶𝐿, 𝐶𝐷 , the components of  𝑟2⃗⃗  ⃗, and the 

magnitude of 𝑈⃗⃗ 𝑒 𝑝 are all dependent on the angle of attack 𝑎, local Reynolds 𝑅𝑒𝐿, chord 

length 𝐶, azimuthal angle 𝜃, and TSR. Further, the existing literature [38] provides 

tabulated data for 𝐶𝐿  and 𝐶𝐷 mapped with α and 𝑅𝑒𝐿. We therefore implemented the 

following algorithm (Appendix C) in MATLAB to compute 𝜃𝑝𝑜𝑝𝑡 ,  𝛼𝑜𝑝𝑡, and 𝛼0 as functions 

of 𝜃: 

• Obtain the inputs 𝑈∞, TSR, and 𝜃 

• Compute 𝜙 and 𝑈𝑒𝑥𝑝 from (3.5) and (3.6) and determine 𝑅𝑒𝐿 using (3.12) 

• Perform an exhaustive search over 𝛼 to maximize 𝑇 and report the maximum 

torque 𝑇𝑚𝑎𝑥 at the corresponding 𝛼 

- For each 𝛼 interpolate the available data to obtain 𝐶𝐿  and 𝐶𝐷 at the 𝑅𝑒𝐿 

- Determine 𝑟2𝑥 from (3.15) and 𝑟2  from (3.16) 

- Solve (3.18) to determine T 

- Repeat the above substeps to search for 𝛼 to maximize T. 

- Report the maximum torque 𝑇𝑚𝑎𝑥 and the corresponding 𝛼 = 𝛼𝑜𝑝𝑡 

• Calculate 𝜃𝑝𝑜𝑝𝑡  from equation (3.20) 

• Repeat the procedure for different 𝜃 
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3.3. Analytically Derived ABP for TSR 2.3 

Figure 3.4 shows the 𝛼0 and 𝛼𝑜𝑝𝑡 at TSR = 2.3 as a function of the azimuthal 

angle. This TSR is selected as the study case due to the ABP having better 

effectiveness at lower TSR ranges as suggested in previous literature [1]. 

 

Figure 3.4.  Angle of Attack functions, TSR = 2.3 

Examining equation (3.8), we notice that 𝛼0 is cyclic and decreases with 

increasing TSR, with 𝛼0 = 𝜃 − 90° when 𝑇𝑆𝑅 = 0 and 𝛼0 = 0° as 𝑇𝑆𝑅 → ∞. At 90° and 

270°, 𝛼0 = 0 because 𝑈⃗⃗ ∞ becomes collinear with the blade rotational speed 𝜔⃗⃗ × 𝑟 , while 

at 220° and 320° 𝛼0 is maximum. Now, the maximum lift-to-drag ratio occurs close to the 

angle of attack of ±10°. As a result, during the front swept phase of the blade (90° < 𝜃 <

270°) the optimal angle of attack, 𝛼𝑜𝑝𝑡 ≈ 10°, and during the back swept phase (𝜃 < 90° 

and 𝜃 > 270°), 𝛼𝑜𝑝𝑡 ≈ −10°, with relatively sharp transitions at  𝜃 ≈ 90° and  𝜃 ≈ 270°. 

This is an indication that the optimal angle of attack in the upwind sweep is opposite to 

the downwind sweep, consistent with the force diagrams of Figure 3.2 and Figure 3.3.  

AOA of a blade at zero pitch 

AOA optimum 
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The optimum pitch angle, 𝜃𝑝𝑜𝑝𝑡 , is computed using equation (3.20) and the result 

is shown in Figure 3.5. Note that 𝜃𝑝𝑜𝑝𝑡  is 𝛼𝑜𝑝𝑡 subtracted by  𝛼0; therefore  𝜃𝑝𝑜𝑝𝑡 ≈ 10° −

𝛼0 for 90° < 𝜃 < 270°, and 𝜃𝑝𝑜𝑝𝑡 ≈ −10° − 𝛼0 for 𝜃 < 90° and 𝜃 > 270°. 

 

Figure 3.5.  Analytic-ABP control function, TSR = 2.3 

The sharp transitions seen at 90° and 270° in Figure 3.5 are a direct 

consequence of the abrupt change observed in 𝛼𝑜𝑝𝑡 , where the blades make the 

transitions from the upwind to the downwind area and vice versa. These sharp variations 

are undesirable and preliminary simulations showed vortex effects and high inertia 

forces on the blades; these effects were reduced by smoothing the analytic-ABP curve, 

the smoothing consisting of two rounds of a 28-point centered moving average. The 

smoothing filter was heuristically chosen to attain desired functionality and curve 

resemblance to the original non-smoothed analytic-ABP. The smoothed analytic-ABP is 

the one used for comparison against other ABP strategies for the rest of this work. 

The analytic-ABP function of Figure 3.5 shares similar features with the ABP 

functions of earlier studies obtained with the DMSM [1], [3], and [10]. The sharp 𝜃𝑝𝑜𝑝𝑡  

variations at 90° and 270° are also present in the control functions of the cited studies. 
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3.4. Comparison of Analytic-ABP Versus Fixed-Pitch 

Simulations for the 12-kW VAWT 2D model described in Chapter 2 is simulated 

for a fixed 2° corresponding to the physical VAWT in the literature [30], and for the 

analytic-ABP shown in Figure 3.5. for TSR = 2.3. The simulations were done with a wind 

speed 𝑈∞ of 7.78 m/s and a TSR of 2.3. For both cases, the torque profile produced by a 

blade along a revolution is plotted in Figure 3.6. We see that the ABP has a greater 

positive area and therefore a higher average torque. The peak torque is lower for the 

ABP, perhaps due to secondary effects that reduce the lift; the ABP may generate vortex 

disturbances that impede producing more lift and torque, and the ABP may not be 

optimal at some ranges. Overall, the average blade torque using ABP is superior to the 

fixed blade strategy by 33.4%; also, the torque profile becomes more stable which is 

important for generating a steadier torque output. 

  

Figure 3.6.  Torque output of a VAWT blade, fixed pitch at  ° and analytic-ABP, 

𝑼∞ = 𝟕.𝟕𝟖, TSR = 2.3 

This chapter has described how an analytic model can be developed to obtain 

the ABP for a VAWT. The model derived a torque expression from a vector-kinematics 

analysis of the freestream wind speed and the blade rotation; the analysis assumed that 

no other secondary physical effects take place. The torque expression served to obtain 

an optimal angle of attack for a defined TSR and azimuthal angle, and the optimum pitch 

is then computed. The model served to understand the effective wind flow through the 

Average torque 

Fixed pitch:          79.83 Nm 

Analytic-ABP:    119.87 Nm 

 

 
pitch 

Increase: 33.4% 
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blades and to derive a preliminary analytic-ABP for any TSR operating conditions over a 

whole revolution. The analytic-ABP results showed a performance increase compared to 

a fixed-pitch strategy.  

The analytic-ABP function from this chapter will be used as a starting point for 

the optimization procedures described in the following chapters. We assume that this 

analytic model generates an ABP function close to an optimal ABP function, which will 

speed up convergence. Note that this model has no feedback from the CFD simulations 

(it is a one-way approach), and therefore we expect more room for improvement and 

that the feedback procedures presented in the next two chapters will generate better 

results. 
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Chapter 4.  
 
Optimization of Parameterized Active Blade Pitching 
Function 

In the previous chapter an ABP was computed based on an analytical model that 

was useful in improving the torque output of the VAWT blades; yet room for 

improvement remains, mainly because the model does not consider complex fluid 

dynamic effects. Consequently, a black-box optimization approach must be considered 

in order to improve the ABP function further.  

4.1. Black-Box Optimization Overview 

In this work, we use a CFD simulation which is a black-box function for the 

VAWT system. The system output response will be the torque produced by the blades 

and it will be dependent on the input stimulus, namely the pitching motion of the blades. 

If the input stimulus is periodic, the output will converge to a periodic response as well; 

therefore, we narrow the analysis to steady-state periodic behavior and discard any 

transient response, as shown in Figure 4.1.  

 

Figure 4.1. CFD simulation as the black-box with periodic pitching of blades as 
input and periodic instantaneous torque output 

The optimization procedure requires variables as inputs and outputs, so we need 

to define the input ABP as an expression dependent on parameters (this is referred to as 

the parameterization of the input function). The parameter set becomes the input 

variable X, and for the output variable Y we take the average value of the instantaneous 

torque function (see Figure 4.2).  

The next section describes the parameterization of the input function, which will 

be constructed to resemble the analytic-ABP of Chapter 3. 
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Figure 4.2. Block diagram schematic for a black-box optimization with 
parameterization of input stimulus and output response 

4.2. Parameterization of the Input Stimulus 

To parameterize the input ABP function, we chose the amplitude “𝑎” and 

skewness “𝑏” as parameters of equation (4.1), with the variables 𝜃 and P representing 

the azimuthal angle and pitching respectively. The periodic function in equation (4.1) is 

defined over a single blade cycle, 𝜃 ∈ [0,2𝜋] and was heuristically developed to closely 

reproduce the ABP using only two variables. The parameters (𝑎, 𝑏) were found to be the 

most significant features of the analytic-ABP and the ABP of previous studies [1], [3] and 

[10]. The effects of the amplitude 𝑎 and skewness 𝑏 in the ABP function defined by 

equation (4.1) are shown in Figure 4.3. The input variable of the black-box X then 

becomes a two-dimensional vector X = [𝑎, 𝑏]. 

𝑷(𝜃)

{
 
 

 
 𝒂sin ((tan−1 (𝒃(𝜃 +

𝜋

2
))+ tan−1(𝑏𝜋)(1 − (𝜃 +

3𝜋

2
) /𝜋) + (𝜃 +

3𝜋

2
)) ,   𝜃 ∈ [0,

𝜋

2
]

𝒂 sin ((tan−1 (𝒃 (𝜃 −
3𝜋

2
))+ tan−1(𝑏𝜋)(1 − (𝜃 −

𝜋

2
)/𝜋)+ (𝜃 −

𝜋

2
)) ,    𝜃 ∈ [

𝜋

2
, 2𝜋]

 (4.1) 
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Figure 4.3. Effects of amplitude a and skewness b in equation (4.1) 

4.3. Response Surface Methodology Description 

The objective of this RSM is to provide a metamodel to search for and find an 

optimum. Therefore, it is desirable that the peak response (optimum) of the metamodel 

is within the design space [24]. The procedure begins by evaluating the black-box using 

a three-level full factorial design (FFD) strategy. Since three points define a quadratic 

function, three is the minimum number of levels required to quantify a curvilinear 

behavior. For a system of two design variables (referred to as factors in DOE), nine 

function evaluations are required (9 = 32) [21]. There is no need to choose the set 

center arbitrarily if some information regarding the system behavior is already known. As 

described initially, the center point should be near to the peak response (optimum). For 

this case, the optimal input was estimated analytically in Chapter 3, but equation (4.1) 

can approximate that input with the proper selection of parameters (a, b). Since the 

parameters a and b are the design variables of our RSM, we define the design space as 

𝑎 ∈ [𝑎𝑚𝑖 , 𝑎𝑚𝑎𝑥] and 𝑏 ∈ [𝑏𝑚𝑖 , 𝑏𝑚𝑎𝑥]. Following the three-level FFD DOE, the black-box 

function would be evaluated at 

 (𝑎, 𝑏) = {𝑎𝑚𝑖 ,
(𝑎𝑚𝑖 + 𝑎𝑚𝑎𝑥)

2
, 𝑎𝑚𝑎𝑥} × {𝑏𝑚𝑖 ,

𝑏𝑚𝑖 + 𝑏𝑚𝑎𝑥

2
, 𝑏𝑚𝑎𝑥} (4.2) 
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The nine CFD simulations corresponding to each design point (𝑎, 𝑏) are 

evaluated in parallel, and a second-order polynomial metamodel is generated using a 

quadratic regression. The base function is 

 𝑌(𝑎, 𝑏) = 𝐶0 + 𝐶1𝑎 + 𝐶2𝑏 + 𝐶3𝑎
2 + 𝐶4𝑏

2 + 𝐶5𝑎𝑏 (4.3) 

where 𝐶𝑖 , 𝑖 = 1,2,3,4,5 are the regression coefficients. The formulation of the optimization 

problem is then as follows: 

 Maximize 𝑌(𝑎, 𝑏)        (4.4) 

subject to:                               

 𝑎𝑚𝑖 ≤  𝑎 ≤  𝑎𝑚𝑎𝑥 

 𝑏𝑚𝑖 ≤  𝑏 ≤  𝑏𝑚𝑎𝑥  

If the optimal point of the metamodel is outside the design space, the FFD data 

set should be moved toward the optimal point indicated by the metamodel. If the solution 

is inside the design space, then we add the new point to the data set, fit a new quadratic 

regression, and find a new optimum. The procedure is repeated until the convergence 

condition is met. For our procedure, we will repeat the iterative process until the 

metamodel optimum output converges to within 5% of the previous iteration. The 

schematic for this procedure is shown in Figure 4.4. More details on metamodeling 

techniques and design of experiments (DOE) methods can be found in the literature [21–

25].  
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Design of Experiment: 
three-level full factorial design
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Figure 4.4. Optimization procedure block diagram 

Table 4.1 summarizes the variables involved. 

Table 4.1. Optimization variables 

 Variable Description 
Input X = [a, b] ABP function parameters 
Output Y = Torque Average torque output 
Objective Function Black-Box, Y(X) CFD simulation case 
Constraint 1 𝑎𝑚𝑖 ,  𝑎𝑚𝑎𝑥 FFD boundary for 𝑎 
Constraint 2 𝑏𝑚𝑖 ,  𝑏𝑚𝑎𝑥 FFD boundary for 𝑏 

4.4. Study Case for TSR = 2.3 

The simulations will use the parameterized ABP (described in Section 4.2) as 

input. Since the optimal ABP is likely to be close to the analytic-ABP developed in 

Section 3.3, we will aim to estimate the parameters a and b that will best reproduce that 

analytically derived optimal ABP. To this end, (𝑎, 𝑏) are obtained from a nonlinear curve 

fit of the analytic-ABP using equation (4.1) as base function. The parameters a and b 

were derived heuristically, giving an amplitude of a = 15.4 and a skewness of b = 1.1; 

the nonlinear curve fit of the chosen parameters is shown in Figure 4.5. From a curve fit 

analysis we obtain a maximum error of 6.5° at azimuthal angle 110°; the root mean 

square error (RMSE) is 3.09 and the R-square parameter is 0.893. For the purposes of 
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this work, and as seen in Figure 4.5, the chosen (𝑎, 𝑏) provide an adequate starting 

location to search for the optimal (𝑎, 𝑏). 

 

Figure 4.5. Initial parameter values for amplitude 𝒂 and skewness 𝒃 

For the three-level FFD initial data set, we have chosen a boundary of 𝑎 = [10, 

20] and 𝑏 = [0.5, 1.5]. The boundaries are at a distance of (±𝑎𝑚𝑖 ,± 𝑏𝑚𝑖 ) from the 

center. The center point is located at (𝑎, 𝑏)= (15, 1), which is the rounded value of (𝑎, 𝑏) 

= (15.4, 1.1) previously derived using the nonlinear curve fit. The initial FFD set is shown 

in Table 4.2 and nine simulations with those parameterized ABPs are run 

simultaneously. The simulation points of this initial set and the metamodel is shown in 

Figure 4.6. The equation (4.5) reproduces the quadratic function generated by the 

regression, an R-square fit coefficient of 0.9999 suggests a strong fit between the base 

function and data. 

 𝑌1(𝑎, 𝑏) = 157 − 1.18(𝑎) + 4.86(𝑏) − 0.276(𝑎2) − 5.83(𝑏2) + 1.184(𝑎𝑏) (4.5) 

 

 

 

 
Analytic-ABP, 
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Table 4.2. Initial FFD set 

Point: 𝑿⃗⃗  Amplitude: a  Skewness: b 

1 10 0.5 
2 20 0.5 
3 15 0.5 
4 10 1.5 
5 20 1.5 
6 15 1.5 
7 10 1.0 
8 20 1.0 
9 15 1.0 

 

Figure 4.6. First FFD data set and curve fit by quadratic regression 

The optimum point candidate acquired from the quadratic regression metamodel 

ultimately fell outside the design space (optimum not shown in Figure 4.6), so a new 

data set is placed in the direction of the optimum candidate of the previous regression.  

Table 4.3 presents the new FFD set, while Figure 4.7 show the simulation points 

and metamodel of this set. The quadratic function generated by the regression is 

presented in equation (4.6); an R-square fit coefficient of 0.9966 suggests a strong fit 

between the model and data. 

 𝑌2(𝑎, 𝑏) = 87.9 + 13.13(𝑎) + 3.62(𝑏) − 0.944(𝑎2) − 0.767(𝑏2) + 0.046(𝑎𝑏) (4.6) 

 

 
FFD data set  
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Table 4.3. Second FFD set 

Point: 𝑿⃗⃗  Amplitude: a  Skewness: b 

1 5 2.0 
2 9 2.0 
3 7 2.0 
4 5 2.4 
5 7 2.4 
6 9 2.4 
7 5 2.8 
8 7 2.8 
9 9 2.8 

 

Figure 4.7.  Second FFD data set and curve fit by quadratic regression 

The optimum of the regression model is X = [7.01, 2.57], the simulation output 

response of this point is Y = 138.5, and the error difference with the central point is 

negligible and meets convergence criteria, so no more iteration is needed and the 

procedure terminates. 

4.5. Comparison of FFD-ABP Versus Analytic-ABP 

The parameter-based FFD-ABP (with a = 7.01 and b = 2.57) obtained through 

this chapter’s optimization procedure resulted in an increased average torque output of 

138.5 Nm compared to the one based on the analytic-ABP strategy (119.5 Nm). The 

comparison of the two ABP strategies is shown in Figure 4.8 and the torque output 

profile for both of these strategies is shown in Figure 4.9. 

done  
FFD data set  



43 

The most notable aspect shown in Figure 4.8 is that the pitching amplitude is 

reduced in the FFD-ABP. This seems to increase the torque output of the front-swept 

and back-swept phases (Figure 4.9). Based on the angle-of-attack analysis of Chapter 3, 

this outcome suggests that there was room to increase the angle of attack in the 

analytic-ABP. The ABP from the analytic optimization was indeed overpitching to prevent 

aerodynamic stall. This seems to indicate that stall did occur at angles of attack larger 

than the critical angle (10°). This effect is supported in current literature, where the stall 

angle is known to show a hysteresis behavior under a dynamic angle of attack [12] [16] 

(note that Chapter 3’s analysis did not consider dynamic lift and drag coefficients). As 

the angle of attack increases during the initial trajectory of the front-swept or back-swept 

phase (Figure 3.4) due to the hysteresis effect, it can go beyond 10° and the blade can 

keep a higher lift-to-drag ratio and thus higher instantaneous torque. As long as there is 

no stall at the blade, there is no need to deal with the other side of the hysteresis effect 

which is to maintain the aerodynamic stall for angles below 10°. 

 

Figure 4.8.  Input stimulus for a VAWT blade: analytic-ABP and FFD-ABP 
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Figure 4.9.  Torque output of a VAWT blade using analytic-ABP and 

optimization-based FFD-ABP, 𝑼∞ = 𝟕.𝟕𝟖, TSR = 2.3 

The FFD-ABP strategy achieves a better result than the analytic-ABP because 

the underlying data for the metamodel was generated using 2D CFD simulations that 

took into account complex aerodynamic effects such as upwind and downwind flow 

pattern changes due to VAWT operation and aerodynamic stall hysteresis on the blades. 

The optimization then corrects the amplitude and skewness in the FFD-ABP to account 

for these effects. In contrast, complex aerodynamic effects are not considered in the 

analytic model. 

Even though the FFD-ABP obtained a higher optimum value, it required 19 

function calls to complete. These were divided into three serial stages: two sets of nine 

parallel function calls plus the last function call at the end. The next chapter proposes a 

new optimization methodology that aims to improve the previous result with fewer 

function evaluations. 

 

 

 Average torque 

Increase: 15.5% 
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Chapter 5.  
 
Optimization of Active Blade Pitching at Discrete 
Azimuthal Angles 

The previous chapter employed a traditional optimization approach to derive an 

ABP function defined by two parameters (amplitude and skewness). In that approach, 

the ABP function is limited by two degrees of freedom, but adding more parameters 

(therefore more degrees of freedom) would increase the required number of function 

evaluations exponentially. In addition, the previous optimization only considered the 

average torque, which does not provide any information on the function shape for the 

instantaneous torque. In this chapter, the optimization procedure is based on the 

instantaneous pitching and torque data, and aims to improve the power output while 

keeping the number of function evaluations low. 

5.1. Methodology 

The procedure aims to construct quadratic metamodels between the pitch angle 

𝜃𝑝 and the instantaneous torque T at discretized azimuthal positions 𝜃 (in 1° 

increments). The metamodels are then used to determine the optimal pitch angle at 

each 𝜃. Since each quadratic regression requires three data points to start, we will need 

at least three function evaluations. Hence, we begin by running the CFD simulations 

corresponding to the original analytic-ABP (offset 0°), an analytic-ABP + 2° (offset +2°) 

and an analytic-ABP − 2° (offset −2°). The simulation setup was discussed in Chapter 2. 

The CFD simulation is run until the instantaneous torque reaches a steady state (refer to 

Section 2.2.3); note that it uses the instantaneous torque data averaged over the three 

blades. Once all three simulations have been completed, the first set of metamodels is 

generated and a discretized optimal 𝜃𝑝𝑜𝑝𝑡  is determined for each 𝜃 for the whole 𝜃 cycle 

in increments of 1°. In order to approach an optimal ABP progressively, we restrict the 

metamodel result by constraining 𝜃𝑝 to be no more than 1° outside the current domain. 

We term the ABP constructed by joining the optimal 𝜃𝑝𝑜𝑝𝑡  the first optimal ABP. A follow-

up CFD simulation is conducted with the first optimal ABP, and the instantaneous torque 

data over one whole revolution is recorded. The data sets are updated to include the 
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latest optimal ABP, and a new set of updated metamodels are generated using the four 

data sets. The point-wise optimization is repeated to determine a second optimal ABP. A 

second follow-up CFD simulation is run with the second optimal ABP, and the sequence 

of steps is repeated until convergence. The convergence criterion is that the torque 

response of the ith optimal-ABP is within less than 5% difference with the previous (i − 

1)th optimal-ABP. Figure 5.1 illustrates the flow chart of the proposed optimization 

methodology. 

 

Preliminary ABP developed
with analytic model

Set-up CFD case.
Generate torque results for 
analytic-ABP & +2,-2 offsets

Save “Torque vs Pitching” 
arrays in data base.

Procedure based on discretized 
metamodels generates the new-ABP

Run simulation 
with new-ABP

Converged and optimized 
ABP for VAWTs via CFD

 

Figure 5.1.  Procedure flow diagram for point-wise metamodel optimization 

5.2. Initial Data Set Generation 

Figure 5.2 shows the analytic-ABP (developed previously in Chapter 3) and two 

ABP offsets, analytic-ABP +2°, and analytic-ABP −2°. As discussed earlier, in order to 

generate the initial data set for the metamodels, three CFD simulations are needed to 

generate the blade instantaneous torque; Figure 5.3 shows the correspondent torque 

versus azimuthal angle for the corresponding ABP strategies. By observing the torque 

response due to the perturbation of the original analytic-ABP, we can gather useful 

information on how the ABP should be adjusted to improve the torque response.  
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Figure 5.2.  Analytic-ABP functions, offsets 0, +2, −2, TSR = 2.3 

 

Figure 5.3.  Torque output using the three initial ABP functions, TSR = 2.3 
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5.3. Metamodel Optimization of Torque Versus Pitch 

It is clear from Figure 5.3 that there is room for pitch adjustment. Specifically, the 

instantaneous torque in the upwind swept phases (from 90° to 270°) favors extra positive 

pitching adjustment while the downwind swept phase favors extra negative pitching 

adjustment.  

i. The optimum is within the valid domain (this often occurs when 𝑇0 >

 𝑇−2, 𝑇+2). This case is better illustrated at an azimuthal angle of 270°; the 

metamodel of the torque versus the pitch is shown in Figure 5.4. Here, 

the regression generates a concave parabola in which the metamodel 

optimum is in within the domain. This optimum is taken as the optimal 

blade pitch at 270°.  

 

Figure 5.4.  Metamodel for three data points at 𝛉 = 270°, TSR = 2.3 

ii. If the optimum is outside the valid domain, requiring an offset greater than +2°; 

in this case we restrict the ABP to +1° outside the domain. This case can be 

exemplified at an azimuthal angle of 200°. Here, Figure 5.5 shows the 

constraint limits of the optimum value defined by the metamodel. The value of 

1° encourages slight and gradual variations that will prevent strong variation, 

thus providing stability. Similarly, if the optimum is outside the valid domain, 

requiring an offset less than −2°; in this case we restrict the ABP to −1° outside 

the domain. 
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Figure 5.5.  Metamodel for three data points at 𝛉 = 200°, TSR = 2.3 

iii. For all other cases no valid maximum would exist. However, It may be noted 

that the majority of the responses correspond to the previous cases, and this 

case typically occurs when 𝑇0 ≈ 𝑇−2 ≈ 𝑇+2 ≈ 0. To exemplify this case, Figure 

5.6 shows a metamodel with a convex behavior at 𝜃 = 107° (TSR = 3.3 was 

used as an example here because this case does not exist for TSR = 2.3). The 

metamodel minimum is taken as the optimal pitch because it is not possible to 

determine a maximum due to the extremes being in conflict. 

 

Figure 5.6.  Convex metamodel case at 𝜽 =  𝟎𝟕°, TSR = 3.3 
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The optimal ABP function is built from the metamodel optimums or their special 

case equivalents over the whole 𝜃 cycle in increments of 1°. In addition, there might be 

sharp and sudden changes in small azimuthal ranges, and as a consequence, the 

resulting optimal ABP function is smoothened using a 16-point centered moving 

average.  

5.4. CFD Simulation of the First optimal ABP 

The next step is to execute another CFD case with the new optimal ABP to 

determine the torque output. Figure 5.7 shows the previous and new torque functions 

corresponding to three previous ABPs and the first optimal ABP. We see from the figure 

how the metamodel captured the areas which required pitching adjustment, the upwind 

swept phase (90 to 270°) was positively adjusted while the downwind swept phase was 

negatively adjusted. The overall increase in average torque is 20%.  

  

Figure 5.7.  Torque output of 1st procedure run, TSR = 2.3 

In order to improve the metamodel, we use the preceding input and output data 

to update the metamodels and repeat the optimization procedure. This is done to 

progressively approach the optimal ABP while considering the secondary fluid dynamics 

effects that take place due to a new ABP.  
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5.5. Iteration and Convergence Procedure 

The metamodels are updated with the output data from the first optimal ABP (the 

metamodel now works with four data sets, the analytic-ABP, its offsets of +2 and −2, and 

the first optimal ABP). The procedure is re-run to determine a second optimal ABP 

function. The procedure for updating the metamodel with the simulation results for the (i 

− 1)th optimum and calculating the ith optimum is repeated until the torque response of 

the ith optimal-ABP is within 5% of the previous torque response of the (i − 1)th optimal-

ABP.  

Figure 5.8 and Figure 5.9 show that the ABP and torque functions converge into 

a narrow band, and that in each subsequent iteration, the increase in the average torque 

diminishes until it becomes negligible (less than 1%). For subsequent optimization at 

other TSRs, just two iterations are used, so we effectively use five expensive function 

calls: the simulation, the analytic-ABP, its offsets +2 and −2, the first optimal-ABP, and 

the second optimal-ABP. The second optimal-ABP result is considered the optimal-ABP 

function at the current TSR. 

  

Figure 5.8.  Optimum ABP function convergence 
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Figure 5.9.  Torque function convergence 

A MATLAB implementation of the metamodel is presented in Appendix G. It is 

compatible with the iteration procedure as long as new data is simulated and fed into the 

metamodel. 

5.6. Comparison of Optimal-ABP Versus FFD-ABP 

We compare the optimal-ABP obtained with the methodology developed in this 

chapter with the FFD-ABP (determined in Chapter 4 with a traditional optimization 

methodology). Both two ABP strategies are shown in Figure 5.10, while Figure 5.11 

shows the steady-state blade torque generated by these ABPs. We see that the torque 

profiles of both ABP strategies are very similar. However, the average torque output 

generated by the optimal-ABP is 147.5 Nm, which is slightly greater than the previous 

FFD-ABP of 138.5 Nm. It is important to mention that the number of function calls is 

reduced from 19 to 5, with both methods having three serial steps. 

Figure 5.10 shows that the optimal-ABP, similarly to the FFD-ABP, has a 

reduced pitching amplitude relative to the analytic-ABP analyzed in Chapter 3. As 

discussed before, it is likely that the hysteresis of the aerodynamic stall allows the blade 

angle of attack to increase beyond 10° without stall. Even though the torque profiles of 

both ABP strategies are very similar, the curvilinear behavior of both ABPs are different, 

especially at 50° < 𝜃 < 130° and at 240° < 𝜃 < 300°. However, we should notice that 

these azimuthal angles correspond to the transition from the back-swept to the front-
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swept phase and vice versa, and the torque produced in this transition is low or negative 

[5,6] (as the lift force is collinear to the rotation center during the transition and the 

VAWT cannot produce positive torque). We conclude that the pitching action at the 

transition azimuthal angles is not very influential in the torque output profile. Finally, if 

both ABPs produce a maximum average torque following their respective derivation 

procedures, we propose that the optimal ABP stimulus might indeed be a family of 

functions on a band range; these ABP functions would produce a very similar average 

torque plateau on the VAWT. 

 

Figure 5.10.  Input stimulus for a VAWT blade, FFD-ABP and optimal-ABP 
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Figure 5.11.  Torque output for a VAWT blade, using the FFD-ABP and the 

optimal-ABP, 𝑼∞ = 𝟕. 𝟕𝟖, TSR = 2.3 

The optimal-ABP function has better quantitative attributes; it has a higher output 

and was obtained with fewer expensive function calls. The core methodological idea was 

to use the input and output function data to adjust the input for a better output. In 

contrast, in the FFD-ABP case, the output data is averaged and the function shape 

information is lost; consequently, more evaluations might be needed to reach an optimal 

response. Table 5.1 summarizes the main attributes of the traditional optimization 

methodology relative to those of the proposed optimization.  

Table 5.1. Quantitative attributes of optimization procedures 

Quantitative Attributes Optimal-ABP FFD-ABP 

Function calls 5 19 
Optimum value 147.5 Nm 138.5 Nm 

Serial steps 3 3 

 

  

Increase: 6.51% 
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Table 5.2 focuses on a qualitative comparison instead. 

Table 5.2. Qualitative attributes of the optimization procedures 

Qualitative Attributes Optimal-ABP FFD-ABP 
Simple solution expression No Yes 

Convergence speed Fast Slow 
Computing expense Low High 

ABP easy to implement in 
experiments 

No Yes 

Easy to provide expression 
dependent on the TSR 

No No 

Easy to converge Yes Yes 

 

The optimization developed in this chapter generated a new optimal ABP 

function that proved to be superior to the previous FFD-ABP. The procedure achieved 

an optimal result with a low number of function calls. One of the challenges of this study 

case is that it is necessary to optimize a function instead of a set of values. Traditional 

optimization procedures require the parameterization of the input and output, but by 

doing so they constrain the input and lose output information. The solution was to utilize 

the instantaneous pitch and torque data of three ABP stimuli (original ABP and offsets). 

This strategy allowed the optimization of the torque versus pitch at discrete azimuthal 

angles with constrained quadratic regression metamodels. We then built the optimal 

ABP with metamodel optimum pitch over the entire cycle. 

The next chapter will expand this procedure for a wider operating range, which 

would result in maximum torque and power over the TSR. In addition, we will provide an 

expression of the optimal pitch as a function of the TSR and 𝜃, and explore the torque 

behavior at starting (low) TSR. 
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Chapter 6.  
 
Optimization Procedure Over a Wide TSR Range 

From the analytical model of Chapter 3, it is known that ABP is a function of 𝜃 

and TSR. The previous chapter optimized the ABP function for a single TSR. This 

chapter extends such procedure for various TSRs (2.3, 2.8, 3.3, 3.8, 4.3), using the 

results to develop an expression for the optimal ABP as a function of 𝜃 and TSR. This 

chapter also examines the power performance curves (CP vs. TSR); we find the new 

maximum power operating point and explore the torque behavior of the VAWT, including 

its performance at low TSR (TSR of 0.5 and 1.0). 

6.1. ABP as a Function of TSR and Azimuthal Angle   

The analytic model of Chapter 3 shows that the optimal pitch along a revolution is 

a function of the TSR; we therefore expect that the ABP obtained from the CFD 

optimization methodology of Chapter 5 will depend on the TSR as well. Figure 6.1 shows 

the optimal ABP for various TSRs. 

 

Figure 6.1.  Optimized ABP for multiple TSRs 
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To interpolate between these optimal ABPs, we use a Fourier interpolation 

function with five coefficients in the form of equation (6.1). The expression would be the 

base function of the nonlinear surface regression model. The base equation was 

heuristically built with the following criteria: In order to account for the cyclic behavior of 

the ABP, a Fourier expansion was chosen to be the base structure, and five harmonics 

were the smallest number of basic functions that approximate well to the ABP, each one 

of them composed of a characteristic amplitude and phase that are quadratic functions 

of the TSR. This allows the surface function to fit well at all ranges of TSR while 

preserving its cyclic characteristic.  

  𝐴𝐵𝑃(𝑇𝑆𝑅, θ) = ∑(𝑎1𝑖𝑇𝑆𝑅² + 𝑏1𝑖𝑇𝑆𝑅 + 𝑐1𝑖) ⋅ sin(𝑖 ⋅ θ + (𝑎2𝑖𝑇𝑆𝑅² + 𝑏2𝑖𝑇𝑆𝑅 + 𝑐2𝑖)

5

𝑖=1

 (6.1) 

The coefficients 𝑎1𝑖, 𝑏1𝑖, 𝑐1𝑖, 𝑎2𝑖, 𝑏2𝑖, and 𝑐2𝑖 are the curve fitting coefficients. The 

regression analysis was performed using the curve fitting toolbox in MATLAB. The 

coefficients are provided below in Table 6.1. This regression model for the ABP can be 

used to transition the VAWT optimally when the TSR changes as a result of changing 

winds. 

Table 6.1.  Curve fitting constants 

Coefficient Values Units 

 i  = 1 i  = 2 i  = 3 i  = 4 i  = 5  

𝒂 𝒊 1.774 −0.9539 −0.2871 0 0.0823 Nm 

𝒃 𝒊 −15.90 8.172 2.114 0.1902 −0.5853 Nm 

𝒄 𝒊 34.67 −18.27 −0.968 −0.3252 −0.00293 Nm 

𝒂 𝒊 −0.112 0.000 0.020 0.930 2.383 radians 

𝒃 𝒊 0.7316 −0.1178 −0.1392 −4.213 −16.18 radians 

𝒄 𝒊 0.5074 0.2465 1.735 4.214 26.66 radians 

 

Figure 6.2 shows the ABP curves of Figure 6.1 but plotted on 3D space together 

with the surface function of equation (6.1) using the coefficients from Table 6.1. We see 

a good overall fit between the ABP data and the regression model. In order to quantify 

the data fit, a goodness of fit analysis is done in MATLAB, using the normalized mean 

square error (NMSE) as cost function. The fit analysis is done by segregating the 

optimal-ABP (Figure 6.1) and its correspondent regression model data by TSR. A fit 

(𝑓𝑖 NMRE) of 1 represents perfect fit (no error between data and model) while a fit of 0 or 

lower represents a fit no better than linear regression.  
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Table 6.2 presents the dependence of the fit on the TSR.  

The fit is strong for a TSR of 2.3 (FitNMRE = 0.9930) but progressively reduces as 

the TSR increases to 4.5 (FitNMRE = 0.  72). This is explained by the ABP having a 

strong sinusoidal shape at TSR = 2.3; therefore, fewer Fourier coefficients are needed to 

approximate the ABP. In contrast, the ABP at TSR = 4.5 significantly differs from a sine 

function, requiring more Fourier coefficients to approximate the ABP and yielding an 

inferior fit. The fit improves with the addition of more Fourier coefficients to equation 

(6.1). However, this increases the complexity of the final equation. 

  

Figure 6.2.  3D surface plot with nonlinear curve fit for optimized pitching 

 

Table 6.2.  Normalized mean square error by TSR 

TSR: 2.3 2.8 3.3 3.8 4.3 4.5 

 𝐢𝐭𝐍𝐌𝐑𝐄: 0.9930 0.9284 0.7178 0.7112 0.9592 0.6672 

 

The surface plot of the ABP in Figure 6.2 follows the explanation given in 

Chapter 3. The optimal pitch 𝜃𝑝𝑜𝑝𝑡  is expressed as 𝜃𝑝𝑜𝑝𝑡 = 𝛼𝑜𝑝𝑡 − 𝛼0. An analysis of 𝛼𝑜𝑝𝑡 

in equation (3.18) show that it will remain relatively constant for various TSR values. This 

is because 𝛼𝑜𝑝𝑡 would be near the maximum lift to drag ratio (close to aerodynamic 

stall); in this case 𝛼𝑜𝑝𝑡 ≈ ±10° (positive at the upwind swept phase and negative at the 
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downwind swept phase). Subsequently, 𝜃𝑝𝑜𝑝𝑡 ≈ 10° − 𝛼0 (upwind swept phase) and 

𝜃𝑝𝑜𝑝𝑡 ≈ −10° − 𝛼0 (downwind swept phase; refer to Chapter 3, Figure 3.4 and Figure 

3.5). However, 𝛼0 would not be constant for different TRS values. If we study the 

function behavior of 𝛼0, described by equation (3.8), we see that at low TSR, 𝛼0 

amplitude variation for a whole cycle is high, while at high TSR, 𝛼0 amplitude variation is 

low. Figure 6.3 show 𝛼0 for the various TSRs. 

 

Figure 6.3.  Effect of TSR on 𝜶𝟎 

From the frame of reference of a VAWT blade, the wind velocity vector 𝑈⃗⃗ ∞ is a 

cyclic vector that causes the magnitude and angular variation in the vector 𝑈⃗⃗ 𝑒𝑥𝑝  and 

consequently the variation in 𝛼0. We conclude that additional compensation is needed at 

low TSR because of the high 𝛼0 variation, while at high TSR, 𝛼0 → 0 and the pitching 

compensation is mainly to reproduce the optimal angle of attack, 𝜃𝑝 → 𝛼𝑜𝑝𝑡 ≈ ±10°. 

6.2. Torque Performance Curve  

The TSR was varied from 4.5 to 2.3 by varying the wind speed from 3.98 m/s to 

7.79 m/s while keeping the rotation speed at 5.97 rad/s. This is the same TSR control 

strategy used in the validation study. At each TSR the corresponding optimum-ABP is 

used, namely the ABP functions of Figure 6.1. The average torque (𝑇) of the VAWT over 

a whole revolution is obtained from the CFD simulations; note that this torque 

dependence on TSR 
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corresponds to the average torque sum of all three blades. Next, the torque coefficient 

(𝐶𝑇) is computed using equation (6.2) for all the TSR cases. We then construct the 

torque performance curve (𝐶𝑇 vs. TSR) as shown in Figure 6.4. 

𝐶𝑇 =
𝑇

0.5𝜌𝐴𝑟𝑈∞
2 (6.2) 

 

Figure 6.4.  Optimal ABP torque performance 
 

Figure 6.4 shows that for TSRs between 2.3 and 3.3 the torque coefficient is 

fairly constant around 0.13, while for TSRs larger than 3.8 the drag forces appear to 

become increasingly dominant and the torque begins to decrease, and eventually 

becomes negative at higher TSRs. This graph is useful for regulating the opposing 

torque that the generator exerts on the VAWT; the torque is estimated according to the 

wind conditions and the current rotational speed, and by regulating the electrical power 

output of the opposing generator the torque may be decreased or increased to stay 

close to the point of maximum power. 

6.3. Power Performance for Maximum Power Tracking 

The VAWT power coefficient (𝐶𝑃) is computed from equation (6.3). Figure 6.5 

presents the CP corresponding to the ABP curves of Figure 6.1. For comparative 
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analysis, Figure 6.5 also shows the CP  of the fixed pitch strategy obtained during the 

CFD validations. 

𝐶𝑃 = 𝐶𝑇 × TSR (6.3) 
 

 

Figure 6.5.  Comparison of VAWT Cp performance 

Figure 6.5 shows that the maximum 𝐶𝑃 is at TSR 3.8, increasing from 0.425 (for 

a fixed blade of +2°) to 0.48, indicating a 13% increase in power. The overall increase in 

𝐶𝑃 can be attributed to the ability of ABP to suppress the aerodynamic stall on the blades 

at low TSR and subsequently to reduce the drag and negative torques, while at higher 

TSR the ABP allows extra lift associated with an optimal angle of attack, which helps to 

overcome extra drag at higher TSR.  

The VAWT will be subject to changing working conditions; as the freestream 

wind speed changes, we can optimally transition using the ABP formula developed in the 

previous section, equation (6.1). By governing the ABP and generator rotational speed, it 

is possible to achieve a better transition, better controllability, a broader operational 

range, and higher torque at all TSR ranges. 

6.4. Torque Performance at Low TSR 

The next plots, in Figure 6.6 and Figure 6.7, compare the torque responses of 

12-kW VAWT blades under a fixed pitch of 2° and the ABP stimulus derived for a TSR of 

2.3. Figure 6.6 is for a TSR of 0.5, and Figure 6.7 for a TSR of 1.0. In both cases, the 

 results for optimum ABP 

results for optimum fix pitch 
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ABP stimulus is neither analytically optimized for the corresponding operating condition 

nor optimized by CFD, yet both plots show clearly that the instantaneous torque is 

increased for 𝐴𝐵𝑃𝑇𝑆𝑅=2.3.  

These plots show why VAWTs have self-starting problems: the effective wind 

speed at the blades interacts much faster than the blade sweep along a revolution, 

generating vortexes that interfere with the steady wind required to generate lift, and this 

effect is in addition to the non-optimal angle of attack discussed in Chapter 3. Finally, 

even if the ABP is not optimized for the corresponding low TSR, it is more detrimental 

not to pitch at all; as a consequence, the ABP for regular operating TSR values can still 

benefit the starting TSR range. 

 

Figure 6.6.  Torque profile at TSR = 0.5 for ABP and fixed-pitch strategies 
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Figure 6.7.  Torque profile at TSR= 1.0 for ABP and fixed pitch strategies 

Good performance at low TSR can only be achieved with ABP, as it reduces the 

dynamic stress generated by drag and lift forces (therefore increasing VAWT lifespan) 

and also improves the self-starting performance of the VAWT due to increased torque. 
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Chapter 7.  
 
Conclusions and Future Work 

This work presents an optimization procedure for ABP of a VAWT over a wide 

TSR range, using a metamodel fed with CFD simulation data with the transient 

simulations emulating the ABP by means of dynamic mesh regions. 

The optimization procedure begins by estimating the ABP using a preliminary 

analytic model. The procedure is likely to converge faster if the estimated ABP is close 

to the optimum. The metamodel initially requires CFD output data; to generate the first 

data sets we use the first analytical-ABP as well as two perturbations of +2° and −2° 

offset. The results allow us to generate a modified quadratic regression metamodel of 

the torque versus the pitch and get the optimum pitch at that azimuthal angle. The new 

first optimal ABP is simulated for a new CFD case and outperforms its predecessors; the 

metamodel is then updated with the first optimal ABP, and the procedure is repeated for 

convergence analysis. 

The CFD torque results for a TSR of 2.3 show that the analytic-ABP produces a 

33.4% increase in torque compared to the fixed pitch strategy. Later, the ABP function is 

parameterized, and we perform a traditional optimization to obtain a new control function 

called FFD-ABP, which increases the torque by 15.5% relative to the analytic-ABP. 

However, the traditional optimization has some disadvantages such as a high number of 

function calls. Finally, when the new optimization methodology is employed, it results in 

a 6.5% increase in torque over the previous FFD-ABP with fewer function calls. 

The new optimization procedure was extended to several TSR operating 

conditions, and an analytic governing formula expressing the pitching as a function of 

the azimuthal angle and TSR was developed. The equation was constructed using a 

nonlinear curve fit model. The periodic behavior of the ABP function fitted well to a five-

level Fourier expansion in which the harmonics components were dependent on the 

TSR. Comparing the optimal-ABP with the fixed-pitch results, the point of maximum 

power operation is increased by 13%, with the overall power performance increase 

being higher at the lower end of the TSR range. The torque performance at the low TSR 
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range (from 0 to 1.5) is improved with an ABP derived for TSR = 2.3, which suggests 

that ABP derived for regular operating conditions benefit the self-starting characteristics 

of the VAWT as well. 

The control curve proposed in this work shares similar characteristics with other 

works that propose control strategies. However, this optimal ABP stand out from the rest 

because it considers secondary flow effects captured by CFD simulations. To the best of 

our knowledge, this work is the first of its kind that has implemented a novel CFD-based 

metamodel optimization over a wide range of TSRs, which is its key contribution to the 

literature on ABP in VAWTs.  

We aim to use the methods developed in this work to produce ABP models for 

enhancing the self-starting performance of VAWTs, considering a TSR range of 0 to 1. 

Finally, the metamodel optimization methodology developed in this work is compatible 

with experimental data (instead of simulation data), for instance by taking torque 

measurements of the blade using a piezoelectric sensor [28] [29]; use of the proposed 

work for further experimental research on vertical axis wind turbines is strongly 

encouraged. 
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Appendix A. 
 
CFD Case Description in OpenFOAM3.0.1 

This section describes the CFD case structure in OpenFOAM3.0.1 [40] for the 

VAWT simulations with ABP. The following structure can be used as a blueprint for 

similar simulation scenarios. Below we list the files and folders in the first-level structure 

for the OpenFOAM case.  

 

The mesh file (VAWT.msh) is needed to be imported from the Gmsh format into 

the OpenFOAM2.3.0 format using the command “gmshToFOAM”; the mesh format will 

be generated on dedicated folders inside the “ onstant” folder. The “log” folder contains 

files that show the computation process in real time and is useful for debugging. The 

“postProcessing” folder contains data that is calculated during the simulation, such as 

the forces exerted on the blade wall boundary.  

The “0” folder contains the files that specify the initial conditions at time zero, 

namely the values of the turbulence variables “K”, “ mega”, “nuT”, and the initial values 

of the pressure and velocity fields  “p” and “ ” respectively . 
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The “System” folder contains files that specify the computational parameters and 

the data to be extracted for postprocessing. The “control ict” file contains parameters 

such as the end time and the time step. Other files specify interpolation/extrapolation 

solvers, regression solvers, relaxation factors, dynamic mesh handling, and detailed 

internal computation setup. 

 

The “ onstant” folder contains the mesh structure on the “polymesh” folder 

(generated when importing the mesh), as well as the files that specify constant 

parameters. The “TurbulenceProperties” and “RASProperties” files define the type of 

turbulence model and its constants, and the “TransportProperties” define the fluid 

properties. The “ ynamic esh ict” file defines the movement of the mesh fields; in our 

case, the movement is taken from the Tabulated data files, which are: “VAWT_Rotor” for 

the rotor field and “VAWT_BldN ” for the blade fields. 

 

The file scripts of the CFD case can be reviewed in Appendix F. Below are listed 

the commands needed to start the simulation from the terminal at the folder path. 
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• of231 // Load OpenFOAM 3.0.1 

• gmsh285 // Load Gmsh 2.8.5 

• gmshToFOAM VAWT.msh // Import mesh from Gmsh 

• pimpleDyMFoam | tee LOG  // Execute simulation with specified solver 
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Appendix B. 
 
Estimation of Drag in VAWT Struts  

The struts are rods forming part of the VAWT framework and are designed to 

resist compression. The struts of the 12-kW VAWT are shown in figure B1. 

 

Figure B1. Struts view for VAWT 

A first non-exhaustive approach described by blade element theory (BET) 

considers that the total torque drag T (of one strut) will be the sum of contributions of 

elements dS along the strut. Each element has a distance S from the hub center and 

rotates at a distance r from the hub axis after factoring in the angular tilt of 17.6⁰, while 

the angular speed is 𝜔. The drag dFd comes from the relative velocity of the strut 

element and static air. The model is shown in Figure B2. 
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Figure B2. Upper and side view of struts 

The above blade element model (BEM) considers only the relative velocity due to 

the blade rotation; the drag coefficients are taken from static drag tables for NACA0025 

[38]. Each element is considered independent and disconnected from the effects of other 

elements and there are no secondary effects to analyze. The chord length C is 0.32 m at 

a distance 0.1 m from the hub and linearly reduces to 0.2 m at the tip.  

Under the above assumptions, a differential of torque due to an element dS is 

described by the following equation: 

𝑑𝑇 = 𝑑𝐹𝑑𝑟 (B1) 

Replacing 𝑑𝐹𝑑 using the drag coefficient Cd equivalence 𝑑𝐹𝑑 = 1/2𝜌(𝑑𝐴)𝑈2𝐶𝑑 , 

where 𝜌 is the air density, 𝑑𝐴 is a differential area element, and U corresponds to the 

relative velocity between the element and the static air, we obtain 

𝑑𝑇 = 1/2𝜌(𝑑𝐴)𝑈2𝐶𝑑𝑟 (B2) 

Further decomposing equation B.2 by the equivalences 𝑑𝐴 = 𝐶𝑑𝑆 and  𝑈 = 𝜔𝑟, 

𝑑𝑇 = 1/2𝜌𝐶(𝑑𝑆)𝜔2𝑟2𝐶𝑑𝑟 (B3) 

The drag coefficient is a function of the angle of attack (fixed at 0) and the 

Reynolds number, which in turn is a function of the velocity U and chord length C. In this 
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case, U and C depend on the radial distance r, so Cd is a function of r, the chord length 

C being a linear function of r (𝐶 = 324.14 − 41.38𝑟). Furthermore, dS can be 

decomposed into 𝑑𝑆 = 𝑑𝑟/cos(17.6⁰). By regrouping the constants and integrating from 

radius r = 0.1 to r = 3, equation B.3 becomes 

𝑇 =
𝜌𝜔2

2cos (17.6)
∫ 𝑟3𝐶𝑑(𝑟)𝐶(𝑟)𝑑𝑟

𝑟=3

𝑟=0.1

 (B4) 

We then solve equation B4 for the parameter presented in Table B1. and the 

strut geometry presented in Section 1.4. 

Table B1. Constant Parameter 

Parameter Variable Value 

Rotation speed 𝜔 5.97 rad/s 

Air density 𝜌 1.205 kg/m3 
Air viscosity 𝜇 18.1 μPa 

The results are shown in Table B2; L represents the function of the integral 

operation of equation B4. 

Table B2. Tabulated values of variables in Equation B4  

r U(r) C(r) Re(r) Cd(Re)  𝟑 𝑳 = (  . 𝟓) 𝟑𝑪𝒅( )𝑪( ) 

0.1 0.597 0.32000 13E6 0.046 0.001 0.00033 
0.5 2.985 0.30450 61E6 0.036 0.125 0.0308 
1.0 5.970 0.28276 113E6 0.020 1.000 0.1227 

1.5 8.955 0.26207 156E6 0.0175 3.375 0.3483 

2.0 11.940 0.24138 192E6 0.015 8.000 0.6517 

2.5 14.925 0.22069 230E6 0.014 15.626 1.0863 

3.0 17.910 0.20000 297E3 0.013 27.000 1.5795 

 

The curve shown in Figure B3. corresponds to the torque contribution of strut 

elements along the radius of the VAWT. The area under the curve provides the torque of 

any given section of strut along the radius of the VAWT. The VAWT is made up of six 

struts, and the contribution of each strut is 1.513 Nm. Therefore, an estimate of 9 Nm is 

considered the drag torque due to the six struts rotating at 5.97 rad/s. 
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Figure B3. A plot of equation B4; total torque: 𝑻 = ∫ 𝑳( )𝒅 =  .𝟓 𝟑 𝐍𝐦
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Appendix C. 
 
MATLAB Scripts to Implement the Analytic-ABP  

Description:  

The following files operate together to implement the analytic-ABP function of this work. 

These files were written in MATLAB code and are listed in the present appendix. The 

files functionality is explained, and their code displayed. In order to facilitate the code 

review and operation, we put together all the files in one compressed folder called 

“Analytic-ABP_Application” and is included as supplementary material. The code 

application will start by executing the PitchAng.m file inside. 

Filename:  Analytic-ABP_Application.rar 

 

The compressed folder contains the following files: 

PitchAng.m 

This file makes use of several supplementary functions which we define and explain 

subsequently. This script generates a 360 × 1 array containing the optimum pitching 

value for 1⁰ increments in azimuthal angle position (from 0 to 359⁰). It makes use of the 

function “ ptAtkAng.m” for each azimuthal angle, the raw array is smoothed using a 28-

point centered moving average with a user-made function “ urveSmooth.m”. 

clc;clear; 

 

Re = 80000;    % Reynolds Number      ( cU/v, Global val.) 

TSR= 2.0;      % Tip Speed Ratio      (w*R/U, Global val.) 

Cu = 57/200;   % Unitary Chord Length (Chord/Radius) 

 

deg=[0:1:359]; 

for i=1:1:360 

theta = i-1 

[a_opt(i),a_atk(i),T(i),Fi(i)]=OptAtkAng(theta,Re,TSR,Cu); 

end 

a_opt2 = CurveSmooth(a_opt,28); 

Pitch1 = a_opt - a_atk; 
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Pitch2 = a_opt2 - a_atk; 

Pitch2 = CurveSmooth(Pitch2,28); 

 

figure; hold on; grid on; plot(deg',[a_atk',a_opt',Pitch1',Pitch2']); 

legend('AOA at 0 pitch','AOA optimal','Analytic-ABP raw','Analytic-ABP 

smoothed'); 

xlabel('Azimuthal Angle (Degrees)'); 

ylabel('Pitch/AOA Angle (Degrees)'); 

title('Parameters as a function of Azimuthal angle'); 

%figure; hold on; grid on; plot(Fi); 

%figure; hold on; grid on; plot(T); 

 

filename =sprintf('Re%1.0f.TSR%1.1f.txt',Re,TSR); 

directory=sprintf('../Tab.Dat.Mov/Pitch_Data/%s',filename) 

 

fileID=fopen(filename,'w') 

fprintf(fileID,'%4.2f\n',Pitch2) 

fclose(fileID) 

movefile(filename,directory,'f') 

Matrix=[Pitch1',Pitch2',a_atk',a_opt',Fi',T']; 

 

OptAtkAng.m 

This function file is responsible for computing the optimal angle of attack relative to the 

wind velocity experienced by the blade at a certain azimuthal angle. The function 

considers the vector components of the free wind velocity and rotational velocity to be 

unaffected by secondary effects and acting directly on the blades. This function file make 

use of another function called “Torque.m” which computes a dimensionless torque. 

function [a_opt,AtkAng,T,Fi] = OptAtkAng(theta,Re,TSR,Cu) 

 

Ux_exp = 1 + TSR*sin(theta*pi/180); 

Uy_exp =   - TSR*cos(theta*pi/180); 

 

Fi = atan2(Uy_exp,Ux_exp); 

Fi = Fi*180/pi; 

if Fi<0 && theta>180 

   Fi=360+Fi; 

end 

 

t=-inf; 

%A=182; 

A=20; 

for i=1:1:A+1 

    a = A/2+1-i; 

    [T(i),P2x(i),P2y(i),Cl(i),Cd(i)]= Torque(Fi,a,Re,TSR,Cu,theta); 
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    if T(i)>t 

        t  = T(i); 

        T2 = t; 

        a2 = a; 

    end 

end 

 

a_opt = a2; 

T = T2; 

AtkAng   = theta -90 -Fi; 

 

Torque.m 

This function computes a dimensionless torque value acting on the VAWT; given a pitch 

angle, the function computes the torque. It makes use of a function called “NA A .m” 

which maps the lift and drag coefficient given the angle of attack of the blade. 

function [Tu,P2x,P2y,Cl,Cd] = Torque(fi,a,Re,TSR,Cu,theta) 

 

fi=fi*pi/180;        % Convert angle from degrees to radians 

theta=theta*pi/180;  % Convert angle from degrees to radians 

 

P1x =  cos(theta).*cos(fi) + sin(theta).*sin(fi); 

P1y = -cos(theta).*sin(fi) + sin(theta).*cos(fi); 

P2x = P1x + (Cu/4).*cos(pi+a*pi/180); 

P2y = P1y + (Cu/4).*sin(pi+a*pi/180); 

 

Re_L=Re*sqrt((1+TSR*sin(theta))^2+(TSR*cos(theta))^2); 

[Cl,Cd]=NACA4(Re_L,-a) 

Tu = (Re_L^2)*(Cl.*P2x - Cd.*P2y); 

 

for i=1:360 

Cu(i)=0; 

Cu=Cu'; 

end 

 

NACA4.m 

This function maps the lift and drag coefficient given the angle of attack of a NACA0021 

blade relative to the wind and the Reynolds number, the latter is dependent on the fluid 

properties, chord length, and wind speed experienced by the blade. This function make 

use of lift-coefficient and drag-coefficient tables (0021_Cl.txt and 0021Cd.txt 
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respectively). This function interpolates the lift or drag on the 2D space of the Reynolds 

number and angle of attack domain.  

function [Cl,Cd] = NACA4(Re,a) 

s=1; 

if a < 0 

    a=-a; 

    s=-1; 

end 

 

%---- Procedure for Lift Coeff ---------- 

 

Cl_dat  = dlmread('NACA4_DATA/0021_Cl.txt'); 

[r,c]   = size(Cl_dat); 

Re_vctr = Cl_dat(1,2:c); 

 a_vctr = Cl_dat(2:r,1); 

Cl_mtrx = Cl_dat(2:r,2:c); 

 

i=1; 

while a_vctr(i) < a 

    i=i+1; 

end 

if a_vctr(i) == a 

    a1 = a_vctr(i); 

    c1 = 0; 

else 

    a1 = a_vctr(i-1); 

    a2 = a_vctr(i); 

    c1 = 1; 

end 

 

j=1; 

while Re_vctr(j) < Re 

    j=j+1; 

end 

if Re_vctr(j) == Re 

    Re1 = Re_vctr(j); 

    c2  = 0; 

elseif Re < Re_vctr(1) 

    Re1 = Re_vctr(j); 

    c2  = 0; 

else 

    Re1 = Re_vctr(j-1); 

    Re2 = Re_vctr(j); 

    c2  = 1; 

end 

 

c = c2*10+c1; 

switch c 

    case 0 
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        Cl = Cl_mtrx(i,j); 

    case 1 

        Cl1= Cl_mtrx(i-1,j); 

        Cl2= Cl_mtrx( i ,j); 

        Cl = Cl1 + (Cl2-Cl1)*((a-a1)/(a2-a1)); 

    case 10 

        Cl1= Cl_mtrx(i,j-1); 

        Cl2= Cl_mtrx(i, j ); 

        Cl = Cl1 + (Cl2-Cl1)*((Re-Re1)/(Re2-Re1)); 

    case 11 

        Cl11= Cl_mtrx(i-1,j-1); 

        Cl12= Cl_mtrx( i ,j-1); 

        Cl21= Cl_mtrx(i-1, j ); 

        Cl22= Cl_mtrx( i , j );     

        Cl1 = Cl11 + (Cl12-Cl11)*((a-a1)/(a2-a1)); 

        Cl2 = Cl21 + (Cl22-Cl21)*((a-a1)/(a2-a1)); 

        Cl  = Cl1 + (Cl2-Cl1)*((Re-Re1)/(Re2-Re1)); 

end 

Cl=Cl*s; 

 

%---- Procedure for Drag Coeff ---------- 

 

Cd_dat  = dlmread('NACA4_DATA/0021_Cd.txt'); 

[r,c]   = size(Cd_dat); 

Re_vctr = Cd_dat(1,2:c); 

Al_vctr = Cd_dat(2:c,1); 

Cd_mtrx = Cd_dat(2:r,2:c); 

i=1; 

while a_vctr(i) < a 

    i=i+1; 

end 

if a_vctr(i) == a 

    a1 = a_vctr(i); 

    c1 = 0; 

else 

    a1 = a_vctr(i-1); 

    a2 = a_vctr(i); 

    c1 = 1; 

end 

 

j=1; 

while Re_vctr(j) < Re 

    j=j+1; 

end 

if Re_vctr(j) == Re 

    Re1 = Re_vctr(j); 

    c2  = 0; 

elseif Re < Re_vctr(1) 

    Re1 = Re_vctr(j); 

    c2  = 0; 

else 

    Re1 = Re_vctr(j-1); 
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    Re2 = Re_vctr(j); 

    c2  = 1; 

end 

 

c = c2*10+c1; 

switch c 

    case 0 

        Cd = Cd_mtrx(i,j); 

    case 1 

        Cd1= Cd_mtrx(i-1,j); 

        Cd2= Cd_mtrx( i ,j); 

        Cd = Cd1 + (Cd2-Cd1)*((a-a1)/(a2-a1)); 

    case 10 

        Cd1= Cd_mtrx(i,j-1); 

        Cd2= Cd_mtrx(i, j ); 

        Cd = Cd1 + (Cd2-Cd1)*((Re-Re1)/(Re2-Re1)); 

    case 11 

        Cd11= Cd_mtrx(i-1,j-1); 

        Cd12= Cd_mtrx( i ,j-1); 

        Cd21= Cd_mtrx(i-1, j ); 

        Cd22= Cd_mtrx( i , j );     

        Cd1 = Cd11 + (Cd12-Cd11)*((a-a1)/(a2-a1)); 

        Cd2 = Cd21 + (Cd22-Cd21)*((a-a1)/(a2-a1)); 

        Cd  = Cd1  + (Cd2 -Cd1 )*((Re-Re1)/(Re2-Re1)); 

end 

end 

 

CurveSmooth.m 

function Y=CurveSmooth(X,a) 

c1= X(1:90); 

c2= X(271:360); 

A1= [c2,X,c1]; 

A2= filter(ones(1,a)/a,1,A1); 

s = a/2; 

Y = A2(91+s:450+s); 

end 
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Lift Coefficient Table for NACA4 0021: 0021_Cl.txt 

 20000 40000 80000 160000 360000 700000 1000000 2000000 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.0243 0.0752 0.0921 0.0842 0.1100 0.1100 0.1100 0.1100 

2 0.0393 0.1465 0.1839 0.1879 0.2200 0.2200 0.2200 0.2200 

3 0.0472 0.2103 0.2731 0.2861 0.3024 0.3300 0.3300 0.3300 

4 0.0619 0.2730 0.3564 0.3800 0.4044 0.4128 0.4400 0.4400 

5 0.0505 0.3086 0.4320 0.4687 0.4998 0.5146 0.5192 0.5500 

6 0.0475 0.3382 0.4953 0.5486 0.5891 0.6100 0.6191 0.6268 

7 0.0266 0.3427 0.5445 0.6209 0.6728 0.6988 0.7102 0.7254 

8 0.0120 0.3420 0.5751 0.6745 0.7434 0.7802 0.7939 0.8143 

9 0.0000 0.3162 0.5874 0.7148 0.8026 0.8493 0.8690 0.8986 

10 -0.0100 0.2691 0.5780 0.7374 0.8500 0.9091 0.9364 0.9739 

11 -0.0200 0.2176 0.5564 0.7443 0.8779 0.9543 0.9862 1.0398 

12 -0.0250 0.1660 0.5228 0.7363 0.8938 0.9843 1.0257 1.0906 

13 -0.0200 0.1247 0.4762 0.7178 0.8973 1.0020 1.0492 1.1305 

14 -0.0100 0.0833 0.4296 0.6993 0.8937 1.0122 1.0657 1.1580 

15 0.0000 0.0907 0.3878 0.6740 0.8840 1.0105 1.0709 1.1747 

16 0.0331 0.0981 0.3459 0.6487 0.8717 1.0056 1.0690 1.1823 

17 0.0756 0.1300 0.3340 0.6293 0.8603 0.9973 1.0641 1.1824 

18 0.1180 0.1619 0.3221 0.6098 0.8489 0.9911 1.0588 1.1814 

20 0.2124 0.2414 0.3475 0.5920 0.8397 0.9858 1.0554 1.1812 

22 0.3103 0.3345 0.4091 0.6023 0.8453 0.9940 1.0644 1.1893 

25 0.4618 0.4802 0.5297 0.6664 0.8866 1.0350 1.1018 1.2230 

30 0.8550 0.8550 0.8550 0.8550 0.8550 0.8550 0.8855 0.9550 

35 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 

40 1.0350 1.0350 1.0350 1.0350 1.0350 1.0350 1.0350 1.0350 

45 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 

50 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 

55 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 

60 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 

65 0.7600 0.7600 0.7600 0.7600 0.7600 0.7600 0.7600 0.7600 

70 0.6300 0.6300 0.6300 0.6300 0.6300 0.6300 0.6300 0.6300 

75 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

80 0.3650 0.3650 0.3650 0.3650 0.3650 0.3650 0.3650 0.3650 

85 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 

90 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900 0.0900 

95 -0.0500 -0.0500 -0.0500 -0.0500 -0.0500 -0.0509 -0.0509 -0.0500 

100 -0.1850 -0.1850 -0.1850 -0.1850 -0.1850 -0.1850 -0.1850 -0.1850 

105 -0.3200 -0.3200 -0.3200 -0.3200 -0.3200 -0.3200 -0.3200 -0.3200 

110 -0.4500 -0.4500 -0.4500 -0.4500 -0.4500 -0.4500 -0.4500 -0.4500 

115 -0.5750 -0.5750 -0.5750 -0.5750 -0.5750 -0.5750 -0.5750 -0.5750 

120 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 

125 -0.7600 -0.7600 -0.7601 -0.7600 -0.7600 -0.7600 -0.7600 -0.7600 

130 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 

135 -0.9300 -0.9300 -0.9300 -0.9300 -0.9300 -0.9300 -0.9300 -0.9300 

140 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 -0.9800 

145 -0.9000 -0.9000 -0.9000 -0.9000 -0.9000 -0.9000 -0.9000 -0.9000 

150 -0.7700 -0.7700 -0.7700 -0.7700 -0.7700 -0.7700 -0.7700 -0.7700 

155 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 -0.6700 

160 -0.6350 -0.6350 -0.6350 -0.6350 -0.6350 -0.6350 -0.6350 -0.6350 

165 -0.6800 -0.6800 -0.6800 -0.6800 -0.6800 -0.6800 -0.6800 -0.6800 

170 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 -0.8500 

175 -0.6600 -0.6600 -0.6600 -0.6600 -0.6600 -0.6600 -0.6600 -0.6600 

180 0.0000 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.000 
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Drag Coefficient Table for NACA4 0021: 0021_Cd.txt 

 160000 360000 700000 1000000 2000000 5000000 

0 0.0103 0.0079 0.0067 0.0065 0.0064 0.0064 

1  0.0104 0.0080 0.0068 0.0066 0.0064 0.0064 

2  0.0108 0.0084 0.0070 0.0068 0.0066 0.0066 

3  0.0114 0.0089 0.0075 0.0071 0.0069 0.0068 

4  0.0124 0.0098 0.0083 0.0078 0.0073 0.0072 

5  0.0140 0.0113 0.0097 0.0091 0.0081 0.0076 

6  0.0152 0.0125 0.0108 0.0101 0.0090 0.0081 

7  0.0170 0.0135 0.0118 0.0110 0.0097 0.0086 

8  0.0185 0.0153 0.0128 0.0119 0.0105 0.0092 

9  0.0203 0.0167 0.0144 0.0134 0.0113 0.0098 

10  0.0188 0.0184 0.0159 0.0147 0.0128 0.0106 

11  0.0760 0.0204 0.0175 0.0162 0.0140 0.0118 

12  0.1340 0.0217 0.0195 0.0180 0.0155 0.0130 

13  0.1520 0.0222 0.0216 0.0200 0.0172 0.0143 

14  0.1710 0.1060 0.0236 0.0222 0.0191 0.0159 

15  0.1900 0.1900 0.1170 0.0245 0.0213 0.0177 

16  0.2100 0.2100 0.2100 0.1280 0.0237 0.0198 

17  0.2310 0.2310 0.2300 0.2310 0.1380 0.0229 

18  0.2520 0.2520 0.2520 0.2520 0.2520 0.1480 

19  0.2740 0.2740 0.2740 0.2740 0.2740 0.2740 

20  0.2970 0.2970 0.2970 0.2970 0.2970 0.2970 

21  0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 

22  0.3440 0.3440 0.3440 0.3440 0.3440 0.3440 

23  0.3690 0.3690 0.3690 0.3690 0.3690 0.3690 

24  0.3940 0.3940 0.3940 0.3940 0.3940 0.3940 

25  0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 

26  0.4460 0.4460 0.4460 0.4460 0.4460 0.4460 

27  0.4730 0.4730 0.4730 0.4730 0.4730 0.4730 

30  0.5700 0.5700 0.5700 0.5700 0.5700 0.5700 

35  0.7450 0.7450 0.7450 0.7450 0.7450 0.7450 

40  0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 

45  1.0750 1.0750 1.0750 1.0750 1.0750 1.0750 

50  1.2150 1.2150 1.2150 1.2150 1.2150 1.2150 

55  1.3450 1.3450 1.3450 1.3450 1.3450 1.3450 

60  1.4700 1.4700 1.4700 1.4700 1.4700 1.4700 

65  1.5750 1.5750 1.5750 1.5750 1.5750 1.5750 

70  1.6650 1.6650 1.6650 1.6650 1.6650 1.6650 

75  1.7350 1.7350 1.7350 1.7350 1.7350 1.7350 

80  1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 

85  1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 

90  1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 

95  1.7800 1.7800 1.7800 1.7800 1.7800 1.7800 

100  1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 

105  1.7000 1.7000 1.7000 1.7000 1.7000 1.7000 

110  1.6350 1.6350 1.6350 1.6350 1.6350 1.6350 

115  1.5550 1.5550 1.5550 1.5550 1.5550 1.5550 

120  1.4650 1.4650 1.4650 1.4650 1.4650 1.4650 

125  1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 

130  1.2250 1.2250 1.2250 1.2250 1.2250 1.2250 

135  1.0850 1.0850 1.0850 1.0850 1.0850 1.0850 

140  0.9250 0.9250 0.9250 0.9250 0.9250 0.9250 

145  0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 

150  0.5750 0.5750 0.5750 0.5750 0.5750 0.5750 

155  0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 

160  0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 

165  0.2300 0.2300 0.2300 0.2300 0.2300 0.2300 

170  0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 

175  0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 

180  0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 
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Appendix D 
 
Mesh Generation Script Files for 2D VAWT Model  

Description:  

The following files operate together to generate the mesh used for the CFD simulations 

of this work. The files were written in GMSH code, each file generates a different section 

of the mesh and their function was explained before on pages 11 and 12 of the thesis. 

The software GMSH version 2.8.5 (or higher) is recommended for the mesh 

reconstruction. In order to facilitate the code review, we put together all the mesh 

generation files in one compressed folder called “12kW_VAWT” which is included as 

supplementary material. The mesh generation starts by executing the “makemesh” bash 

script on the Ubuntu terminal command line.  

Filename:  12kW_VAWT.rar 

➢ parameters.geo 

➢ NACA4.geo 

➢ Rotor.geo 

➢ Stator.geo 

➢ merge.awk 

➢ makemesh 
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Appendix E. 
 
Script File for Generating Tabulated Data 

Description:  

The subsequent file contains the bash script file that is used to generate the arbitrary 

mesh movement for the different mesh patches. The movement must be in a tabulated 

data format which is described in Section 2.2.2 of this thesis. In the bash script, there are 

several user-defined parameters that can be changed manually. Some of those 

parameters are rotational speed, wind speed, amount of revolutions, etc. These are 

required to produce the expected movement pattern on the mesh patches. The bash 

script file for the tabulated data is accompanied by a folder which contains some sample 

pitching functions, each in a 360-array on a text file. The text file corresponds to the 

discretized pitching versus azimuthal angle curve over one revolution, and 360 degrees 

is the discretization in one-degree steps. The data tabulation starts by executing the 

bash script on the Ubuntu terminal command line. 

Filename:  Tabulated_Data.rar 
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Appendix F. 
 
VAWT Simulation Script Files OpenFOAM 

Description:  

To allow an interested third party to re-do the simulations, we provide in the subsequent 

files an OpenFOAM CFD case for the 2D 12-kW VAWT model of this thesis. The mesh 

is already loaded into the CFD case and it is partitioned for parallel simulation of four 

cores. The simulation examples correspond to the fixed blade case validation study. 

Therefore, the operating conditions are TSR = 3.3 and 𝜔 = 5.98. The two folders 

correspond to the setup in OpenFOAM version 2.3.1 and 3.0.1 respectively, OpenFOAM 

documentation [40] is provided for additional information on differences between 

versions. 

 

The instructions in the Ubuntu terminal command-line to run the CFD case is shown 

below. The command “of23 ” is used to load  penF A  version 2.3.  while “of30 ” is 

for version 3.0.1. 

Command line: ~$ cd [/Directory/] 

Command line: ~[/Directory/]$ of231 

Command line: ~[/Directory/]$ mpirun -np 4 pimpleDyMFoam -parallel 2>&1 | tee LOG 

 

 

Filename:
of231_VAWT_TSR3.3_Rev8_FBP2.rar
of301_VAWT_TSR3.3_Rev8_FBP2.rar
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Appendix G. 
 
Metamodel Implementation in MATLAB 

Description:  

The metamodel procedure is explained in Chapter 5. In this appendix, we provide the 

implementation of the metamodel at the 4th iteration for TSR = 3.3. This implies that the 

torque and ABP results for six previous simulations are already provided. The 

simulations are the following: The original ABP for TSR = 3.3, the ABP with an offset of 

+2, the ABP with an offset of -2, The 1st optimal-ABP by the metamodel (which employed 

the three previous results), the 2nd optimal-ABP, and the 3rd optimal-ABP (which 

employed all previous results). The file contains six folders with the results of the 

previous ABP results. The metamodel implementation starts when we execute the 

 AT AB script file “NewBase.m”, which will process and save the results in a dedicated 

folder. Support functions scripts are included for further analysis of the results. 

Filename:  Metamodel_ABP_TSR3.3.rar 

To start the metamodel implementation, execute NewBase.m MATLAB script file. Note 

that the six previous ABP results folders must be in the same directory. 

The following folders and files are given in the supplementary material 

mesh0_ABP0:  Folder with results of the original analytic-ABP for TSR = 3.3 

mesh1_ABP+2:  Folder with results of the analytic-ABP with an offset of +2 

mesh2_ABP-2:  Folder with results of the analytic-ABP with an offset of -2 

mesh3_run1:  Folder with results of the 1st run of the metamodel implementation 

mesh4_run2:   Folder with results of the 2nd run of the metamodel implementation 

mesh5_run3:  Folder with results of the 3rd run of the metamodel implementation 

Plots:    Result folder with plots generated by the metamodel 

NewBase.m:  MATLAB script file which executes the metamodel 

CurveSmooth.m: Support function file for NewBase.m script 

NewBaseLine.txt: Result text file of new optimal-ABP generated by procedure 

Torque-per-Run.txt: Result text file of the torque average of all previous simulations 
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Appendix H. 
 
Simulation Data and Post-Processed Results 

Description:  

The data provided in this appendix contain the data and results for all ABP and fixed-

pitch simulations for all the TSR operating conditions that were subject to study. This 

data and processed results are the ones that this thesis utilizes in the tables and figures. 

The procedure to reproduce the simulations was given in Appendix F, to reproduce the 

data presented in these files only a few parameters are required change, following the 

description presented in the chapter of this work. 

Filename:  Thesis_Data_and_Results.rar 

 

The following folders and files are given in the supplementary material 

Metamodel - All TSR: Folder with the post-processed results of all TSR range 

Metamodel TSR 2.3: Folder for the metamodel procedure results for TSR = 2.3 

Metamodel TSR 2.8: Folder for the metamodel procedure results for TSR = 2.8 

Metamodel TSR 3.3: Folder for the metamodel procedure results for TSR = 3.3 

Metamodel TSR 3.8: Folder for the metamodel procedure results for TSR = 3.8 

Metamodel TSR 4.3: Folder for the metamodel procedure results for TSR = 4.3 

Metamodel TSR 4.5: Folder for the metamodel procedure results for TSR = 4.5 

VAWT low TSR-ABP: Folder with results of 𝐴𝐵𝑃𝑇𝑆𝑅2.3 for TSR of 1.0 and 0.5 

VAWT low TSR-FP: Folder with fix pitch results for TSR of 0.25, 0.3, 0.5, 0.75, 0.8, 1.0 

VAWT Validation: Folder with fix pitch results of the validation procedure 

ABP-Index_Ct_Cp: Torque and power coefficients results for ABP simulations 

Retrieve Data Steps: Instructions to reproduce the data 

 

 




