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Abstract

Privilege based security policies for programs are effective as a first line of defense against
attacks. They are able to mitigate broad classes of attacks against programs, potentially
saving the costs of searching for and mitigating specific vulnerabilities. Deploying such
techniques, however requires expert knowledge and manual analysis of programs.

We propose Passive Privilege Inference and Reducer (PPIR), a technique driven by a novel
static analysis that automates the process of inferring the privileges required by a program.
We develop a tool that uses this technique to infer the privileges required by a program
and instrument it with a security policy to enforce the Principle of Least Privilege. We
show that PPIR performs on par with handcrafted security measures while eliminating the
manual burden of investigating and inserting privileges. PPIR further enables the potential
to progressively reduce privileges as a program executes.

Keywords: Static Analysis; Code Hoisting; Privilege Restriction
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Chapter 1

Introduction

Software security is an increasingly important part of software development[26] where soft-
ware that is already built must be protected. Permission based security models are widely
used today[6], particularly in mobile operating systems such as Android and iOS. Within
this security model, only the applications holding permissions for a resource are authorized
to access that resource, e.g. the camera. The permissions needed by a program are selected
by the developer and declared to the operating system. Once authorized, the protected re-
source can be used at any point during the program’s execution. Such static permissions are
easy to use but can produce programs that are over-privileged, i.e. have more permissions
than necessary[1][14][5].

Dynamic security models permit modifications to the permissions or privileges available
to a program. Privileges can be revoked over the course of a program’s execution or se-
lectively granted to distinct parts of the program. Such models offer finer control over the
security of a program. The Principle of Least Privilege[33] dictates a program should execute
with the smallest set of privileges necessary to complete its task. Using the Principle of Least
Privilege as a guide, developers can exercise the finer control offered by dynamic security
models to more effectively secure applications in comparison to static security models[34].

The Pledge framework[29], as part of the OpenBSD, distribution allows dynamic privi-
lege restrictions, i.e. developers can choose to remove the privileges available to an applica-
tion at pre-specified points during execution. A privilege once removed, cannot be recovered
by the program. Thus, privilege restrictions are monotonic. A program attempting to invoke
a system call that it does not have privileges for is terminated by the operating system. In
practice enforcing privilege restrictions via Pledge can be a significant task for the developer
due to the following factors:

1. The privilege requirements of the program may not easily map to the available privi-
leges specifications. Libraries used by developers must be manually analyzed to extract
their privilege requirements.
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2. Pledge allow developers to monotonically restrict privileges but identifying which priv-
ileges to remove is complicated by control flow. Programs may invoke different system
calls on different paths in the program, which leads to differing privilege requirements
across different branches.

3. The privilege requirements of the program may change as the source code evolves.
Programs may add new functionality that requires new privileges, necessitating a
reanalysis of the privilege requirements of the program.

To ease the use of privilege restrictions, we develop Passive Privilege Inference and
Reducer (PPIR), an automated inference system which leverages the Pledge framework to
perform privilege management guided by the Principle of Least Privilege. ‘Passive’ indicates
that the tool does not require any interaction or input from the user besides the source code.
PPIR instruments source code to dynamically restrict privileges at run-time based on a novel
static analysis technique. We demonstrate the efficacy of our tool on real world programs
typical to any minimal Unix based distribution. While our tool is built using the Pledge
framework, the underlying insights and static analysis can be translated to other privilege
management systems that support monotone privilege restrictions.
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Chapter 2

Background and Motivation

The Principle of Least Privilege[33] acts as a guide for minimizing the possible damage
arising from an exploit, the idea being that the software should only have the smallest set
of privileges needed to complete its task. Software can use security features offered by the
operating system[21][39][37] to enforce the Principle of Least Privilege.

The Pledge framework offered with the OpenBSD operating system defines a privilege
as a group of system calls that have roughly the same effect[29]. The Principle of Least
Privilege guides developers to remove privileges when unnecessary. When using the Pledge
framework, developers should determine points in the program after which system calls
sharing a particular privilege will not be called. At that point, that privilege is unnecessary
for the program to continue execution and can be removed from the set of privileges held
by the program. Using the Pledge framework offers developers the ability to voluntarily
remove privileges with a call to pledge(char*). After a privilege is removed, if the program
is compromised by an attacker, the attacker will be limited to the privileges available to the
program.

The pledge function accepts a string as its argument. The first argument is the list of
privileges that are to be held by the program. This is enforced by the operating system. A
process starts with a set of enabled permission bits corresponding to the privileges defined
by the Pledge framework. A call to pledge removes the bits corresponding to the privileges
which are not specified in the first string argument to pledge. Once a permission bit is
disabled i.e. a privilege is removed, it cannot be enabled again. Thus, processes can only
give up privileges once they are unnecessary. When the process invokes a privilege using
system call, the operating system checks whether the appropriate bits are still enabled for
the system call. Processes failing this check are terminated and an error log is generated for
the user.

Summarily, a process starts with access to the full set of privileges and can invoke calls
to pledge to give up privileges during its execution. The Pledge framework also supports
restricting privileges for any sub-processes that may be spawned. This work focuses on
programs that execute within a single process and this is feature is not considered. For our
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threat model, we consider attackers that can feed inputs to a program, potentially leading
to unintended behaviour. The Pledge framework aims to mitigate the damage done by such
an attacker by removing unnecessary privileges which can limit the damage done by an
attack.

1 pledge ("stdio rpath wpath")
2 FILE* fp = fopen("input.txt", "r");
3 // R e q u i r e s r p a t h
4 ...
5 pledge ("stdio wpath");
6 ...
7 if ( ENABLE_WRITE ) {
8 FILE* fp2 = fopen(" output .txt", "w");
9 // R e q u i r e s wpath

10 fputs(data , fp2);
11 }
12 pledge ("stdio");
13 printf (" Printing Output : %s", data);
14 // R e q u i r e s s t d i o
15 ...

Listing 2.1: Progressive Privilege Reduction

Monotonic Privilege Restriction Each privilege defined by the Pledge framework is
shared by several system calls. The "stdio" privilege is required by each system call that
intends to read or write to open file streams or to standard IO. The "rpath" privilege is
required by programs to open files for reading exclusively. Similarly, the "wpath" privilege
is required to open files for writing. Note that, a file stream once open can be written to
or read from without the "rpath" or "wpath" privilege. Ideally, a process would progressively
give up privileges after the last system call that requires the privilege, i.e. as soon as the
privilege is no longer required. Figure 2.1, shows an example where a program reads from
one file and writes to another. Line 1 is a call to pledge() that restricts the privileges to
"stdio rpath wpath". After this point, the program will not be able use any system calls
aside from those associated with the stdio, rpath and wpath privileges. The string passed to
pledge tells the operating system which privileges are to be retained. After the program has
opened the file in read mode (line 2), it no longer requires the rpath privilege and removes it
with a call to pledge on line 5. The string passed to pledge only holds wpath and stdio which
removes the rpath privilege and prevents the program from opening any other files in read
mode. Similarly, once the program has finished writing to the file on line 10, it removes the
privilege for writing to files. stdio is retained since it is required later in the program outside
of the example. We use the term monotonic privilege reduction to define the paradigm in
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which developers may progressively reduce the privileges available to the program via calls
to pledge.

Compared to other frameworks such as Capsicum[39] or SELinux[37] that require the
program to split into isolated units, the Pledge framework does not require the program to
be refactored. The Pledge framework has also been demonstrated on 50 applications prior to
its adoption by the OpenBSD community. The burden of performing privilege restrictions,
however, still lies with the developer. Performing monotonic privilege restrictions requires
the developer to identify the exact privilege requirements of the program as well as when a
privilege is no longer required. This requires reasoning over every path and function in the
program.

System calls that require privileges may be located on multiple paths over multiple
functions. The developer must ensure that all privilege requirements induced by system
calls are accounted for prior to inserting a call to pledge. Similarly the developer must also
locate the last use of a privilege, which may be shared by several system calls on multiple
paths, prior to performing a privilege restriction.

Using libraries can also complicate privilege restrictions. The libc library abstracts away
complicated interactions with system calls. Developers attempting to perform privilege re-
strictions while making use of libraries would have to identify privilege uses within the
library. This would require manually analyzing the library, creating an additional burden.

The Pledge framework is an active project and was recently renamed from tame to
pledge. As the Pledge framework is under active development, software using it must also
be reanalyzed and refactored if changes are made to the Pledge framework itself, increasing
the manual effort required when using pledges.

Guarded Pledging In addition to monotonic privilege restriction, developers using the
Pledge framework can perform guarded privilege restrictions. Guarded privilege restrictions
require programs to find the preconditions for a privilege i.e. the conditions under which
a privilege may be required along a path. Listing 2.2, shows the same example as earlier
aside from making the calls to pledge conditional upon the flag ENABLE_WRITE. The
program only writes to a file if that flag is set to true, therefore, the program only needs
the wpath privilege if the flag is set. This presents an opportunity to eliminate unneeded
privileges earlier using a check on ENABLE_WRITE earlier in the program. If true, we
know that the program will open a file with write privileges (line 16) and would need
the wpath privilege. Otherwise, the program would continue without writing and write
privileges can be safely removed. Lines 9-13 demonstrate conditional restriction by checking
whether ENABLE_WRITE is set. As the privilege restriction is guarded by a condition on
ENABLE_WRITE, this is known as guarded privilege restriction. While this presents an
opportunity to eliminate unneeded privileges earlier, it requires precise reasoning about the
preconditions that decide privilege uses throughout the program.
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Preconditions for privilege uses may be dependent on external inputs, which might not
be available until later in the execution of the program. Only after the variable is live can
it be used to perform a check. Developers must identify the precise inputs a privilege use is
dependent on and use it to a perform a privilege restriction.

The possible paths taken by the program must also be considered, as branch conditions
determine the privilege uses. A privilege use could possibly be guarded by several conditional
statements and nested within several layers of function calls. The conditions used to perform
the restriction must be extracted by the developer.

1 if ( ENABLE_WRITE ) {
2 pledge ("stdio rpath wpath");
3 } else {
4 pledge ("stdio rpath");
5 }
6 FILE* fp = fopen("input.txt", "r");
7 // R e q u i r e s r p a t h
8 ...
9 if ( ENABLE_WRITE ) {

10 pledge ("stdio wpath");
11 } else {
12 pledge ("stdio");
13 }
14 ...
15 if ( ENABLE_WRITE ) {
16 FILE* fp2 = fopen(" output .txt", "w");
17 // R e q u i r e s wpath
18 fputs(data , fp2);
19 pledge ("stdio");
20 }
21 printf (" Printing Output : %s", data);
22 // R e q u i r e s s t d i o
23 ...

Listing 2.2: Guarded Privilege Reduction

Reasoning about these factors over a combinatorial number of paths throughout the
program can be difficult. Motivated by the difficulty in performing privilege reductions, we
built a tool to relieve the programmer of the burden of correctly inferring the conditions
associated with privilege uses and performing monotonic guarded privilege reductions.
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Chapter 3

Inferring Guarded Privilege
Restrictions

This chapter presents a formal overview of the technique we apply to infer guarded privilege
restrictions. The following sections demonstrate how we model the inference of privilege
requirements in a program. Using a small program (Listing 3.1) we describe how we can
determine the privileges that will be required by working backwards through the program.
Then, we demonstrate how our analysis infers the conditions under which privileges will
be required. Finally, we demonstrate how the inferred conditions can be used to perform
privilege restriction by strategically identifying points to insert conditional calls to pledge.

1 void work () {

2 //φ3 : " w r i t e "
3 int data = input ();

4 //φ6 : " w r i t e " i f d a t a = 0 and ENABLE_LOG i s t r u e
5 // o r da t a > THRESHOLD
6 if ( ENABLE_LOG ) {

7 //φ7 : " w r i t e " i f d a t a = 0 o r da t a > THRESHOLD
8 logIfZero (data);

9 }

10 //φ11 : " w r i t e " i f d a t a > THRESHOLD
11 if (data > THRESHOLD ) {

12 //φ13 : " w r i t e "
13 record (data)

14 }

15 //φ16 : no p r i v i l e g e s
16 return ;

17 }

Listing 3.1: A privilege using function
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The Principle of Least Privilege suggests that privileges should be removed as soon as
they are not required. Determining the conditions under which a privilege will be required
allows us to use the conditions to determine if the privilege will be used in the future. At
runtime a check on these constraints can be used to conditionally remove privileges that
are known to be unnecessary. Privileges in the Pledge framework map to groups of system
calls, and restricting a privilege for one group does not affect the others. Hence, we extract
the requirements and conditions related to each privilege independently. Later, we combine
the results for each privilege to perform privilege restrictions. For clarity, we restrict our
discussion to a hypothetical write privilege for this chapter. The write privilege is a contrived
example, similar to the wpath privilege from the Pledge framework, with the only difference
being that write will be checked when interacting with a file while wpath is checked earlier
when opening a file.

The example in Listing 3.1 shows a simple function that uses the write privilege. The
program receives an external input and stores it in a variable, data (line 3). The data variable
is then used as an argument in a call to the logIfZero function (line 8). The function call is
conditional on a global flag, ENABLE_LOG (line 6). The logIfZero function writes to a file if
the argument supplied to it is set to 0. This requires the write privilege. line 11-14 is another
conditional function call. The record function unconditionally requires the write privilege
but is only called if data is greater than the THRESHOLD value. The program ends after
the call to record. Throughout the function, there are several conditions that affect whether
privileges are required.

By stepping backwards through the program, we can determine the conditions that
must be satisfied if privileges are used later in the program. The return statement does not
need privileges itself, and since there are no privilege using functions after it, the program
does not require privileges at this point (line 15). At the previous statement, the call to
record introduces the unconditional need for a privilege (line 12). The call is guarded by
the if statement, which makes the privilege requirement conditional prior to line 10. Like
the previous function, the call to logIfZero also introduces a privilege requirement. However,
logIfZero only requires the write privilege when data is set to 0, which means write is required
when data is equal to 0 or when data is greater than the THRESHOLD. Further up, the
guard on logIfZero adds another condition on the privilege requirement. Prior to line 6, a
privilege is required when data is 0 and along with it, ENABLE_LOG is true; or when data
is greater than the THRESHOLD. The condition is simplified at line 3 when data is assigned
an external input. At this point, since we cannot make assumptions about data, we assume
that prior to line 3, write is unconditionally required. Thus, the conditions prior to lines
3, 6, 8, 11, and 13 are each conditions which will be true when write is required later on
in an execution of the program, after each respective condition. We use the symbol φi to
represent these conditions, where i is the line number for the statement after the condition.
We use a novel Precondition Inference technique to find these conditions.
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3.1 Precondition Inference

The privileges a program requires are determined by the function calls in a program. This
information must be made available at earlier points to enable early privilege restrictions.
The static analysis propagates this information backwards along with the necessary condi-
tions for the privileges. Using the set of conditions φ available immediately after a statement
i, a set of conditions φi can be inferred which will be satisfied in all cases where a privilege
may be used in the future. We refer to the inferred conditions as privilege preconditions,
while the conditions φ available immediately after a statement are called postconditions.
Upon termination, φ is assumed to be false. Our analysis is guided by a few rules that follow
from Hoare Logic[18] for privilege preconditions over different program statements.

Function Calls. Function calls may introduce a new privilege requirement. In the exam-
ple on line 13, the record function unconditionally requires the use of a privilege. Since the
privilege must be held before it, the inferred precondition is simply true.

{true} record(data) {false} (3.1)

Πrecord , true (3.2)

Equation 3.1 shows the call to record from line 13 in Listing 3.1. The post conditions are
shown on the righthand side of the call statement while the preconditions are shown on
the left. Since there are no privileges required after the call the postconditions are simply
false. Equation 3.2 shows the specifications for the function as a boolean constraint which
is unconditionally true making the preconditions inferred also unconditionally true.

{φ ∨ΠlogIfZero(arg)} logIfZero(arg) {φ} (3.3)

ΠlogIfZero(arg) , arg = 1 (3.4)

Unlike the unconditional record function, the logIfZero function is conditional on its argu-
ment. Using the specifications (Equation 3.4), the precondition is inferred as a boolean
constraint ΠlogIfZero which is disjunctively added to the preconditions. The postconditions
φ are not affected and are inferred as part of the preconditions to the statement. The static
analysis infers the preconditions for both of these functions using the general rule:

{φ ∨Πfunction(arg)}function(arg){φ} (3.5)

where Πfunction is the boolean constraint modeling the privilege requirements of the function.
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Assignments. Assignments to variables with a postcondition φ follows a simple rule,

{φ[x/y]} x = y {φ}

φ[x/y] is used to denote the set of conditions φ, where every occurrence of the variable
x in φ is replaced with y. Two variables pointing to the same location in memory during
execution are said to be aliasing. Aliasing presents a challenge when attempting to infer
preconditions and is addressed later (Section 4.1.2).

Inputs. The data variable receives an input on line 3. When inferring the preconditions
for line 3, the static analysis is forced to approximate the constraints on data to true. Since
the disjunct data > THRESHOLD must also become true, the entire disjunction becomes
true.

{true} data = input() {φ}

φ , (data = 0) ∧ (ENABLE_LOG = true) ∨ (data > THRESHOLD)

Since inputs cannot be reasoned about statically, the analysis follows the general rule in
Equation 3.6 when inferring preconditions over inputs where all constraints ρ on the variable
receiving an external input are conservatively replaced with true.

{φ[ρvar/true]}var = input() {φ} (3.6)

where ρvar is a conjunct containing var.

Branches. There may be different privilege conditions associated with the different paths
of a branch statement. After the branch on lines 11-13 in Listing 3.1, no privileges are
required. The write privilege is introduced by the call to record within the branching path.
Since the privilege use depends on the the branch condition being true, the preconditions
inferred are φ11 , data > THRESHOLD.

{data > THRESHOLD} if(data > THRESHOLD) record() {false}

Similarly, for the statement on line 6, the postconditions are data > THRESHOLD while
the privilege using function within it requires a privilege when data = 0. Using the branch
condition and the function specifications, the inferred precondition is: φ11 , (ENABLE_LOG
= true ∧ data = 0) ∨ (data > THRESHOLD).

{φ11} if(ENABLE_LOG) logIfZero() {(data > THRESHOLD)}

φ11 , (ENABLE_LOG = true ∧ data = 0) ∨ (data > THRESHOLD)

10



When performing precondition inference over branches, the branch condition ρ is added as
a boolean conjunct to the privilege preconditions generated by the statements within the
branch, φinternal . The postconditions φ of the branch are added as a disjunct. The general
rule is shown in Equation 3.7

{(φinternal ∧ ρ) ∨ φ} if(ρ) φinternal {φ} (3.7)

3.2 Weakest Sufficient vs Strongest Necessary Preconditions

Our analysis ensures that after performing privilege restrictions, the program has the nec-
essary privileges to finish execution. Using an approximate set of conditions for privilege
restrictions may result in a restriction that removes a necessary privilege, resulting in the
program being terminated by the operating system later in its execution. Thus, while it
is impossible to avoid approximations due to loops and runtime inputs[10], an analysis at-
tempting to infer privilege preconditions must ensure that the program has the necessary
privileges to finish execution. In the context of static analysis, this is known as soundness.
While this could be trivially achieved by granting the program access to all privileges and
never restricting privileges, it would be at odds to the Principle of Least Privilege. Precondi-
tions may be computed as the strongest necessary preconditions or their dual, the weakest
sufficient preconditions. We choose to compute the strongest necessary preconditions for
privilege uses as it enables our analysis to be sound even when performing approximations
over loops and external inputs[10]. Our justification of this follows:

1 void looper (int n, int data) {

2 for (int i = 0; i < n; i++) {

3 logIfZero (data); // May need w r i t e p r i v i l e g e s
4 }

5 }

6 return ;

7 }

Listing 3.2: A privilege using function within a loop

Weakest Sufficient Preconditions. When inferring weakest sufficient preconditions, an
approximate set of preconditions may be inferred that when used for privilege restriction will
result in the program being underprivileged (holding fewer than necessary) in certain cases.
Inferring the weakest sufficient preconditions for a privilege, computes the preconditions
that guarantee the use of a privilege later in the program, i.e. the conditions are logically
sufficient for a privilege to be used in the future. The program in Listing 3.2 shows a loop
with a function call that requires a privilege. A static analysis attempting to analyze the
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privilege preconditions prior to the loop would be forced to over-approximate. It would be
valid for the analysis to compute an over-approximate set of weakest sufficient preconditions
for line 2 as

φapprox , n > 10 ∧ΠlogIfZero

If φ′
approx evaluates to true at runtime, the program will definitely need the write privilege.

However, it does not cover the case where 0 < n < 10, where the program will also require
privileges. Over-approximations for weakest sufficient preconditions are in the direction of
logical sufficiency, which yields a correct yet logically stronger set of preconditions. Thus,
when computing the weakest sufficient preconditions for a privilege, a set of conditions may
be inferred that guarantee the use of privilege but do not cover all the cases under which a
privilege is needed.

Strongest Necessary Preconditions. Our analysis computes the dual to Weakest Suf-
ficient Preconditions, i.e. the Strongest Necessary Preconditions. This allows the analysis to
be sound when performing approximations for preconditions. The necessary preconditions
for a program are the conditions which are satisfied in all cases when a privilege is used.
Note that the use of a privilege is not guaranteed from these conditions being satisfied. It
may so happen that the privilege is not required due to a later condition that the analysis
had to approximate.

For the loop in Listing 3.2, the most over-approximate necessary privilege precondition
is true which means that the privilege is unconditionally required. This preserves the re-
quirement for a privilege. Conversely, when computing the weakest sufficient preconditions,
the most over-approximate precondition is false, which would suggest that the privilege can
be removed resulting in a privilege violation when n > 0. Our analysis is sound by design
as the approximations made are towards logical necessity, which makes the preconditions
weaker. This guarantees that the analysis does not incorrectly infer that a privilege may be
removed, ensuring its soundness.

Line 3 in Listing 3.1 shows an external input to the data variable. Since the input is
only available when the program executes the statement at runtime, we cannot statically
reason about it. When performing precondition inference over the statement for privileges,
the effects of the input must be conservatively modeled. Our analysis approximates the
constraints over the variable and infers the preconditions as φ3 , true, keeping the analysis
sound. Approximating the weakest sufficient preconditions over inputs yields false (stronger)
as the most approximate preconditions, while the strongest necessary preconditions can be
approximated to be true (weaker). Like before, a false privilege precondition would suggest
that privileges can be removed while true would preserve it.

Summarily, our analysis computes the Strongest Necessary Preconditions instead of the
Weakest Sufficient Preconditions. Doing so guarantees that the analysis will not incorrectly
infer that a privilege can be removed when dealing with inputs and approximations.
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3.3 Performing Privilege Restrictions

The analysis infers the necessary privilege preconditions prior to each statement in the pro-
gram, which can be used for privilege restrictions. Consider the preconditions inferred prior
to every program statement in Listing 3.1. Conditional privilege restrictions can be made
using any of the inferred privilege preconditions φi. For instance, a conditional restriction
can be made prior to line 11 with φ11 as the condition.

1 void work () {
2 //φ3 : " w r i t e "
3 int data = input ();
4 //φ6 : " w r i t e " i f da ta = 0 and ENABLE_LOG i s t r u e
5 // o r data > THRESHOLD
6 if ( ENABLE_LOG ) {
7 logIfZero (data);
8 }
9 if (data > THRESHOLD ) {

10 pledge ("write");
11 } else {
12 pledge ("");
13 }
14 if (data > THRESHOLD ) {
15 record (data)
16 }
17 return ;
18 }

Listing 3.3: Conditional restriction with inferred preconditions

Recall that a call to pledge is used to specify the privileges that the program must retain.
On line 15 in Listing 3.3, the program calls the record function if the value of data is greater
than THRESHOLD. If this condition does not hold the write privilege can be safely removed
prior to line 14. Similar privilege restrictions can be made prior to each statement in the
program. For a statement i with inferred necessary preconditions φi, φi will be satisfied if a
privilege using function is invoked at a point after the statement i. Conversely, if φi is not
satisfied the privilege will not be required and can be safely dropped.

3.3.1 Finding where to drop privileges

With the preconditions available at each point in the program, the analysis can insert
privilege restrictions prior to each program statement. This is undesirable as it obfuscates
the code with calls to pledge and also makes the program less efficient. Instead, our analysis
identifies the points at which it would be useful to perform privilege restrictions.

Listing 3.4 is a straight-line function with conditional privilege restrictions inserted
prior to every statement in the program. The statements from the input program prior to
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1 int getNextPoint () { //∗
2 pledge ("write");
3 int data = input (); //∗
4 if (data == 0) {
5 pledge ("write");
6 } else {
7 pledge ("");
8 }
9 int pointA = data; //∗

10 if ( pointA == 0) {
11 pledge ("write");
12 } else {
13 pledge ("");
14 }
15 int pointB = generate (data); //∗
16 if ( pointA == 0) {
17 pledge ("write");
18 } else {
19 pledge ("");
20 }
21 logIfZero ( pointA ); //∗
22 pledge ("");
23 return pointB ; //∗
24 }

Listing 3.4: Redundant restrictions

1 int getNextPoint () {
2 pledge ("write");
3 int data = input ();
4 if (data == 0) {
5 pledge ("write");
6 } else {
7 pledge ("");
8 }
9 int pointA = data;

10

11

12

13

14

15 int pointB = generate (data);
16

17

18

19

20

21 logIfZero ( pointA );
22 pledge ("");
23 return pointB ;
24 }

Listing 3.5: Useful restrictions only

instrumentation is marked with a * as a comment beside the code. The privilege requirement
is introduced on line 21. The argument deciding the need for a privilege is the pointA
variable. On line 9, data is assigned to pointA. Earlier, data is initialized with an external
input on line 3. The remaining statements in the program do not affect the pointA variable.
Thus, while the privilege use is conditional on pointA, most of the statements in the program
do not modify the privilege preconditions. Furthermore, since pointA is a reassignment of
the external input, a conditional restriction on pointA can be replaced with a conditional
restriction on data earlier in the function. Listing 3.5 shows a single conditional restriction
after the input statement. The conditional restriction on line 4, using the data variable,
removes the need for further restrictions till the final restriction on line 22 as the rest of the
restrictions use the same condition.

Our analysis is able to eliminate these redundant restrictions by identifying the points at
which the privilege preconditions are changed. Branches, function calls and external inputs
may change necessary conditions for privilege uses later in the program. Other statements,
such as assignments, may replace the variables or terms the privilege preconditions are
dependent on but do not affect the underlying constraints. Since not all programs statements
affect privilege preconditions, our analysis uses a novel single step forward analysis to find
the points at which privilege restrictions are useful.
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3.3.2 Identifying useful restrictions

According to the Principle of Least Privilege, privilege restrictions should be performed
as early as possible. Using the privilege precondition φ3 = true prior to line 3 in Listing
3.1 however, unconditionally restricts the program to the write privilege. This means that
the program will still hold on to the write privilege when ENABLE_LOG is false and the
incoming value of data is less than THRESHOLD.

1 void work () {
2 int data = input ();
3 if (data == 0 && ENABLE_LOG || data > THRESHOLD ) {
4 pledge ("write");
5 } else {
6 pledge ("");
7 }
8 if ( ENABLE_LOG ) {
9 logIfZero (data);

10 }
11 if (data > THRESHOLD ) {
12 record (data)
13 }
14 return ;
15 }

Listing 3.6: Conditional restriction after input

Listing 3.6 shows a conditional restriction made after line 3 using the privilege preconditions
φ6. The condition is on the data variable using the external input only available after line 3.
Intuitively, conditional privilege restrictions are more effective after the input variable that
affects the privilege requirements is available.

Round-trip Inference. When the analysis infers privilege preconditions over an input
statement, the constraints in the postcondition that are dependent on the input are conser-
vatively made true in the preconditions. Such statements in the program affect the privilege
preconditions inferred prior to it. Our analysis uses a novel round-trip analysis technique to
identify such statements. A privilege restriction can then be inserted after such a statement.

The preconditions φi for a statement i are inferred from an available set of postcondi-
tions φ. Once φi is available for each statement, the analysis infers the strongest necessary
postconditions φpost for each statement that will be true after the statement executes. We
refer to these conditions as the inferred postconditions. Equations 3.8 and 3.9 show the
effects of a backward and then forward analysis over the input to data (line 3 in Listing 3.1)
respectively.
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{φ[ρdata/true]} data = input() {φ6} (3.8)

φ6 , (data = 0 ∧ ENABLE_LOG = true) ∨ (data > THRESHOLD)

{φ[ρdata/true]} data = input() {φpost} (3.9)

When inferring preconditions, the analysis replaces every conjunct on data in φ with true.
Note that in this case, this results in the privilege precondition becoming true since all dis-
juncts contain a conjunct containing data. This means that the privilege is unconditionally
required prior to the input. The inferred postcondition φpost from φ[ρdata/true] will also be
simply true.

Examining the relationship between φ6 and φpost , we can see that φ6 =⇒ φpost while
φpost 6=⇒ φ. Intuitively, this identifies a point after which the conditions necessary for a
privilege to be used in the future are changed. A privilege restriction at this point would
use a stronger set of constraints to further reduce the conditions under which the program
has access to the privilege. In the example, the analysis infers the input (available after line
3) as a point after which privileges should be conditionally restricted.

Figure 3.1: Visualizing the postcondition inference check

The analysis follows a general rule to find the points where privilege restrictions are
useful. The analysis compares the inferred postconditions (φpost) with the available postcon-
ditions (φ) to identify the points after which the conditions affecting the use of privileges
are changed. When the inferred postconditions do not imply the available postconditions,
the analysis interprets it as a point after which a privilege restriction should be inserted.
Figure 3.1 visualizes the round-trip inference followed by the implication check for a single
statementi . Putting it all together, the preconditions φi are inferred from the postconditions
φ. The postconditions φpost is then inferred from φi. Finally, the analysis checks whether
φ ⇐= φpost .
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3.4 Final Restrictions

Listing 3.7 shows the final version which has been instrumented with the useful privilege
restrictions as inferred by our tool.

1 ,void work () {
2 , int data = input ();
3 , if (data == 0 && ENABLE_LOG || data > THRESHOLD ) {
4 , pledge ("write");
5 , } else {
6 , pledge ("");
7 , }
8 , if ( ENABLE_LOG ) {
9 , logIfZero (data);

10 , if (data > THRESHOLD ) {
11 , pledge ("write");
12 , } else {
13 , pledge ("");
14 , }
15 , }
16 , if (data > THRESHOLD ) {
17 , record (data);
18 , pledge ("");
19 , }
20 , return ;
21 ,}

Listing 3.7: Final restrictions

The privilege requirement is introduced by the calls to logIfZero and record. By inferring
the strongest necessary preconditions and then performing the round-trip analysis, the
analysis identifies the point after the input as a useful point for lowering. The function calls
are also identified as points to lower as the implication relationship between the inferred
postconditions to the function call are different from the available postconditions. Note that
using the rules presented in this chapter, a privilege restriction would also be inserted after
line 15 as a consequence of modelling branches in the program as atomic (indivisible) units.
In reality, PPIR is able to identify them as redundant as we implement our analysis with
richer semantics, which we delve into in the next chapter.

Chapter Summary This chapter shows how we formalize the notion of conditional priv-
ilege restrictions which is required for inserting guarded pledges in a program. The foun-
dations for our static analysis are laid out in this chapter and fleshed out fully with richer
detail in the succeeding chapters.

17



Chapter 4

Static Analysis

Dataflow analyses[20] are a class of static analysis techniques employed by a compiler for
optimizations, liveness analysis, dead code elimination and more. A dataflow analysis sets up
constraints for each node in the control flow graph of a program. We define the constraints
as flow equations over entry and exit states from neighbouring nodes, originating from a
prespecified entry node. A state here refers to an abstract state, which we describe later.
Repeatedly solving these equations yields a fixed point result that is an over-approximation
of the necessary preconditions for privilege uses prior to each node.

4.1 Intra-procedural

We describe the intra-procedural analysis using the three components of a monotone dataflow
analysis[27] framework: the abstract state and domain, the transfer functions, and the join
operator with the help of a small, kernel language (similar to LLVM IR). Later, we show
the inter-procedural effects of the algorithm to show how we can analyze whole programs.

While relatively simple, the kernel language described by the grammar in Figure 4.1
is enough to model the complexities typical to real world programs. A program in this
language is built from one or more functions. Each function consists of a set of statements
and always ends with a statement returning a value, the return statement. Control flow is
modeled through conditional and non-conditional goto statements and function calls. The
language also models interaction with memory via loads and stores. We use this to describe
our approach to handling aliases in real world programs in Section 3.2.2. We abstract away
the details of exact mathematical operations and represent them as program expressions
(exprs) val op val and op val for unary arithmetic respectively. Exprs in our language return
values from computations, functions calls or return addresses of variables. Note that, while
the kernel language limits the use of pointer arithmetic, our implementation of the analysis
has no such limitation. Finally, we model the use of programming constructs that cannot
be reasoned about as havoc expressions.
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stmt ::=
| var = expr
| ptr = expr
| store val , ptr
| if p goto l′

expr ::=
| var op var
| op var
| addr
| load ptr
| havoc

var ::=
| val
| ptr

Figure 4.1: The kernel grammar used to describe our analysis

4.1.1 Abstract State and Domain

We model an abstract state as a predicate φ, where for a pair of abstract states, φA and
φB, φA � φB if φB =⇒ φA. The partial ordering between abstract states forms an
abstract lattice or abstract domain. The top of the lattice is set as true (logical truth, >)
and conversely, the bottom as false (logical falsehood, ⊥), naturally following the partial
ordering. A merge between two abstract states is defined by a join operation φAtφB, which
results in a move up the lattice to the least upper bound of φA and φB, φub v {φA, φB}.
During the analysis, approximations can be made by forcing the abstract state to >.

Each abstract state is a disjunction, δ1∨δ2 . . . δn where δi is a conjunction (alternatively,
a disjunct) of program constraints, ρ1∧ρ2∧ . . . ρn. Modeling the abstract state disjunctively
(i.e. in DNF form) enables the analysis to capture the privilege preconditions that arise from
different branches in the program (Section 3.1). As demonstrated by the motivating example
(Listing 2.1), a privilege use may be dependent on a constraint, the constituents of which
may be modified through the course of the program. A ρ in our abstract state models a
program constraint as a logical formula of program instructions that is updated through
transfer functions as the analysis progresses through the program.

To represent the complete set of privileges we use a tuple of abstract states. Each
element in the tuple is associated with a single privilege. This does not introduce additional
complexity to the algorithm as privileges are independent of each other and, transitively,
so are the abstract states for each privilege. Considering the independence of privileges, we
present the analysis from the perspective of a single privilege.
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Instruction i λTransferFunction.i.φ

Assignment var = expr φ[var/expr ]

Havoc var = havoc ρvar = >, ∀ρvar ∈ φ

Branch if ρ goto l δ = δ ∧ ρ, ∀δ ∈ φ

store var, ptrs
∃load ptrl ∈ φ : MustAlias(ptrs, ptrl)

φ[load ptrl/var]

Store store var, ptrs
∃load ptrl ∈ φ : MayAlias(ptrs, ptrl)

δ = δ[load ptrl/var] ∧
(ptrs = ptrl),∀ load ptrl ∈ φ

store var, ptrs
@load ptrl ∈ φ : MayAlias(ptrs, ptrl)
∨ MustAlias(ptrs, ptrl)

skip

Table 4.1: Transfer Functions

4.1.2 Transfer Functions and Aliasing

A transfer function λTransfer(stmt, φ), infers the preconditions for a program statement
stmt, given the statement itself and an abstract state φ as a set of postconditions. An
application of λTransfer returns a new abstract state φ′ that are the preconditions for stmt.
The transfer functions follow the rules laid out in Table 4.1.

For an assignment, every occurrence of var, which may either be a variable or a pointer,
in φ is replaced with the expr that’s been assigned to it. The assignment rule captures arith-
metic operations, values loaded from pointers, and addresses of variables as the language
represents each as an expr .

The transfer functions applied over load and store expressions are far more interesting.
A language that admits the use of loads and stores to memory, also introduces situations
where two pointers may address or alias the same location in memory. From a static analysis
perspective, this presents a challenging problem[8][23]. We discuss our approach to dealing
with aliases in the latter part of this section.

1 func foo ():
2 ...
3 x = havoc
4 ...
5 file = open(x)
6 ...
7 return 0

Listing 4.1: Straight Line Program Using Conditional Privileges
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For the straight line program in Listing 4.1, the use of a privilege is determined by the
input to the program stored in the variable x. Without any specifications constraining the
input, the value of x prior to the input is impossible to know. We model such an event in
our kernel language as var = havoc. Per the rules of our analysis, given a φ, the transfer
function operating over a havoc expression sets ρvar , i.e. every conjunct that contains var
in φ to true. Replacing conjuncts to true in a disjunction φ yields a φ′ such that, φ′ =⇒ φ.
This preserves the ordering of φ and φ′ in the lattice where φ′, being weaker, is higher up
the lattice.

We model all non-invertible functions, i.e. a function whose arguments cannot be inferred
from its results, as a havoc assignment. Technically, non-invertible but idempotent functions,
such as arithmetic operations can be modeled as an element in ρ. Consider the program
statement y = x mod 3, which performs a modulus operation on a variable x. Given the
postcondition to the modulus operation as ρ , y = 2, inferring the exact value of x prior
to that line is impossible. On the other hand we can absorb the modulus operation into
our logical formula as ρ′ , x mod 3 = 2. This is possible due to the fact that a modulus
operation is idempotent, i.e. the modulus operation will produce the same results given the
same inputs.

While the analysis does take advantage of idempotency in arithmetic operations, iden-
tifying idempotency over several lines of code is a challenge which we do not attempt to
tackle. Other programming constructs that are non-invertible include hash functions, loops,
and external functions for which specifications aren’t available.

Aliasing. Aliasing refers to the situation where two variables point to the same location
in memory, which makes precise static analysis of programs difficult. For the purposes of our
analysis, aliasing presents a challenge as privilege uses may be dependent on pointers which
may or may not alias. As a result updates through aliasing pointers must be captured
by the abstract states. Programming languages permit the use of aliasing through the
use of pointers and reference variables. The kernel grammar prevents the use of reference
variables but allows the use pointers since reference variables, while presented differently to
a programmer, are equivalent to pointers under the hood of a compiler.

We use three helper functions,MustAlias, MayAlias and NoAlias, to determine the aliasing
relationship between two pointers. Two pointers must alias if it can be proven that they
point to the same location in memory. Similarly, a no alias relationship exists when it can be
proven that they do not point to the same location. These relationships require strong proof
since taking advantage of either of them when unproven, can lead to memory corruption
errors. When neither can be proven, the pointers are said to have a may alias relationship.
Alias analysis is a well studied problem for which various solutions exist[38][28], and we
resort to them for determining the aliasing relationships between pointers. Additionally, the
kernel grammar restricts the use of pointers to load and store statements exclusively.
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1 func foo(ptr py):
2 val x = 5
3 ptr px = &x
4 store 0, px
5 val flag = load px
6 ReadWrite (" Aliasing is Hard", px);
7 return 0

Listing 4.2: Conditional Privilege Requirements due to Aliasing

Listing 4.2 is a contrived example demonstrating the use of privileges dependent on pointers.
The call to the function ReadWrite only requires a privilege if the second argument to the
function, flag has an integer value of 2. flag depends on the value assigned to it by the
load statement in the previous line. Consider that the pointer argument px to the load
instruction may alias the pointer py. Pointer py has a new value stored to it at line 4,
the result of the expression from line 3. For the analysis to be sound, it must be able to
capture the semantics of the cases where px and py must, may and may not alias. The
transfer functions capture aliasing behaviours of a program through operations on store
instructions. A load instruction is treated as an assignment expression since at runtime
when the program reaches a load, the argument to the load will be unambiguous.

For a store instruction store vars, ptrs, the transfer function checks the pointer argument
ptrl to every load instruction load currently in the abstract state for its aliasing relationship
with ptrs. If ptrl must-alias, we consider it an assignment; the use of the load instruction is
simply rewritten with vars. A no-aliasing relationship results in no change to the abstract
state.

In the event that a ptrl may-alias ptrs, each disjunct δ containing ptrs is duplicated into
the abstract state with an additional conjunct ptrs 6= ptrl, i.e. ptrs does not alias ptrl. At
the same time, every conjunct ρl in δ that held a use of the of ptrl is rewritten with vars
as ρ′

l[load/vars] and an additional conjunct ptrs = ptrl, is appended to δ. Intuitively this
represents the two outcomes of a may aliasing relationship, it either must or it must not.

An abstract state can have several load instructions, consequently, the pointer associated
with each can have differing relations with the store pointer being analyzed. To deal with
this, aliasing is dealt with in three passes for each store instruction using the rules mentioned
for each kind of relationship. For a set of load instructions and a store pointer, the first
deals with no-aliases, the second with must aliases and the third with may-aliases. The
first two passes reduce the load instructions to be operated on, and the third conservatively
transforms the remaining.
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Figure 4.2: Control Flow Example

4.1.3 Edge Transformations and Join Operator

Control flow structures in a program demonstrate the path sensitive nature of privilege uses.
Consider a program with three branches, each guarded by an independent conditional state-
ment. The first and second branches exit after calling a function that requires a privilege.
The program will need the privilege when either the first or the second guard condition is
true. As such, the abstract state models the disjunctive program constraints introduced by
conditional statements. The kernel language restricts the control flow to binary branching.
This is enough to model branching structures such as switches and if-else ladders. A con-
ditional statement in a program written in the kernel language takes the form if ρ: goto l .
The boolean variable ρ, determines whether the program will jump to blockl, the program
block with the label l. We model ρ as a conjunct in our abstract state.

Prior to the evaluation of a conditional statement, a program potentially requires the
privileges on either branch of the control flow. Inside blockl, the preconditions for the use
of the privilege is independent of the guarding condition since it must be true at that point.
Similarly, the preconditions for a privilege use within the program block associated with the
false edge of the conditional statement are also independent of the guarding condition since it
must have been false. The backwards analysis models this by first considering the function
call using a privilege to be unconditional, save the constraints that are inherent to the
function (flag variables etc.). Later, as the analysis proceeds backwards over the conditional

Instruction i λTransformer.i.φ

Edge Transform if ρ goto l φ′ , {∀δ ∈ φρ, δ = δ ∧ ρ}
where φρ ∈ Edgei,l

if ¬ρ goto l′ φ′ , {∀δ ∈ φ¬ρ, δ = δ∧ ¬ρ}
where φ¬ρ ∈ Edgei,l′

Join Operator φ1 t φ2 φ′ = φ1 ∨ φ2

Figure 4.3: Edge Transformers and Join Operator
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statement, it attaches the conjunct ρ in its straight and negated form, to the abstract states
associated with the false and true edges respectively. To maintain the disjunctive form of the
abstract state, conjuncts inferred by control flow structures are inserted into every disjunct
in an abstract state. This is followed by merging the abstract states with a join operation.

A backwards merge in the control flow necessitates a merge over abstract states, defined
by the join operator t in a dataflow analysis. The path sensitive requirements of the analysis
require that the abstract states correctly represent the privilege requirements for each path.
We define the join over two abstract states φ1 and φ1 as φ1 t φ1 = φ1 ∨ φ2; t performs
a logical or operation over the two abstract states resulting in a disjunction of program
constraints, φ′, associated to either side of a conditional statement.

Algorithm 1: Precondition Inference Algorithm
input : Function

1 exits ← IdentifyExits(Function)
2 worklist.add(exits)
3 state ← map : BasicBlock to φ // map of blocks to abstract states
4 while worklist is not empty: do
5 block ← worklist.deque()
6 for s in Successors(block) do

// Apply edge transformations to each successor
state[block]← transfer(edge(block, s), state [s]) t state[block]

7 for inst in reverse(block) do
// Apply transfer function on each instruction in the basic block
state[block]← state[block] t transfer(inst)

8 for p in Predeccessors(block) do
9 if p not in worklist then

10 worklist.add(p)

output: Preconditions for each instruction as a map

Algorithm 1 shows the pseudocode for the algorithm used to implement the static anal-
ysis for precondition inference. The algorithm accepts a function as an input and identifies
the exits which are stored in a worklist. A basic block is taken from the worklist and is
processed backwards using the edge transforms, transfer functions and join operator. The
output for the algorithm is a map of statements to their preconditions.

4.2 Inter-procedural

Privilege restriction applies over the whole program. Consequently, the analysis must be
able extract conditional privilege uses inter-procedurally. Functions may also be called mul-
tiple times at multiple places indicating the need for context sensitivity. Our analysis is
implemented within a k-CFA framework[36] with k = 2.
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A function call may be of 3 types, internal, external and indirect. An internal call refers
to calls made to functions that exist within the same program. External calls are calls to
functions which are only declared within the program but not defined. Finally, indirect calls
are made through function pointers. While it is possible to make external calls through
indirect calls, it’s rare in practice and we do not account for it. Many programs are built
using libraries and for the analysis to be successful, the input program to the analysis must
also contain the libraries as part of the same module.

Internal Calls When the analysis encounters a call to a function for which the definition
is available, the analysis halts progress in the caller function and begins analyzing the called
function. We use a simple call strings based approach for context sensitivity. A call string is
a stack of call locations, used to identify the context (where the function was called from)
in which a function is being analyzed[35].

Indirect Calls Indirect calls are handled similar to internal calls. We rely on an external
alias analysis to identify the targets of the indirect call. Each target is analyzed indepen-
dently with a copy of the abstract state being sent into each, rewritten with the argument
of the return statement. Once the analysis of the targets are finished, the results are merged
together through a join operation. The analysis of the caller function proceeds using the
merged results.

External Calls As external calls cannot be analyzed we consider them to be havoc state-
ments and conjuncts using those values are pushed to true. Additionally, if the call requires
the use of a privilege, the abstract state corresponding to the privilege is set to true.

Algorithm 2: Lowering Location Algorithm
input : Translation Unit (Module), Preconditions

1 for inst ← in Module do
2 post ← transfer(preconditions[inst], inst)
3 if post =⇒ preconditions[next(inst)] then

// inferred postconditions =⇒ available postconditions
4 continue
5 else
6 locations.add(inst)

output: List of instructions

4.3 Forward Inference

With the preconditions available for each instruction in the program the analysis uses Al-
gorithm 2 to find the points in the program where it should insert conditional privilege
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restrictions using the postcondition inference idea illustrated in Section 3.3.2. For each in-
struction in the program, the analysis infers the postconditions to the instruction using
the preconditions inferred from Algorithm 1. Then the analysis checks if the postconditions
inferred imply the preconditions of the next instruction. When the implication relationship
does not hold, the analysis identifies that location as a point to insert a privilege restriction.
Otherwise, the analysis continues to the next instruction, discarding the inferred postcon-
ditions.

4.4 Summary

This chapter described our approach to building the ideas described in the previous chapter
as a static analysis as a Dataflow Analysis. The join operators, transfer functions and
abstract state for the Dataflow Analysis were illustrated with the help of a small kernel
language. This chapter also presented the algorithms to be implemented and how to extend
it to be inter-procedural.
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Chapter 5

Implementation

The following sections describe how the abstract state for the analysis is implemented
with regard to the data structures used and the required simplifications. This chapter also
includes a brief introduction to the LLVM compiler framework[24] which describes the
necessary details to understand our implementation.

5.1 Constraint Trees

We model the constraints in disjunctive normal form (DNF). Each conjunct in the disjunc-
tive sets, or disjunction, is built as a binary tree, similar to abstract syntax trees, which we
call a constraint tree. The tree representation allows easy modifications when performing
rewrites through the transfer functions (Section 4.1.2). The trees are maintained as proper
binary trees, i.e. each node will have either 0 or 2 children, and each node is assigned a
unique identifier. When a constraint is picked up from the program, it is introduced as a
leaf node and assigned a new identifier. Figure 5.1a shows an example where a constraint
is introduced from the conditional use of a privilege determined by a branch statement.
The value of the branch condition is introduced to the system as a leaf node (Figure 5.1b),
forming the root of a constraint tree along with the form of the constraint, false. As the
analysis proceeds backwards up the program and reaches the instruction which produces
the value of the branch condition, the icmp instruction, the leaf node is rewritten as a binary
node (Figure 5.1c) with two leaf nodes of the form, instlhs op instrhs where op is a comparison
operator which produces a boolean value. While the right child node is a constant value, the
left node is a value produced during the execution of the program. Similar to the update
made to the branch condition, the left node will also be rewritten when the analysis reaches
its definition.

5.2 Simplifications

Each node in the binary tree, including the root node, has a unique identifier with which
we can identify each constraint in the set and apply logic based simplification rules after
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(a) Guarded Privilege Use (b) Constraint Tree Root (c) Final Constraint Tree

Figure 5.1: Constraint Tree Formation

every join and transfer operation. Simplification eliminates redundant constraints from the
analysis, which enables the analysis to scale[10]. Our objective is to compute a minimal yet
equivalent disjunctive set of constraints that characterizes the need for a privilege at any
point in the program. A minimal set of constraints primarily enables easier analysis of the
constraints and also reduces the time taken to analyze a program. Due to the path sensitive
nature of the analysis, without effective simplification, the constraints grow to the order of
thousands, which bogs down the analysis.

Switches. We find switches to be difficult to deal with as they introduce a large number
of constraints. A boolean based simplifier is unable to simplify these constraints as the edge
transformation introduces a new conjunct into each abstract state associated with each
successor. Instead, we apply a simple rule to collect the intersecting disjuncts Dinstersect =
∀i

⋂
Di across each incoming disjunctionDi.Dinstersect represents the set of constraints that

are unaffected by which branch of the switch the program executes. The resulting disjunction
at the switch then becomes φ′ = Dintersect∪φi. Where φi is the incoming disjunction, Drem

= Di / Dinstersect from the ith successor to the current switch as transformed by the edge
transform operator. This operation generalizes to if-else branches as well as indirect calls
that have more than one target.

Constant Evaluations. Another opportunity for simplification arises when the leaves of
constraint tree are constants. As depicted in Listing 5.2, suppose a program sets the value
of a variable to different constant values depending on the branch the program executes.
On line 8, the value of the variable is checked in a guard before calling a privilege inducing
function that is picked up by the analysis as a constraint tree. When it reaches the constant
assignment on each of the paths i.e. lines 3 and 5, the guard variable g can be rewritten
with the constant value being assigned to it. On each of the paths, the constraint tree then
represents an operation on constant values which can be folded to produce a boolean result
using LLVM’s Constant Folder. Since the constraints trees are maintained in disjunctive
normal form, when a conjunct is evaluated to true, it is removed from a disjunct. When
false, the disjunct the conjunct belongs to becomes false and is removed from the disjunction.
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1 int foo () {
2 ...
3 int write_to_file = 0;
4 if (g > 2) {
5 write_to_file = 1;
6 }
7 ...
8 if ( write_to_file == 1) {
9 fopen (...);

10 fprintf (...)
11 }
12 ...

Listing 5.1: Program Fragment with Constant Evaluable Constraints

5.3 Havocs and Approximations

A havoc expression represents a point in the program that the analysis cannot reason about.
When the analysis encounters a havoc expression, any constraint tree that uses the value
dependent on a havoc expression is set to true. havoc expressions also allow a unified way
of modelling approximations by considering certain constructs in the input program to be
havoc expressions and handling them as such. Table 5.1 lists the approximations we make.
Approximations for arrays and recursive data structures were necessary to make analysis
scale to even the smallest of programs[25]. We find that field accesses caused difficulty in
performing the analysis and we approximate them when they have may-aliasing relationships
with other pointers in the constraint set or when the field holds a pointer type.

Exit Paths. Exit paths add significant complexity to programs. When evaluating the
conditions for a switch, a malformed input may cause the program to pick the exit path.
Often the exit path requires no privileges, while the other paths have common disjunctive
constraints under which privileges are required. The optimization we use at branches is
ineffective since the intersecting disjuncts becomes the empty set. Each incoming disjunction
is retained disjunctively and the abstract state quickly grows to the point where the analysis
is unable to proceed. To get around this, we do not consider empty disjunctions from exit
paths when performing a join over backwards merges in the control flow, i.e. Dinstersect=⊔
Successors(), where Successors is a function that returns abstract states for the successors

of the current states except the empty states from exit paths. A similar technique is also used
by Aracde, where the error paths taken by the program are removed from the abstracted
graph.

Figure 5.2a shows an example switch statement where the default case leads to an exit.
Assume that the non-default cases coalesce into a single path before any privilege using
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(a) Exit Path Simplification

Dintersect = φ1 ∨ φ2 ∨ φ3 (5.1)

(b) Preconditions without approximation

Dapprox = φ (5.2)

(c) Preconditions with approximation

system calls are invoked. The incoming abstract state φ is then common to all the non-
default cases and is indicated with a dashed line while the incoming abstract state from the
default case (φempty) is empty. Without the approximations the join operator would attach
conjuncts to each incoming abstract state to represent the associated case. This creates
three new disjuncts (Equation 5.2b). Ignoring the empty abstract state from the exit path
allows the common disjunction to be inferred as the precondition across all three cases
(Equation 5.2c), simplifying the analysis while maintaining soundness.

Non empty states arising from exit paths are treated as regular paths. From a security
perspective, this eliminates the possibility of performing privilege restrictions prior to a
program executing an exit path. Since the program would exit along the path anyway, we
believe that this is not a great concern.

Loops. Loop approximations are a necessity for a static analysis due to the halting prob-
lem. For the purposes of our analysis we perform a simple approximation that pushes the
constraints that are introduced or modified within the body of a loop to true when they
are propagated along the backedge of the loop to the header. The loop header then retains
the set of constraints that are not modified by the loop body and the constraints that are
introduced in the first backward iteration of the loop. This is similar to the methodology
used by Arcade[1], where the program’s control flow graph is abstracted to a directed acyclic
graph.

Approximation on False Constants. As described previously, we can perform constant
folding operations on our constraint trees to produce boolean results. A false result leads to
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Program Construct IR Description

Array Accesses Values accessed through GEPs into arrays (including
global and constant valued arrays)

Recursive Data Structures Values accessed through GEPs or Loads which have the
same base type as the pointer operand being indexed
into

May-Aliasing
Field Accesses

Store value operands which use loads from GEPs

Interprocedural
May-Aliases

May aliasing operations for load/store pairs which oc-
cur in different functions

May-Aliasing
Double Indirection

Store value operands which are from Loads and are
pointers

Table 5.1: Approximations

the disjunct being removed. We choose this as a point of approximation by pushing up the
lattice and making the disjunct vacuously true, which makes the abstract state vacuously
true at that point. Pushing the abstract state to true at that point forces the analysis to
associate a privilege use along the path being analyzed which reduces the possibility of
performing conditional privilege restrictions. Our lowering strategy, which we discuss in the
next section, mitigates some of the loss in precision made by this approximation.

5.4 Lowering

The final part of the analysis involves inserting the conditions extracted by the analysis back
into the program to be evaluated at run-time for restricting privileges. Remember that a
call to pledge() should pass the list of privileges that should be held on to by the program.
Given a set of constraints associated with each privilege, the lowering phase instruments
the program with the conditions that when evaluated at runtime generate a call to pledge()
with a string of privileges that should be retained by the program.

We select the points in the program to lower at by tracking the points where the analysis
made approximations or encountered havoc statements. The constraints associated with
each of these points are then merged over all contexts and lowered into the program. The
constraints used to lower are also the constraints available prior to the approximations. This
mitigates some of the loss in precision from the approximations mentioned earlier.

5.5 Specifications

Functions that require privileges must be identified by the analysis and to that end their
specifications must be provided to the analysis externally. The man pages from OpenBSD
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Privilege Handler Description

stdio Permits system calls which interact with file descriptors including
stdin and stdout along with a host of other non-side effecting
system calls; also required by exit handlers

rpath X Permits system calls to open files for reading
wpath X Permits system calls to open files for writing
cpath X Permits system calls to create files or directories
tmppath X Permits system calls which make and modify files in /tmp direc-

tory. Redundant in the presence of rpath, cpath, wpath
inet X Permits system calls to open and modify sockets in the AF_INET

and AF_INET domains
fattr Permits system calls which can make changes to file attributes
dns Permits system calls to DNS network transactions
unix X Permits system calls to open and modify sockets in the AF_INET

domain
tape X Permits the ioctl sytem call to operate on tape drives

Table 5.2: Privilege Specifications

provides a specification for system calls and the privileges they require. Out of the 31
privileges specified on the man-page, we support 10 of them as listed in Table 5.2.

The column ’Handler’ in Table 5.2 shows whether a special handler is required for
that privilege. As of now, the specifications for pledge do not adequately list the effects of
arguments of system calls on the privileges required. For example, the open() system call
can open a file for reading, writing or create one if it’s not already present. These operations
the rpath, wpath and cpath privileges respectively. Furthermore, the write system call does
not in fact, require the wpath privilege. We see this idiom replicated across other system
calls and build custom handlers for them. These handlers check the arguments to the system
call and reports the correct set of privileges required by the system call.
Libraries such as libC also require privileges since they use system calls as well. As it would
not be practical to reanalyze a library for each program its used in, we built a tool to
perform a transitive closure over the library APIs and the system calls invoked subsequently
to generate the privilege requirements for the APIs.

5.6 Summary

The dataflow analysis generates gathers the preconditions for privilege using system calls as
boolean formulae. The abstract state for the dataflow analysis is built from disjunctive con-
junctions of boolean formulae i.e. in Disjunctive Normal Form. These formulae are stored as
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binary trees to enable easy term rewriting. Crucial to analyzing programs is simplification
over branches, switches and constant terms in the program. Additionally, we also perform
significant approximations for loops, exit paths and false constraints to help scale the anal-
ysis. With the preconditions for privilege uses available at each instruction, we lower them
as conditions for guarded calls to pledge to perform privilege restrictions.
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Chapter 6

Evaluation

We evaluated PPIR on 4 programs from the OpenBSD core utilities: cat, cp, dd and date.
With the results from our evaluations we seek to resolve three concerns:

• Establishing the functional correctness of programs that have been instrumented to
perform conditional privilege restrictions. (Section 6.1)

• Quantifying the reduction in attackable surface area with respect to manually instru-
mented programs. (Section 6.2)

Additionally, we seek to understand the nature of the conditions used when performing the
conditional restrictions, the effect of the approximations we utilize, and the threats to the
validity of our results.

6.1 Correctness

PPIR extracts conditions from a program, instrumenting it at various points to perform
conditional privilege restrictions without inducing behavioural differences or underprivileg-
ing. A program attempting to invoke a system call without the correct set of privileges will
be terminated by the operating system.

When using the Pledge framework, a program cannot regain privileges it has already
given up. Establishing functional correctness is our first priority when testing the privilege
restrictions made by PPIR. To ensure that the programs we instrument are not under-
privileged we test their functional correctness using a test suite. Underprivileged programs
will be terminated by the operating system and emit a log message indicating the required
privilege.
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Benchmark Test Suite Provider #Tests

date BusyBox 1
cat BusyBox 2
cp BusyBox 11
dd BusyBox 4

Table 6.1: Tests run for each benchmark

Correctly instrumented programs without privilege errors will pass the tests without
logging an error. As the Pledge framework is a part of the of the OpenBSD operating
system we have to test the programs on the OpenBSD platform. However, we were unable
to find OpenBSD specific test suites for our benchmarks. Instead, we use the test suite
from BusyBox, a distribution of POSIX compliant Linux utilities. Since our benchmarks
are from OpenBSD and the test suite is built for BusyBox, some tests will fail due to
behavioural differences of the OpenBSD and BusyBox implementations of the programs.
These differences could lead to false detection of behavioural differences that are not due
to PPIR. To prevent this, we first filter the tests that will cause such problems. We identify
the tests that expect behaviour specific to the BusyBox implementations by first running
the OpenBSD version of the program against the test suite. These programs have calls to
pledge inserted in them by the authors. The failing test cases test for features specific to
the BusyBox version of the program. We remove them and use the remainder of the test
suite for evaluations. Table 6.1 shows the number of tests available per benchmark after
removing the failing tests.

With the spurious test cases removed, we can test for behavioural differences between
the instrumented and original benchmarks. Correctly instrumented programs will not ex-
hibit any differences in behaviour from the original program or terminate early due to
underprivileging. Since the test case checks the functionality of the program, a correctly in-
strumented program will pass all the test cases which were passed by the original program.
The programs instrumented by PPIR passed all test cases that were passed by the original
program. This shows that instrumented programs were not underprivileged and that the
instrumentation does not change the behaviour of the program.

6.2 Reduction In Surface Area of Attack

A vulnerability at any point in the program may be exploited by an attacker, after which
we consider the process to be controlled by the attacker. Following the Principle of Least
Privilege, the Pledge framework can be used to limit the potential damage. With privilege
restrictions in place, if the process were to be hijacked by an attacker, it would be terminated
when the attacker attempts to perform an action that requires privileges. We conservatively
assume every instruction in the program to be a location where privileges could be exploited.
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With respect to the Principle of Least Privilege, our objective is to reduce privileges as
early as possible, reducing the attack surface of the program. PPIR inserts conditional
privilege restrictions in a program to enable privilege reduction at runtime. We compare
the effectiveness of privilege restrictions in the programs instrumented by PPIR to the
effectiveness of the privilege restrictions performed with expert knowledge by the authors
of a program.

We can quantify the effectiveness by considering the number of privileges available to
each instruction during the execution of a program[12]. When the program begins execution
it will have access to all privileges. A call to pledge will restrict all subsequent instructions
executed to a subset of the available privileges. Each instruction prior to a call to pledge
executes with the full set of privileges available to it. The instructions executed after the
call will have the subset of privileges specified in the call to pledge available to it. Each
instruction executed can be associated with the subset of privileges that were held by it.
Counting the executed instructions associated with each privilege indicates how early the
privileges were dropped in the dynamic trace. The earlier the privileges are dropped, the
fewer instructions associated with each privilege there will be. Earlier privilege drops being
the preference, the version that has fewer instructions executed per privilege will be the
preferred version.

Table 6.2: Active Instructions per Privilege

Privilege Test 1 Test 2

Manual PPIR Manual PPIR

all 2 1 2 1
stdio 166 171 149 153
rpath 166 165 149 147

Table 6.3: For cat

Privilege Test 1

Manual PPIR

all 49 0
settime 0 55
stdio 0 55

Table 6.4: For date

Privilege Test 6 Test 7 Test 9 Test 10
Manual PPIR Manual PPIR Manual PPIR Manual PPIR

all 6 0 6 0 6 0 6 0
cpath 383 550 403 570 332 502 403 570
rpath 383 550 403 570 332 502 403 570
stdio 481 550 501 570 430 502 501 570
wpath 383 550 403 570 332 502 403 570
tape 0 550 0 570 0 502 0 570
error 383 0 403 0 332 0 403 0

Table 6.5: Active Instructions per Privilege for dd
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Privilege Test 1 Test 2 Test 3 Test 4 Test 5

Manual PPIR Manual PPIR Manual PPIR Manual PPIR Manual PPIR

all 886 0 62 0 62 0 62 0 62 0
cpath 886 917 346 349 2290 2293 369 372 354 357
fattr 886 917 346 349 2290 2293 369 372 354 357
rpath 886 917 346 349 2290 2293 369 372 354 357
stdio 886 921 346 353 2290 2297 369 376 354 361
wpath 886 917 346 349 2290 2293 369 372 354 357

Privilege Test 6 Test 7 Test 8 Test 9 Test 10 Test 11

Manual PPIR Manual PPIR Manual PPIR Manual PPIR Manual PPIR Manual PPIR

all 626 0 645 0 62 0 62 0 62 0 62 0
cpath 626 649 645 670 262 265 1165 1194 346 349 346 349
fattr 626 649 645 670 262 265 1165 1194 346 349 346 349
rpath 626 649 645 670 262 265 1165 1194 346 349 346 349
stdio 626 653 645 674 262 269 1165 1198 346 353 346 353
wpath 626 649 645 670 262 265 1165 1194 346 349 346 349

Table 6.6: Active Instructions per Privilege for cp

OpenBSD is an open source community driven operating system. The Pledge framework
is developed and maintained by the community as part of the OpenBSD kernel. The utilities
shipped as part of OpenBSD are also maintained by the same community and use calls to
pledge to restrict privileges within programs. We compare the effectiveness of the manual
instrumentation, performed by the maintainers, against the automated instrumentation
performed by PPIR by examining the privileges available for each instruction executed.
Since this information is only available at runtime, we use dynamic traces of the program
generated by running the program against its test suite from BusyBox. Using the same test
suite establishes trust that the privilege restrictions are not functionally incorrect.

Tables 6.3, 6.4, 6.5 and 6.6 show the effectiveness of PPIR compared to the manually
instrumented version of cat, date, dd and cp respectively. Each table shows the number of
instructions executed for each privilege available to the program for every test in the test-
suite. The first column in the table are the privileges which were available to the program
during its execution. The remainder of the columns show the number of instructions which
were executed while the program held the privilege from the first column. Each of the
columns correspond to a test in the test suite. Each test is executed by two versions: the
OpenBSD version with privilege restrictions inserted manually by the authors, and the
version produced by PPIR. For the latter, we remove the privilege restrictions made by the
authors in the OpenBSD version before using PPIR to make the privilege restrictions. Note
that the first row for every table represents information for the full set of privileges i.e. this
row shows the number of instructions executed by the program prior to a single privilege
restriction.
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The manually instrumented version of cp allows the program to execute with the full
set of privileges for three test cases (Tests 1, 6 and 7). PPIR is able to recognize the
opportunity for a privilege restriction and perform restrictions for all three cases. The
functional tests prove that this is a valid privilege restriction that reduces the privileges
available per instruction.

We found that the version of date packaged with OpenBSD did not have any privilege
restrictions while PPIR was able to infer the privileges required and perform restrictions.

The restrictions by PPIR were less effective on dd, and the instrumented version had
significantly higher instruction counts for most privileges. We believe the poorer perfor-
mance is due to the fact that our lowering strategy uses an approximation to find locations
at whichc to lower. We explain this further in Section 6.3.2. The higher instruction counts
arise from our methodology which we explain further in the next section. In all cases, the
privileges we inferred were the same as those in the manually instrumented programs or
better, as we explore in Section 6.3.2.

6.3 Methodology

Our tests compare the privilege restrictions made by the authors to the ones made by
PPIR. Thus, for each benchmark program we use two versions of the program. The first
is generated by compiling the original source code (with privilege restrictions from the
authors) with WLLVM [32]. WLLVM produces a single module for the entire program which
eases instrumentation and analysis. For the other version, i.e. the version in which PPIR
performs the privilege restrictions, we remove the privilege restrictions made by the authors
and compile it into a single module using WLLVM. Then for both versions, the produced
modules are instrumented to produce a dynamic trace of instructions paired with the active
privileges at that instruction.

To produce the dynamic trace, we split the program into regions that are segregated
by calls to pledge. Each region is associated with the same set of privileges. After a call to
pledge, the following region is limited to the set of privileges allowed by pledge. At runtime,
the program produces a file with the instructions executed along with the privileges held
while each instruction was executed.

Instrumenting the program to produce this data data proved to be challenging, as print-
ing to stdout or stderr interferes with the test suite’s oracle. Alternatively, opening and
printing to a file necessitates the need for a privilege external to the semantics of the pro-
gram. We work around this by opening a file in the global constructor of a program, and
then printing to its descriptor for the remainder of the program. The semantics of pledge
dictates that while the ’wpath’ privilege is required to open a file, printing to it requires
the ’stdio’ privilege which is unconditionally required for all our benchmarks. The wpath
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privilege is required at the global constructor but can be immediately removed at the start
of the program.

Both versions of the program are instrumented to produce dynamic traces in the same
fashion. The version of the program without privilege restrictions is then instrumented
by PPIR for privilege restrictions. With the instrumentation finished, both versions are
compiled into executables for OpenBSD and run against the test suite. While the control flow
for both versions remained the same we found that the manually instrumented version had
more optimizations and as a result fewer instructions. We mention possible improvements
on the methodology to remove this discrepancy in Section 8.1.

6.3.1 Case Study 1: cat

cat is a command line utility that reads from either a file or from stdin and streams the
contents to stdout. Listing 6.1 shows a basic block from cat after being analyzed and in-
strumented by PPIR. Line 4 is a call to fstat a system call that provides information about
the status of file, successful calls to which return 0. The return value, stored in virtual
register ’%18’, is compared to 0 on line 6. The boolean result of the comparison is used as
an argument to the call to AdD_rpath. The AdD_X functions build a string specifying the
privileges the program should retain at that point. Assuming the return value from fstat is
0, the rpath privilege will be added to the string. Additionally, the call to AdD_stdio on line
5 adds the stdio privilege. The argument to the call in this case is the boolean value true as
the privilege is unconditionally required at that point.

1 ; <l abe l >:17: ; preds = %13
2 ...
3 call void @EnD_ReGiOn (...)
4 %18 = call i32 @fstat (...)
5 call void @AdD_stdio (i1 true)
6 %19 = icmp eq i32 %18, 0
7 call void @AdD_rpath (i1 %19)
8 call void @MaKe_pLeDgE ()
9 %20 = icmp eq i32 %18, 0

10 call void @EnD_ReGiOn (...)
11 br i1 %20, label %23, label %21
12 ...

Listing 6.1: Hoisted privilege restriction in cat

Analyzing the instrumentation PPIR added to cat, we find that the conditions used in
performing privilege restrictions were related to checking error conditions. The conditional
restrictions made in cat as presented in Table 6.3 were made with the approximation for exit
paths (Section 5.2.2) disabled. With the approximation enabled, the privilege requirements

39



become unconditionally true. This falls within the norm for command line utilities as they
are built for a single responsibility with their privilege requirements being ubiquitous.

6.3.2 Case Study 2: dd

The dd utility performs reads and writes from specified input and output streams. Addition-
ally, dd can be used for reading and writing from tape drives, which requires the privilege
tape. PPIR is able to correctly identify a use of this privilege while performing privilege
restrictions. The manually instrumented version uses an incorrect set of privileges and cir-
cumvents the operating system by using the error privilege. The error privilege allows a
program to continue executing in the event that it uses system calls that it does not have
access to. Table 6.5 shows that a large part of the program is allowed to execute with the
error privilege enabled in the manual version of the program.

While PPIR was able to find more precise privileges for dd, it was not able to perform
progressive privilege restrictions. We believe this is due to the fact the privilege using func-
tions fstat and write are within a loop. Our analysis was not able to identify the point where
the loop ended and perform conditional restrictions there since we use an approximation for
the round-trip technique to select points of instrumentation. For the point to be identified,
the round-trip check would have to be performed over the edge between the loop and its
exit block. The analysis, in its present form, does not perform the round-trip check over
edges and is unable to identify the potential point of instrumentation in dd.

6.4 Threats to Validity

Functional correctness of the instrumented programs, as demonstrated by the passing test
suites run against the benchmarks, addresses the greatest concern for the validity of our
analysis. As an initial implementation we believe bugs to be possible source of errors in
our analysis despite significant efforts towards testing the program. The underlying priv-
ilege specifications which we provide to the static analysis may also have inaccuracies as
they were reverse engineered without the input of the authors of the original system. Our
static analysis supports the program structures which were encountered. In particular, PPIR
supports branches, switch statements, functions, nested loops and recursive functions. For
practical applications the static analysis must be extended to support threads, exceptions,
setjmp() and longjmp(). We discuss this further in Section 7.1, Future Work.
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Chapter 7

Related Work

This chapter details work in the area closest to ours. The related work can be categorized
into work on precondition inference or program security and compartmentalization.

7.1 Security and Compartmentalization

Software compartmentalization reduces the available attack surface for a program and is
an actively researched area and several frameworks are available for enabling compartment-
alization[4] using privilege management. Our work is the first to automate compartmental-
ization using the Pledge framework.

PrivAnalyzer. Recently, Criswell et al. developed a toolchain called PrivAnalyzer[12] to
perform privilege restrictions via static analysis and analyze their impact dynamically. Au-
toPriv[19] performs monotonic privilege reduction using the Capsicum capability framework
for Linux. AutoPriv performs a liveness analysis[20] to find the points where privileges are
no longer required and uses Capsicum primitives to enforce their restriction. The primary
difference between AutoPriv and PPIR is that AutoPriv is flow-insensitive i.e. AutoPriv
does not perform conditional privilege restrictions.

ChronoPriv[12] dynamically analyzes the program transformed by AutoPriv to find
the number of instructions executed while holding privileges. We use a similar technique to
assess PPIR against manually instrumented programs (Section 6.2). The report generated by
AutoPriv is fed into ROSA[12], a bounded model checker which produces a risk assessment
for the program.

API Permission Mapping. Aafer et al.[1] recently published work on reducing over
privileging in mobile applications using permission specifications derived from analyzing
the Android SDK. The specifications are maps of conditions on incoming arguments to
operating system API calls which allow a finer granularity of control over required per-
missions. The arguments from an API call sites within an application are used to find the
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conditions satisfied and the associated permissions without developer input. While their
solution, dubbed Arcade, and ours share the same objective, i.e. reducing over-privileging
in applications, our model can perform monotonic privilege restrictions. PPIR uses a novel
dataflow analysis which differs from their graph abstraction technique to find preconditions.

Barring the incongruity of their operating domains, Arcade can be used complement to
our work where the protection maps generated by Arcade can be used by PPIR to generate
stronger specifications for privilege using functions.

Capweave. Capweave[17] accepts an input program and security policy specified in a
specialized language. The policy associates a set of program points with the privileges that
should be allowed at that point. Capweave instruments the input program with security
primitives to achieve the security policy specified. Capweave uses the Capsicum capability
system[39] to enforce restrictions on privileges. Unlike PPIR, the burden of analyzing and
developing a security policy lies with the application developer. Furthermore, Capweave
restructures the program, making it difficult to understand and therefore maintain for the
programmer.

Program Partitioning. Rather than relying solely on the operating system to enforce
privilege restrictions, programmers may architect their programs into components with
fewer privileges available to each. Privtrans[9] partitions an input program into a moni-
tor and slave. Similar to Privtrans, ProgramCutter [40] is another analysis driven tool for
partitioning programs. While Privtrans requires the input program to be annotated to in-
dicate the privilege using functions, ProgramCutter requires no external input aside from
the original program.

Wedge[7] is another tool which can be used by programmers to compartmentalize and
execute privileged code on secure threads using the SELinux[37] security module. Wedge
also provides an associated tool, Crowbar, to aid programmers in compartmentalizing their
programs. PPIR is set apart from these, and other similar tools[9][22], since it does not
require the program to be restructured to enable compartmentalization. It also does not
require additional effort from the programmer.

Secure Compilation. It is desirable to have programs compiled with safety properties. A
safety property, supplied at compile time, guarantees that the program will not be subject
to the attack or threat the property protects against. For example, a program written
in a memory safe language (such as Java or C#) is guaranteed to be free of memory
errors as defined by the source language. A safety property can provide guarantees against
entire classes of attacks. Secure compilation guarantees the preservation of source level
safety properties when during compilation. It does not attempt to imbue the program with
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additional safety guarantees or mitigations. PPIR, on the other hand, attempts to provide
an additional safety feature(i.e. privilege restrictions) to a program written without it.

Fully Abstract Compilation(FAC) is a technique[2][30][15] which preserves observational
equivalence between the source and target language during compilation, preserving safety
properties. Robustly Safe Compilation[31], similar to FAC, discards guarantees for proper-
ties which are not strictly required for safety.

Abate et al.,[3] propose a formal criterion and a supporting compiler toolchain for ensur-
ing additional compartments in compartmentalized programs are not compromised when
one is compromised at runtime. While the objectives of PPIR are different from the secure
compilation, securely compiled programs can benefit from the additional safety provided by
PPIR.

7.2 Precondition Inference

While precondition inference techniques have been applied to several domains, our work is
a novel approach which applies precondition inference for program security.

Null Derefence Verification. Madhavan et al.[25] describe an approach to synthesizing
over approximated weakest preconditions to verify dereferences in Java. The approach builds
a logical formula from a single dereference to the program entry point. The analysis is built
on Kildall’s[20] dataflow analysis framework, using fixed point iteration to compute weakest
preconditions over loops and recursive functions. In contrast, our approach computes the
Strongest Necessary Preconditions to preserve the soundness of our analysis. The computed
preconditions are then used for program hardening which requires program instrumentation,
adding a dynamic component to our work.

Necessary Precondition Inference. Cousot et al.[10] propose a tool for precondition
inference to generate contracts based on their previous work[11]. The generated contracts
are used to guarantee assertions within the programs to prevent faulty executions. Our
work builds on theirs and introduces the idea of using a single step forward postcondition
analysis to find locations to insert conditional privilege restrictions.

The research effort in this area is weighted towards security while maintainability is of
lower priority. PPIR provides a middle ground, sacrificing security guarantees which can
only be made by refactoring programs in favor of long-term maintenance. Additionally,
PPIR is unique in leveraging the Pledge framework for compartmentalization preventing
direct comparisons with other tools.
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Chapter 8

Conclusions and Future Work

This thesis presents a first attempt at a novel static analysis technique built to automatically
infer the privileges required by a program and hoist the conditions required for it to perform
progressive conditional privilege restrictions. We are able to show the benefits of precise
automated privilege inference comparable with manual privilege restrictions. Our results
show that the analysis is able to hoist constraints extracted from the program to restrict
privileges conditionally. At the heart of our work lies a novel postcondition to precondition
round-trip check that highlights the points in the program where inserting guarded privilege
reductions may be beneficial.

8.1 Future Work

As an initial attempt at such an analysis we believe there is plenty of room for future work
in terms of improving the analysis, methods of approximation and new avenues of research
which can be performed using such an analysis technique.

Scaling to Larger Programs Despite the simplicity of the technique used, we were able
to scale the analysis using our approximations for an OpenBSD network utility, the stateless
address autoconfiguration daemon (slaacd). The network relies on the libevent library, which
as its name suggests is a library that provides a framework for implementing event driven
programs. PPIR was able to extract the required through the event queue driver. However,
the privileges required by the program were outside of the privileges which we support (as of
OpenBSD 6.5, slaacd uses experimental undocumented privileges) and testing the validity
of our results proved to be difficult. We believe that the fact the analysis was able produce
privilege requirements through an event driven framework shows promise as a potential
class of programs which can be analyzed with our technique.
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Program Structures Threads and forks are ubiquitous in modern programming and
support for these programming structures is necessary for performing analyses on servers
and applications. PPIR does not currently support threads or forks and can be extended
to support them. Splitting an application into sub-processes is an effective technique for
compartmentalization[16][7]. Using the Pledge framework, developers can limit the priv-
ileges of sub-processes using the second argument (const char* execpromises) to a pledge
call. When the second argument is left unspecified, sub-processes are allowed to execute
with access to all privileges and should call pledge on their own. A program compartmen-
talized into independent processes would also compose well with our analysis technique.
Conservatively, we can model inter-processes communications as havoc statements similar
to external inputs. This could be improved by generating protection maps for inter-process
communications similar to Arcade[1].

Threads, while functionally similar to processes, pose a different issue since they exist
within the same process and share privileges. Necessary conditions for system calls within
parallel threads would have to be checked prior to the parallel code along with any privi-
lege restrictions. Shared or aliasing memory within separate threads would also affect the
conditions and must be dealt with. Another approach would be to use a default-deny model
as demonstrated in Wedge[7].

Analysis Technique The analysis as implemented uses a naive call strings based ap-
proach to perform the dataflow analysis. Existing function summary based approaches would
make the analysis more efficient possibly allowing it to scale to larger programs. We tested
our current implementation against a pax, a utility similar to cp which can produce archives.
Unfortunately, the analysis ran out of memory and was unable to complete.

SMT Based Simplifications The simplifications techniques which we use for minimiz-
ing the constraint set do not incorporate any of the knowledge available in the underlying
constraints aside from the constant simplification technique. Satisfiability Modulo Theo-
retic(SMT) solvers such as Z3[13] can use the constraints generated during the precondition
inference step through a first-order language to perform reductions which would be far more
powerful for simplifications.

Approximation Methods Null checks dominate the constraints when performing pre-
condition inference and have been shown to have little effect on the precision of the results
[25]. We believe that there are more precise approximations to be made in place of the naive
methods currently in play.
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Context Sensitive Lowering While the analsis is able to produce context sensitive
constraints, the lowering technique simply merges them across all contexts via the meet
operator. The analysis loses precision at this point and better precision could be achieved
by making the instrumentation context aware.

46



Bibliography

[1] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li. Precise
android api protection mapping derivation and reasoning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages 1151–
1164. ACM, 2018.

[2] Martín Abadi. Protection in programming-language translations. In Secure Internet
programming, pages 19–34. Springer, 1999.

[3] Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans,
Guglielmo Fachini, Catalin Hritcu, Théo Laurent, Benjamin C Pierce, Marco Stronati,
and Andrew Tolmach. When good components go bad: Formally secure compilation
despite dynamic compromise. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 1351–1368. ACM, 2018.

[4] Jonathan Anderson. A comparison of unix sandboxing techniques. FreeBSD Journal,
2017.

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: analyzing
the android permission specification. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 217–228. ACM, 2012.

[6] David Barrera, H Güneş Kayacik, Paul C Van Oorschot, and Anil Somayaji. A method-
ology for empirical analysis of permission-based security models and its application to
android. In Proceedings of the 17th ACM conference on Computer and communications
security, pages 73–84. ACM, 2010.

[7] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting
applications into reduced-privilege compartments. In na. USENIX Association, 2008.

[8] David Brumley and James Newsome. Alias analysis for assembly. Technical report,
Technical Report CMU-CS-06-180, Carnegie Mellon University School of âĂę, 2006.

[9] David Brumley and Dawn Song. Privtrans: Automatically partitioning programs for
privilege separation. In USENIX Security Symposium, pages 57–72, 2004.

[10] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. Automatic
inference of necessary preconditions. In International Workshop on Verification, Model
Checking, and Abstract Interpretation, pages 128–148. Springer, 2013.

[11] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. Precondition inference from
intermittent assertions and application to contracts on collections. In International

47



Workshop on Verification, Model Checking, and Abstract Interpretation, pages 150–
168. Springer, 2011.

[12] John Criswell, Jie Zhou, Spyridoula Gravani, and Xiaoyu Hu. Privanalyzer: Measuring
the efficacy of linux privilege use. In 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 593–604. IEEE, 2019.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[14] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. An-
droid permissions demystified. In Proceedings of the 18th ACM conference on Computer
and communications security, pages 627–638. ACM, 2011.

[15] Daniele Gorla and Uwe Nestmann. Full abstraction for expressiveness: History, myths
and facts. Mathematical Structures in Computer Science, 26(4):639–654, 2016.

[16] Munawar Hafiz, Ralph Johnson, and Raja Afandi. The security architecture of
qmail. In Proceedings of the 11th Conference on Patterns Language of Programming
(PLoPâĂŹ04). Citeseer, 2004.

[17] William R Harris, Somesh Jha, Thomas Reps, Jonathan Anderson, and Robert NM
Watson. Declarative, temporal, and practical programming with capabilities. In 2013
IEEE Symposium on Security and Privacy, pages 18–32. IEEE, 2013.

[18] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[19] Xiaoyu Hu, Jie Zhou, Spyridoula Gravani, and John Criswell. Transforming code to
drop dead privileges. In 2018 IEEE Cybersecurity Development (SecDev), pages 45–52.
IEEE, 2018.

[20] John B Kam and Jeffrey D Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7(3):305–317, 1977.

[21] Paul A Karger. Limiting the damage potential of discretionary trojan horses. In 1987
IEEE Symposium on Security and Privacy, pages 32–32. IEEE, 1987.

[22] Douglas Kilpatrick. Privman: A library for partitioning applications. In USENIX
Annual Technical Conference, FREENIX Track, pages 273–284, 2003.

[23] William Landi. Undecidability of static analysis. ACM Letters on Programming Lan-
guages and Systems (LOPLAS), 1(4):323–337, 1992.

[24] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on Code gen-
eration and optimization: feedback-directed and runtime optimization, page 75. IEEE
Computer Society, 2004.

[25] Ravichandhran Madhavan and Raghavan Komondoor. Null dereference verification
via over-approximated weakest pre-conditions analysis. In ACM Sigplan Notices, vol-
ume 46, pages 1033–1052. ACM, 2011.

48



[26] Gary McGraw. Software security. IEEE Security & Privacy, 2(2):80–83, 2004.

[27] Anders Møller and Michael I Schwartzbach. Static program analysis. Notes. Feb, 2012.

[28] Diego Novillo et al. Memory ssa-a unified approach for sparsely representing memory
operations. In Proc of the GCC DevelopersâĂŹ Summit. Citeseer, 2007.

[29] OpenBSD. Openbsd man page for pledges. https://man.openbsd.org/pledge.2.

[30] Joachim Parrow. General conditions for full abstraction. Mathematical Structures in
Computer Science, 26(4):655–657, 2016.

[31] Marco Patrignani and Deepak Garg. Robustly safe compilation. In European Sympo-
sium on Programming, pages 469–498. Springer, 2019.

[32] T. Ravitch. Whole program llvm. https://github.com/travitch/
whole-program-llvm.

[33] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278–1308, Sep. 1975.

[34] Fred B Schneider. Least privilege and more [computer security]. IEEE Security &
Privacy, 1(5):55–59, 2003.

[35] M Sharir and A Pnueli. Two approaches to interprocedural data flow analysis. New
York Univ. Comput. Sci. Dept., New York, NY, 1978.

[36] Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Citeseer,
1991.

[37] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing selinux as a linux
security module. NAI Labs Report, 1(43):139, 2001.

[38] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis in llvm.
In Proceedings of the 25th international conference on compiler construction, pages
265–266. ACM, 2016.

[39] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. Capsicum:
Practical capabilities for unix. In USENIX Security Symposium, volume 46, page 2,
2010.

[40] Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. Automatically partition
software into least privilege components using dynamic data dependency analysis. In
2013 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 323–333. IEEE, 2013.

49

https://man.openbsd.org/pledge.2
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	List of Algorithms
	Introduction
	Background and Motivation
	Inferring Guarded Privilege Restrictions
	Precondition Inference
	Weakest Sufficient vs Strongest Necessary Preconditions
	Performing Privilege Restrictions
	Finding where to drop privileges
	Identifying useful restrictions

	Final Restrictions

	Static Analysis
	Intra-procedural
	Abstract State and Domain
	Transfer Functions and Aliasing
	Edge Transformations and Join Operator

	Inter-procedural
	Forward Inference
	Summary

	Implementation
	Constraint Trees
	Simplifications
	Havocs and Approximations
	Lowering
	Specifications
	Summary

	Evaluation
	Correctness
	Reduction In Surface Area of Attack
	Methodology
	Case Study 1: cat
	Case Study 2: dd

	Threats to Validity

	Related Work
	Security and Compartmentalization
	Precondition Inference

	Conclusions and Future Work
	Future Work

	Bibliography

