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Abstract 

Electroencephalography (EEG) records electrical brain activity typically in a non-invasive 

manner. Recent literature has shown its potential in stroke rehabilitation, to actively 

engage stroke survivors in rehabilitation. In Chapter 3 of this thesis, the problems of 

EEG applications in stroke rehabilitation were firstly identified with a pilot study. Two 

main challenges were identified, hindering further application of EEG in stroke 

rehabilitation training.  

One of the challenges is that the BCI involved rehabilitation process is 

unsatisfying. Three objectives were derived from this challenge. Firstly, at the beginning 

of all EEG related stroke rehabilitation training, it is both time and effort consuming to go 

through data collection and model training for every rehabilitation task. Therefore, in 

Chapter 4 of the thesis, the possibility of using an EEG model from one type of motor 

imagery (e.g.: elbow extension and flexion) to classify EEG from other types of motor 

imagery activities (e.g.: open a drawer) was investigated. Secondly, a novel training 

method was introduced together with a rehabilitation platform in Chapter 5. The results 

suggested that the proposed methods in this thesis are feasible and potentially effective. 

Thirdly, the transition of the offline analysis method to an online control method is one of 

the major factors that affect BCI performance. However, research particularly focused on 

the method of filtering the prediction of an online classification is scarce. In Chapter 6, 

two methods of filtering online classification predictions were proposed and evaluated in 

a pseudo-online classification paradigm, with the EEG data collected from Chapter 5.  

The other challenge is related to motor function assessments in rehabilitation. 

Motor function is generally assessed with standard questionnaire-based assessments. In 

these assessments, the rater requires the ratee to perform pre-defined movements and 

gives scores based on the quality of the movements. Therefore, those motor function 

assessments have inevitable subjective influences on the functional scores. In Chapter 7 

of the thesis, the author investigated the possibility of using EEG data to assess motor 

function. As a preliminary investigation, EEG-based motor function assessments were 

only investigated for upper-extremity among participants with stroke. The results 

suggested that EEG data can be used to assess motor function accurately.  

Keywords:  EEG; stroke rehabilitation; motor imagery; functionality score; online 
classification  
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Chapter 1.  
 
Introduction 

Stroke has become one of the leading causes of death worldwide, and has also 

been the main cause of disability for adults [1], [2]. In clinical practice, rehabilitation 

training has been the primary treatment for motor function loss in stroke survivors [3]–[6]. 

Currently, rehabilitation training is generally administered in one-to-one sessions 

between the healthcare professionals and the patients. Therefore, the throughput of the 

rehabilitation training is limited by the number of healthcare professionals in the facility. 

Additionally, the full-time involvement of healthcare professionals becomes a big 

financial burden to the patients [1]. In order to decrease the involvement of healthcare 

professionals, some research groups have proposed rehabilitation devices, like robots or 

functional electrical stimulation (FES) devices, that are capable of delivering automated 

repetitive rehabilitation training for the stroke survivors [7]–[13]. However, some papers 

suggested that rehabilitation training with passive movements of individual joints was not 

efficient [4], [6], [14]. The engagement of the patients during the training has been 

reported to be crucial for better rehabilitation outcomes. Therefore, some studies have 

introduced EEG into rehabilitation training to investigate the possibility of ensuring the 

patients’ engagement with the rehabilitation protocol [15]–[17]. In addition, some other 

papers also reported that EEG has the potential to indicate motor function [18], [19], [28], 

[20]–[27], which implies it might be feasible to use EEG as a bio-marker of motor 

function recovery for patients with stroke. 

Research on EEG and its clinical applications have been going on for decades. 

However, the application of EEG during rehabilitation still seems preliminary despite its 

great potential [29]–[31]. In this thesis, two primary obstacles of EEG applications in 

rehabilitation training were identified. Possible solutions were also proposed and 

validated with several preliminary studies.  
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1.1. Motivation 

This thesis starts with a pilot study to identify the challenges in EEG applications 

for stroke rehabilitation. In this pilot study, a rehabilitation training platform is presented 

with a portable EEG acquisition system based BCI, controlling a lightweight exoskeleton. 

To use the proposed platform, the user is required to perform motor imagery on the 

designated protocol, and a BCI system classifies the EEG data to check if the user is 

focused on the training protocol. If true, assistance from the exoskeleton is activated to 

help the user complete the protocol. From this pilot study, the author identifies two 

challenges in the rehabilitation applications for EEG technologies.  

One of the challenges is that the current BCI involved rehabilitation is still 

unsatisfactory. Three objectives are proposed to overcome this challenge.  

Firstly, the BCI application setup process consumes a great portion of time in BCI 

involved rehabilitation training. Typical rehabilitation protocols may contain several 

training tasks, for example, the Graded Repetitive Arm Supplementary Program 

(GRASP) [32]. With multiple tasks in one rehabilitation protocol, the BCI setup process in 

BCI involved rehabilitation training would require data acquisition for every task of the 

training protocol, which is labor intensive and time-consuming. In order to solve the 

problem, it is necessary to investigate if there are certain types of motor imageries (MIs) 

that generate BCI models with higher testing accuracy in other MIs. This is referred to as 

higher versatility of MIs in this thesis. Using MIs with higher versatility in the BCI setup, 

the time EEG data acquisition could be minimized. However, to the best of our 

knowledge, no study has been reported to investigate the versatility of MIs in the 

literature, and no study has been reported on investigating guidelines for choosing MIs in 

BCI related rehabilitation applications. 

Secondly, the rehabilitation training is still a long, painful and expensive process 

for most patients with chronic stroke. Some recent papers suggested the utilization of 

BCI systems in stroke rehabilitation training resulted in better rehabilitation outcomes 

than passive rehabilitation training, as the active training brought by the BCI systems 

might have potentially reinforced the motor learning/re-relearning processes [33]–[37]. 

However, with the utilization of the BCI systems, it is still possible that the patient could 

have learned to control the BCI system fluently during the rehabilitation training instead 
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of gaining motor function recovery [38]. In order to lay emphasis on the rehabilitation 

training and motor function recovery, some researchers suggested combining motor 

imagery training (provided by BCI) and active physical training (provided by active 

minimal movement from the patient) in the rehabilitation training protocol [38]. In the 

combined rehabilitation training, the patients were required to activate BCI control and 

move to the designated direction at the same time, which internally connects the mental 

task and physical task together. Therefore, the combined method could potentially 

further boost motor function recovery [38]. Although there is a need for such a complex 

rehabilitation training system, no such system has been reported in the literature. 

Thirdly, offline EEG analysis methods have been investigated extensively for 

decades [39]–[43]. The latest EEG offline analysis algorithm was able to distinguish 

eight class of MIs with very high accuracy (<80%) [44]. Many BCI applications have also 

been reported in the literature to investigate the performance of BCI control as an 

extension of the offline analysis [45]–[51]. In the previous literature on actual BCI online 

applications, the control signal was based on the predictions generated by directly 

applying the BCI models on the buffered EEG data. The accuracy of those proposed 

systems was still not satisfactory. Considering the predictions generated by the BCI 

model directly affects the performance of the BCI application, filtering those predictions 

has the potential to improve the performance of the BCI systems. 

The other challenge is with the motor function assessment process, which is 

difficult to perform for people without prior experience. One objective is proposed to 

overcome the motor function assessment challenge in this thesis. The traditional way of 

motor function assessment is done in one-to-one sessions between the patients and 

health care professionals. Usually, the examiner requires the examinee to perform 

designated movements in the assessment protocol and gives scores based on the 

quality of the movements. The Medical Research Council (MRC) 0-to-5 scale muscle 

power assessment tool is the common motor function assessment in clinical practice. 

Other motor function assessments like Fugl-Meyer Assessment (FMA) [52], Wolf Motor 

Function Test (WMFT) [53], Functional Independent Measure(FIM) [54] and National 

Institutes of Health Stroke Scale (NIHSS) [55] are common motor function assessments 

used in the research field. The one-to-one motor function assessments between the 

healthcare professionals and patients are not completely objective. The proper 
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administration of those motor function assessments requires experience and 

professional skills. In the literature, several objective scores calculated from EEG have 

been reported to correlate with motor function performance. For example, brain 

symmetry index (BSI) has been reported to correlate with NIHSS score in patients with 

acute stroke [23]. Delta to alpha ratio (DAR) has been reported to correlate with FIM 

score in patients with post-acute stroke [26]. Large-scale phase synchrony(LPS) has 

been reported to correlate with FIM score in patients with post-acute ischemic stroke 

[28]. These pieces of evidence suggest there is a great potential for translating EEG 

data into a motor function assessment method. However, there are several limitations of 

the previous studies. Firstly, the previous studies were done with acute or post-acute 

populations, it is unknown if those findings could be transferred to a population with 

chronic stroke. Secondly, the EEG scores for motor function proposed in the literature 

(like BSI) were not accurate enough to be used to assess motor function. The 

correlations reported in the literature were still low (𝜌 < 0.8). A more reliable and 

accurate method is need for EEG to be used as a motor function assessment. 

Additionally, all the previous EEG scores were either calculated from power spectrum 

changes in the EEG or calculated from phase information from EEG. With the 

development of modern artificial neural network (ANN) methods, there is a great 

potential to combine those inputs from EEG and create a score for accurate and reliable 

motor function assessment [56], [57]. 

1.2. Goal and Objectives 

In this thesis, the author firstly identifies the potential challenges of EEG 

applications in stroke rehabilitation through a pilot study. Two challenges are identified 

about the BCI involved rehabilitation training and motor function assessment. A total 

number of four objectives are identified: 

• Objective 1: Reduce the time for repetitive raw data acquisition by 
investigating the possibility of using one MI to generate the BCI model and 
classify other MIs. 

• Objective 2: Design and develop a rehabilitation training platform, which 
assists the user when both mental and physical engagement were detected. 
The feasibility of the proposed platform with multiple sessions will be 
investigated.  
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• Objective 3: Investigate methods of improving online classification 
performance using biased-classification and moving-average.  

• Objective 4: Investigate the feasibility of translating EEG data into an accurate 
and reliable motor function assessment. 

1.3. Outline of the Dissertation 

Chapter 2 covers the literature review about the etiology of stroke and stroke 

rehabilitation. The current role of EEG in stroke rehabilitation is discussed. The common 

EEG processing methods are also introduced. 

In order to identify the challenges of EEG application in stroke rehabilitation, this 

thesis starts with a pilot rehabilitation study among eight participants with chronic stroke. 

In this part, a portable BCI controlled exoskeleton system for rehabilitation is designed 

and developed. The feasibility of a complex portable BCI controlled rehabilitation 

platform for chronic stroke is investigated in Chapter 3 of this thesis. Two challenges are 

identified, which are related to the BCI involved rehabilitation and motor function 

assessment, respectively. In total, four objectives are identified from this pilot study to 

overcome the challenges identified in Chapter 3. Figure 1.1 summarized the logic flow of 

this thesis. 
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Figure 1.1 The logic flow of this thesis 

In Chapter 4 of this thesis, the goal is to investigate which MI task is the most 

suitable for BCI involved rehabilitation applications. The problem is summarized as an 

investigation on the guidelines for identifying MI tasks with the highest versatility. In this 

context, versatility refers to EEG model generated from one specific MI task with high 

test accuracy for other MI tasks. Twelve healthy participants are recruited for this study. 

Nine MI tasks centered around the elbow joint are selected. BCI models were tested with 

intra-task testing and inter-task testing. MIs with higher versatility are identified and 

possible guidelines for selecting MI tasks in BCI applications in stroke rehabilitation are 

also summarized. Chapter 4 addresses Objective 1. 

In Chapter 5, a portable rehabilitation training platform is designed and 

fabricated. The proposed platform includes an EEG based BCI system for active training 

and a robotic/FES device for physical training. A load cell is integrated into the robotic 

exoskeleton to measure the interactive force between the user and the robotic orthosis. 

This training platform is designed to combine mental and physical training in 

rehabilitation for patients with chronic stroke. For the proposed platform, the user is 

required not only to focus on motor imagery, but to also move to the designated 

direction, to activate the assistance from the proposed system. A three-level, 
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progressive training protocol is also designed to support the training platform. One 

participant with chronic stroke is recruited to participate in this study and go through six 

weeks of rehabilitation training with the proposed platform. The chapter is included in 

this thesis to address Objective 2. 

In Chapter 6, the author proposes two methods of filtering the predictions from a 

BCI application (biased-classification method and moving average method). This chapter 

focuses on binary online BCI classification applications. The proposed methods are 

validated in a pseudo-online paradigm with EEG data collected from Chapter 5. 

Performance measures such as accuracy and response delays are summarized. The 

chapter is included in this thesis to address Objective 3. 

In Chapter 7, a configuration of an artificial neural network model is proposed 

and validated for generating scores to assess motor function with EEG data. The 

calculated scores are validated with both within-participant test and cross participant 

test. The proposed method is able to predict the motor function of the participants with 

chronic stroke, using only EEG data. With the proposed method, the motor function 

assessment procedures could potentially be automated with minimal intervention from 

health care professionals. The chapter is included in this thesis to address Objective 4. 

A conclusion and future work sections are presented in Chapter 8. The 

conclusions and scientific findings of the previous chapters are discussed, as well as 

limitations and possible future work. 
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Chapter 2.  
 
Literature review 

2.1. Stroke etiology 

Stroke is caused by either blockage or rupture of brain vessels, which results in 

low blood supply to certain regions of the brain, and subsequently brain cell death [58]. 

Based on the cause of the stroke, stroke is categorized into two main categories: 

ischemic stroke, which is caused by blockage of the brain blood vessels, or hemorrhagic 

stroke, which is caused by rupture of the brain blood vessels. According to the literature, 

the majority of strokes are ischemic (about 87%), the rest are hemorrhagic [59] [60]. An 

illustration figure for the cause of the two stroke categories is shown in Figure 2.1. 

Stroke causes damage directly to brain cells. Therefore, the consequences of 

stroke are usually severe. Stroke has been one of the most common causes of death. 

When patients survive, they usually suffer from permanent impairments, such as 

problems with controlling or sensing one side of the body, impaired cognition and 

language abilities, or sometimes impaired vision on one side [59] [59]. Therefore, stroke 

has also been reported to be one of the most common causes of disability for adults [1], 

[2], [61]–[63]. Among all disabilities caused by stroke, motor function impairment is the 

most common one, which greatly deteriorates the stroke survivors’ quality of life [64]. 

According to the literature, the severity of the stroke does not necessarily correlate with 

the severity of motor function impairment [65], [66]. 
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Figure 2.1 An Illustration of ischemic stroke (top), and hemorrhagic stroke 
(bottom). This picture was reproduced from Elinor Hunt [67] with 
permission. 

2.2. Stroke rehabilitation for motor function 

Stroke has become one of the leading healthcare problems for modern society 

[1], [2]. Even if patients managed to survive the stroke, they usually suffer from 

permanent disabilities for the rest of their lives [1], [2], which subsequently affects the 

patients’ ability to live independently [68]. Motor function impairments usually persist, but 

motor function, even in chronic stroke survivors, may improve through intervention [68]. 

Rehabilitation training is currently the common option for motor function recovery, which 

is labor intensive and expensive. A hypothetical pattern of motor function recovery is 

shown in Figure 2.2. The rehabilitation training and motor function recovery process are 

usually long and frustrating for stroke survivors, which limits the patients from actively 

participating. 

In clinical practice, rehabilitation of motor function in stroke survivors requires 

healthcare professionals to assist the patients with designated training protocols with a 

high number of repetitions. More recent literature suggests that rehabilitation training has 

better outcomes if those designated training protocols are goal oriented (context 

specific) [65], [66], [69]. Although the patients may gain some motor function 

improvement through rehabilitation training, there is no solid evidence to support that 

rehabilitation training results in neural repair in the brain for human subjects. [70] 
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Instead, the majority of papers in the rehabilitation field support the fact that functional 

recovery is based on compensatory mechanisms [70]. 

 

Figure 2.2 The hypothetical pattern of recovery after stroke with the timing of 
intervention strategies [70], this picture was reproduced with 
permission from the publisher. 

2.3. EEG and its characteristics 

EEG was firstly discovered by Richard Carton in 1875, on exposed brains of 

rabbits and monkeys [71]. Later in 1890, an investigation on the spontaneous electrical 

activities of rabbits and dogs were reported by Adolf Beck, who is believed to be the 

founder of the modern brain wave research [72]. The evoked potential was discovered in 

1912, by Vladimir Vladimirovich Pravdich-Neminsky, through EEG recordings on intact 

dogs [73]. The first human EEG was recorded by Hans Berger in 1924 [74]. The 
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beginning of clinical applications for EEG is believed to be research on the pattern of 

epileptic spike waves and interictal spike waves, which was reported by F.A. Gibbs, H. 

Davis, and W.G. Lennox in 1935 [75]. The first application of EEG based BCI was 

reported in 1988, by Bozinovski et al. [76]. 

EEG commonly refers to the signal which measures the electrical activity caused 

by brain cell excitation, propagated through tissues and structures, and captured on the 

scalp [77]. Therefore, EEG correlates directly with the activity of groups of brain cells, 

reflecting their excitation/inhibition. Due to its acquisition method, EEG is low in spatial 

resolution and extremely sensitive to environmental noise. EEG is used extensively both 

in clinical applications and scientific research. Generally, EEG signals measure the 

potential difference between an active electrode and a reference electrode over time. 

For better data quality, an extra third electrode is commonly used to minimize the impact 

of the external noise signal to the active and the reference electrodes. The third 

electrode usually defines a virtual zero potential point and separates the signal ground 

from the power ground, is commonly referred to as the ground electrode. Therefore, the 

minimal configuration for EEG acquisition should include three electrodes: one active 

electrode for actual EEG signal recording, one reference electrode, and one ground 

electrode.  

In the fields of EEG related applications and research, EEG is generally 

investigated in the frequency domain and the time domain. Those two domains reflect 

the two major types of characteristics in EEG analysis: rhythmic activity and transient 

activity. For rhythmic activity analysis, EEG is usually divided into frequency bands. In 

clinical applications and scientific research, EEG is conventionally divided into frequency 

bands like alpha, beta, theta, and delta [78]. The division and detailed characteristics of 

the frequency bands are shown in Table 2.1. EEG rhythmic activity within a certain 

frequency band has been found to correlate with designated distribution on the scalp 

(i.e. mu band with motor imagery or motor execution) or with the biological state (i.e. 

alpha band with eye closure). As shown in Table 2.1, the Delta band (<4Hz) activity 

correlates with slow-wave sleep for adults which is normally seen in frontal areas. The 

Theta band activity usually refers to the frequency components between 4-7 Hz, which 

relates to drowsiness and idling. The Alpha activity (8-15 Hz) can be found in posterior 

regions of the brain, and relates to relaxation. The Beta activity usually refers to a 
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frequency component around 16 to 31 Hz. Literature suggests that Beta activity is seen 

in the frontal lobe and often relates to active thinking. The Gamma activity usually refers 

to the frequency component greater than 32 Hz, which is primarily found in the 

somatosensory cortex and related with sensory processes. The majority of the EEG 

frequency power can be observed between 1-20 Hz. The time domain EEG analysis 

generally includes certain signal pattern extraction and analysis. For example, the event-

related potential (ERP) analysis is a typical time domain EEG analysis. The time domain 

analysis reflects the true electrical activities around EEG recording regions, which was 

widely used in clinical and research applications, such as hearing test (N80 signal) and 

cognitive function (P300 signal). 

In this thesis, the author’s research primarily focused on ERD/ERS related Mu 

band changes, which is related to motor imagery/action [79]–[81]. 

Table 2.1 Summary of EEG frequency bands, modified from Table 3.1 in [82]. 

Band name Delta Theta Alpha Beta Gamma 

Frequency (Hz) Less than4 4 to 7 8 to 15 16 to 31 
Greater than 

32 

Location 

Frontal for 
adults, 

posterior for 
children; 

No region 
specific 

Posterior 
regions of 
the head; 
C3-C4 at 

rest; 

Frontal lobe 
Somatosen-
sory cortex 

Representation 

Slow-wave 
sleep for 
adults; 

Continuous-
attention for 

babies 

Drowsiness; 
Idling; 

inhibition 

Relaxed; 
Eyes closed;  

Mild 
obsessive; 
Thinking; 
Alerted, 
Anxious 

Sensory 
processing; 
Short-term 

memory 

2.4. EEG applications in stroke rehabilitation 

Literature shows that conventional rehabilitation training is usually a long process 

requiring extensive labor from healthcare professionals with financial strain for the 

patients’ family [1]. In the literature, rehabilitation protocols usually require six months of 

repetitive training in the acute phase and one to two months of repetitive training in the 

sub-acute/chronic phase, depending on the protocol [70]. Therefore, in order to minimize 
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human labor and decrease the rehabilitation cost, rehabilitation devices have been 

developed with pre-programmed rehabilitation training protocols, targeting for a high 

number of passive rehabilitation training repetitions [10]–[13]. For example, Sanchez et 

al. proposed a pneumatic robot for goal-oriented movement training of the arm and hand 

for stroke survivors based on the Wilmington Robotic Exoskeleton (WREX) [8]. Freeman 

et al. developed an experimental test facility for use by stroke patients in order to 

improve sensory-motor function of their upper limb [12]. Herrnstadt et al. developed a 

bimanual training robot, which consists of two wearable robotic exoskeletons for elbow 

joint matching training [7]. 

Due to the fact that EEG directly correlates with brain cell activity, incorporating 

EEG based BCI into traditional training can be used to indicate the engagement level of 

the patient [17]. There have been several preliminary studies in the literature suggesting 

that using EEG based BCI has the potential to improve motor function rehabilitation 

training outcomes [29]–[31]. 

However, some papers have pointed out that using BCI aided rehabilitation 

training may not be the best for motor function rehabilitation training.[38]. The 

combination of motor imagery training (facilitated by the EEG based BCIs) and physical 

training (facilitated by other physiological signals or other external systems) might be 

necessary for the users to get the most out of the training [33]–[37].  

2.4.1. Brain-computer interfaces (BCIs) and data acquisition protocol 
in the BCI model generation 

The inherent connection between EEG and brain activity [77] resulted in the 

concept of using thoughts to control devices, i.e. EEG based BCIs. In the past few 

decades, research on BCI has been particularly active [40], [43], [83]–[85]. BCI systems 

have found their applications in communication [86] or assisting mobility for different 

types of patient populations. For example, BCI controlled lower-limb neuroprostheses 

[87]–[89] and wheelchairs [90] have been developed to assist patients with lower-limb 

disabilities. Due to the characteristics of EEG signals, EEG based BCIs are relatively low 

in control accuracy with a limited number of control signal classes. It is challenging for 

BCIs to deal with complex assistance situations in daily living [84]. However, with 

predefined rehabilitation training protocols, the BCI technology is more suitable for 
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applications in rehabilitation[91], which also facilitates the active training in the 

rehabilitation[40], [92].  

Motor imagery (MI) is a common control method for BCIs [84], [93]. The MI tasks 

can be goal-oriented/context-specific, which are meaningful or have a goal in daily life 

[94]. For example, reaching out and grasping a cup of water, or eating with a spoon are 

both goal-oriented. Opposite to the goal-oriented MIs, some other MI tasks are joint 

specific, which is not meaningful or doesn’t have a specific goal [94]. For example, elbow 

extension/flexion, wrist extension/flexion or figure flexion/extension are all non-goal-

oriented.  

Both goal-oriented and non-goal-oriented MI tasks have been used in BCI 

applications. Table 2.2 summarizes some of the MI tasks and BCI setup methods in the 

literature. The MI tasks selected in the literature were mainly selected based on the 

training protocol. In fact, the MI tasks selection affects the outcomes of rehabilitation 

training. Some researchers have suggested that goal-oriented rehabilitation training 

tasks tend to show longer effects with larger areas in the brain even after the training [3], 

[6], [94], [95]. However, as shown in Table 2.2, goal-oriented MI tasks were, in fact, not 

widely used. Only studies reported by Frisoli et al. [30], Royer et al.[96] and Min et al. 

[97] used goal-oriented MI tasks. The majority of other studies were using non-goal-

oriented MI tasks. 
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Table 2.2 Examples of different EEG control setup and tasks used in the 
literature. This table was reproduced with permission [98]. 

Bibliogra
phy 

Feedback EEG Classes 

[99] EEG+Visual 
8-Class: By combining Vertical and Horizontal control 
to select 8 targets 

[100] EEG + Visual + FES 2-Class: MI (Wrist/Hand) vs Rest 

[101] EEG + Visual + Orthosis 2-Class: MI (Grasp) vs MI (Open) 

[102] EEG + Visual + FES 2-Class: MI/AT (Finger Extension) vs Relax 

[103] EEG 4-Class: MI of finger/wrist with different moving speed 

[104] EEG + Visual 2-Class: MI Left vs MI Right (Arm/Hand) 

[105] EEG + Visual + NES 2-Class: MI (Hand) vs Rest 

[106] EEG + Visual + Robot 2-Class: MI/AT (Grasp) vs Rest 

[107] EEG + Visual + Orthosis 2-Class: MI/AT (Grasp) vs MI/AT (Open) 

[108] EEG + Visual + FES 2-Class: MI (Wrist) vs Rest 

[109] EEG + Visual + Robot 2-Class: MI (Elbow Flexion/Extension) vs Rest 

[110] EEG + Visual + Orthosis 2-Class: MI (Open Hand) vs Rest 

[111] EEG + Visual 2-Class: MI Left vs MI Right (Hand) 

[112] EEG + Visual 2-Class: MI/AT (Grasp) vs Rest 

[113] EEG + EMG + FES 2-Class: MI/AT (Grasp/Finger Extension) vs Relax 

[30] 
EEG + Arm Exoskeleton + 
Kinect + Eye-Tracker 

2-Class: MI (Right Arm) vs Rest 

[114] EEG 4-Class: MI on both wrist movement 

[115] EEG + Orthosis 2-Class: AT (Reach & Grasp) vs Rest 

[116] EEG + Visual + FES + TS 2-Class: AT (Open + Close Hand) vs Rest 

[117] EEG + Visual + Robot 2-Class: MI (Grasp) vs Rest 

[118] EEG 2-Class: Action vs Rest; 4-Class: L-R motor, L-R MI 

[119] EEG+FES 2-Class: AT(Elbow) vs Rest 

[91] EEG Offline Analysis 4-Class: MI(Grasp, Elbow, Reach&Grasp) vs Rest 

[29] EEG + Exoskeleton + FES 2-Class: MI (Grasp) vs Rest 

[44] EEG 4-Class: MI on one hand movement 

MI: motor imagery; AT: attempted movement; NES: neuromuscular electrical stimulation; TS: tongue stimulation; S: 
stroke volunteers; H: healthy individuals; sess: session(s) 

In terms of reliability, BCIs generated based on goal-oriented and non-goal-

oriented MI tasks have different performances as well. Yong et al. reported an EEG 

based BCI study investigating the BCI model accuracy with four MI tasks within the 

same limb in healthy participants [91]. They claimed that the goal-oriented MI tasks 

showed higher testing accuracy [91].  

Although goal-oriented tasks have advantages both in the BCI control accuracy 

and the rehabilitation training outcomes, selection of an appropriate MI task for 

rehabilitation training with BCIs is still unclear and largely depends on the arbitrary 
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choice of the authors. One problem is related to the BCI setup time. During rehabilitation 

training for clinical applications, it is common for the actual rehabilitation training protocol 

to consist of several relevant training exercises. It requires a lot of time and effort, from 

both the participants and the examiners, to go through repetitive EEG data acquisition 

sessions for each MI task involved in the training. The feasibility of using only one BCI 

model from one specific MI task for the entire rehabilitation training (which involve other 

types of MI tasks) is unknown. Specific guidelines for selecting such MI tasks are also 

needed to decrease the setup time of rehabilitation training involving EEG based BCI. 

2.4.2. Offline EEG analysis to BCI application 

The research on offline EEG analysis is well established in the literature. Many 

methods and algorithms have been developed to analyze the target EEG signal in an 

offline paradigm [41]. From a machine learning point of view, there are a lot of well-

established features and classification algorithms investigating how to build a model with 

relatively high offline test accuracy [41], [120]–[122]. In a recent publication, EEG offline 

analysis algorithms can reach 8-class classification with high accuracy (>80%) [44]. In 

addition to the development of the offline analysis method, many studies have also 

pushed one step further to investigate online classification process of EEG based BCI to 

control external devices [123]–[126]. The performance of those BCI applications was still 

not satisfactory. The methods used to set up the BCI application are still preliminary. 

Most of the reported BCI applications apply the offline BCI model directly to buffered 

EEG data. Extra analysis effort could be put on the predictions of the BCI models, which 

may improve the online classification performance. For example, filtering or thresholding 

the probability prediction from the BCI model has the potential to minimize false positives 

and inter-trial variation. However, to the author’s knowledge, no paper has been 

published on analyzing the online prediction of a BCI model to improve the performance 

of BCI applications.  

2.4.3. EEG based assessment for motor function 

Motor function assessments play an important role in the field of stroke 

rehabilitation, as they quantify motor function improvements and contribute to decision 

making during the intervention [27]. In healthcare facilities, motor function is usually 
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assessed with standardized questionnaires which require the examinees to perform pre-

defined standard tasks and the examiners to give scores based on the examinees’ 

performance. Therefore, those assessments are partially subjective and require prior 

training of the examiner. 

Some papers have shown that some EEG features could be related to the motor 

function recovery of stroke survivors [24], [127]. Therefore, various scores were 

proposed in the literature, which claimed to correlate directly with motor function. For 

example, event-related desynchronization/synchronization (ERD/ERS) signal [22], 

[128]–[130], Delta-alpha ratio (DAR) [26], Brain symmetry indexes (BSI) [23], [25] and 

recently, Large-Scale Phase Synchrony (LPS) [28] were the scores proposed in the 

literature. Those scores are basically band power shifts or phase information from the 

EEG signal. Most of these scores were tested with acute/subacute stroke populations. It 

is not known if the results could be extended to the chronic stroke population. The 

scores proposed in the literature are neither accurate nor reliable enough to be used as 

motor function assessments. However, considering that the algorithms proposed in the 

literature are still preliminary, as they only utilize preliminary features like band power or 

phase information, there is a great potential of using EEG to accurately assess motor 

function for chronic stroke survivors, with the help of advanced machine learning 

technology like artificial neural networks. 

2.5. Feature extraction/dimension reduction and machine 
learning 

With the development of electronic devices, EEG data recording systems are 

able to record EEG with a large number of channels at a high sampling frequency. For 

example, EGI acquisition station (Geodesic Inc.) is able to record EEG for 256 channels 

at 1 kHz sampling rate. Therefore, the amount of data collected from EEG can be 

abundant. The simple time/frequency domain features from EEG are not able to satisfy 

the need of EEG applications like BCI systems. General feature extraction and 

dimension reduction processes are always needed in EEG analysis. Specifically, in 

applications like BCIs, a typical EEG data process should consist of pre-processing 

(filtering), feature extraction/dimension reduction, machine learning model generation 

and classification.  
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For feature extraction methods, common spatial pattern (CSP) was used in 

Chapter 3, Chapter 4 and Chapter 7. For classifiers, linear discrete analysis (LDA) was 

used in Chapter 4, support vector machine (SVM) was used in Chapter 3 and Chapter 7. 

Artificial neural networks were used in Chapter 6. Therefore, the author is briefly 

introducing those algorithms in the following sections. 

2.5.1. Common spatial pattern 

The derivatives and equations of this section were modified from [131], [132] and 

[133]. 

Various feature extraction methods have been developed for various applications 

of EEG signals [41]. Considering that the BCI application within this thesis is mainly 

related to motor imagery or actual finger movement, ERD/ERS is the main focus of this 

thesis. In the literature, common spatial pattern (CSP)/filter bank CSP has been proven 

to be very efficient in extracting features related to ERD/ERS [134]–[138].  

The common spatial pattern (CSP) algorithm is a very useful feature algorithm in 

decomposing multiple-channel recording signals into a number of independent subset 

virtual channels, whose variance differences are maximized according to the selected 

windows[139]. The algorithm returns a subset of vectors which are referred to as the 

spatial pattern. 

Let’s assume X1 and X2 of size (n, t) are two windows of a multiple-channel signal 

recording. Here, n stands for the channel numbers of the signal, and t stands for the 

number of samples along the time. The CSP algorithm calculates a subset of w, for 𝑉1 =

𝑤𝑋1 and 𝑉2 = 𝑤𝑋2 the variance is maximized. 

As introduced in [140], the variance of X1 and X2 can be represented as their 

covariance matrix respectively as follows: 

 𝑉1 =
𝑋1𝑋1

𝑇

𝑡
 Equation 2.1 

https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
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As introduced in [140], the variance maximization between V1 and V2 can be 

written as: 

 𝑤 = argmax𝑤

𝑤𝑉1𝑤𝑇

𝑤𝑉2𝑤𝑇
 Equation 2.3 

Several approaches and methods can be used to solve Equation 2.3. In this 

section, the generalized eigenvalue decomposition is used, which is a simultaneous 

diagonalization of V1 and V2. As suggested in [140]: 

 U−1V1U = 𝐷 Equation 2.4 

 U−1𝑉2U = 𝐼𝑛 Equation 2.5 

where 𝐼𝑛is the identity matrix. The matrix U is composed by the eigen vectors and the 

resulted diagonal matrix D is a diagonal matrix of eigenvalues. Note that the eigenvalues 

are sorted by decreasing order. Higher eigenvalues represent higher difference in 

variance. 

The general eigendecomposition of S1 and S2 is equivalent to the 

eigendecomposition of S2
-1S1, as mentioned in [140]: 

 𝑉2
−1V1 = UDU−1 Equation 2.6 

where wT will correspond to the columns of U. 

2.5.2. Fisher’s linear discriminant analysis 

The derivations and equations of this section were modified from [141], Chapter 

4, Section 4.1. 

Linear discriminant analysis (LDA) or Fisher’s linear discriminant analysis is a 

machine learning and pattern recognition method to find a linear combination of the input 

 𝑉2 =
𝑋2𝑋2

𝑇

𝑡
 Equation 2.2 
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features and separate them into a designated number of classes. The LDA is a very 

efficient classification method in the machine learning and pattern recognition field [141]. 

The goal of LDA is to identify a linear discriminant function that separates two classes 

with a hyperplane. Therefore, LDA can only have very good performance when the 

feature distribution of the dataset is linearly separable. In practical applications, it is very 

common to use LDA to assess the feature and perform feature dimension reduction for 

later processes. For two-class classification, the discriminant function, y(𝒙), has the 

following form [141]: 

 𝑦(𝑥) = 𝑤𝑇𝑥 + 𝑤0 Equation 2.7 

where 𝒘 is a vector that weights the input 𝒙 and 𝑏 is the bias. The input features are 

columns of 𝒙, who will be assigned to C1, if y(x) ≥0 and C2 if y(x)<0. The decision 

surface is defined as the separating hyperplane between classes, which is actually y(x) = 

0. By taking y(x) = 0 back into Equation 2.7, we can see that the orientation of the 

decision surface is determined by w, and the displacement of the decision surface is 

determined by w0. 

Originally, LDA only applies to two class problems. For multiple class problems, 

the discriminant function is slightly different from the two-class discriminant function. If 

we assume K is the number of classes, in this case, K discriminant functions need to be 

set up, with the following form [141]: 

 𝑦𝑘(𝑥) = 𝑤𝑘
𝑇𝑥𝑘 + 𝑤0𝑘 Equation 2.8 

where for input xk will be assigned to class K (Ck) if the output 𝑦𝑘 (𝒙) has the greatest 

value among all the other discriminant functions. As mentioned in equation 4.10 in [141] 

(reproduced with permission), with the same property from the two class problem, the 

decision surface between class i and j is calculated as the following equation [141]: 

 (𝑤𝑖  − 𝑤𝑗)𝑇𝑥 +  (𝑤0𝑖  − 𝑤0𝑗)  =  0 Equation 2.9 

To compute the w0i and w0j for class i, we can consider LDA as a dimensional 

reduction method, by projecting input x into y dimension. Therefore, adjusting w is able 
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to maximize the class separation between Ci and Cj. Through this point of view, the 

objective function of LDA is defined as mentioned in equation 4.26 in [141]: 

 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤

𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑤𝑤
 Equation 2.10 

Similar to the objective function in the CSP algorithm, the solution of Equation 

2.10 is the eigenvectors of, and the separation between these two classes will be equal 

to the eigenvalue of Sw
-1SB. In Equation 2.10, SB is defined as the “between classes 

covariance matrix” and Sw is defined as the “within classes covariance matrix”. The two 

covariance matrixes are defined as mentioned in [141]: 

 𝑆𝐵 =  ∑(𝜇𝑐𝑖 − 𝑋̅)(𝜇𝑐𝑖 − 𝑋̅)𝑇

𝑖∈𝐶

 Equation 2.11 

 𝑆𝑤 =  ∑ ∑(𝑥𝑐𝑖 − 𝜇𝑐𝑖)(𝑥𝑐𝑖 − 𝜇𝑐𝑖)𝑇

𝑖∈𝐶𝑐∈𝐶

 Equation 2.12 

where C is the number of classes in the classification problem, 𝑋̅ is the overall mean of 

all the data points, 𝝁𝑐i is the mean of data points in class i, xi is the input x from class i.  

2.5.3. Support vector machine 

The derivations and equations of this section were modified from [142] and [141], 

Chapter 7, Section 7.1 

Support vector machine (SVM) is a kernel method in the supervised machine 

learning field. Different from LDA, which can only have good performance on linearly 

separable datasets, SVM is able to process a dataset with arbitrary distribution with 

various kernels. SVM was also originally designed to tackle two-class classification 

problems. The SVM model is designed to map a margin between the two-class data 

points on the feature domain to separate the two-class data points apart from each 

other. The classification result depends on which side of the SVM model that input data 

point is located. 
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Given a set of n points (X1, y1)...(Xn, yn) as training data for two-class 

classification problem, the yi is either +1 or -1, which indicates the class that Xi belongs 

to. The SVM is designed to find a hyperplane that separates Xi into two groups 

accordingly and maximize the distance between the hyperplane and nearest data points 

from either class. The above-mentioned hyperplane is called the “maximum-margin 

hyperplane”. To simplify the derivatives, we only talk about linear kernels in the 

following. Therefore, the maximum-margin hyperplane can be defined as mentioned in 

[142]: 

 𝑤𝑥𝑖 − 𝑤0 = 0 Equation 2.13 

where w is the vector to the maximum-margin hyperplane. Similar to the LDA analysis, 

𝑤0

‖𝑤‖
 is the basis of the maximum-margin hyperplane, and 

𝑤

‖𝑤‖
 is the orientation of the 

maximum-margin hyperplane. 

Considering the training data points and their distribution, since the maximum-

margin hyperplane is in the middle of the data points of two classes, the possible 

distance between the two classes can be considered as twice the distance to the 

maximum-margin hyperplane, which is defined as
2

‖𝑤‖
. This is defined as the margin of 

the SVM model. If we want to maximize the margin to prevent misclassification, we need 

to minimize the norm of the weight vector.  

To prevent the data points from falling into the margin, we add the following two 

constraint conditions as mentioned in [142], to the original SVM model: 

 𝑤𝑥 − 𝑤0 ≥ 1, 𝑖𝑓 𝑦𝑖 = 1 Equation 2.14 

and  

 𝑤𝑥 − 𝑤0 ≤ −1, 𝑖𝑓 𝑦𝑖 = −1 Equation 2.15 

The constraint conditions stated in Equation 2.14 and Equation 2.15 can also 

prevent the data points from falling into the wrong side of the SVM model. If we multiply 

yi on both sides of the constraint conditions, as mentioned in [142], Equation 2.14 and 

Equation 2.15 can be re-written into the following equation: 
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 𝑦𝑖(𝑤𝑥𝑖 − 𝑤0) ≥ 1, 𝑓𝑜𝑟  1 ≤ 𝑖 ≤ 𝑛 Equation 2.16 

Therefore, to summarize all the derivations we have, the SVM problem transfers 

into an optimization problem, which is to minimize ‖𝑤‖ subject to  𝑦𝑖(𝑤𝑥𝑖 − 𝑤0) ≥

1, 𝑓𝑜𝑟  1 ≤ 𝑖 ≤ 𝑛. The solution of this optimization algorithm returns the maximum-margin 

hyperplane for the SVM. Maximizing the margin of the two-class data points will result in 

a particular choice of decision boundaries, which was determined by the closest data 

points to the maximum-margin hyperplane. These decision related data points are 

known as the support vectors. 

In order to solve the w and w0 from the SVM model, the hinge loss function was 

the common loss function in the SVM model generation. The hinge loss function, as 

mentioned in [142], has the following form: 

 max (0,1 − 𝑦𝑖𝑝𝑖) Equation 2.17 

where the yi is the class label and pi are the predicted class from the SVM model. The 

output of the hinge function is related to the constraint function in Equation 2.16. If the 

constraint function in Equation 2.16 is met, the hinge function will output zero. If not, that 

means the Xi is classified on the wrong side of the maximum-margin hyperplane, and the 

hinge function will output a distance related value to the maximum-margin hyperplane. 

Therefore, in the SVM algorithm, the loss function is designed as mentioned in [142]: 

 [
1

𝑛
∑ max (0,1 − 𝑦𝑖p𝑖)

𝑛

𝑖=1

] + 𝜆‖𝑤‖2 Equation 2.18 

The first half of Equation 2.18 describes the classification accuracy and the 

second half relates to the margin of the SVM model. λ is an arbitrary value describing 

the weight between the classification accuracy and the margin size of the SVM model. 

With a fairly small λ value, the second half of the SVM model will be neglectable, and the 

SVM model will only value the accuracy of the prediction. 

Combining Equation 2.16 and Equation 2.18, the optimization problem can be 

simplified as mentioned in [142],: 
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𝑎𝑟𝑔𝑚𝑖𝑛( 
1

𝑛
∑ 𝜁𝑖

𝑛

𝑖̇=1

+ 𝜆‖𝑤‖2) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖p𝑖 ≥ 1 − 𝜁𝑖 𝑎𝑛𝑑 𝜁𝑖 ≥ 0  

Equation 2.19 

where 𝜁 is the hinge loss function output. This equation can be solved through the 

Lagrangian dual method. As mentioned in [141], for an arbitrary kernel Φ(𝒙), we can get 

 

𝑤 =  
1

𝑛
∑ 𝑎𝑖𝑦𝑖

𝑛

𝑖̇=1

Φ(x𝑖)  

∑ 𝑎𝑖𝑦𝑖

𝑛

𝑖̇=1

= 0 

𝑎𝑖 =
1

2𝜆
− 𝜇𝑖 

Equation 2.20 

where 𝑎𝑖 and 𝜇𝑖 are the Lagarangian multipliers. As mentioned in [141], in order to solve 

the Lagrange multiplier 𝑎𝑖, the following equation is introduced: 

𝑓(𝑎𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥[∑ 𝑎𝑖

𝑛

𝑖=1

− 
1

2
∑ ∑ 𝑦𝑖  𝑦𝑗𝑎𝑖

𝑛

𝑗=1

𝑛

𝑖̇=1

𝑎𝑗Φ(x𝑖)Φ(x𝑗)
𝑇

] 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑎𝑖𝑦𝑖
𝑛
𝑖=1 = 0 𝑎𝑛𝑑 0 ≤ 𝑎𝑖 ≤

1

2𝜆
  

Equation 2.21 

 

The parameter 𝑎𝑖 can be solved with quadratic programming algorithms. With the 

optimal 𝑎𝑖, the data point 𝒙𝑛 which has non-zero 𝑎𝑖 is the support vector mentioned 

before. The rest of 𝑎𝑖 does not contribute to the maximum-margin hyperplane. 

Therefore, they can be removed from the calculation. 

Once the 𝑎𝑖 is calculated, the weight parameter can be solved based on 

Equation 2.20. As mentioned in [141], the bias 𝑤0 can be calculated on the following 

equation: 
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 𝑤0 =
1

𝑀
∑ (𝑦𝑖 − ∑ 𝑎𝑗𝑦𝑗

𝑗∈𝑁

Φ(x𝑖)
𝑇Φ(x𝑗))

𝑖∈𝑀

 Equation 2.22 

where M is the length of 𝑎𝑖, which is 0 ≤ 𝑎𝑖 ≤
1

2𝜆
, M is the number of support vectors. 

2.5.4. Artificial neural network (ANN) 

Artificial neural networks (ANN) are algorithm frameworks inspired by actual 

biological neural networks. The ANN consists of neuron nodes that are controlled by the 

activation function, which has a similar mechanism as biological neural systems. ANN 

was referred to as cybernetics in the 1940s-1960s, or connectionism system in the 

1980s-1990s [143]. ANN and related research have generated more and more interest 

all around the world. 

ANN is able to learn features and patterns automatically. Therefore, ANN is very 

suitable for machine learning and pattern recognition applications with large and 

complex data input. 

ANN is defined as a special data managing architecture rather than an algorithm, 

the actual algorithm is referring to the special method designed to update the weights for 

the artificial neural nodes. Figure 2.3 shows a simple three-layer ANN architecture. For 

this ANN architecture example, the data input is a three-dimensional vector 𝒙 = (x1, x2 

x3). Starting from the second layer, for each neural node in this layer, a weight factor 

wi,j
(k) is multiplied with each previous layer’s neural node output hi

(k-1), where k is the layer 

numbering and i is the neural node numbering of the neural nodes from the previous 

layer (connected from), j is the numbering of the neural nodes in the current layer 

(connected to). The output hi
(k-1) is calculated with a pre-defined activation function f(x), 

which regulates the output in a predefined way. Figure 2.4 shows several common 

activation functions. An activation function is chosen on an empirical basis with 

consideration on the current function of the neural node layer and the general application 

of the ANN. 
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Figure 2.3 A typical three-layer ANN configuration. In the equation on the left of 
the figure, 𝑤𝑗, 

(𝑙) is the weight of the connection between neuron 𝑗 in 

layer 𝑙 − 1 and neuron 𝑘 in layer 𝑙. ℎ(𝑙) is the output of neuron 𝑘 in 
layer 𝑙. 𝑏(𝑙) is the bias term of neuron 𝑘 in layer 𝑙. (𝑙) (x) will be the 

activation function used in the neurons in layer 𝑙. 

With the architecture of the ANN setup, the next step is to train the weights 

based on the training data set, which is obtaining the optimal value for weights and 

biases. A general method called backpropagation is commonly used to obtain the 

weights and biases. Reference [143] has a detailed explanation of backpropagation, 

therefore only the basic mechanism will be explained in this part of the thesis. 

With the example in Figure 2.3, the values of weights and biases are updated by 

going through several iterations of the training dataset. Each iteration is called epoch in 

the ANN field. If the training dataset is too big, it can be further divided into batches. 

Firstly, the ANN is initialized with random values of weights and biases. The training data 

is passed through the initialized ANN and output h(3) is calculated. Errors are calculated 

based on the true values and the output h(3). The gradient of layer 3 is computed as well. 

The weight values and bases values of layer 3 are then updated according to the 

gradient. The next step is to calculate the errors in layer 2. The error values in layer 3 

are passed to layer 2, proportionally to the weight values between the neural nodes of 

the two layers (h(3) to h(2)). Gradients of layer 2 are also calculated and the weight and 

base values of layer 2 are also updated. Based on the same method, the weight and 

base values are updated for the whole ANN. A maximum error value and a maximum 

number of epochs have to be pre-defined to break the ANN training process if the ANN 

training process achieves either of the two constraint conditions.  
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Figure 2.4 Some common activation function used in ANN. 

Special layers of ANN were also developed recently to serve for special needs, 

for example, convolutional neural network (CNN). CNN was inspired by mammal visual 

cortex structure [144]. CNN is very suitable to find locally related features and patterns 

[145]. CNN has shown its wide applications in computer vision and video recognition 

fields. A typical CNN usually combines convolutional layers and fully connected layers 

(sometimes referred to as the hidden layer) as a complete network. Recently, deep CNN 

architectures have been proposed to deal with object recognition problems, and the 

results are promising. For example, CNN based Inception-ResNet has been reported to 

have very good performance on the ImageNet classification challenge, which is now one 

of the most accurate methods in the object recognition field [146]. 

Convolution layer is the key component layer of CNN. The convolutional layer is 

designed to compute convolution with the adjacent input and send the output to the next-

layer input. The convolution computation can be done with arbitrary dimension. Since 

the major applications of CNN are for image recognition, an illustration of a 2D 

convolutional layer algorithm is shown in Figure 2.5. Based on the calculation procedure 

shown in Figure 2.5, each input element has a limited field of influence on the output of 
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the convolutional layer. Compared to same-size fully connected neural network 

configuration, CNN has a lower number of parameters to learn and the resulted features 

are more locally relevant [143].  

 

Figure 2.5 Illustration of a 2D convolutional layer algorithm [143]. 

2.6. Chapter summary 

In this chapter of the thesis, the literature related to EEG applications in stroke 

rehabilitation has been reviewed. This chapter started with the etiology of stroke and the 

significance of stroke rehabilitation. Characteristics and possible fields of EEG 

application were also reviewed to investigate the possible research direction for the 

following chapters. At the end of this chapter, several popular EEG feature algorithms 

and machine learning methods were also reviewed to further clarify the research 

methodologies in the following study. 
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In the next chapter, a pilot study will be introduced to address the specific 

challenges of BCI applications in stroke rehabilitation. 
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Chapter 3.  
 
A pilot study to identify the challenges of EEG 
applications in stroke rehabilitation 

This chapter is reproduced with permission from the following paper I co-authored: 

Elnady, A. M., Zhang, X., Xiao, Z. G., Yong, X., Randhawa, B. K., Boyd, L., & Menon, C. 
(2015). A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled 
Arm Exoskeleton and Motor-Proprioception Platform. Frontiers in Human 
Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00168 

Some sections are adapted to fit within the scope and comply with the format of the 

thesis. 

In the study introduced in this chapter, the author’s major contribution is in EEG 

acquisition, BCI realization, and FES unit programming. The training protocol design and 

programming are done in collaboration with the first author. This chapter is included in 

the thesis to identify the potential challenges with respect to EEG applications in 

rehabilitation.  

3.1. Introduction 

The general changes after rehabilitation training are the result of learning effects, 

as learning has been shown to create new pathways on how the brain processes 

information, suggesting that the brain is plastic [147], [148]. In order to consolidate the 

changes brought by learning effects, repetitive training is necessary. Based on this 

hypothesis, exercises using the unimpaired part of the brain may enhance brain 

plasticity and subsequently improve the motor performance of the patients with stroke 

[149], [150]. 

Traditional rehabilitation training protocols consist of one-to-one training sessions 

between healthcare professionals and patients. In these training sessions, the 

healthcare professional manually assists the patient, which is labor intensive for 

healthcare professionals and costly for patients [1]. Robotic-assisted rehabilitation 

training was proposed to minimize interventions from healthcare professionals and 

https://doi.org/10.3389/fnhum.2015.00168
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reduce the cost for patients [10], [13], [151]–[154]. Those devices have the advantage of 

delivering a high dose of training repetitions without full supervision from healthcare 

professionals. However, some papers have pointed out that therapeutic training with 

only passive robotic-assisted joint movements is not efficient, as those training protocols 

do not need the patients’ active participation in rehabilitation training [14], [155]. 

Therefore, BCI controlled robotic-assisted rehabilitation devices were developed to 

ensure the users’ focus in rehabilitation training [156]–[160]. In this specific application, 

the BCI system interprets the user’s intention of moving to control commands for the 

robotic-assisted rehabilitation device, which assists the user in the rehabilitation training 

[15]. Misinterpretation of the users’ intention would deteriorate the training efficiency and 

the stability of the BCI system, as the users may be misled by the misclassification.  

Most BCI controlled robotic-assisted rehabilitation devices reported in the 

literature used motor imagery to trigger the assistance. The utilization of BCI and robotic 

rehabilitation creates a feedback loop that includes active training and somatosensory 

feedback at the same time. This feedback loop may have a strong and positive influence 

on rehabilitation outcomes.[107], [161], [162]. 

The objective of this chapter is to use an experimental design of BCI-exoskeleton 

rehabilitation training platform to identify the challenges of EEG applications in stroke 

rehabilitation. In this chapter, the author proposed a rehabilitation training platform 

combining BCI, robotic exoskeleton and FES. The author contributed in the design and 

coding of the BCI system, the FES control component, and partially with the training 

protocol, which was designed in collaboration with the first author. The robotic 

exoskeleton was designed and fabricated by colleagues in the lab [29]. 

3.2. Methods 

3.2.1. BCI Setup 

EEG technology has many advantages like non-invasiveness and direct relation 

to brain cell activation. EEG-based BCI technologies were extensively investigated in the 

literature [38], [40], [41], [84], [120], [121], [163], [164]. Recently, BCI has been used in 

applications like assistive devices [92], communication and rehabilitation [11], [15], [38], 

[85]. Current BCI technologies still suffer from low reliability and performance, which 
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limited their application in daily lives. Rehabilitation seems to be a good match for BCI 

technologies, as rehabilitation applications generally deal with less complex situations 

and have less requirement on the accuracy, compared to assistive applications in daily-

living [84].  

A typical EEG based BCI is usually set up following these steps: 1) 

time/frequency domain filter, 2) spatial filter, 3) feature extraction/selection, 4) 

classification/regression, 5) testing/using [165]. In the past decade, most research 

focused on the spatial filters, feature extraction/selection and the classification process 

(i.e. classifiers) [165]. For example, principal component analysis (PCA), independent 

component analysis (ICA) [166] and common spatial pattern (CSP) [132] were the basic 

spatial filters proposed in the literature. Some other variants of spatial filters were also 

reported to have positive effects on classification accuracy, such as filter bank common 

spatial pattern (FBCSP) [167]. In order to select the relevant features in the BCI model 

generation, the feature extraction/selection process was included in the BCI setup. The 

correlation-based feature selection, information gain, and 1R ranking methods were the 

top feature extraction/selection methods as reported in [168]. With the development of 

modern machine learning technologies, the boundary between feature selection and 

classification has become unclear, such as in the modern artificial neural network 

technologies. The modern artificial neural network is a data processing framework 

designed to learn features and classify directly and jointly from the data (i.e. 

convolutional neural networks (CNNs), restricted Boltzmann machines (RBMs)) [165]. 

However, modern artificial neural networks usually require a large amount of system 

computational resources, which is a big challenge for online BCI applications. 

Despite many papers published in the field of BCI, spatial filtering the EEG 

signals and utilizing frequency band power or time domain features are still common 

practice, especially for real-time BCI applications [165]. For the purpose of reducing the 

computation complexity and improving the portability of the entire system, a wireless 

Emotiv headset (Emotiv SDK Research Edition Specifications, 2010), which was 

designed for gaming, was used to record the EEG data for the online BCI application in 

this chapter. The EEG data were sampled at 128Hz. The EEG recording headset was 

originally designed as 14 channels of the 10-20 EEG system [169]. The channels 
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include: AF3, AF4, F7, F8, F3, F4 FC5, FC6, T7, T8, P7, P8, O1, and the reference 

channels are located at the P3/P4 locations.  

In order to calibrate the EEG model for the BCI, the Stimulus Presentation mode 

of BCI2000 was used to record the EEG data [170]. BCI2000 is an open source software 

written in C++, co-developed by Brain-Computer Interface R&D Program at the 

Wadsworth Center of the New York State Department of Health in Albany, the Institute 

of Medical Psychology and Behavioral Neurobiology at the University of Tübingen, the 

BrainLab at Georgia State University, and Fodazione Santa Lucia in Rome and other 

research institutions. In this part of the session, the participant was required to sit 

comfortably in front of a screen. On the screen, two pictures (rest and motor imagery) 

were shown consecutively, one at a time. The participant was required to follow the 

picture on the screen and react correspondingly. When the rest picture was on the 

screen, the participant was required to look at the screen and stay at rest. When the 

motor imagery picture was shown on the screen, the participant was required to imagine 

hand grasping with his/her stroke-impaired hand. The sequence of the two pictures was 

randomized. Each picture was shown for a random time between 4 to 6 seconds on the 

screen, in order to minimize adaption. Each of the stimulus presentation consisted of two 

runs, the total session lasted for about 15 mins. In total 20 trials of EEG data were 

recorded, for each participant and each visual stimulation. The participants were 

encouraged to take breaks when needed. 

The EEG acquired from the Emotiv was firstly filtered with a finite impulse 

response (FIR) bandpass filter, whose passband was set to 1-45 Hz. The influence of 

artifacts on the EEG data was minimized. The mu band power of the EEG data was 

extracted as the main feature input for the BCI. A classifier was trained to distinguish 

between the rest and motor imagery states of the user. The output of the classifier was 

then sent to the exoskeleton and the FES unit. 

Then, the collected EEG data of the two states were processed to generate the 

BCI models for each participant, which were used in the rehabilitation training. A 

MATLAB based toolbox (BCILAB) was used to generate the BCI model [171]. To 

generate a BCI model, a spatial filter algorithm was first applied to the EEG data. In this 

chapter, Common Spatial Pattern (CSP) algorithm [132], [134] was used to filter the 
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EEG signals. The standard deviations of the filtered signals were used as features for 

the model generation. Linear Discriminant Analysis (LDA) was used as classifiers to 

classify the EEG data [141]. To evaluate the performance of the BCI, the 10 x 10 cross-

validation method was used [141]. In the 10 x 10 cross-validation, the entire data set 

was randomly shuffled and divided into ten subsets. Nine of the subsets were used to 

train the classifier and the remaining one subset was used to test the prediction 

accuracy of the obtained model. This procedure was repeated for ten times, with the ten 

subsets in turn. Then, the average BCI cross-validation classification accuracy was 

computed by averaging the validation accuracy in the ten folds. Among the ten folds, the 

BCI model with the highest test accuracy in the cross-validation was saved for later 

online application. 

For online testing, the EEG data were streamed to the classifier with a two-

second data buffer (256 data samples of 14 channels). The output of the classifier was 

either “0” or “1”. The classifiers were configured to produce classification decision output 

every 0.5 seconds. The classification output was used to control the exoskeleton arm or 

the FES unit, depending on the process of the rehabilitation protocol. The classifier “0” 

output represented the resting state of the user. The classifier “1” output represented the 

motor imagery state (or active state) of the user. During the rehabilitation training, the 

motor imagery state was used to activate assistance of the exoskeleton or to turn on the 

output of the FES unit. The resting state was used to indicate that the user did not intend 

to activate the device. 

3.2.2. System Integration 

The robotic exoskeleton used in this chapter was designed and fabricated in the 

lab, not by the author [29]. The exoskeleton is shown in Figure 3.1 
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Figure 3.1 The exoskeleton used in this study [29] 

RehaStim I (Hasomed, Magdeburg, Germany) was the FES unit used in this 

chapter. The FES unit was configured to output biphasic rectangle pulses with 35 Hz of 

frequency and 150us of pulse width. The output peak-to-peak amplitude was adjusted 

accordingly for each participant. 

Figure 3.2 shows the main components of the proposed BCI-controlled 

exoskeleton training system. The BCI system was set up using MATLAB. The FES unit 

and the exoskeleton were programmed and controlled via LabVIEW. The EEG data 

were streamed in real time via Bluetooth from Emotiv, to the processing terminal. The 

processing terminal was a laptop in this study. The EEG data were then processed and 

classified into classification decision output (either “0” or “1”). In the proposed 

rehabilitation training platform, the classification output was transmitted internally in the 

laptop via UDP protocol. A LabVIEW virtual instrument (VI) was created to handle the 

data exchange between the classifier and the rehabilitation training protocol. The 

rehabilitation training protocol was programmed separately with another LabVIEW VI. 

The rehabilitation training protocol program was designed to control the exoskeleton and 

the FES unit directly. The exoskeleton was controlled through a National Instrument (NI) 

data acquisition card. The angular position of the exoskeleton’s elbow joint was 

monitored in real time with the same NI data acquisition card, which acted as feedback 
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control for the motor of the exoskeleton. The FES unit was controlled using byte control 

directly via USB.  

 

Figure 3.2 Schematic drawing for the rehabilitation training system used in this 
study [29] 

The rehabilitation training platform was designed in a pre-programmed 

movement sequence with a goal-directed motor task. The overall training protocol 

involved training on the hand, elbow joint and shoulder joint. The training protocol was 

divided into 11 phases. These 11 training phases were shown in Figure 3.3. Moving from 

one phase to the following phase, the user was required to perform the same motor 

imagery in the stimulus presentation part. The BCI model (“rest” vs “motor imagery”) 

obtained from the previous model training procedure was used to determine the users’ 

mental status (“rest” or “active”) based on the users’ EEG data. The classification 

decision “0” did not have any influence on the system control. If the classification 

decision “1” was detected during the phase transition, the training protocol would move 

to the next phase of the assistive protocol for the rehabilitation training. 
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Figure 3.3 Flowchart of the training protocol [29]. 

3.2.3. Participants 

Participants with chronic stroke (> 6 months post) were recruited through local 

rehabilitation hospitals and stroke clubs. All potential participants were screened to meet 

the following inclusion criteria: (a) age range from 35 to 85 years, (b) post-stroke 

duration ≥ 6 months, (c) Montreal Cognitive Assessment (MoCA) ≥ 25 [172], or pass any 

other cognitive assessment test, (d) shoulder active range of motion (ROM) in all 

directions of 10-15, (e) elbow passive extension and flexion ROM of 0-130, (f) wrist 

passive extension ROM of 0-15, and (g) fingers full passive extension. The exclusion 

criteria included: a) any other neurological conditions in addition to stroke, b) unstable 

cardiovascular disease, c) contraindications to FES or d) other conditions (e.g. poor 

sitting balance) that precluded them from undergoing the study. Nine male stroke 
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participants (mean age 66 ±11.9 years) agreed to participate in this study. The protocol 

of this study was approved by the Office of Research Ethics at Simon Fraser University 

and all the participants gave informed consent before participating. 

3.2.4. Training Protocol  

Participants were instructed to learn how to use the training device to perform a 

pre-defined goal-directed motor task. The training platform required to be calibrated 

individually for each participant, which consisted of two main steps: the setup of the BCI 

and the setup of the FES unit. 

The Emotiv EEG acquisition system requires to soak its EEG contacts in an 

electrolyte solution in advance to ensure good contact between the device and the 

user’s scalp. Then the Emotiv system was applied to the participant. The contact 

resistance for each channel was adjusted until the resistance was below 10kΩ, as 

suggested by the Emotiv manual. The BCI system was then set up as described in the 

previous section. 

The RehaStim FES unit was used to assist the participants in grasping and 

releasing an object. For each participant, two self-adhesive rectangular electrodes were 

attached to the arm surface of the stroke-affected side, close to the extensor digitorum. 

The peak-to-peak amplitude of the FES was incrementally tuned, and the electrode 

positions were adjusted until the participants’ impaired hand was open (enough to grasp 

the designated cup). For the FES used in this study, symmetrical biphasic square 

pulses, with a fixed frequency of 35Hz and signal duration of 150µs, were used to open 

the hand of the participants [173]. In the training protocol, the participants were required 

to adjust hand/shoulder position to grasp a cup. Then, the FES unit was deactivated so 

that the participants were able to flex their fingers and grasp the object. 

After setting up the BCI and the FES unit, the participants were required to wear 

the exoskeleton. Straps were used to fasten the exoskeleton arm on the participant’s 

impaired side.  

An introduction was then given to each participant on how to use the training 

device to perform a pre-defined goal-directed motor task, with assistance from the 
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proposed training platform. The pre-programmed rehabilitation training protocol required 

the participants to move a cup from an initial position to a new position. It was divided 

into 11 phases, as shown in Figure 3.3. 

At the beginning of the rehabilitation training, participants were required to place 

their arm in an elbow-flexed initial position that is comfortable for them. 

During phase 1, participants were required to perform motor imagery to activate 

the BCI. If the classification result changed from “0” to “1”, the BCI system would then 

activate the assistance from the exoskeleton to extend the participants’ elbow to the 

designated elbow position. 

During phase 2, participants were required to perform the same motor imagery 

as the one used during the EEG data acquisition session, to activate the BCI. If the 

classification result changed from “0” to “1”, the BCI system would turn on the assistance 

from the FES unit to open the participants’ hand.  

During phase 3, participants were required to adjust their shoulder and trunk to 

aim at a target cup on the table with the hand on the impaired side.  

During phase 4, when the hand was placed beside the cup, participants were 

required to use BCI to deactivate the FES unit. The FES unit would remain on during 

phase 3 and phase 4 until it received an “1” output from the BCI system. With the FES 

unit deactivated, the participants were able to grasp with the hand on the impaired side 

to hold the cup. 

During phase 5, participants were required to lift the cup up with elbow flexion. In 

order to perform this movement, the participant was required to perform motor imagery 

to activate the BCI again, and the BCI would activate the assistance from the 

exoskeleton. The exoskeleton helped the participant perform elbow flexion with a small 

angle (approximately 15°) to lift the cup.  

During phase 6, participants were required to move their shoulder and trunk to 

aim for the designated new location for the cup. 
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During phase 7, participants were required to place the cup in a new position. In 

order to perform this movement, the participants were required to perform motor imagery 

to activate the BCI. The BCI system would activate the assistance from the exoskeleton. 

Then, the exoskeleton would assist the participants to perform elbow flexion to put the 

cup on the table again. 

During phase 8, participants were required to release the cup at the target 

location. The participants were required to perform motor imagery to activate the BCI. 

The BCI system would activate the FES Unit. Then, the participants were able to release 

the cup. 

During phase 9, participants were required to use their shoulder and trunk, to 

move the impaired hand away from the target cup. In this phase, the participants do not 

need to maintain the MI state to maintain the elbow extension state of the exoskeleton. 

During phase 10, participants were required to perform motor imagery to 

deactivate the FES unit using the BCI. 

During phase 11, participants were required to flex their elbow and return to the 

initial position using the exoskeleton. The participants were required to perform motor 

imagery again and activate the BCI. The BCI system would activate the assistance from 

the exoskeleton, and the exoskeleton would help the participants flex the impaired arm 

to return to the initial position. 

The sequence of the training protocol was repeated during one hour of training. 

The participants were able to pause or terminate the rehabilitation training on their own 

volition. 

3.3. Result 

Table 3.1 presents the BCI validation accuracy for each stroke participant. 

Considering that this is a single session training, no standard variation was obtained. For 

all nine participants, the average cross-validation accuracy achieved 68.8%, with a 

standard deviation of 9.0%. The accuracy of the BCI in this chapter is similar to the 

performance of the BCI systems reported in the literature [174].  



 

41 

Table 3.1 BCI Cross validation accuracy 

Participant ID P01 P02 P03 P04 P05 P06 P07 P08 P09 

Accuracy (%) 81.10 65.20 83.20 69.26 62.87 64.25 55.78 63.31 73.90 

Mean  Standard Deviation 68.76  9.03 

During the one-hour training, all participants with chronic stroke (n = 9) were able 

to complete the training exercises for at least two repetitions. The average number of 

training repetitions was 3 ± 0.7 (ranged from 2 to 5).  

For each trial of the training exercises, the following data were recorded in real-

time: the BCI output: rest (‘0’) or activate (‘1’); the FES status: deactivate (‘0’) or activate 

(‘1’); the angular position of the exoskeleton; and the time to complete a trial (Tc). In 

Figure 3.4, an example time course response of the BCI output (rest (‘0’) or activate 

(‘1’)), the FES status, and the angular position of the exoskeleton for participant P05 is 

presented. This example shows the typical behavior of the system output in real-time 

when the participant was in good control of the training device. As shown in Figure 3.4, 

the participant successfully generated positive BCI output (classification output ‘1’) that 

triggered the exoskeleton and the FES. However, not all positive BCI predictions in the 

figure are true positives. Three of the positive BCI output labeled as ‘PO’ did not trigger 

any device. These ‘PO’ occurred at 1.52s, 0.55s, and 5.65s respectively after a true 

positive. The first and the last POs were very likely false positives because they took 

place more than 1s after a true positive. The undesired positive output, however, did not 

affect the overall system performance. This was caused by the system design that, when 

the exoskeleton was in operation, no other devices could be triggered. 
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Figure 3.4 Time course of the system response from one of the participants 
[29]. 

3.4. Discussion 

The BCI cross-validation accuracy is an important metric that has been widely 

used to assess the performance of the BCI model generated offline. The results showed 

that the BCI cross-validation accuracy was in a range between 55.78% and 83.20%, 

which was within the same range compared to the BCI applications reported in the 

literature [174]. The BCI accuracy for some of the participants (P02, P04, P05, P06, P07, 

and P08) was not very high (<70%). Some of these participants reported that they were 

not able to focus when performing motor imagery due to their age and stroke-related 

problems. Also, the configuration of electrodes placed around the motor cortex area for 

the Emotiv system was sparse, which may also result in the relatively low accuracy in 

these participants. To improve the performance of the BCI system, dense EEG 

acquisition montage could be used, with more electrodes around the motor cortex area. 

Also, EEG signals are generally considered to have a low signal-to-noise ratio and are 

frequently contaminated by artifacts. These types of unwanted noise originate either 
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from the user (e.g. ocular and adjacent muscle activity) or from other non-physiological 

sources, such as power line interference. These artifacts could affect the quality of the 

EEG signals and subsequently deteriorate the BCI classification performance. 

During this study, the author noticed four potential problems with EEG 

applications in stroke rehabilitation. 

Firstly, a rest-vs-MI BCI model was generated from the model generation 

process. The rising edge of the BCI output (output switching from “0” to “1”) was 

configured as the triggering signal to move from one phase of the training protocol to the 

next phase. One type of MI was used consistently throughout the training. According to 

the literature, goal-oriented tasks are generally preferred in rehabilitation training 

protocols [65], [66], [69]. However, with the EEG based BCI involved in the protocol, it 

takes time and effort to go through EEG data acquisition and model training for every 

rehabilitation training task. Therefore, a general model, which is reusable for different 

rehabilitation training tasks, would drastically reduce the training time as the data 

acquisition would be done with only one single motor task. However, no study has 

investigated whether an EEG model trained using the EEG signals from motor imagery 

of a single upper extremity movement (e.g. elbow flexion and extension) could be used 

to classify the motor imagery from other similar motor imagery (e.g. motor imagery of 

opening a door, combing hair, placing a ball into a basket, etc.). 

Secondly, for this preliminary pilot study, the participants were able to learn to 

control the proposed portable EEG based BCI system within a few trials. However, 

based on the feedback from the participants, they were expecting substantial motor 

function improvement with less effort. Some papers suggested that combining motor 

imagery training and physical training would further boost the rehabilitation outcome. 

With major hardware and software modifications, the proposed platform could facilitate 

such sophisticated rehabilitation training protocols. The feasibility and possible efficacy 

of such rehabilitation training platforms should be investigated with a relatively long-term 

rehabilitation training protocol. 

Thirdly, although many methods and algorithms have been developed to analyze 

the target EEG signals, the transition of the offline analysis method to an online BCI 

application is another major factor that affects the BCI performance. Potentially, filtering 
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the prediction/classification output of the BCI system could supress the false positives 

and improve the sensitivity. However, no papers have investigated how to improve the 

performance of the online BCI application by filtering the prediction output of the 

classifier. 

Fourthly, in order to quantify the rehabilitation outcomes, motor function is 

generally monitored through standardized clinical motor ability assessments during or 

after the rehabilitation. However, those standard motor assessments are neither efficient 

nor completely objective. According to the literature, EEG has shown its potential as a 

motor function indicator (BSI, DAR, LPS). However, in previous studies, the correlation 

between the EEG-based motor function scores and questionnaire-based motor function 

assessment scores were low. Those scores proposed in the literature are not accurate 

enough to be used as motor assessments. New methods of calculating motor function 

scores from EEG data should be investigated, in order to assess motor function 

automatically and reliably. 

3.5. Chapter Summary 

In this chapter, a portable BCI controlled exoskeleton system for rehabilitation 

was designed and developed in the lab. The feasibility of a complex portable BCI-

controlled rehabilitation platform was proven. Four possible challenges of EEG 

applications in stroke rehabilitation were identified from this pilot study. In the following 

chapters, different methods and approaches were proposed and investigated according 

to the challenges identified in this chapter. These four challenges were addressed 

separately in Chapters 4 to 7. 
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Chapter 4.  
 
Re-using EEG models generated with different motor 
imageries 

This chapter is reproduced with permission from the following paper I co-authored: 

Zhang, X., Yong, X., & Menon, C. (2017). Evaluating the versatility of EEG models 
generated from motor imagery tasks: An exploratory investigation on upper-limb 
elbow-centered motor imagery tasks. PLoS ONE, 12(11). 
https://doi.org/10.1371/journal.pone.0188293 

Some sections are adapted to fit within the scope and comply with the format of the 

thesis. 

This chapter is included to address Objective 1, which is related to the investigation of 

using one MI to generate the BCI model and classify other MIs. 

4.1. Introduction 

Electroencephalography (EEG) has recently been considered for applications in 

the rehabilitation for people with motor deficits [84][93]. EEG data from the motor 

imagery of different body movements have been used, for instance, as an EEG-based 

control method to send commands to rehabilitation devices that assist people to perform 

a variety of rehabilitation training tasks. Motor imagery can be either goal-oriented or be 

related to a single joint. Goal-oriented motor imagery refers to imagery on context-

specific movements, such as grasping a glass of water for drinking or eating with a 

spoon [94]. On the other hand, single joint motor imagery refers to imagining a single 

joint movement that is not goal-oriented or has a specific meaningful purpose. Examples 

of single joint motor imagery include imagining flexing or extending the elbow, the wrist, 

or another joint without grasping an object or any specific function [94]. However, it is 

both time and effort consuming to go through data collection and model training for every 

rehabilitation training task.  

The use of a general model approach (GM) could potentially avoid repetitive data 

acquisition and model generation process. Here, general model means EEG 

https://doi.org/10.1371/journal.pone.0188293
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classification model acquired while the participant is performing certain motor imagery 

and being used for classification of another motor imagery. However, it is not known 

whether an EEG model trained using the EEG signals of the motor imagery of a single 

upper extremity movement (e.g. elbow flexion and extension) could be used to classify 

the motor imagery of similar other movements (e.g. opening a door, combing hair, 

placing a ball into a basket, etc.). To the best of the authors’ knowledge, it is also not 

known which movement would work best to generate the GM. The investigation of 

whether a model can be reused in different training tasks is an important problem to be 

addressed especially in EEG controlled rehabilitation applications, where each goal-

oriented movement is functionally different from the others.  

The objective of this chapter was to avoid the repetitive EEG data acquisition and 

model training in BCI setups by re-using one BCI model for multiple MI tasks. In this 

chapter, the author investigated the versatility of motor imagery, by using an EEG model 

from one type of motor imagery (e.g.: elbow extension and flexion) to classify EEG from 

other types of motor imagery activities (e.g.: open a drawer). In this chapter, versatility 

refers to EEG model generated from one specific MI task with high test accuracy for 

other MI tasks (higher inter-task testing accuracy). Given the complexity of the problem, 

this exploratory study focuses only on upper-extremity movements to simplify the 

investigation. Specifically, all the tasks were selected to be centered on the elbow joint. 

And the general rules of selecting these types of motor imagery tasks was also 

investigated in this chapter.  

4.2. Methods 

In this chapter, 12 able-bodied participants (aged 20-33 years old, 10 males and 

2 females) agreed to join the study. The protocol was approved by the Office of 

Research Ethics at Simon Fraser University. All participants signed informed consent 

forms before taking part in the experiment. Each individual was seated in front of a 

computer monitor, which provided a simple Graphical User Interface (GUI) that 

displayed pictures or cues to the participant. 
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4.2.1. Experimental protocol 

A 32-channel, EGI Geodesic N400 system (Electrical Geodesics Inc., Eugene, 

OR, USA) was used to acquire the EEG data from the participants. EEG data were 

amplified and recorded at a sampling rate of 1 kHz. The electrode contact sites are 

shown in Figure 4.1. 17 channels were used in this study, as the remaining channels 

were located on the face (the EGI cap does not allow to re-position the electrodes). All 

participants were requested to wear the EGI sensor net for approximately 40 minutes 

during this experiment. During the experiment, the participants could take a break if 

desired. The impedance of the EEG contacts was measured every 30 minutes to 

maintain signal quality. 

 

Figure 4.1 Contact montage of the EEG system in the experiment, 17 channels 
were used. Cz was defined as the reference contact by the EGI 
system, COM was the common ground contact. 

EEG data were collected using the Stimulus Presentation mode in BCI2000 

[170]. During Stimulus Presentation, customized pictures were shown on the screen 

while the EEG signals were recorded and filtered with a bandpass filter of 0.1-40 Hz. In 
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this study, the pictures for ten different tasks were randomly selected and displayed on 

the screen. These pictures are presented in Figure 4.2. The participants were asked to 

repetitively perform the kinaesthetic motor imagery task displayed on the screen for 4 

seconds without actually moving their limb. The participants were instructed to finish two 

repetition of MI during the predefined 4 seconds. Kinaesthetic motor imagery means that 

the participants were required to perform imaginary movement by focusing on imagining 

the sensation of the movement [175]. The participants were required to perform MI on 

their dominant hand. 

 

Figure 4.2 Picture of the tasks that were used in the Stimulus Presentation 
tasks where: (a)Rest Task, rest and stay alert; (b)Elbow Task, 
imagine elbow flexion and extension; (c)Drawer Task, imagine 
opening and closing a drawer; (d)Soup Task, imagine drinking soup 
with a spoon; (e)Weight Task, imagine lifting and putting down a 
dumbbell; (f)Door Task, imagine opening and closing a door; 
(g)Plate Task, imagine cleaning a plate; (h)Comb Task, imagine 
combing hair; (i)Pizza Task, imagine cutting a pizza with a pizza 
cutter; and (j) Pick &Place Task, imagine picking up a ball and put it 
into a basket; 
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In this study, nine motor imagery tasks were chosen as upper limb movements. 

Tasks were selected to primarily involve the elbow joint. These motor imagery tasks can 

be divided into three main categories: 1) simple joint task that does not have any context 

meaning. In this chapter, Elbow Task, Drawer Task, and Weight Task were chosen. In 

these tasks the participants were required to only focus on a simple elbow joint 

movement. Among the three tasks, the differences were only about the force that were 

exerted in the imagination; 2) simple elbow joint tasks that are commonly executed in 

daily life and require a relatively low level of synergy of other joints. In this chapter Door 

Task, Plate Task, and Comb Task were chosen; and 3) goal-oriented tasks, which 

require trajectory planning and multiple joint synergies. In this chapter, Soup Task, Pizza 

Task, and Pick&Place Task were chosen. The specific instructions given to the 

participants with respect to the ten tasks are summarized below: 

1. Rest (Fig 2(a)): rest while looking at the center of the cross; 

2. Elbow task (Fig 2(b)): kinaesthetically imagine flexing and extending 
the elbow of the dominant arm; 

3. Drawer task (Fig 2(c)): kinaesthetically imagine opening and closing a 
drawer with the dominant hand; 

4. Soup task (Fig 2(d)): kinaesthetically imagine getting a spoonful of 
soup and drinking the soup using the dominant hand; 

5. Weight task (Fig 2(e)): kinaesthetically imagine lifting and putting 
down a dumbbell with the dominant hand; 

6. Door task (Fig 2(f)): kinaesthetically imagine opening and closing door 
with the dominant hand on the doorknob; 

7. Plate task (Fig 2(g)): kinaesthetically imagine cleaning a plate with 
only elbow extension and flexion movement; 

8. Comb task (Fig 2(h)): kinaesthetically imagine combing hair with the 
dominant hand. 

9. Pizza task (Fig 2(i)): kinaesthetically imagine cutting a pizza with a 
pizza cutter with the dominant hand; 

10. Pick&Place Task (Fig 2(j)): kinaesthetically imagine picking a ball and 
placing it into a basket with the dominant hand. 

During the Stimulus Presentation, each picture was displayed on the screen for 

4-6 seconds, followed by 4-6 seconds of rest, and the timing was randomized by the 

software in order to prevent participants from adapting to the data acquisition sequence. 

When the picture was displayed on the screen, the participant was requested to perform 
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motor imagery of the corresponding task repetitively for 1-2 repetitions. For each 

participant, the test consisted of 15 consecutive runs. Each run consisted of 4 Rest, 4 

Elbow Tasks and 16 other tasks (2 for each of the remaining tasks). Each run lasted for 

approximately 3 minutes. To ensure compliance with the protocol, one observer was 

assigned to monitor the participants to ensure they were not moving during the task. In 

the case of the slightest movement, the recorded data were disregarded, and the 

participant was asked to repeat the experiment. 

4.2.2. Feature extraction and classification 

The data acquired were analyzed using BCILAB [176], a BCI toolbox based on 

Matlab. The data were first resampled at 250 Hz to save system resources, so that the 

system delay caused by the processing could be minimized. Then, a finite impulse 

response (FIR) bandpass filter was used to filter out the 6–35 Hz frequency band. The 

FIR bandpass filter used in this part was used to suppress the artifacts and the 

unwanted frequency components of the recorded EEG data. The FIR filter used here 

retained the mu (7-13 Hz) and beta (13-30 Hz) rhythms in the EEG signal, which have 

been reported to exhibit event-related synchronization and desynchronization 

(ERD/ERS) during motor imagery [130]. The band power changes of the mu and beta 

rhythms have been used in BCI systems to classify EEG signals related to motor 

imagery [133], [134], [138]. Therefore, band power (BP) of a certain band frequency can 

be used as a basic feature for classification [130], [177]. However, ERD/ERS signals 

could be overlapped in time and space by multiple signals from different brain tasks. For 

this reason, in some cases, it may not be sufficient to use simple methods such as a 

bandpass filter to extract the desired band power. The literature suggests that spatial 

filters, like a common spatial pattern (CSP), could be appropriate [132]. The 

performance of spatial filters is dependent on its operational frequency band. Therefore, 

filter bank CSP (FBCSP) was also included in this study to avoid this potential problem 

[167], [178].  

As each participant had a different reaction time to the stimulus, nine different 

epoch periods were extracted from the EEG data to find out the optimal epoch that led to 

the best EEG control performance. The different epochs used are presented in Table 4.1 
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Table 4.1 Epoch periods used in data analysis. 

Epoch 
ID 

1 2 3 4 5 6 7 8 9 

Epoch 
Period* 

0.5-2.5s 1-3s 1.5-3.5s 2-4s 2.5-4.5s 3-5s 0-3s 1-4s 1-5s 

*Refer to the time after the stimulus was shown on the screen 

In this chapter, BP [179], CSP [134] and FBCSP [178] were used as feature 

extraction algorithms to extract features, for each EEG epoch. Detailed information is 

presented in Table 4.2. 

Table 4.2 Feature setting for model training 

Algorithm Frequency Band Feature Dimension 

BP 6-32Hz 17 
CSP 6-32Hz 6 

FBCSP 6-15Hz; 15-25Hz; 25-32Hz 18 

 

The features were then sent to classifiers. Since the author wanted to evaluate 

the influence of different motor imageries in this chapter, classifiers were limited with 

basic classifiers. Linear discriminant analysis (LDA) and dual-augmented lagrangian 

(DAL) methods [180] [181] were used for classification. All classifiers were regularized 

during training. For LDA, analytical covariance shrinkage was used to regularize the 

dimensionality of the model [182]. For DAL, the dual-spectral logistic norm was used for 

regularization, with grid searching λ from 2-15 to 210, the step size being 2 times that of 

the previous value [183]. A binary classifier was generated for the EEG features 

obtained from each combination of the Rest Task data and one of the Tasks (b)-(j) 

respectively. A 5×5 cross-validation method was used to validate the performance of the 

classifiers. 

Three features (i.e. BP, CSP, and FBCSP) and 2 classifiers (LDA, DAL) were 

included as a possible combination, which resulted in 6 models per epoch for each 

participant. On top of the features and classifiers, 9 possible time episodes were 

included in EEG data epoch extraction, which resulted in 54 different models 

(3×2×9=54). The best model for each motor imagery task for each participant was 

selected. Each participant performed 9 different tasks, and 12 participants were included 

in this study. Through this process, 108 models were generated in total (9×12=108). By 
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doing this, a uniform objective classification standard was set for all nine different motor 

imagery tasks. The performance of the models from these motor imagery tasks is 

presented in the following sections. 

4.2.3. Model training and testing 

The main goal of the work was to assess the versatility of the EEG models 

derived from different motor imagery tasks. This problem was studied in the inter-task 

testing, where the model generated from one type of motor imagery task was tested with 

data from another motor imagery task. The data were collected to investigate this inter-

task problem. Specifically, 30 trials (T) for each of the 9 motor imagery tasks (i.e. T1 -T9) 

were collected. For each task, the data were randomized. Furthermore, 60 trials of rest 

were recorded. After randomization, they were divided into two groups: training (RTR) 

and testing (RTE). Therefore, a total number of 330 trials (i.e. 30 trials × 9 motor imagery 

tasks + 30 rest for training (RTR) + 30 rest for testing (RTE)) were recorded.  

During training, 9 two-class models were created for each participant. Each 

model, corresponding to a single task, was trained using the 30 trials of rest (RTR) 

collected for training purposes (class 1) + the 30 trials related to the single task in 

question (class 2). Specifically, Model 1 (m1_INTER) was trained using T1 and RTR, model 2 

(m2_INTER) was trained using T2 and RTR, etc. Table 4.3 shows the training datasets for 

each model. 5-fold cross-validation was used to generate each of the 9 two-class 

models, which included: 1) randomly dividing the training set into 5 subsets; 2) training 

models on 4 subsets, and test models on the remaining one; 3) loop through the 5 

subsets and 4) return the model with the highest validation accuracy for later analysis. 

Table 4.3 Data usage in training models for inter-task problem 

Model 
Name 

m1_INTER m2_INTER m3_INTER m4_INTER m5_INTER m6_INTER m7_INTER m8_INTER m9_INTER 

Data 
Used 

T1 and 
RTR 

T2 and 
RTR 

T3 and 
RTR 

T4 and 
RTR 

T5 and 
RTR 

T6 and 
RTR 

T7 and 
RTR 

T8 and 
RTR 

T1 and 
RTR 

 

For testing, each model was tested with data collected for the other models. 

Specifically, m1 was tested with 8 testing datasets, the first being T2+RTE, the second 
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being, T3+RTE, the third T4+RTE, etc. Table 4.4 shows the data usage in testing 

datasets.  

Table 4.4 Data usage in the inter-task testing 

Model 
Name 

Elbow Drawer Spoon Weight Door Plate Comb Pizza 
Pick& 
Place 

m1_INTER ---- T2+RTE T3+RTE T4+RTE T5+RTE T6+RTE T7+RTE T8+RTE T9+RTE 
m2_INTER T1+RTE --- T3+RTE T4+RTE T5+RTE T6+RTE T7+RTE T8+RTE T9+RTE 
m3_INTER T1+RTE T2+RTE --- T4+RTE T5+RTE T6+RTE T7+RTE T8+RTE T9+RTE 
m4_INTER T1+RTE T2+RTE T3+RTE --- T5+RTE T6+RTE T7+RTE T8+RTE T9+RTE 
m5_INTER T1+RTE T2+RTE T3+RTE T4+RTE --- T6+RTE T7+RTE T8+RTE T9+RTE 
m6_INTER T1+RTE T2+RTE T3+RTE T4+RTE T5+RTE --- T7+RTE T8+RTE T9+RTE 
m7_INTER T1+RTE T2+RTE T3+RTE T4+RTE T5+RTE T6+RTE --- T8+RTE T9+RTE 
m8_INTER T1+RTE T2+RTE T3+RTE T4+RTE T5+RTE T6+RTE T7+RTE --- T9+RTE 
m9_INTER T1+RTE T2+RTE T3+RTE T4+RTE T5+RTE T6+RTE T7+RTE T8+RTE --- 

 

Before running the inter-task problem, the authors wanted to ensure that the 

considered BP/CSP/FBCSP+LDA/DAL method was a suitable method for the motor 

imagery tasks considered. Therefore, an intra-task problem was first addressed. In this 

case, each task had to be tested with data collected from the same motor imagery task 

(e.g. a model trained with T1 could not be tested with T2 as for the inter-task case as T1 

and T1 were datasets related to different tasks, thus not suitable for the intra-task case). 

For this reason, each of the 30 trials was divided into training and testing datasets for the 

intra-task case. Specifically, 24 trials of each motor imagery task (e.g. T1_TR) together 

with 24 trials of Rest Task (Rintra_TR) were used for training. The remaining six trials of 

the same motor imagery task (e.g. T1_TE) together with 6 trials of Rest Task 

(Rintra_TE) were used for testing. These trials were randomly selected from the whole 

dataset, not determined through a cross validation process, as a limitation of 

computational resources. Table 4.5 shows the training and testing dataset for each 

model. 



 

54 

Table 4.5 Training and testing datasets for the Intra-task problem.  

Model Name Data used in training Data used in Testing 

m1_INTRA T1_TR and Rintra_TR T1_TE and Rintra_TE 
m1_INTRA T2_TR and Rintra_TR T2_TE and Rintra_TE 
m1_INTRA T3_TR and Rintra_TR T3_TE and Rintra_TE 
m1_INTRA T4_TR and Rintra_TR T4_TE and Rintra_TE 
m1_INTRA T5_TR and Rintra_TR T5_TE and Rintra_TE 
m1_INTRA T6_TR and Rintra_TR T6_TE and Rintra_TE 
m1_INTRA T7_TR and Rintra_TR T7_TE and Rintra_TE 
m1_INTRA T8_TR and Rintra_TR T8_TE and Rintra_TE 
m1_INTRA T9_TR and Rintra_TR T9_TE and Rintra_TE 

 

4.2.4. The coefficient of determination (R2 value) 

The coefficient of determination (R2 value) is a common method in BCI research, 

giving a statistical estimation on the difference of two types of distributions based on the 

variances of the two [15]. In the field of BCI research, the R2 value is usually calculated 

based on certain secondary features of EEG data collected in two conditions (e.g. 

resting state and MI). By analyzing the R2 value of such features of the EEG data, EEG 

analysis methods and BCI applications could be built based on the results. 

For the consistency of the R2 analysis, in this section, EEG data collected from 

MI of the left hand were flipped between the corresponding channels on the right and left 

hemisphere. The R2 value at each electrode location was computed for all participants 

and all combinations of different tasks in order to investigate the topographical 

distribution on the scalp of the difference between rest and the other imaginary tasks. 

The frequency that generated the highest R2 value was used to generate the 

topography. The 6-32Hz frequency component was considered for this representation as 

motor imagery was investigated. 

4.2.5. Statistical analysis 

The accuracy results were analyzed with statistical tools to investigate the 

significance of the performance difference with models generated from different MI 

tasks. Considering that the sample size was relatively low, the accuracy results were first 

analyzed with Shapiro-Wilk parametric hypothesis test to test the normality of the 

dataset. Based on the normality of the dataset, either one-way analysis of variance (for 



 

55 

normally distributed dataset) or Kruskal-Wallis test (for non-normally distributed dataset) 

was used to test if any of the accuracy distribution was statistically different. Then, a post 

hoc analysis was conducted to identify the MI tasks that had statistically different 

accuracies compared to the other tasks. 

4.3. Results 

4.3.1. Intra-task problem: cross-validation results using the training 
dataset  

For the inter-task problem, the models were generated according to Table 4.3. 

Figure 4.3 summarizes the distribution of the feature algorithms and classifiers used to 

obtain the model. Among all the features and classifiers, CSP together with LDA was the 

most common combination: it took 35% of all the 108 models. BP feature with LDA 

contributed 30% to all the models. 

 

Figure 4.3 Distribution of the classification method of the highest cross-
validation accuracy. 

The cross-validation accuracy achieved for each of the nine EEG models and 

participants is shown in Table 4.6. This table reports the cross-validation accuracy with 

the highest value obtained from the optimal combination of the epoch period, feature 

extraction method and the classifier discussed earlier.  
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Table 4.6 Intra-task 5x5 cross-validation accuracy for each participant. 

ID* Elbow Drawer Spoon Weight Door Plate Comb Pizza 
Pick & 
Place 

Mean±
SD 

H1 0.840 0.757 0.845 0.840 0.817 0.893 0.832 0.893 0.943 
0.851± 0

.053 

H2 0.705 0.748 0.752 0.747 0.758 0.723 0.712 0.775 0.740 
0.740± 0

.023 

H3 0.783 0.803 0.755 0.788 0.823 0.793 0.772 0.822 0.830 
0.797± 0

.025 

H4 0.797 0.743 0.840 0.798 0.802 0.812 0.832 0.905 0.788 
0.813± 0

.044 

H5 0.835 0.817 0.883 0.855 0.878 0.820 0.853 0.903 0.825 
0.852± 0

.031 

H6 0.670 0.732 0.772 0.708 0.717 0.768 0.792 0.738 0.753 
0.739± 0

.037 

H7 0.852 0.848 0.805 0.798 0.850 0.942 0.822 0.907 0.883 
0.856± 0

.047 

H8 0.810 0.800 0.890 0.830 0.860 0.883 0.765 0.878 0.837 
0.840± 0

.043 

H9 0.777 0.787 0.788 0.847 0.792 0.782 0.823 0.787 0.885 
0.807± 0

.037 

H10 0.943 0.952 0.900 0.930 0.928 0.882 0.957 0.930 0.997 
0.935± 0

.033 

H11 0.775 0.733 0.728 0.780 0.695 0.755 0.733 0.712 0.870 
0.754± 0

.052 

H12 0.842 0.802 0.815 0.855 0.738 0.733 0.820 0.912 0.790 
0.812± 0

.056 
*H1-H12 are the IDs for the participants 

As shown in Table 4.6, the task with the highest cross-validation accuracy was 

subject-specific. H10 achieved the highest mean cross-validation accuracy 

(0.9350.033) among the participants. This participant achieved the highest cross-

validation accuracy for the Pick&Place Task (0.997 0.023). H6, on the other hand, had 

the lowest cross-validation accuracy (0.7390.037). The motor imagery task with the 

highest average cross-validation accuracy is Comb task (0.792 0.160). Figure 4.4 

shows the 5×5 cross-validation accuracy averaged across participants. The cross-

validation accuracy ranges from 0.7930.062 to 0.8470.076, with the Pizza Task 

having the highest cross-validation accuracy and the Drawer Task having the lowest 

mean cross-validation accuracy. Based on the cross-validation accuracy results, the null 

hypothesis of Shapiro-Wilk parametric hypothesis test cannot be rejected (p=0.430), and 

a one-way analysis of variance (ANOVA) was used to check the cross-validation 

accuracy difference among different tasks No statistical difference was found (p=0.536). 



 

57 

 

Figure 4.4 Mean 5×5 cross-validation accuracy for different motor imagery 
tasks 

4.3.2. Inter-task problem: testing result  

The models were generated and tested as described in Table 4.4 for testing the 

results of the inter-task problem. The test accuracy obtained from the inter-task test is 

summarized in Table 4.7. More specifically, the model for each motor imagery task was 

tested on 30 trials of eight other motor imagery tasks. For example, the model generated 

from the Elbow Task was tested with EEG data from all the other tasks, but not from 

Elbow Task. All test accuracies for all EEG models were greater than 0.5. Table 4.7 also 

shows that Weight Task model has the highest average inter-task test accuracy. More 

specifically, it has the highest average accuracy when tested on data from other motor 

imagery tasks. 
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Table 4.7 Inter-task test accuracy summary 

 

Test Data (30 trials together with 30trials of Rest Task data) 

Elbow Drawer Spoon Weight Door Plate Comb Pizza 
Pick& 
Place 

Mean
± SD 

M
od

el
 N

am
e 

Elbow --- 0.561 0.583 0.607 0.578 0.597 0.589 0.635 0.603 
0.594
± 0.02

2 

Drawer 0.637 --- 0.572 0.571 0.583 0.607 0.578 0.588 0.581 
0.589
± 0.02

2 

Spoon 0.592 0.535 --- 0.533 0.538 0.547 0.535 0.549 0.535 
0.545
± 0.02

0 

Weight 0.641 0.604 0.617 --- 0.565 0.596 0.588 0.626 0.600 
0.605
± 0.02

4 

Door 0.601 0.561 0.556 0.528 --- 0.563 0.533 0.558 0.532 
0.554
± 0.02

4 

Plate 0.597 0.543 0.531 0.539 0.538 --- 0.524 0.551 0.519 
0.543
± 0.02

4 

Comb 0.637 0.536 0.565 0.568 0.546 0.557 --- 0.588 0.538 
0.567
± 0.03

3 

Pizza 0.615 0.524 0.569 0.536 0.543 0.536 0.540 --- 0.532 
0.549
± 0.03

0 

Pick& 
Place 

0.645 0.563 0.567 0.572 0.554 0.565 0.553 0.586 --- 
0.576
± 0.03

0 

Mean±
SD 

0.620±
0.022 

0.553±
0.025 

0.570±
0.024 

0.557±
0.027 

0.556±
0.018 

0.571±
0.026 

0.555±
0.026 

0.585±
0.032 

0.555±
0.034 

--- 

 

The mean values reported in the last column of Table 4.7 summarize the 

averaged inter-task test accuracy for models generated from the nine motor imagery 

tasks. This indicates the ability of the models to classify EEG data from other motor 

imagery tasks. The mean values reported in the last row of Table 4.7 summarize the 

averaged inter-task test accuracy for EEG data from the nine motor imagery tasks, 

which indicates the versatility of EEG data for the nine motor imagery tasks. The mean 

model test accuracy ranges from 0.5430.023 to 0.6050.022. The model generated 

from the Weight task data has the highest mean inter-task test accuracy, while the 

model generated from Plate Task data has the lowest mean test accuracy. The mean 

data test accuracy ranges from 0.5530.025 to 0.6200.022. The data from Elbow Task 
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has the highest mean inter-task test accuracy and the data from the Drawer Task has 

the lowest mean inter-task test accuracy. 

A Shapiro-Wilk parametric hypothesis test was performed to test the normality of 

the test accuracies for different task data in Table 4.7. The test accuracies for models 

Drawer, Spoon, Plate, Pizza, Pick&Place are not normally distributed (their p values are 

0.030, 0.002, 0.030, 0.012, and 0.006 respectively). Kruskal-Wallis test showed the 

inter-task test accuracy is statistically different (p=2.6×10-5), see Figure 4.5.  

 

Figure 4.5 Box plot for the Kruskal-Wallis Test result for the inter-task testing 
accuracy. 

In the post-hoc analysis, Dunn & Sidák’s approach was used [184]. The model 

from the Weight Task has statistically higher inter-task test accuracy, compared to the 

model from the Spoon Task, Door Task, Plate Task, and Pizza Task(p<0.05). No 

statistical difference was found among Elbow Task, Drawer Task, and Weight Task 

(p>0.05), see Table 4.8.  
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Table 4.8 Dunn & Sidák post-hoc analysis of the inter-task testing accuracy. 
Checkmarks indicate models whose inter-task accuracies are 
significantly different (p<0.05).  

Model 
Names 

Elbow Drawer Spoon Weight Door Plate Comb Pizza 
Pick& 
Place 

Elbow   √   √    
Drawer          
Spoon          
Weight   √   √  √  
Door          
Plate √   √      
Comb          
Pizza    √      
Pick& 
Place 

         

4.3.3. The Coefficient of Determination Analysis Result 

The averaged R2 value for different tasks is shown in Figure 4.6. One of the 

participants (H5) was left handed. The channels of his EEG were therefore flipped 

between left and right hemisphere in this analysis. 
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Figure 4.6 EEG R2 analysis for different motor imagery tasks, averaged among 
participants. (a)R2 value mapping for Rest Task vs Elbow Task; (b) 
R2 value mapping for Rest Task vs Drawer Task;(c) R2 value 
mapping for Rest Task vs Soup Task;(d) R2 value mapping for Rest 
Task vs Weight Task;(e) R2 value mapping for Rest Task vs Door 
Task(f) R2 value mapping for Rest Task vs Plate Task;(g) R2 value 
mapping for Rest Task vs Comb Task;(h) R2 value mapping for Rest 
Task vs Pizza Task;(i) R2 value mapping for Rest Task vs Pick&Place 
Task. Frequency bands with the highest R2 value among the nine MI 
tasks are outlined with a black box. 
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From Figure 4.6, it can be observed that most of the EEG activities are located in 

the central and parietal lobe area. Most of the EEG activities for different motor imagery 

tasks (at C3 channel) are located around 12-20Hz. The peak activities for all the motor 

imagery tasks were always centered around 18Hz in C3 and P3 channel. Also, some 

activities were found in the F8 channel between 6-16Hz, which might be related to the 

motor planning [130]. Since all these two activities were both been seen around 16Hz, 

the topography analysis of 16Hz is shown in Figure 4.7, with H10, who had the highest 

cross-validation accuracy during the training among the participants. For H10, the data 

acquisition was performed with MI of the right hand. 

 

Figure 4.7 Topographical distribution of R2 value for H10 at 16Hz. (a) R2 value 
for Rest vs Elbow Task;(b) R2 value for Rest vs Drawer Task; (c) R2 
value for Rest vs Soup Task; (d) R2 value for Rest vs Weight Task; 
(e) R2 value for Rest vs Door Task; (f) R2 value for Rest vs Plate 
Task; (g) R2 value for Rest vs Comb Task; (h) R2 value for Rest vs 
Pizza Task; (i) R2 value for Rest vs Pick & Place Task; 

In Figure 4.7, large R2 values are observed at electrode locations near the 

contralateral motor cortex area in all the motor imagery tasks. This was a result of the 

event-related desynchronization of the beta rhythms when motor imagery tasks were 
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executed. The strength of activation and the topographical distribution, however, were 

different from task to task. 

For H10, the topographical distributions for Rest vs Elbow Task and Rest vs 

Spoon Task are similar (see Figure 4.7 (2) and (3)). Similar topographical distribution 

was observed in Door Task and Plate Task (Figure 4.7 (5) and (6)), as well as Pizza 

Task and Pick&Place Task (Figure 4.7 (8) and (9)). Especially, in Figure 4.7 (8) and (9), 

while imagining to perform the Pizza Task and Pick&Place Task, EEG activity was 

recorded in the frontal lobe area (F8 channel), which might be related to the motor 

planning activities in complex motor imaginary tasks. These similarities suggested 

fundamental brain activity connections in performing some imagination tasks. 

4.3.4. Assessing the validity of the BP/CSP/FBCSP+LDA/DAL method 
during intra-task testing  

For the intra-task problem, the models were generated and tested as described 

in Table 4.3. In addition to the 5-fold cross-validation performed in the previous section, 

the models generated from Section 4.3.1 were also tested with additional EEG data 

collected from the same MI tasks, which is referred as “intra-class test accuracy” in the 

following sections of the thesis. The intra-class test accuracy for each motor imagery 

task was averaged across participants (see Figure 4.8). 

 

Figure 4.8 Average intra-task test accuracies for different motor imagery tasks. 

As shown in Figure 4.8, the Pick&Place task had the highest average intra-task 

test accuracy (0.7150.148) among all the motor imagery tasks, followed by Elbow task 
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(0.7110.128). However, the difference between different tasks is not statistically 

significant (one-way ANOVA, p=0.817). The door task, on the other hand, had the lowest 

average intra-task test accuracy (0.6180.186). The average intra-tasks testing result 

shows the test accuracy was significantly higher than random (accuracy higher than 

0.6359, p=0.05 according to Muller-putz et al. [185]), except for the door task. All tasks 

showed higher accuracy than chance level (accuracy higher than 0.6141, p=0.1). 

4.4. Discussion 

All nine motor imagery tasks focused on upper extremity activities, centered 

around elbow joint movement. These tasks can arguably be divided into three main 

categories: i) simple joint tasks (SJM, i.e. Figure 4.2(b), Figure 4.2(c) and Figure 4.2(e)); 

ii) simple elbow joint that is commonly executed in everyday life and requires a relatively 

low level of synergy of other joints (DSJM, i.e. Figure 4.2(f), Figure 4.2(g) and Figure 

4.2(h)); and iii) and goal-oriented tasks (GOM, i.e. Figure 4.2 (d), Figure 4.2(i) and 

Figure 4.2(j)), which require trajectory planning and multi-joint synergy. 

The EEG performance varied across participants and the type of motor imagery 

task. GOM tasks such as Pick&Place Task and Pizza Task had a significantly higher 

accuracy compared to the SJM tasks. However, not all GOM tasks investigated in this 

study had higher cross-validation accuracy (e.g. Soup Task). In the Pizza Task and the 

Pick&Place Task, some activities were found from the F8 channel in lower frequency, 

which might be related to the motor planning activity [130], [186], [187]. More precise 

neural recordings would be needed to verify the brain region involved in order to confirm 

the activities in these tasks. However, it is surprising to see the Soup Task did not 

induce similar activities in the same frequency band (in Figure 4.6(c)). This phenomenon 

may be due to the task design. It can be observed from Figure 4.6(c) that the highest R2 

value is located in the O2 area, which suggests the Soup Task may be primarily related 

to vision/target related activity [80]. 

In the R2 analysis, the peak R2 value for the SJM tasks is generally smaller, and 

the contrast of the R2 mapping is lower than DSJM and GOM tasks. The “low-contrast” 

feature may result in the lower accuracy in cross-validation and intra-task test for models 

generated from the SJM tasks. While the difference is not statistically significant, this 
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“low-contrast” feature might be a general pattern for upper extremity motor imagery. This 

could explain why the SJM tasks have higher inter-task test accuracy among all the 

other tasks (i.e. the EEG model generated from the SJM tasks are more versatile). For 

the SJM tasks, only the elbow joint was involved. All the three SJM tasks were similar. 

The only difference was the resistance feedback in these tasks. For example, in the 

Weight Task, because of the imagination of the weight, the Weight Task showed higher 

P3 activities than C3 activities. That might explain why the EEG model from the Weight 

Tasks exhibited higher versatility than DSJM and GOM tasks. For the Weight Task, 

there was only a 6% mean accuracy decrease between testing with data from its own 

task and the other tasks.  

It is interesting to see how imagined interaction with other objects induces 

parietal lobe activities [188], such as the R2 value mapping varies in Elbow Task and 

Weight Task. The movement is physically almost the same, however, by just imaging a 

dumbbell in the hand excites brain activities around the P3 area.  

4.5. Chapter summary 

In this chapter, the goals set by Objective 1 was investigated. We conclude that 

the possibility of using the BCI model generated with one type of MI task for multiple MI 

tasks is proven. EEG models generated from single joint movements motor imagery 

tasks show higher versatility (higher inter-task test accuracy) than other tasks. Among all 

the tested tasks, the Weight Task show a statistically higher inter-task test accuracy than 

the other tasks (p<0.05) with the average inter-task testing accuracy as 0.6050.022. 

Also, the other two single joint motor imagery tasks (i.e. Elbow Task and Drawer Task) 

show higher inter-task test accuracy compared to non-single joint tasks. However, the 

difference is not statistically significant (p>0.05). The inter-task testing accuracy for the 

Elbow Task and Drawer Tasks is 0.5940.022 and 0.5900.022, respectively. Among 

the single joint motor imagery tasks, the difference is not statistically significant (ANOVA, 

p>0.05). For applications like rehabilitation, it would be possible for individuals to go 

through an EEG training session that only involves the motor imagery of simple one-joint 

movements. The EEG model generated could then be re-used to classify other goal-

oriented motor imagery tasks. 
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4.6. Contributions, limitations and future work 

The content of this chapter addressed the repetitive EEG data acquisition and 

model generation problem in BCI involved rehabilitation training. In clinical practice, a 

complete rehabilitation protocol usually contains multiple training tasks designed for 

specific rehabilitation purposes. Therefore, the BCI system would need to be trained with 

those specific training tasks with repetitive data acquisition, which would require a lot of 

time and effort on the part of healthcare professionals and users. In order to address this 

problem, we proposed to train the EEG model on a “versatile” MI task, and reuse the 

EEG model for other different training tasks. This method effectively reduces the time for 

BCI involved rehabilitation setup, so that healthcare resources can be utilized in a better 

way. For end-users of the BCI system, a reduction in BCI setup time makes the 

technology easier to use and cheaper to access.  

There were some limitations of the study included in this chapter. First, the 

quality of MI and limb movements were not monitored objectively, even though 

participants were pre-trained on how to perform kinesthetic imagination before the data 

acquisition, and were also monitored visually by the examiner during the data 

acquisition. Contamination of the EEG data was not strictly controlled. Second, one of 

the participants was left-handed, meaning that their EEG data were flipped between left 

and right hemispheres during the R2 analysis. Although it is possible that the “flipping 

process” affected the results in the analysis, the impact is relatively low considering that 

results were summarized from all 12 participants. Third, the inter-task test accuracy was 

relatively low compared to the BCI studies in the literature, which was caused by the 

algorithms selected in this study. The goal of this study was to investigate the feasibility 

of the idea of versatile MI tasks. Selecting advanced feature/classifiers is 

computationally expensive. Therefore, only primitive features and algorithms were used. 

It is necessary for a future study to investigate MI tasks with more advanced features 

and algorithms to fully understand the role of machine learning algorithms used in this 

study.  

In addition, it might be interesting to investigate why some MI tasks have higher 

versatility than other MI tasks. A study using imaging tools with higher spatial resolution 
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(e.g. MRI and MEG) could potentially give insight into the versatility difference of MI 

tasks.  
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Chapter 5.  
 
Stroke rehabilitation with BCI – combining motor 
imagery training and physical training 

This chapter is reproduced with permission from the following paper I co-authored: 

Zhang, X., Elnady, A. M., Randhawa, B. K., Boyd, L. A., & Menon, C. (2018). Combining 
Mental Training and Physical Training with Goal-Oriented Protocols in Stroke 
Rehabilitation: A Feasibility Case Study. Frontiers in Human Neuroscience, 12. 
https://doi.org/10.3389/fnhum.2018.00125 

Some sections are adapted to fit within the scope and comply with the format of the 

thesis. 

This chapter is included to address Objective 2, which is related to the design 

and development of a new rehabilitation training platform. The proposed rehabilitation 

training platform is designed to assist the users when both motor imagery and physical 

engagement were detected. The feasibility and potential efficacy of the proposed 

platform are also tested with multiple sessions on one case participant. 

5.1. Introduction 

Stroke has become one of the leading healthcare problems for the modern 

society [1], [2]. Even if the patients managed to survive from the stroke, they usually 

suffer from permanent disabilities for the rest of their lives [1], [2]. Studies suggest that 

rehabilitation is the key to early motor recovery for stroke survivors. However, 

conventional rehabilitation therapy is labor and cost intensive. Robotic and FES devices 

can provide a high dose of training repetitions and thus may serve as an alternative, or 

supplementary training method to conventional rehabilitation therapy [12], [13]. BCIs 

could potentially augment neuroplasticity by introducing active training [15], [16]. 

However, active training alone may not be sufficient. New studies suggest combining 

motor imagery with physical training could boost rehabilitation training outcomes [38]. 

In this chapter, the author was intended to address the goal set by Objective 4, 

by proposing a portable stroke rehabilitation platform that combines physical and active 

https://doi.org/10.3389/fnhum.2018.00125
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motor imagery training for stroke rehabilitation. The proposed platform consisted of an 

electroencephalography (EEG) based BCI system for active motor imagery training and 

an elbow exoskeleton orthosis for physical training. Specifically, for the physical training, 

a force sensor embedded orthosis was used for elbow extension/flexion and a functional 

electrical stimulation (FES) unit was used for hand extension. To use this system, the 

participant was required to both imagine the designated task and move the forearm to 

the designated direction (flexion or extension depends on the context) to trigger the 

assistance of the orthosis (BCI and force sensor control: BF control for short). The BF 

control mechanism was designed specifically for combining motor imagery and physical 

training. A progressive functional training protocol with three increasing levels of difficulty 

was also developed, to support the proposed training platform. Motor improvements 

were assessed as clinical outcome measures using Wolf Motor Function Test (WMFT). 

5.2. General system setup 

The BF control method was designed to ensure the users’ engagement in both 

motor imagery and physical training. EEG data were collected to assess mental 

engagement, while force information was collected to gauge motor output. The BF 

control flowchart is shown in Figure 5.1. BF control was used as basic blocks to 

complete the training tasks in the protocol. However, there were many different options 

to facilitate the proposed training protocol. For example, the training platform can be 

designed fully via functional electrical stimulation. However, Lew et al. reported that not 

all individuals with chronic stroke are able to use an FES unit for elbow position control 

[189]. Therefore, a full FES design was not applicable to this study. Stationary robotic 

designs were also rejected (such as Kinarm [8] or Harmony [190]), as the primary 

objective was to design a portable platform to promote flexibility in rehabilitation. 

Therefore, a unique design consisting of an elbow orthosis was introduced to facilitate 

movement together with an FES unit to activate object-releasing hand movement. The 

proposed stroke rehabilitation platform was built on top of the BF control method. Each 

step of the movement in the training was programmed to run the BF control to ensure 

the participant focus. 
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Figure 5.1 Flow chart for the BF control method, which was used in this 
chapter to combine active training together with physical training 

As shown in the BF control diagram, the user was required to concentrate on MI 

of the rehabilitation task with the most impaired limb, then move that limb in the 

designated direction with the orthosis. If successful, the device assisted the participants 

in finishing the training with the designated protocol. If the participants failed in one part 

of the BF control, they would be informed of which part they failed (either “not enough 

focus on motor imagery” or “not enough movement in the designated direction”), and the 

proposed platform would passively move their limb according to the training protocol, to 

ensure minimal training was administered. The combination of mental and physical 

training was designed to put emphasis on the connection between MI and physical 
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movement, so that the participants could correlate thinking and moving during training, 

and consequently improve motor function.  

5.2.1. Elbow Orthosis design and development 

The elbow orthosis used in this chapter is an arm robot prototype developed in 

our lab, not by the author (see Figure 5.2). This elbow orthosis was modified across 

multiple versions [29], [191].  

The elbow orthosis was fabricated from an off the shelf brace (Breg T scope 

Elbow Brace) with mechanical stops and active mechanical components that had one 

degree of freedom (DOF) for elbow flexion/extension. The orthosis is actuated via a 

brushless 24-Volts DC (BLDC) motor  

 

Figure 5.2 Orthosis used in this chapter [192]. 

The angular position of the end effector of the orthosis was measured via a low-

profile long life EVWAE Panasonic potentiometer. In addition, an encoder (HEDL 500 

CPT with 3 channels) was mounted on the motor side as a redundant sensor for safety 

purposes. The orthosis was encapsulated in a custom-made casing. The casing was 

rapid-prototyped from acrylonitrile butadiene styrene (ABS) plastic to minimize the 

weight. 
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A micro force sensor (Phidgets 3133, 0-5 kg) was integrated at the end effector 

of the orthosis to measure the interaction forces between the user and the orthosis. The 

integrated micro load has a 0.05% precision, 0.05% Non-Linearity of the full scale (FS), 

0.05% hysteresis of FS, and 0.1% Creep of FS (per 30 min). These features enable the 

accurate measurement of the human and the orthosis interaction forces. Theoretically, 

the orthosis has a total range of motion between 0° and 130°. The range of motion was 

limited to only 30° to 120° via the mechanical stops of the brace, for safety purposes.  

5.2.2. Functional Electrical Stimulation 

A functional electric stimulation (FES) unit (RehaStim, Hasomed Inc., Germany) 

was used in this chapter to assist wrist/hand extension. The FES unit generates 

symmetrical biphasic pulses, with a fixed frequency of 35Hz and peak duration of 150µs. 

The participant was required to wear two self-adhesive electrodes on the forearm of the 

impaired arm to aid wrist and finger flexion (grasp action). The stimulus amplitude of the 

FES was incrementally tested with the participant until the impaired hand is fully and 

comfortably extended.  

5.2.3.  EEG acquisition and classification 

A 32-channel, EGI Geodesic N400 system (Electrical Geodesics Inc., USA) was 

used to record the EEG data from the participant. EEG acquisition and analysis were 

divided into a two-step process: 1) collect EEG data to obtain a BCI model of the 

participant; and 2) utilize the obtained model to classify the participant’s intentions in real 

time. 

For the EEG data acquisition process, the participant was using the theory 

derived from the research result presented in Chapter 4. Since this study involves 

multiple goal-oriented tasks centered with elbow activities, the motor imagery of Weight 

Task was used. 

For a model generation, ‘Stimulus Presentation’ mode in BCI2000 [170] was 

used, where the EEG was recorded at 1kHz and filtered with a bandpass filter of 1-45 

Hz. In this stimulus presentation mode, two different visual cues were displayed on the 

computer monitor. The first cue was a cross-sign in the middle of a white screen. During 
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the cross picture on the screen, the participant was asked to keep his eye on the cross 

and relax. The second cue was a picture of an elbow; the participant was asked to 

perform the kinesthetic motor imagery for elbow extension and flexion for at least two 

repetitions. Kinesthetic motor imagery means that the participant was asked to imagine 

himself performing the movement and focusing on the sensation of the movement [175]. 

Each Stimulus Presentation run consisted of 20 randomized cues (rest or elbow). Each 

cue was shown on the monitor for 4 seconds, followed by randomized intervals of 4-6 

seconds (relax intervals). The participant was required to complete five runs of stimulus 

presentation. 50 trials of the participant’s EEG data during motor imagery of elbow 

movement and 50 trials of rest were collected. 

In order to obtain the BCI control model, the data were analyzed offline using 

BCILAB [176], a BCI toolbox based on Matlab (The MathWorks, Inc., USA). First, data 

were resampled at 250 Hz to reduce the system resource consumption. Then, a finite 

impulse response (FIR) band-pass filter was used to filter out the 6–35 Hz frequency 

band. This frequency band covers the mu and beta rhythms, which is reported to contain 

ERS and ERD activities during motor imagery [130].  

The author exploited a searching method to search the EEG data from 0.5s to 3s 

after each visual cue, with 2s of window size and 0.5s of step size. For each EEG epoch, 

Band Power (BP) [179], Common Spatial Pattern (CSP) [134] and Filter Bank Common 

Spatial Pattern (FBCSP) [178] were independently used as feature extraction, and then 

a grid search for the best combination of the feature algorithm and classifiers was 

performed. In this study, Linear Discriminant Analysis (LDA), Dual Augmented 

Lagrangian (DAL) method and support vector machine (SVM) were used as potential 

searched classifiers. Detailed feature settings are shown in Table 5.1. Hyper-parameters 

of the classifiers, like regularization parameter and the kernel scaling parameter, were 

also included in the grid search, with a geometric progression from 2-15 to 210 and 2 as 

the common ratio. The three feature extraction algorithms and three classifiers were 

tested with all possible 9 feature-classifier combinations with a 10x10 cross-validation.  
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Table 5.1 Feature settings during model training 

Feature 
Algorithm 

BP CSP FBCSP 

Frequency 
Band 

6-32Hz 6-32Hz 
6-15Hz; 
15-25Hz; 
25-32Hz 

Feature 
Dimension 

17 6 18 

During the offline data classification, 54 binary models were generated. The 

model with the highest cross-validation accuracy was saved for later use. During the 

online classification, the EEG signal was filtered with the same FIR 1-45Hz bandpass 

filter. Then the signal was streamed to a buffer and the pre-acquired model was applied 

on the buffered EEG signal.  

For the online classification process, the participant was using the theory derived 

from the research result presented in Chapter 6. 

Classification decisions were obtained once every 500ms with a sliding moving 

average buffer containing the latest 8 decisions. The BCI system output frequency was 

the same as with using the EEG model directly, as the buffer was configured to output 

synchronously with the EEG model prediction. If the average value was greater than the 

pre-set activity threshold, enable command would be sent to the orthosis control module. 

The activity threshold may vary among different sessions, due to the contacts of the 

EEG acquisition station was using saline solution. In order to get the proper activity 

threshold and to minimize false positive, the participant was asked to complete EEG 

data collection and analysis before the actual training. The participants were asked to 

rest without closing their eyes for 30 seconds, while the EEG data was collected, and the 

online classification was running (output every 500ms). The activity threshold was 

arbitrarily set as 0.1 higher than the max output value from the classifier in the online 

classification, so that the system had a good balance between sensitivity (ease to 

activate for the user) and stability (ability to resist interference). Through this process, 

the possibility of artifact contamination in the BCI control was minimized. 
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5.3. Inclusion criteria  

The inclusion criteria included: 1) age range from 35 to 85 years, (2) post-stroke 

duration ≥ 6 months, (3) MoCA ≥ 25 [172] (4) shoulder active range of motion (ROM) in 

all directions of 10o-15o, (5) elbow passive extension and flexion ROM of 0-130o, (6) wrist 

passive extension ROM of 0-15o, and (7) passive full extension for fingers. Potential 

participants were excluded if they had; (1) other neurological conditions in addition to 

stroke, (2) unstable cardiovascular disease, or (3) other serious diseases that precluded 

them from undergoing the study (i.e. undergoing other studies, etc.). Next, participants 

were contacted by a healthcare professional to determine if they could commit to a 6-

week intensive training protocol. Finally, a 37-year-old male with aphasia was recruited 

to, who was 11 years post-stroke.  

5.4.  Assessment tests 

For pre-assessment, three baseline assessments (BLA) was administrated to the 

participant, each performed two weeks apart. During the training session, the participant 

went through a battery of tests again every two weeks. The primary outcome measure 

was the WMFT assessment. Other secondary outcome measures were: Fugl Meyer 

Motor Assessment (FMMA) and the success rate of triggering the device during each 

training day. The participant was required to complete the WMFT and FMA every other 

week as clinical outcome assessments by a “blind” test administrator, who was neither 

aware of, nor involved in, the study protocol. 

5.5. Brain Symmetry index (BSI) of the Participant 

The traditional questionnaire-based assessment method was used in this 

chapter. In addition, brain symmetry index (BSI) was also calculated in this study, in 

order to confirm with the feasibility of using EEG as an assessment of motor function. 

In addition to the WMFT, we were also interested in understanding if the training 

outcome could be reflected in EEG. The BSI was originally designed to help visualize 

and quantitatively asses the quality of the EEG. The BSI is designed to quantitatively 

assess the temporal and spectral balance between left and right hemispheres. The 
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previous applications of the BSI include EEG monitoring during carotid endarterectomy, 

acute stroke operation, as well as seizure detection [193]. Other work showed that BSI is 

negatively correlated with participant’s functional motor outcomes (i.e. the higher the 

BSI, the lower the FMA) [20], [23], [25], [193].  
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1
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∑ |
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 Equation 5.1 

Where k is the number of discrete frequencies, and 
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1
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𝑚
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Equation 5.2 

𝑅𝑛
∗ (𝑡) is for the channels on the right hemisphere. A similar equation was used for 

the channels on left hemisphere (𝐿𝑛
∗ (𝑡)). In this equation, 𝑎𝑛

2(𝑐ℎ, 𝑡)is the Fourier 

coefficient with index n of channel ch, at time t, corresponding to a particular event 

epoch [t-T, t]. In this chapter, BSI was calculated with T = 4s, both at rest and during 

motor imagery.  

5.6. Training protocol 

The total training duration was 6 weeks. Each week consisted of 3 sessions of 

training sessions (approximately one and a half hour) on alternate days. WMFTs were 

administrated to the participant once every other week. Three sessions of baseline 

assessments were assigned two weeks before the training and one follow-up retention 

session was assigned to the participant four weeks after the training. The full study 

schedule is shown in Table 5.2. 
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Table 5.2 Training and testing schedule for the case study 

 
Baseline 
Assessment 

Training weeks Retention 

Training Schedule D1 D1+2W D1+4W TW1 TW2 TW3 TW4 TW5 TW6 TW6 + 4W 

Assessments 
(WMFT, FM). 

√ √ √ √ √  √  √ √ 

Stimulus 
presentation 

√   √       

Training Protocol    
Warm-
up 

Level1 Level1 Level2 Level2 Level3  

TW: training week, D: day, W: week. 

5.6.1. Warm-up training (Training week 1) 

During the warm-up training (Training week 1), three basic sessions (described 

below) were introduced to the participant. The aim of this warm-up training was to 

familiarize the participant with the orthosis system and the basic BCI control methods. 

In warm-up training session 1, no engagement was required from the participant. 

This session involved passive movements of the elbow flexion-extension (using orthosis) 

and hand opening (using FES). The training lasted for 30 minutes for each movement 

(elbow and hand). Each movement was repeated 25 times. Session 1 was designed to 

familiarize the participant with the orthosis and ensure the participant’s range of motion 

on the hemiparetic upper limb could tolerate the range of the orthosis. 

In a warm-up training session 2, the participant was required to trigger the 

orthosis using only kinesthetic motor imagery. This session involved active movements 

of the elbow flexion-extension (using orthosis) and hand opening (using FES) controlled 

by the participant through EEG. If the participant was unable to trigger the device within 

the designated time, the device would passively move the participant’s arm to receive 

minimal training. The training lasted for half an hour for each movement (elbow and 

hand). The minimum number of repetitions for each movement was 10 times if all trials 

were unsuccessful. Session 2 was designed to familiarize the participant with BCI control 

and obtain the activity threshold for the EEG online classification.  
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In a warm-up training session 3, the participant repeated the same movements 

as in session 2 using different control mechanism. For elbow movement, the participant 

was required to concentrate on imaging opening/closing elbow and then move his elbow 

towards the designated direction (BF control). For hand and wrist control, the participant 

was required to concentrate on imaging opening the hand to switch on the FES that 

assists in opening the hand, the FES was designed to switch off automatically after five 

seconds. Session 3 was designed to get the participant familiarized with the basic 

control components of the goal-oriented protocols proposed in the training sessions. 

5.6.2. Goal-oriented training tasks (Training weeks 2-6) 

The training from the second to the sixth week required the participant to 

complete 12 days in which four different goal-oriented tasks were practiced. Each task 

was assisted by the orthosis, which could be triggered by the BF control. The functional 

task was split into three levels of difficulty. Level 1 included only elbow movement, 

simple flexion/extension. Level 2 included: a task using both hands to improve bilateral 

control and coordination. Level 3 included: reach, grasp, place, and release an object.  

Level 1 task, plate-cleaning task: the participant was requested to wear the 

orthosis and hold the plate in a horizontal position close to the trunk with the non-paretic 

arm (as shown in Figure 5.3(a)). Then the participant was required to place the paretic 

arm proximal to the trunk and above the plate. This was defined as the initial position. At 

the end of each training repetition, the device would return to this position. Vocal 

instructions from the device would instruct the participant to imagine the sensation of 

moving elbow to wash the plate and physically extend his elbow (to meet the criteria for 

BF control). If the participant successfully passed the BF control check, the orthosis 

would assist the participant to perform elbow extension (as shown in Figure 5.3(b)). If 

the participant failed to pass the BF control check within 10 seconds after vocal 

instructions, the device would automatically extend the participant’s elbow and inform 

the participant this was an unsuccessful trial. After extending the participant’s elbow, the 

device would ask the participant to flex his elbow to complete the task cycle (as shown in 

Figure 5.3(c)). Same BF control checking method was used to ensure the participant 

was engaged in the training. 
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Figure 5.3 Illustration for level 1 training protocol: plate cleaning task 

 Level 2 involved lifting a bucket: the participant was requested to wear the 

orthosis, extend both of his arms and hold a bucket (as shown in Figure 5.4(a)). This 

was defined as the initial position. At the end of each training repetition, the device 

returned to this position. Same as in level 1, vocal instructions from the device instructed 

the participant to imagine the sensation of flex elbow to lift the bucket and physically flex 

his elbow. If the participant successfully passed the BF control check, the orthosis would 

assist the participant to perform elbow flexion to lift the bucket (as shown in Figure 

5.4(b)). If the participant failed to pass the BF control check within 10 seconds after the 

vocal instructions, the device would automatically flex the participant’s elbow and inform 

the participant this was an unsuccessful trial. After flexing the participant’s elbow, the 

device would ask the participant to extend his elbow to put the bucket on the desk (as 

shown in Figure 5.4(c)). Same BF control checking method was used to ensure the 

participant was engaged in the training. 

 

Figure 5.4 Illustration for level 2 training protocol: lifting and placing task 

 Level 3 involved a placing and releasing task: In this level, FES unit was added 

to assist with hand control. The participant wore the orthosis and FES electrode and held 

his paretic hand in front of his chest. This was defined as the initial position. At the end 

of each training repetition, the device returned to this position. As in level 1 and 2 vocal 

instructions from the device instructed the participant to imagine the sensation of 
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extending his elbow to reach and grab the target object and physically extend his elbow 

and open the hand. The FES unit would assist to open the participant’s hand. The 

device would wait for three seconds, and the FES unit would be switched off so that the 

participant could hold the object (as shown in Figure 5.5(b)). If the participant failed to 

pass the BF control check within 10 seconds after the vocal instructions, the device 

would automatically extend the participant’s elbow, open the hand, and inform the 

participant this was an unsuccessful trial. After grasping the object, the device would 

give vocal instruction to ask the participant to flex his elbow to pick up the ball from the 

desk (as shown in Figure 5.5(c)). The same BF control checking method was used to 

ensure the participant was thinking about the elbow movement and moving towards the 

correct direction. Then, the device would give vocal instructions to imagine elbow 

extension and physically extend his elbow to place the object down. If the participant 

successfully passed the BF control check, the orthosis would assist the participant to 

perform elbow extension. After the orthosis reached the designated extension angle, the 

FES unit switched on, so that the participant could release the object in his hand (as 

shown in Figure 5.5(d)). Again, the device asked the participant to imagine elbow flexion 

and physically flex his elbow to move his hand back to the initial position. BF control 

checking was also used in this phase (as shown in Figure 5.5(e)). 

  

Figure 5.5 Illustration for level 3 training protocol: picking-up and placing task 

During training, a trial was considered successful only if the participant was able 

to trigger both EEG system with motor imagery and bend the force sensor in the correct 

direction of the required movement of the elbow. If the participant for any reason did not 
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have a successful trial, the orthosis system would perform the required movement by 

moving the participant’s limb passively to maintain a minimum number of delivered 

repetitions (10 repetitions). 

5.7. Results 

5.7.1. BCI performance 

During the BCI model training (obtaining or generation), the EEG data collected 

was sent to three types of feature extraction algorithm and cross-validated with three 

types of classifiers. For the participant in this study, the CSP feature algorithm together 

with LDA classifier returned the highest cross-validation accuracy of 80.1%. The spatial 

filter obtained is shown in Figure 5.6. The colors indicate the weight values for the spatial 

filters, as shown in the Z axis in the figure. Clear event-related desynchronization (ERD) 

was captured by the CSP algorithm in Figure 5.6(b). 

 

Figure 5.6 CSP model obtained for the participant. Although this is a 
participant with chronic stroke, Figure (b) exhibits a spatial pattern 
similar to ERD/ERS activity in healthy participants. 
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5.7.2. Success rate 

According to the training protocol, the device can either facilitate active training 

(BCI or BF control) or passive training. The success rate was introduced to measure the 

control accuracy during the training. The success rate was calculated as the ratio of 

successfully controlled trials, by the participant, in the total training trials within one 

training day. For example, if the participant was missing one control clue during one trial, 

this trial was not counted as successful. The calculated success rate on each training 

day was averaged and summarized for each training week in Table 5.3. 

Table 5.3 Success rate in triggering the system 
 

BCI success 
rate 

BF control 
success 
rate 

Week1 0.684± 0.048 0.410 

Week2 0.771± 0.138 0.497± 0.152 

Week3 0.653± 0.215 0.453± 0.076 

Week4 0.74± 0.124 0.697± 0.095 

Week5 0.936± 0.022 0.826± 0.017 

Week6 0.906± 0.111 0.831± 0.133 

 

The participant was a BCI novice. In the first training week, the participant’s 

success rate was 68.4% with BCI control, and his success rate for BF control was only 

41.0%. However, after six weeks of training, the participant managed to achieve a 

success rate of 90.6% for BCI control and 83.1% for BF control. 

5.7.3. WMFT and FMMA result 

According to the inclusion criteria, the participant had shoulder active range of 

motion in all directions of 10°-15°. The participant was required to complete the WMFT 

and FMMA every other week by a “blind” test administrator, who was neither aware of, 

nor involved in, the study protocol. The first three sets of WMFT data were collected as 

baseline measurements without training involved. 
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Table 5.4 Wolf Motor scores of the participant 

   Right Hand Assessment 
   Baseline Assessment in training weeks Retention 

No. 
Assessment 
Content 

Unit 1 2 3 1 2 3 4 5 

1 
Forearm to 
table (side) 

seconds 3.62 3.83 3.72 3.44 3.08 4.24 3.74 4.13 

2 
Forearm to 
box (side) 

seconds 120.00 120.00 16.91 120.00 16.02 120.00 14.88 9.22 

5 
Hand to 
table (front) 

seconds 2.17 5.01 3.49 2.23 3.205 4.55 4.69 2.58 

6 
Hand to box 
(front) 

seconds 120.00 120.00 120.00 8.57 10.28 27.36 30.51 4.78 

7 
Weight to 
box 
(highest) 

lbs 0.00 0.00 0.00 3 2 2 2 3 

8 
Reach and 
retrieve 

seconds 6.36 4.17 3.26 7.04 2.80 2.98 4.13 16.81 

14 
Grip 
strength 
(mean) 

kg 7.12 4.34 9.29 6.34 9.47 4.43 6.45 6.37 

16 Fold Towel seconds 120 82.56 120 120.00 89.22 71.81 120.00 120 

17 Lift Basket seconds 4.16 9.52 7.82 9.45 5.74 6.06 8.34 7.49 
*The tasks which participant was not able to finish throughout the study, were not included in this table 

WMFT scores are shown in Table 5.4. Data were omitted if the participant was 

not able to finish the task throughout the baseline measurement and the six weeks of 

training. The baseline assessment showed that the participant was not able to finish 

Extend-elbow (side), Extend-elbow (weight) and Hand-to-box (front). The participant was 

also not able to several fine motor movements including Lift-can, Lift-pencil, Lift-paper-

clip, and Stack-checkers,  

WMFT results show that participant was still not able to complete all the tasks, 

after the training. Therefore, he scored 120 seconds (max allowed time) for hand to box 

in the baseline and first practice sessions. Major improvements were observed for 

Forearm-to-Box (side) by 89%, Hand-to-Box (front) by 96% and Weight-to-Box. The 

participant also showed minor improvements in Hand-to-table (28%), when the retention 

score was compared to the baseline data (third session). The participant’s score showed 

major fluctuations on Forearm-to-Box task and Fold-Towel task.  
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The detailed FMMA score is shown in Table 5.5. Only minor fluctuations were 

observed during and after the training of this study. 

Table 5.5 Fugl Meyer Motor Assessment score of the participant 

 Baseline 
Assessment 

Assessment1 Assessment2 Assessment3 Assessment4 Retention 

Right 
Arm 

22 23 22 19 19 22 21 22 

Left 
Arm 

62 64 64 64 62 62 62 62 

5.7.4. WMFT score regression analysis 

In this section, all the items measuring time in the WMFT were taken and an 

average time of finishing one task of the WMFT was calculated. The baseline 

assessment session consisted of three assessments, therefore, standard deviations 

were shown in the baseline column of Figure 5.7. The remaining assessments were only 

one-time assessments. The average time in finishing each task of WMFT was 

summarized in Figure 5.7. After training, the participant managed to decrease his 

average time in finishing all items of the WMFT test by 12%, which was 11.17 seconds. 

The average time for WMFT tasks fit well into a monotonic decreasing natural logarithm 

function (r = 0.789). According to the linear hypothesis test, the result was statistically 

different (p= 0.0103). 

 

Figure 5.7 Summary for average time to finish WM tasks. 
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5.7.5. Correlation between BSI and WMFT score 

In this chapter, the participant’s BSIs were calculated both in resting state and 

motor imagery state according to Equation 5.1. Correlations between the WMFT and BSI 

during both rest and motor imagery states were investigated, to further assess the 

improvement in the WMFT data. The regression results are shown in Figure 5.8. 

Figure 5.8(a) shows the regression correlation between averaged WMFT score 

and resting state BSI. Both Pearson’s correlation (r = 0.2790, p = 0.6494) and 

Spearman’s correlation (r = 0.3000, p = 0.6833) indicated very low correlation between 

the two. Figure 5.8(b) shows the correlation between averaged WMFT score and motor 

imagery state BSI. Both Pearson’s correlation (r = 0.9568, p = 0.0107) and Spearman’s 

correlation (r = 1.0000, p = 0.0167) indicated very high correlation. In addition, the MI 

state BSIs were also summarized throughout the six-week rehabilitation training in 

Figure 5.9, which shows a similar profile as the averaged WMFT data in Figure 5.7. 

 

Figure 5.8 Correlation between the participant’s average WMFT score and BSI 
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Figure 5.9 The BSI calculated from MI state, during the six-week rehabilitation 
training 

5.8. Discussion 

The current chapter focused on the feasibility of the proposed BCI training 

platform over six weeks of progressive training. The participant’s left hemisphere was 

affected by a stroke. Therefore, in the stimulus presentation session, the participant was 

required to imagine movements of his right upper-limb. Based on the spatial patterns 

obtained from the offline analysis (Figure 5.6), it is clear that the BCI system is able to 

capture the ERD for motor imagery (Figure 5.6(b)). Considering the participant had no 

prior experience with BCI, the offline analysis accuracy (80.1%) was reasonable. The 

participant was actually able to control the device with motor imagery. During the training 

process, the training protocol was changed to level 2 and level 3 respectively in Week 3 

and Week 5. The author also noted variability in the success rate decrease in some 

training weeks; for example, there was 11.8% decrease in BCI, 4.4% decrease in BF 

control for Week 3, and 3.0% decrease in BCI for Week 6. The success rate decrease 

was consistent with the training protocol changes, and the participant managed to 

quickly adapt to new challenges. The results strongly suggest that both device and 

protocol were well tolerated by the participant and that training with the proposed device 

is feasible.  
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Further, the proposed platform was successfully tested over six weeks of 

training. In the baseline assessments, the participant showed very limited ability to 

functionally use his arm as measured by the WMFT tasks. For example, the participant 

was not able to complete Hand-to-box (front) and Lift-can tasks. Over the intervention 

time frame, the participant showed major improvements in the primary outcome 

measure. The WMFT quantifies upper extremity motor function through timed movement 

tasks. In this study, the participant was able to improve both timing and strength in 

selected tasks. He improved most on the Hand-to-Box task and Weight-to-Box task on 

the stroke affected side, which suggested he had improved his control on the shoulder, 

elbow, and wrist joints of the affected side. Those improvements were clinically 

meaningful according to Lin et al. [194]. The participant showed minor improvements in 

other tasks that are strength based including Forearm-to-Box, Hand-to-Table, and Lift-

Basket. However, there was no sign of improvement on fine motor tasks of his affected 

side. There could be several explanations for the low improvements on the impaired 

hand. One could be the BF control mechanism was mainly designed to work on the 

elbow joint. Therefore, the participant inherently gained more training in this joint. 

Another explanation could be distal digit functions are hard to rehabilitate, or that the 

participant needed a higher dose of the training. However, considering the participant 

was spending about one hour in each training session, and the participant was reporting 

fatigue both mentally and physically after each session, extending the length of the 

sessions may not be applicable. The fluctuations in the performance of other WMFT 

tasks for this chronic stroke survivor also suggests the participant was on “the margin” of 

completing those tasks within the required time, perhaps he could have continued to 

improve with more training. Finally, it is possible that the neural substrates that support 

fine motor movement (i.e. the corticospinal tract) was severely damaged by the stroke 

and not capable of supporting any recovery. 

Additionally, BSIs were calculated from the participant’s EEG signal, both for the 

rest state and the motor imagery state. In the literature, BSI was negatively correlated 

with the functional outcomes (FMA) of the stroke survivors [25]. In this study, no 

correlation was found between the rest state BSI and averaged WMFT. This might be 

related to the participant’s relatively stable performance on the FMA score, as shown in 

Table 5.5. In Figure 5.8, a strong positive correlation was found between motor imagery 

state BSI and averaged WMFT score (r = 0.9568, p=0.0107). In theory, a low BSI score 
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suggests less symmetry on the EEG of two hemispheres. Although motor imagery in 

healthy should cause unbalanced activity between two hemispheres. However, other 

studies have suggested motor recovery comes with increased ipsilateral hemisphere 

movements [195]–[203]. Therefore, the positive correlation between motor imagery BSI 

could provide evidence that the participant had actual improvement during the training. 

Based on these results, the author contends that the participant gained control, 

coordination, and strength in some of the shoulder, elbow, and forearm joint/muscles 

with repetitive goal-oriented training over a six-week period.  

5.9. Chapter Summary 

This chapter presented a new rehabilitation platform combining motor imagery 

and physical training for post-stroke rehabilitation. The proposed training platform 

together with its supporting training protocol were well tolerated by an individual with 

chronic stroke during six-weeks of training. By the end of the rehabilitation training, the 

participant was able to utilize EEG and force sensor to control the orthosis to finish the 

training tasks at a very high success rate (90.6% for the BCI control, 83.1% for the BF 

control). The participant improved his motor function after the training with reduced 

overall WMFT time. The preliminary results of this case study suggest combining motor 

imagery and physical training is feasible and possibly effective for patients with chronic 

stroke.  

5.10. Contributions, limitations and future work 

A challenge in the field of rehabilitation involving BCIs is that users may learn to 

control the rehabilitation device with reasonable accuracy, but show limited motor 

function improvement at the end of the training. This suggests that using only active 

training with the BCI might not be enough, as the users might find a way to control the 

rehabilitation device through compensatory movements or other strategies instead of 

through improvements in motor function. A combination of mental and physical training 

could help users correlate the motor imagery with the actual movement performed [38]. 

However, no such system has been designed or reported in the literature. In order to 

facilitate the idea of combining mental and physical training, a novel training platform 
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was designed and fabricated in this study by integrating BCI with force sensor feedback 

on an elbow orthosis. In order to test the feasibility of the proposed platform and the 

supporting protocol, one case participant with chronic stroke was recruited and went 

through six weeks of rehabilitation training. The proposed rehabilitation platform and 

supporting protocol address the challenge of combining mental and physical training, as 

identified in the pilot study in Chapter 3 and also proposed in [38]. 

The major limitation of the study was with the efficacy of the proposed platform 

and protocol. Although the participant improved during training, the platform and protocol 

were tested with only one case participant. Therefore, it is not possible to definitely 

determine the efficacy of the training platform and protocol. Although the efficacy of the 

platform and protocol was not the objective of this study, it would be of interest for future 

studies to investigate with a group of participants with chronic stroke. Secondly, the case 

participant did improve during the six weeks of rehabilitation training. However, whether 

the improvement was caused by motor learning or motor recovery is still unclear. In 

other words, the neuroscientific explanation for the motor function improvement is 

lacking. Therefore, a study using neuro-imaging tools with higher resolution (such as 

MRI and MEG) would be advised to investigate the mechanisms responsible for the 

participant’s motor improvement. Thirdly, the training dose was chosen based on similar 

studies in the literature [15], [16]. A future study investigating the effect of training dose 

would be of interest.  
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Chapter 6.  
 
Filtering EEG model predictions to improve BCI 
application performance 

The goal set by Objective 3 is addressed in this chapter, by investigating two 

proposed methods of transferring an EEG offline analysis method into an online BCI 

application. 

6.1. Introduction 

Brain-computer interface (BCI) has been a popular research topic for decades 

[38], [40], [41], [84], [92]. Many new methods and algorithms have been developed to 

analyze the target signal in an offline paradigm in the last decade [41]. Currently, EEG 

offline analysis algorithms can reach 8-class classification with relatively high accuracy 

[44]. The transition of the offline analysis method to an online control scheme is another 

major factor that affects the BCI performance. Most of the BCIs in the literature apply the 

generated BCI model directly to the buffered streaming data, as can be seen in [45]–

[51]. Given the performance of the BCI application was directly affected by the 

predictions of the BCI model, processing the predictions generated by the BCI model 

could potentially improve the online classification performance of the BCI applications. 

To the best of our knowledge, no study has been reported on such topic. 

The major goal of the BCI online classification process is to increase the 

sensitivity of the classification while suppressing false positives. In applications that use 

BCI to control devices, the system is supposed to be configured to have less positive 

outputs (output 1) in order to make the system stable [204]. In other words, in binary 

classification situations between rest (output 0) and action (output 1), the BCI system 

should be biased towards to the rest state. In this case, the BCI users have to maintain a 

certain control signal with a certain intensity to activate the BCI system. Since Müller-

putz et al. have reported a confidence interval of “randomness” in the process [185], the 

“bias level” could be derived directly from a Gaussian distribution model with the number 

of samples used in the model generation process.  
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The “occasional” misclassifications from a classifier could be minimized by simply 

applying a moving average on the BCI classification outputs with a window of a 

designated length. In this case, the BCI users have to maintain the control signal for a 

certain period to activate the BCI system. 

In this chapter, the author focuses on the binary online BCI classification 

applications. Two methods of filtering the prediction of the BCI models were proposed 

and evaluated: Biased-classification and moving average method. The proposed two 

methods were introduced and evaluated for one participant with chronic stroke in six 

weeks of rehabilitation training. The proposed methods were shown to out-perform the 

method of directly applying the offline analysis model on buffered EEG data (referred to 

as non-special online classification in the following context), in the six weeks of 

rehabilitation training. Between these two methods, the moving average method showed 

higher accuracy, and the biased-classification method showed higher response speed. 

6.2. Method 

In this chapter, a 32-year-old individual with chronic stroke was recruited, whose 

data were also used in Chapter 5. He completed six weeks (18 sessions) of training with 

a stroke rehabilitation training platform introduced in [192]. During training in Chapter 5, 

the EEG data of the participant using the rehabilitation training platform were recorded. 

The system and training protocol was discussed explicitly in [192]. The protocol of this 

study was approved by the Office of Research Ethics at Simon Fraser University and the 

participant signed an informed consent form at the beginning of each training session. 

6.2.1. EEG offline analysis and BCI Model generation 

A 32-channel, EGI Geodesic N400 system (Electrical Geodesics Inc., USA) was 

used to record the EEG data from the participant. The EEG data were recorded at 1 kHz 

and filtered with a bandpass filter of 1-45 Hz. For the BCI model generation, we collected 

50 trials of the participant’s EEG data when the participant was performing motor 

imagery of elbow movement and 50 trials when the participant was resting with eyes 

open. 
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In order to obtain the BCI model, the data collected from the baseline 

assessments were analyzed offline using BCILAB [176], which is a BCI toolbox based 

on Matlab (The MathWorks, Inc., USA). A grid searching method was used to search 

from 0.5 seconds to 3 seconds after the visual stimulation in data acquisition, with a two-

second widow and 0.5 seconds as step size. During the model generation, Band Power 

(BP)[22], Common Spatial Pattern (CSP)[134] and Filter Bank Common Spatial Pattern 

(FBCSP)[178] were used as features independently from other features. And Linear 

Discriminant Analysis (LDA), Dual Augmented Lagrangian (DAL) method and support 

vector machine (SVM) were used as classifiers independently from other classifiers. 

Each type of features and each classifier were combined and evaluated independently to 

search for the best combination of features and classifiers with a 10×10 cross-validation. 

The detailed offline model analysis was described in [192]. 

6.2.2. Online biased-classification setup 

In order to decrease the false positive output of a BCI application, the classifier 

can be tuned to be biased towards 0 outputs. The biased classification can be easily 

achieved by gating the loss function with a binominal distribution estimation, so that the 

risk for false positive outputs is minimized. In this section, the confidence interval (Tbiased) 

of randomness was first determined according to [185]. 

For a binomial distribution with X=0.5 unbiased estimator µ was calculated as: 

 𝜇 =  
𝑛𝑋 + 2

𝑛 + 4
 Equation 6.1 

where n is the number of trial samples used in model generation. 

The threshold (Tbiased) of the biased classifier was then calculated as the upper-

boundary of the randomness confidence interval (as mentioned in [185]): 

 𝑇𝑏𝑖𝑎𝑠𝑒𝑑 = 𝜇 + √
𝜇(1 − 𝜇)

𝑛 + 4
𝑍

1−
𝛼
2

   Equation 6.2 
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where n is the number of trials used in the model generation, 𝑍1−
𝛼

2
 is the 1 −

𝛼

2
 quantile of 

the standard normal distribution N(0,1) and α is the significance (typically, α= 0.05, or 

0.1). In this chapter, α = 0.05 was used to calculated Tbiased. 

The output predictions (Pbiased) of the classifier were configured based on the 

probability outputs of the classifier (p), which is a direct cut-off with the threshold of 

Tbiased: 

 𝑃𝑏𝑖𝑎𝑠𝑒𝑑 = {
0, 𝑝 ≤ Tbiased

1, 𝑝 > Tbiased
  Equation 6.3 

A pseudo-online process was used to evaluate the performance of the proposed 

method in this chapter. During the pseudo-online classification analysis with biased-

classification, Raw EEG data were streamed from the recorded data file. The raw EEG 

data were also streamed into a temporary buffer. The buffer length was determined by 

the model generation process specified in the previous chapter (Section 5.2.3), where 

the model was generated through grid-search of listed time-epochs, features and 

classifiers. The model with the highest cross-validation accuracy was used in the 

pseudo-online analysis. Raw EEG data were filtered with a predefined bandpass FIR 

filter with a passband of 1-45Hz. Predictions were produced every 0.064s, on the 

pseudo-streamed EEG data. The predictions were calculated with the biased-

classification model on the buffered data.  

6.2.3. Online moving average classification setup 

In the time domain, the probability output of a binary classifier can be considered 

as a signal. The “occasional” misclassification would be considered as the noise caused 

by the environment or the user. Therefore, a simple moving-average filter could be 

adopted to minimize the impact of external noise. In addition, the moving average 

method would make the BCI system harder to activate and subsequently improve the 

stability of the system. Moreover, by comparing the moving-average value to a 

predefined threshold value obtained from resting EEG data at the beginning of the 

rehabilitation training, we can estimate the noise level of the training day and minimize 
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the variance caused by daily EEG acquisition system setup (or different sessions in the 

rehabilitation training). 

In this chapter, a pseudo-online process was used. During the pseudo-online 

classification analysis, EEG data were streamed from the recorded data file and 

temporarily stored into a buffer. As with the biased classification method, the buffer 

length was determined by the model generation process (Section 5.2.3), where the BCI 

model was generated through grid-search of listed time-epochs, features and classifiers. 

The same offline analysis model from the previous section was used in this part of the 

analysis. The EEG data were filtered with a predefined bandpass FIR filter with a 

passband of 1-45Hz. Predictions were produced every 0.064s, on the pseudo-streaming 

EEG data. A sliding moving average window of the latest 8 classification outputs was 

used to calculate output (p). Due to the utilization of the sliding window, the decision rate 

of the BCI application was able to be set synchronously with the EEG model prediction, 

which was not limited by the moving average length. The length of the moving average 

only affects how much the BCI application is biased to “0” output. 

 A threshold (Tma) was predefined at the beginning of each rehabilitation training 

session. The participant was asked to rest for 30s while the EEG acquisition system was 

set up. The 30 seconds were determined based on previous trials with healthy 

participants during the protocol design phase, which was a balance between BCI setup 

time and confidence of the noise level estimation. The max value of the classifier output 

was recorded during the 30s of the recording. Tma was set to be 0.1 plus the max value 

of p during the 30s of recording. The prediction output (Pma) of the process defined as: 

 𝑃thresh = {
0, 𝑝 ≤ Tthresh

1, 𝑝 > Tthresh
 Equation 6.4 

6.2.4. Classification accuracy evaluation 

The performance of the proposed methods was also evaluated in this chapter. 

During the data acquisition, the behavior of the rehabilitation platform was also recorded. 

The rehabilitation platform behavior was used to label the events in the EEG data for the 

performance evaluation. The detailed events were described in [192]. A four-second 
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window after the event label was used to minimize the effect of the user’s response to 

the event labels.  

The performance of the BCI application was also evaluated with accuracy, 

precision (true positives over total positive predictions), false positive rate (false positives 

over condition negatives). With the current design of the training protocol, the number of 

trials with each class is not balanced, therefore, F1 score[205] was also calculated as: 

 
F1 =  

2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

 
Equation 6.5 

In Equation 6.5, the recall was calculated true positives over condition positives. 

Cohen’s kappa score [204] was also included in this chapter to evaluate the BCI 

application performance. In this chapter, Cohen’s kappa score was calculated as: 

 𝑘 =  
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
 Equation 6.6 

where 𝑝𝑜 is the classification accuracy and 𝑝𝑒 is the hypothetical probability of change 

agreement. 𝑝𝑒 was calculated with the number of total trials (N) and trial numbers of 

class k predicted as class i (nki). In the binary classification case (k is either 1 or 2), 𝑝𝑒 

was calculated as: 

 𝑝𝑒 =   
1

𝑁2
∑ 𝑛𝑘1𝑛𝑘2

2

𝑘=1

 Equation 6.7 

6.2.5. Classification delay evaluation 

In the online classification application, the classification delay is a direct 

performance metric which evaluates how fast the BCI control responds. In this chapter, 

classification delay was also used as a measure to evaluate the response speed of the 

online BCI application. The participant was instructed by event labels (vocal commands) 

from the rehabilitation platform to start performing motor imagery. In this part of the 

analysis, the classification delay was defined as the time elapse between the vocal 
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command label from the exoskeleton and the first “1” output from the BCI. If the user 

missed one event label in the BCI application, the outputs of the BCI in this trial would 

not be analyzed in the delay analysis. In this case, the delay analysis would be 

independent from the impact of Type II error. 

The Kolmogorov-Smirnov goodness-of-fit hypothesis test was used to test the 

normality of the delay time on the two proposed filtering methods. Considering that the 

number of successful trials may be different for the two methods, Wilcoxon rank sum test 

was used to test if the delay time for the two methods were statistically different. 

6.3. Result 

6.3.1. Classification accuracy result 

The EEG data recorded from the baseline assessments were used to generate 

the EEG classification model used in this study. EEG data collected in the six-week BCI 

involved rehabilitation training were used to test the performance of the two proposed 

filtering methods in a simulated online paradigm. According to the rehabilitation training 

protocol, the participant was required to start as resting state and follow the vocal 

commands from the rehabilitation platform. Therefore, in each EEG recording from one 

training trial, one rest state trial of EEG data and multiple motor imagery state trials of 

EEG data were recorded. In order to balance the number of two classes of the BCI, only 

the first trial of motor imagery recording in each training trial was used in the evaluation. 

In this part of the chapter, 273 trials of EEG from motor imagery state and 273 trials of 

EEG from rest state were extracted from the six weeks of rehabilitation training. The 

receiver operating characteristic (ROC) curve of the obtained EEG model is shown in 

Figure 6.1. 
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Figure 6.1 The receiver operating characteristics of the BCI model used in this 
study 

For the biased-classification method, Tbiased was determined by the number of 

training trials during the model generation. In the model generation process, 100 trials of 

EEG data with equal trials of two classes (motor imagery and rest) were used. According 

to Equation 6.2, Tbiased = 0.5961 was calculated. Additionally, Tbiased=0.5 was also 

included to compare as a non-special online classification method (i.e. directly applying 

the BCI model on the buffered EEG data).  

For the moving average online classification method, Tma was predefined at the 

beginning of each rehabilitation training session, with 30s of rest EEG data. 

The online classification was evaluated with a pseudo-online classification 

analysis process, as described in the method section. The EEG data were collected 

during six weeks of BCI involved rehabilitation training with one case participant 

(baseline data were not included in the six weeks). The result was summarized in Figure 

6.2.According to the pseudo-online classification result in Figure 6.2, both proposed 
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filtering methods had higher accuracy than directly applying BCI model to the buffered 

data. However, the biased-classification accuracy was not statistically higher than 

randomness according to [185]. The moving average method achieved an average 

accuracy of 59.89% across the six weeks of rehabilitation training, which is statistically 

higher than randomness. Considering the fact that participant is novice to BCIs at the 

beginning of the rehabilitation training, the model accuracy is satisfactory. In terms of the 

false positive rate, the moving average method is higher than the biased-classification 

method. However, the moving average method outperforms the biased-classification 

method in all the other accuracy-equivalent evaluations. 

 

Figure 6.2 Classification performance evaluation on the proposed biased-
classification and moving average method. 

6.3.2. Online classification delay result 

The classification delay result was summarized and shown in Figure 6.3. On 

average the moving average method showed lower classification delay than the biased-

classification method. According to the Kolmogorov-Smirnov goodness-of-fit hypothesis 

test, the distribution of delay time on the moving average method was not normally 

distributed (n=443, P= 1.07×10-107). Wilcoxon rank sum test showed the delay time of the 

two online classification method was significantly different (n1 = 443, n2 = 560, P = 

8.56×10-6). The biased-classification method responds than the moving average method. 
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Figure 6.3 Classification delay summary for moving average classification and 
biased classification 

6.4. Discussion 

In this chapter, two prediction filtering methods were proposed and evaluated 

with EEG data in a pseudo-online way. EEG data collected from six weeks of BCI 

involved rehabilitation training from one case participant were used. In the first method, a 

threshold value was calculated depending on the training sample size, and a biased-

classification method was then built utilizing the threshold value. In the second method, 

a moving average method was proposed to process the probability output of the 

classifier, to filter out the “classification noise”. The two prediction filtering methods were 

also evaluated in this chapter with EEG data from one case participant with chronic 

stroke during six weeks of rehabilitation training. 

Although the highest cross-validation accuracy was 80.1% for the model 

generation[192], which utilized the EEG data collected in the three baseline 

assessments, the overall average pseudo-online classification accuracy during six 

weeks of training barely surpassed the randomness level, with the EEG data collected in 

the six weeks of BCI involved rehabilitation training. The daily EEG acquisition setups 
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did introduce a lot of influence, which resulted in the variation between the training set 

for model generation and the actual rehabilitation training. However, the participant was 

able to learn how to use the training system very effectively. It only takes a few sessions 

before the participant learns how to use the training system. In the last week of the case 

study, the participant was able to control the BCI with very high accuracy (average 

90.6%), using the moving average method proposed in this chapter [192]. 

Based on the evaluation results, both of the proposed prediction filtering methods 

outperformed the non-specific online classification method in all evaluations except F1 

score. However, the F1 score does not take the true negatives into account [205], and 

Cohen’s kappa score was suggested to be a better measure [204]. The result on 

Cohen’s kappa score suggested that the moving average method had better 

performance. In addition, the moving average method had the lowest false positive 

accuracy, which is crucial in a binary online classification for applications like 

rehabilitation. Lower false positive would decrease the possibility of triggering assistance 

by mistake and ensure the participants’ focus on the training protocol. 

Since the proposed biased classification used the same number of data points 

with the non-specific online classification method, the delays caused by the BCI 

algorithm should be intrinsically the same with these two methods. Considering the 

moving average method requires 8 recent predictions to calculate the mean, the moving 

average method should require more time to respond. This initial hypothesis has been 

supported by Figure 6.3, where the response delay for biased-classification method is 

significantly shorter than the moving average method. 

The relatively low accuracy of online classification is still an issue for the 

application of BCIs. The two prediction filtering methods proposed in this study are still 

simple and naïve. More sophisticated algorithms should be developed to minimize the 

variations between the training set for model generation and the actual online 

application. Also, the result of this study has been limited by the population of the 

participants. The possibility of generalizing the result and conclusion of the proposed 

methods with a large population is still unknown. A future study with more participants 

should be conducted to investigate this potential problem. 
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6.5. Chapter Summary 

The goal set by Objective 2 was addressed in this chapter, by investigating the 

two prediction filtering methods in an online BCI application. The scope of this chapter 

was to introduce and evaluate two prediction filtering methods for long-term BCI 

applications like rehabilitation. Two naïve prediction filtering methods were first proposed 

in this chapter. In the biased classification method, a threshold value was calculated 

depending on the training sample size, and a biased-classification method was then built 

utilizing the calculated threshold value. A moving-average method was proposed to 

process the probability output of the classifier, to filter out the “classification noise” and 

calibrate the online classification process with respect to the variation introduced by the 

EEG acquisition set-up. The performance of two prediction filtering methods was also 

evaluated in this chapter with EEG data from one case participant with chronic stroke 

during six weeks of rehabilitation training. Both of the proposed two prediction filtering 

methods outperformed the method of directly applying the BCI model on the buffered 

EEG data. Between the two proposed methods, the moving-average method achieved 

significantly higher classification accuracy than the biased classification method, yet the 

biased classification method showed a significantly faster response than the moving-

average method. 

6.6. Contributions, limitations and future work 

This chapter evaluated two methods of improving the BCI application 

performance by filtering the classification output of the EEG model. Although the offline 

EEG analysis methods have been extensively researched, the performance of the online 

BCI application is still not satisfactory, especially for users with chronic stroke, as 

discussed in Chapter 3. Therefore, the process of configuring the BCI application using 

the EEG model generated from offline analysis requires further investigation and 

improvement. 

The two methods of filtering the classification results of the EEG model 

presented in this study contribute to filling in the gap between the offline EEG analysis 

and practical BCI application. With the same offline analysis method, the performance of 

the BCI application can be improved. This study also benefits the healthcare community 
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and the users of the BCI system, as it contributes to the reliability of the current BCI 

technology, making it less demanding for rehabilitation applications. 

Although the two proposed methods were investigated with EEG data collected 

from six weeks of BCI involved rehabilitation training, only one participant with chronic 

stroke was recruited. This limits the generalizability of the results obtained in this study. 

A future study involving more participants with chronic stroke is necessary to consolidate 

the results of the two proposed methods. In addition, the threshold value for the moving 

average method was calculated using 30 seconds of resting state EEG data, which were 

determined based on previous studies with healthy participants and participants with 

chronic stroke. A study investigating the impact of such hyperparameters in the future 

will help better understand the roles of hyperparameters in the methods proposed in this 

chapter, as well as develop new methods to improve the performance of the BCI. 
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Chapter 7.  
 
Quantifying motor function with EEG 

This chapter is reproduced with permission from the following paper I co-authored:  

Zhang, X., D’Arcy, R & Menon, C. (2019). Scoring upper-extremity motor function from 
EEG with artificial neural networks: a preliminary study, accepted manuscript on 
Journal of Neural Engineering. 

Some sections are adapted to fit within the scope and comply with the format of the 

thesis. 

This chapter is included to address Objective 4, by investigating the possibility of 

translating EEG data into an accurate and reliable motor function assessment. 

7.1. Introduction 

In stroke-related research, assessment of the stroke survivors’ motor function 

plays an important role [27]. Currently, assessment deficit and residual motor function of 

stroke survivors rely on individual sessions between the healthcare professional and the 

patient, with standardized assessments. For example, the Medical Research Council 

(MRC) 0-to-5 scale muscle power assessment tool is one of the most ubiquitous tools for 

motor power assessment in the clinical field [206], which aids to the investigation of 

peripheral nerve injuries. Other standardized assessments are also commonly used in 

the research field. For instance, the Functional Independence Measurement (FIM) was 

developed to offer a uniform system of measurement for disability [54]. Wolf Motor 

Function Test (WMFT) was designed to assess functional motor abilities via testing how 

much time the examinee spends on specifically designed motor tasks [53]. Fugl–Meyer 

Assessment (FMA) was designed to assess the ability of patients in terms of motor 

function, balance, cutaneous and joint sensation. The tasks can be sub-divided into 

several sections, and the examiner can select the sub-sections he/she is interested in 

[52]. However, those score systems are neither completely objective nor easy to 

administrate. The examiners’ professional experience and skills are essential for the 

proper administration of those scoring methods. 
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Electroencephalography (EEG) is a well-established tool in clinical practice. 

Evidence indicates that EEG changes during the stroke rehabilitation process are able to 

predict motor recovery post-ischaemic stroke [19], [24], [127]. Literature has suggested 

band power shifts of EEG data correlates with motor function change. For instance, the 

intensity of event-related desynchronization/synchronization (ERD/ERS) signal has been 

reported to correlate with motor function both in healthy and stroke [22], [128]–[130]. 

Delta-alpha ratio (DAR) calculate from rest state EEG signal was reported to correlate 

with functional recovery in post-acute traumatic brain injury [26]. Brain symmetry indexes 

(BSI) have also been reported in several studies to correlate with the functional 

performance of the stroke survivors [23], [25]. Recently, Large-Scale Phase Synchrony 

(LPS) has been researched as a prognosis and possible assessment tool in [28]. 

However, the correlations between the EEG scores in the previous works and the motor 

functions scores are relatively low (r<0.8), and the scores calculated from EEG in the 

previous works are neither accurate nor reliable enough to be considered as an 

assessment tool. All the previous works investigated participants with acute/subacute 

stroke and the feasibility of using EEG data to quantify motor function for chronic stroke 

remains unknown. 

With advancements in electronic technology, temporal resolution and channel 

numbers of modern EEG acquisition systems keep increasing, and there is abundant 

information collected from EEG. Although it is difficult to investigate all possible feature 

algorithms in EEG analysis, modern artificial neural network algorithms are very suitable 

for such applications with an end to end learning paradigm, which is learning from data 

without any prior feature selection [56], [57]. There are two major artificial neural network 

approaches in EEG applications: restricted Boltzmann machine (RBM) and the 

convolutional neural network (CNN) [165]. The artificial neural networks have been 

investigated extensively in EEG application in the recent year. For example, RBMs have 

been used to classify motor imagery of EEG by Lu et. al [207]. Deep Belief Networks 

(DBNs), which is considered as a special type of RBMs [165], has found their 

applications in detecting abnormal EEG signals [208], classifying sleep stages [209], and 

extraction of motion-onset visual evoked potentials [210]. The convolutional neural 

network (CNN) is an artificial neural network that can learn local patterns in data by 

using convolutions as its key component. Recent researches have proven that CNNs 

could be able to be used in motor imagery of EEG analysis with superior performance 
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[211]. Other applications for CNNs in EEG analysis include epilepsy detection [212]–

[216], event-related potentials [217]–[220], and music rhythm retrieval [221], [222]. To 

the best of our knowledge, there is no previous study using an artificial neural network 

with EEG data to estimate the users’ motor function.  

The primary goal for this chapter is to address the goal set by Objective 3, by 

investigating the possibility of utilizing EEG as a stable and objective measurement for 

motor function assessment. In this study, a CNN based method for processing EEG data 

was introduced to automatically score motor function of participants with chronic stroke. 

Considering the motor function is a broad concept, this study would primarily focus on 

the motor function of the upper extremity. According to the literature, the FMA is a well-

designed, feasible and efficient clinical examination method that has been tested widely 

in the stroke population [223]. FMA has been widely used in stroke rehabilitation studies 

as an outcome measure [10], [11], [28], [117], [224]. Its upper extremity motor scale 

section only takes approximately 20 minutes to complete. Additionally, FMA has been 

reported to correlate with LPS of EEG for acute/subacute stroke survivors [16]. 

Therefore, FMA was selected as the standard motor function score. In this chapter, the 

proposed CNN was regressed on the upper-extremity FMA score of the participants. The 

performance of the prediction was also evaluated with within-participant testing and 

cross participant testing. 

7.1.1. Demographics 

The protocol for this study was approved by the Office of Research Ethics at 

Simon Fraser University and all participants gave informed consent before participating.  

During the recruitment, the inclusion criteria were set as follows: 1) age range 

from 35 to 85 years; (2) post-stroke duration ≥ 6 months; (3) MoCA score greater or 

equal to 23 [172][225]; (4) able to click a computer-mouse-like button. Potential 

participants were excluded if they had; (1) other neurological conditions in addition to 

stroke; (2) unstable cardiovascular disease; or (3) other serious diseases that precluded 

them from undergoing the study (i.e. undergoing other assessments or recordings in this 

study, etc.). Fifteen participants with chronic stroke were recruited to join the study. One 
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was excluded due to his inability to go through MoCA. The demographic data of 

participants with chronic stroke were shown in Table 7.1. 

Table 7.1 the demographic data for the participants with chronic stroke 

Participant ID Gender Age More affected hand Years after stroke MoCA  FMA score 

P1 Male 70 Left 6 23 51 
P2 Female 41 Left 0.5 27 10 
P3 Male 68 Left 1 29 38 
P4 Male 63 Left 10 28 14 
P5 Male 73 Left 6 28 37 
P6 Male 67 Left 2 28 36 
P7 Female 62 Right 5 26 41 
P8 Male 64 Left 6 24 47 
P9 Male 80 Right 11 23 39 
P10 Female 50 Right 6 23 46 
P11 Male 63 Right 1 -- 18 
P12 Male 39 Right 11 15 6 
P13 Male 64 Left 3 27 45 
P14 Male 75 Right 1 25 49 
P15 Male 64 Left 0.5 23 24 

Participant 11 was not able to complete the MoCA test, and therefore, was excluded from the study. Participant 12 was 
aphasia. Although he only scored 15 in MoCA, he was evaluated by a professional physical therapist to be able to give 
consent and follow the instructions in this study. 

In addition, twelve healthy participants were also recruited to participate in the 

study. Their detailed information is shown in Table 7.2. 
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Table 7.2 The demographic data for the healthy participants 

Participant ID Gender Age Dominant Hand 

H1 Male 22 Right 

H2 Male 27 Right 

H3 Male 30 Right 

H4 Male 24 Right 

H5 Female 29 Right 

H6 Male 23 Right 

H7 Female 29 Right 

H8 Female 28 Right 

H9 Female 28 Right 

H10 Female 27 Right 

H11 Female 71 Left 

H12 Male 76 Right 

7.1.2. Data acquisition 

EEG data were acquired from 12 healthy participants and 14 participants with 

chronic stroke. Figure 7.1 shows the EEG acquisition setup. A 32-channel g.Nautilus 

system was used to stream and record the EEG data at 500Hz. The montage (shown in 

Figure 7.2) is a standard 10-20 system with reference on the right earlobe and the 

common ground is in the midpoint of the line segment between FpZ and FZ. 

Evidence from the literature suggests motor function could be reflected in the 

features of ERD/ERS signals [224], [226]. In this chapter, the EEG data was recorded 

when the participants were performing button clicking movement, once every self-

estimated 10 seconds, as shown in Figure 7.1. The 10 seconds interval was used to 

clearly separate the EEG activities induced by adjacent clicks [21], [22], [128]–[130], 

[227]. For the healthy participants, EEG data were collected by clicking with the 

dominant hand. For the participants with chronic stroke, EEG data were collected by 

clicking with the more affected hand. The upper-extremity motor function assessment 

part of FMA was also administrated on the same day as the EEG data collection. During 

the FMA, the examiner assessed the motor function of the participant as instructed in the 

FMA protocol. For example, one of the assessments tests the participant’s volitional 

movement with synergies. The examiner asks the participant to move his/her hand from 

contralateral knee to ipsilateral ear, and the examiner scores the participant on individual 

joint movement quality (none joint movement scores 0; partial joint movement scores 1; 
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full joint movement scores 2). Since FMA has a strong ceiling effect [223], [228], [229], 

full scores of FMA (66) were assigned for the healthy participants in the later processes. 

 

Figure 7.1 EEG acquisition system setup 

 

Figure 7.2 The g.Nautilus system montage for EEG acquisition channels 
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7.1.3. Data pre-processing 

Firstly, the EEG data were recorded while the participants were performing 

dominant/impaired side button clicking. For later process purposes, if the data 

recordings were performed while the participant was clicking with his/her left hand, the 

recording channels were swapped between the corresponding left and right hemisphere 

channels in the pre-process. For example, if one participant was using his/her left hand 

during the data recording, his EEG data from C3 and C4 channel would be swapped, the 

same between Fp1 and Fp2, P3, and P4 etc. 

The whole EEG data pre-process is shown in Figure 7.3. The EEG data were 

firstly filtered using a 1-45 Hz bandpass FIR filter. And all following data process was 

done within 1-45 Hz of the original EEG data. According to the literature, ERD/ERS 

signal may last for 8-9 seconds [21], [22], [128]–[130], [227]. Therefore, in order to 

include the ERD/ERS information, clicking events with interspace shorter than 9 seconds 

were removed from the following process steps, based on the clicking timestamps in the 

recorded EEG data. Event epochs were extracted from a time window of 4 seconds 

before the clicking till 2 seconds after. The EEG data were then normalized in each trial 

to minimize the data acquisition variation. In order to expand the dataset size, a multiple-

epoch extraction method was adopted. For every actual clicking time stamp, five trials 

were extracted. 100ms delay was applied for each of the five trials. This method has 

been proven to be valid in other neural network training applications [211], [230], [231]. 

In total, 170 trials of EEG data were extracted for each participant. For each extracted 

epoch, Fast Fourier Transform (FFT) was performed on each channel of the EEG data 

and the power spectrum density (PSD) and the phase response were calculated 

accordingly. Since the EEG data have been filtered through a 1-45 Hz bandpass filter, 

the power and phase data from greater than 45 Hz has been discarded. With 500Hz as 

the sampling frequency and 6 seconds as the signal length, frequency components 

below 45Hz are thus calculated as the first 270 elements after FFT. Through the EEG 

pre-process, each trial of the EEG data has been converted into a three-dimensional 

matrix of 270×32×2, where 32 is the number of EEG channels, 2 stands for the PSD and 

phase response. 
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Figure 7.3 Flow chart of EEG pre-process and reshaping 

7.1.4. Neural network model configuration and hyperparameter tuning 

In this chapter, Keras[232] together with tensorflow[233] were used to build the 

neural network models. Apache Spark[234] was used to facilitate the model generation 

process in a computer cluster maintained by Compute Canada. 

An artificial neural network consisting of two layers of convolutional layers and 

four layers of fully connected layers is proposed. Exponential linear unit [235] was used 

as activation functions for the first six layers and linear activation was used as the 

activation function for the output layer. The overall network configuration is shown in 

Figure 7.4. The last layer was a fully connective layer of one neuron with linear 

activation. According to the network configuration, when the model was trained, a 

regression model with linear activation will be generated. In this chapter, the regression 

model was generated on the participants’ FMA score. Mean square errors were used as 

loss function to calculate the gradient and update the weights of the model. The train 

and test datasets were divided according to the test modality, i.e. either within-participant 

testing or cross-participant testing, which was introduced in Section 7.1.5 and 7.1.6 

respectively. In the within-participant testing, 140 trials of EEG data from each 

participant were used in the model generation, then extra 30 trials of EEG data were 

used to test the model performance. In the cross-participant testing, the proposed 

method was evaluated with a leaving-one-out-cross-validation method, where the 

models were generated with EEG data from 25 participants and tested with the 

remaining one participant’s EEG data. 

All the data were randomized and divided into batches to feed into the model 

training process. 
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Figure 7.4 Neural network structural configuration. 

In order to get the best performance for the proposed convolutional neural 

network, hyperparameters of the model were searched with a given range for optimal 

configurations, as shown in Table 7.3. 

Table 7.3 Hyperparameter tuning table 

Parameter name Searched range 
Number of iterations caused by 

the parameter searching 

Kernel size 
(2,2) to (10,10), with step size of 

2 on each dimension 
25 

Convolution 1 layer 
number of neurons 

25, 50 and 100 3 

Convolution 2 layer 
number of neurons 

25, 50 and 100 3 

Dropout layer 0 to 1 with 0.05 step size 21 
Dense 1 layer number of 

neurons 
25, 50 and 100 3 

Batch size 64 and 128 2 
Number of iterations 50, 100, 200 3 

Firstly, the input kernel size of the first convolutional neural network layer was 

grid-searched from 2-10 with a step size of 2, in order to understand the optimal spatial-

frequency combination of the convolution input layer. Then the hyperparameters were 

grid-searched on the main layers. According to Table 7.3, in order to acquire one optimal 

model, 81050 models need to be generated. This is too much computation resource 

requirement even for high-performance clusters. Therefore, in this chapter, a Tree-

structured Parzen Estimator (TPE) solver [236] was used to find the optimal 

hyperparameter. The solver was set to run hyperparameter search for 100 steps to 

reduce the high volume of computation induced by model generation. For the 

hyperparameter optimization, models were generated with 140 trials from each 
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participant and tested with 30 trials of EEG data from each participant. The models with 

the lowest mean square error were returned for later analysis. 

Also, in order to investigate the necessity of using deep neural networks, a two-

layer shallow CNN was constructed to compare the performance with a six-layer CNN. 

140 trials of each participant’s data were used during training. The configuration of the 

shallow neural network is shown in Figure 7.5. Hyper-parameters as batch size and the 

number of iterations were searched as described in Table 7.3. 

 

Figure 7.5 A shallow neural network configuration to compare 

7.1.5. Within-participant testing 

As mentioned previously, 140 trials of EEG data from each participant were used 

as a training set to obtain the CNN model. With the fine-tuned CNN model, 30 extra trials 

for each participant, which were not involved in the model generation process, were 

used to test the model. Since in the EEG data pre-processing, five trials were extracted 

from one actual clicking event, the authors have paid special attention to make sure the 

EEG data trials extracted from the same event stayed in one subset. The result was 

referred to as within-participant testing in this chapter.  

7.1.6. Cross-participant testing 

Since the author is trying to introduce a method to quantify the upper-extremity 

functionality, it is important to test the prediction accuracy for participants, whose data 

were not involved in the model generation process. Due to the limit of our participant 
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pool, we exploited a leaving-one-out test scheme as our cross-participant testing method 

to test the prediction performance of the proposed method. During the cross-participant 

testing, one participant’s EEG data will be removed from the training process. The model 

will be hyperparameter--tuned and trained using 140 trials of EEG data from the 

remaining participants, with the same hyperparameter optimization process. The 

obtained model will be evaluated with the removed participant’s EEG data (140 trials). 

The cross-participant testing process will loop through each participant in our participant 

pool. 

7.2. Result 

7.2.1. Test result for within-participant testing 

In the within-participant testing section, 140 trials of each participant’s EEG data 

during clicking were involved in the model training. The hyperparameters were firstly 

optimized. Models with the lowest mean square error were returned after 

hyperparameter optimization. The returned hyperparameters were summarized in Table 

7.4. Due to the optimization method used in this part of the thesis, the hyperparameters 

were tuned jointly using a TPE optimizer. The result shown in Table 7.4 is just one local 

optimal hyperparameter combination. The proposed CNN configuration converged well 

with regression on the participants’ EEG data in the model generation process as shown 

in Figure 7.6. With the optimized hyperparameter, the mean square error reached 6.411 

at the end of the training process. 
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Figure 7.6  The training loss change with the number of training iterations. 

Table 7.4 The result for hyperparameter optimization in within-participant 
testing 

Parameter name Returned best value 

Convolution 1 layer Kernel size [10,10] 

Convolution 1 layer number of neurons 25 

Convolution 2 layer number of neurons 50 

Dropout layer 0.05 

Dense 1 layer number of neurons 50 

Batch size 128 
Number of iterations 50 

 

With only the EEG data collected from stroke survivors, one model was obtained 

through the hyperparameter optimization and model generation process (EEG data from 
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14 participants with chronic stroke were included). With the within-participant test 

method, the average prediction and standard deviation value are shown in Figure 7.7. 

The average prediction from the trained neural network model with only EEG data from 

stroke survivors also achieved very high linear correlation with the participants’ FMA 

scores in within-participant testing (n=14, r=0.9899, p = 1.4653×10-11). 

With the hyperparameters returned from the hyper-parameter optimization, one 

model was also generated with EEG data from both participants with chronic stroke and 

healthy (EEG data from all 26 participants were included). The model was tested with 30 

trials of EEG data which were not involved in the model generation. Predictions were 

averaged for each individual participant. The result was summarized in Figure 7.8. In 

order to keep the correlation analysis consistent, the prediction results for the healthy 

participants were removed from the correlation analysis. The average prediction from the 

trained neural network model achieved very high linear correlation with the FMA scores 

from participants with chronic stroke, in within-participant testing (n =14, r = 0.9921, p = 

3.3907×10-12). 

 

Figure 7.7 Correlation between the FMA score and averaged prediction score 
for the within-participant testing. EEG data from 14 participants with 
chronic stroke were involved in the model generation. 
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Figure 7.8 Correlation between the FMA score and averaged prediction score 
for the within-participant testing, EEG data from 26 participants 
(including both healthy and stroke survivors) were involved in the 
model generation. Healthy participants’ motor function predictions 
were not included in the correlation analysis. 

7.2.2. Shallow convolutional neural network result 

In order to investigate the possibility of achieving the same performance with a 

shallow neural network, a two-layer neural network was also proposed and evaluated. 

The two-layer neural network model was generated and tested with the same process as 

described in section 6.1.3 and 6.1.4. EEG data from all 26 participants were included in 

the hyperparameter optimization and model generation process. The shallow also 

converged during the training. We also used the within-participant testing method to test 

the model performance. The test result is presented in Figure 7.9. 
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Figure 7.9 Shallow neural network test performance for within-participant 
testing setup. EEG data from 26 participants (including both healthy 
and stroke survivors) were involved in the model generation. 
Healthy participants’ motor function predictions were not included 
in the correlation analysis. 

Since the predictions were obtained from each trial of EEG data, the predictions 

of 30 trials of EEG data were also averaged, mean and standard deviation value are 

also shown in Figure 7.9. The average prediction from the trained neural network model 

achieved very high linear correlation with the participants’ FMA scores in within-

participant testing (n =14, r = 0.9069, p = 7.6955×10-06, healthy participants’ motor 

function prediction result was not included in the correlation analysis). 

7.2.3. Test result for cross-participants testing 

The proposed neural network model was also evaluated with a leave-one-out test 

scheme. The models were generated through the same hyperparameters tuning process 

as described in Section 2.3. This left-out participant’s EEG data will be only used in the 

model testing process, not involving the model generation process. The left-out 

participant was looped through all the participants in this study. With only the EEG data 

collected from stroke survivors, models were obtained through the hyperparameter 

optimization process. EEG data from 14 participants with chronic stroke were included in 
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the hyperparameter optimization and model generation. With the cross-participant test 

method, the average prediction and standard deviation value are shown in Figure 7.10. 

The average prediction from the trained neural network model with only EEG data from 

stroke survivors also showed a relatively low linear correlation with the participants’ FMA 

scores in cross-participant testing (n=14, r= 0.6836, p = 0.0070). 

 

Figure 7.10 The correlation between the FMA score and averaged prediction 
score for the cross-participant testing, EEG data from 14 
participants with chronic stroke were involved in the model 
generation.  

 

Additionally, with the EEG data collected from the healthy participants involved in 

the model generation, EEG data from all 26 participants were included in the 

hyperparameter optimization and model generation. The testing result was summarized 

in Figure 7.11. Since the predictions were obtained from each trial of EEG data, the 

predictions of 140 trials of EEG data were also averaged, mean and standard deviation 

value are also shown in Figure 7.11. In order to keep the correlation analysis consistent, 

the prediction results for the healthy participants were removed from the correlation 

analysis. The average prediction from the trained neural network model achieved a very 

high linear correlation with the participants’ FMA scores in within-participant testing (n= 

14, r = 0.9867, p = 7.9342×10-11). 
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Figure 7.11 The correlation between predictions and FMA scores for the cross-
participant testing, where the proposed method was tested with a 
leaving-one-participant-out-cross-validation method. EEG data from 
26 participants (both healthy and stroke survivors) were included in 
the model generation. Healthy participants’ motor function 
predictions were not included in the correlation analysis.  

7.2.4. Increasing EEG data with healthy participant 

The objective of this chapter is to create a model that can best estimate motor 

function in cross-participant testing in participants with stroke. The following figure shows 

the prediction in cross-participant testing in participants with chronic stroke, in three 

different cases, i.e. when, in addition to data from stroke participants, data from 0, 10, 

and 12 healthy individuals were respectively used in the model generation (i.e. training). 

Figure 7.12 shows that prediction accuracy of the obtained model (i.e. cross-participant 

testing result for participants with stroke only) increases progressively by increasing the 

number of healthy participants’ EEG data used in the model generation. This result 

shows that a better model for participants with stroke can be generated when EEG data 

of healthy participants were also included in the model generation. The results shown in 

Figure 10 are important, as they provide evidence that the performance of the proposed 

method has a high potential to improve by increasing the number of participants. 
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Figure 7.12  Correlation coefficient with an increased number of healthy 
participants, predictions of healthy participants were not included in 
the correlation analysis. 

7.3. Discussion 

In this chapter, the authors described a method of assessing upper-extremity 

motor function for participants with chronic stroke, using EEG data. In this method, a 

configuration of a seven-layer neural network was introduced. During the model 

generation process, the model converged well. For the hyperparameter optimization, 

TPE was introduced to reduce the amount of computation that was needed. Although 

100 steps of optimization were set arbitrarily, the outcome in the testing sections showed 

100 steps were sufficient. 

In order to investigate the performance of the proposed method, two test 

methods were introduced in this study (i.e. within-participant testing and cross-

participant testing).  

In references [22], [23], [25], [26], [28], [128]–[130], the motor function predictions 

were generated with all the participants EEG data simultaneously. Therefore, the results 

presented in these papers should not be considered as “across-participant” test results. 

In order to compare our results with the results in the literature, the within-participant 

testing was included in this chapter. In the within-participant test section, the accuracy of 
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the proposed method was investigated.140 trials of EEG data from all the participants’ 

data were used in the model generation, and the remaining data (30 trials) were used in 

testing. The result suggested the proposed method is very accurate with the test dataset 

(n =14, r = 0.9921, p = 3.3907×10-12, predictions from healthy participants were not 

included in the correlation analysis). The proposed method showed higher accuracy than 

the methods reported in the literature. 

Combining the results in Table 7.1, Figure 7.7 and Figure 7.8, the participants’ 

FMA scores can be roughly grouped into two groups, with FMA score 10-24 and 35-51 

respectively. And for the prediction close to the edge of the groups, larger prediction 

variation and error can be observed. The same feature can also be consistently found in 

Figure 7.9 and Figure 7.11. This should be caused by the intrinsic FMA score distribution 

of the participants recruited for this study. For example, the research in this chapter was 

not able to recruit participants with low FMA score participants (close to 0), middle FMA 

score (with FMA score ranged from 25-34) and high FMA score participants (close to the 

full score, 66). And thus, this phenomenon suggests the performance of the proposed 

method can be further optimized with a larger population, whose FMA score distribution 

could cover the “blank areas” in this study. However, it is generally hard to recruit people 

with FMA scores in the “blank areas”. For example, with FMA score close to the full 

score, participants will be less interested in participating study targeting chronic stroke 

survivors. And with low FMA score close to 0, it will be difficult for those participants to 

move out of the house or follow the study protocol. 

Comparing the within-participant testing results of the proposed CNN and the 

results with the shallow neural network, the proposed CNN shows higher accuracy than 

the shallow neural network. However, the proposed CNN required 8 hours of 256 CPUs 

and 16 GPUs to obtain results. In contrast, the shallow neural network only required 40 

mins of 8 CPUs to get results. Therefore, the shallow neural network has the potential to 

be used with relatively smaller systems with limited system resources and limited data, 

where the model needs to be re-trained frequently. 

The proposed method also exhibited very good reliability even when the 

participant’s EEG data has not been involved in the model generation. With a very 

reliable performance for the cross-participant testing, the proposed method may not 
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need to re-train the model when a new participant joins the testing. This is very crucial 

for this method to be used in practical applications. With only 26 participants’ EEG data, 

the proposed method is already able to predict upper-extremity motor function reliably. 

The proposed method showed its potential to be used widely in research and clinical 

applications. 

Adding healthy participants’ EEG data in the model generation process has 

practical value in clinical applications. Generally, recruitment of participants with chronic 

stroke is more difficult than healthy. Therefore, it is more convenient and efficient to 

recruit some healthy participants and use their EEG data in the model generation, if the 

EEG data could also improve the model performance. With only EEG data from 

participants with chronic stroke, the proposed method managed to achieve very high 

prediction accuracy and reliability in with-in participant testing (n=14, r=0.9899, p = 

1.4653×10-11
), as shown in Figure 7.7. With only 14 participants’ EEG data, the proposed 

method outperformed the results in [22], [23], [25], [26], [28], [128]–[130]. Although the 

cross-participant testing results with data from only participants with chronic stroke was 

not very satisfactory, the correlation from cross participant testing results is still strong 

(n=14, r= 0.6836, p = 0.0070). With only EEG data from participants with chronic stroke, 

the result in cross-participant testing showed very good reliability (n = 14, r = 0.9867, p = 

7.9342×10-11, predictions from healthy participants were not included in the correlation 

analysis).  

Since this chapter is a preliminary study for proofing the concept of using EEG 

and CNN as an upper-extremity motor function assessment tool, there are four major 

limitations in this study. Firstly, only 26 participants were recruited and only 14 of them 

were chronic stroke survivors. The performance of the proposed method was 

constrained by the number of participants that the authors were able to recruit. If we 

want to obtain a model for general clinical applications, a clinical trial with a large 

population is necessary. The performance of the proposed method was greatly improved 

when healthy participants’ EEG data were included in the model generation process (as 

discussed in Section 7.2.4). This phenomenon could be caused either by the “data 

hungry” nature of the CNN method [237], or the healthy participant’s EEG data 

completed some form of distribution gaps in the training dataset. At this point, the author 

is unable to draw any conclusion on this point. Elaborated investigations of this 
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phenomenon is beyond the scope of this chapter. It could be of interest for future 

researches. Secondly, the study was done with same-day EEG data acquisition, so the 

long-term prediction performance of the proposed method has not been validated. A 

longitudinal study is needed to prove the long-term reliability of the proposed method. 

Thirdly, the current results were an investigation with FMA scores. The primary goal of 

this chapter was to prove the concept of using EEG as an upper-extremity motor 

function assessment tool. FMA is a well-recognized and relatively easy-to-administer 

motor function assessment in the stroke rehabilitation field. Additionally, FMA has been 

reported to correlate with LPS of EEG for acute/subacute stroke survivors [28]. 

Therefore, FMA was selected as the standard motor function score in this study. The 

EEG data can potentially be regressed on assessments that are more sensitive to motor 

function changes, e.g. WMFT, to investigate the sensitivity of the proposed method for 

measuring upper-extremity functionality. Fourthly, the protocol requires the participant to 

click on a button, which limited the population, as some participants were not able to 

follow the study protocol. Therefore, protocols with fewer limitations can be investigated 

to make the proposed method applicable to everyone, for example, sleeping or 

consciously resting state can be investigated as potential protocols, as suggested in a 

previous study [28]. 

7.4. Chapter summary 

The goal set by Objective 3 was addressed in this chapter by introducing a 

method of utilizing a specific CNN model to score upper-extremity function using EEG 

data. Twelve healthy participants and fourteen chronic stroke survivors participated in 

this study. EEG data were recorded while the participants were clicking on a computer 

mouse-like button. CNN models were trained based on the participants’ Fugl Meyer 

motor assessment score. The result showed that the proposed method achieved high 

prediction accuracy both within (n =14, r = 0.9921, p = 3.3907×10-12) and cross (n= 14, r 

= 0.9867, p = 7.9342×10-11) participant testing. Based on the result, the proposed 

method yields high accuracy and robustness in predicting the users’ motor function. This 

evidence suggested that it is possible to use EEG as an accurate and reliable motor 

function assessment score. In this study, the proposed assessment method can score 

motor function in individuals with stroke autonomously, which could therefore effectively 

streamline the assessment procedures in clinical practice. 
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7.5. Contributions, limitations and future work 

The content of this chapter addressed the problem that questionnaire-based 

motor function assessments are partially subjective and require prior training of the 

examiner. It has been reported in the literature that some features of EEG data correlate 

with motor function performance. EEG was thus selected to generate an objective motor 

function score in this chapter. However, the correlations between results from reported 

algorithms (utilizing basic EEG features such as band power [24] [26] and phase 

information [20]) and motor function performance are usually moderate, with correlation 

coefficients less than 0.8. In addition, those studies were only done with correlation 

analysis. Whether those correlations could be generalized with untested participants is 

still unknown. In this chapter, ANN technology was used to enable end-to-end learning 

on hidden features of EEG data. Some recent papers suggested that CNN has superior 

performance in EEG analysis focused on event-related potentials with limited number of 

training data [57], [211], [217]–[220]. Therefore, a seven-layer CNN was proposed and 

evaluated in this chapter to translate the EEG data into motor function scores. 

The study in this chapter contributes to the scientific community by showing that 

EEG data is able to estimate motor function with good accuracy and reliability. In 

addition, the proposed ANN method contributes to the field of stroke rehabilitation 

research by providing an automated, reliable and objective method to quantify motor 

function, which can assist healthcare professionals in precisely tailoring treatments for 

their patients.  

The primary limitation of the study is the size of the population. The proposed 

ANN method was investigated with 26 participants and only 12 of them were participants 

with chronic stroke. In the future, a large-scale study would be advised to address 

concerns about the clinical significance of the proposed ANN method. Secondly, the 

data acquisition protocols between healthy participants and participants with chronic 

stroke were not exactly the same, as healthy participants were required to click with the 

dominant hand, while participants with chronic stroke were required to click with the 

most impaired hand. The hand dominance of the participants with chronic stroke may 

have affected the performance of the ANN model. Although hand dominance or the most 

impaired side were pre-processed by flipping their EEG data between the right and left 
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hemispheres for all EEG data collected on the left side (for consistency), a study 

specifically investigating the importance of hand dominance and side of the stroke 

impairment is needed to address this limitation. Thirdly, the role of healthy participants’ 

data is still unclear. Although this concern has been partially addressed by the results 

presented in Section 7.2.4, a future study could be conducted by setting the total amount 

of the training data constant while varying the portion of healthy participants to fully 

investigate the role of EEG data from healthy participants. Another limitation of the study 

was that the ANN method was selected without comparing its performance with other 

machine learning methods. In the future, a study systematically investigating other types 

of machine learning methods would be of interest. A longitudinal study investigating the 

long-term robustness of the proposed method would also be suggested.  
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Chapter 8.  
 
Conclusions and future work 

8.1. Conclusions 

In this thesis, the author discussed EEG applications in stroke rehabilitation. This 

thesis started with a preliminary pilot study to identify the possible challenges. The 

author identified the following four objectives following the pilot study, which are listed 

below. 

• Objective 1: Reduce the time for repetitive raw data acquisition by 
investigating the possibility of using one MI to generate the BCI model and 
classify other MIs. 

• Objective 2: Design and develop a rehabilitation training platform, which 
assists the user when both mental and physical engagement were detected. 
The feasibility of the proposed platform over multiple sessions will also be 
investigated.  

• Objective 3: Investigate methods to improve online classification performance 
using biased-classification and moving-average.  

• Objective 4: Investigate the feasibility of translating EEG data into an accurate 
and reliable motor function assessment. 

Objective 1 was addressed in Chapter 4. The general model approach method 

was proposed to deal with the repetitive EEG data acquisition and model generation 

problem when applying BCI during rehabilitation training. By studying the versatility of 

the motor imagery tasks during EEG data acquisition, the general rules of selecting MI 

with higher versatility were determined. As the author mentioned in the previous 

chapters, higher versatility of MIs refers to higher test accuracy when the model was 

generated from one type of MI and tested with other similar but different types of MIs. In 

that chapter, 12 healthy participants were included in the study. Nine MI tasks centered 

on upper-extremity were investigated. Among all nine MI tasks, MIs of single joint 

movements showed higher versatility than the rest. The performance difference among 

the single joint MI tasks was not significant (ANOVA p>0.05). Among the three single 

joint movements investigated in the chapter (i.e. Elbow Task, Weight Task, and Drawer 

Task), Weight Task showed the highest inter-task test accuracy and the difference was 
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significant among all nine selected MI tasks (p<0.05). This piece of evidence suggests 

that the Weight Task is the most versatile MI task in the MI tasks investigated. For future 

studies with BCI applications in rehabilitation training, single joint MI tasks should be 

considered to avoid repetitive EEG data acquisition for different goal-oriented tasks. For 

future studies with BCI applications in rehabilitation training of upper-extremity 

specifically, Weigh Task is recommended. 

Objective 2 was addressed in Chapter 5. It is suggested in the literature that 

combining motor imagery and physical training might further boost motor function 

recovery. A portable rehabilitation training platform was designed and fabricated to fulfill 

this need. The proposed rehabilitation training platform consisted of three major sub-

systems: a BCI control system, a robotic orthosis, and an FES system. The BCI control 

system was incorporated to ensure the user’s focus on the rehabilitation protocol. A 

force sensor was embedded in the robotic orthosis to monitor the interaction force 

between the user and the device. The FES system was used for hand opening when the 

user had limited control of his/her fingers. To use the proposed rehabilitation platform, 

the user was required to perform pre-defined MI to activate the assistance from the BCI 

control system. Then, the user was required to move his/her stroke-impaired elbow in 

the designated direction to activate the assistance from the robotic orthosis. A three-

level progressive rehabilitation training protocol was also proposed to support the 

rehabilitation training platform. The feasibility of the proposed system was investigated 

with one participant with chronic stroke during six weeks of rehabilitation training. WMFT 

was performed every other week to monitor possible motor function improvement. The 

participant learned how to use the proposed system within the first training session. At 

the end of the six weeks of training, the user was able to control the proposed 

rehabilitation training platform with very high accuracy (90.6% for the BCI control, 83.1% 

for the BF control). The proposed rehabilitation training platform, which combines motor 

imagery and physical training, has been proven to be feasible for patients with chronic 

stroke. In addition, the participant showed improvement in WMFT (12% improvement), 

which supported the potential efficacy of the proposed rehabilitation training platform. 

The strong correlation between the BSI and the WMFT also suggested motor function 

improvement. However, since only one participant was recruited for this study, the 

efficacy of the proposed rehabilitation training platform cannot be concluded. 
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Objective 3 was addressed in Chapter 6. In that chapter, in order to deal with the 

low accuracy problem with the BCI online classification, two methods of filtering the 

probability prediction output of online BCI applications were introduced. One of the 

methods was proposed based on machine learning theory, which was a biased-

classification method toward resting state, with decision thresholds calculated from a 

normal distribution assumption. The other method was proposed based on signal 

processing theory, which utilized a moving-average method to smooth the classification 

output, with decision thresholds observed from 30 seconds of rest state EEG data at the 

beginning of each training day. The proposed methods were evaluated with a pseudo 

online analysis based on EEG recordings of one participant with chronic stroke during 

six weeks of rehabilitation training with BCI. Performance measures like accuracy, false 

positive rate and response delay were summarized to evaluate the two proposed 

methods. The performance of the proposed methods was also compared with the non-

filtering method. It was concluded that both proposed methods showed superior 

performance than the traditional non-filtering method. Between the two proposed 

methods, the moving average method showed better performance with lower false 

positive rate (0.5275), higher precision (0.5789), higher accuracy (0.5989) and higher 

Cohen’s Kappa Score (0.1978). The biased-classification method had a significantly 

lower delay (Wilcoxon rank sum test, n1 = 443, n2 = 560, P = 8.56×10-6). In BCI 

applications for stroke rehabilitation, where response delay is not a major issue, the 

moving average method is recommended. 

Objective 4 was addressed in Chapter 7. The primary objective was to deal with 

the problems in the questionnaire-based motor function assessment methods. In that 

chapter of the thesis, a CNN configuration for generating a motor function score from 

EEG was proposed and evaluated with within-participant testing and cross-participant 

testing. Fourteen participants with chronic stroke and twelve healthy participants were 

recruited in this part of the study. EEG data were recorded while the participants were 

performing button clicking once every self-estimated 10 seconds. The proposed CNN 

was trained with regression on the FMA scores, which were collected on the same day 

as the EEG data acquisition. The within-participant testing results suggested that the 

model converged well during the training, and the resulted prediction score outperformed 

the scores proposed in the literature (r = 0.9931, p = 8.0751×10-24). The cross-participant 

testing results suggested that the prediction scores were still accurate and reliable, even 
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if the participants’ EEG data were not involved in the model generation (r = 0.9590, p = 

1.2098×10-14). The cross-participant testing results was a crucial piece of evidence 

suggesting the proposed method would potentially have reliable performance in actual 

clinical applications when the majority of the users’ EEG data were not involved in the 

model generation. 

In conclusion, all four objectives proposed at the beginning of this thesis were 

successfully addressed. Future research paths may involve investigating advances 

specific to the methods proposed in this thesis. Alternatively, non-approach specific 

related modifications of the research methods may also be investigated with respect to 

the challenges of EEG applications in stroke rehabilitation.  

8.2. Future works 

For the study presented in Chapter 4, limitations were mainly related to the 

methodology. In that part of the thesis, a limited number of MI tasks were investigated. 

Due to the lack of expertise in neuroscience, the conclusion was drawn only with the test 

accuracy of the MI tasks investigated in the study, without specific explanations based 

on the neuro-scientific theories. For better understanding of the performance variation of 

the MI tasks, a study utilizing neuro-imaging tools with high spatial resolution is 

necessary. In addition, the study in Chapter 4 focused on upper-extremity only. Whether 

the conclusions in this study can be used for other joints remains unclear.  

For the study introduced in Chapter 5, a portable rehabilitation platform together 

with a special supporting protocol were proposed to fulfill the need of combining motor 

imagery and physical training in the rehabilitation field. The proposed platform and 

protocol were evaluated during six weeks of rehabilitation training with one participant 

with chronic stroke. Limitations of the study in that chapter were mainly related to the 

fact that only one individual participated, which limited conclusions about the possible 

efficacy of the proposed platform. The efficacy of the proposed platform needs to be 

investigated in a controlled clinical study with a larger population with stroke. 

For the study presented in Chapter 6, the major limitation was also related to the 

number of participants. Although the data were collected for a relatively long time (six 

weeks), the data were recorded from only one participant with chronic stroke. Therefore, 
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the conclusions of that chapter are still preliminary. In order to further consolidate the 

conclusions, a group of participants with chronic stroke in a long-term rehabilitation 

training is necessary. The two methods proposed in this chapter are simple and 

straightforward, there is still plenty of room for improvement in the performance. More 

complex processing/filtering methods can be further investigated to improve the BCI 

application accuracy. 

For the CNN model proposed in Chapter 7, although the configuration was 

reliable and accurate in the cross-participant testing, the performance can be further 

improved with a larger population. For example, a training dataset without gaps in the 

distribution of the motor function scores would definitely improve the performance of the 

proposed CNN model. The detailed CNN configuration and parameters can also be 

further investigated with a larger population. In addition, the sensitivity and longitudinal 

effect of the proposed method were not investigated thoroughly. A long-term clinical 

study with repetitive EEG data acquisition and motor function assessments is needed for 

such purpose. The EEG data protocol of mouse clicking is hard for some patients with 

severe chronic stroke. Possible protocols that are less constraining should be explored 

(for instance: eyes-closed, or resting state with eyes open etc.). At last, it would be 

interesting to investigate which features of the PSD and phase information contributed to 

the motor function score. This is a limitation of the CNN method. As the features are 

highly abstracted with neural networks, it is difficult to determine the key features from 

the trained CNN models. Some literature suggested the input-maximization approach 

could be a possible method, which might be an interesting topic for future studies. 
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