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Abstract

The shortest distance/path problems in planar graphs are among the most fundamental
problems in graph algorithms and have numerous new applications in areas such as intel-
ligent transportation systems which expect to get a real time answer or a distance query
in large networks. A major new approach to address the new challenges is distance oracles
which keep the pre-computed distance information in a data structure (called oracle) and
provide an answer for a distance query with the assistance of the oracle. The preprocessing
time, oracle size and query time are major criteria for evaluating two-phase algorithms.
In this thesis, we first briefly review the previous work and introduce some preliminary re-
sults on exact and approximate distance oracles. Then we present our research contributions,
which includes improving the preprocessing time for exact distance oracles for planar graphs
with small branchwidth and providing the first constant query time (1+ε)-approximate dis-
tance oracle with nearly linear size and preprocessing time for planar graphs.
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Chapter 1

Introduction

Finding the distance between two vertices in a graph is a fundamental computational prob-
lem and has wide range of applications. For this problem, there is a rich literature of
algorithms. This problem can be solved by a single source shortest path algorithm such as
the Dijkstra and Bellman-Ford algorithms. The running time in this case, however, may
not be sufficiently small for certain applications. In many applications, it is required to
compute the shortest path distance in an extreme short time. One approach to meet such
a requirement is to use distance oracles.

A distance oracle consists of a data structure that keeps the pre-computed distance
information and a query algorithm that provides the distance between any given pair of
vertices efficiently. There are two phases in the distance oracle approach. The first phase is
to compute the distances between vertices for a given graph G and a data structure (called
oracle) to store the distances. The second phase is to provide an answer for a query on
the distance between a pair of vertices in G based on the information in the data structure
(answer the query by calling the oracle). The efficiency of distance oracles is mainly measured
by three criteria: the time to create the data structure (preprocessing time), the time to
answer a query (query time), and the memory space required for the data structure (oracle
size). A simple approach to compute a distance oracle for a graph G of n vertices and m
edges is to solve the all pairs shortest paths problem in G and keep the distances in an
n× n distance array. This gives a simple oracle, the preprocessing time of the oracle is the
time it takes to solve the all pairs shortest path problem (e.g., O(mn+n2 logn)), the query
time is O(1) and the oracle size is O(n2). The large oracle size is a major disadvantage of
this approach. Another simple approach is to run a single source shortest path algorithm
(e.g., Dijkstra’s algorithm) to answer the query, which gives an oracle with no preprocessing
time and O(m) oracle size. But the query time in this approach is the running time of the
single source shortest path algorithm that can be too large for a distance query. Typically,
there is a trade-off between the query time and the oracle size. Main research topics include
minimizing the product of the query time and oracle size, minimizing the query time subject
to a given oracle size, and minimizing the oracle size subject to a given query time. Improving
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Oracle Oracle size Query time Preprocessing time

Djidjev [32] S ∈ [n, n2] O(n2/S)
O(S) for S ∈ [n3/2, n2]
O(n
√
S) for S ∈ [n, n3/2)

Djidjev [32] S ∈ [n4/3, n2] O(n log(n/
√
S)/
√
S) O(n

√
S)

Mozes and Sommer [65] S ∈ [n log logn, n2] Õ(n/
√
S) Õ(S)

Cohen-Addad et al. [27] S ∈ [n3/2, n2] O(n5/2

S3/2 logn) Õ(S)

Gawrychowski et al. [38] S ∈ [n, n2] Õ(max{1, n1.5/S}) Õ(min{S
√
n}, n2)

Table 1.1: Exact distance oracles for planar digraphs with different trade-offs between the
query time and the oracle size. S is the oracle size and Õ(·) notation hides the logarithmic
factors.

the preprocessing time subject to a given oracle size and query time is also studied. Oracles
with constant query time and size smaller than O(n2) have received much attention.

1.1 Related Works

1.1.1 Exact Distance Oracles for Planar Graphs

Planar graphs are an important model for many networks such as the road networks. In
this thesis we focus on distance oracles for planar graphs. Distance oracles for planar graphs
have been extensively studied. An exact distance oracle is a data structure which provides
exact shortest path distances for queries.

Some important exact distance oracles for planar digraphs are listed in Table 1.1. Djid-
jev proves that for any size S ∈ [n, n2], there is an exact distance oracle with O(n2/S)
query time for planar digraphs with non-negative edge lengths [32]. The preprocessing
time is O(S) for S ∈ [n3/2, n2] and O(n

√
S) for S ∈ [n, n3/2). There are several exact

distance oracles for weighted planar digraphs with more efficient query times for smaller
ranges of S. For example, Djidjev [32] improves the query time for size S ∈ [n4/3, n2] to
O(n log(n/

√
S)/
√
S). The preprocessing time is O(n

√
S) for this distance oracle. Mozes

and Sommer show an oracle with O((n/
√
S) log2.5 n) query time, O(S log2 n) preprocessing

time for size S ∈ [n log logn, n2] [65]. This distance oracle works for a larger range of S than
[32] without increasing the query time or preprocessing time when logarithmic factors are
ignored. Cohen-Addad et al. give an oracle with O(logn) query time, O(n2) preprocessing
time and O(n5/3) size [27]. This is the first exact distance oracle with O(logn) query time
and truly subquadratic (i.e. O(n2−ε) for some ε > 0) size. They also show a distance oracle

2



Oracle Oracle size Query time Preprocessing time

Thorup [78]
O(nε−1 logn) O(1/ε) O(nε−2 log3 n)

Klein [59]

Thorup [78], directed O(nε−1 log ∆ logn) O(1/ε+ log ∆) O(nε−2 log ∆ log3 n)

Kawarabayashi et al. [51] O(n) O(ε−2 log2 n) O(n log2 n)

Kawarabayashi et al. [57] Ō(n logn) Ō(1/ε) Ō(nε−2 log4 n)

Wulff-Nilsen [83] O(n(log logn)2/ε+ log logn/ε2))
O((log logn)3/ε2+

N/A
log logn

√
log log((log logn)/ε2)/ε2)

Table 1.2: (1 + ε)-Approximate distance oracles for planar graphs with different trade-offs
between the query time and the oracle size. ∆ is the largest finite distance between any pair
of vertices in the directed graph. Ō hides log logn factors and log(1/ε) factors.

with oracle size S ∈ [n3/2, n2], O(n5/2

S3/2 logn) query time and Õ(S) preprocessing time, which
improves the previous trade-offs for a smaller range of S. This work is further improved by
Gawrychowski et al. [38] which shows that there is an exact distance oracle for S ∈ [n, n2]
with Õ(max{1, n1.5/S}) query time. This is currently the best trade-off for the entire range
of S and the distance oracle can be constructed in Õ(min{S

√
n}, n2) time. Readers may

refer to Sommer’s survey paper [75] for more information.

1.1.2 Approximate Distance Oracles for Planar Graphs

Approximate distance oracles have been developed to achieve fast query and near linear size
for planar graphs. For any vertices u and v in a graph G, let dG(u, v) denote the distance
between u and v. A distance oracle is called an (α, β)-approximate oracle for α ≥ 1, β ≥ 0
if it provides a distance d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ αdG(u, v) + β for any u and v in
G, here α is called the (multiplicative) stretch and β is called the additive stretch. An oracle
with stretch α and additive stretch 0 is called an α-approximate distance oracle.

Some important (1 + ε)-approximate distance oracles are listed in Table 1.2. For ε > 0,
Thorup gives a (1+ε)-approximate distance oracle with O(1/ε) (resp. O(1/ε+log ∆), where
∆ is the largest finite distance between any pair of vertices in G) query time, O(nε−1 logn)
(resp.O(nε−1(log ∆) logn)) size and O(nε−2(logn)3) (resp. O(nε−2(log ∆)(logn)3)) prepro-
cessing time for undirected (resp. directed) planar graphs with non-negative edge lengths
[78]. A similar result for undirected planar graphs is found independently by Klein [59].
Kawarabayashi et al. [51] give the first linear size (1 + ε)-approximate distance oracle with
Õ(polynomial(1/ε)) query time. The preprocessing time is O(n log2 n). Kawarabayashi et
al. give a (1 + ε)-approximate distance oracle with Ō(1/ε) query time, Ō(n logn) size and
Ō(nε−2 log4 n) preprocessing time for undirected planar graphs with non-negative edge
lengths, where Ō is defined to hide log logn and log(1/ε) factors [57]. This distance or-
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acle has a better trade-off between the query time and the oracle size than the one in
[59, 78] when log logn factors and log(1/ε) factors are ignored. Recently, Wulff- Nilsen
gives a (1 + ε)-approximate distance oracle with O(n(log logn)2/ε+ log logn/ε2)) size and
O((log logn)3/ε2 + log logn

√
log log((log logn)/ε2)/ε2) query time for undirected planar

graph with non-negative edge lengths [83]. This result has a better trade-off between the
query time and the oracle size than those in [57, 59, 78].

1.1.3 Tree-/Branch-Decomposition Based Distance Oracles

For graphs with small tree-/branchwidth (see related definitions in section 2.2), there are
efficient distance oracles based on tree-/branch-decompositions. Let k be the branchwidth
of the graph and let T (n, k) be the time complexity of computing a branch-decomposition
with width O(k). Chaudhuri and Zaroliagis [23] give an oracle for weighted general digraphs
with O(k3α(n)) query time, O(k3n) size, and O(k3n + T (n, k)) preprocessing time where
α(n) is the inverse of Ackermann function [3] and is a very slowly growing function. For
size S ∈ [n log log k, n2], Mozes and Sommer give a distance oracle for weighted planar
digraphs with O(min{k logn log2 k log log k, n

√
n log3.5 n} query time and O(T (n, k) logn+

S log2 n) preprocessing time [65]. This distance oracle has better query time for graph with
branchwidth O(no(1)) for S ∈ [n log log k, n1.5) than the oracle in [38].

1.1.4 Distance Oracles for General Graphs

Cohen et al. [26] give a 2-hop cover labeling scheme for general digraphs in which each
vertex v is associated with a set of landmarks L(v) (called a label) such that for any pair
of vertices x and y, L(x) and L(y) contains at least one vertex on a shortest path between
x and y. By keeping the distances between each v and its landmarks, a distance query can
be answered in O(|L(x)| + |L(y)|) time for any vertices x and y. Let L = Σv∈V (G)L(v) be
the total label size. This yields an exact distance oracle with O(L) size and O(L/n) average
query time. There is no absolute guarantee on L or the maximum label size. However
O(logn)-approximates for the total landmarks with the minimum size (and thus the size
of the oracle) [26] and the maximum label size (and thus the query time) [10] can both be
computed in polynomial time.

Thorup and Zwich [79] show that for any integer k ≥ 1 there is a (2k − 1)-approximate
distance oracle for general graphs with Õ(mn1/k) preprocessing time, O(kn1+ 1

k ) size and
O(k) query time for weighted undirected graphs. The size is essentially optimal for the
stretch. Chechik [24] improves the query time to O(1). Wulff-Nilsen [82] improves the pre-
processing time to almost proportional to the oracle size. Patrascu and Roditty [68] show
that a 2-approximate distance oracle for general graphs can be computed in O(poly(n))
time with O(m1/3n4/3) size and O(1) query time. For unweighted graphs, Abraham and
Gavoille [2] give a (2k−2, 1)-approximate distance oracle with Õ(n1+ 2

2k−1 ) size, O(k) query
time and O(poly(n)) preprocessing time for any integer k ≥ 1.

4



1.1.5 Dynamic Distance Oracles

There is a vast literature on dynamic distance oracles that can handle one or more edge/vertex
updates. A dynamic distance oracle is said to be incremental if it only handles insertion
updates, decremental if it only handles deletion updates and fully dynamic if it handles
both types of updates. King [58] give a fully dynamic exact distance oracle with O(1) query
time and O(n2.5√M logn) update time for general digraphs with edge length drawn from
[1, 2, . . . ,M ]. Demetrescu and Italiano [31] give a fully dynamic exact distance oracle for
general digraphs with non-negative edge length with O(1) query time and amortized up-
date time Õ(n2). There are also works on incremental/decremental distance oracles (see e.g.
[7, 11]).

Let D denote the sum of all edge lengths. For planar graphs with non-negative edge
length, Klein and Subramanian [62] give a fully dynamic (1 + ε)-approximate distance
oracle that has O(ε−1n log2 n logD) preprocessing time, O(n + (ε−1n2/3 logn logD)) size,
O(ε−1n2/3 log2 n logD) query time and amortized update time. Abraham et al. [1] give a
fully dynamic O(1 + ε)-approximate distance oracle for planar graphs with edge lengths
drawn from [1, 2, . . . ,M ] with O(ε−1n log2 n) preprocessing time, O(n logn(ε−1 + logn))
size, O(ε−1n1/2 log2 n log(nM)(ε−1 + logn)) query time and worst case update time.

1.2 Research Questions and Contributions

In this thesis we study both exact and approximate distance oracles for planar graphs. More
specifically we study the following two questions.

1.2.1 Improving the Preprocessing Time for Branch-Decomposition Based
Exact Distance Oracles

For graphs with small treewidth/branchwidth, tree-/branch-decompositions are a com-
monly used tool for developing distance oracles. The preprocessing time of tree-/branch-
decomposition based distance oracles are often dominated by the computation of a desired
tree-/branch-decomposition. In Chapter 3 we give an algorithm [42, 45] that for an in-
put planar graph G of n vertices and an integer k, in min{(n log3 n), O(nk2)} time either
constructs a branch-decomposition of G of width at most (2 + δ)k, where δ > 0 is a con-
stant, or a (k + 1) ×

⌈
k+1

2

⌉
cylinder minor of G implying bw(G) > k, where bw(G) is the

branchwidth of G. This is the first Õ(n) time constant-factor approximation for branch-
width/treewidth and largest grid/cylinder minors of planar graphs and improves the previ-
ous min{O(n1+ε), O(nk2)} (where ε > 0 is a constant) time constant factor approximations.
For a planar graph G and k = bw(G), a branch-decomposition of width at most (2 + δ)k
and a g × g

2 cylinder/grid minor with g = k
β , where β > 2 is a constant, can be com-

puted by our algorithm in min{O(n log3 n log k);O(nk2 log k)} time. Using this algorithm,
we improve the preprocessing time of the branch-decomposition based distance oracle in [65]
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from O(n1+ε+S log2 n) to O(min{O(n log4 n log k);O(nk2 logn log k)}+S log2 n), where S ∈
[n log log k, n2] and ε > 0 is a constant. For S ∈ [n log log k,min{n log2 n log k, nk2 log k/ logn}],
the new preprocessing time is better. Branch-decompositions are an important tool for devel-
oping efficient algorithms for many problems in graphs. Our result has independent interests
in graph algorithms as well.

1.2.2 Improving the Query Time for Approximate Distance Oracles

Distance oracles with constant query time are of both theoretical and practical importance
[24, 28]. Many (1+ε)-approximate distance oracles that have haveO(1/ε) query time and size
nearly linear in n have been proposed before our result yet none of them have constant query
time independent of ε. In Chapter 4, we give a (1 + ε)-approximate distance oracle [43, 44]
with O(1) query time for an undirected planar graph G with n vertices and non-negative
edge lengths. For ε > 0 and any two vertices u and v in G, our oracle gives a distance d̃(u, v)
with stretch (1 + ε) in O(1) time. The oracle has size O(n logn(log1/6 n + logn/ε + f(ε)))
and preprocessing time O(n logn((log3 n)/ε2 + f(ε))), where f(ε) = 2O(1/ε). This is the first
(1 + ε)-approximate distance oracle with O(1) query time independent of ε and the size
and preprocessing time nearly linear in n, and improves the query time O(1/ε) of previous
(1 + ε)-approximate distance oracle with size nearly linear in n.

We compute our distance oracle in three steps. In the first step we compute a basic dis-
tance oracle DO0 with O(εD) additive stretch and O(1/ε) query time using some commonly
used techniques. In the second step, we show how to use some classification scheme to reduce
the query time of DO0 and get our second distance oracle DO1 with O(εD) additive stretch
and O(1) query time. And in the final step, we use some scaling techniques to reduce the
stretch of DO1 and get a distance oracle DO2 with (1 + ε) stretch and O(1) query time. In
order to make the scaling techniques work for our needs, we present a data structure that
is critical to guarantee O(1) query time while maintaining nearly linear (in n) oracle size.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 contains preliminaries that are
related to both Chapter 3 and 4, such as basic definitions and a more detailed review of
previous work and main techniques for distance oracles. Chapters 3 and 4 explain the main
contributions of this thesis, as outlined in Section 1.2. In Chapter 3 and 4, we first give an
introduction of the problem that is studied and then introduce some basic definitions and
notations that are used in the corresponding chapter before elaborating our work. The final
section gives conclusions and future works.
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Chapter 2

Definitions and Previous Works

2.1 Basic Definitions on Graphs

Definition 2.1.1. A graph G = (V,E) consists of a set V of vertices and a set E of edges,
where each edge e ∈ E is a subset of V with two elements.

Definition 2.1.2. A directed graph (digraph) G = (V,A) consists of a set V of vertices
and a set A of directed edges (also called arcs), where each arc −→a ∈ A is an ordered pair of
vertices in V .

Definition 2.1.3. An (edge-)weighted graph is a graph G = (V,E) associated with a weight
function w : E → R. A vertex-weighted graph is a graph G′ = (V ′, E′) associated with a
weight function w′ : V ′ → R.

Definition 2.1.4. Two vertices u and v in a graph G are adjacent if {u, v} is an edge in
E(G). For any vertex u, a vertex v is a neighbour of u if u and v are adjacent. The degree
of a vertex v, denoted as deg(v), is the number of neighbours of v.

Definition 2.1.5. A graph G′ = (V ′, E′) is a subgraph of another graph G = (V,E) if
V ′ ⊆ V and E′ ⊆ E.

Definition 2.1.6. Let G = (V,E) be a graph. Let V ′ ⊆ V be any subset of V and let E′ ⊆ E
be any subset of E. The vertex induced subgraph G[V ′] of G is the graph with vertex set
V ′ and edge set {(u, v) ∈ E|u, v ∈ V ′}. The edge induced subgraph G[E′] of G is the graph
with edge set E′ and vertex set V ′ = {v|v ∈ ∪e∈E′e}.

For any subgraph G′ of G, let G\G′ denote G[E(G)\E(G′)] and let G − G′ denote
G[V (G)\V (G′)]. For any subset A ⊆ E(G), let A denote E(G)\A and let ∂(A) denote the
vertex set V (G[A]) ∩ V (G[A]). The pair (A,A) is called a separation of G and the order of
separation (A,A) is |∂(A)|.

Definition 2.1.7. A walk in G is a sequence of edges e1, .., ek, where ei = {vi−1, vi} for
1 ≤ i ≤ k. A path is a walk in which all the vertices are distinct.
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Definition 2.1.8. A cycle is a walk in which the first vertex and the last vertex are the
same and the number of edges in the walk is more than one. A simple cycle is a cycle in
which all the vertices except the first and last vertices are distinct.

Let l(e) be the edge weight (length) of edge e in G. The length of path Q = e1, ..., ek is
l(Q) =

∑
1≤i≤k l(ei).

Definition 2.1.9. Let Quv be the set of all paths in G between vertices u and v. The
distance between u and v in G is dG(u, v) = min

Q∈Quv
l(Q). A path Q′ ∈ Quv is a shortest path

between u and v if l(Q′) = dG(u, v).

We may write dG(u, v) as d(u, v) when G is clear from context. We say path Q intersects
path Q′ (at vertex v) if V (Q) ∩ V (Q′) 6= ∅ (and v ∈ V (Q) ∩ V (Q′)). We say that two
paths Q1 = (v1, . . . , vi−1, vi, vi+1 . . . , vi1) and Q2 = (u1, . . . , ui−1, vi, ui+1 . . . , ui2) cross with
each other at vertex vi if edges/arcs {vi−1, vi}, {ui−1, vi}, {vi, vi+1}, {vi−1, ui+1} appear in
clockwise (or counterclockwise) order.

Definition 2.1.10. The radius of G is r(G) = min
u∈V (G)

max
v∈V (G)

dG(u, v). The diameter of G

is d(G) = max
u∈V (G),v∈V (G)

distG(u, v).

Definition 2.1.11. A tree is a graph in which any two vertices are connected by exactly
one path. A forest is a disjoint union of trees.

For a tree T , any vertex r ∈ V (T ) can be selected as the root of T . For any v ∈ V (T ),
the depth of v is the number of edges of the path between v and the root in T . The depth
of T is the largest depth of any vertex in T .

Let T be a rooted tree. For any vertex v ∈ V (T ), the path between the root of T and v,
denoted as T (v), is called the root path of v. For any vertex v ∈ V (T ) that is not the root
of T , the parent of v is the vertex that is connected to v in the root path of v. A child of a
vertex v is a vertex whose parent is v. A leaf in a rooted tree is a vertex with no children.
A leaf in an unrooted tree is a vertex with degree one.

Definition 2.1.12. A binary tree (resp. ternary tree) is a tree T where every v ∈ V (T )
has no more than two (resp. three) children.

Definition 2.1.13. An unrooted binary tree is an unrooted tree T where every v ∈ V (T )
that is not a leaf has degree three.

Definition 2.1.14. A spanning tree T of a graph G is a subgraph of G that is a tree which
includes V (G). A shortest path spanning tree rooted at vertex r is a spanning tree T of G
such that for any v ∈ V (G), dT (r, v) = dG(r, v).

Definition 2.1.15. A graph G is connected if there is a path between any pair of vertices
in G. G is biconnected if for any v ∈ V (G), G[V (G)\{v}] is connected.
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Figure 2.1: A plane graph with 7 nodes and 11 edges

Definition 2.1.16. A vertex cut set in a graph G is a subset S of V (G) such that G[V (G)\S]
is not connected. A vertex cut set is said to be a (α-)balanced (vertex) separator if each
connected component of G[V (G)\S] has no more than αn vertices for some previously fixed
constant α > 0.

Let Σ be a sphere. For an open segment s homeomorphic to {x|0 < x < 1} in Σ,
we denote by cl(s) the closure of s. A planar embedding of a graph G is a mapping ρ :
V (G) ∪ E(G)→ Σ ∪ 2Σ such that

• for u ∈ V (G), ρ(u) is a point of Σ, and for distinct u, v ∈ V (G), ρ(u) 6= ρ(v);

• for each edge e = {u, v} ∈ E(G), ρ(e) is an open segment in Σ with ρ(u) and ρ(v) the
two end points in cl(ρ(e)) \ ρ(e);

• for distinct e1, e2 ∈ E(G), cl(ρ(e1)) ∩ cl(ρ(e2)) = {ρ(u)|u ∈ e1 ∩ e2}.

Definition 2.1.17. A graph G is planar if it has a planar embedding ρ, and (G, ρ) is called
a plane graph.

We may simply use G to denote the plane graph (G, ρ), leaving the embedding ρ implicit.
Figure 2.1 gives an example of plane graph.

Definition 2.1.18. A curve is a continuous image of a closed unit line segment. A curve
is simple if it does not intersect itself. For a plane graph G, a curve µ on Σ is normal if µ
does not intersect any edge of G. The length of a normal curve µ is the number of connected
components of µ \

⋃
v∈V (G){ρ(v)}.

Definition 2.1.19. A noose of a plane graph G is a closed normal curve on Σ that does
not intersect itself.
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Definition 2.1.20. A face of a plane graph G is a connected component of Σ\(∪e∈E(G)cl(ρ(e))).

We denote by V (f) and E(f) the set of vertices and the set of edges incident to face f ,
respectively. We say that face f is bounded by the edges of E(f). For two faces f and g, a
cycle separates f and g if the cycle separates Σ into two regions, one region contains f and
the other region contains g.

Given a plane graph G, we can specify any face of G as the outer face fout of G. A planar
graph G is triangulated (resp. almost triangulated) if every face in G (resp. other than the
outer face) is incident to exactly three edges.

Definition 2.1.21. For two faces f and g, a minimum (f, g)-separating cycle C is a cycle
separating f and g with the minimum length. We also call C a minimum face-separating
cycle (for f and g).

Let C be a simple cycle in G. Then Σ\ (∪e∈E(C)cl(ρ(e))) contains exactly two connected
components, one containing fout, called the external region of C, and the other called the
internal region of C.

Definition 2.1.22. For an assignment W (·) of non-negative weights to faces, edges, and
vertices of G, a simple cycle C is a balanced cycle separator if the total weight of faces,
edges, and vertices embedded in the external/internal region of C is no more than a constant
fraction of the total weight of G.

2.2 Tree-/Branch-Decompositions

The notions of tree-decomposition and branch-decomposition are introduced by Robertson
and Seymour [71, 72, 73] in graph minor theory.

Definition 2.2.1. A tree-decomposition of G = (V,E) is a pair (T,B) where T is a tree
and B is a function that maps each node ν ∈ V (T ) to a subset of V , called a bag, such that

1. ∪ν∈V (T )B(ν) = V

2. for each e = (u, v) ∈ E, there exists a ν ∈ V (T ) such that u, v ∈ B(ν)

3. for each v ∈ G, Iv = {ν ∈ V (T )|v ∈ B(ν)} induces a subtree of T .

The width of a tree-decomposition (T,B) is the size of its largest bag minus 1. The
treewidth of a graph G, denoted as tw(G), is the minimum width among all possible tree-
decompositions of G. Figure 2.2 gives an example of tree-decomposition.

Definition 2.2.2. A branch-decomposition of G = (V,E) is a pair (T ′, φ), where T ′ is a
unrooted binary tree and φ is a bijection from the set of leaves of T ′ to E.

10



BCF BDF

ABC

CEF DFG

Figure 2.2: A tree-decomposition with width 2 for the graph in Figure 2.1

For a branch-decomposition (T ′, φ), we refer to the vertices of T ′ as nodes and the edges
of T ′ as links to distinguish them from the vertices and edges of G. Removing any link
e ∈ E(T ′) partitions T ′ into two subtrees T ′1(e) and T ′2(e). Let L1(e), L2(e) ⊆ V (T ′) be the
sets of leaves of T ′1(e), T ′2(e) respectively. Then for i = 1, 2, φ(Li(e)) = E(G)\φ(L3−i(e))
and ∂(φ(Li(e))) is a vertex cut set of G if ∂(φ(Li(e))) 6= (φ(Li(e))). We say that the
separation (φ(L1(e)), φ(L2(e))) is induced by link e. The width of a branch-decomposition
(T ′, φ) is the largest order of the separations induced by links of T ′. The branchwidth of
G, denoted by bw(G), is the minimum width of all branch-decompositions of G. In the
rest of this paper, we identify a branch-decomposition (φ, T ′) with the tree T ′, leaving the
bijection implicit and regarding each leaf of T ′ as a edge of G. Figure 2.3 gives an example
of branch-decomposition.

For a graph G with more than one edge, the branchwidth and the treewidth are linearly
related: max{bw(G), 2} ≤ tw(G) + 1 ≤ max{b3

2bw(G)c, 2}, and there are simple O(ntw(G))
time translations between branch-decompositions and tree-decompositions that meet the
linear relations [73]. Therefore we use only the terms branch-decomposition and branchwidth
for the rest of this thesis for ease of representation unless otherwise stated.

2.3 General Techniques and Results for Exact Distance Or-
acles for Planar Graphs

2.3.1 Portals

Portals are a set of carefully selected vertices and are commonly used in both exact and
approximate distance oracles. Portals can be either global portals which are computed for
all the vertices, or local portals which are computed for some specific vertex. Portals must
be selected such that for every pair of vertices s and t in the graph, at least one portal is in
the (approximate) shortest path between s and t. Common ways of selecting portals include
random sampling, high-degree vertices, and vertices on separators etc. [75]. The distances
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Figure 2.3: A branch-decomposition with width 3 for the graph in Figure 2.1. ∂(φ(L1(e)))
for each e is shown.

from each vertex to certain portals (usually those that are close to the vertex) and distances
among the portals are pre-computed and stored in the distance oracle, either explicitly or
implicitly. In each query, these pre-computed distances are used to find out (the portals in,
and therefore the length of) the desired shortest path.

2.3.2 Small Balanced Separators and r-division

Lipton and Tarjan [63] prove that any n vertex planar graph has a balanced separator
with O(

√
n) size and that the separator can be computed in O(n) time. Using this small

balanced separator theorem recursively and with additional care, Frederickson [34] shows
that a planar graph can be divided in a balanced way to an r-division with some nice
properties. Given a parameter r, an r-division of a graph G is a division of G into edge
induced subgraphs, called regions, that are edge disjoint from each other. A vertex v is a
boundary vertex of the r-division (and the regions v is in) if it is in more than one region.

Definition 2.3.1. An r-division is a division of G into θ(n/r) regions such that each region
has O(r) vertices and O(

√
r) boundary vertices.

In distance oracles for planar graphs, the given graph is usually divided into smaller
regions and the boundary vertices are usually selected as portals. By dividing the input
graph using small balanced separators recursively, choosing the vertices in the separators as
portals and storing the distances from/to the portals, Djidjev [32] presents a distance oracle
with O(n3/2) preprocessing time, O(n3/2) oracle size, and O(

√
n) query time for weighted

planar digraphs. Djidjev also gives a representative result in [32] based on r-division which
presents a general trade-off between the space requirement and the query time for weighted
digraphs. It’s proved that any query can be answered in O(n2/S) time using O(S) space for
S ∈ [n, n2]. The preprocessing time is O(S) for S ∈ [n3/2, n2] and O(n

√
S) for S ∈ [n, n3/2).

A similar result for S ∈ [n3/2, n2] is proved concurrently by Arikati et al. [6].
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Note that these distance oracles do not rely on planarity except for using small sep-
arator, r-division and the linear time single source shortest path (SSSP) algorithm in
[48]. Therefore they can be modified to work for other minor-closed graph classes with
O(
√
n) size balanced separator, such as bounded-genus graphs and H-minor-free graphs for

fixed |H| = O(1). More specifically, the trade-off between the space requirement and the
query time remains the same for minor-closed graph classes that satisfy two conditions:
the existence of O(

√
n) size balanced separator and a O(n1−ε) size balanced separator

can be computed in O(n) time. And for these graphs, the the preprocessing time is in-
creased to max{O(n3/2 logn), O(S)} for S ∈ [n3/2, n2] and max{O(n3/2 logn), O(n

√
S)} for

S ∈ [n, n3/2).
For biconnected triangulated planar graphs, Miller [64] proves that a balanced simple

cycle separator of size O(
√
n) can be computed in O(n) time. By adding dummy vertices

and dummy edges and then using Miller’s simple cycle separator instead of Lipton and
Tarjan’s separator, Klein and Subramanian [62] show that an r-division of a planar graph
can be computed such that the boundary vertices of each region lie on the boundary of a
constant number of faces (called holes). This division is called an r-division with few holes.

2.3.3 Monge Property and FR-Dijkstra

In this subsection, we introduce some distance oracles that further exploit planarity. Recall
that in the query phase, distances from/to/between the portals are examined/relaxed to find
a shortest path. For planar graphs, Djidjev [32] takes advantage of topological properties
of planar graphs and shows how to examined such distances more efficiently. For ease of
presentation, let us assume that for every pair of vertices there is exactly one shortest path
between them. For any two vertices u and v in the graph, let Qu,v be the path from u

to v. For any triangulated planar graph G, the boundary vertices of each region in an r-
division of G form a union of simple edge-disjoint cycles [32]. Let R1, R2 be two regions
in such an r-division containing vertices u and v respectively. Let C1, C2 be two boundary
cycles in R1, R2 respectively that separate u and v. Then every path from u to v must
contain some vertex in C1 and some vertex in C2. The shortest path can be computed by
examining every pair of vertices in C1 and C2, which is O(|V (C1)||V (C2)|) vertices pairs.
This can be improved for planar graphs by taking advantage of planarity. See Figure 2.4a
for illustration. For every vertex x on C1, define Q(u, v, x) to be the set of paths from
u to v which go through x with x being the last vertex in the path that is in C1. Let
Q(u, v, x) be the path that has minimum length among all the paths in Q(u, v, x) and let
l(x) be any vertex in V (Qx,v) ∩ V (C2). Let x1, x2 be any two vertices in C1. Then for any
vertex x in C1 such that x1, x, x2 appear in clockwise (resp. counterclockwise) order, there is
always some vertex y ∈ V (Qx,v)∩V (C2) such that l(x1), y, l(x2) appear in counterclockwise
(resp. clockwise) order. Therefore not every subpaths from x to v needs to be examined to
compute Q(u, v, x) and the problem of finding Q(u, v, x) for every x ∈ V (C1) can be solved
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in a divide-and-conquer way. By exploiting this non-crossing property, Djidjev [32] improves
their trade-off between the space requirement and the query time for size S ∈ [n4/3, n2] to
O(n log(n/

√
S)/
√
S) query time. The preprocessing time is O(n

√
S).1 Chen and Xu [25]

give a similar result to for undirected planar graphs.
A similar idea is depicted as theMonge property in [33]. Let A,B be two ordered sets and

d : A×B → R be a function between pairs of elements in A and B. Then function d is said
to have the Monge property if for all a1 < a2 in A and b1 < b2 in B, d(a1, b1) + d(a2, b2) ≤
d(a1, b2) + d(a2, b1). Let f be a face in a plane graph G such that E(f) form a simple cycle
C(f). Then for any vertices vi1 , vi2 , vi3 , vi4 that appear in clockwise/counterclockwise order
in C, dG(vi1 , vi4) +dG(vi2 , vi3) ≤ dG(vi1 , vi3) +dG(vi2 , vi4) (see Figure 2.4b). Therefore if we
split and rank the vertices in V (f) into two consecutive ordered sets A and B according to
their position in C(f), the distance function between vertices in A and B has the Monge
property. And the problem of finding the best "counterpart" in B for every element in A can
be solved in a divided-and-conquer way. This is called the Monge property of planar graph.

Let R be a region in an r-division and ∂R be the set of boundary vertices of R. The dense
distance graph of R is the complete graph on ∂R such that the weight of each edge (u, v)
equals dR(u, v). Fakcharoenphol and Rao [33] observe that the dense distance graph can
be decomposed to O(logn) bipartite graphs where Monge property holds (see Figure 2.4c)
and show that all edges in the dense distance graph of any region in an r-division with few
holes can be relaxed in time nearly linear in the number of vertices, instead of edges, in the
dense distance graph. More specifically, they show that for any graph H which consists of a
set of dense distance graphs of regions in an r-division with few holes, a shortest path tree
in H from any vertex can be computed in O(|V (H)| log2 n) time. This is called the FR-
Dijkstra algorithm and yields an exact distance oracle for planar digraphs with O(n log3 n)
preprocessing time, O(

√
n log2 n) query time and O(n logn) size [33]. This distance oracle

has better query-preprocessing time product and query-size product than previous results.
Using FR-Dijkstra algorithm, Mozes and Sommer [65] and Nussbaum [67] independently
give a distance oracle with O(n logn) preprocessing time, O(n) space and O(n1/2+ε) query
time for any constant ε > 0. These are the first linear space exact distance oracles with
provably sublinear query time.

A partial Monge array is an array that may have some blank entries and the non-blank
entries satisfy the Monge property when we view its rows as ordered set A and columns as or-
dered set B. It is known that for certainm×n partial Monge arrays, the minimum/maximum
non-blank entry can be found in O(m+ n) time if each entry can be accessed in O(1) time
[4]. Note that for a partial Monge array remains a partial Monge array if we add a constant

1The original result in [32] is a distance oracle with O(n
√

S) preprocessing time, O(n log n/
√

S) query
time for S ∈ [n4/3, n3/2]. However the same distance oracle works for S ∈ [n4/3, n2] and the query time is
actually O(n log(n/

√
S)/

√
S). This is first pointed out in [67].
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Figure 2.4: Monge Property

to all the non-empty entries in an entire row or an entire column. Consider the same ex-
ample in Figure 2.4a. To find the distance from vertex u to vertex v, it suffices to find the
portal pair x ∈ C1 and y ∈ C2 that minimize dG(u, x) + dG\(R1∪R2)(x, y) + dG(y, v). It is
observed in [67] that the distances between the portals can be divided into to two classes
such that the distances in each class form a partial Monge array. Therefore the distance from
u to v can be found in O(|V (C1)| + |V (C2)|) time by using the minimum entry searching
algorithm in [4] directly if the distances to/from/among the portals are precomputed. Using
this method, Nussbaum [67] improves the trade-off between space requirement and query
time in [32] and gives an exact distance oracle with O((S3/2/

√
n) log2 n) preprocessing time,

O(S) size and O(n/
√
S) query time for S ∈ [n4/3, n2].
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Klein gives a multiple-source shortest path (MSSP) data structure [60] for planar di-
graphs with non-negative edge weights. Given an n-vertex plane digraph G with non-
negative weights and a face f in G, the MSSP data structure answers the distance from
any vertex of G to any vertex incident to f in O(logn) time. The preprocessing time and
space requirement for MSSP are O(n logn). Note that this result can be used to compute
the dense distance graph of a region in an r-division with few holes in O(r logn) time
and instantly removes a O(logn) factor in the preprocessing time of Fakcharoenphol and
Rao’s distance oracle in [33]. Combing r-division with few holes and FR-Dijkstra algorithm,
Mozes and Sommer [65] extend MSSP so that it answers distance from any vertex of G
to all vertices on a cycle (as opposed to a vertex incident to a face in MSSP) of size c in
O(c log2 c log log c) time. This data structure is called the cycle MSSP and has O(n log log c)
size and O(n log3 n) preprocessing time. Note that the query to a single vertex of the cycle
and the query to all vertices on the cycle have the same time complexity. For small cycles,
the amortized query time is better than MSSP.

Combining the linear space exact distance oracle [65] and the cycle MSSP data structure,
Mozes and Sommer give an exact distance oracle [65] with O(S) size and Õ(S) preprocessing
time, that answers a distance query in Õ(n/

√
S) time for S ∈ [n log logn, n2], where the Õ

notion hides poly-logarithmic factors. This extends the range of S for the trade-off in [32]
without increasing the preprocessing time or query time when poly-logarithmic factors are
ignored.

2.3.4 Voronoi Diagram and Point Location Structure

Recently, a series of breakthroughs have been made following Cabello’s [20, 21] novel use of
Voronoi diagrams in planar graphs. Let {s1, s2, . . . , sn} be a set of points, called sites, in a
plane. A Voronoi Diagram is a partition of the plane into Voronoi cells such that each cell
Vor(si) contains the points on which si has more influence than any other site. Consider
a region R in an r-division with few holes, a hole H in R, and a vertex u /∈ V (R). Each
boundary vertex on H can be viewed as a site si with a weight ω(si) that equals dG(u, si).
The vertices of R can be partitioned into Voronoi cells (with respect to H and u), one cell
Vor(si) for each si. Each Voronoi cell Vor(si) contains all the vertices v in P such that si
minimizes ω(si) + dP (si, v) among all sites in H for v. We say si is the site of every vertex
in Vor(si) with respect to u and H. Note that there is a hole H ′ in R and a site si′ ∈ V (H ′)
of v (with respect to H ′ and u) such that dG(u, v) = ω(si′) + dP (si′ , v). The dual of the
edges whose endpoints are in different Voronoi cells form the Voronoi diagram of R with
respect to H and u. To represent a Voronoi diagram compactly, each maximal path whose
interior vertices have degree two is replaced by a single edge. Each Voronoi diagram has
O(
√
r) vertices and if R is almost triangulated, the Voronoi diagram of R is a ternary tree

[38].
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An u-independent data structure called the point location structure is computed for
each region R and each hole H in R such that given any vertex u /∈ V (R) and v ∈ V (R), it
returns the site of v with respect to u and H efficiently. To answer a query for a given source
u /∈ V (R) and destination v ∈ V (R), the distance oracle uses the point location structure
to find out the site of v with respect to u and each hole H in R. The value ω(si) + dP (si, v)
is computed for each site si of v with respect to each H and the minimum value is the
distance from u to v in G.

Consider a vertex u /∈ V (R), a vertex v ∈ V (R), a hole H in R and the site si of v with
respect to u and H. Let si1 , si2 be two sites in H. We say that sites si1 and si2 cover si
if si1 , si, si2 appear in clockwise order along H. The general idea of how a point location
structure works is that it answers the basic question in time t: do si1 and si2 cover si? And
then by a binary search the point location structure finds si in O(t log r) time. To answer
the basic question in constant time, Cohen-Addad et al. [27] define a set of boundaries
with respect to each edge in R and each pair of sites in H such that if si is covered by si1
and si2 then v is enclosed by the boundary determined by edge (x, y) and si1 , si2 , where
(x, y) is an edge determined by u. This reduces the total number of boundaries that need
to be considered to O(r2). A simple method to answer the basic question in constant time
is to store for each vertex v′ in R and every possible boundary whether v′ is enclosed by
the boundary, which leads to O(r3) space requirement. To reduce the space requirement to
O(r2), the point location structure stores a constant number of indices for every vertex v′

with respect to every edge e′ in R, such that the indices represents ranges of sites and can
be used to determine whether si is covered by si1 and si2 in constant time by comparing
si1 , si2 with the indices. This leads to an exact distance oracle for directed planar graphs
with Õ(n5/3) preprocessing time, O(n5/3) space and O(logn) query time, which is the first
exact distance oracle for planar graphs with truly subquadratic size that answers a query
in Õ(1) time. The paper also provides a trade-off between the space requirement and the
query time: for size S ∈ [n3/2, n2], the query time is O(n5/2

S3/2 logn) and the preprocessing
time is Õ(S). This improves the trade-offs in [32, 65] for S ≥ n3/2.

Gawrychowski et al. [38] significantly simplify and improve the point location structure
in [27] by reducing the space requirement for each region R from O(r2) to O(r3/2) without
increasing the time complexity of answering the basic question. Instead of storing indices
for each vertex v′ with respect to edge e′, they store a shortest path tree from each of the
sites. It is observed that whether v is enclosed by a boundary can be determined in O(1)
time by checking the preorder number of v in the shortest paths trees. This improves the
result in [27] to a distance oracle with Õ(n2) preprocessing time, O(n1.5) space and O(logn)
query time. A trade-off between the space requirement and the query time is also given: for
size S ∈ [n, n2], the query time is Õ(max{1, n1.5/S}). This trade-off is currently the best
(up to polylogarithmic factors) for the entire range of S and improves all the previously
known trade-offs for the range S ∈ [n, n5/3] by polynomial factors [38].
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2.3.5 Tree-/Branch-Decomposition

As stated in section 2.3.2, small balanced separator and r-division are important tools used
in distance oracles for planar graphs. As we know, any graph with branchwidths O(bw(G))
have balanced separators of sizes O(bw(G)) and these balanced separators can be easily
found if given a branch-decomposition with width O(bw(G)) (see section 2.2). For planar
graphs that are with branchwidth o(

√
n), using the balanced separators achieved from a

branch-decomposition instead of the O(
√
n) size small balanced separators in [63, 64] may

result in a better distance oracle. Gu and Tamaki [40] show that a branch-decomposition T
with width O(bw(G)) for G can be computed in O(n1+ε) time for any constant ε > 0. Using
balanced separators achieved from branch-decomposition together with Miller’s balanced
cycle separators, Mozes and Sommer present a variant of r-division with few holes, called
the [r, k]-division with few holes which can improve distance oracles for planar graphs with
small treewidth.

Definition 2.3.2. An [r, k]-division with few holes of a graph G with branchwidth k is a
division of G into θ(n/r) regions such that each region has O(r) vertices and min{O(

√
r), k}

boundary vertices and the boundary vertices of each region lie on the boundary of a constant
number of faces/holes.

When computing a division of a graph, either Miller’s cycle separator for planar graphs
or the separator from branch-decomposition is chosen as a balanced separator, whichever
is of smaller size. Such a division can be computed in O(n1+ε logn + n log r + nr−

1
2 logn)

time using Gu and Tamaki’s branch-decomposition. Recall that by using r-division and FR-
Dijkstra algorithm, Mozes and Sommer give an exact distance oracle with O(S) size and
Õ(S) preprocessing time, and query time Õ(n/

√
S) for S ∈ [n log logn, n2]. By using [r, k]-

division instead of r-division for graphs with branchwidth k, the query time is improved
to O(min{k logn log2 k log log k, nS−1/2 log3.5 n} for graphs with small branchwidth and the
preprocessing time is O(n1+ε + S log2 n) [65]2.

2.3.6 Price Function

A price function [52] f is a function that maps the set of vertices to a set of real numbers.
The reduced cost function lf induced by price function f is a function that assigns each arc
(u, v) a new length: lf (u, v) = l(u, v) + f(u)− f(v). A price function is feasible if and only
if all reduced arc lengths are non-negative. Note that the reduced cost function preserves
negative cycles and shortest paths. By using a feasible price function, we can adapt an
exact distance oracle for directed graphs with non-negative arc lengths to work for directed

2The original result in [65] is size O(S), query time O(min{k log2 k log log k, nS−1/2 log2.5 n} and prepro-
cessing time O(n1+ε + S log2 n) for S ∈ [n log log k, n2]. However the result is wrong and is corrected by its
author.
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graphs with negative arc lengths. A feasible price function can be obtained from computing a
shortest path tree from an arbitrary vertex u and for every v in the graph set f(v) = d(u, v).
For planar graphs, this can be done in O(n log2 n/ log logn) time using the algorithm in [66].

2.4 General Techniques and Results for Approximate Dis-
tance Oracles for Planar Graphs

Approximate distance oracles are computed similarly as exact distance oracles for planar
graphs. Generally speaking, the input graph is divided into smaller regions using balanced
separators. Vertices on the separators are selected as portals and shortest paths are com-
puted as the concatenation of the shortest paths in regions and between portals. The key
difference is that approximate distance oracles do not consider every possible shortest paths.
More specifically, not all vertices on the separators are selected as portals. This, however,
would introduce error/detour for the shortest paths. Therefore the separators and portals
need to be selected carefully such that the error introduced is not too big.

2.4.1 Shortest Path Separator

Lipton and Tarjan [63] observe that for any rooted spanning tree T of an undirected n-vertex
planar graph G, there are two vertices u and v such that V (T (v) ∪ T (v)) is a 2

3 -balanced
separator of G, where T (u) and T (v) are the root paths of u and v respectively. Moreover u
and v can be found in O(n) time. Thorup [78] uses this result on a shortest path spanning
tree to find balanced separators that consist of a constant number of shortest paths. Each
such separator is called a shortest path separator. Unlike the small balanced separator in
2.3.2, shortest path separators can have as many as O(n) vertices. However, the property
of shortest path makes it possible to select a small subset of vertices in the separator as
portals without introducing too much error/detour.

2.4.2 Vertex Dependent Portal Set

For any two vertices u and v in G, let Qu,v denote a shortest path between u and v.
Consider a shortest path Q in a shortest path separator and a shortest path Qu,v that
intersects path Q at some vertex p. Now suppose we are willing to accept an additive
error of O(εd(u, v)) for Qu,v. The general idea is to find two portals p1, p2 in Q, such that
d(u, p1) + d(p1, p) ≤ d(u, p) + εd(u, v)) and d(p, p2) + d(p2, v) ≤ d(v, p) + εd(u, v)). And then
Qu,v can be approximated as the concatenation of Qu,p1 , Qp1,p, Qp,p2 , Qp2,v. For a portal pi
and a vertex p in a path Q, we say that pi ε-covers p with respect to a vertex u if for any
shortest path Qu,v that contains p, d(u, pi) + d(pi, p) ≤ d(u, p) + εd(u, v)) holds. For each
path Q in a separator and each vertex u in G, it is remained to find a set of portals P(Q, u)
such that for any p ∈ V (Q), there is a portal p ∈ P(Q, u) that ε-covers p with respect to u.
Let p0 ∈ V (Q) be the vertex in Q that is closest to u. It is observed that [78] any shortest
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path Qu,v that intersects Q is no shorter than Qu,p0 . Therefore P(u,Q) can be selected by
first adding p0 as a portal, and then traverse along Q towards each end point of Q and
add a vertex pi+1 as a portal as long as d(u, pi) + d(pi, pi+1) > d(u, pi+1) + εd(u, p0), where
pi is the previously added portal. Every time a portal pi is added, it reduces the value of
d(u, pi) + d(pi, a) by at least εd(u, p0), where a is the corresponding end point of Q. Using
this and the fact that for any pi, d(u, pi) ≥ d(pi, p0)− d(p0, u), the total number of portals
is O(1/ε) [78].

By dividing the input graph into regions using shortest path separators recursively, and
then storing for each vertex u in G a vertex dependent portal set (as well as the distance to
the portals) for each of the O(logn) separators that separates u from the rest of the graph,
Thorup [78] give an efficient (1 + ε)-approximate distance oracle for planar graphs with
O(n(log3 n)/ε2) preprocessing time, O(n(logn)/ε) space and O(1/ε) query time. Note that
when ε is a constant, the query time is constant. A similar result is found independently by
Klein [59].

Vertex dependent portal set can also be used for planar directed graphs. However, portals
can not be selected the same way as in undirected planar graphs because edges are directed
and some properties that are used to bound the number of portals no longer hold. To solve
this problem, paths of different lengths are handled separately: paths with the same source
but different length ranges need to use different vertex dependent portal sets. Let ∆ be the
sum of lengths of all edges in the given directed graph −→G . For each directed path

−→
Q′ in −→G ,

there is a scale γ = 2i, i = 0, 1, 2, . . . , 2i, . . . , 2dlog ∆e, such that γ ≤ l(
−→
Q′) < 2γ. We say that

−→
Q′ is in scale γ. For each scale γ, a collection of subgraphs of −→G are computed to handle
the directed shortest paths in scale γ such that for each vertex u and each shortest path −→Q
in the separators the size of the portal set is O(1/ε).

Using this method, Thorup [78] gives a (1 + ε)-approximate distance oracle for di-
rected graphs with O(n(log3 n)(log∆)/ε2) preprocessing time, O(n(logn)(log ∆)/ε) space
and O(1/ε+ log log ∆) query time.

2.4.3 Global Portal Set

Let Q be a path of length l(Q) in an undirected graph G. Klein and Subramanian [62]
show that a set P(Q) of O(1/ε) equally spaced vertices on Q can be selected as the portals
such that for any shortest path that intersects Q, the error/detour caused by using only the
portals instead of all the vertices on the Q is no more than εl(Q). More specifically, for any
pair of vertices u and v whose shortest path intersects Q, dG(u, v) ≤ minp∈P(Q) distG(u, p)+
distG(p, v) ≤ dG(u, v) + εl(Q). Note that when using global portal set instead of vertex
dependent set, the error/detour introduced is proportional to the length of the path Q on
which the portals are computed. Therefore, it is also needed to compute O(log ∆) different
scales when using global portal sets in planar undirected graphs, where ∆ is the sum of the
lengths of all edges.
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2.4.4 Sparse Neighbourhood Cover

Sparse neighbourhood cover [19] is an essential tool for global portal set to work. To answer
the approximate length of a path Q′, it needs to be guaranteed that the paths in the
shortest path separators are of length O(l(Q′)). For γ > 0, Busch et al. [19] show that a
set of subgraphs of G (sparse neighbourhood cover) of total size O(n) can be computed
such that the diameter of each subgraph is O(γ) and for each vertex v ∈ V (G) there is at
least one subgraph that contains all its neighbours within distance γ. Using this tool with
scales γ = 2i, i = 0, 1, 2, . . . , 2i, . . . , 2dlog ∆e, where ∆ is the sum of lengths of all edges, and
precomputing a distance oracles for each subgraph in each scale, one can handle shortest
paths of different lengths. Moreover, it is observe [57] that when computing each scale
(and the corresponding distance oracles), edges that are short enough can be contracted
as they do not introduce much error. This reduces the total number of edge in all scales
from O(n log ∆) to O(n logn) and therefore reduces the total size of the distance oracle.
Note that this edge contraction technique can not be applied on directed graphs as it may
introduce fake paths that do not exist in the original graph, see Figure 2.5 for an example.

Combining the shortest path separators, global portal sets, sparse neighbourhood cover
and cycle MSSP, Kawarabayashi et al. [57] give a (1 + ε)-approximate distance oracle
for undirected planar graph with Ō(nε−2 log4 n) preprocessing time, Ō(n logn) space and
Ō(1/ε) query time, where Ō hides log logn and log(1/ε) factors. This oracle has a better
trade-off between space and query time than the oracles in [59, 78].

2.4.5 Classification Scheme

Let G be an undirected planar graph and R be a region of G. Let Qu,v denote a shortest path
between vertices u and v in G. Let ∂R = {p1, p2, . . . , pk} be the set of boundary vertices
of R. Now consider a vertex v ∈ R and a vertex u ∈ V (G\R). Then the shortest path
between u and v must contain some boundary vertex pi ∈ ∂R. Notice that pi is completely
determined by the distances between v and each pj , j = 1, 2, . . . , k and the distances between
u and each pj , j = 1, 2, . . . , k. More specifically, dG(u, pi)− dG(u, pj) ≤ dG(v, pj)− dG(v, pi)
holds for every j, j = 1, 2, . . . , k. Therefore for any two vertices u1 and u2 in G\R such that
dG(u1, pj) − dG(u1, p1) = dG(u2, pj) − dG(u2, p1), j = 1, 2, . . . , k holds, there is a pi′ ∈ ∂R
that is in both Qv,u1 and Qv,u2 . Therefore we can define a map φ : u ∈ (V (G\R)) → Rk

by φ(u)[j] = dG(u, pj)− dG(u, p1) such that any two vertices u1 and u2 with φ(u1) = φ(u2)
share a same boundary vertex of R on their shortest paths to any vertex in R (notice that
the shared boundary vertex differs for different vertices in R). This property can be used
to speed up the computation of distances for graphs by classifying the vertices that are
mapped into a same value by φ into a class and do the time consuming computation such
as finding a boundary vertex of R on their path to some vertex in R only once. For this
method to work efficiently, it is also required that the vertices outside of R are mapped
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EC

(a) A directed graph with a short arc from vertex D to vertex B

A B’ F

C E

(b) The graph obtained from contracting the arc
from vertex D to vertex B. The path from vertex
C to vertex E in this graph is a fake path that
does not exist in the original graph

Figure 2.5: An example showing that the edge contraction technique can not be applied on
directed graphs
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into a small number of values by φ. By adapting the distances between pairs of vertices to
1εD, 2εD, . . . , 1

ε εD, Weimann and Yuster [80] show that the vertices outside of R can be
mapped into O(2O(1/ε)) different values while restraining the errors introduced to O(εD),
where D is the diameter of G. This allows them they to compute the (1 + ε)-approximate
diameter of G in O(n log4 n/ε4 + n2O(1/ε)) time.

Recall that to compute (1 + ε)-approximate distance for any pair of vertices u and v we
are willing to accept an additive error of O(εd(u, v)). Also recall that sparse neighbourhood
covers can be used to compute a set of smaller graphs with different diameters to handle
shortest paths of different lengths. Now suppose we are computing (1 + ε)-approximate dis-
tances between vertices u and v in a graph G′ with diameter D′ = O(d(u, v)), the distances
between pairs of vertices in G′ can be adapted to 1εD′, 2εD′, . . . , 1

ε εD
′ while restraining

the errors introduced to O(εd(u, v)). Therefore the classification scheme can be adopted in
computing (1 + ε)-approximate distance oracles.

23



Chapter 3

Imporoving Preprocessing Time
for Exact Distance Oracle for
Planar Graphs

3.1 Introduction

Planar graphs are known to have small balanced cycle separators and this property is heavily
relied on in developing distance oracles for planar graphs. A commonly used tool for exact
distance oracle for planar graphs is the r-division with few holes, in which the given planar
graph G is decomposed into O(n/r) regions such that each region has size O(r), O(

√
r)

common vertices with the rest of the graph and these common vertices lie on a constant
number of faces of the region. A recursive r-division with few holes can be computedin O(n)
time [61].

It is observed that for a planar graph with branchwidth k, the r-division with few
holes can be improved such that each region has O(min{

√
r, k}) common vertices with

the rest of the graph. This is called the [r, k]-division. Based on the [r, k]-division, Mozes
and Sommer give a distance oracle for weighted directed graphs with size O(S), query
time O(min{k logn log2 k log log k, nS−1/2 log3.5 n} and preprocessing time O(T (n, k) logn+
S log2 n) for S ∈ [n log log k, n2] [65], where T (n, k) is the time complexity of computing
a branch-decomposition with width O(k). This distance oracle has better query time for
graph with branchwidth O(no(1)) for S ∈ [n log log k, n1.5) than the oracle in [38]. For
planar graphs, we improve the time complexity of computing a constant-factor approx-
imate branch-decomposition from O(min{n1+ε log k, nk3 log k}), where ε > 0 is a con-
stant, to O(min{n log3 n log k, nk2 log k}). Therefore we improves the preprocessing time
for Mozes and Sommer’s distance oracle to O(min{O(n log4 n log k), O(nk2 logn log k)} for
S ∈ [n log log k,min{n log2 n log k, nk2 log k/ logn}].

Now we focus on the improvement of the time complexity of computing a constant-
factor approximate branch-decomposition for planar graphs. We first introduce some related
results. Fast algorithms for computing small width branch-/tree-decompositions of planar
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graphs have received much attention. Given a planar graph G of n vertices, Tamaki gives
an O(n) time heuristic algorithm for branch-decomposition [76]. Gu and Tamaki give an
algorithm that for an input planar graph G of n vertices and an integer k, either constructs a
branch-decomposition of G with width at most (c+1+δ)k or outputs bw(G) > k in O(n1+ 1

c )
time, where c is any fixed positive integer and δ > 0 is a constant [40]. By this algorithm and
a binary search, a branch-decomposition with width at most (c+ 1 + δ)k can be computed
in O(n1+ 1

c log k) time, where k = bw(G). Kammer and Tholey give an algorithm that for
input G and k, either constructs a tree-decomposition of G with width O(k) or outputs
tw(G) > k in O(nk3) time [53, 54]. The time complexity of the algorithm is improved to
O(nk2) later [55]. This implies that a tree-decomposition with width O(k) can be computed
in O(nk2 log k) time, where k = tw(G). Computational study on branch-decomposition can
be found in [13, 14, 15, 49, 50, 74, 76]. Fast constant-factor approximation algorithms for
branch-/tree-decompositions of planar graphs have important applications such as that in
shortest distance oracles in planar graphs [65].

Grid minor of graphs is another notion in graph minor theory [70]. A k × k grid is a
Cartesian product of two paths, each of k vertices. For a graph G, let gm(G) be the largest
integer k such that G has a k× k grid as a minor. Computing a large grid minor of a graph
is important in algorithmic graph minor theory and bidimensionality theory [30, 29, 70]. It
is shown in [70] that gm(G) ≤ bw(G) ≤ 4gm(G) for planar graphs. Gu and Tamaki improve
the linear bound bw(G) ≤ 4gm(G) to bw(G) ≤ 3gm(G) and show that for any a < 2,
bw(G) ≤ agm(G) does not hold for planar graphs [41]. Other studies on grid minor size
and branchwidth/treewidth of planar graphs can be found in [16, 39]. The upper bound
bw(G) ≤ 3gm(G) is a consequence of a result on cylinder minors. A k × h cylinder is a
Cartesian product of a cycle of k vertices and a path of h vertices. For a graph G, let cm(G)
be the largest integer k such that G has a k×

⌈
k
2

⌉
cylinder as a minor. It is shown in [41] that

cm(G) ≤ bw(G) ≤ 2cm(G) for planar graphs. The O(n1+ 1
c ) time algorithm in [40] actually

constructs a branch-decomposition of G with width at most (c+1+δ)k or a (k+1)×
⌈
k+1

2

⌉
cylinder minor.

We propose an Õ(n) time constant-factor approximation algorithm for branch-/tree-
decompositions of planar graphs. Our main result is as follows.

Theorem 3.1.1. There is an algorithm that given a planar graph G of n vertices and an
integer k, in min{O(n log3 n), O(nk2)} time either constructs a branch-decomposition of G
with width at most (2 + δ)k, where δ > 0 is a constant, or a (k+ 1)×

⌈
k+1

2

⌉
cylinder minor

of G.

The O(n log3 n) time result is randomized and can be made deterministic with an addi-
tional log3 n factor in the running time. Theorem 3.1.1 gives an Õ(n) time constant-factor
approximation for branchwidth/treewidth and largest grid/cylinber minor of planar graphs.
Since a (k+ 1)×

⌈
k+1

2

⌉
cylinder has branchwidth at least k+ 1 [41], a cylinder minor given
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in Theorem 3.1.1 implies bw(G) > k. Therefore, for a planar graph G and k = bw(G),
by Theorem 3.1.1 and a binary search, a branch-decomposition of G with width at most
(2 + δ)k can be computed in min{O(n log3 n log k), O(nk2 log k)} time.

Corollary 3.1.1.1. There is an algorithm that given a planar graph G of n vertices, in
min{O(n log3 n log k), O(nk2 log k)} time constructs a branch-decomposition of G with width
at most (2 + δ)k, where δ > 0 is a constant and k = bw(G).

This improves the previous result of a branch-decomposition with width at most (c +
1+ δ)k in O(n1+ 1

c log k) time [40]. It is shown (Statement (5.1)) in [73] that given a branch-
decomposition of G with width k, a tree-decomposition of G with width at most 1.5k can
be computed in O(nk) time. By this result, Theorem 3.1.1 implies an algorithm that for an
input planar graph G and an integer k, in min{O(nk + n log3 n), O(nk2)} time constructs
a tree-decomposition of G with width at most (3 + δ)k or outputs tw(G) > k. Similarly, for
a planar graph G and k = tw(G), a tree-decomposition with width at most (3 + δ)k can be
computed in min{O(nk + n log3 n log k), O(nk2 log k)} time.

Corollary 3.1.1.2. There is an algorithm that given a planar graph G of n vertices, in
min{O(nk + n log3 n log k), O(nk2 log k)} time constructs a tree-decomposition of G with
width at most (3 + δ)k, where δ > 0 is a constant and k = tw(G).

Kammer and Tholey give an algorithm that computes a tree-decomposition of G with
width at most 48k + 13 in O(nk3 log k) time or with width at most (9 + δ)k + 9 in
O(nmin{1

δ , k}k
3 log k) time (where 0 < δ < 1) [53, 54]. They also give an algorithm for

computing the weighted treewidth for vertex weighted planar graphs [55]. Applying this al-
gorithm to a planar graph G, a tree-decomposition of G with width at most (15+δ)k+O(1)
can be computed in O(nk2 log k) time. This improves the result of [53, 54]. Our O(nk2 log k)
time algorithm is an independent improvement over the result of [53, 54]1 and has a better
approximation ratio than that of [55]. Our algorithm can be used to compute a g×

⌈g
2
⌉
cylin-

der (grid) minor with g = bw(G)
β , where β > 2 is a constant, and a g×g cylinder (grid) minor

with g = bw(G)
β , where β > 3 is a constant, of G in min{O(n log3 n log k), O(nk2 log k)} time.

This improves the previous results of g ×
⌈g

2
⌉
with g ≥ bw(G)

β , β > (c + 1), and g × g with
g ≥ bw(G)

β , β > (2c+ 1), in O(n1+ 1
c log k) time.

Our algorithm for Theorem 3.1.1 uses the approach in the previous work of [40] described
below. Given a planar graph G and an integer k, let Z be the set of biconnected components
of G of a normal distance (a definition is given in Section 3.2) h = ak, where a > 0 is a
constant, from a selected edge e0 of G. For each Z ∈ Z, a minimum vertex cut set ∂(AZ)
which partitions E(G) into edge subsets AZ and AZ = E(G) \ AZ is computed such that

1The O(nk2 log k) time algorithm in [55] was first announced in July 2015 [56] while our result was
reported in March 2015 [46].
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all edges in Z are in AZ and e0 ∈ AZ , that is, ∂(AZ) separates Z and e0. If |∂(AZ)| > k

for some Z ∈ Z then bw(G) > k is concluded. Otherwise, a branch-decomposition of graph
H obtained from G by removing all AZ is constructed. For each subgraph G[AZ ] induced
by AZ , a branch-decomposition is constructed or bw(G[AZ ]) > k is concluded recursively.
Finally, a branch-decomposition of G with width O(k) is constructed from the branch-
decomposition of H and those of G[AZ ] or bw(G) > k is concluded.

The algorithm in [40] computes a minimum vertex cut set ∂(AZ) for every Z ∈ Z in
all recursive steps in O(n1+ 1

c ) time. Our main idea for proving Theorem 3.1.1 is to find a
minimum vertex cut set ∂(AZ) for every Z ∈ Z more efficiently based on recent results for
computing minimum face-separating cycles and vertex cut sets in planar graphs. Borradaile
et al. give an algorithm that inO(n log4 n) time computes an oracle for the all pairs minimum
face-separating cycle problem in a planar graph G [18]. The time for computing the oracle
is further improved to O(n log3 n) [17]. For any pair of faces f and g in G, the oracle in
O(|C|) time returns a minimum (f, g)-separating cycle C (i.e., C cuts the sphere on which
G is embedded into two regions, one contains f and the other contains g). By this result,
we show that a minimum vertex cut set ∂(AZ) for every Z ∈ Z in all recursive steps can
be computed in O(n log3 n) time and get the first result.

Theorem 3.1.2. There is an algorithm that given a planar graph G of n vertices and an
integer k, in O(n log3 n) time either constructs a branch-decomposition of G with width at
most (2 + δ)k or a (k + 1)×

⌈
k+1

2

⌉
cylinder minor of G, where δ > 0 is a constant.

For an input G and integer k, Kammer and Tholey give algorithms that construct a
tree-decomposition with width O(k) or outputs tw(G) > k as follows [53, 54, 55] (related
definitions are given in Section 3.4): Convert G into an almost triangulated planar graph
Ĝ. Use crest separators to decompose Ĝ into subgraphs such that each subgraph contains
one crest with a normal distance k from a selected set of edges called the coast. For each
crest compute a vertex cut set of size at most 3k− 1 to separate the crest from the coast. If
such a vertex cut set can not be found for some crest then the algorithms conclude tw(Ĝ) >
k. Otherwise, the algorithms compute a tree-decomposition for the graph Ĥ obtained by
removing all crests from Ĝ and works on each crest recursively. Finally, the algorithms
construct a tree-decomposition of Ĝ from the tree-decomposition of Ĥ and those of the
crests.

Viewing each biconnected component Z ∈ Z as a crest and e0 as the coast, we get an
O(nk2) time algorithm for Theorem 3.1.1 by applying the ideas of triangulating G and crest
separators in [53, 54] to decompose Ĝ into subgraphs such that each subgraph contains one
Z ∈ Z. Instead of finding a vertex cut set of size at most 3k − 1 for each crest, we apply
minimum face-separating cycle techniques to find a minimum vertex cut set ∂(AZ) in each
subgraph. We show that either a vertex cut set ∂(AZ) with |∂(AZ)| ≤ k for every Z ∈ Z
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in all recursive steps or a (k + 1)×
⌈
k+1

2

⌉
cylinder minor can be computed in O(nk2) time

and get the result below.

Theorem 3.1.3. There is an algorithm that given a planar graph G of n vertices and an
integer k, in O(nk2) time either constructs a branch-decomposition of G with width at most
(2 + δ)k or a (k + 1)×

⌈
k+1

2

⌉
cylinder minor of G, where δ > 0 is a constant.

Theorem 3.1.1 follows from Theorems 3.1.2 and 3.1.3.
The next section gives the preliminaries of this chapter. We prove Theorems 3.1.2 and

3.1.3 in Sections 3.3 and 3.4, respectively. The final section concludes the chapter.

3.2 Definitions and Notations

In this chapter, it is convenient to view a vertex cut set ∂(AZ) in a graph as an edge in a
hypergraph in some cases.

Definition 3.2.1. A hypergraph H is an ordered pair H = (V,E) with a set V of vertices
and a set E of edges, where each edge e ∈ E is a subset of V with at least two elements. H
is a graph if every e ∈ E′ has exactly two elements.

A biconnected component of a graph G is a maximal biconnected subgraph of G. It
suffices to prove Theorems 3.1.2 and 3.1.3 for a biconnected graph G because if G is not
biconnected, the problems of finding branch-decompositions and cylinder minors of G can
be solved individually for each biconnected component.

Definition 3.2.2. For a plane graph G and vertices u, v ∈ V (G), the normal distance
ndG(u, v) is the smallest length of a normal curve between ρ(u) and ρ(v). The normal
distance between two vertex-subsets U,W ⊆ V (G) is ndG(U,W ) = minu∈U,v∈W ndG(u, v).

Figure 3.1 (a) shows a normal curve and the normal distance between two vertices in
a plane graph. We also use ndG(U, v) for ndG(U, {v}) and ndG(u,W ) for ndG({u},W ). A
noose ν of G separates Σ into two open regions R1 and R2 and induces a separation (A,A)
of G with A = {e ∈ E(G) | ρ(e) ⊆ R1} and A = {e ∈ E(G) | ρ(e) ⊆ R2}. We also say ν
induces edge subset A (or A) (see Figure 3.1 (a) for an example). A separation (resp. an edge
subset) of G is called noose-induced if there is a noose which induces the separation (resp.
edge subset). A noose ν separates two edge subsets A1 and A2 if ν induces a separation
(A,A) with A1 ⊆ A and A2 ⊆ A. We also say that the noose-induced subset A separates
A1 and A2.

Recall that a noose is a closed normal curve on Σ that does not intersect itself. For a plane
graph G and a noose ν induced subset A ⊆ E(G), we denote by G|A the plane hypergraph
obtained by replacing all edges of A with edge ∂(A) (i.e., V (G|A) = (V (G) \ V (A)) ∪ ∂(A)
and E(G|A) = (E(G) \ A) ∪ {∂(A)}). An embedding of G|A can be obtained from that
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(a) (b)

∂(A)
A

u

v

u

v

Figure 3.1: (a) A plane graph G. Solid segments are edges of G. A normal curve with the
smallest length between vertices u and v in G is expressed by blue thick dashed segments.
The normal distance ndG(u, v) = 2. A noose ν inG is expressed by red thin dashed segments.
Noose ν induces an edge subset A and the edges of A are expressed by green solid segments.
(b) A plane hypergraphG|A. A normal curve with the smallest length between vertices u and
v in G|A is expressed by blue thick dashed segments. The normal distance ndG|A(u, v) = 3.

of G with ρ(∂(A)) an open disk (homeomorphic to {(x, y)|x2 + y2 < 1}) that is the open
region separated by ν and contains A. For a collection A = {A1, .., Ar} of mutually disjoint
noose induced edge-subsets of G, (..(G|A1)|..)|Ar is denoted by G|A. The normal curve and
normal distances in a plane hypergraph are defined from the definitions for the normal curve
and normal distances in a plane graph by replacing a plane graph with a plane hypergraph.
Figure 3.1 (b) gives a normal curve and the normal distance between two vertices in a plane
hypergraph.

3.3 O(n log3 n) Time Algorithm

We give an algorithm to prove Theorem 3.1.2. Our algorithm follows the approach of the
work in [40]. Let G be a plane graph (hypergraph) of n vertices, e0 be a given edge of G,
and k, h > 0 be integers. Let Z be the set of biconnected components of the subgraph of G
induced by the vertices with normal distance at least h. We first try to separate e0 and the
set Z.

Definition 3.3.1. A good-separator A for Z and e0 is a set of noose-induced subsets with
the following properties:

1. for every AZ ∈ A, |∂(AZ)| ≤ k;

2. for every AZ ∈ A, G|AZ is biconnected;

3. for every Z ∈ Z, there is an AZ ∈ A that contains Z and separates Z and e0;

4. for distinct AZ , AZ′ ∈ A, AZ ∩A′Z = ∅.
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For each Z ∈ Z, our algorithm computes a minimum noose (and the noose-induced
subset AZ that contains Z) separating Z and e0. If for some Z ∈ Z, |∂(AZ)| > k then the
algorithm constructs a (k + 1) ×

⌈
k+1

2

⌉
cylinder minor of G in O(n) time by Lemma 3.3.1

proved in [40]. Otherwise, a good-separator A is computed.

Lemma 3.3.1. [40] Given a plane graph G and integers k, h > 0, let X and Z be edge
subsets of G satisfying the following conditions: (1) each of separations (X,X) and (Z,Z)
is noose-induced; (2) G[Z] is biconnected; (3) ndG(V (X), V (Z)) ≥ h; and (4) every noose
of G that separates X and Z has length > k. Then G has a (k+ 1)× h cylinder minor and
given (G|X)|Z, such a minor can be constructed in O(|V (X ∩ Z)|) time.

Given a good-separatorA for Z and e0, our algorithm constructs a branch-decomposition
of the plane hypergraph G|A with width at most k+ 2h by Lemma 3.3.2 shown in [41, 76].
For each AZ ∈ A, the algorithm computes a cylinder minor or a branch-decomposition for
the plane hypergraph G|AZ recursively. If a branch-decomposition of G|AZ is found for
every AZ ∈ A, the algorithm constructs a branch-decomposition of G with width at most
k+ 2h from the branch-decomposition of G|A and those of G|AZ by Lemma 3.3.3 which is
straightforward from the definitions of branch-decompositions.

Lemma 3.3.2. [41, 76] Let k > 0 and h > 0 be integers. Let G be a plane hypergraph with
each edge of G incident to at most k vertices. If there is an edge e0 such that for any vertex
v of G, ndG(e0, v) ≤ h then given e0, a branch-decomposition of G with width at most k+2h
can be constructed in O(|V (G)|+ |E(G)|) time.

The upper bound k + 2h is shown in Theorem 3.1 in [41]. The normal distance in [41]
between a pair of vertices is twice of the normal distance in this paper between the same
pair of vertices. Tamaki gives a linear time algorithm to construct a branch-decomposition
with width at most k + 2h [76].

The following lemma is straightforward from the definition of branch-decompositions
and allows us to bound the width of the branch-decomposition of the whole graph.

Lemma 3.3.3. Given a plane hypergraph G and a noose-induced separation (A,A) of G,
let TA and TA be branch-decompositions of G|A and G|A respectively. Let TA +TA to be the
tree obtained from TA and TA by joining the link incident to the leaf ∂(A) in TA and the link
incident to the leaf ∂(A) in TA into one link and removing the leaves ∂(A). Then TA + TA
is a branch-decomposition of G with width max{|∂(A)|, kA, kA} where kA is the width of TA
and kA is the width of TA.

To make a concrete progress in each recursive step, the following technique in [40] is
used to compute A. For a plane hypergraph G, an edge e0 of G and an integer d ≥ 0, let

reachG(e0, d) =
⋃
{v ∈ V (G)|ndG(e0, v) ≤ d}
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(a)

X’

X

Z Z’

G

X X’

Z Z’

root

level 1

node

level 2

node

(b)

Figure 3.2: (a) A plane graph G with two (level 1) biconnected components X and X ′.
X contains two (level 2) biconnected components Z and Z ′. (b) A layer tree for G and
components X,X ′, Z, Z ′.

denote the set of vertices of G with the normal distance at most d from e0.

Definition 3.3.2. For an arbitrary constant α > 0 and integer k ≥ 2, the layer tree
LT(G, e0, k, α) is defined as follows:

• the root of the tree is G;

• each biconnected component X of G[V (G) \ reachG(e0,
⌈
αk
2

⌉
− 1)] is a node in level 1

of the tree and is a child of the root;

• each biconnected component Z of G[V (G)\reachG(e0, h−1)], where h =
⌈
αk
2

⌉
+
⌈
k+1

2

⌉
,

is a node in level 2 of the tree and is a child of the biconnected component X in level
1 that contains Z.

Figure 3.2 gives an example of a layer tree.
Recall that Z is a set of biconnected components of the subgraph induced by the vertices

with normal distance at least h from e0. Then, Z is the set of leaf nodes of LT(G, e0, k, α)
in level 2. For a level 1 node X in LT(G, e0, k, α) that is not a leaf, let ZX ⊆ Z be the set
of child nodes of X. Based on the plane hypergraph (G|X)|ZX , we find a minimum noose
in G separating Z and X for every Z ∈ ZX to get a good-separator AX for ZX and X.
If a minimum noose in G separating Z and X for some Z ∈ ZX has length > k then we
compute a (k + 1)×

⌈
k+1

2

⌉
cylinder minor of G by Lemma 3.3.1. Otherwise, we compute a

good-separator AX for ZX and X and the union of AX for every X gives a good-separator
A for Z and e0.

Notice that if Z is a single vertex then Z will not be involved in any further recursive
step; and if Z is a single edge then there is a noose of length 2 ≤ k separating Z and X,
and it is trivial to compute the branch-decomposition of Z. So we assume without loss of
generality that each Z ∈ ZX has at least three vertices.
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(a)

∂(Z)

X

Z

∂(X)

f

f
(b)

X
f

(c)

∂(Z’) fZ’

Zf fZ’

Figure 3.3: (a) A plane hypergraph (G|X)|ZX (ZX = {Z,Z ′}). The nooses defining the
embeddings of ∂(X), ∂(Z) and ∂(Z ′) are expressed by red dashed segments. (b) The plane
graph GX constructed from (G|X)|ZX . (c) The weighted plane graph HX constructed from
GX . The new added vertices and edges are expressed in red.

To compute AX , we convert (G|X)|ZX to a weighted plane graph HX and compute
a minimum noose (and the noose-induced subset AZ that contains Z) separating every
Z ∈ ZX and X by finding a minimum face-separating cycle in HX . We use the results by
Borradaile et al. [17, 18] to compute the face-separating cycles.

We first convert the hypergraph (G|X)|ZX into a plane graph GX as follows (see Fig-
ure 3.3): Remove ρ(∂(X)). For each edge ∂(Z) in (G|X)|ZX , let νZ be a noose which induces
the separation (Z,Z) in G. Then EZ = {νZ \ ρ(u)|u ∈ ∂(Z)} is a set of open segments.
Replace edge ρ(∂(Z)) by the set of edges which are segments in EZ . GX has a face which
contains ρ(∂(X)) and we denote this face by fX . For each Z ∈ ZX , the embedding ρ(∂(Z))
of edge ∂(Z) becomes a face fZ in GX with E(fZ) = EZ . A face in GX that is not fX or any
of fZ is called a natural face in GX . Notice that GX is a minor of G when the embeddings of
the graphs are not considered because every Z ∈ ZX is biconnected and has at least three
vertices.

Next we convert GX to a weighted plane graph HX (see Figure 3.3): For each natural
face f in GX with |V (f)| > 3, we add a new vertex uf and new edges {uf , v} in f for every
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vertex v in V (f). Each new edge {uf , v} is assigned the weight 1/2. Each edge of GX is
assigned the weight 1. Notice that |V (HX)| = O(|V (GX)|).

A noose in GX is called a natural noose if it intersects only natural faces in GX . It
is shown (Lemma 5.1) in [40] that for each Z ∈ ZX , there is a minimum noose in GX

separating E(fZ) and E(fX) that is a natural noose. If for any Z ∈ ZX , a minimum natural
noose separating E(fZ) and E(fX) has length > k, then by Lemma 3.3.1, we can compute
a (k + 1) ×

⌈
k+1

2

⌉
cylinder minor of GX that is also a minor of G. Otherwise, we find a

good-separator AX for ZX and X. By Lemma 3.3.4 below, a minimum natural noose ν
separating E(fZ) and E(fX) can be computed by finding a minimum (fZ , fX)-separating
cycle C in HX . The subsets of E(GX) induced by noose ν are also called cycle C induced
subsets.

Lemma 3.3.4. Let HX be the weighted plane graph obtained from GX . For any (fZ , fX)-
separating cycle C in HX , there is a natural noose ν that separates E(fZ) and E(fX) in
GX with the same length as that of C. For any minimum natural noose ν in GX separating
E(fZ) and E(fX), there is a (fZ , fX)-separating cycle C in HX with the same length as
that of ν.

Proof. Let C be a (fZ , fX)-separating cycle in HX . For each edge {u, v} in C with u, v ∈
V (GX), {u, v} is incident to a natural face f because fZ is not incident to fX by ndGX (V (X), V (Z)) =⌈
k+1

2

⌉
. We draw a simple curve with u, v as its end points in face f . For each pair of edges

{u, uf} and {uf , v} in C with u, v ∈ V (GX) and uf ∈ V (HX) \ V (GX), we draw a simple
curve with u, v as its end points in the face f of GX where the newly added vertex uf

is placed. Then the union of the curves form a natural noose ν that separates E(fZ) and
E(fX) in GX . Each edge {u, v} with u, v ∈ V (GX) has weight 1. For a newly added vertex
uf , each of edges {u, uf}, {uf , v} has weight 1/2. Therefore, the lengths of ν and C are the
same.

Let ν be a minimum natural noose separating E(fZ) and E(fX) in GX . Then ν contains
at most two vertices of GX incident to a same natural face of GX , otherwise a shorter natural
noose separating E(fZ) and EX can be formed. The vertices on ν partition ν into a set of
simple curves such that at most one curve is drawn in each natural face of GX . For a curve
with the end points u and v in a natural face f , if {u, v} is an edge of GX then we take {u, v}
in HX as a candidate, otherwise we take edges {u, uf}, {uf , v} in HX as candidates, where
uf is the vertex added in f in getting HX . These candidates form a (fZ , fX)-separating
cycle C in HX . Because each edge of GX has weight 1 and each newly added edge has
weight 1/2 in HX , the lengths of C and ν are the same.

We use the results by Borradaile et al. for computing minimum face separating cycles
[17, 18] to compute AX for every X.

Definition 3.3.3. A minimum cycle basis tree (MCB tree) [18] for a plane graph G is an
edge-weighted tree T̃ such that
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• there is a bijection from the faces of G to the nodes of T̃ ;

• removing each edge e from T̃ partitions T̃ into two subtrees T̃1 and T̃2; this edge e
corresponds to a cycle that separates every pair of faces f and g with f in T̃1 and g
in T̃2; and

• for any distinct faces f and g, the minimum-weight edge on the unique path between
f and g in T̃ has a weight equal to the length of a minimum (f, g)-separating cycle.

It is shown in [18] that an MCB tree T̃ of a plane graph G can be computed in O(n log4 n)
time and a minimum (f, g)-separating cycle C can be found in O(|C|) time, where |C| is
the number of edges in C, from T̃ for distinct faces f and g in G. By the result in [17],
the time for computing T̃ is improved to O(n log3 n). The next lemma gives a base for our
O(n log3 n) time algorithm.

Lemma 3.3.5. [17, 18] Given a plane graph G of n vertices with positive edge weights,
a MCB tree of G can be computed in O(n log3 n) time. Further, for any distinct faces f
and g in G, given a minimum weight edge in the path between f and g in the MCB tree,
a minimum (f, g)-separating cycle C can be obtained in O(|C|) time, |C| is the number of
edges in C.

A cycle C in HX partitions Σ into two regions and one region contains face fX . We
denote by ins(C) the region that does not contain fX . The minimum face separating cycles
in the MCB tree of HX computed by Lemma 3.3.5 have the following property which is
important for computing a good-separator AX .

Observation 1. [17, 18] Let T̃ be an MCB tree of HX computed using Lemma 3.3.5. For
any Z,Z ′ ∈ ZX , let C be the minimum (fZ , fX)-separating cycle and C ′ be the minimum
(fZ′ , fX)-separating cycle obtained from T̃ . Then ins(C) ∩ ins(C ′) = ∅ or ins(C) ⊆ ins(C ′)
or ins(C ′) ⊆ ins(C).

Lemma 3.3.5 requires that there is a unique shortest path between any two vertices in
the input graph [17, 18]. This requirement can be guaranteed with high probability by a
random perturbation on the edge weight of the input graph, making the O(n log3 n) time
for computing the MCB tree randomized [17], or guaranteed deterministically, increasing
the time for computing the MCB tree to O(n log6 n) [18]. Using Lemma 3.3.5 to compute
an MCB tree T̃ of HX and thus AX , our algorithm is summarized in Algorithm 1 below.

Now we prove Theorem 3.1.2 which is re-stated below. The O(n log3 n) time result in
the theorem is randomized and can be made deterministic with an additional log3 n factor
in the running time.

Theorem 3.1.2. There is an algorithm that given a planar graph G of n vertices and an
integer k, in O(n log3 n) time either constructs a branch-decomposition of G with width at
most (2 + δ)k, δ > 0 is a constant, or a (k + 1)×

⌈
k+1

2

⌉
cylinder minor of G.
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Algorithm 1: Branch-Minor-MCB-Based(G|U, ∂(U), k, α)
Input: Integer k ≥ 2; constant α > 0; a biconnected plane hypergraph G|U with

∂(U) specified, where |∂(U)| ≤ k and every other edge has two vertices.
Output: Either a branch-decomposition of G|U with width at most k + 2h, where

h =
⌈
αk
2

⌉
+
⌈
k+1

2

⌉
, or a (k + 1)×

⌈
k+1

2

⌉
cylinder minor of G.

1 if ndG|U (∂(U), v) ≤ h for every v ∈ V (G|U) then
2 return a branch-decomposition of G|U with width at most k + 2h by Lemma

3.3.2;
3 else
4 compute the layer tree LT(G|U, ∂(U), k, α);
5 for every level 1 node X of LT(G|U, ∂(U), k, α) that is not a leaf do
6 compute GX , HX from (G|X)|ZX , where ZX is the set of child nodes of X;
7 compute an MCB tree T̃ of HX by Lemma 3.3.5;
8 while T̃ contains any fZ for Z ∈ ZX do
9 find a face fZ , Z ∈ ZX , in T̃ by a breadth first search from fX such that

the path between fZ and fX in T̃ does not contain fZ′ for any Z ′ ∈ ZX
with Z ′ 6= Z;

10 find the minimum weight edge eZ = {u, v} in the path between fZ and
fX , and the cycle C from edge eZ ;

11 if C has length > k then
12 return a (k + 1)×

⌈
k+1

2

⌉
cylinder minor by Lemma 3.3.1;

13 else
14 compute the cycle C induced subset AZ that contains E(fZ) and

include AZ to AX ; for each node f of T̃ , if edge eZ is in the path
between f and fX in T̃ then delete f from T̃ ;

15 end
16 end
17 end
18 Let A = ∪X:X is a level 1 node of LT(G|U,∂(U),k,α)AX ;
19 for A ∈ A do
20 Let TA = Branch-Minor-MCB-Based(G|A, ∂(A), k, α);
21 if TA is a (k + 1)×

⌈
k+1

2

⌉
cylinder minor then

22 return TA;
23 end
24 end
25 construct a branch-decomposition T0 of (G|U)|A with width at most k + 2h by

Lemma 3.3.2;
26 combine T0 and TA, A ∈ A into a branch-decomposition T of G|U with width at

most k + 2h by Lemma 3.3.3;
27 return T

28 end
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Proof. The input hypergraph G|A of Algorithm 1 in each recursive step for A ∈ A is
biconnected. In Line 12 the algorithm returns a (k + 1) ×

⌈
k+1

2

⌉
cylinder minor of G. For

the AX computed in Lines 5− 17, obviously we have

1. for every AZ ∈ AX , |∂(AZ)| ≤ k;

2. because G|U is biconnected and ∂(AZ) ∈ E((G|U)|AZ), (G|U)|AZ is biconnected;

3. from the way we find the cycles from the MCB tree, for every Z ∈ ZX , there is exactly
one noose-induced subset AZ ∈ AX separating Z and X;

4. from the unique shortest path in HX , for distinct AZ , AZ′ ∈ AX , AZ ∩AZ′ = ∅.

Therefore, by Definition 1, AX is a good-separator for ZX and X. From this, A is a good
separator for Z and U and Algorithm 1 computes a branch-decomposition or a (k+1)×

⌈
k+1

2

⌉
cylinder minor of G. The width of the branch-decomposition computed is at most

k + 2h = k + 2(
⌈
αk

2

⌉
+
⌈
k + 1

2

⌉
) ≤ k + 2(

⌈
αk

2

⌉
) + (k + 2) ≤ (2 + δ)k,

where δ is the smallest constant with δk ≥ αk + 4.
Let M , mx and m be the numbers of edges in G[reachG|U (∂(U), h)], (G|X)|ZX and

HX , respectively. Then m = O(mx). In Line 4, the layer tree LT(G|U, ∂(U), k, α) can be
computed in O(M) time. For each level 1 node X, it takes O(m) time to compute ∂(X), GX
and HX (Line 6). By Lemma 3.3.5, it takes O(m log3m) time to compute an MCB tree T̃
of HX (Line 7). All executions of Line 9 take O(m) time. It takes O(m) time to compute a
cylinder minor by Lemma 3.3.1 (Line 12). From Property 4 of a good-separator (Definition
1), each edge of HX appears in at most two cycles that induce the subsets in AX . So it
takes O(m) time to compute AX (Lines 8− 16). Therefore, the total time for Lines 6− 16
is O(m log3m). For distinct level 1 nodes X and X ′, the edge sets of subgraphs (G|X)|ZX
and (G|X ′)|ZX′ are disjoint. So

∑
X:X is a level 1 nodemx = O(M). Therefore, the total

time for Lines 4− 17 is

∑
X:X is a level 1 node of LT(G|U,∂(U),k,α)

O(mx log3mx) = O(M log3M).

The time for other steps in Algorithm 1 is O(M). In every recursion call, only the vertices in
reachG|U (∂(U), h) are involved. So the number of recursive calls in which each vertex of G|U
is involved is O( 1

α) = O(1). Therefore, the running time of the algorithm is O(n log3 n).
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3.4 O(nk2) Time Algorithm

To get an algorithm for Theorem 3.1.3, we follow the framework of Algorithm 1 in Section 3.3
but use a different approach from that in Lines 7-16 to compute face-separating cycles and
a good separator for ZX and X. We first introduce some notions for our approach.

Given ZX and HX as those in Algorithm 1, for each Z ∈ ZX the edges incident to face
fZ in HX form a (fZ , fX)-separating cycle, denoted by CZ and called the boundary cycle
of Z. Notice that |E(CZ)| = |∂(Z)|. Given a plane graph G, we choose an arbitrary face as
the outer face f0 of G. A cycle C in G partitions Σ into two regions and exactly one region
contains f0. Let ins(C) denote the region that does not contain f0.

Definition 3.4.1. Two cycles C and C ′ in a plane graph cross with each other if they
satisfy the following conditions:

1. ins(C) ∩ ins(C ′) 6= ∅;

2. ins(C) \ ins(C ′) 6= ∅;

3. ins(C ′) \ ins(C) 6= ∅.

A set C of at least two cycles is crossing if there are two cycles C,C ′ ∈ C such that C and
C ′ cross with each other, otherwise C is non-crossing.

Our approach has the following major steps:

(s1) For each Z ∈ ZX with |CZ | ≤ k, we take CZ as a "minimum" (fZ , fX)-separating cycle
and the cycle CZ induced subset Z as a candidate for a noose induced edge subset
AZ that separates Z and X.

(s2) Let WX = {Z ∈ ZX | |CZ | > k}. We apply the techniques in [53, 54] to decompose
HX into subgraphs that are called extended components, each extended component
contains face fZ for exactly one Z ∈ WX .

(s3) For each extended component containing one fZ with Z ∈ WX , we find a minimum
(fZ , fX)-separating cycle using the approaches in [18, 69].

(s4) From the (fZ , fX)-separating cycles computed above, we find non-crossing face-separating
cycles to get a good separator for ZX and X.

As shown later, the set of boundary cycles CZ for Z ∈ ZX is non-crossing. The approach
in [69] is a basic tool for Step (s3). The efficiency of the tool can be improved by pre-
computing some distances between the vertices in the vertex cut set that separates the
extended component from the rest of the graph as in [18]. The subgraphs computed in
Step (s2) have properties that allow us to use a scheme in [53, 54] to pre-compute some
distances (called pseudo shortcut set in [53, 54]) for every extended component to further
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improve the efficiency of the tool when it is applied to the extended components. To get an
O(nk2) time algorithm, we can not use the techniques in [18] to guarantee unique shortest
paths deterministically as in section 3.3. Therefore the set of separating cycles computed
in Step (s3) may not be non-crossing. We develop a new technique to clear this hurdle.
New ingredients in our approach also include: To find separating cycles, we simply take
CZ as a "minimum" (fZ , fX)-separating cycle for Z with |CZ | ≤ k and use the complex
techniques only for Z with |CZ | > k instead of every Z ∈ ZX as in [53, 54]. This reduces
the time complexity by a O(k) factor for finding the separating cycles. Combining the
approaches of [18, 69] for finding the minimum face-separating cycles, the scheme in [53, 54]
for pre-computing the pseudo shortcut set and a newly developed technique to extract non-
crossing separating cycles from the cycles computed in Steps (s1)-(s3), we find non-crossing
separating cycles of length at most k instead of 3k − 1 as in [53, 54, 55].

3.4.1 Review on Previous Techniques

We now briefly review some notions and techniques introduced in [53, 54] for plane graphs
without vertex weight. These notions and techniques are also used in [55] but are described
for vertex weighted plane graphs. We review these notions and techniques in their form for
plane graphs without vertex weight as our algorithm uses these notions and techniques for
such graphs.

Let G be a plane graph and f0 be the outer face of G.

Definition 3.4.2. The height of a vertex u in G is hG(u) = ndG(V (f0), u).

For any integer k ≥ 1, G is k-outerplanar if hG(u) < k for every vertex u in G.

Definition 3.4.3. The depth of a face f of G is dG(f) = minu∈V (f) hG(u). The depth of
a path L in G is dG(L) = minu∈V (L) hG(u).

Definition 3.4.4. A crest in G is a maximal connected set Z ⊆ V (G) such that every
vertex of Z has the largest height in G.

Recall that a plane graph is almost triangulated if every face of the graph other than
the outer face is incident to exactly three vertices and three edges. Let Ĝ be an almost
triangulated graph. For each u with hĜ(u) > 0, an arbitrary vertex v adjacent to u with
hĜ(v) < hĜ(u) (such a v always exists) is selected as the down vertex of u and the edge
{u, v} is called the down edge of u. When the down edge of every vertex in Ĝ is selected,
each vertex u in Ĝ has a unique down path consisting of the selected down edges only.

Definition 3.4.5. Let v be any vertex in Ĝ. The down path of v is the unique path between
v and some vertex of f0, where f0 is the outer face of Ĝ, that contains only down edges.

Definition 3.4.6. Let Z and Z ′ be two crests in G. A ridge between Z and Z ′ is a path R
between Z and Z ′ such that R has the maximum depth among all paths between Z and Z ′.
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Figure 3.4: (a) A plane graph GX . (b) An almost triangulated plane graph ĜX constructed
from GX . The added edges are expressed by red thin segments. ĜX has two crests Z and
Z ′ expressed by red squares. (c) A ridge R (expressed by blue thick segments) between Z
and Z ′ and a crest separator S (expressed by green thick dashed segments). Vertices u and
v are the top vertices, and edge {u, v} is the top edge of S.

Definition 3.4.7. A crest separator is a subgraph S = L1∪L2 of Ĝ, where L1 is the unique
down path of a vertex u and L2 is a path composed of the edge {u, u′} and the unique down
path of u′, where u′ is not in L1 and hĜ(u′) ≤ hĜ(u).

Vertices in S of the largest height are called the top vertices and edge {u, u′} is called
the top edge of S. Figure 3.4 gives an almost triangulated plane graph with two crests, a
ridge R between the two crests and a crest separator. Notice that each crest separator S
has t ∈ {1, 2} top vertices. The height hĜ(S) of a crest separator S is the height of its top
vertices. We say a crest separator S = L1 ∪ L2 is on a ridge R if a top vertex u of S is on
R and hĜ(S) = dĜ(R). A crest separator S = L1 ∪ L2 is called disjoint if path L1 and the
down path of u′ do not have a common vertex, otherwise converged. For a converged crest
separator S, the paths L1 and L2 have a common sub-path from a vertex other than u to
a vertex w in V (f0). The vertex v 6= u in the common sub-path with the largest height is
called the low-point and the sub-path from v to w is called the converged-path of S, denoted
by cp(S).

For the outer face f0 of Ĝ on the sphere Σ, let f0 be the region of Σ \ f0. Given two
crests Z and Z ′ in Ĝ, We say a crest separator S separates Z from Z ′ if removing S from
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f0 cuts f0 into two regions, one region contains Z and the other contains Z ′. Given a set
of r − 1 crest separators S1, .., Sr−1, removing S1, .., Sr−1 from f0 cuts f0 into r regions
R1, .., Rr. Let Pi, 1 ≤ i ≤ r, be the subgraph of Ĝ consisting of the edges of Ĝ in Ri and the
edges of every crest separator with its top edge incident to Ri. Each Pi is called an extended
component.

Crest separators of minimum height are important in computing extended components
with some properties required by our algorithm.

Definition 3.4.8. A critical crest separator for crests Z and Z ′ in Ĝ is a crest separator
S that satisfies the following conditions:

• S is on a ridge between Z and Z ′ and

• S separates Z from Z ′ in Ĝ.

The crest separator in Figure 3.4 is a critical crest separator for Z and Z ′.
The next observation summarizes some properties of a set of crest separators. These

propterties are implicit in the proofs of Lemmas 6-8 of [54] and explicit in Lemmas 3.8-3.12
of [55], and give a base for our algorithm.

Observation 2. [54, 55] For any subset W of r crests Z1, .., Zr in Ĝ, there is a set S of
r − 1 crest separators with the following properties:

(A) The crest separators of S decompose Ĝ into extended components P1, ..., Pr such that
each extended component Pi contains exactly one crest Zi ∈ W. Moreover, no crest
separator in S contains a vertex of any Zi in W.

(B) For each pair of extended components Pi and Pj, there is a critical crest separator
S ∈ S for Zi and Zj. Moreover, S has the minimum number of top vertices among
all critical crest separators for Zi and Zj.

(C) Let TS be the graph that V (TS) = {P1, ..., Pr} and there is an edge {Pi, Pj} ∈ E(TS)
if there is a crest separator S = E(Pi) ∩ E(Pj) in S. Then TS is a tree.

The tuple (Ĝ,S,W) is called a good mountain structure tree (GMST). We call TS the
underlying tree of the GMST (Ĝ,S,W). For each edge {Pi, Pj} in TS , the S ∈ S with
E(S) = E(Pi)∩E(Pj) is called the crest separator on edge {Pi, Pj}. The following result is
implied implicitly in [54] and later stated in [46] and [55]. Our algorithm will use this result
for computing a GMST.

Lemma 3.4.1. [46, 54, 55] Given an arbitrary subset W of crests in an O(k)-outerplanar
Ĝ, a GMST (Ĝ,S,W) can be computed in O(|V (Ĝ)|k) time.
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Figure 3.5: Graph Q′ obtained from cutting Q along cp(S).

Given a GMST (Ĝ,S,W), we choose an arbitrary vertex Pi in TS as the root. Each
crest separator S ∈ S decomposes Ĝ into two subgraphs, one contains Pi, called the upper
component by S, and the other does not, called the lower component by S. An extended
component P is enclosed by a converged crest separator S if P \ cp(S) does not have any
edge incident to f0. For vertices u and v in an extended component P , let distP (u, v) denote
the length of a shortest path in P between u and v. For vertices u and v in a disjoint crest
separator S, let distS(u, v) be the length of the path in S between u and v. For vertices u
and v in a converged crest separator S, let distS(u, v) be the length of the shortest path in
S between u and v if at least one of u and v is in cp(S), otherwise let distS(u, v) be the
length of the path in S between u and v that does not contain the the low-point of S.

A disjoint crest separator S decomposes Ĝ into two extended components P and Q. For
P (resp. Q), let GSP (resp. GSQ) be the weighted graph on the vertices in S such that for
every pair of vertices u and v in S, if distP (u, v) < distS(u, v) (resp. distQ(u, v) < distS(u, v))
then there is an edge {u, v} with weight distP (u, v) in GSP (resp. with weight distQ(u, v)
in GSQ). Edge {u, v} is called a pseudo shortcut. If P is the upper component by S then
GSP is called the upper pseudo shortcut set of S, denoted by upPSS(S) and GSQ the lower
pseudo shortcut set of S, denoted by lowPSS(S), otherwise GSP is called the lowPSS(S)
and GSQ the upPSS(S).

A converged crest separator S decomposes Ĝ into two extended components and exactly
one extended component P is enclosed by S. For P , let GSP be defined as in the previous
paragraph. Let Q be the other extended component that is not enclosed by S. A plane
graph Q′ can be created from Q by cutting Q along cp(S): create a duplicate v′ for each
vertex v in cp(S) and create a duplicate e′ for each edge e in cp(S) (see Figure 3.5). Let
S′ be the subgraph induced by the edges of S and the duplicated edges. For every pair of
vertices u, v in S′, let distS′(u, v) be the length of the path in S′ between u and v. For Q′,
let GSQ′ be the weighted graph on the vertices on S′ such that for every pair of vertices u
and v, if distQ′(u, v) < distS′(u, v) then there is an edge {u, v} with weight distQ′(u, v) in
GSQ′ . If P is the upper component by S then GSP is called the upPSS(S) and GSQ′ the
lowPSS(S), otherwise GSP is called the lowPSS(S) and GSQ′ the upPSS(S).

Each crest separator S ∈ S decomposes Ĝ into two extended components P and Q

and we assume P is the upper component and Q is the lower component. For each edge
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e = {u, v} in upPSS(S) (resp. lowPSS(S)), the weight of e is used to decide whether a
minimum face-separating cycle should use a shortest path between u and v in P (resp. Q)
or not, and if so, any shortest path between u and v in P (resp. Q) can be used (there
may be multiple shortest paths between u and v in P (resp. Q)). So we say edge {u, v}
in upPSS(S) (resp. lowPSS(S)) represents any shortest path between u and v in P (resp.
Q). The computation of upPSS(S) (resp. lowPSS(S)) also includes computing one shortest
path between u and v in P (resp. Q) for every edge {u, v} in upPSS(S) (resp. lowPSS(S)).

The next observation summarizes some properties that provide a base for our algorithm.

Observation 3. [54, 55] For down path, GMST (Ĝ,S,W), upPSS(S) and lowPSS(S), the
following properties hold:

(I) For any pair of vertices u and v in Ĝ, distĜ(u, v) ≥ |hĜ(u)− hĜ(v)|.

(II) For any pair of vertices u and v in a same down path of S, distS(u, v) = |hĜ(u) −
hĜ(v)| = distĜ(u, v).

(III) If Ĝ is O(k)-outerplanar then for every S ∈ S, there are O(k) vertices and O(k) edges
in S and every edge in upPSS(S) (lowPSS(S)) has weight O(k).

(IV) If Ĝ is O(k)-outerplanar,
∑
Pi∈TS |E(Pi)| = |E(Ĝ)|+O(|S|k).

(V) For every S ∈ S and each edge e = {u, v} in upPSS(S)/lowPSS(S), any shortest path
represented by e has length smaller than distS(u, v) and any path between u and v

with length smaller than distS(u, v) contains no vertex of height greater than hĜ(S)
and no more than t− 1 vertices of height hĜ(S), where t is the number of top vertices
of S.

(VI) Let S be the crest separator on edge {Pi, Pj} in TS . Assume that Zi and Zj are in
the upper component P and lower component Q by S, respectively. For every edge
e = {u, v} in upPSS(S)/lowPSS(S), any shortest path represented by e has length
smaller than distS(u, v) and for any path Pe between u and v in P (resp. Q) with
length smaller than distS(u, v), Pe and the segment of S between u and v that contains
a top vertex of S form a cycle which separates Zi (resp. Zj) from f0.

Properties (I)-(IV) in Observation 3 are straightforward from the related definitions.
Property (V) is shown in Lemma 12 of [54] and Property (VI) is proved in Lemma 19 of
[54] and Lemma 5.2 of [55]. From the properties in Observation 3, the pseudo shortcut sets
upPSS(S) and lowPSS(S) can be computed as shown in the next lemma (Lemma 4.12 of
[55] and stated in [46]). Our algorithm will use Lemma 3.4.2 for computing the pseudo
shortcut sets.

Lemma 3.4.2. [55] Given a GMST (Ĝ,S,W), upPSS(S) and lowPSS(S) for all S ∈ S
can be computed in O(|V (Ĝ)|k + |W|k3) time.
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3.4.2 Algorithm for Theorem 3.1.3

For a level 1 node X and the set ZX of child nodes in the layer tree LT(G|U, ∂(U), k, α)
in Algorithm 1, recall that GX is the plane graph converted from the plane hypergraph
(G|X)|ZX and HX is the weighted plane graph computed from GX as described in Sec-
tion 3.3. Recall that WX = {Z ∈ ZX | |CZ | > k}. We apply the techniques in [53, 54] to
decompose HX into extended components such that each extended component contains face
fZ of HX for exactly one Z ∈ WX . It may not be straightforward to decompose HX directly
by the techniques of [53, 54] because some of the techniques are described for (unweighted)
graphs while HX is a weighted graph (edges have weight 1/2 or 1). To get a decomposition
of HX as required, we first construct an almost triangulated graph ĜX from GX with each
Z ∈ ZX represented by a crest of ĜX ; then by the techniques of [53, 54] find a GMST
of ĜX that decomposes ĜX into extended components, each extended component contains
exactly one crest; next construct an almost triangulated weighted graph ĤX from HX with
each Z ∈ ZX represented by a crest of ĤX ; and finally compute a set of crest separators
in ĤX based on the GMST of ĜX to decompose ĤX into extended components such that
each extended component ĤX contains exactly one crest Z ∈ WX (and thus each extended
component of HX contains exactly one face fZ).

We first describe the construction of ĜX . Let fX be the outer face of GX . For every
Z ∈ ZX , we add a vertex, also denoted by Z, and edges {u, Z} for every u ∈ V (fZ) to
face fZ in GX . For every natural face f of GX with |V (f)| > 3, we select an arbitrary
vertex v of V (f) with hGX (v) = dGX (f) (hGX (v) is the height of vertex v and dGX (f) is
the depth of face f) as the low-point of f , denoted by lp(f), and we add edges {u, lp(f)} to
face f for every u ∈ V (f) and not adjacent to lp(f). Let ĜX be the graph obtained from
adding the vertices and edges above. Then ĜX is almost triangulated. Figure 3.4 shows a
ĜX constructed from a GX .

GX is a subgraph of ĜX . For every u ∈ V (GX) ∩ V (ĜX), hGX (u) = hĜX (u). Every
vertex Z added to face fZ of GX is a crest of ĜX and every crest of ĜX is a vertex Z added
to fZ . Recall thatWX = {Z ∈ ZX | |CZ | > k} is a subset of crests in ĜX . By Lemma 3.4.1,
we can find a GMST (ĜX ,S,WX).

Next we describe how to construct ĤX from HX . For every Z ∈ ZX , we add a vertex,
also denoted by Z, and edges {u, Z} for every u ∈ V (fZ) to face fZ of HX . We assign
each edge {u, Z} weight 1. Let ĤX be the graph computed above. Then ĤX is almost
triangulated. Notice that V (GX) ⊆ V (ĜX) ⊆ V (ĤX), V (HX) ⊆ V (ĤX), E(GX) ⊆ E(ĜX),
E(GX) ⊆ E(HX) ⊆ E(ĤX) and |V (ĤX)| = O(|V (GX)|). Each vertex u ∈ V (ĤX) is either
a vertex in ĜX or a vertex added to a natural face of GX . We define the height hĤX (u) of
each vertex u of ĤX as follows:

• hĤX (u) = hĜX (u) if u ∈ V (ĤX) ∩ V (ĜX).

• hĤX (u) = dGX (f) + 1
2 if u = uf is the vertex added to a natural face f of GX .
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Then each vertex Z is a crest of ĤX and each crest of ĤX is a vertex Z. The height of
a crest separator, the depth of a path and a face, and a ridge in ĤX are defined based
on hĤX (u) similarly as those in Section 3.4.1. Notice that for every edge e of ĜX , either
e ∈ E(ĜX)∩E(ĤX) or e is an edge added to a natural face f of GX during the construction
of ĜX .

Lemma 3.4.3. Let Z and Z ′ be two crests in ĜX and ĤX . For any ridge R in ĜX and any
ridge R′ in ĤX between Z and Z ′, either dĤX (R′) = dĜX (R) or dĤX (R′) = dĜX (R) + 1

2 .

Proof. For ridge R, if we replace every edge e = {u, v} of R that is added to a natural
face f with edges {u, uf} and {uf , v} in ĤX , where uf is the vertex added to face f when
constructing HX from GX , we get a path Q between Z and Z ′ in ĤX . Since hĤX (uf ) =
min{hĤX (u), hĤX (v)}+ 1

2 , dĤX (Q) = dĜX (R), that is, Q and R have the same depth. Recall
that a ridge between Z and Z ′ is a path between Z and Z ′ that has the maximum depth
among all paths between Z and Z ′. dĤX (R′) ≥ dĜX (R).

Ridge R′ can be partitioned into subpaths such that each subpath either is an edge
e ∈ E(ĜX) ∩ E(ĤX) or has two edges {u, uf}, {uf , v}, where uf is the vertex added to a
natural face of GX when constructing HX from GX . Since hĤX (uf ) = dGX (f) + 1

2 , for each
subpath {u, uf}, {uf , v} in R′, there is a path Pf between u and v in ĜX with dĜX (Pf ) ≥
dĜX (f) = hĤX (uf ) − 1

2 . If we replace every subpath {u, uf}, {uf , v} of R′ by path Pf , we
get a path P between Z and Z ′ in ĜX with dĤX (R′) = dĜX (P ) or dĤX (R′) = dĜX (P ) + 1

2 .
From this and dĤX (R′) ≥ dĜX (R), either dĤX (R′) = dĜX (R) or dĤX (R′) = dĜX (R)+ 1

2 .

Similar to the down vertex and down edge in ĜX , we define the down vertex and
down edge for each vertex of ĤX . Recall that any vertex v adjacent to vertex u with
hĤX (v) < hĤX (u) can be selected as the down vertex of u. We choose the down vertex for
each u of ĤX as follows:

• if u ∈ V (ĜX) and the down edge {u, v} of u in ĜX is in E(ĜX) ∩ E(ĤX), then let v
be the down vertex of u in ĤX ;

• if u ∈ V (ĜX) and the down edge {u, v} of u in ĜX is an edge added to a natural face
f of GX , then let the vertex uf added to f in ĤX be the down vertex of u;

• otherwise, u is not in ĜX and is the vertex uf added to a natural face f of GX in
ĤX ; then let the low-point lp(f) be the down vertex of u.

The edge between vertex u and its down vertex is the down edge of u.
Given a GMST (ĜX ,S,WX), for every crest separator S ∈ S, we convert each S ∈ S

into a subgraph D of ĤX as follows: for every edge e = {u, v} in S, if e is also an edge
of ĤX then e is included in D, otherwise edges {u, uf}, {uf , v} of ĤX are included in D,
where uf is the vertex added to face f of GX when HX is created from GX . D is called the
ĤX-converted graph of S.
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Lemma 3.4.4. Let S ∈ S be a critical crest separator for crest Z and Z ′ in ĜX such that
S has the minimum number of top vertices among the critical crest separators for Z and
Z ′. Let D be the ĤX-converted graph of S. Then either

• D is a critical crest separator for Z and Z ′ in ĤX , and D has the minimum number
of top vertices among the critical crest separators for Z and Z ′; or

• D is a crest separator that separates Z from Z ′, hĤX (D) = dĤX (R′) + 1/2, and every
critical separator for Z and Z ′ in ĤX has two top vertices.

Proof. Recall that a crest separator S in S consists of two paths L1 and L2, where L1 is the
down path of some vertex u and L2 is composed of the top edge {u, u′} and the down path
of u′, where u′ is not in L1 and hĤX (u′) ≤ hĤX (u). Let {u, u′} be the top edge of S. The
ĤX -converted graph of S (i.e. D) consists of two paths L′1 and L′2. There are three cases:

1. {u, u′} ∈ E(ĤX) ∩ E(ĜX). L′1 is the down path from vertex u in ĤX and L′2 is
composed of the top edge {u, u′} and the down path from u′ in ĤX .

2. {u, u′} ∈ E(ĜX)\E(ĤX) and hĜX (u) = hĜX (u′)+1. L′1 is the down path from vertex
u in ĤX and L′2 is composed of the top edge {u, uf} and the down path from uf in
ĤX .

3. {u, u′} ∈ E(ĜX) \ E(ĤX) and hĜX (u) = hĜX (u′). L′1 is the down path from vertex
uf . If u = lp(f) then L′2 is composed of the top edge {uf , u′} and the down path from
u′, otherwise, L2 is composed of the top edge {uf , u} and the down path from u.

In all cases, D is a crest separator that separates Z from Z ′ in ĤX . Let R be a ridge between
in ĜX and R′ be a ridge in ĤX between Z and Z ′. By Lemma 3.4.3, dĤX (R′) ≥ dĜX (R).
Since D separates Z from Z ′ in ĤX , D intersects R′, implying hĤX (D) ≥ dĤX (R′). Because
S is a critical crest separator for Z and Z ′ in ĜX , hĜX (S) = dĜX (R). Therefore, hĤX (D) ≥
dĤX (R′) ≥ dĜX (R) = hĜX (S).

In Cases 1 and 2, hĤX (D) = hĜX (S), implying hĤX (D) = dĤX (R′) = dĜX (R) =
hĜX (S). So D is a critical separator for Z and Z ′ in ĤX . In these two cases, D has the
same number of top vertices as that of S. In Case 2, S has one top vertex and thus D has
the minimum number of top vertices. In Case 1, if S has one top vertex then D has the
minimum number of top vertices. Assume that S have two top vertices and there is a critical
crest separator D′ for Z and Z ′ in ĤX with one top vertex. Because dĤX (R′) = dĜX (R),
there is a critical separator S′ for Z and Z ′ in ĜX with one top vertex, contradicting with
the fact that S is a critical crest separator for Z and Z ′ with the minimum number of top
vertices. Therefore, D has the minimum number of top vertices among all the critical crest
separators for Z and Z ′.

In Case 3, S has two top vertices and hĤX (D) = hĜX (S)+ 1
2 = dĜX (R)+ 1

2 . If dĤX (R′) =
dĜX (R) + 1

2 , then hĤX (D) = dĤX (R′) and D is a critical crest separator for Z and Z ′ in
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ĤX with exactly one top vertex. Otherwise, by Lemma 3.4.3, dĤX (R′) = dĜX (R) and
hĤX (D) = dĤX (R′) + 1/2. Assume that there is a critical crest separator for Z and Z ′ in
ĤX with one top vertex. Then there is a critical crest separator in for Z and Z ′ in ĜX with
one top vertex, contradicting with the fact that S has two top vertices and is a a critical
crest separator for Z and Z ′ with the minimum number of top vertices.

The next lemma is straightforward from Observation 2 and Lemma 3.4.4.

Lemma 3.4.5. Given a GMST (ĜX ,S,WX), let D = {D|D is the ĤX-converted graph of S
for every S ∈ S} and assume that WX has r crests Z1, .., Zr. Then the following properties
holds for D:

(A) The crest separators of D decompose ĤX into r extended components P1, ..., Pr such
that each extended component Pi has exactly one crest Zi. Moreover, no crest separator
D in D contains a crest in WX , that is, each extended component contains the edges
in E(fZ) of HX for exactly one Z ∈ WX .

(B) For each pair of extended components Pi and Pj, either

(B1) there is a critical crest separator D ∈ D for Zi and Zj such that D has the
minimum number of top vertices among the critical crest separators for Zi and
Zj in ĤX ; or

(B2) D is a crest separator that separates Z from Z ′, and hĤX (D) = dĤX (R′) + 1/2;
and every critical crest separator for Z and Z ′ in ĤX has two top vertices.

(C) Let TD be the graph that V (TD) = {P1, ..., Pr} and there is an edge {Pi, Pj} ∈ E(TD)
if there is a crest separator D = E(Pi) ∩ E(Pj) in D. Then TD is a tree.

Definition 3.4.9. The tuple (ĤX ,D,WX) is called a pseudo good mountain structure tree
(pseudo GMST) for WX .

For each D ∈ D and vertices u, v of D, distD(u, v), upPSS(D) and lowPSS(D) are
defined similarly as distS(u, v), upPSS(S) and lowPSS(S) for crest separator S and u, v of
S in Section 3.4.1. As shown in the next lemma, Properties (I) to (VI) in Observation 3
hold for a pseudo GMST, upPSS(D) and lowPSS(D).

Lemma 3.4.6. Properties (I) to (V I) in Observation 3 hold for a pseudo GMST (ĤX ,D,WX),
upPSS(D) and lowPSS(D), D ∈ D.

Proof. Property (I) and Property (II) hold trivially from the definition of hĤX (u) for vertex
u and the definition of down path.

If ĤX is O(k)-outerplanar, then the height of D is O(k) and there are O(k) vertices and
O(k) edges in D because the weight of each edge in ĤX is 1 or 1/2. From Property (II),
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every edge in upPSS(D) (lowPSS(D)) has weight O(k) because distD(u, v) = O(k) for any
u and v in D. Thus, Property (III) holds.

Every D ∈ D is the ĤX -converted graph of an S ∈ S and |E(D)| = O(|E(S)|). From
this, and |D| = |S|,

∑
Pi∈TD |E(Pi)| = |E(ĤX)|+O(|D|k). Thus, Property (IV) holds.

From Property (II), for each edge e = {u, v} in upPSS(S)/lowPSS(S), u and v must
be in different down paths of D and distD(u, v) = 2hĤX (D)− hĤX (u)− hĤX (v) + (t− 1),
where t ∈ {1, 2} is the number of top vertices of D. Any vertex w of height greater than
hĤX (D) in ĤX has height at least hĤX (D) + 1/2. From Property (I), any path between u
and v that contains w has length at least 2hĤX (D) + 1 − hĤX (u) − hĤX (v) ≥ distD(u, v).
Similarly, any path between u and v that contains t vertices of height hĤX (D) has length at
least distD(u, v). Therefore, any path between u and v with length smaller than distD(u, v)
contains no vertex of height greater than hĤX (D) and no more than t− 1 vertices of height
hĤX (D). Thus, Property (V) holds.

We prove Property (VI) by contradiction. Let D ∈ D be the crest separator on edge
{Pi, Pj} in TD. We assume that Zi and Zj are in the upper component and lower component
by D, respectively. For each edge e = {u, v} in upPSS(D) (resp. lowPSS(D)), let Pe be any
path between u and v in the upper component P (resp. lower component Q) with length
smaller than distD(u, v) and let D(u, v) be the subpath of D between u and v and containing
a top vertex of D. Then Pe and D(u, v) form a cycle in ĤX . Assume for contradiction that
the cycle formed by Pe and D(u, v) does not separate Zi (resp. Zj) from fX . Let R

′ be a
ridge between Zi and Zj in ĤX . LetD′ be the subgraph of ĤX obtained by replacingD(u, v)
with Pe in D. Then D′ separates Zi from Zj and thus, intersects with R′, and D′ contains at
least one vertex w with hĤX (w) = dĤX (R′). Notice that every vertex of D′ \ Pe has height
smaller than dĤX (R′). So Pe contains w. Consider Property (B1) in Lemma 3.4.5 where
hĤX (D) = dĤX (R′) and D has the minimum number of top vertices among all critical crest
separators for Zi and Zj . If D has one (t = 1) top vertex, from Property (V), Pe contains
no (t − 1 = 0) vertex of height dĤX (R′), a contradiction. If D has two top vertices then
every critical crest separator for Zi and Zj has two top vertices and w is the only vertex of
height dĤX (R′) in Pe. However, this means that D′ is a critical crest separator for Zi and
Zj with one top vertex w, a contradiction. Consider Property (B2) in Lemma 3.4.5, where
hĤX (D) = dĤX (R′) + 1/2 and every critical crest separator for Zi and Zj in ĤX has two
top vertices. As proved, if Pe has one vertex of height dĤX (R′), we have a contradiction. If
Pe has two vertices of height greater than or equal to dĤX (R′), the length of Pe is at least
distD(u, v), a contradiction. This gives Property (VI).

Given a GMST (ĜX ,S,WX), a pseudo GMST (ĤX ,D,WX) can be computed in O(|S|k)
time. Lemma 3.4.2 holds for a pseudo GMST because the lemma only relies on Properties
(I)-(VI) in Observation 3. The computation of upPSS(D) and lowPSS(D) in Lemma 3.4.2
(implicitly) uses a linear time algorithm by Thorup [77] for the single shortest path problem
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in graphs with integer edge weight as a subroutine. If the unique shortest paths are required,
the techniques in Section 3.3 to guarantee the unique shortest paths will introduce addi-
tional time overhead for computing upPSS(D) and lowPSS(D). To avoid the additional
time overhead, we do not assume the uniqueness of shortest paths in the algorithm for
Theorem 3.1.3 when we compute minimum separating cycles. In Section 3.3, we do not
have crossing minimum separating cycles because of the uniqueness of shortest paths. How-
ever, two minimum separating cycles computed without the assumption of unique shortest
paths may cross with each other. We eliminate each crossing cycle set by exploiting some
new properties of pseudo GMST, upPSS(D) and lowPSS(D), and then compute a good
separator AX .

Recall that ĤX is constructed from HX by adding vertex (crest) Z and edges {u, Z}, u ∈
V (fZ), to face fZ inHX . Each extended component P of a pseudo GMST (ĤX ,D,WX) con-
tains exactly one crest Z ∈ WX . We show in the proof of Lemma 3.4.7 later that a minimum
(fZ , fX)-separating cycle can be computed based on (ĤX ,D,WX), upPSS(D)/lowPSS(D),
D ∈ D, and the approaches of [18, 69].

Given a set WX of crests in ĤX , our algorithm for Theorem 3.1.3 computes a pseudo
GMST (ĤX ,D,WX), calculates upPSS(D) and lowPSS(D) for every crest separatorD ∈ D,
and finds a minimum (fZ , fX)-separating cycle for every Z ∈ WX using the pseudo GMST,
upPSS(D) and lowPSS(D). More specifically, we replace Lines 7 − 16 in Algorithm 1 by
Procedure Separator-Based below.

Recall that for each Z ∈ ZX , the boundary cycle CZ for Z is the cycle formed by all
edges incident to face fZ . Procedure Separator-Based first tries to find (fZ , fX)-separating
cycles from the boundary cycles CZ of Z ∈ ZX . The property of boundary cycles shown in
the next proposition implies that the set of boundary cycles is non-crossing and there are
O(m) edges in these cycles.

Proposition 1. For any distinct Z,Z ′ ∈ ZX , CZ and CZ′ share at most one common
vertex.

Proof. Assume that CZ and CZ′ share more than one vertex. Then Z ∪ Z ′ is biconnected,
contradicting with the fact that each Z ∈ ZX is a biconnected component (i.e., a maximal
biconnected subgraph).

We now analyze the time complexity of Procedure Separator-Based.

Lemma 3.4.7. The time complexity of Lines 1 − 18 in Procedure Separator-Based is
O(|E(HX)|k2).

Proof. Let m be the number of edges in HX . Then |E(ĜX)| = |E(ĤX)| = O(m). So
Lines 1 − 2 takes O(m) time. By Proposition 1,

∑
Z∈ZX |CZ | = O(m). Therefore, for all

Z ∈ ZX \ WX , the (fZ , fX)-separating cycles can be found in O(m) time (Lines 3 − 5).
For each crest Z ∈ WX , CZ has more than k edges in HX . Therefore, |WX | = O(m/k). By
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Procedure Separator-Based
Input: A plane hypergraph (G|X)|ZX and an integer k ≥ 2.
Output: Either a good separator AX for ZX and X, or a (k + 1)×

⌈
k+1

2

⌉
cylinder

minor of G.
1 compute GX , HX , ĜX , ĤX from (G|X)|ZX ;
2 mark every Z ∈ ZX as un-separated;
3 for every Z ∈ ZX with |CZ | ≤ k do
4 take CZ as a (fZ , fX)-separating cycle and mark Z as separated;
5 end
6 let WX = {Z ∈ ZX | |CZ | > k};
7 compute a GMST (ĜX ,S,ZX) by Lemma 3.4.1;
8 compute a pseudo GMST (ĤX ,D,WX) from (ĜX ,S,WX);
9 compute upPSS(D) and lowPSS(D) for every crest separator D ∈ D by Lemma 3.4.2;

10 while not every Z ∈ ZX is marked as separated do
11 choose an arbitrary un-separated Z, compute a minimum (fZ , fX)-separating

cycle C using the pseudo GMST (ĤX ,D,WX), upPSS(D) and lowPSS(D);
12 if the length of C is greater than k then
13 return a (k + 1)×

⌈
k+1

2

⌉
cylinder minor by Lemma 3.3.1;

14 else
15 take C as the minimum (fZ , fX)-separating cycle for every Z ∈ ins(C);
16 mark every Z in ins(C) as separated;
17 end
18 end
19 Compute AX from the (minimum) face-separating cycles obtained in Lines 4 and 15.
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Figure 3.6: (a) Extended component P of ĤX , (b) extended component P ′ of HX and (c)
graph P (L).

Lemmas 3.4.1 and 3.4.2, a pseudo GMST (ĤX ,D,WX), upPSS(D) and lowPSS(D) for all
D ∈ D can be computed in O(mk + |WX |k3) = O(mk2) time (Lines 6− 9).

For an un-separated crest Z ∈ WX , let P be the extended component in the pseudo
GMST (ĤX ,D,WX) containing Z (see Figure 3.6 (a)). By Property (A) in Lemma 3.4.5,
removing Z and the edges incident to Z from P gives an extended component P ′ of HX

containing face fZ ofHX (see Figure 3.6 (b)). Let x be an arbitrary vertex in P incident to Z
and L be the down path from x to a vertex w ∈ V (fX). Then L is a shortest path between
x and w in HX and can be found in O(k) time. Let P (L) be the weighted plane graph
obtained from P ′ by cutting along L: for each vertex u in L create a duplicate u′, for each
edge e in L create a duplicate e′ and create a new face bounded by edges of E(fX), E(fZ),
L and their duplicates (see Figure 3.6 (c)). Let HX(L) be the weighted graph obtained
from HX by replacing P ′ with P (L). For each vertex u in path L, let Cu be a shortest
path between u and its duplicate u′ in HX(L). Let y be a vertex in L such that Cy has
the minimum length among the paths Cu for all vertices u in L. Then Cy gives a minimum
(fZ , fX)-separating cycle in HX [69].

For each extended component P in pseudo GMST (ĤX ,D,WX), let D̃ be the crest
separator on the edge between P and its parent node and letDP be the set of crest separators
on an edge between P and a child node of P in TD. From Property (A) in Lemma 3.4.5,
Property (V) in Lemma 3.4.6, any shortest path represented by an edge in upPSS(D) or
lowPSS(D), D ∈ D, does not contain any vertex of V (ĤX)\V (HX). Therefore, Cu for every
u in L can be partitioned into subpaths such that each subpath is either entirely in P (L)
or is represented by an edge in upPSS(D̃) or lowPSS(D), D ∈ DP . Let P ∗ be the weighted
graph consisting of the edges of P (L), upPSS(D̃) and lowPSS(D), D ∈ DP . Notice that
for every edge e in upPSS(D̃) and lowPSS(D), D ∈ DP , a shortest path represented by e
is also computed. Then it is known (Section 2.2 in [18]) that a minimum face separating
cycle Cy can be computed in O(t(P ∗) log |V (L)| + |V (Cy)|) = O(t(P ∗) log k + |V (Cy)|)
time, where t(P ∗) is the time to find a shortest path Cu in P ∗ for any u in L. For each
edge of P ∗, we can multiply the edge weight by 2 to make each edge weight a positive
integer. By the algorithm in [77], a shortest path Cu can be computed in linear time, that
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is, t(P ∗) = O(|E(P ∗)|). Therefore, from the fact that each crest separator has O(k) vertices
(Property (III) in Lemma 3.4.6), it takes

O((|E(P (L))|+ |E(upPSS(D̃))|+ | ∪D∈DP E(lowPSS(D))|) log k + |V (Cy)|)

= O((|E(P )|+ ∆(P )k2) log k + |V (Cy)|)

time to compute a minimum (fZ , fX)-separating cycle, where ∆(P ) is the number of edges
incident to P in TD. If Cy has length at most k then |V (Cy)| = O(k), otherwise |V (Cy)| =
O(m). Assume that Cy for every Z ∈ WX has length at most k. From Property (C) in
Lemma 3.4.5, Property (IV) in Lemma 3.4.6 and |V (TD)| = |WX | = O(m/k), the time for
computing the minimum (fZ , fX)-separating cycles for all crests Z ∈ WX is

∑
P∈V (TD)

O((|E(P )|+ ∆(P )k2) log k + k) = O((m+ |WX |k + |WX |k2) log k + |WX |k)

= O(mk log k).

Therefore, Line 11 takes O(mk log k) time in the whole while loop.
If there is a minimum face-separating cycle Cy with length greater than k, it takes

O((|E(P )|+ ∆(P )k2) log k +m) = O(mk log k)

time to compute this Cy and O(m) time to compute a cylinder minor (Lines 12−13). Lines
15− 16 is trivial and takes O(m) time in total.

Summing up, the total time for Lines 1→ 18 is O(|E(HX)|k2).

We now show how to compute a good separator AX in Line 19 of Procedure Separator-
Based. By Proposition 1, any two boundary cycles do not cross with each other. Each
boundary cycle is the boundary of a face in GX and faces are disjoint. The height of any
vertex in a boundary cycle is at least the height of any D ∈ D. Therefore, from Property (B)
in Lemma 3.4.5 and Property (V) in Lemma 3.4.6, a boundary cycle does not cross with a
minimum separating cycle for any crest computed in Line 12 of Procedure Separator-Based.
However, a minimum separating cycle for one crest may cross with a minimum separating
cycle for another crest. The next lemma gives a base for eliminating crossing separating
cycles. We call C computed in Line 12 of Procedure Separator-Based the cycle computed
for Z.

Lemma 3.4.8. Let C1 be the minimum (fZ , fX)-separating cycle computed for crest Z in
Line 12 of Procedure Separator-Based. Let C2 be the minimum (fZ′ , fX)-separating cycle
computed for crest Z ′ after C1 in Line 12 of Procedure Separator-Based. If C1 and C2 cross
with each other, then there is a cycle C such that ins(C) = ins(C1)∪ ins(C2) and the length
of C is the same as that of C2.
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Figure 3.7: A pair of crossing minimum separating cycles C1 and C2.

Proof. Assume that P1 and Pl in the underlying tree TD contain Z and Z ′, respectively. Let
{P1, P2}, {P2, P3}, ..., {Pl−1, Pl} be the path between P1 and Pl in TD and let the crest in Pi
be Zi for 1 ≤ i ≤ l (Z = Z1 and Z ′ = Zl). It is shown in (Lemma 30) in [54] and (Lemma
5.9) in [55] that if Zi ∈ ins(C1) then every Zj ∈ ins(C1) for j < i, and if Zi ∈ ins(C2) then
every Zj ∈ ins(C2) for j > i. Because C2 is computed after C1, Z ′ /∈ ins(C1). So there is a
Zi, 1 ≤ i < l, such that Zi ∈ ins(C1) but Zj 6∈ ins(C1) for j > i.

Let D be the crest separator for Zi and Zi+1 in the pseudo GMST (see Figure 3.7). We
assume without loss of generality that Z (resp. Z ′) is in the upper component P (resp. lower
component Q) by D. From Property (VI) in Lemma 3.4.6 and the fact that Zi+1 /∈ ins(C1),
C1 contains no (shortest path represented by) edge in lowPSS(D). Notice that that D
separates Z from Z ′ in ĤX . From the fact that C1 and C2 cross with each other and the
fact that C1 contains no edge in lowPSS(D), C2 has a subpath C2(u, v) represented by
an edge e = {u, v} in upPSS(D), where u and v are in different down paths of D. By
Property (VI) in Lemma 3.4.6, Zi ∈ ins(C2).

Since C1 and C2 cross with each other, they intersect at at least two vertices. Let u1 and
v1 be the first vertex and last vertex at which cycle C2 intersects cycle C1, respectively, when
we proceed on C2(u, v) from u to v. Subpath C2(u, v) consists of three subpaths: C2(u, u1)
between u and u1, C2(u1, v1) between u1 and v1 and C2(v, v1) between v and v1. Because
cycle C1 separates Zi from Zi+1, it contains a subpath C1(u1, v1) between u1 and v1 that
intersects the ridge between Zi and Zi+1. Figure 3.7 shows the subpaths above. Let Pe be
the path between u and v consisting of subpaths C2(u, u1), C1(u1, v1) and C2(v, v1). Let
D(u, v) be the subpath of D between u and v that contains a top vertex of D. Then Pe and
D(u, v) form a closed walk W . On the other hand, there is a curve between Zi and fX such
that the curve intersects C1 and C2 at ((C1\C1(u1, v1))∪C2(u1, v1))\{u1, v1} only and does
not intersect D (see Figure 3.7). Therefore, the closed walk W does not separates Zi from
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fX . From this and Property (VI) in Lemma 3.4.6, the length of Pe is at least distD(u, v).
Let l1 be the length of Pe, l2 be the length of C2(u, v) and ls be the sum of the length of
C2(u, u1) and that of C2(v, v1). Then the length of C1(u1, v1) is l1 − ls and the length of
C2(u1, v1) is l2 − ls. Since l2 < distD(u, v) ≤ l1, the length of C2(u1, v1) is smaller than
that of C1(u1, v1). Therefore, Z ∈ ins(C2) because otherwise, we can replace C1(u1, v1) with
C2(u1, v1) to get a separating cycle for Z with a smaller length, a contradiction to that C1

is a minimum separating cycle for Z.
For each connected region R in ins(C1)\ins(C2), the boundary of R consists of a subpath

C1(R) of C1 and a subpath C2(R) of C2. The lengths of C1(R) and C2(R) are the same,
otherwise, we can get a separating cycle for Z or Z ′ with length smaller than that of C1 or
C2, respectively, a contradiction to that C1 is a minimum separating cycle for Z and C2 is
a minimum separating cycle for Z ′.

We construct the cycle C for the lemma as follows: Initially C = C2. For every connected
region R in ins(C1) \ ins(C2), we replace C2(R) by C1(R). Then ins(C) = ins(C1)∪ ins(C2)
and has the same length as that of C2.

By applying Lemma 3.4.8 repeatedly, we get the next lemma to eliminate a set of crossing
minimum separating cycles.

Lemma 3.4.9. Let C1, C2, ...Ct be a set of crossing minimum separating cycles computed
in Line 15 of Procedure Separator-Based such that every Ci, 1 < i ≤ t, is computed after
Ci−1. Then there is a cycle C such that ins(C) = ins(C1) ∪ . . . ins(Ct) and the length of C
is the same as that of Ct.

Given a set of separating cycles computed in Line 4 and Line 15 in Procedure Separator-
Based, our next job is to eliminate the crossing minimum separating cycles and find a
good separator AX for ZX and X. The next lemma shows how to do this (Line 19 of
Procedure Separator-Based).

Lemma 3.4.10. Given the set of separating cycles of length at most k computed in Proce-
dure Separator-Based, a good separator AX for ZX and X can be computed in O(|E(ĤX)|)
time.

Proof. Let m = |E(HX)| and C be the set of (fZ , fX)-separating cycles for all Z ∈ ZX . Let
Γ be the subgraph of HX induced by the edges of all cycles in C. We orient each separating
cycle C ∈ C such that ins(C) is on the right side when we proceed on C following its
orientation and give C a distinct integer label λ(C). We create a directed plane graph ~Γ
with V (~Γ) = V (Γ) and

E(~Γ) = {(u, v)λ(C) | {u, v} ∈ E(C), C ∈ C,

and the orientation of C is from u to v.}.
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Figure 3.8: (a) embedding of Γ and (b) embedding of ~Γ.

Notice that if edge {u, v} of Γ appears in multiple cycles then ~Γ may have parallel arcs
from u to v. For simplicity, we may use (u, v) for arc (u, v)λ(C) when the label λ(C) is not
needed in the context. For each cycle C ∈ C, we denote the corresponding oriented cycle in
~Γ by ~C. The planar embedding of ~Γ is as follows: For each vertex u in ~Γ, the embedding of
u is the point of Σ that is the embedding of vertex u in Γ. For each edge e = {u, v} in Γ,
let re be a region in Σ such that e ⊆ re, re does not have any point of Γ other than e, and
re ∩ re′ = ∅ for distinct edges e and e′ of Γ (see Figure 3.8 (a)). Each arc ~e = (u, v)λ(C) in ~Γ
is embedded as a segment in region re, e = {u, v} (see Figure 3.8 (b)). We further require
the embeddings of arcs in ~Γ satisfying the left-embedding property: For each edge e = {u, v}
in Γ, if there is at least one arc from u to v and at least one arc from v to u in ~Γ then for
any pair of arcs ~e = (u, v) and ~e′ = (v, u), the embeddings of ~e and ~e′ form an oriented cycle
in re such that none of fZ and fX is on the left side when we proceed on the cycle following
its orientation (see Figure 3.8 (b)). Γ has a face which includes fX and we take this face
as the outer face f0 of ~Γ. Since each edge of HX appears in at most one boundary cycle
CZ , there are O(m) arcs (u, v)λ(CZ) for all Z ∈ ZX \ WX . Since |WX | = O(m/k) and the
minimum separating cycle C for every Z ∈ WX has at most k edges, Z ∈ WX . Therefore,
~Γ can be computed in O(m) time. For each face f in Γ, let ~E(f) be the set of arcs (u, v)
and (v, u) in ~Γ for each {u, v} ∈ E(f) in Γ.

A search on arc ~e = (u, v) means that we proceed on arc ~e from u to v. For each arc
~e = (u, v)λ(C), we define its next arc nx(~e) = (v, w)λ(C) and previous arc pv(~e) = (t, u)λ(C).
For arc ~e = (u, v)λ(C), let C(~e) be the oriented cycle that contains ~e and let L(~e) = { ~h1 =
nx(~e), .., ~ht}, t ≥ 1, be the set of outgoing arcs from v that ~hi, 2 ≤ i ≤ t, are on the
left side of C(~e) when we proceed on C(~e) following its orientation. We assume that arc
~hi, 1 ≤ i ≤ t, in L(~e) is the ith outgoing arc from v when we count the arcs incident
to v in the counter-clockwise order from nx(~e) to ~e. We define the leftmost arc from ~e,
denoted by lm(~e), as the ~hi ∈ L(~e) with the largest i such that for every 1 ≤ j ≤ i,
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Figure 3.9: For arc ~e = (u, v), nx(~e) = (v, v1), L(~e) = {(v, v1), (v, v2), (v, v3), (v, v4)} and
lm(~e) = (v, v3).

pv( ~hj) ∈ ins(C( ~h1))∪ · · · ∪ ins(C(~hj−1)) holds (see Figure 3.9 for an example). For each arc
~e = (u, v)λ(C), lm(~e) can be found by checking the arcs in L(~e), starting from nx(~e), in the
counter-clockwise order they are incident to v. A search on a sequence of arcs ~e1, ~e2, .. is
called a leftmost search if every ~ei+1 is lm(~ei) for i ≥ 1.

By performing a leftmost search on arcs of ~Γ, starting from an arbitrary arc in ~E(f0),
we can find a separating cycle ~Cm such that for any cycle ~C, C ∈ C, if ins( ~Cm)∩ ins(~C) 6= ∅
then ins(~C) ⊆ ins( ~Cm). We call ~Cm a maximal cycle. According to Lemma 3.4.9 and the
fact that every cycle C ∈ C has a length at most k, the length of ~Cm is at most k.

After finding ~Cm, we delete arcs in cycles ~C from ~Γ if ins(~C) ⊆ ins( ~Cm) to update ~Γ. We
continue the search on the updated ~Γ from an arbitrary arc in the updated ~E(f0) until all
arcs are deleted. Then for each Z ∈ ZX , there is a unique maximal cycle which separates Z
and X. For every arc ~e in a maximal cycle ~Cm, all the arcs in ins( ~Cm) are deleted after ~Cm

is found. Each arc is counted O(1) time in the computation for all leftmost arc searches.
Therefore, the total time complexity of finding all the maximal cycles is O(m).

For each maximal cycle ~Cm in ~Γ computed above, let Cm be the cycle in HX consisting
of edges corresponding to the arcs in ~Cm. For each Z ∈ ZX , there is a cycle Cm which
separates Z and X. Let AZ be the edge subset induced by Cm. Then the following holds.

1. |∂(AZ)| ≤ k (if AZ is induced by the boundary cycle CZ then |∂(AZ)| = |CZ | ≤ k,
otherwise AZ is induced by a cycle Cm of length at most k as shown in Lemma 3.4.8,
implying |∂(AZ)| ≤ k).

2. Because G|U is biconnected and ∂(AZ) ∈ E((G|U)|AZ , (G|U)|AZ is biconnected.

3. Due to the way we find the maximal cycles above, for every Z ∈ ZX , there is exactly
one subset AZ ∈ AX separating Z and X.

4. For distinct AZ , AZ′ ∈ AX , AZ ∩AZ′ = ∅.
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By Definition 1, AX is a good-separator for ZX and X.

We are ready to show Theorem 3.1.3 which is re-stated below.

Theorem 3.1.3. There is an algorithm that given a planar graph G of n vertices and an
integer k, in O(nk2) time, either constructs a branch-decomposition of G with width at most
(2 + δ)k or a (k + 1)×

⌈
k+1

2

⌉
cylinder minor of G, where δ > 0 is a constant.

Proof. First, as shown in Lemma 3.4.10, a good separator AX for ZX and X is computed
by Procedure Separator-Based. From this and as shown in the proof of Theorem 3.1.2, given
a planar graph G and an integer k, Algorithm 1 computes a branch-decomposition of G
with width at most (2 + δ)k or a (k + 1)×

⌈
k+1

2

⌉
cylinder minor of G.

Let M,mx,m be the numbers of edges in G[reachG|U (∂(U), h)], (G|X)|ZX , ĤX , respec-
tively. Then m = O(mx). By Lemmas 3.4.7 and 3.4.10, Procedure Separator-Based takes
O(mk2) time. For distinct level 1 nodes X and X ′, the edge sets of subgraphs (G|X)|ZX
and (G|X ′)|ZX′ are disjoint. From this,

∑
X:X is a level 1 nodemx = O(M). Therefore,

it takes
∑
X:X is a level 1 nodeO(mxk

2) = O(Mk2) time to compute a good separator A
when Procedure Separator-Based is used for computing AX .

The time for other steps in Algorithm 1 is O(M). The number of recursive calls in which
each vertex of G|U is involved is O( 1

α) = O(1). Therefore, we get an algorithm with running
time O(nk2).

3.5 Conclusions

In this chapter, we discussed how to improve the construction time of branch-decomposition
for planar graphs and therefore improve the preprocessing time of branch-decomposition
based exact distance oracles for planar graphs. The practical efficiency of the algorithms for
Theorems 3.1.2 and 3.1.3 heavily depends on the efficiency of computing the minimum face
separating cycles, especially Line 7 of Algorithm 1 or Procedure Separator-Based. When
the size of ZX is small, it may be efficient in practice to compute the face-separating cycles
using a straightforward approach. Using the near-linear time constant-factor approximate
algorithm for branch-decomposition of planar graphs proposed in this chapter, we are able
to remove the bottleneck in the preprocessing phase of the branch-decomposition based
distance oracle in [65] and improve the preprocessing time from O(n1+ε + S log2 n), where
S ∈ [n log log k, n2] and ε > 0 is a constant, to O(min{O(n log4 n log k), O(nk2 logn log k)}+
S log2 n).
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Chapter 4

Constant Query Time
Approximate Distance Oracle for
Planar Graphs

4.1 Introduction

In section 1.1.2, we introduced some representative results on approximate distance oracles.
The query times of those oracles are small but still at least O(1/ε). Distance oracles with
constant query time are of both theoretical and practical importance [24, 28]. In this chapter
we present the first O(1) query time (1 + ε)-approximate distance oracle with nearly linear
preprocessing time and size for undirected planar graphs with non-negative edge lengths.

Theorem 4.1.1. Let G be an undirected planar graph with n vertices and non-negative edge
lengths and let ε > 0. There is a (1 + ε)-approximate distance oracle for G with O(1) query
time, O(n logn(log1/6 n+logn/ε+f(ε))) size and O(n logn(log3 n/ε2 +f(ε))) preprocessing
time, where f(ε) = 2O(1/ε).

The oracle in Theorem 4.1.1 has a constant query time independent of ε and size nearly
linear in the graph size. This improves the query time that are (nearly) linear in 1/ε for
non-constant ε in the previous works [57, 78]. Wulff-Nilsen gives an O(1) time exact distance
oracle for G with size O(n2(log logn)4/ logn) [81]. For ε with 1

ε < c0 logn for some constant
c0, our oracle has a smaller size.

The result in Theorem 4.1.1 can be generalized to an oracle described in the next
theorem.

Theorem 4.1.2. Let G be an undirected planar graph with n vertices and non-negative edge
lengths, ε > 0 and 1 ≤ η ≤ 1/ε. There is a (1 + ε)-approximate distance oracle for G with
O(η) query time, O(n logn(log1/6 n+logn/ε+f(ηε))) size and O(n logn(log3 n/ε2 +f(ηε)))
preprocessing time, where f(ηε) = 2O(1/(ηε)).

Our results build on some techniques used in the previous approximate distance oracles
for planar graphs. Thorup [78] gives a (1 + ε)-approximate distance oracle for planar graph
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G with O(1/ε) query time. Informally, some techniques used in Thorup’s distance oracle
are as follows: Decompose G into a balanced recursive subdivision; G is decomposed into
subgraphs of balanced sizes by shortest paths and each subgraph is decomposed recursively
until every subgraph is reduced to a pre-defined size. Recall that a path Q intersects a path
Q′ if V (Q) ∩ V (Q′) 6= ∅. A set Q of paths is a path-separator for vertices u and v if every
path between u and v intersects a path Q ∈ Q. Vertices u and v are shortest-separated by a
path Q if there exist a shortest path between u and v that intersects Q. If vertices u and v
have a path-separator Q then u and v is shortest-separated by some path Q ∈ Q. For each
subgraph X of G, let P(X) be the set of shortest paths used to decompose X. For each
path Q ∈ P(X) and each vertex u in X, a set PQ(u) of O(1/ε) vertices called portals on
Q is selected. For vertices u and v that are shortest-separated by some path Q in P(X),
minp∈PQ(u),q∈PQ(v),Q∈P(X) dG(u, p)+dG(p, q)+dG(q, v) is used to approximate dG(u, v). The
oracle keeps the distances dG(u, p) and dG(p, v) explicitly.

The portal set PQ(u) above is vertex dependent. For any path Q in G of length d(Q),
there is a set PQ of O(1/ε) portals such that for any vertices u and v that are shortest-
separated by Q, minp∈PQ dG(u, p) + dG(p, v) ≤ dG(u, v) + εd(Q) [62]. Based on this and
a scaling technique, Kawarabayashi et al. [57] give another (1 + ε)-approximate distance
oracle: Create subgraphs of G such that the vertices in each subgraph satisfy certain distance
property (scaling). Each subgraph H of G is decomposed by shortest paths into a r-division
of H which consists of O(|V (H)|/r) subgraphs of H, each of size O(r). For each subgraph X
of H, let B(X) be the set of shortest paths used to separate X from the rest of H. For each
path Q ∈ B(X), a portal set PQ is selected. For vertices u and v that are shortest-separated
by some pathQ ∈ B(X), minp∈PQ,Q∈B(X) dH(u, p)+dH(p, v) is used to approximate dH(u, v).
This oracle does not keep the distances dH(u, p) and dH(p, v) explicitly but uses the distance
oracle in [65] to get the distances instead. By choosing an appropriate H, the oracle gets
an approximate distance for dG(U, V ). By choosing an appropriate value r, the oracle has
a better product of query time and oracle size than that of Thorup’s oracle.

We also use the scaling technique to create subgraphs ofG. We decompose each subgraph
H of G into a balanced recursive subdivision as in Thorup’s oracle. For each subgraph X of
H and each shortest path Q used to decompose X, we choose one set PQ of O(1/ε) portals
on Q for all vertices in X. A new ingredient in our oracle is to use a more time efficient data
structure to approximate dG(u, v) instead of minp∈PQ,Q∈P(X) dH(u, p) + dH(p, v). Using an
approach in [80], we show that the vertices in V (X) can be partitioned into s = f(ε) classes
A1, ..., As such that for every two classes Ai and Aj , there is a key portal pij ∈ PQ and for
any u ∈ Ai and v ∈ Aj , if u and v are shortest-separated by Q then dH(u, pij) + dH(pij , v)
is used to approximate dH(u, v) and can be computed in O(1) time. Combining with a new
technique to select an appropriate subgraph H in O(1) time, we get a (1 + ε)-approximate
distance oracle with O(1) query time.
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Our computational model is word RAM, which models what we can program using
standard programming languages such as C/C++. In this model, a word is assumed big
enough to store any vertex identifier or distance. We also assume basic operations, which
include addition, subtraction, multiplication, bitwise operations (AND, OR, NEGATION)
and left/right cyclic shift on a word have unit time cost.

4.2 Definitions and Notations

We now introduce some important tools that are used in this chapter.

4.2.1 Recursive Subdivision by Shortest Path

A basic approach in this distance oracle is to decompose graph G into subgraphs by shortest
paths.

Definition 4.2.1. Let P be any set of shortest paths in graph G and let W = ∪Q∈PV (Q).
P is a shortest path separator of G if G[V (G)\W ] has at least t ≥ 2 connected nonempty
subgraphs G1, .., Gt of G. For α > 0, a shortest path separator P of G is called α-balanced
if |V (Gi)| ≤ α|V (G)| holds for every subgraph Gi.

Definition 4.2.2. An α-balanced recursive subdivision of G is a structure in which G is
decomposed into subgraphs G1, .., Gt by an α-balanced separator P and each Gi, 1 ≤ i ≤ t,
is decomposed recursively until each subgraph is reduced to a pre-defined size.

Let Q be any set of paths and let G′ be any subgraph of G. Q separates G′ and
G[V (G)\V (G′)] if for any vertex u in G′ and any vertex v in G[V (G)\V (G′)], any path
in G between u and v intersects a path in Q.

We now briefly describe the construction of a recursive subdivision. Readers may refer
to Section 2.5 in [78] for more details. When computing an α-balanced recursive subdivision
of G, we are given a shortest path spanning tree Tr of G rooted at any vertex r. Recall
that every path in Tr from the root r to any vertex is called a root path. A recursive
subdivision of G can be viewed as a rooted tree TG with each vertex of TG (called a node,
to be distinguished from a vertex of G) representing a subgraph of G and the root node
representing G. Figure 4.1 gives illustration for recursive subdivision. Each node in TG with
node degree one is called a leaf node, otherwise an internal node. We identify subgraphs of G
with their corresponding nodes in TG when convenient. For each node X of TG, let B(X) be
the minimum subset of root paths in Tr that separates X and G[V (G)\V (X)] (B(G) = ∅).
Let X∪B(X) denote the subgraph of G induced by V (X)∪V (B(X)). Let X+B(X) denote
the graph obtained by removing some vertices from X ∪B(X) as follows: for every vertex v
of B(X) that has degree two in X ∪ B(X), its incident edges (u, v) and (v, w) are replaced
by edge (u,w) whose length is the sum of the length of (u, v) and that of (v, w). For each
internal node X, a 1

2 -balanced shortest path separator P(X) of root paths in Tr is used to
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decompose X into subgraphs X1, .., Xt, t ≥ 2, as follows: Let W = V (P(X)) and X∗1 , .., X∗t
be the connected components of G[V (X + B(X)) \ W ]. Then E(Xi) = E(X) ∩ E(X∗i ),
1 ≤ i ≤ t. Note that P(X) separates Xi from Xj in X and B(X)∪P(X) separates Xi from
Xj in G for 1 ≤ i, j ≤ t and i 6= j.

We now state some important properties of the 1
2 -balanced recursive subdivision in the

next Lemma.

Lemma 4.2.1. [78] Given a graph G and any shortest path spanning tree Tr of G, a 1
2 -

balanced recursive subdivision TG of G can be computed in O(n logn) time such that for
each internal node X of TG, |V (Xi)| ≤ |V (X)|/2 (1 ≤ i ≤ t) and |P(X)| = O(1), and for
each node X, |B(X)| = O(1). Moreover, for each node X of TG and each root path Q of Tr,
if Q ∈ B(X), then Q ∈ P(X ′) for some ancestor X ′ of X in TG.

Note that since the size of a subgraph is reduced by at least a factor of 1/2, the depth
of TG is bounded above by logn. For every vertex v ∈ V (G), let Xv denote the node of
TG of largest depth that contains v. For any u, v ∈ V (G), we define Xu,v to be the nearest
common ancestor of Xu and Xv in TG. The next result of [47] shows the nearest common
ancestor of any two nodes in a tree can be found in O(1) time.

Lemma 4.2.2. [47] Given a rooted tree T with n vertices and two vertices x and y in T ,
there is an algorithm with O(n) preprocessing time and O(n) space that answers the near
common ancestor of x and y in O(1) time.

4.2.2 O(1/ε) Query Time (1 + ε)-Approximate Distance Oracle

Let Q be a shortest path in G and ε > 0. Thorup shows that for every vertex u in G,
there is portal set PQ(u) ⊆ V (Q) of O(1/ε) portals such that for any vertices u and v

shortest-separated by Q

dG(u, v) ≤ min
p∈PQ(u),q∈PQ(v)

dG(v, p) + dG(p, q) + dG(q, v) ≤ (1 + ε)dG(u, v).

For every subgraph X in a 1
2 -balanced recursive subdivision of G and every shortest path

Q ∈ B(X)∪P(X), by keeping the distance from each vertex u in X to every portal in PQ(u)
explicitly, Thorup shows the following result.

Lemma 4.2.3. [78] For graph G and ε > 0, there is a (1 + ε)-approximate distance oracle
with O(1/ε) query time, O(n logn/ε) size and O(n log3 n/ε2) preprocessing time. Especially
for ε = 1, there is a 2-approximate distance oracle for G with O(1) query time, O(n logn)
size and O(n log3 n) preprocessing time.

Our oracles will use this oracle for ε = 1 (any constant works) to get a rough estimation
of dG(u, v).
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Figure 4.1: (a) Root path Tr(vi6) and root path Tr(vi12) form a balanced separator of
G and decompose G into subgraphs G1 (not shown in the figure) and G2. G1 is further
decomposed into G11 and G12 by Tr(u1) ∪ Tr(u2). For X = G1, B(X) = Tr(vi6) ∪ Tr(vi12)
and P(X) = Tr(u1) ∪ Tr(u2). For vertices x ∈ V (G12) and y ∈ V (G11), the shortest path
between them must intersect some path in B(G1) ∪ P(G1). (b) G1 + B(G1), vertices in G1
that are not neighbours of vertices in B(G1) are not shown in the figure. (c) TG representing
the recursive subdivision.
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4.2.3 Vertex Independent Portal Set

To reduce the query time to a constant independent of ε, we will use a portal set PQ
independent of vertex u. For vertices u and v shortest-separated by a path Q, dG(u, v) =
minp∈V (Q) dG(u, p) + dG(p, v). For a PQ ⊆ V (Q), minp∈PQ dG(u, p) + dG(p, v) approximates
dG(u, v). The following result will be used.

Lemma 4.2.4. [62] For a path Q in G, ε > 0 and D ≥ d(Q), a set PQ of O(1/ε) vertices in
V (Q) can be selected in O(|V (Q)|) time such that for any pair of vertices u and v shortest-
separated by Q, dG(u, v) ≤ minp∈PQ dG(u, p) + dG(p, v) ≤ dG(u, v) + εD.

The set PQ in Lemma 4.2.4 is called the ε-portal set (with respect to D) and every vertex
in PQ is a portal. Given a path Q starting from a vertex r, ε > 0 and D ≥ d(Q), PQ can be
computed as follows: add r to PQ, traverse along Q from r and add a vertex v ∈ V (Q) to
PQ if dG(u, v) ≥ εD/2, where u is the last added portal in PQ.

4.2.4 Sparse Neighborhood Covers

To apply the ε-portal set to our oracle, we further need to guarantee dG(u, v) = Ω(D) for
vertices u and v in question. We will use the sparse neighborhood covers introduced in
[8, 9, 19] of G to achieve this goal.

Lemma 4.2.5. [19] For G and γ ≥ 1, connected subgraphs G(γ, 1), . . . , G(γ, nγ) of G with
the following properties can be computed in O(n logn) time:

1. For each vertex u in G, there is at least one G(γ, i) that contains u and every v with
dG(u, v) ≤ γ.

2. Each vertex u in G is contained in at most 18 subgraphs.

3. Each subgraph G(γ, i) has radius r(G(γ, i)) ≤ 24γ − 8.

4.3 Oracle with Additive Stretch

We first give a distance oracle DO1 which for any vertices u and v in G, and any ε0 > 0,
returns d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 7ε0d(G) in O(1) time. Based on the
scaling technique in [57], Lemma 4.2.5 and a technique to locate vertices in O(1) time, this
oracle will be extended to an oracle stated in Theorem 4.1.1 for G in the next section.

4.3.1 Additive Stretch Distance Oracle with O(1/ε) Query Time

We start with a basic distance oracle DO0 that keeps the following information:

• A 1
2 -balanced recursive subdivision TG of G in which each leaf node has size O(2(1/ε0))

(Lemma 4.2.1).
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• A table storing Xv for every v ∈ V (G).

• A data structure that answers the nearest common ancestor Xu,v for any pair of nodes
Xu and Xv in TG in O(1) time. (Lemma 4.2.2).

• For each internal node X of TG, keep an ε0-portal set PQ for every shortest path
Q ∈ P(X) ∪ B(X). For every PQ, every u ∈ V (X) and every portal p ∈ PQ, keep
distance d̂(u, p) with

dG(u, p) ≤ d̂(u, p) ≤ dG(u, p) + ε0d(G).

• For every leaf node X of TG and every pair of u and v in X, keep

d̂X(u, v) = min{dX(u, v), min
p∈PQ,Q∈B(X)

d̂(u, p) + d̂(p, v)}.

We now give the query algorithm for distance oracle DO0.

Algorithm 2: DO0-Query(u, v)
Input: vertices u and v in G
Output: distance d̃(u, v) such that dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 3ε0d(G)

1 Find Xu, Xv, Xuv;
2 if Xuv is a leaf node of TG then
3 d̃(u, v)← d̂X(u, v);
4 else
5 d̃(u, v)← min

p∈PQ,Q∈B(Xu,v)∪P(Xu,v)
d̂(u, p) + d̂(p, v);

6 end
7 return d̃(u, v);

Lemma 4.3.1. For any vertices u and v in G, DO0 returns an approximate distance d̃(u, v)
in O(1/ε0) time such that dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 3ε0d(G).

Proof. Given vertices u and v in G, Xu, Xv, Xuv can be found in O(1) time. If Xuv is a leaf
node of TG, d̃(u, v) is computed in O(1) time. Otherwise d̃(u, v) is computed in O(1/ε0)
time because |PQ| = O(1/ε0) and |B(Xu,v) ∪ P(Xu,v)| = O(1).

In the case where Xuv is not a leaf node in TG, u and v must be shortest-separated by
some path in B(Xu,v) ∪ P(Xu,v). Let P = ∪Q∈B(Xu,v)∪P(Xu,v)PQ and we define

q = argp∈P min{dG(u, p) + dG(p, v)}.
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From d̂(u, q) ≤ dG(u, q) + ε0d(G), d̂(q, v) ≤ dG(q, v) + ε0d(G) and Lemma 4.2.4,

dG(u, v) ≤ d̃(u, v) = min
p∈PQ,Q∈B(Xu,v)∪P(Xu,v)

d̂(u, p) + d̂(p, v) ≤ d̂(u, q) + d̂(q, v)

≤ dG(u, q) + dG(q, v) + 2ε0d(G) ≤ dG(u, v) + 3ε0d(G).

Similarly, dG(u, v) ≤ d̃(u, v) = d̂X(u, v) ≤ dG(u, v) + 3ε0d(G) holds in the case where Xuv

is a leaf node in TG.

4.3.2 Additive Stretch Distance Oracle with O(1) Query Time

We first reduce the query time for internal nodes in DO0 to a constant independent of ε0
and then analyse the preprocessing time of the distance oracle. For z > 0, let f(z) = 2O(1/z).
Based on an approach in [80], we show that for each internal node X and each path Q ∈
B(X) ∪ P(X), the vertices in V (X) can be partitioned into f(ε0) classes such that for any
two classes Ai and Aj , there is a key portal pij ∈ PQ and for every u ∈ Ai and every v ∈ Aj
shortest-separated by Q, d̂(u, pij) + d̂(pij , v) ≤ dG(u, v) + 7ε0d(G). By keeping the classes
and key portals, the query time is reduced to O(1). We first define the classes.

Definition 4.3.1. Let Q be a shortest path in G, r(G) ≤ D ≤ d(G) and PQ = {p1..., pl}
be an ε0-portal set (with respect to D) on Q. The vertices of G are partitioned into classes
based on d̂(u, pi), pi ∈ PQ as follows. For each vertex u, a vector ~Γu = (a1, ..., al) is defined
such that for 1 ≤ i ≤ l, ai =

⌈
d̂(u, pi)/(ε0D)

⌉
. Vertices u and v are in the same class if and

only if ~Γu = ~Γv.

The following property of the classes defined above is straightforward.

Property 1. Let Q be a shortest path in G, r(G) ≤ D ≤ d(G) and PQ be an ε0-portal set
with respect to D on Q. Let A be any class of vertices in G defined in Definition 4.3.1. For
any two vertices u, v ∈ A and any portal p ∈ PQ, d̂(u, p)− ε0D ≤ d̂(v, p) ≤ d̂(u, p) + ε0D.

We show more properties of the classes defined above in the next two lemmas.

Lemma 4.3.2. Let Q be a shortest path in G, r(G) ≤ D ≤ d(G) and PQ be an ε0-portal
set with respect to D on Q. Let Ai and Aj be any two classes of vertices in G defined in
Definition 4.3.1. There is a key portal pij ∈ PQ such that for any vertices u ∈ Ai and v ∈ Aj
shortest-separated by Q, dG(u, v) ≤ d̂(u, pij) + d̂(pij , v) ≤ dG(u, v) + 7ε0d(G).

Proof. Figure 4.2 gives an illustration for this proof. We choose arbitrarily a vertex x ∈ Ai
and a vertex y ∈ Aj . Let the key portal be pij = argpi∈PQ min{d̂(x, pi) + d̂(pi, y)}. For any
u ∈ Ai and v ∈ Aj shortest-separated by Q, let q = argpi∈PQ min{dG(u, pi) + dG(pi, v)} and
let p = argpi∈PQ min{d̂(u, pi) + d̂(pi, v)}. Then

d̂(u, p) + d̂(p, v) ≤ d̂(u, q) + d̂(q, v)

≤ dG(u, q) + dG(q, v) + 2ε0d(G) ≤ dG(u, v) + 3ε0d(G),
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d̂(x, pij) d̂(y, pij)

d(u, q) d(v, q)

d̂(u, p) d̂(v, p)

Figure 4.2: Illustration for Lemma 4.3.2. x and y are arbitrary vertices in Ai and Aj re-
spectively. u and v are two vertices in Ai and Aj respectively that are shortest-separated
by shortest path Q. Red dots are portal vertices in Q. Solid black lines represents exact
distances in G and dashed red lines represents approximate distances d̂(·, ·).

because d̂(u, q) ≤ dG(u, q) + ε0d(G), d̂(q, v) ≤ dG(q, v) + ε0d(G), PQ is an ε0-portal set and
Lemma 4.2.4. From u, x ∈ Ai, Property 1 and D ≤ d(G),

d̂(u, pi) ≤ d̂(x, pi) + ε0D ≤ d̂(x, pi) + ε0d(G) ≤ d̂(u, pi) + 2ε0d(G)

for every pi ∈ PQ. The same relations hold for v, y because they are in Aj . So

d̂(u, pij) + d̂(pij , v) ≤ d̂(x, pij) + d̂(pij , y) + 2ε0d(G)

≤ d̂(x, p) + d̂(p, y) + 2ε0d(G) ≤ d̂(u, p) + d̂(p, v) + 4ε0d(G).

Therefore,

dG(u, v) ≤ d̂(u, pij) + d̂(pij , v) ≤ d̂(u, p) + d̂(p, v) + 4ε0d(G)

≤ dG(u, v) + 7ε0d(G).

This completes the proof of the lemma.

Lemma 4.3.3. The total number of classes by Definition 4.3.1 is f(ε0).

Proof. Essentially, this result is proved by Weimann and Yuster in [80] but somehow hidden
in other details. Below we give a self-contained proof of the lemma. For each vector ~Γu =
(a1, .., al), let ~Γ∗u = (a1, (a2 − a1), (a3 − a2), .., (al − al−1)). Then ~Γu = ~Γv if and only if
~Γ∗u = ~Γ∗v. So we just need to prove that the total number of different ~Γ∗u is f(ε0). From
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Definition 4.3.1,

|ai − ai−1| =
∣∣∣∣∣
⌈
d̂(u, pi)
ε0D

⌉
−
⌈
d̂(u, pi−1)
ε0D

⌉∣∣∣∣∣
≤

∣∣∣∣∣ d̂(u, pi)− d̂(u, pi−1)
ε0D

∣∣∣∣∣+ 1

≤
∣∣∣∣dG(u, pi)− dG(u, pi−1)

ε0D

∣∣∣∣+ 2 ≤ dG(pi−1, pi)
ε0D

+ 2.

Since PQ is an ε0-portal set, l = O(1/ε0). So

∑
2≤i≤l

|ai − ai−1| ≤
dG(p1, pl)
ε0D

+ 2l = O(1/ε0).

Therefore there are 2O(1/ε0) different vectors of (a1, |a2 − a1| , |a3 − a2| , .., |al − al−1|). The
i’th element of (a1, (a2 − a1), (a3 − a2), .., (al − al−1)) is either |ai − ai−1| or − |ai − ai−1|.
Therefore, there are 2O(1/ε0) different ~Γ∗u.

Notice that we can assume that for each internal node X, the number of classes Defi-
nition 4.3.1 is at most |V (X)|2 because otherwise, instead of partitioning the vertices into
classes, we can simply use a |V (X)| × |V (X)| distance array to keep the shortest distance
between every pair of vertices in X.

Now we are ready to show a distance oracle DO1 with 7ε0d(G) additive stretch. DO1

contains the information kept for DO0 as well as the following additional information:

• For each internal nodeX of TG and each shortest pathQ ∈ B(X)∪P(X), letAQ1 , ..., AQs
be the classes of vertices in V (X) defined in Definition 4.3.1. For each vertex u ∈ V (X),
we give an index IQX(u) with IQX(u) = i if u ∈ AQi ; and an s× s array CQ with CQ[i, j]
containing the key portal pQij for classes A

Q
i and AQj .

Lemma 4.3.4. For any graph G with n vertices and ε0 > 0, the space requirement for data
structure DO1 is O(n(logn/ε0 + f(ε0))).

Proof. Let TG be the recursive subdivision of G in DO1 and b = 2(1/ε0). Each leaf node
X has O(b) vertices and requires O(b2) space to keep the distances d̃(u, v) for u, v in the
node. From this and the fact that the sum of |V (X)| for all leaf nodes is O(n), the space
for all leaf nodes is O(nb) = O(nf(ε0)). By Lemma 4.2.1, the sum of |V (X)| for all nodes
X in TG is O(n logn). From |B(X) ∪ P(X)| = O(1) for every X and |PQ| = O(1/ε0) for
each Q ∈ B(X) ∪ P(X), the total space for keeping the distances d̂(u, v) between vertices
and portals is O(n logn/ε0). By Lemma 4.3.3, the space for the classes AQ1 , .., AQs in each
internal node X is f(ε0) for every Q ∈ B(X) ∪ P(X). Since there are O(n) internal nodes,
the total space for the classes in all nodes is O(nf(ε0)) = O(nf(ε0)).

Therefore the space requirement for the oracle is O(n(logn/ε0 + f(ε0))).
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We now give the query algorithm and query time for distance oracle DO1.

Algorithm 3: DO1-Query(u, v)
Input: vertices u and v in G
Output: distance d̃(u, v) such that dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 7ε0d(G)

1 Find Xu, Xv, Xuv;
2 if Xuv is a leaf node of TG then
3 d̃(u, v)← d̂X(u, v);
4 else
5 d̃(u, v)←∞;
6 for each path Q ∈ B(Xu,v) ∪ P(Xu,v) do
7 i← IQX(u), j ← IQX(v);
8 pQij ← CQ[i, j];
9 d̃(u, v)← min{d̃(u, v), d̂(u, pQij) + d̂(pQij , v)};

10 end
11 end
12 return d̃(u, v);

Lemma 4.3.5. For any vertices u and v in G, DO1 returns an approximate distance d̃(u, v)
in O(1) time such that dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 7ε0d(G).

Proof. Similar to the proof of Lemma 4.3.1, if Xuv is a leaf node of TG, DO1 returns
dG(u, v) ≤ d̃(u, v) ≤ dG(u, v)+3ε0d(G) in O(1) time. If Xuv is an internal node of TG, u and
v are shortest-separated by some path in B(Xu,v)∪P(Xu,v). Then by Lemma 4.3.2 and the
fact that |B(Xu,v)∪P(Xu,v)| = O(1), DO1 returns d̃(u, v) = min

pQij ,Q∈B(Xu,v)∪P(Xu,v)
d̂(u, pQij) +

d̂(pQij , v) ≤ dG(u, v) + 7ε0d(G) in O(1) time.

We now describe how to compute the distances d̂(d, p) for internal nodes as defined in
DO0. The method is essentially the same as in the fast construction in [78], but simpler as
the portal sets we use are not vertex dependent. We use Lemma 4.2.1 to get the recursive
subdivision TG of G. Let Tr be the shortest path spanning tree of G used in the computation
of TG (see section 4.2.1) and let D be the largest length of any root path of Tr. By a depth
first search of Tr from r, we compute an ε0-portal set PQ (with respect toD) and an auxiliary
(ε0/ logn)-portal set ΓQ (with respect to D) for every Q ∈ P(X) ∪ B(X), X ∈ V (TG). We
compute the distances d̂(u, p) for every internal node X in a top-down traversal on TG

from root G. We use Dijkstra’s algorithm to compute d̂(u, p) for every u in X and every
p ∈ PQ ∪ ΓQ, Q ∈ P(X). Recall that X ∪ B(X) denotes the subgraph of G induced by
V (X) ∪ V (B(X)). Let X ? B(X) denote the graph obtained from X ∪ B(X) as follows (see
Figure 4.3 for illustration): for every u in X and every p′ in ∪Q′∈B(X)PQ′ ∪ ΓQ′ , add edge
{u, p′} with length d̂(u, p′) for every u in X and every p′, and then remove degree two
vertices of B(X) as what we do for X + B(X). For the root node, the computation is on
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G. For an internal node X 6= G, the computation is on X ? B(X). Note that X ? B(X)
may not be planar and since |B(X)| = O(1), |V (X ? B(X))| is linear in the number of
edges of G incident to vertices of X plus the number of portals in each path. Notice that
Q′ is in P(X ′) for some internal node X ′ which is an ancestor of X in TG. So the distances
d̂(u, p′) have been computed when we construct X ? B(X). Note that for some vertex u

and portal p, d̂(u, p) may be computed multiple times. But the value of d̂(u, p) does not
change: let Hi, 1 ≤ i, be the graph on which d̂(u, p) is computed for the ith time; d̂(u, p)
does not increase because the edge {u, p} is contained in Hi for i ≥ 2; and d̂(u, p) does not
decrease because Hi+1 is a subgraph of Hi for i ≥ 2. For X with |V (X)| ≥ logn/ε0, we run
Dijkstra’s algorithm using every p ∈ PQ ∪ ΓQ as the source. For X with |V (X)| < logn/ε0,
we run Dijkstra’s algorithm using every u in X as the source. After the distances d̂(u, p),
p ∈ PQ ∪ ΓQ, for all internal nodes have been computed, we only keep the distances d̂(u, p)
to the portals p ∈ PQ for every internal node.

In the next lemma, we show that the distances d̂(u, p) computed above meet the re-
quirement of DO0 and DO1.

Lemma 4.3.6. For every internal node X of TG, every vertex u in X and every portal
p ∈ PQ ∪ ΓQ, Q ∈ P(X), d̂(u, p) ≤ dG(u, p) + ε0d(G).

Proof. For every internal node X of depth k in TG, every vertex u in X and every portal
p ∈ PQ ∪ ΓQ, Q ∈ P(X), we prove by induction that d̂(u, p) ≤ dG(u, p) + kε0

lognd(G). For the
root node (of depth 0), d̂(u, p) = dG(u, p) because the distances are computed on G. Assume
that for every internal node of depth at most k−1 ≥ 0, d̂(u, p) ≤ dG(u, p)+ (k−1)ε0

logn d(G). Let
X be a node of depth k. For u in X and p ∈ PQ ∪ ΓQ, Q ∈ P(X), let P (u, p) be a shortest
path between u and p. If P (u, p) contains only edges in X then d̂(u, p) = dG(u, p) and the
statement is proved. Otherwise, P (u, p) can be partitioned into two subpaths P (u, y) and
P (y, p), where every vertex of P (u, y) except y is in X and y is a vertex of a path Q′ ∈ B(X).
Note that y is incident to some vertex of X so y appears in X ? B(X). From the way ΓQ′
is computed and the fact that D ≤ d(G), where D is used for computing ΓQ′ , there is a
portal py ∈ ΓQ′ such that dQ′(y, py) = dG(y, py) ≤ ε0

2 lognd(G). Let X ′ be an ancestor of X
such that Q′ ∈ P(X ′). Note that d̂(u, py) is computed in X ′ ? B(X ′) and that y, py and X
(and therefore P (u, y)) are all contained in X ′ ? B(X ′). Therefore,

d̂(u, py) ≤ d(P (u, y)) + dQ′(y, py) ≤ d(P (u, y)) + ε0
2 lognd(G)

and
dG(py, p) ≤ d(P (y, p)) + dG(y, py) ≤ d(P (y, p)) + ε0

2 lognd(G).

The distance d̂(py, p) has been computed in a node X ′ which is an ancestor of X and has
depth at most k−1. So d̂(py, p) ≤ dG(py, p)+ (k−1)ε0

logn d(G). Because edges {u, py} and {py, p}

68



v1

v2

v3 v4

X

B(X)

(a) X ∪ B(X). Edges in X are not shown.
Blue dots in B(X) are portals. Red dots in
B(X) are vertices with neighbours in X.
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(b) X ∪ B(X) and the edges added between
vertices in X and the portals (only edges in-
cident to v1 are shown).
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(c) X ? B(X). Edges between vertices in X
are not shown. Edges between vi, i = 2, 3, 4
and the portals are not shown.

Figure 4.3: Illustration for X ? B(X).
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with lengths d̂(u, py) and d̂(py, p) are contained in the graph X ? B(X),

d̂(u, p) ≤ d̂(u, py) + d̂(py, p)

≤ d(P (u, y)) + ε0
2 logn + d(P (y, p)) + ε0

2 logn + (k − 1)ε0
logn d(G)

= dG(u, p) + kε0
lognd(G).

Since each node in TG has depth at most logn, d̂(u, p) ≤ ε0d(G).

The next lemma gives the preprocessing time for distance oracle DO1.

Lemma 4.3.7. For any graph G with n vertices and ε0 > 0, distance oracle DO1 can be
computed in O(n(log3 n/ε20 + f(ε0))) time.

Proof. Let TG be the recursive subdivision of G and b = 2(1/ε0). It takes O(n logn) time
to compute TG (Lemma 4.2.1). It takes O(n) time to compute the data structure that can
answer the least common ancestor of any two nodes in TG in O(1) time [47], O(n logn)
time to compute Xv for every v ∈ V (G), and O(n) time to compute PQ∪ΓQ for every path
Q ∈ B(X) ∪ P(X), X ∈ V (TG).

For every node X, let M(X) be the number of edges in G incident to vertices in X.
Then

∑
X∈TGM(X) = O(n logn). For every path Q, |PQ ∪ΓQ| = O(logn/ε0) and for every

node X in TG, |B(X) ∪ P(X)| = O(1). From this, for each internal node X, X ? B(X)
has O(M(X) + logn/ε0) vertices and O(M(X) + logn/ε0) edges. Dijkstra’s algorithm is
executed min{M(X), logn/ε0} times for each node X. It takes O(M(X)(logn/ε0)2) time
to compute all d̂(u, p) for node X. Since the sum of M(X) for all nodes X of the same
depth is O(n), it takes O(n(logn/ε0)2) time for all internal nodes of the same depth. Since
TG has depth O(logn), it takes O(n log3 n/ε20) time to compute all distances d̂(u, p) for all
internal nodes.

To find d̃(u, v) for a leaf node X, we first use Dijkstra’s algorithm to compute dX(u, v),
taking every vertex of X as the source. This takes O(b2 log b) = O(b2/ε0) time for one leaf
node since |V (X)| = O(b) and O(nb/ε0) time for all leaf nodes since the sum of |V (X)| for
all leaf nodes X is O(n). Then we compute

d̃(u, v) = min{dX(u, v), min
p∈PQ,Q∈B(X)

d̂(u, p) + d̂(p, v)}.

From |PQ| = O(1/ε0) for Q ∈ B(X) and |B(X)| = O(1), this takes O(b2/ε0) time for one
leaf node and O(nb/ε0) time for all leaf nodes. The total time to compute d̃(u, v) for all leaf
nodes is O(nb/ε0)) = O(nf(ε0)).

The value D for computing the classes can be found in O(n) time. Since there are O(n)
internal nodes, by Lemma 4.3.3, it takes O(nf(ε0)(1/ε0)) = O(nf(ε0)) time to compute
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all classes and key portals. Therefore, DO1 can be computed in O(n(log3 n/ε20 + f(ε0)))
time.

From Lemmas 4.3.4, 4.3.5 and 4.3.7, we have the following result.

Theorem 4.3.8. For any graph G with n vertices and ε0 > 0, there is an oracle which gives
a distance d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ dG(u, v)+7ε0d(G) for any vertices u and v in G
with O(1) query time, O(n(logn/ε0 +f(ε0))) size and O(n(log3 n/ε20 +f(ε0))) preprocessing
time.

We can make the oracle in Theorem 4.3.8 a more generalized one: For integer η satisfying
1 ≤ η ≤ 1/ε0, we partition each path Q ∈ B(X)∪P(X) into η segments Q1, .., Qη, compute
the classes AQl1 , .., AQls of vertices in V (X) for each segment Ql, 1 ≤ l ≤ η, and key portal
pQlij , and use

d̃(u, v) = min
pQ

l

ij ,1≤l≤η,Q∈B(X)∪P(X)
d̂(u, pQlij ) + d̂(pQlij , v)

to approximate dG(u, v). By this generalization, we get the following result.

Theorem 4.3.9. For any graph G with n vertices, ε0 > 0 and 1 ≤ η ≤ 1/ε0, there is an
oracle which gives a distance d̃(u, v) with dG(u, v) ≤ d̃(u, v) ≤ dG(u, v) + 7ε0d(G) for any
vertices u and v in G with O(η) query time, O(n(logn/ε0+f(ηε0))) size and O(n(log3 n/ε20+
f(ηε0))) preprocessing time.

4.4 Oracle with (1 + ε) stretch

For ε > 0, by choosing an ε0 = ε
7c where c > 0 is a constant, the oracle in Theorem 4.3.8

gives a (1 + ε)-approximate distance oracle for graph G with dG(u, v) ≥ d(G)/c for every
u and v in G. For graph G with dG(u, v) much smaller than d(G) for some u and v, we
use a scaling approach [57] to get a (1 + ε)-approximate distance oracle. The idea is to
compute a set of oracles as described in Theorem 4.3.8, each for a computed subgraph H
of G. We further develop a data structure that given any u and v in G, find in O(1) time
a constant number of subgraphs (and the corresponding oracles) such that the minimum
value returned by these oracles is a (1 + ε)-approximation of dG(u, v). Therefore a (1 + ε)-
approximate distance for any u, v can be computed in constant time. We assume ε > 5/n,
otherwise a naive exact distance oracle with O(1) query time and O(n2) space can be used
to prove Theorem 4.1.1.

4.4.1 Scaling

Let lm be the smallest edge length in G. We assume lm ≥ 1 and the case where lm < 1 can
be easily solved in a similar way by normalizing the length of each edge e of G to l(e)/lm.
For each scale γ ∈ {2i|0 ≤ i ≤ dlog d(G)e}, we contract every edge e with l(e) < γ/n2
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in G and remove every edge e with l(e) > 24γ, self loops and degree 0 vertices to get a
contracted graph Gγ , and then compute a sparse cover Cγ = {G(γ, j), j = 1, ..., nγ} of Gγ as
in Lemma 4.2.5. When an edge {u, v} is contracted in a graph, {u, v} is removed, vertices
u and v are replaced by a new vertex w, and every edge other than {u, v} incident to u or
v in the graph is made incident to w. Figure 4.4 gives an example for the construction for
each Gγ . We say the new vertex w covers vertices u and v. We say a vertex u covers u itself
and if a vertex x covers a vertex w then x covers every vertex covered by w. We say an edge
{u, v} of G appears in scale γ if Gγ has an edge {u, v} such that x and y cover u and v,
respectively. We say a vertex x appears in scale γ if Gγ contains x. From the construction
of Gγ , each edge of G only appears in scales γ satisfying l(e)/24 ≤ γ ≤ l(e)/n2 and thus
appears in O(logn) different scales.

We now show how to effectively contract edges and construct Gγ in each level. As shown
in Figure 4.5, we keep a sorted list L containing all the edges of G such that the lengths
of the edges are in a non-decreasing order. Besides we keep three pointers ph, pf and pl,
such that in each scale γ these three pointers point to the first edge that appears in scale
γ − 1, the first edge that appears in scale γ and the first edge to be removed in scale γ
respectively. Let EC denote the edges to be contracted in the current scale. We first find out
all vertices in V (EC), create new vertices for the contractions and then update the edges in
Gγ with the new vertices. Since each edge is contracted at most once and each edge in Gγ is
updated in O(1) time, the time complexity of contraction is O(n) and the time complexity
of constructing Gγ for all scales is O(n logn).

Each Gγ either contains no vertex or contains at least one edge. A scale is non-trivial
if Gγ contains at least one edge. Since each edge of G appears in O(logn) scales, there are
O(n logn) non-trivial scales and the total number of vertices appearing in each non-trivial
scale is O(n logn). We can have a bijection φ : {γ|γ is a non-trivial scale} → {0, 1, ..., N},
where N = O(n logn), such that for every non-trivial scales γ < γ′, φ(γ) < φ(γ′). By the
bijection φ, we can assume that the non-trivial scales are 0, 1, ..., N . In what follows, we use
scale for a non-trivial scale.

4.4.2 O(1) Query Time and Õ(n) Space

Our (1 + ε)-approximate distance oracle first estimates roughly the distance d(u, v) to get a
right scale γ and then uses oracles DO0(γ, j) and the vertices in subgraphs G(γ, j) that cover
u and v to find an approximate distance d̃(u, v). Though the scaling approach help reduce
the total size of the distance oracle, it creates difficulty to find the correct distance oracle. It
is not trivial to find the vertices in G(γ, j) that cover u and v in O(1) time and Õ(n) space.
A simple approach to find the vertices in G(γ, j) that cover u and v in O(1) time is to keep
for each vertex u of G explicitly every vertex covering u, but this requires O(n2 logn) space,
too large. To reduce the space, we create a rooted tree TC of size O(n logn) on the vertices
in each scale such that if vertex x covers vertex u then x is an ancestor of u in TC . We
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(a) Graph G with 8 vertices and diam-
eter d(G) = 919. This is also Gγ for
γ = 64, 128.
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(b) Gγ for γ = 1, 2, 4, 8, 16, 32. Edge e =
(g, h) is removed because l(e) > 24γ so
it will not appear in any subgraph in the
sparse neighbourhood cover for scale γ.
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(c) Gγ for γ = 256. Edge (a, c) is con-
tracted into a new vertex x1 and edge
(b, f) is contracted into a new vertex x2.

x3

h

900

(d) Gγ for γ = 512.

Figure 4.4: Illustration for scaling.
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e0 · · · ei ei+1 · · · ej ej+1 · · · ek ek+1 · · · em

ph pf pl

Figure 4.5: A sorted list containing all the edges e0, . . . , em in G. Pointers ph, pf and pl
point to the corresponding edges in some scale γ. Edges e0, . . . , ei are contracted in scales
1 to γ − 1. ei+1, . . . , ej are the edges to be contracted in scale γ. ej+1, . . . , ek are the edges
appearing in scale γ. Edges ek+1, . . . , em are to be removed in scale γ.

further create a data structure of size O(|TC | log1/6 n) (called Find-Ancestor) which, given
a vertex u of G and a scacle γ such that u is covered by some vertex x in scale γ, answers
x in O(1) time. A vertex w (either a vertex of G or one from the contraction of edges) may
appear in multiple scales. Let w(γ) denote vertex w appearing in scale γ . For γ 6= γ′, w(γ)
and w(γ′) are distinct vertices in TC . The construction of TC is as follows:

1. Initially, each vertex u of G is given a scale label sl(u) = 0.

2. For each scale γ = 1, 2, . . . , N and each vertex w(γ) that appears in scale γ, if w(γ)
is a new vertex caused by the contraction of edges e1, . . . , ek then for each vertex u ∈
∪1≤i≤kei, include edge {w(γ), u(sl(u))} in TC , otherwise include edge {w(γ), w(sl(w))}
in TC ; update sl(w) to γ.

3. After Step 2, TC is a forest. Create a vertex r and an edge between r and the root of
each tree in the forest to get a tree TC with root r.

Figure 4.6 gives an illustration of the rooted tree TC for the graph in Figure 4.4a. Since
each vertex of TC except the root r is a vertex of Gγ and the total number of vertices in
all scales is O(n logn), the size of TC is O(n logn). There is a bijection between the set of
leaf vertices of TC and V (G). For each vertex x of TC , each ancestor of x covers x in some
Gγ . Given a vertex u of G and a scale γ, the next lemma in [12] provides a base to find the
ancestor w(γ) of u in TC .

Lemma 4.4.1. [12] Let T be any tree with n vertices. There is an algorithm which given any
vertex x ∈ V (T ) and an integer d no larger than the depth of x in T , answers the ancestor
of x with depth d in O(1) time. The space requirement of the algorithm is O(n logn).

We now describe the algorithm of Lemma 4.4.1. First T is decomposed into disjoint
paths: find a longest root-leaf path P in T and remove P from T ; the removal of P breaks
the remaining of T into subtrees T1, T2, . . . ; each subtree is decomposed recursively by
removing the longest root-leaf path in the subtree to get a set of disjoint paths. Each vertex
is in exactly one such path and each path contains exactly one leaf vertex of T . For every
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Figure 4.6: Rooted tree TC for the graph in Figure 4.4a.

leaf u in T , let Pu denote the path that contains u. For every vertex x in T , let d(x) denote
the depth of x (i.e. the number of edges in the path between x and the root in T ). For
every vertex x of T and 0 ≤ k ≤ d(x), an ancestor y of x is the kth ancestor of x if y is an
ancestor of x and d(y)− d(x) = k. Secondly for every path Pu, a ladder Qu containing no
more than 2|V (Pu)| vertices is created such that Qu is the path in T between u and its kth
ancestor, where k = min{2|V (Pu)| − 2, d(u)}. Store each Qu in an array. Notice that each
vertex of T is in one root-leaf path but may be in multiple ladders. But the size of all Qu is
O(|T |). For each vertex v in Pu, we say that the ladder Qu created for Pu is v’s ladder. For
each vertex x of T , store d(x) and a pointer to x’s ladder. Lastly for each vertex x of T ,
store pointers (shortcuts) ei, i = 0, 1, . . . , blog d(x)c, such that ei points to the 2ith ancestor
yi of x. We call the ancestors pointed to by shortcuts the critical ancestors of x. The next
lemma shows an important property of the shortcut and ladder scheme.

Lemma 4.4.2. [12] For any x in T , every kth ancestor y of x with 2i ≤ k < 2i+1 is in yi’s
ladder.

For each vertex x of tree T , the depths of all ancestors of x are consecutive integers
0, 1, . . . , d(x). By this property and Lemma 4.4.2, it is easy to find the depth d ancestor of
x in O(1) time as follows: First use d and the depth of x to find in O(1) time (the pointer
pointing to) the correct critical ancestor yi of x such that the depth d ancestor of x is in
yi’s ladder; Then use d and the depth of yi to locate the depth d ancestor of x in the array
containing yi’s ladder in O(1) time. Figure 4.7 gives an example.
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Figure 4.7: An example of finding the third ancestor (vertex 7) of vertex 10. Shortcuts for
vertex 10 are expressed by blue darts. Vertex 8 is the critical ancestor whose ladder must
contain the third ancestor (vertex 7) of vertex 10. The ladder of vertex 8 is expressed by
red lines.

Our problem of finding the ancestor w(γ) of u is slightly different from the one in [12]
as we do not know the depth of w(γ) in TC and we only need to find w(γ) for each leaf
u of TC . First we compute the ladders for tree TC as the algorithm for Lemma 4.4.1 and
then for each leaf u of TC we create shortcuts connecting u to all its critical ancestors. For
every vertex x in T we also store a pointer to x’s ladder. Given a vertex u of G and a scale
γ, we need to find the the ancestor w(γ) of u in TC using γ instead of the depth of w(γ).
As in [12], we also first find a correct ancestor xi of u such that xi’s ladder contains w(γ)
and then find w(γ) from xi’s ladder in O(1) time. But our tasks are more complicated than
those in [12] because the scales of all ancestors of u may not be consecutive integers and we
can not find the depth of w(γ) in O(1) time from the scale γ. Therefore we use following
result from [36] to find xi in O(1) time.

Lemma 4.4.3. [36] Let b be the machine word size. Given a set B of |B| ≤ bb1/6c non-
negative integer from 0, 1, . . . , 2b − 1, there is a data structure that given any integer k,
returns in O(1) time the largest integer in B that is no larger than k. The construction time
of the data structure is O(|B|4) and the size of the data structure is O(|B|2).

The next Lemma is an immediate result of Lemma 4.4.3 by creating a B-tree with
|B| = θ(w1/6).
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Lemma 4.4.4. For any set S of non-negative integers from 0, 1, . . . , 2w − 1, where w is no
larger than the machine word size, there is a data structure on the word RAM model that
given any integer k, returns in O(logw |S|) time the largest integer in S that is no larger
than k. The construction time of the data structure is O(|S|w1/2) and the size of the data
structure is O(|S|w1/6).

For each leaf u of TC , let Au be the set of critical ancestors of u and let Su be the
set of scales of the vertices in Au. Then Su is a subset of 0, 1, . . . , N . Since the length of
a root-leaf path in TC is at most N , there are O(logN) shortcuts for each leaf of TC . So
|Su| = O(logN) = O(logn). To find xi, we create a data structure of Lemma 4.4.4 with
w = θ(logn) for each Su and create a hash tabel [35] for each Au, with each scale γ′ ∈ Su
being a key and the pointer to the critical ancestor of u in scale γ′ being the corresponding
value. For each ladder Qu, let Ru be the set of scales of the vertices in Qu. To find w(γ)
from the ladder in O(1) time we create a hash table for each ladder Qu with each scale γ′′

in Ru being a key and w(γ′′) in Qu being the corresponding value.
Now we summarize the data structure Find-Ancestor for TC as follows:

• The ladder data structure and a hash table for each ladder Qu

• For each leaf in TC , keep a hash table for all the shortcuts to its critical ancestors

• For each Su, keep a data structure of Lemma 4.4.4 with w = θ(logn)

• For each vertex x in TC , keep a pointer to its ladder

• For each leaf u in TC , keep a pointer to Su

Lemma 4.4.5. Data structure Find-Ancestor has O(n log7/6 n) size and can be computed
in O(n log2 n) time.

Proof. The rooted tree TC has size O(N) = O(n logn). So the size of all ladders is O(n logn)
since each ladderQu only doubles the size of the root-leaf path Pu. The size of the hash tables
for all ladders is O(n logn) since the size of the hash table for each Qu is O(|Qu|). The size of
shortcuts for all u of G is O(n logn) because each u has O(logN) = O(logn) shortcuts. The
size for the hash tables for the shortcuts is also O(n logn). For each u of G, |Su| = O(logn)
and

∑
u∈V (G) |Su| = O(n logn). From this, the size of the data structure of Lemma 4.4.4

for all Su is O(n log7/6 n) as the size of the data structure for each |Su| is O(|Su| log1/6 n).
The size of other pointers associated with the vertices in TC is O(N) = O(n logn). So the
size of data structure Find-Ancestor is O(n log7/6 n).

TC , the ladders and short cuts can be computed in O(n logn) time. The data structure
of Lemma 4.4.4 for all Su can be computed in O(n log3/2 n) time. The hash table for one
ladder Qu can be computed in O(|Qu| log2 n) time [5] and thus the hash tables for all ladders
can be computed in O(n log2 n) time.
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Given a vertex u of G and a scale γ the data structure Find-Ancestor finds w(γ) as follows:

Algorithm 4: Find-Ancestor-Query(u, γ)
Input: a vertex u in G and a level γ
Output: the ancestor w(γ) of u in TC that appears in scale γ

1 if γ = 0 then
2 return u;
3 else
4 Find the largest γ′ ∈ Su with γ′ ≤ γ;
5 Find the critical ancestor w′(γ′) of u from the hash table for Au;
6 Find w(γ) from the hash table for w′(γ′)’s ladder;
7 return w(γ)
8 end

Lemma 4.4.6. Given any vertex u of G and any scale γ such that there is an ancestor
w(γ) of u in TC , data structure Find-Ancestor finds the w(γ) in O(1) time.

Proof. Each value in Su is in 0, 1, . . . , N and can be represented using θ(logn) bits. Since
|Su| = O(logn) and we choose w = θ(logn), it takes O(1) time to find the largest γ′ ∈ Su
with γ′ ≤ γ by Lemma 4.4.4. The critical ancestor w′(γ′) and w(γ) can both be found in
O(1) time using hash tables.

Let k = d(u) − d(w(γ)). Vertex w(γ) is the kth ancestor of u. If γ = 0 then w(γ) = u.
Otherwise, for the largest γ′ ∈ Su with γ′ < γ , the ancestor w′(γ′) of u is a critical ancestor
xi of u such that 2i ≤ k < 2i+1. By Lemma 4.4.2, w(γ) is in xi’s ladder. Therefore data
structure Find-Ancestor finds w(r) in O(1) time.

The data structure DO2 for our (1 + ε)-approximate distance oracle keeps the following
information:

• A 2-approximate distance oracle DOT of G in Lemma 4.2.3.

• For every scale γ, subgraphsG(γ, j) and for each subgraphG(γ, j), an oracle DO1(γ, j)
in Theorem 4.3.8 with ε0 = ε/c′, c′ > 0 is a constant to be specified below.

• For every scale γ and every vertex x appearing in scale γ , the index j of every
subgraph G(γ, j) that contains x.

• Data structure Find-Ancestor.

Lemma 4.4.7. Data structure DO2 requires O(n logn(log1/6 n+ logn/ε+ f(ε))) space and
can be computed in O(n logn(log3 n/ε2 + f(ε))) time.
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Proof. DOT requires O(n logn) space. Each DO1(γ, j) requires O(nγj lognγj/ε + nγjf(ε))
space, where nγj = |V (G(γ, j))|. Each edge e of G appears in O(logn) different scales γ and
in each scale, e appears in O(1) subgraphs G(γ, j). From this,

∑
γ,j nγj = O(n logn). For

every scale γ, DO2 keeps every vertex x in scale γ and index j of every subgraph G(γ, j) that
contains x. This requires O(n logn) space since each edge of G appears in O(logn) scales
and each x appears in O(1) subgraphs. By Lemma 4.4.5, data structure Find-Ancestor has
size O(n log7/6 n). Therefore DO2 requires space O(n logn(log1/6 n+ logn/ε+ f(ε))).

DST can be computed in O(n log3 n) time and the sparse neighborhood covers can
be computed in O(n log2 n) time. The time for computing DO1(γ, j) for each G(γ, j) is
O(nγj log3 nγj/ε

2 + f(ε)). By Lemma 4.4.6, data structure Find-Ancestor can be computed
in O(n log2 n) time. Therefore, DO2 can be computed in O(n logn(log3 n/ε2+f(ε)) time.

Now we give the query algorithm for distance oracle DO2 in Algorithm 5.

Algorithm 5: DO2-Query(u, v)
Input: vertices u and v in G
Output: distance d̃(u, v) such that dG(u, v) ≤ d̃(u, v) ≤ (1 + ε)dG(u, v)

1 d̃T (u, v)← DOT (u, v);
2 if d̃T (u, v) = 0 then
3 return 0
4 else
5 Find γ with γ/2 < d̃T (u, v) ≤ γ;
6 x← Find-Ancestor-Query(u, γ);
7 y ← Find-Ancestor-Query(v, γ);
8 d̃(u, v)←∞;
9 for G(γ, j) that contains both x and y do

10 d̃(u, v)← min{d̃(u, v),DO1(γ, j)(u, v)}
11 end
12 return d̃(u, v)
13 end

Lemma 4.4.8. For any vertices u and v in G, DO2 returns an approximate distance d̃(u, v)
in O(1) time such that dG(u, v) ≤ d̃(u, v) ≤ (1 + ε)dG(u, v).

Proof. By Lemma 4.2.3, oracle DOT gives d̃T (u, v) with dG(u, v) ≤ d̃T (u, v) ≤ 2dG(u, v) in
O(1) time. If d̃T (u, v) = 0, dG(u, v) = 0 and the correct result is returned in O(1) time.
Otherwise, given d̃T (u, v), a scale γ with γ/2 < d̃T (u, v) ≤ γ can be found by computing
the most significant bit of

⌈
d̃T (u, v)

⌉
. In the word RAM model with unit costs for basic

operations, this can be computed in O(1) time[36]. Notice that each of u and v is covered by
a vertex in scale γ and let x and y be the vertices in scale γ covering u and v, respectively.
By Lemma 4.4.6, x and y can be computed in O(1) time respectively. By Lemma 4.2.5,
there is a G(γ, j) that contains x and every w with dGγ (x,w) ≤ γ and d(G(γ, j)) = O(γ) =
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O(dG(u, v)). Therefore there exists a constant c1 > 0 (96 would do) such that d(G(γ, j)) ≤
c1dG(u, v). It is easy to see that DO1(γ, j)(u, v) returns a minimum distance among all
oracles at this scale containing x,y and would be returned as d̃(u, v). From Lemma 4.2.5,
there are O(1) graphs G(γ, j) containing x and y. From this and Theorem 4.3.8, it takes
O(1) time to compute d̃(u, v).

By oracle DO1(γ, j), we get a distance d̃0(x, y) with dG(γ,j)(x, y) ≤ d̃0(x, y) ≤ dG(γ,j)(x, y)+
7ε0d(G(γ, j)). Since G(γ, j) is a subgraph obtained from G with every edge e with l(e) <
γ/n2 contracted, dG(γ,j)(u, v) ≤ dG(u, v). Let L be the largest sum of the lengths of the con-
tracted edges in any path in G. Then dG(u, v) ≤ dG(γ,j)(u, v)+L and L < γ/n ≤ 4

5εdG(u, v),
from γ < 2d̃T (u, v) ≤ 4dG(u, v) and ε > 5/n. Let d̃(u, v) = d̃0(u, v) + γ/n. Then

dG(u, v) ≤ d̃(u, v) ≤ dG(γ,j)(x, y) + 7ε0d(G(γ, j)) + γ/n

≤ dG(u, v) + 7c1
ε

c′
dG(u, v) + 4

5εdG(u, v).

By choosing c′ = 35c1, we have dG(u, v) ≤ d̃G(u, v) ≤ (1 + ε)dG(u, v).

From Lemmas 4.4.7 and 4.4.8, we get Theorem 4.1.1 which is restated below.

Theorem 4.1.1. For ε > 0, there is a (1 + ε)-approximate distance oracle for G with
O(1) query time, O(n logn(log1/6 n+ logn/ε+ f(ε))) size and O(n logn(log3 n/ε2 + f(ε)))
preprocessing time.

Using the oracle in Theorem 4.3.9 instead of DO1, we get Theorem 4.1.2.

4.5 Conclusions

In this Chapter, we discussed how to achieve constant query time independent of ε while
remaining nearly linear (in n) space and preprocessing time for (1+ε)-approximate distance
oracle for planar graphs. We showed how to put different tools to work properly to support
constant query time, especially how to locate a vertex after contraction in constant time,
which was not addressed in previous works. It is open whether there is a (1+ε)-approximate
distance oracle with O(1) query time and size nearly linear in n for weighted directed planar
graphs. Experimental studies for fast query time distance oracles are worth investigating.
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Chapter 5

Conclusions and Future Works

In this thesis, we studied both exact distance oracles and approximate distance oracles for
planar graphs. In Chapter 3, we showed how to improve the construction time of branch-
decomposition for planar graphs and therefore improve the preprocessing time of branch-
decomposition based exact distance oracles for planar graphs. And as a direct result, we
improved the preprocessing time of the branch-decomposition based distance oracle in [65].
The practical efficiency of the algorithms in this chapter heavily depends on the efficiency of
computing the minimum face separating cycles. When the number of faces that need to be
separated is small, it may be efficient in practice to compute the face separating cycles using
a straightforward approach. Also, the result in this chapter is randomised and can be made
deterministic with an additional log3n factor in the running time. For graphs where shortest
paths are unique, this additional factor can be removed. For graphs with small branchwidth,
it is open whether the branch-decompositions techniques and Voronoi diagram techniques
can be combined to achieve better exact distance oracles for planar graph.

In Chapter 4, we gave the first (1 + ε)-approximate distance oracle with constant query
time independent of ε and nearly linear (in n) size and preprocessing time. This distance
oracle has two technical parts, one is to construct an additive stretch distance oracle with
O(1) query time and the other is to convert the first part into a (1+ε)-approximate distance
oracle while maintaining constant query time after performing edge contraction. A main
drawback in the first part is that the dependency on 1/ε is exponential for the preprocessing
time and oracle size. This has been solved recently by Chan and Skrepetos [22]. They replace
the exponential dependency on 1/ε on the preprocessing time and space with a polynomial
one based on the recent breakthroughs on Voronoi diagram [20]. Gawrychowsk et al. [37]
improved the Voronoi diagram techniques in [20] so it is worth investigating whether the
improvements can be applied on the result in [22]. Also it is worth investigating whether
Voronoi diagram and improved point location structure in [38] for exact distance oracles
can be applied to approximate distance oracles.

81



Bibliography

[1] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance
oracles for planar graphs via forbidden-set distance labels. In Proceedings of the forty-
fourth annual ACM symposium on Theory of computing, pages 1199–1218. ACM, 2012.

[2] Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes
with affine stretch. In International Symposium on Distributed Computing, pages 404–
415. Springer, 2011.

[3] Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen. Mathematische
Annalen, 99(1):118–133, 1928.

[4] Alok Aggarwal and Maria Klawe. Applications of generalized matrix searching to
geometric algorithms. Discrete Applied Mathematics, 27(1-2):3–23, 1990.

[5] Noga Alon and Moni Naor. Derandomization, witnesses for boolean matrix multi-
plication and construction of perfect hash functions. Algorithmica, 16(4-5):434–449,
1996.

[6] Srinivasa Arikati, Danny Z Chen, L Paul Chew, Gautam Das, Michiel Smid, and Chris-
tos D Zaroliagis. Planar spanners and approximate shortest path queries among ob-
stacles in the plane. In Algorithms—ESA’96, pages 514–528. Springer, 1996.

[7] Giorgio Ausiello, Giuseppe F Italiano, Alberto Marchetti Spaccamela, and Umberto
Nanni. Incremental algorithms for minimal length paths. Journal of Algorithms,
12(4):615–638, 1991.

[8] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Near-linear time
construction of sparse neighborhood covers. SIAM Journal on Computing, 28(1):263–
277, 1998.

[9] Baruch Awerbuch and David Peleg. Sparse partitions. In Foundations of Computer
Science, 1990. Proceedings., 31st Annual Symposium on, pages 503–513. IEEE, 1990.

[10] Maxim Babenko, Andrew V Goldberg, Anupam Gupta, and Viswanath Nagarajan.
Algorithms for hub label optimization. ACM Transactions on Algorithms (TALG),
13(1):16, 2016.

[11] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Improved decremental al-
gorithms for maintaining transitive closure and all-pairs shortest paths. Journal of
Algorithms, 62(2):74–92, 2007.

82



[12] Michael A Bender and Martın Farach-Colton. The level ancestor problem simplified.
Theoretical Computer Science, 321(1):5–12, 2004.

[13] Zhengbing Bian and Qian-Ping Gu. Computing branch decomposition of large planar
graphs. In International Workshop on Experimental and Efficient Algorithms, pages
87–100. Springer, 2008.

[14] Zhengbing Bian, Qian-Ping Gu, Marjan Marzban, Hisao Tamaki, and Yumi Yoshitake.
Empirical study on branchwidth and branch decomposition of planar graphs. In Pro-
ceedings of the Meeting on Algorithm Engineering & Expermiments, pages 152–165.
Society for Industrial and Applied Mathematics, 2008.

[15] Zhengbing Bian, Qian-Ping Gu, and Mingzhe Zhu. Practical algorithms for branch-
decompositions of planar graphs. Discrete Applied Mathematics, 199:156–171, 2016.

[16] Hans L Bodlaender, Alexander Grigoriev, and Arie MCA Koster. Treewidth lower
bounds with brambles. Algorithmica, 51(1):81–98, 2008.

[17] Glencora Borradaile, David Eppstein, Amir Nayyeri, and Christian Wulff-Nilsen. All-
pairs minimum cuts in near-linear time for surface-embedded graphs. In International
Symposium on Computational Geometry (SoCG 2016) Symposium on Computational
Geometry. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2016.

[18] Glencora Borradaile, Piotr Sankowski, and Christian Wulff-Nilsen. Min st-cut oracle for
planar graphs with near-linear preprocessing time. ACM Transactions on Algorithms
(TALG), 11(3):16, 2015.

[19] Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. Improved sparse covers
for graphs excluding a fixed minor. In Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, pages 61–70. ACM, 2007.

[20] Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise
distances in planar graphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2143–2152. SIAM, 2017.

[21] Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise
distances in planar graphs. ACM Transactions on Algorithms (TALG), 15(2):21, 2018.

[22] Timothy M Chan and Dimitrios Skrepetos. Faster approximate diameter and distance
oracles in planar graphs. In 25th Annual European Symposium on Algorithms (ESA
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[23] Shiva Chaudhuri and Christos D Zaroliagis. Shortest paths in digraphs of small
treewidth. part i: Sequential algorithms. Algorithmica, 27(3-4):212–226, 2000.

[24] Shiri Chechik. Approximate distance oracles with constant query time. In Proceedings
of the forty-sixth annual ACM symposium on Theory of computing, pages 654–663.
ACM, 2014.

[25] Danny Z Chen and Jinhui Xu. Shortest path queries in planar graphs. In Proceedings
of the thirty-second annual ACM symposium on Theory of computing, pages 469–478.
ACM, 2000.

83



[26] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance
queries via 2-hop labels. SIAM Journal on Computing, 32(5):1338–1355, 2003.

[27] Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast and compact
exact distance oracle for planar graphs. In Foundations of Computer Science (FOCS),
2017 IEEE 58th Annual Symposium on, pages 962–973. IEEE, 2017.

[28] Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. Robust
exact distance queries on massive networks. Microsoft Research, USA, Tech. Rep, 2,
2014.

[29] Erik D Demaine, Fedor V Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M Thi-
likos. Subexponential parameterized algorithms on bounded-genus graphs and h-minor-
free graphs. Journal of the ACM (JACM), 52(6):866–893, 2005.

[30] Erik D Demaine and MohammadTaghi Hajiaghayi. Graphs excluding a fixed mi-
nor have grids as large as treewidth, with combinatorial and algorithmic applications
through bidimensionality. In Proceedings of the sixteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 682–689. Society for Industrial and Applied Math-
ematics, 2005.

[31] Camil Demetrescu and Giuseppe F Italiano. A new approach to dynamic all pairs
shortest paths. Journal of the ACM (JACM), 51(6):968–992, 2004.

[32] Hristo N Djidjev. Efficient algorithms for shortest path queries in planar digraphs. In
Graph-Theoretic Concepts in Computer Science, pages 151–165. Springer, 1996.

[33] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest
paths, and near linear time. Journal of Computer and System Sciences, 72(5):868–889,
2006.

[34] Greg N Frederickson. Fast algorithms for shortest paths in planar graphs, with appli-
cations. SIAM Journal on Computing, 16(6):1004–1022, 1987.

[35] Michael L Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with
0 (1) worst case access time. Journal of the ACM (JACM), 31(3):538–544, 1984.

[36] Michael L Fredman and Dan E Willard. Surpassing the information theoretic bound
with fusion trees. Journal of computer and system sciences, 47(3):424–436, 1993.

[37] Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann.
Voronoi diagrams on planar graphs, and computing the diameter in deterministic õ
(n 5/3) time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 495–514. SIAM, 2018.

[38] Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen. Better
tradeoffs for exact distance oracles in planar graphs. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 515–529. SIAM,
2018.

[39] Alexander Grigoriev. Tree-width and large grid minors in planar graphs. Discrete
Mathematics and Theoretical Computer Science, 13(1):13, 2011.

84



[40] Qian-Ping Gu and Hisao Tamaki. Constant-factor approximations of branch-
decomposition and largest grid minor of planar graphs in O(n1+ε) time. Theoretical
Computer Science, 412(32):4100–4109, 2011.

[41] Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth with
respect to the largest grid minor size. Algorithmica, 64(3):416–453, 2012.

[42] Qian-Ping Gu and Gengchun Xu. Near-linear time constant-factor approximation al-
gorithm for branch-decomposition of planar graphs. In International Workshop on
Graph-Theoretic Concepts in Computer Science, pages 238–249. Springer, 2014.

[43] Qian-Ping Gu and Gengchun Xu. Constant query time (1 + ε)-approximate distance
oracle for planar graphs. In International Symposium on Algorithms and Computation,
pages 625–636. Springer, 2015.

[44] Qian-Ping Gu and Gengchun Xu. Constant query time (1 + ε)-approximate distance
oracle for planar graphs. Theoretical Computer Science, 761:78–88, 2019.

[45] Qian-Ping Gu and Gengchun Xu. Near-linear time constant-factor approximation al-
gorithm for branch-decomposition of planar graphs. Discrete Applied Mathematics,
257:186–205, 2019.

[46] Qian-Ping Gu and Gengchun Xu. Near-linear time constant-factor approximation al-
gorithm for branch-decomposition of planar graphs. arXiv preprint arXiv:1407.6761v2,
March 2015.

[47] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common
ancestors. siam Journal on Computing, 13(2):338–355, 1984.

[48] Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster
shortest-path algorithms for planar graphs. journal of computer and system sciences,
55(1):3–23, 1997.

[49] Illya V Hicks. Planar branch decompositions i: The ratcatcher. INFORMS Journal on
Computing, 17(4):402–412, 2005.

[50] Illya V Hicks. Planar branch decompositions ii: The cycle method. INFORMS Journal
on Computing, 17(4):413–421, 2005.

[51] Ken ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. Linear-space approx-
imate distance oracles for planar, bounded-genus and minor-free graphs. In Automata,
Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich,
Switzerland, July 4-8, 2011, Proceedings, Part I, pages 135–146, 2011.

[52] Donald B Johnson. Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM (JACM), 24(1):1–13, 1977.

[53] Frank Kammer and Torsten Tholey. Approximate tree decompositions of planar graphs
in linear time. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete algorithms, pages 683–698. Society for Industrial and Applied Mathematics,
2012.

85



[54] Frank Kammer and Torsten Tholey. Approximate tree decompositions of planar graphs
in linear time. arXiv preprint arXiv:1104.2275v2, 2013.

[55] Frank Kammer and Torsten Tholey. Approximate tree decompositions of planar graphs
in linear time. Theoretical Computer Science, 645:60–90, 2016.

[56] Frank Kammer and Torsten Tholey. Approximate tree decompositions of planar graphs
in linear time. arXiv preprint arXiv:1104.2275v3, July 2015.

[57] Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. More compact oracles
for approximate distances in undirected planar graphs. In Proceedings of the twenty-
fourth annual ACM-SIAM symposium on Discrete algorithms, pages 550–563. Society
for Industrial and Applied Mathematics, 2013.

[58] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In 40th Annual Symposium on Foundations of Computer
Science (Cat. No. 99CB37039), pages 81–89. IEEE, 1999.

[59] Philip Klein. Preprocessing an undirected planar network to enable fast approximate
distance queries. In Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 820–827. Society for Industrial and Applied Mathematics,
2002.

[60] Philip N Klein. Multiple-source shortest paths in planar graphs. In Proceedings of
the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 146–155.
Society for Industrial and Applied Mathematics, 2005.

[61] Philip N Klein, Shay Mozes, and Christian Sommer. Structured recursive separator
decompositions for planar graphs in linear time. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 505–514. ACM, 2013.

[62] Philip N Klein and Sairam Subramanian. A fully dynamic approximation scheme for
shortest paths in planar graphs. Algorithmica, 22(3):235–249, 1998.

[63] Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[64] Gary L Miller. Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and system Sciences, 32(3):265–279, 1986.

[65] Shay Mozes and Christian Sommer. Exact distance oracles for planar graphs. In
Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 209–222. Society for Industrial and Applied Mathematics, 2012.

[66] Shay Mozes and Christian Wulff-Nilsen. Shortest paths in planar graphs with
real lengths in O(n log2 n/ log logn) time. In Algorithms–ESA 2010, pages 206–217.
Springer, 2010.

[67] Yahav Nussbaum. Improved distance queries in planar graphs. In Workshop on Algo-
rithms and Data Structures, pages 642–653. Springer, 2011.

86



[68] Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick bound.
In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on,
pages 815–823. IEEE, 2010.

[69] John H Reif. Minimum s-t cut of a planar undirected network in o(n\logˆ2(n)) time.
SIAM Journal on Computing, 12(1):71–81, 1983.

[70] Neil Robertson, Paul Seymour, and Robin Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994.

[71] Neil Robertson and Paul D Seymour. Graph minors. i. excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39–61, 1983.

[72] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-
width. Journal of algorithms, 7(3):309–322, 1986.

[73] Neil Robertson and Paul D Seymour. Graph minors. x. obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

[74] J Cole Smith, Elif Ulusal, and Illya V Hicks. A combinatorial optimization algorithm
for solving the branchwidth problem. Computational Optimization and Applications,
51(3):1211–1229, 2012.

[75] Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys
(CSUR), 46(4):45, 2014.

[76] Hisao Tamaki. A linear time heuristic for the branch-decomposition of planar graphs.
In European Symposium on Algorithms, pages 765–775. Springer, 2003.

[77] Mikkel Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM (JACM), 46(3):362–394, 1999.

[78] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM (JACM), 51(6):993–1024, 2004.

[79] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM
(JACM), 52(1):1–24, 2005.

[80] Oren Weimann and Raphael Yuster. Approximating the diameter of planar graphs in
near linear time. ACM Transactions on Algorithms (TALG), 12(1):12, 2016.

[81] Christian Wulff-Nilsen. Algorithms for planar graphs and graphs in metric spaces. PhD
thesis, PhD thesis, University of Copenhagen, 2010.

[82] Christian Wulff-Nilsen. Approximate distance oracles with improved preprocessing
time. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 202–208. Society for Industrial and Applied Mathematics, 2012.

[83] Christian Wulff-Nilsen. Approximate distance oracles for planar graphs with improved
query time-space tradeoff. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, pages 351–362. SIAM, 2016.

87


	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Related Works
	Exact Distance Oracles for Planar Graphs
	Approximate Distance Oracles for Planar Graphs
	Tree-/Branch-Decomposition Based Distance Oracles
	Distance Oracles for General Graphs
	Dynamic Distance Oracles

	Research Questions and Contributions
	Improving the Preprocessing Time for Branch-Decomposition Based Exact Distance Oracles
	Improving the Query Time for Approximate Distance Oracles

	Thesis Organization

	Definitions and Previous Works
	Basic Definitions on Graphs
	Tree-/Branch-Decompositions
	General Techniques and Results for Exact Distance Oracles for Planar Graphs
	Portals
	Small Balanced Separators and r-division
	Monge Property and FR-Dijkstra
	Voronoi Diagram and Point Location Structure
	Tree-/Branch-Decomposition
	Price Function

	General Techniques and Results for Approximate Distance Oracles for Planar Graphs
	Shortest Path Separator
	Vertex Dependent Portal Set
	Global Portal Set
	Sparse Neighbourhood Cover
	Classification Scheme


	Imporoving Preprocessing Time for Exact Distance Oracle for Planar Graphs
	Introduction
	Definitions and Notations
	O(nlog3n) Time Algorithm
	O(nk2) Time Algorithm
	Review on Previous Techniques
	Algorithm for Theorem 3.1.3

	Conclusions

	Constant Query Time Approximate Distance Oracle for Planar Graphs
	Introduction
	Definitions and Notations
	Recursive Subdivision by Shortest Path
	O(1/) Query Time (1+)-Approximate Distance Oracle
	Vertex Independent Portal Set
	Sparse Neighborhood Covers

	Oracle with Additive Stretch
	Additive Stretch Distance Oracle with O(1/) Query Time
	Additive Stretch Distance Oracle with O(1) Query Time

	Oracle with (1+) stretch
	Scaling
	O(1) Query Time and (n) Space

	Conclusions

	Conclusions and Future Works
	Bibliography

