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Abstract

This thesis investigates the design and implementation of extremum seeking control with
application to power electronics. To this end, a novel multivariable sliding-mode extremum
seeking (MSES) scheme is developed and applied to several control and optimization prob-
lems involving maximum power point tracking (MPPT) and motor drives. The behavior of
the controller in terms of convergence characteristics and stability is studied using nonlinear
systems analysis tools.

The proposed MSES is utilized in three applications. First, we apply the concept to MPPT
in an alternator-based energy conversion system. The objective is to achieve optimal power
conversion at different speeds and output voltages of a Lundell alternator. The performance
of the proposed controller is experimentally verified on a laboratory-scale setup through con-
trolling the alternator field current and output voltage to gain fast and precise convergence
and robust performance in face of disturbances and uncertainties.

In the second application, the proposed MSES is used to tune a proportional-integral (PI)
controller which regulates the current of a permanent magnet synchronous motor (PMSM).
The performance of the proposed MSES tuning method in terms of accuracy, parametric
variations, and load torque disturbances is investigated through several experimental tests
on a PMSM setup.

In the third application, the MSES concept is extended to a PMSM-drive system which
emulates an exercise machine working at low speeds. In this case, the algorithm is modified
to a multi-objective sliding-mode extremum seeking (MOES) optimization scheme for torque
control of a PMSM as well as minimization of its torque ripples. To this end, the MSESC
method is utilized to implement an adaptive iterative learning control (AILC) strategy for
torque ripple minimization. The performance of the proposed MOES in terms of torque
ripple suppression, steady state and transient performance, and load disturbance rejection
is experimentally verified through synthesizing different mechanical impedances.

Keywords: multivariable extremum seeking, sliding-mode, maximum power point track-
ing, alternator-based energy conversion, PI tuning, permanent magnet synchronous motor,
multi-objective extremum seeking, exercise machine.
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Chapter 1

Introduction

1.1 Motivation of Research

Power electronic systems are developing rapidly in different industrial applica-
tions such as automation, energy conversion, utility systems, and etc [6,7,11,45].
By developing the power electronic systems, new problems and challenges arise
which require to come up with new control strategies.

In many power electronic applications, there is a nonlinearity in the system
and the objective is to regulate the system such that it achieves its optimal
performance with minimal knowledge about the system model [2]. The nonlin-
earity might be in the plant, as a physical nonlinearity such as energy-conversion
systems [16,44,48]. These systems mostly operate under a wide range of uncer-
tain structural/environmental parameters and disturbances while it is desired
to maximize the power generated by the system regardless of the magnitude
of changes in parameters [24]. Moreover, in some applications, the nonlinearity
might be in the control objective, added to the system through a cost functional
of an optimization problem. One notable example of this scenario in power
electronic applications is the fixed-gain proportional-integral-derivative (PID)
controllers which are conventionally utilized for control of PMSMs [77, 100].
The conventional PID controllers are sensitive to parameter variations and load
torque disturbances which leads to a degradation in PMSM control in terms of
accuracy and robustness [50].

In recent years, considerable amount of research and development has been
done for designing new control methods including adaptive and artificial intelli-
gence controllers [51,57,67,88]. Although the proposed methods achieve some of
the desired control objectives, they mostly rely on the full knowledge of the sys-
tem and thus their performance is restricted by the accuracy of system model.
Moreover, the proposed intelligent methods need to be trained beforehand. Also,
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their functionality is degraded over time if they are not periodically trained. This
motivates further studies which are provided in the coming parts of this thesis.

1.2 Background and Overview of the Present State
of Technology

Conventional control methods are mainly applicable to systems with "known"
set points and performance functions [2]. However, in many power electronic
applications, the performance function is partially or totally unknown, and the
objective is to regulate the system so that the output reaches the extremum
(maximum/ minimum) value. This problem is called "Extremum-seeking" or
"Self-optimizing" control [47].

In the past few years, extremum seeking has been vastly used in different en-
gineering applications including control applications [10,97] as well as optimiza-
tion problems [2, 41]. The former domain mostly deals with tuning the system
set points to achieve an optimal value of the output whereas the latter domain
mostly considers tuning of parameters in a feedback law [97]. One of the fore-
most reasons for extensive use of extremum seeking controllers is that they are
model-free and can be utilized in real-time optimization [2]. Consequently, they
are appropriate for nonlinear time-varying systems with parametric uncertain-
ties and systems with partially or totally unknown input-output characteristics.
Different types of extremum seeking controllers have been proposed during the
past decades [59,60,81,95,98]. In the following, two main ESC methods used in
the literature are introduced.

1.2.1 Gradient-based Extremum Seeking Control

Gradient-based ESC is the most popular ESC method in the literature and has
been applied in many different engineering applications [1, 10, 81, 95]. In this
type of control, a perturbation- which is commonly a sine waveform- is added
to the search signal and the optimum value is obtained by observing the effect
of the perturbation on the performance function measurement. Fig. 1.1 depicts
control block diagram of gradient-based ESC for a general nonlinear system with
a performance function defined as y = f(θ) where θ is the input to the system
which is controlled by the gradient-based extremum seeking control such that
the optimal system output y is generated. In this study, it is crucial to note that
all of the plant components are allowed to be unknown.

The system input is obtained by adding a sine perturbation signal to the
adaptation input θ̂ [10]

θ = a2sin(ωt) + θ̂. (1.1)
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Figure 1.1: Control block diagram of gradient-based ESC [10].

Figure 1.2: An illustration of a sinusoidal perturbation [95].

where a2 is the amplitude and ω is the frequency of perturbation signal. In (1.1),
the adaptation signal θ̂ shifts the sine waveform towards the gradient direction.
The resultant value makes the modulation phase of the algorithm. The system
response to signal θ is measured in the objective value y [10]

y = f(θ̂ + a2sin(ωt)). (1.2)

Then, the output y is filtered by a high-pass filter so that its DC component
is eliminated. The output of high-pass filter is demodulated by the same sine
perturbation signal to extract the gradient direction which- with a slight abuse
of notation- is obtained as

ξ = y( s

s+ h
)(a1sin(ωt)). (1.3)

This concept is simply illustrated in Fig. 1.2. As can be seen, a small amount
of sinusoidal perturbation is introduced to the system. In the case of a negative

3



Figure 1.3: Multivariable gradient-based extremum seeking control [90].

(positive) ξ, the operation point lies on the right (left) side of the curvature,
respectively.

Since only the DC component of demodulated signal is needed for gradient
calculation, a low pass filter is applied to filter the demodulated signal ξ. This
information is utilized to calculate the shift in the sine signal towards the gra-
dient. This part of the algorithm is called the adaptation law and is calculated
as follows

θ̂ = −ξ(k
s

)( s

s+ h
). (1.4)

where k is a positive constant that specifies the adaptation speed.
One main drawback of the gradient-based ESC is that the convergence speed

and stability are dependent to the Hessian matrix [46]. This can severely re-
duce the effectiveness of gradient-based ESC in many different applications [3].
In early 70′s, Korovin and Utkin proposed sliding-mode ESC [42, 43]. In this
approach, the system performance function is forced to remain on an increas-
ing/decreasing sliding surface [10]. One main advantage of the sliding-mode ESC
over the gradient-based ESC is that it does not require any gradient information
of the system for optimization. Hence, it is more robust to the system dynamic
changes and uncertainties [85].

1.2.2 Sliding-mode Extremum Seeking Control

The basic idea of this controller is to make f follow an increasing/ decreasing
time function via sliding-motions [97, 98]. Consider the maximization of a per-
formance function y = f(θ). In this problem, y is forced to track an increasing
time function irrespective of the unknown gradient via sliding mode. A basic
sliding-mode analog optimization method can be found in Fig(1.3).

4



Pick any increasing function g(t) and try to keep y−g(t) at a constant value
by proper choice of θ̇. If so, f(θ) increases at the same rate as g(t), independent
of whether θ < θ? or θ > θ?. To this end, let

σ = f(θ)− g(t) (1.5)

where ġ(t) = p for p > 0 in a maximization problem. So that

σ̇ = df

dθ
θ̇ − ġ(t) (1.6)

with the optimizing law of [90]

θ̇ = k sgn(sin(πσ/α)) k > 0 (1.7)

where k is a positive constant and sgn is a sign function. In (1.7), the gain k

determines the convergence rate. The sine which is used in the signum function,
helps the ESC algorithm to find correct direction of which the objective function
becomes maximum. Moreover, α defines the bound on the error that is allowed
by the system. Additionally, if the system is slower or faster than the driving
signal, then chattering happens. The chattering frequency can be considerably
decreased by decreasing the parameter α [97].

1.2.3 Multivariable Extremum Seeking and Its Application in
Control and Optimization Case Studies

Most of the studies on ESC have focused on single-input-single-output (SISO)
systems. However, there are many power electronic applications in which con-
trol/optimization is a multivariable problem [2]. This study focuses on the ap-
plication of multivariable extremum seeking methods on three well-known prob-
lems in power electronics: MPPT in an alternator-based energy conversion sys-
tem (reffered as a control problem), as well as PID and ILC tuning for PMSM
current regulation and torque ripple minimization, respectively (referred as two
important power electronic optimization problems).

Control Problem: MPPT in an Alternator-based Energy Conversion
System

One well-known multivariable control example in power electronics is MPPT in
alternator-based energy conversion system. In this system, the output power of
the alternator depends on its shaft driving speed and load voltage at the out-
put [75]. Thus, to achieve energy-efficient power conversion, it is imperative that
the alternator works at its optimal point for different speeds and load voltages.
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In [66] and [65], a switched-mode rectifier (SMR) load-matching technique is uti-
lized for a Lundell alternator. In this case, two parameters have to be controlled
for power maximization; namely, the alternator field current and the duty ratio
of the DC/DC boost converter. The only applied control algorithm for alterna-
tor MPPT in multivariable case is a decentralized controller proposed in [66].
The proposed controller is a combination of an individual field controller to con-
trol the field current and a control limiter followed by a comparator to control
the duty ratio of the converter switch. The main drawbacks of the decentralized
ESC are its high cost and low efficiency [23].

As a good candidate, multivariable extremum seeking control (MESC) can
be applied to the system to maximize the alternator output power through
controlling the input variables of the system. In this work, the application of
MESC for MPPT in a Lundell alternator-based energy conversion system is
studied.

Optimization Problem: PID Tuning in PMSM Current Regulation

As an important optimization example one can refer to PID tuning in PMSM
current regulation. In recent years, several systematic PID tuning methods have
been proposed. For instance, trial-and-error [80], Ziegler-Nichols [34], and inter-
nal model control (IMC) [27] are some of the most popular PID tuning methods
that have been proposed in different PMSM control applications. However, these
methods utilize off-line tuning algorithms which lack the capability to handle
time-varying uncertainties. Moreover, they rely on the full knowledge of the sys-
tem model and thus their performance is restricted by the accuracy of PMSM
model. In [67], a model reference adaptive control (MRAC) technique for PID
tuning has been proposed. Although the proposed method can vary the gains
online, it is dependent on the system model and precise values of its parameters.
Artificial intelligence methods for PID tuning has also been utilized in PMSM
control applications. In [36], a fuzzy approach has been presented for PID tuning.
The proposed method uses off-line tuning and it cannot deal with time-varying
uncertainties. In [35], a neural network control technique has been applied for
PID tuning in direct torque control of PMSM drive. Although the proposed tun-
ing method can approximate the nonlinear mapping through learning, it suffers
from high computational burden which may be restrictive in practical applica-
tions.

Recently, extremum seeking as a real-time adaptive optimization method has
been proposed for tuning the PID gains [40,41]. The extremum seeking method
modifies the PID parameters iteratively by minimizing a cost function which
characterizes the desired performance of the system. In [41], a multivariable
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gradient-based ES method has been proposed for PID tuning. The working
principle of this scheme is presented in subsection 1.2.4.

Optimization Problem: ILC Tuning in PMSM Torque Ripple Mini-
mization

When a PMSM is operating at low speeds, torque ripples are inevitable and a
proper control method should be used such that the ripples are suppressed while
the system tracks a desired torque [71,92].

Several methods have been proposed to minimize the effect of torque ripples
in PMSM drive systems. Broadly, the research can be divided into two main
directions: (i) Improving the motor design [31, 101], and (ii) Utilizing more ad-
vanced control techniques [20,58]. While the motor design approach is restrictive
by numerous factors such as cost and complexity, great advances have been made
in utilizing control techniques [30,52]. To this end, early works have focused on
controlling the stator excitation currents to generate ripple-free torque profiles.
These methods require adequate knowledge about the motor or plenty of off-line
tests for system identification and fail to control the drive system properly due
to parameter variations and disturbances (see e.g., [68, 92]).

Recently, ILC has been utilized in PMSM torque ripple minimization. This
method does not require a detailed plant model and is based on learning the
desired control input by iteratively updating the input so as to reduce the pe-
riodic torque pulsations [72]. In [49], a proportional type discrete ILC which
incorporates both the previous cycle error information and current cycle error
feedback has been proposed. Torque ripple contains non-periodic components
which cannot be suppressed by ILC, resulting in accumulative effect due to non-
periodic disturbances. To alleviate this problem a forgetting factor has been
incorporated in the learning law of ILC in [68]. The value of the proportional
gain and forgetting factor in ILC have significant effect on steady state and dy-
namic performance of the system and should be selected based on a compromise
between torque ripple suppression and stability.

Utilizing adaptive gains in the ILC scheme improves the convergence rate
and dynamic performance of the system. In [89], a parameter optimization-
based ILC has been proposed to adjust the forgetting factor online to achieve
torque ripple reduction, while speed up the convergence rate and improve the
dynamic performance of the system compared with the conventional fixed-gain
ILC. However, the learning gain is fixed and no study is conducted on the effect
of learning gain on torque suppression in dynamic/steady state condition. In [99],
a variable gain ILC has been proposed to remove measurement uncertainties and
guarantee the tracking error convergence to zero. However, in this approach the
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Figure 1.4: Multivariable gradient-based extremum seeking control [90].

time domain uncertainty is not considered. In [91], a predictive variable gain has
been proposed which covers the drawbacks of the adaptive ILC proposed in [99].
However, it requires the precise parameters of PMSM model for eliminating
undesirable vibrations of PMSM system.

In this work, multivariable extremum seeking is utilized for PMSM torque
ripple minimization . The proposed approach requires minimal knowledge about
the motor parameters. Hence, it can be utilized in any tracking application
involving PMSM operating at low speeds such as position sensorless drives [26],
robotics [56], machine tools [79], and haptic interfaces [32].

1.2.4 Multivariable Gradient-based Extremum Seeking Control

Extending the gradient-based ESC to the multivariable case is done by assigning
a sine waveform to every input channel with some phase shift [23]. Fig. (1.4),
shows the multivariable gradient-based ES design, whereKg is a positive definite
diagonal matrix, and the perturbation signals are defined as [23]

Q(t) = a1[sin(ω1t) sin(ω2t) ... sin(ωnt)T (1.8)

M(t) = a2[sin(ω1t) sin(ω2t) ... sin(ωnt)]T (1.9)

where ωj/ωk are rational for all j and k, and a1 and a2 are real numbers, with
the frequencies chosen such that ωj 6= ωk and ωj +ωk 6= ωm for distinct j, k and
m.

In particular, the design derives an estimate θ of the gradient vector by
adding the probing signal Q to the estimate θ̂ = [θ̂1 θ̂2 ... θ̂n]T [23].

Multivariable gradient-based ESC helps to reduce the hardware costs and in-
crease the efficiency of the control/ optimization. However, as mentioned earlier,
one main drawback of this control method is that it depends on the gradient
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information. Moreover, due to the high magnitude switching of gradient term,
the gradient-based ES fails to reject the effect of disturbances and parameter
variations appropriately [86]. This is specifically critical in MPPT tracking of
alternator based system which works at various speeds and load uncertainties
are inevitable. This is also crucial in PMSM current regulation and torque ripple
minimization for which PID and ILC are sensitive to parameter variations and
load torque disturbances.

1.3 Summery of Contributions and Outline of the
Dissertation

Regarding the drawbacks of multivariable gradient-based extremum seeking con-
troller, it is desired to design a more efficient, gradient-independent multivari-
able ESC. To this end, multivariable sliding-mode extremum seeking control
would be a good candidate to address the mentioned problems. Although cer-
tain studies can be found in the literature on multivariable sliding-mode con-
trol [28, 37, 61, 74, 82], to the best of my knowledge, no studies have been con-
ducted on multivariable sliding-mode extremum seeking control. In this work, a
novel multivariable sliding-mode extremum seeking control scheme is proposed
and its application is studied in several power electronic control/optimization
problems. In this regard, the contributions of this thesis are summarized as
follows:

1.3.1 Chapter 2: Multivariable Sliding-mode Extremum Seeking
Control

This chapter provides the ground work upon which the rest of the thesis is
developed. In the beginning, the design principle for the proposed multivariable
sliding-mode extremum seeking controller is presented. It is shown that the
proposed controller extends conventional scalar sliding-mode ESC by defining
multiple sliding surfaces through a sliding manifold vector with different control
parameters. In the following, convergence and stability analysis of the proposed
controller both outside and inside the ε-vicinity of the extremum point is studied.
The results of this chapter are used in chapter 3 as a control framework for
MPPT in an alternator energy conversion system. The outcomes of research
presented in this chapter have been published in [19], [85], and [87].
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1.3.2 Chapter 3: MPPT in an Alternator-based Energy Conver-
sion System

In this chapter, the application of the proposed controller presented in chapter
2 is studied for MPPT of a laboratory-scale alternator-based energy conversion
system. The proposed MSES controller maximizes the alternator output power
at various speeds by controlling the alternator’s field current and its output
voltage. Furthermore, the performance of the proposed controller is compared
with a multivariable gradient-based method through experimental studies. The
results demonstrate that the proposed controller offers advantages in terms of
speed, accuracy, and robust performance. The outcomes of research presented
in this chapter have been published in [19], and [87].

1.3.3 Chapter 4: Extremum Seeking PI Tuning for PMSM Cur-
rent Regulation

High-performance current control is critical for obtaining smooth output torque
in PMSMs. To this end, the application of the proposed MSES scheme for PI
tuning in PMSM current regulation is studied in this chapter. The proposed
MSES tuning optimizer varies the PI gains by minimizing a cost function based
on the feedback error term. The resulting PI controller can achieve fast and accu-
rate tracking response, high disturbance rejection, and low sensitivity to PMSM
parameter variations. Furthermore, the stability of proposed control strategy
is investigated through a Lyapunov analysis and its performance is evaluated
through experimental studies. The results indicate that the proposed controller
can offer improved performance in terms of accuracy, parametric variations, and
load torque disturbances when compared with a conventional PI and a recently
proposed PI controller using gradient-based extremum seeking tuning method.
The simulation results of this study were published in [86]. The experimental
outcomes have been published in [17].

1.3.4 Chapter 5: PMSM Torque Ripple Minimization and Con-
trol using Multi-objective Extremum Seeking Control

When a PMSM is operating at low speeds, torque ripples are inevitable and a
proper control method should be used such that the ripples are suppressed while
the system tracks a desired torque. To this end, a multi-objective extremum-
seeking (MOES) approach is proposed for torque control of a PMSM and mini-
mization of its torque ripple. The latter aspect is important in human-machine
interface applications such as haptic devices requiring smooth torque profiles
at slow speeds. The proposed MOES scheme combines an adaptive iterative
learning control (AILC) method with an adaptive PI controller which makes
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the system less sensitive to load disturbances and improves the control perfor-
mance for torque regulation during transient events. Experiments are performed
on a proof-of-concept exercise machine that generates desired torque profiles
and mechanical impedances based on user’s preference. The performance of the
proposed controller is further compared with a recently proposed adaptive PI
controller. The experimental results validate the effectiveness of the proposed
controller in terms of torque ripple suppression, steady state and transient per-
formance, as well as load disturbance rejection. The research outcomes presented
in this chapter have been published in [18].

1.3.5 Chapter 6: Conclusions and Suggestions for Future Works

The research outcomes and achievements are summarized in this chapter. Gen-
eral conclusions are made based on the theories, simulations and experiments
provided in the thesis. Some ideas that have been generated during the whole
project but have not had a chance to be investigated are suggested as future
works.
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Chapter 2

Multivariable Sliding-mode
Extremum Seeking Control

In this chapter, a novel multivariable sliding-mode extremum seeking controller
is proposed. The proposed controller combines the merits of multivarible sliding
mode with ESC. In particular, the use of model-free ES makes the controller
independent of the system model [23]. Besides, sliding-mode control can pro-
vide robust performance [28, 37, 61, 69, 74, 82]. The proposed controller extends
conventional scalar sliding mode ESC proposed in [62–64, 96, 97] by defining
multiple sliding surfaces through a sliding manifold vector with different con-
trol parameters. Due to applying multivariable sliding-mode control, fast and
smooth convergence along with robust performance can be achieved. Further-
more, in contrast to decentralized ESC, it only applies one control loop for
maximization/minimization. A rigorous study is conducted on convergence and
stability analysis of the proposed controller both outside and inside the ε-vicinity
of the extremum point. In the outside region, a Lyapunov-like function is intro-
duced and its stability characteristics are obtained in the multivariable case. In
the inside region, different cases that may arise as the system enters this region
are studied. Finally, a theorem is presented for convergence of the system both
outside and inside the ε-vicinity of the extremum point. The control principles
presented in this chapter have been used in next chapters in different power
electronic control/optimization problems.

This chapter is organized as follows. In section 2.1, the proposed multivari-
able sliding-mode extremum seeking controller is presented. In section 2.2, the
convergence and stability analysis of the proposed controller is fully studied
both outside and inside the ε-vicinity of the extremum point. Finally, section
2.3 concludes from this chapter.
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Figure 2.1: Control block diagram of multivariable sliding-mode ESC.

2.1 Controller Design

Consider the block diagram shown in Fig. 2.1. The performance function of the
system is generally represented as follows

y(t) = f(θ, t) (2.1)

where f : IRn → IR, y ∈ IR is the output, t is time and θ = [θ1 θ2...θn] is the
vector of n parameters to be controlled. f(θ, t) is partially or totally unknown
and the objective is to control θ such that f is maximized (or minimized).

Without loss of generality, assume that f(θ, t) has a maximum point. The
proposed controller applies n sliding surfaces to control n parameters of the
system. Let us define the sliding-surface vector σ(t) as follows

σ(t) = [σ1 σ2 .... σn] (2.2)

where

σi = y − pit (2.3)

in which pi > 0 (i = 1, 2, ..., n) is the slope of ith sliding surface. The vector of
driving signals is defined as follows

p = [p1 p2 ... pn] (2.4)

Accordingly, g(t) is defined as
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ġ(t) = p (2.5)

where g(t) is an increasing function with pi > 0 (i = 1, ..., n) for the maximiza-
tion problem. By selecting the sliding-surface vector as (2.2), the goal is to reach
the sliding surfaces and remain on them thereafter.

The optimizing control law is defined such that stability of the system is
guaranteed. To this end, the following control law is defined for the system

θ̇ = Kgsgn(sin(πσ
α

)) (2.6)

where sgn(.) is a signum function, α = [α1 α2... αn] is a 1×n vector for which
each element is a positive constant. Kg = diag([kg1, ..., kgn]) is an n × n diag-
onal positive definite matrix which determines the convergence rate. Since the
performance function is not known, the periodic switching signal sgn(sin(πσα ))
is applied to find the direction in which the system becomes maximized. The
multivariable sliding mode ESC achieves the maximum point of the system by
forcing f to remain on the increasing sliding surface vector, i.e σ(t)→ 0. On the
sliding-mode vector, the performance function f increases with the increasing of
the reference function g(t) and the system moves toward the maximum vector
θ∗.

Choosing the controller parameters properly guarantees the stability of the
system. In [98], a study is conducted for selecting the parameters in a scalar
sliding-mode ESC. A similar procedure can be extended to the multivariable
case as discussed in current work. As kgi becomes larger, the convergence rate
to the extremum point increases. Moreover, α has to be selected as a small posi-
tive constant so that sliding motions occur for kgi| dfdθi

| > |ġi| (i = 1, 2, ..., n), and
the error e(t) approaches zero with a bandwidth of ζ. In this case, θ converges
to θ∗ within a finite time. The region defined by | dfdθi

| > |ġi|/kgi (i = 1, 2, ..., n),
quantifies θ with the optimizing law (2.6). The stability and convergence condi-
tions for ESC in a multivariable setting are presented in the following section.

2.2 Convergence and Stability Analysis in Multivari-
able Sliding-mode Extremum Seeking Controller

In this section, convergence analysis is conducted for both outside and inside
an ε-vicinity of the maximum. For a system with multivariable performance
function, the ε-vicinity of the maximum can be considered as a surface for
θ1, θ2, ..., θn, whereas for the jth input it can be defined as follows:
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Figure 2.2: A 3D example of ε-vicinity surface for a two-variable performance function.

θ∗j(εl,εr) = {θj |θ∗j − εl ≤ θj ≤ θ∗j + εr} j = 1, 2, ..., n (2.7)

where εl and εr are positive constants. Accordingly, the following holds for the
regions near the maximum

| ∂f∂θj
| > pj

kgj
∀θj∈θ∗j(εl,εr) j = 1, 2, ..., n

| ∂f∂θj
| < pj

kgj
∀θj ∈ θ∗j(εl,εr)

| ∂f∂θj
| = pj

kgj
for θj = θ∗j − εl or θj = θ∗j + εr

(2.8)

Fig. 2.2 illustrates a simple example for ε-vicinity surface of the maximum of a
two-variable performance function.

2.2.1 Case 1: Stability and Convergence Analysis outside the
ε-vicinity of the maximum

Assume θj(0) is outside the ε-vicinity of the maximum, i.e. θj∈θ∗j(εl,εr); hence,
| ∂f∂θj
| > pj

kgj
. In this region, convergence analysis of the proposed controller is

conducted using a Lyapunov-like function as follows

V = 1
2σσ

T (2.9)

The time derivative of V is
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V̇ = σ̇σT = (∂f
∂θ
θ̇ − p)σT (2.10)

Considering (2.6), V̇ can be rewritten as

V̇ = (∂f
∂θ
Kgsgn(sin(πσ

α
))− p)σT (2.11)

To guarantee stability of the system, V̇ should be negative. The terms ∂f
∂θ

and p are 1 × n vectors. Moreover, Kg and sgn(.) are considered to be n × n
diagonal matrices. Hence, we can write a = (∂f∂θKgsgn(sin(πσα )) − p) in the
following form

a =
[
∂f
∂θ1

.... ∂f∂θn

]

kg1 0 · · · 0
0 kg2 · · · 0
...

... . . .
...

0 0 · · · kgn

×

sgn(sin(πσ1

α1
))) 0 · · · 0

0 sgn(sin(πσ2
α2

))) · · · 0
...

... . . .
...

0 0 · · · sgn(sin(πσn
αn

)))


− p (2.12)

since Kg and sgn(.) are diagonal matrices, a is obtained as a vector. Therefore,
each entry of a is as follows

aj =
( ∂f
∂θj

kgj
(
sgn(sin(πσj

αj
))
))
− pj (2.13)

Accordingly, (2.11) can be rewritten as

V̇ = aσT =
∑

1≤j<n
ajσj (2.14)

For stability, it is sufficient that each term of (2.14) be negative. Let us consider
the region ∂f

∂θj
> 0. If 2kαj < σj(0) < 2(k + 1)αj , then sgn(sin(πσj

αj
))
)
< 0, and

(2.14) can be re-written as

V̇ =
∑

1≤j<n

(
− ∂f

∂θj
kgj − pj

)
| σj | (2.15)
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Hence, one can conclude V̇ < 0 and σj is kept at the sliding manifold σj =
(2k + 1)αj . Now, assume that ∂f

∂θj
< 0. If (2k − 1)αj < σj(0) < (2k + 1)αj ,then

sgn(sin(πσj

αj
))
)
> 0 and with a similar inference, (2.15) can be written as

V̇ =
∑

1≤j<n

( ∂f
∂θj

kgj − pj
)
| σj | (2.16)

Considering the sliding-mode existence region kgj | ∂f∂θj
|−pj > 0, one can conclude

V̇ < 0 and σj is kept at the sliding manifold σj = 2kαj .
In the following, a convergence analysis is conducted to prove asymptotic

stability of the controller in the multivatiable case. Suppose that the sliding
manifolds ∀σj = mjαj are initially in the region ∂f

∂θj
> 0 and (mj − 1)αj < σj <

(mj + 1)αj at time t1 with the centre line mjαj and width of 2αj . In case of
stability, if σj(t1) > mjαj , σj will converge to mjαj . In case of instability (V̇ >

0), σj(t1) leaves the region during the time interval τj . Let us define a vector
of time delays for n sliding surfaces as τ = [τ1 τ2... τn]. The aim is to make σj
remain on the sliding-mode existence region of (mj − 1)αj < σj < (mj + 1)αj .
In [97], a condition is defined to reach convergence in the scalar case. Here, we
extend this condition to the multivariable case as follows

∑
1≤j<n

(∣∣∣∣[− ∂f

∂θj
kgj − pj

]
τj

∣∣∣∣− αj
)
≤

∑
1≤j<n

(( ∂f
∂θj

kgj − pj
)( αj

∂f
∂θj
kgj + pj

+ τj
))

(2.17)
Since ∂f

∂θj
> 0 and pj > 0, (5.27) can be rewritten as follows

∑
1≤j<n

∂f

∂θj
kgjτj +

∑
1≤j<n

τjpj ≤
(∑

1≤j<n
∂f
∂θj
kgj −

∑
1≤j<n pj∑

1≤j<n
∂f
∂θj
kgj +

∑
1≤j<n pj

+ 1
) ∑

1≤j<n
αj

+
∑

1≤j<n
( ∂f
∂θj

)kgjτj −
∑

1≤j<n
pjτj (2.18)

Let us define the fractional part as

φ =
∑

1≤j<n
∂f
∂θj
kgj −

∑
1≤j<n pj∑

1≤j<n
∂f
∂θj
kgj +

∑
1≤j<n pj

+ 1 (2.19)

Further algebraic manipulations result in

2
∑

1≤j<n
τjpj ≤ φ

∑
1≤j<n

αj (2.20)

Hence, it can be concluded that 2τpT ≤ φ
∑

1≤j<n αj .
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Equation (5.30) can be simplified to 2τpT ≤
∑

1<j<n αj . This leads to
a larger sliding-mode existence region to guarantee stability in a larger area.
Hence, through satisfaction of the above goals, the system will stably converge
to the ε-vicinity of the maximum f(θ∗).

2.2.2 Case 2: Convergence Analysis inside the ε-vicinity of the
maximum

In the ε-vicinity of the maximum, the reaching condition does not hold. In this
case, two different states can be considered for the system:

1) The system converges to the maximum with oscillations;
2) The system moves through the ε-vicinity, goes outside and switches among

the sliding mode vectors.
Assume that at t = t0, the system enters the ε-vicinity of the maximum as

shown for case 1 in Fig. 2.3. This figure can be interpreted as projection of the
multi-dimensional performance function f(θ) on one surface along with one of
the θj axes. Here, the projection of f is defined as

projθj
(f(θ)) = ξ(θj) (2.21)

Without loss of generality, assume that θj(t0) is at the left side of the ε-vicinity

θj(t0) = θ∗j − εl j = 1, 2, ..., n (2.22)

Moreover, −αj < σj(t) < 0. Here, the reaching condition does not hold. In this
case, | ∂f∂θj

| < pj

kgj
is satisfied and the convergence speeds of θj(t) and σj(t) are

respectively obtained as follows:

θ̇j(t) = kgjsgn(sin(πσj(t)/α)) = kgj > 0 (2.23)

σ̇j(t) = kgj
∂f

∂θj
sgn(sin(πσj(t)/α))− pj < 0 (2.24)

According to (2.23), θj(t) will increase. Therefore, considering ∂f
∂θj

> 0, the
system will move towards the maximum θ∗j for t > t0. It may reach the maximum
or may even move across it while σ̇j(t) keeps decreasing.

Now, consider the case that the parameter θj(t) moves across the maximum
θ∗j as shown for case 1 in Fig. 2.3. In this case, ∂f

∂θj
changes sign, i.e. ∂f

∂θj
< 0 and

0 < σj(t) < αj . Hence, the relations shown above are replaced by

θ̇j(t) = kgjsgn(sin(πσj(t)/α)) = −kgj < 0 (2.25)
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Figure 2.3: Two cases about the direction of motion for θj(t).

σ̇j(t) = kgj
∂f

∂θj
sgn(sin(πσj(t)/α))− pj < 0 (2.26)

As a result, parameter θj(t) changes its direction of motion after reaching the
next sliding surface. It can be seen that inside the ε-vicinity, the system converges
to the maximum θ∗ with oscillations.

Without loss of generality, assume that θj(t) moves from θ∗j − ε∗l to θ∗j + ε∗r ,
from which the necessary time interval is determined by

∆t = εl + εr
kgj

(2.27)

Defining ∆ξj as ∆ξj = ξj(θr) − ξj(θl) when θj(t) moves from surface σjt0 to
σj−1(t0 + ∆t) = σj(t0 + ∆t) + αj , we have

σj−1(t0 + ∆t) = ∆ξj − pj
εl + εr
kgj

+ αj (2.28)

In this case, at t = t0 + ∆t,and for σj−1(t0 + ∆t) < 0 the following holds

∆ξj + αj
εl + εr

≤ pj
kgj

(2.29)

If (2.29) does not hold, i.e., ∆ξj+αj

εl+εr >
pj

kgj
is outside the ε-vicinity of the maxi-

mum.
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For simplicity, the projection of cost function ξ(θj , t) can be assumed to be
symmetrical about the maximum θ∗j . Hence,

ξ(θj(t)) = ξ(−θj(t)) θj ∈ θ∗jεl,εr (2.30)

εl = εr = ε (2.31)

∆ξj = ξ(θjr)− ξ(θjl) = 0 (2.32)

Then, inside the ε-vicinity of the maximum, pj

kgj
>

αj

2ε and outside the ε-vicinity,
pj

kgj
<

αj

2ε is satisfied.
In [64], it is shown that the convergence speed (rise time) to the optimum

inside the ε-vicinity is faster with a smaller constant kgj j = 1, ..., n and a
narrower ε-vicinity which is determined by smaller value pj

kgj
for j = 1, 2, ..., n.

Now assume that case 3 in Fig. 2.3 corresponds to the sliding mode σj−1(t)
which occurs outside the ε-vicinity. Let’s define a new region with the distance
ε∗l and ε∗r from left and right side of θ∗j , respectively, where

θ∗j(ε∗
l
,ε∗r) = {θj |θ∗j − ε∗l ≤ θj ≤ θ∗j + ε∗r} (2.33)

ε∗ > ε (2.34)

Moreover, assume that ξ(θj , t) is symmetrical and the system moves into the
ε∗-vicinity from the left side. In the region between ε∗ and ε-vicinities, pj

kgj
<

αj

2ε .
As in case 3, assume that θj(t) is inside the ε-vicinity. At t− t01, θj(t) moves out
of the ε-vicinity from the right side and reaches the next sliding mode σj−1 = 0
at t = t1. Thus

θ∗j − ε < θj(t1) = θ∗j + ε+ k(t1 − t01) < θ∗j − ε∗ (2.35)

ξ(θ∗j − ε) < ξ(t1) < ξ(θ∗j ± ε∗) (2.36)

Since θj(t) is outside the ε-vicinity, σj−1(t)σ̇j−1(t) < 0 holds and ξ(θj) falls on
the sliding surface σj−1(t) which makes θj(t) move back to the ε-vicinity of θ∗j .
The above discussions can be summarized as follows:
Theorem : The multivariable sliding mode extremum seeking system with

the sliding mode surfaces given by (2.2) and the optimizing control law given
by (2.6) will stably converge to the maximum point from outside of the region
| ∂f∂θj
| ≤ pj

kgj
by switching among sliding modes σ = [m1α m2α ... mnα], if

mj = 2k in region ∂f
∂θj

> 0

mj = 2k + 1 in region ∂f
∂θj

< 0 k ∈ J
(2.37)
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in which mj ∈ J (j = 1, 2, ..., n) where J is a set of integer numbers, and if

2τpT ≤
∑

1<j<n
αj (2.38)

the system will enter the ε-vicinity of the maximum and converges to θ∗j with
oscillations. Now if

pj
kgj

<
αj
2ε (2.39)

θj(t) will move out of the ε-vicinity, oscillates within y(θ∗j ) and y(θ∗j ± ε∗), goes
on σj−1(t) and moves back to the ε-vicinity of the maximum θ∗j .

2.3 Conclusion

In this chapter, a multivariable sliding-mode extremum seeking controller is
proposed by defining multiple sliding surfaces for the controller. Then, a rigorous
study is conducted on the stability analysis and convergence of the proposed
controller both outside and inside the ε-vicinity of the extremum point of the
system. The resultant conclusions are summarized through a theorem at the
end of the chapter. The performance of the proposed multivariable sliding-mode
extremum seeking scheme will be further studied in control and optimization
applications in the following chapters.
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Chapter 3

MPPT IN AN
ALTERNATOR-BASED
ENERGY CONVERSION
SYSTEM

One problem in the alternator energy conversion system is that the power-
voltage curve has a sweat point at each speed. This causes obstacle for MPPT
particularly when the load has a constant voltage. In other words, the maximum
power cannot be achieved at various alternator speeds because the fixed output
voltage may not be matched to the alternator characteristics at certain speeds. In
this chapter, the proposed multivariable sliding-mode ESC presented in chapter
2 is proposed for MPPT in a Lundell alternator when the switched-mode rectifier
(SMR) load-matching technique is applied. This application involves extremum
seeking with two parameters to be controlled for power maximization; namely,
the alternator’s field current and its output load voltage. Experimental results
are presented, which demonstrate that the controller can achieve accurate and
robust power maximization.

The organization of this chapter is as follows. In section 3.1, the alterna-
tor electrical behaviour is studied. In this section, the alternator power-voltage
diagrams at various operating speeds are presented. Then, the function of the
alternator output power as well as its relationship to the control parameters are
derived. In section 3.2, the efficiency of the proposed controller for MPPT in
the alternator system is investigated. First, the laboratory-scale setup and its
different parts are presented. Then, the performance of the proposed controller
is compared with a gradient-based ESC both in steady state and transient con-
ditions. Conclusions are presented in Section 3.3.
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Figure 3.1: A simple schematic of the alternator circuit with a full-bridge rectifier.

3.1 Alternator Electrical Behaviour

Fig. 3.1 shows a simple schematic diagram of an alternator electrical model. The
alternator is a 3-phase synchronous generator followed by a full-bridge rectifier.
In the alternator circuit, the field current regulator applies a pulse-width modu-
lated voltage across the field windings to produce the field current if . The rotor
magnetic field, produced from the dc field current if , passes through the 3-phase
windings of the stator, and generates inductive voltages of vas, vbs and vcs as
follows

vas = Kaωsifcos(ωst) (3.1)

vbs = Kaωsifcos(ωst−
2π
3 ) (3.2)

vcs = Kaωsifcos(ωst+ 2π
3 ) (3.3)

where Ka is a constant and is called the motor constant and ωs is the electrical
frequency which is proportional to the alternator mechanical speed ωm and the
number of machine poles ρ (ωs = ρ

2ωm). Moreover, the magnitude of the induc-
tive voltages is proportional to the field current if and the alternator mechanical
speed ωm which is given by Vs = Kaωmif [75].

Utilizing (3.1)-(3.3), and assuming that a resistive load R across the alter-
nator, the phase currents can be expressed as,

ias = Ka
ρ

2Rωmifcos(ωst) = ilcos(ωst) (3.4)

ibs = Ka
ρ

2Rωmifcos(ωst−
2π
3 ) = ilcos(ωst−

2π
3 ) (3.5)
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Figure 3.2: 2D alternator operating loci (Solid lines refers to simulation results and the stars
show the experimental results).

ibs = Ka
ρ

2Rωmifcos(ωst+ 2π
3 ) = ilcos(ωst+ 2π

3 ) (3.6)

where il = Ka
ρ

2Rωmif is the amplitude of the load current. The AC voltage
generated by the alternator passes through the full-bridge rectifier and generates
a DC voltage Vx which makes the input voltage to DC/DC boost converter [66],
[85].

For alternator MPPT under variable speed, one has to study the relation-
ship between the output power versus alternator parameters. Considering the
alternator output current which is obtained based on Fourier series analysis of
the signals in the system, [9]

iout = 3
π

√
v2
s − (2Vo

π )2

ωsLs
(3.7)

in which Vo is the load voltage, then the available power in the alternator system
would be [9]

Pout = 3Vo
π

√
v2
s − (2Vo

π )2

ωsLs
(3.8)

where Ls is the self-inductance of stator windings and Vs = kωif where ω is the
alternator electrical speed.
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Fig. 3.2 shows a two-dimensional alternator operating loci in simulation (solid
line) and experiment (star). As shown, for any given speed, there exists a spe-
cific voltage for which the output power becomes maximum. If the load voltage
is fixed, the maximum power cannot be achieved at various alternator speeds,
because the fixed output voltage may not be matched to the alternator char-
acteristics. To overcome this issue, a load-matching technique is applied to the
alternator system. Thus, a power electronic DC/DC boost converter is utilized
to act as a virtual controllable DC load at the alternator output terminals (see
Fig. 3.1).

The boost converter allows higher levels of power to be achieved by boosting
up the alternator output voltage Vx to the desired load voltage Vo. As long as
the boost converter operates in the continuous conduction mode (CCM) and
the PWM frequency is much higher than the bandwidth of the control loop, its
input-output relationship is as follows

Vx = (1− d)Vo (3.9)

where d is the duty ratio of the boost converter and is controlled by the MOSFET
switch of the boost converter. The load-matched operation is easily achieved by
choosing the complement of the duty ratio (d′) as follows [65]

d′ = 1− d = (
√

2πka
4V o )ifωs (3.10)

Fig. 3.3 illustrates the 3D relationship of the alternator field current and
output voltage versus the output power. As can be seen, at each speed there is a
field current and output voltage for which the output power becomes maximum.
In this application, the goal is to deliver maximum power to the load by con-
trolling the load-matching operation and consequently by regulating the output
voltage of the alternator. Considering (3.10), the above objective is achieved by
controlling the field current and duty ratio as a function of output voltage and
alternator speed [66].

3.2 Experimental Results

3.2.1 Setup Description

Fig. 3.4 shows the experimental setup used in this project. This system is a
laboratory-scale emulation for an application in railway industry where an in-
strumented railcar (e.g., responsible for friction management) is to be powered
using an alternator system that is connected to the railcar’s wheel using a pulley
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Figure 3.3: 3D alternator operating loci.

mechanism. The alternator is used to charge a battery (constant voltage load)
which is utilized to provide power to several instruments aboard the railcar. A
main objective is to achieve maximum power transfer to the battery at different
travelling speeds of the train. As shown in Fig. 3.5, a load with constant voltage
is applied which can be interpreted as a battery with a fixed voltage.

In the setup, instead of the train wheel, a MaxMotion Permanent Magnet DC
Motor MM5090FC is utilized to rotate an ACDelco 334-2224A remanufactured
alternator . The motor rotation is transferred to the alternator via a timing belt.
The alternator rotational speed ω is considered nearly twice the motor rotational
speed Ω (based on the equality of forces at both sides RΩ = rω and r = 1

2R).
Fig. 3.6 illustrates the real-time control structure of the setup. In the setup,

the DC load is an NHR 4700 which can be programmed to maintain the desired
constant voltage load. The DC voltage of load is set at 6V . The objective is to
deliver maximum power to the load by controlling the alternator output voltage
Vx and the field current If . The input to the multivariable sliding-mode ESC
is the alternator output power Palt which is obtained by using Palt = VxIx.
The calculated alternator output power is sent to the controller via a dSPACE
DS1103 real-time controller board. Since ADC terminals of the dSPACE only
measure the voltage, a small resistance Rx = 0.1Ω is added in series with the
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Figure 3.4: Experimental implementation of the proposed multivariable sliding-mode ESC
on the motor-alternator setup.

Figure 3.5: A simple schematic of motor-alternator setup.
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Figure 3.6: Real-time control structure of the setup using dSPACE control board.

alternator output and the voltage across the resistance is measured (VR). Hence,
Ix can be easily obtained from Ix = VR/Rx. Also, the alternator output voltage
Vx is measured by directly connecting the ADC terminal to the alternator output
terminals.

In the proposed approach, controlling Vx and If is done by calculating proper
values for the duty cycle of the DC/DC boost converter (dboost) as well as the
duty cycle of the DC/DC buck converter (dbuck). As mentioned earlier, since
the DAC terminals of dSPACE can only send voltages to the analogue part,
If cannot be controlled directly. A DC/DC buck converter is applied to the
alternator field terminals and the output of buck converter provides proper field
voltage. Since Vf = Rf if , by adjusting the value of Vf , if can be adjusted
accordingly. Thus,

dbuck = Vo
Vi

(3.11)

where Vi is the voltage of power supply and has the value of Vi = 6.2V . Also,
Vo = RfIf . The internal resistance of the alternator field is Rf = 3Ω.

In the output of the controller, the adjusted buck and boost duty cycles are
PWM modulated and the PWM signals are fed to the setup via a Digital to
Analogue Converter (DAC) of the dSPACE board.

In the experiment, a MOSFET switch with an ON voltage of 13V is used
in the DC/DC boost converter. Since, the maximum allowable output voltage
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Table 3.1: Experimental Parameters of the Setup

Parameter Value

Alternator nominal output amperage 65A
Alternator nominal output voltage 12V
Alternator nominal shaft speed 1500rpm
Motor nominal speed 1750rpm
Nominal DC voltage of motor armature 90V
Motor full load amperage 5.2A
Motor nominal torque 2.034N.m
Rf ' 3 Ω
Ls 15 mH
DC constant load voltage 6V
fsampling 100 kHz
fswitching−boost 10 kHz
fswitching−buck 1 kHz

of the dSPACE DAC/ADC terminals is ±10V , a driver is needed to drive the
high power switch of the DC/DC boost converter. Moreover, to ensure that the
buck and boost converters operate in CCM, the converter switching frequency
and the controller sampling frequency should be adjusted appropriately, which
is achieved by choosing fswitching � fsampling (at least 10 times smaller). Table
I shows the important parameters for this implementation.

3.2.2 Results

Fig. 3.7 shows the control block diagram of the alternator system using the pro-
posed multivariable sliding-mode controller. Here, p is a 1 × 2 vector and two
sliding surfaces are considered. The gradient vector is derived by obtaining the
error σ and feeding it to the block of sgn(sin(π(.)/α)). Thus, the controlled
parameters are given by θ = [dboost, dbuck]. The duty cycle dboost is fed to the
DC/DC boost converter and alternator output voltage Vx is adjusted . Further-
more, dbuck is fed to the buck converter and accordingly the alternator field
current if is adjusted which determines the 3-phase alternator voltages. In the
application described, what is important to be maximized is the average steady-
state power of the system and not the instantaneous power. To this end, the
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Figure 3.7: Alternator control block diagram using the proposed controller.
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average values for the duty cycles of the boost and buck converters are tuned
using the proposed extremum seeking algorithm. Since the mechanical dynamics
of the system are much slower than the electrical dynamics, and also the elec-
trical system is stable, the transient response in the maximization process can
be safely neglected .

Steady State and Transient Tracking Performance

The proposed controller is built in the MATLAB/SIMULINK environment with
a sampling period of ts = 10−5s and its performance is studied using the dSPACE
Control Desk 3.7.3. Fig. 3.8 and 3.9 show the experimental results when the
proposed controller and the multivariable gradient-based ESC are applied to the
setup system and the alternator operates at 500 rpm (in which maximum output
power is 1.3W for Vx ' 1.5V , if = 1.1A, dboost ' 38% and dbuck ' 53%). As the
motor starts to rotate, the power increases until it reaches the maximum value.
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Figure 3.8: Experimental results for (a) alternator output power, (b) dboost, and (c) dbuck
when the multivariable gradient-based extremum seeking controller is applied to the alter-
nator system at 500rpm.
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Figure 3.9: Experimental results for (a) alternator output power, (b) dboost, and (c) dbuck
when the proposed multivariable sliding-mode extremum seeking controller is applied to the
alternator system at 500rpm.
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Comparing the results of the two controllers, it can be seen that the proposed
controller can track maximum output power more smoothly. This is specifically
evident in the beginning of operation, where the multivariable gradient-based
ESC method results in small oscillations. Moreover, the convergence speed of
the proposed controller is higher than the other controller.

To further study the efficiency of the proposed controller, a disturbance is
added to the alternator and the controller performance is investigated under
transient conditions. Fig. 3.10 and 3.11 show the experimental results for the
two controllers when the alternator speed changes from 300 rpm to 500 rpm at
about t = 24s. Based on Fig. 3.2, the desired maximum output power should
change from Poutmax = 0.25W to Poutmax = 1.3W . Also, the boost and buck
duty cycles and field current should change from dboost ' 40% to dboost ' 38%,
dbuck ' 35% to dbuck ' 53% and if = 0.7A to if = 1.1A, respectively.

As demonstrated in Fig. 3.11, the proposed controller reaches a smooth
steady state response in less than 5 seconds. However, the MPPT result in
Fig. 3.10 illustrates that after the speed changes, the response of multivariable
gradient-based ESC oscillates and reaches the steady-state in about 10 seconds.
One point which can be observed in all the figures is that the power convergence
speed for both controllers is relatively high. This delay is the time period for
the motor to get to the adjusted speed, whether there is a controller or not, and
cannot be considered as a disadvantage of the proposed controller.

Control Parameters Selection

Appropriate parameter selection increases the controller efficiency. The stability
and convergence analysis presented in Chapter 2, provides a systematic guideline
for selecting control parameters in multivariable sliding-mode ESC. As kgi in-
creases, the sliding-mode existence region becomes smaller and the convergence
speed increases. However, increasing kgi results in increasing pi if it is desired
that the sliding-mode region remains large enough [97]. On the other hand, fast
convergence speed compromises the steady state performance. According to [97],
the amplitude of the steady state oscillation of the system is governed by

mi =
∫ αi/pi

0
kgidt = kgiαi/pi i = 1, ..., n (3.12)

Considering (3.12), as kgi increases, the amplitude of the steady state oscillations
would increase. In the experiments, Kg and P are selected as Kg = [7.5 0; 0 5],
and P = [0.2 0.5].

Moreover, based on (3.12) , it is desirable to keep αi as small as possible. In
general, increasing α results in steady state oscillations with higher amplitudes.
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Figure 3.10: Transient experimental results for (a) alternator output power, (b) dboost, and
(c) dbuck when the multivariable gradient-based extremum seeking controller is applied to
the alternator system and the speed changes from 300 to 500rpm at 24s.
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Figure 3.11: Transient experimental results for (a) alternator output power, (b) dboost, and
(c) dbuck when the proposed multivariable sliding-mode extremum seeking controller is ap-
plied to the alternator system and the speed changes from 300 to 500rpm at 24s.
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Table 3.2: MPP Tracking Efficiency Comparison for Two Controllers in Experiment

Controller η(%)

Steady State
Multivariable gradient-based ESC 87
Multivariable sliding-mode ESC 90

Transient
Multivariable gradient-based ESC 78
Multivariable sliding-mode ESC 85

This fact is validated through the experiments. As the parameters, α′is are chosen
to be very small, the output power will be smooth. However, by choosing α′is
very small, there will be no change in duty cycle as the alternator speed varies.
Thus the algorithm cannot converge to the desired maximum power. Hence, α′is
cannot be selected to be very small. According to the convergence analysis in
Chapter 2, a condition is presented in which the lower bound for αi is restricted
to guarantee convergence of the system in finite time: 2τpT ≤

∑
1<i<n αi. In

the experiments, the dynamic time delays are obtained as τ = [τ1 τ2] = [1 1.5].
Hence, the inequality of α1 +α2 > 1.9 should be satisfied when choosing α1 and
α2. Here, we selected the vector of α′is as [α1, α2] = [0.5, 1.5].

Designing appropriate values for the magnitudes of perturbation signals in
multivariable gradient-based ESC is very important. The experiments show that
small magnitudes of the perturbation signals lead to smooth output power. How-
ever, there is no change in the duty cycle as the alternator speed varies (since it
cannot converge to the next desired maximum power). In contrast, as the ampli-
tude of perturbation signals increases, the duty cycle variations increase while
the output power profile becomes less smooth. Thus, a compromise should be
made between the output power smoothness and the duty cycle variations. In
the experiments, the amplitudes of the sine waveforms are set as [A1 A2] =
[0.01 0.02], for the adding perturbation signals; and [A1 A2] = [1 0.5], for
the multiplying perturbation signals. This helps to explain why the duty cy-
cle changes are gradual in the experimental results of Fig. 3.8 and 3.10, when
compared to the results for the proposed controller. Moreover, Kg and pertur-
bation frequencies are selected as Kg = [4 0; 0 2.5] and [ω1 ω2] = [15 10] for
adding perturbation signal and [ω1 ω2] = [5 10] for multiplying perturbation
signal. In [90] and [22], parameter selection in multivariable gradient-based ESC
is fully discussed.
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MPP Tracking Efficiency Comparison

For further comparison, consider the MPPT efficiency of two controllers. Let us
use the criteria based on the following equation [15,29]

η =
∫ t

0 Pinst(t).dt∫ t
0 PMPP (t).dt

(3.13)

where Pinst is the instantaneous power using the MPPT controller with PMPP

being the expected maximum output power. From (3.13), it can be inferred that
the tracking efficiency is the fractional relationship between two areas under
the real and the expected maximum output power curves. The closer the real
curve to the expected curve, the better the tracking efficiency [15]. The MPPT
efficiency results for the steady state and the transient cases are presented in
Table 3.2, which indicate that higher efficiency can be obtained for the proposed
ESC method.

3.3 Conclusion

In this chapter, a novel multivariable sliding-mode extremum seeking controller
is presented and used for MPPT in an alternator-based energy conversion sys-
tem. The objective is to track the maximum power by controlling the alternator
field current and output voltage. The experimental results demonstrate the effi-
ciency of the proposed controller in achieving fast and smooth convergence with
higher tracking accuracy when compared with the multivariable gradient-based
ESC method. Moreover, a study is performed on disturbance rejection of the
proposed controller. It is shown that the proposed controller can handle the
disturbances better and faster in face of speed variations.
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Chapter 4

Extremum Seeking PI Tuning
for PMSM Current Regulation

Although PI controllers are widely used in industry, their effectiveness is of-
ten limited due to poor tuning. In this chapter, the application of extremum
seeking method as an optimizer for tuning the PI gains is studied. To this end,
a multivariable sliding-mode extremum seeking (MSES) PI tuning method is
proposed and applied for current regulation in a brushless PMSM. The MSES
tuning method utilizes extremum seeking as a real-time optimizer to adjust PI
gains such that the effect of disturbances on the system is minimized. This is
achieved through minimization of a cost function which characterizes the de-
sired performance of the system. The stability of the proposed control strategy
is investigated through a Lyapunov analysis and its performance is evaluated
through experimental studies.

This chapter is organized as follows. In section 4.1, the proposed adaptive
PI controller is introduced and its stability is investigated using the Lyapunov
method. In section 4.2, the proposed scheme is applied for online tuning of a PI
controller to regulate the shaft torque of a brushless PMSM. Furthermore, an
algorithm for rotor position estimation is presented in this section. In section
4.3, performance of the proposed controller is investigated through several tests
and compared with a conventional PI and a recently proposed PI controller
using gradient-based extremum seeking tuning method. Finally, conclusions are
presented in section 4.4.

38



4.1 Multivariable Sliding-Mode PI Tuning

4.1.1 Controller Design

Consider a general nonlinear plant as follows

y = f(u, t) (4.1)

where f : IR → IR, y ∈ IR is the output and u is the input of the system. Let
us assume that the following PI controller is used such that the plant output
y(t) follows the desired output yd(t)

u(e,θ) = Kpe(t) +KI

∫ t

0
e(τ)dτ (4.2)

where Kp and KI are the proportional and integral gains, respectively, and e(t)
is the tracking error defined as

e(t) = yd(t)− y(t). (4.3)

Let us define θ = [KP KI ]T and Γ(e) = [e(t)
∫ t

0 ei(τ)dτ ]T . Hence (4.2) can be
written as

u(e,θ) = ΓT (e)θ. (4.4)

Assume that there exists an ideal PI controller u∗ with optimal gain vector
θ∗ = [K∗P K∗I ]T as follows

u∗(e,θ∗) = ΓT (e)θ∗. (4.5)

The goal is to design an adaptive law for PI gains such that the tracking error
e(t) converges to zero as t → 0. In this case, the PI controller u approximates
the ideal unknown u∗ such that the error eu = u∗−u converges to zero as t→ 0.
Considering (4.4) and (4.5), eu can be written as

eu = ΓT (e)θ̃ (4.6)

where θ̃ = θ∗ − θ is the gain estimation error.
In what follows, the MSES method is utilized as an optimizer to tune the

PI gains KP and KI through an adaptive law such that optimal closed-loop
performance control can be achieved. To this end, we use the following Integral
Squared Error (ISE) as a universal cost function when using the extremum
seeking approach

J(θ) = 1
T

∫ T

0
e2(t)dt. (4.7)
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Figure 4.1: Block diagram of the proposed extremum-seeking PI tuning controller.

The multivariable extremum seeking algorithm varies the input vector θ such
that J(θ) reaches the minimum point.

Fig. 4.1 illustrates the overall proposed MSES PI tuning method. The pro-
posed scheme utilizes two sliding surfaces σ1 and σ2 to optimize parameters KP

and KI of the PI controller. Hence, the vector of sliding surfaces is defined as

σ(t) = [σ1 σ2] (4.8)

where σi = J − pit such that pi < 0 (i = 1, 2) is the slope of ith sliding surface.
The vector of driving signals is defined as

p = [p1 p2]. (4.9)

The optimizing control law is set as follows

θ̇ = Kgsgn(sin(πσ
α

)) (4.10)

where sgn(.) is a 2× 1 signum vector, α = [α1 α2]T is a 2× 1 vector for which
each element is a positive constant, and Kg = diag([kg1 kg2]) is a 2×2 diagonal
positive definite matrix which determines the convergence rate. ES achieves
optimization by forcing J to remain on the decreasing sliding surface vector, i.e.,
σ → 0. Thus, the system moves towards the optimum vector θ∗ = [K∗P K∗I ]T .
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4.1.2 Stability Analysis

To analyze the tracking error convergence and stability of the closed-loop system,
consider the following Lyapunov-like function

V = 1
2σσ

T + 1
2eu

2. (4.11)

The time derivative of V with respect to time is given by

V̇ = σ̇σT + ėueu = (∂J
∂f

∂f

∂u

∂u

∂θ
θ̇ − p)σT − (∂eu

∂u

∂u

∂θ
θ̇)eTu

= (−f ∂f
∂u

ΓT (e)Kgsgn(sin(πσ
α

))− p)σT − (ΓT (e)Kgsgn(sin(πσ
α

))ΓT (e)θ̃.

(4.12)

To guarantee stability of the system, V̇ should be negative. After performing
algebraic manipulations, (5.17) can be rewritten as

V̇ =
∑
i=1,2

(−f ∂f
∂u

Γi(e)Kgisgn(sin(πσi
αi

))−pi)σi−
∑
i=1,2

(Γi(e))2 ∑
i=1,2

Kgisgn(sin(πσi
αi

))θ̃i.

(4.13)

Then it is sufficient that each term of (4.13) be negative. In the sliding-mode
existence region | ∂J∂θi

| > | pi
Kgi
|, we can further define the sliding manifold vector

as
σ = [m1α1 m2α2], mi ∈ J, i = 1, 2. (4.14)

If (2k − 1)αi < σi(0) < 2kαi, then sgn(sin(πσi
αi

)) = −1, and (5.5) is simplified
as

V̇ =
∑
i=1,2

−(| ∂J
∂θi
|Kgi + pi)|σi| −

∑
i=1,2

(Γi(e))2 ∑
i=1,2

Kgiθ̃i (4.15)

Considering the existence region | ∂J∂θi
| > | pi

Kgi
|, and for ∂J

∂θi
> 0 and θi < θ∗i ,

V̇ is negative. In this case, σi is kept at the sliding manifold σi = 2kαi while
the PI gain θi is less than the optimal value. Now, assume that ∂J

∂θi
< 0. If

2kαi < σi(0) < 2(k + 1)αi, then sgn(sin(πσi
αi

))
)

= 1. With a similar inference,
the same equation as (4.15) is obtained. Then, in the sliding-mode existence
region | ∂J∂θi

| > | pi
Kgi
|, for ∂J

∂θi
< 0 and θ∗i < θi, one can conclude that V̇ ≤ 0. In

this case, σi is kept at the sliding manifold σi = (2k + 1)αi, while the PI gains
are greater than the optimal values.
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Figure 4.2: Permanent magnet synchronous motor and inverter circuitry.

4.2 Application to Current Regulation of Brushless
PMSM

4.2.1 Problem Statement

Fig. 5.1 shows a typical three-phase closed-loop PMSM control circuit. The
PMSM consists of an electrical and a mechanical subsystem. Assuming that the
PMSM is a surface mounted type with star configuration, electrical equations
of the motor for three phases are given by

vsa = isaR+ L
dia
dt

+ ea

vsb = isbR+ L
dib
dt

+ eb

vsc = iscR+ L
dic
dt

+ ec (4.16)

where vsa, vsb and vsc are three phase stator voltages, isa, isb and isc are three
phase stator currents, L is the inductance of each phase including the mutual
inductance, and R is the resistance of stator windings in each phase.

The dynamic equation of PMSM is as follows

dθm

dt
= ωmJ

dωm

dt

= Tm − TL −Bωm (4.17)

where θm and ωm are the PMSM mechanical angular position and velocity,
respectively, J is the inertia, Tm is the electromagnetic torque, TL is the load
torque and B is the linear viscous friction coefficient.
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The PMSM is connected to a three-phase bridge inverter and powered through
six MOSFET switches of the inverter. The rotor position is detected using a po-
sition sensor such as an optical encoder or, in this study, Hall-effect sensors. The
digital signals from the position sensors are used to determine the switching ac-
tivity of the inverter [33]. The inverter switching should be controlled such that
the desired electromagnetic torque is produced. The PMSM torque regulation
is achieved by controlling the stator three phase currents.

The PMSM electromagnetic torque is given by [5, 76]

T = Kt[isasin(δ) + isbsin(δ + 2π
3 ) + iscsin(δ − 2π

3 )] (4.18)

where isa, isb and isc are three phase sinusoidal currents, δ is the electrical angle
of the shaft, and Kt is the torque constant which is a function of the rotor
permanent magnetic flux λpm and number of poles ρ, i.e. Kt = ρ

2λpm.
Assume that the stator sinusoidal currents are

isa = Issin(σ)

isb = Issin(σ + 2π
3 )

isb = Issin(σ − 2π
3 ) (4.19)

where Is is the amplitude of stator three-phase currents. Then (5.14) can be
written as

T = KtIs[sin2(δ) + sin2(δ + 2π
3 ) + sin2(δ − 2π

3 )] (4.20)

which can be further simplified as follows

T = 3
2KtIs. (4.21)

Based on (4.21), the brushless PMSM electromagnetic torque is proportional to
the maximum amplitude of the stator current, i.e., Is ∝ Tshaft [38]. Hence by
controlling Is, the PMSM shaft torque can be also adjusted.

4.2.2 Current Control using the Proposed MSES PI Tuning

Fig. 4.3 shows the block diagram of the proposed torque controller applied to
brusless PMSM. The stator currents isa, isb and isc are sensed through current
sensors and fed to the rectification block to obtain the maximum amplitude Is
for three phase currents. The abc to αβ0 Clarke transformation is applied to
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Figure 4.3: Block diagram of the proposed controller applied to a brushless PMSM.

three phase currents using [8]
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2
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isb

isc

 . (4.22)

Hence iα and iβ are obtained as follows

iα

iβ

0

 =


Issin(ωt)
Iscos(ωt)

0

 . (4.23)

As shown in Fig. 4.3, the measured Is is compared with the desired current
Is,des which is proportional to the desired rotor torque. Thus the error Ierr is
obtained as follows

Ierr(t,θ) = Is,des − Is (4.24)

which is passed through a PI controller to generate the stator voltage magnitude.
The PI control parameters are assumed to be tunable based on the error of the
system using the the proposed multivariable sliding-mode extremum seeking
tuning method.
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Besides, the rotor angular position is measured using Hall-effect sensors.
Since the rotor position obtained from Hall-effect sensors is discontinuous [78],
an estimation algorithm is applied to the system to obtain the continuous rotor
angle φ. To maximize the shaft torque, an angle of π/2 is considered between the
rotor and stator magnetic fields. Then, the magnitude and angle of the generated
stator voltage are passed to a space vector pulse width modulation (SVPWM)
block to determine the switching sequence for the six switches of the inverter.

4.2.3 Rotor Position Estimation using Hall Effect Sensors

The discontinuous rotor position obtained from hall sensors results in non-
sinusoidal phase currents. However, the PMSM produces sinusoidal electromo-
tive force (emf) which should be supplied with sinusoidal phase currents to gen-
erate a constant torque [83]. To this end, the following rotor position estimation
algorithm is applied to the system to generate the continuous rotor position.

Three Hall-effect sensors are usually pre-mounteded on PMSM rotors with
a distance of 120 electrical degrees which detect the rotor position every 60
electrical degrees [70, 84]. Hence, six states can be considered for three Hall
sensors as shown in Fig. 4.4. Based on these states, six sectors with S = [0 π/3],
[π/3 2π/3], [2π/3 π], [π 4π/3], [4π/3 5π/3], and [5π/3 2π] are defined which
have the discrete values y = 0, π/3, 2π/3, π, 4π/3, 5π/3, and 2π, respectively.

Assume ω(t) is the instantaneous angular speed of the rotor which can be
obtained as follows [13]

ω(t) = y(t)− y(t−∆t)
∆t π/4 ≤ |y(t)− y(t−∆t)| ≤ π/2 (4.25)

where y(t) is the value of rotor position in the current sector and ∆t is the time
difference between the current and the previous sector.

Calculating ω(t) for the case where rotor position changes from sector 6 (y=
2π) to sector 1 (y= π/3) of the next cycle (when ω > 0), we have

ω(t) = y(t)− y(t−∆t) + 2π
∆t y(t−∆t)− y(t) ≥ π/2. (4.26)

Besides, for the case that rotor position changes from sector 1 (y= π/3) to sector
6 (y= 2π) of the previous cycle (when ω < 0), we have

ω(t) = y(t)− y(t−∆t)− 2π
∆t y(t)− y(t−∆t) ≥ π/2. (4.27)

45



Figure 4.4: (a) Quantized states of φHall, (b) Switching pattern of Hall sensors in one cycle.

Table 4.1: Experimental Parameters of the Setup

Parameter Value
Terminal resistance phase to phase 0.2630 Ω
Terminal inductance phase to phase 10.033 mH
Nominal Voltage 24 V
Nominal current (max. continuous current) 7.39 A
Torque constant 23.2 mN.m/A
Speed constant 412 rpm/V
Number of pole pairs 1
Inverter DC voltage supply 30 V
Rotor inertia 53.8 g.cm2

SVPWM frequency 10 kHz

Consequently, the angular rotor position is estimated as followsφ(t) = y(t−∆t) + ω(t−∆t)∆t ω > 0

φ(t) = y(t−∆t) + ω(t−∆t)∆t+ π
3 ω < 0.

(4.28)

46



Figure 4.5: Experimental setup.

Figure 4.6: Real-time control structure of the setup using dSPACE control board.

4.3 Experimental Evaluation

4.3.1 Setup Description

Fig. 4.5 shows the experimental setup used in this project. A Maxon EC brush-
less permanent magnet synchronous motor is utilized with the objective of reg-
ulating the force applied to the motor shaft by controlling the PMSM current
using the proposed MSES-tuned PI controller. The PMSM is connected to a
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MAX Motion DC generator to produce the load torque. Since the internal mo-
tor inductance is very low (0.033mH phase to phase), in all experiments an
external inductor of 5mH with the resistance of 90mΩ is connected to each
phase terminal of the PMSM.

Fig. 4.6 shows the real-time control/hardware structure of the setup using
dSPACE DS1103 board. The rotor position is obtained using Hall-effect sensors
mounted on the motor. The measured Hall signals are sent to the controller via
I/O ports of the dSPACE. The rotor position is obtained using the estimation
scheme presented in section 4.2.3.

The PMSM is powered by a three-phase gate driver DRV 8305 by Texas
Instruments. The inverter is connected to a DC power supply with Vdc = 30V .
Six PWM pins of the inverter receive switching commands from the controller
and produce the desired three phase stator currents.

An INA250A2 EVM current sensor is utilized in each phase to sense the phase
current. The currents flowing through the shunt resistors of current sensors are
multiplied by the current gain of INA250A2 (500mV/A) to generate the output
voltages. The three-phase stator voltages are passed through dSPACE using
ADC terminals and converted to the corresponding motor phase currents based
on the gain of current sensors.

As shown in Fig. 4.6, the control block receives three phase currents along
with position feedback, executes the torque control algorithm, and generates
the gate signals via SVPWM. The SVPWM frequency is taken to be at least
10 times higher than the maximum motor rotation frequency, i.e., fSV PWM ≥
10fmax,motor = 10kHz. The output gate signals of the SVPWM are fed to the
inverter switches through the I/O terminals of the dSPACE to regulate the phase
currents.

4.3.2 Results

The proposed controller was built in the MATLAB/SIMULINK environment
with a sampling frequency of fs = 10 kHz and its performance was studied on-
line using the dSPACE Control Desk 3.7.3. The setup specifications are shown in
Table 4.1. In this table, the values for the phase-to-phase resistance and induc-
tance are the total values considering both the motor and the external inductor
resistance and inductance. Fig. 4.7 shows the experimental results when the
proposed controller along with the rotor position estimation scheme presented
in section 4.2.3 are applied to the PMSM. Assume that there is no load torque
on the PMSM and the desired maximum amplitude of the stator phase currents
is Is,des = 2A. Fig. 4.7(a) shows the discontinuous rotor angle obtained from
hall sensors as well as the continuous rotor angle obtained from the estimation
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algorithm. To validate the estimation accuracy, the results are compared with
those obtained from a shaft encoder mounted on the motor. Furthermore, the
angle estimation error ratio (EER) is defined as

EER = Estimated rotor angle
Actual rotor angle (4.29)

As the estimation improves, the EER gets close to 1. Ideally, when the estimated
rotor angle matches the actual value, the EER = 1. Fig.4.7(b) shows the EER
for the estimation in this study. As shown, the rotor angle estimation improves
and gets to the actual value (EER ≈1) in less than 0.2s which is reasonable in
the long time span required in our case study.

The continuous stator position obtained from the estimation algorithm is
fed to the SVPWM block and the inverter produces a sinusoidal phase current
ia as shown in Fig. 4.7(c). The quality of sinusoidal phase current depends on
the SVPWM switching frequency as well as inductance values of the motor
winding. By increasing fSV PWM and Lsabc, the amplitude of high frequency
oscillations on the sinusoidal waveform becomes smaller, resulting in a more
smooth phase current. The PMSM produces a sinusoidal phase voltage va as
shown in Fig. 4.7(d). Since the three phase currents are sinusoidal, the rotor
torque and consequently Is would be constant.

To study and compare the performance of the proposed controller, a similar
current controller with fixed PI parameters and a recently proposed adaptive PI
controller using gradient-based extremum seeking were applied to the setup and
several tests were conducted which are presented in the following subsections.

Tracking Performance

In this experiment, the PMSM torque is regulated by changing the maximum
amplitude of the desired stator phase current from Is = 2A to Is = 3A at
t = 15s. Performance of the proposed controller, is compared with a similar
current control using conventional PI controller as well as a gradient-based ex-
tremum seeking (GES) tuned PI controller. The conventional PI controller is
tuned off-line using Ziegler-Nichols method such that stability of the controller
is guaranteed [4, 55]. The obtained KI and Kp are 0.7 and 0.95, respectively.
The GES-tuned PI controller utilizes an online adaptive tuning method based
on estimation of a gradient term and perturbing the PI gains using sinusoidal
signals to minimize the cost function of the system [41]. For a fair compari-
son, the same cost function as defined in (4.7) is utilized for the GES-tuned PI
controller. Moreover, the GES parameters are selected as Kg = [1.5 0; 0 0.85],
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Figure 4.7: Experimental Results for (a) rotor angle estimation, (b) ratio of rotor angle
estimation error (Estimated/Actual), (c) phase current isa, (d) terminal phase voltage va
using the proposed MSES-tuned PI controller.
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[ω1 ω2] = [25 15] for adding perturbation signal and [ω1 ω2] = [15 10] for
multiplying perturbation signal.

Fig. 4.8 to Fig. 4.10 show the experimental results for three controllers.
Before transient happens, the tracking performance of all controllers is relatively
good. After t = 15s, the conventional PI controller tracks the desired value
with some oscillations which needs re-tuning. However, the other two controllers
exhibit better performance by having adaptive gains Ki and Kp. Comparing the
two adaptive PI controllers, the GES-tuned PI controller has slight oscillations
and reaches to steady state after ≈ 1s. However, the other controller reaches
the steady state very fast in less than ≈ 0.5s. Comparing the figures showing
evolution of the cost function for three controllers, the MSES-tuned PI controller
can reach the minimum faster than the other two controllers. Moreover, as the
desired amplitude Is changes, the cost function increases slightly which has a
higher value for the conventional and GES-tuned PI controllers. Furthermore,
the average ISE values of the three controllers for 5 repetitions during the time
interval T = [0, 30] are obtained as 0.015, 0.041 and 0.077 for the MSES-tuned,
GES-tuned, and conventional PI controllers, respectively.

Appropriate parameter selection improves performance of the proposed con-
troller. Based on the experiments, increasing Ki results in an increase in the
convergence speed of the proposed controller to Is,des. However, as Ki becomes
very large, Is is distorted more. Moreover, as Kp increases, Is becomes more
smooth. But large values of Kp result in lower convergence speed of the PI con-
troller. Thus the PI parameters should be selected such that fast convergence
along with smooth tracking is achieved while stability is guaranteed.

Besides, choosing the ES parameters properly guarantees minimization of
J(θ). As kgi is increased, the convergence speed to the extremum point θ∗

increases. However, a fast convergence compromises steady-state performance
[19], [97].

It is also desirable to keep αi as small as possible, since a larger α results
in large steady state oscillations of the PI parameters. However, α′is cannot be
selected to be very small. To guarantee convergence of the PI parameters to the
optimum values, the lower bound of αi should be restricted [19].

Accordingly,Kg and P are selected asKg = [1.7 0; 0 0.3] and P = [0.1 0.45].
Based on the experiments, if α1 and α2 are greater than 1.5, Ki and Kp have
large oscillations and Is becomes unstable. In contrast, if α1 and α2 are selected
to have a value less than 0.01, there would be no change in α1 and α2 as the
desired stator current varies. Hence, α′is are selected as [α1 α2] = [0.06 0.07].
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Figure 4.8: Tracking performance of the conventional PI controller when Is changes from 2
to 3A at t = 15s: (a) Is, (b) PI parameters, (c) evolution of cost function.
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Figure 4.11: Effect of decreasing the motor impedance ( R = 105.5mΩ, and L = 4.017mH)
for conventional PI controller.

Effect of Parameter Variations

In the next experiment, the three-phase impedance of the PMSM is changed to
evaluate performance of the proposed controller to parametric variations. The
initial resistance and inductance values in each phase of PMSM are R = 131.5
mΩ and L = 5.017 mH. First, assume that the three-phase impedance of the
motor is decreased to R = 105.5 mΩ and L = 4.017 mH, i.e., the external
inductor is replaced with another inductor with lower resistance and inductance.
Then the proposed MSES-tuned PI and the GES-tuned PI controller used in
previous test are applied to the system to see how well they can regulate the
PMSM 3-phase current amplitude regardless of the change that has happened in
the value of PMSM parameters (the phase impedance). Assume Is,des = 2A. Fig.
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Figure 4.12: Effect of decreasing the motor impedance (R = 105.5mΩ, and L = 4.017mH)
for GES-tuned PI controller.

4.11 to Fig. 4.13 show the experimental results for current regulation as well as
frequency spectrum for the three controllers. As shown, by decreasing the three-
phase inductance of the motor, the amplitude of high frequency oscillations on
the output response is increased when compared with the tracking response in
previous study. The conventional PI controller needs manual offline re-tuning.
The two adaptive controllers re-tune PI gains online to minimize the tracking
response error, however, the proposed controller has a more smooth tracking
response compared with the other controller.

To study robustness of the controllers in face of parameter variations, fre-
quency spectrum of Is was obtained for all controllers. Considering the funda-
mental frequency of 20Hz, the amplitude of 6th and 12th harmonics in the GES-
tuned PI controller is relatively high. However, no high-order harmonics can
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Figure 4.13: Effect of decreasing the motor impedance (R = 105.5mΩ, and L = 4.017mH)
for PI controller using MSES tuning.

be seen in the frequency spectrum of the proposed MSES-tuned PI controller,
which means that the proposed controller is able to reject high-order frequencies
better than the other controller when PMSM parameters vary. Moreover, com-
pared with the proposed controller, the conventional PI controller has higher
amplitude low-frequency harmonics.

Now assume that the three-phase impedance of the motor increases to R =
156.5 mΩ and L = 5.517 mH by adding an inductor with resistance of 29mΩ and
inductance of 0.5mH to the external inductor of 5mH. Then the three controllers
with the same conditions as the previous case study are applied to the motor
and the results for current regulation and frequency spectrum of Is are obtained
as shown in Fig. 4.14 to Fig. 4.16. As it can be seen, the proposed MSES-tuned
PI controller reaches the steady state response in less than 2s. However, the
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Figure 4.14: Effect of increasing the motor impedance (R = 156.5mΩ, and L = 5.52mH)
for conventional PI controller.

conventional PI controller reaches the steady state after 5s which is still not as
smooth as the tracking result of the proposed controller. Choosing large values
for three phase motor resistors limits the stator current from increasing. This
explains why, in Fig. 4.14 to Fig. 4.16, Is is limited and does not experience
a sudden jump at the beginning of tracking. For further comparison of three
controllers see Table 4.2. In this table, the average values of PI gains as well
as the ISE during time interval [0, 20] for five repetitions of test 2 are shown.
Moreover, comparing the frequency spectrum in three controllers, the amplitude
of high-order frequencies for the conventional and GES-tuned PI controllers is
higher than the proposed control method.
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Figure 4.15: Effect of increasing the motor impedance (R = 156.5mΩ, and L = 5.52mH)
for GES-tuned PI controller.

Load Torque Disturbance

To test performance of the proposed controller in case of load torque distur-
bances, a variable load torque was applied to the motor. To generate the vari-
able load torque TL, a Maxon Motion DC generator with terminal resistance
R = 3.9Ω and terminal inductance L = 0.065mH was connected to the motor
shaft and the load current was increased gradually between t = 5s to t = 20s
from iload = 0A to iload ' 2.5A as shown in Fig. 4.17. Thus, we have [12]

Tm + TL + Tf = Itotω̇ (4.30)
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Figure 4.16: Effect of increasing the motor impedance (R = 156.5mΩ, and L = 5.52mH)
for PI controller using MSES tuning.

where Tm, TL and Tf are motor, load, and friction torques, respectively. More-
over, Itot is the total inertia of the shaft and ω is the motor angular velocity.
When there is no load applied to the motor (TL = 0) and the motor is in steady
state, the angular velocity remains constant, i.e., ω̇ = 0. Assuming that Tm is
fixed, by applying a load torque to the motor, the friction torque and the shaft
velocity will change. If the load torque TL is applied in the same direction as
Tm, the shaft velocity and the three-phase back-EMF increase. This disturbs the
stator three-phase current.

In this experiment, the objective is that the controller keeps the stator max-
imum amplitude at Is = 3A regardless of the load torque disturbance. Fig. 4.18
to Fig. 4.20 show the experimental result for the three controllers when the DC
generator and the motor are rotating in the same direction. In this case, Is de-
creases during the loading process. As the load torque changes, the GES-tuned
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Table 4.2: Comparison of Three Controllers Considering the Effect of Impedance Changes

Controller Kp Ki ISE

Decreasing impedance
MSES-tuned PI 1.15 0.64 0.0861
GES-tuned PI 1.23 0.58 0.1045
Conventional PI 0.95 0.7 0.1663

Increasing impedance
MSES-tuned PI 1.41 1.15 0.0185
GES-tuned PI 1.93 1.21 0.0327
Conventional PI 0.95 0.7 0.0716
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Figure 4.17: Variable load current applied to DC generator from t = 5s to t = 20s.

and MSES-tuned PI controllers minimize the tracking error by re-tuning Kp

and Ki. As shown, the proposed controller has a better performance in terms of
rejecting the load torque disturbance when compared with the controller using
gradient-based PI tuning as well as the conventional PI controller. Moreover,
comparing the figures showing evolution of ISE, there is an increase in the am-
plitude of ISE at t = 18s for the GES-tuned and conventional PI controllers,
whereas no obvious change can be found in the ISE figure for the proposed
MSES-tuned PI controller at the same time. To have a fair comparison, the test
was conducted 5 times and the average ISE values during the time interval [0, 25]
were obtained as 0.1813, 0.1163 and 0.0758 for conventional, GES-tuned, and
the proposed MSES-tuned PI controllers, respectively.
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Figure 4.18: Tracking response of conventional PI controller in face of variable load torque.

62



0 5 10 15 20 25
2.5

3

3.5

4

4.5

 

 
 

M
ax

im
um

 a
m

pl
itu

de
 o

f p
ha

se
 c

ur
re

nt
 I s (

A
)

GES−tuned PI Controller

Time (s)
(a)

0 5 10 15 20 25

0.5

1

1.5

 

 

Time (s)
(b)

P
I g

ai
ns

K
i

K
p

0 5 10 15 20 25
0

0.5

1

1.5

2

 

 

IS
E

Time (s)
(c)

17 18 19 20 21
0

0.1

0.2

Figure 4.19: Tracking response of GES-tuned PI controller in face of variable load torque.
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Figure 4.20: Tracking response of the proposed MSES-tuned PI controller in face of variable
load torque.
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4.4 Conclusion

In this chapter, a new PI tuning method based on multivariable sliding-mode
extremum seeking is proposed. The proposed scheme makes PI parameters adap-
tive to minimize the effect of disturbances and parameter variations on the sys-
tem performance. The proposed PI control is applied to a brushless PMSM
to regulate the motor torque based on regulating the maximum amplitude of
the stator three-phase currents. The rotor position is obtained using Hall-effect
sensors followed by a continuous motor position estimation algorithm. The per-
formance of proposed MSES-tuned PI controller is verified by comparing its
control results with a conventional fixed-gain PI controller and a recently pro-
posed adaptive PI controller using gradient-based ES tuning method. Experi-
mental results reveal that the proposed controller has a faster convergence speed
and a more smooth tracking response during transient conditions. Moreover, it
has higher robustness to phase impedance variations and variable load torque
disturbances compared with the other two controllers.
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Chapter 5

PMSM Torque Ripple
Minimization and Control
using Multi-objective
Extremum Seeking

Torque regulation is often required in mechatronic motion control applications
such as exercise machines in which the mechanical force has to be regulated
during the motion [14,53,93,94]. Although PMSMs are widely utilized in motor-
driven exercise machines, their efficiency is limited due to parasitic torque pul-
sations when the machin is running at low speeds [71, 92]. Imperfections such
as cogging torque, current measurement error, and non-sinusoidal flux density
distribution around the air gap cannot always be filtered by the system inertia,
which may lead to degradation of the drive system performance and undesirable
mechanical vibrations [68]. In this chapter, a multi-objective extremum-seeking
(MOES) approach is proposed for torque control of a PMSM and minimization
of its torque ripple. The latter aspect is specifically important in human-machine
interface applications such as haptic interfaces requiring smooth torque profiles
at slow speeds. The proposed MOES scheme combines an adaptive iterative
learning control (AILC) method with an adaptive PI controller which makes
the system less sensitive to load disturbances and improves the control perfor-
mance for torque regulation during transient events. Experiments are performed
on a proof-of-concept exercise machine that generates desired torque profiles and
mechanical impedance based on user’s preference.

This chapter is organized as follows. In section 5.1, an overview of the motor-
driven system which emulates an exercise machine using a PMSM is presented.
In section 5.2, the proposed MOES is presented and applied to the system.
In section 5.3, performance of the proposed controller is investigated through
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Figure 5.1: Mechanical structure of the motor-driven torque generator.

experimental tests and comparing the results with a recently proposed adaptive
PI controller. Conclusions are presented in section 5.4.

5.1 Problem Formulation of the Drive System

5.1.1 Motor-driven Torque Generator

Fig. 5.1 shows the test bed for PMSM torque control. The system is comprised
of a PMSM, a gear-head, and a cylindrical drum which are connected together
through a shaft. The pull rope wound around the drum allows the user to apply
force through the handle. Using PMSM, the machine can produce any desired
amount of force and mechanical characteristics. The device is a simple force
control system that can be utilized as an exercise machine with programmable
force profiles and mechanical impedances. In this study we would like to emulate
mechanical impedances such as spring or damper through force control at the
end of the rope. Let us define the displacement x as follows

x = θDRD (5.1)

where RD and θD are radius and angular position of the cylindrical drum, re-
spectively. As the user pulls the rope with force F , the motor applies a torque Tm
in the opposite direction to the rope handle. When emulating a spring behavior,
the motor torque should be proportional to the displacement of the handle, x,
as follows

Tm ∝ −x (5.2)
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Similarly, when a damper is emulated the torque should be proportional to the
speed, ẋ, as follows

Tm ∝ −ẋ (5.3)

5.1.2 PMSM Torque Equation

Assuming that the PMSM has a star configuration, the motor electrical equa-
tions are given by

vsa = isaR+ L
dia
dt

+ ea

vsb = isbR+ L
dib
dt

+ eb

vsc = iscR+ L
dic
dt

+ ec (5.4)

where vsa, vsb and vsc are the three phase stator voltages; isa, isb and isc are
the three phase stator currents; L is the inductance of each phase, including the
mutual inductance; and R is the resistance of stator winding per phase.

Then, the electromechanical torque generated by the PMSM can be obtained
as follows [39]

Pm =
∑

n=a,b,c
enisn. (5.5)

Considering (5.4), in case of balanced stator currents, Pm can be rewritten as

Pm =
∑

n=a,b,c
(vsnisn − i2snR−

1
2L

di2sn
dt

). (5.6)

Accordingly, the motor electromagnetic torque is obtained as follows

Tm = Pm
ωr

= 1
ωr

∑
n=a,b,c

(vsnisn − i2snR−
1
2L

di2sn
dt

) (5.7)

where ωr is the rotor angular velocity which is a function of the mechanical shaft
speed ωm and number of poles ρ, i.e., ωr = 2

ρωm.
Assuming that the stator sinusoidal currents are

isa = Issin(σ)

isb = Issin(σ + 2π
3 )

isc = Issin(σ − 2π
3 ) (5.8)
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where Is is the amplitude of stator three phase currents and σ is the electrical
angle of the shaft, the sum of the squares of phase currents results in a constant
value as follows

∑
n=a,b,c

i2sa = I2
s [sin2(σ) + sin2(σ + 2π

3 ) + sin2(σ − 2π
3 )] = 3

2I
2
s . (5.9)

Therefore, the third term of (5.7) vanishes and torque expression is reduced to

Tm = 1
ωm

ρ

2
∑

n=a,b,c
(vsnisn −

3
2I

2
sR). (5.10)

If the Ohmic losses in the windings are neglected, (5.10) reduces to a simple
expression as follows

Tm = 1
ωm

ρ

2
∑

n=a,b,c
vsnisn. (5.11)

Now consider the back-emf expression given by [5]
ea

eb

ec

 = ωrλm


sin(σ)

sin(σ + 2π
3 )

sin(σ − 2π
3 )

 . (5.12)

where λm is the rotor permanent magnetic flux. Considering (5.5) and (5.12),
the electromagnetic torque can be obtained as

Tm = ρ

2λm[isasin(σ) + isbsin(σ + 2π
3 ) + iscsin(σ − 2π

3 )]. (5.13)

After doing algebraic manipulations, (5.13) can be simplified as follows

Tm = KtIs. (5.14)

where Kt = 3
2
ρ
2λm is the torque constant of the motor. Based on (5.14), the

PMSM electromagnetic torque is proportional to the maximum amplitude of
the stator current, i.e., Is ∝ Tshaft [86].

At high speeds, the motor torque ripples are filtered out by the rotor inertia.
However, at low speeds, due to the low inertia filtering, the torque pulsations are
large and can degrade the PMSM drive performance [25,73]. Hence, in practice,
the motor torque is expressed in the following general form

Tm = T0 + ∆T. (5.15)

where T0 is the dc component of torque and ∆T is the sum of harmonics gen-
erated by periodic torque pulsations; which are mainly due to cogging or non-
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Figure 5.2: Block diagram of the proposed multi-objective extremum-seeking torque control
(dashed line) applied to the exercise machine.

sinusoidal flux density distribution around the motor air gap. Generally, ∆T can
be expressed in terms of low order harmonic components given by

∆T = T1sin(ρωrt+ θ1) + T2sin(2ρωrt+ θ2) +
∞∑
i=1

T6isin(6iρωrt+ θ6i). (5.16)

5.2 MOES Torque Control and Its Application to the
Drive System

Fig. 5.2 shows the overall control block diagram of the drive system. The PMSM
torque is controlled using the proposed MOES scheme which aims to satisfy two
main objectives; namely torque ripple minimization (TRM) and torque regula-
tion (TR) through TRM and TR blocks as shown in Fig. 5.2.

The TRM block utilizes an adaptive ILC scheme for which the gains are
tuned based on a multi-variable sliding-mode extremum seeking (MSES) tuning
method. To this end, the motor electromagnetic torque is estimated through
the torque estimator block using (5.11). The proposed adaptive ILC generates
the desired maximum amplitude of stator currents, Is,ref , based on the torque
error signal eT . As shown in Fig. 5.2, the actual stator current Is is obtained
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Figure 5.3: Block diagram of the proposed multi-objective torque control scheme.

through rectifying the stator three phase currents using the rectification method
proposed in [86].

The TR block regulates the PMSM torque by controlling the magnitude of
stator current using an adaptive PI controller for which the gains are tuned
on-line based on MSES scheme. Then a scalar extremum seeking optimization is
utilized in adaptive weighting (AW) block for scaling the two objective functions.

Additionally, the stator angular position is obtained through an encoder
which is mounted on the motor shaft. The magnitude and angle of generated
stator voltage are passed to a space SVPWM block to determine the switching
sequence for the six switches of the inverter.

5.2.1 Torque Ripple Minimization (TRM) Block

For torque ripple minimization, an adaptive iterative learning control (AILC)
scheme is proposed and applied to the system. The main idea of ILC is that by
using the controller output data from the previous iteration cycle and the current
error information, the control signal of the next iteration cycle is generated based
on an iterative learning law [89].

Fig. 5.3 shows the proposed AILC scheme used in the TRM block. For torque
ripple suppression it is required that the period of iteration cycle be consistent
with that of the torque ripple. Hence, assuming that the period of iterative cycle
is τ , one can take τ equal to the period of the first-order harmonic of torque
ripple [68,89]

τ = 2π/ωr. (5.17)
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Assuming that the torque measurement is available, based on the TRM block
in Fig. 5.3 the iterative learning law of the proposed AILC is as follows

Is,ref = (1− β)e−τsIs,ref + φeT (5.18)

or equivalently

Is,ref (k + 1) = (1− β)Is,ref (k) + φeT (k + 1) (5.19)

where φ is the learning gain which is proportional to the torque ripple error eT ,
and k = 0, 1, 2, ... represents the kth electrical cycle or the kth iteration. The gain
β is the relaxation (forgetting) factor which weakens the accumulative effect of
non-periodic disturbance. The error eT (k + 1) is obtained as follows

eT (k + 1) = Tm,ref − Tm,est(k + 1) (5.20)

where Tm,ref and Tm,est are the desired and estimated torques of the drive
system, respectively. Considering (5.14), eT (k + 1) can be written as

eT (k + 1) = Kt(Is,ref − Is,ref (k + 1))

= Kt(Is,ref − [(1− β)Is,ref (k) + φeT (k + 1)])

= Kt[(1− β)(Is,ref − Is,ref (k)) + βIs,ref − φeT (K + 1)]. (5.21)

Considering the first line of (5.21), by substituting k+ 1 with k and multiplying
two sides of equation by (1− β), we have

(1− β)eT (k) = Kt(1− β)(Is,ref − Is,ref (k)). (5.22)

Substituting (5.22) in the last line of (5.21) yields

eT (k + 1) = (1− β)eT (k) +KtβIs,ref −KtφeT (k + 1). (5.23)

As a result, eT (k + 1) is obtained as follows

eT (k + 1) = 1− β
Ktφ+ 1eT (k) + KtβIs,ref

1 +Ktφ
. (5.24)

The convergence condition is expressed as

|ρ| = | 1− β
Ktφ+ 1 | < 1. (5.25)
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Since Kt > 0, the convergence condition is satisfied with φ > 0 and |1− β| < 1.
Hence, for 0 < β ≤ 2, the tracking error eT will converge within a bound of
KtβIs,ref

1+Ktφ
.

To have periodic torque ripple suppression in the steady state, it is desired
that β be adequately small [89]. However, during a transient event, for instance
a speed or load torque step, the system fails to present periodicity. In this case,
according to (5.19), with smaller value of β in the range (0, 2], the control sig-
nal Is,ref (k) of the current iteration will have a greater influence on the next
iteration Is,ref (k+ 1). This leads to more significant accumulative effect of non-
periodic disturbance. Hence, if the control signal from current iteration cycle
is retained almost completely, it will inevitably lead to a greater fluctuation or
longer settling time after that the transient happens. Therefore, during transient
process the value of β cannot be very small and a fairy large value in the range
of (0, 2] is desirable. Moreover, the learning gain φ of the ILC is the same as the
proportional gain in PID controller. To have periodic torque ripple suppression,
larger values of φ are desired. However, φ cannot be selected to be very large
since the controller becomes unstable.

Thus to adequately suppress the torque ripples under steady state condition,
while preventing degradation of transient performance, an adaptive iterative
learning control is proposed. The proposed scheme utilizes the multi-variable
sliding-mode extremum seeking method for real-time tuning of the ILC gains
Ψ1 = [φ β]. This is achieved through minimization of the following cost function

J1 = 1
T

∫ T

0
e2
Tdt (5.26)

where T is the sampling period of the system, and eT is defined as

eT = Tm,ref − Tm,est. (5.27)

The proposed scheme utilizes two sliding surfaces σ11 and σ12 to optimize
parameters φ and β of the ILC. The vector of sliding surfaces is defined as

σ1 = [σ11 σ12] (5.28)

where σ1i = J − p1it such that p1i < 0 (i = 1, 2) is the slope of ith sliding
surface. Considering the vector of driving signals as

p1 = [p11 p12] (5.29)
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Hence, the adaptive control law for tuning the gains of ILC is defined as follows

Ψ̇1 = α1Kg1sgn(sin(πσ1
γ1

)) (5.30)

where α1 is the weight associated to TRM block, sgn(.) is a 2×1 signum vector,
γ1 = [γ11 γ12]T is a 2× 1 vector for which each element is a positive constant,
and Kg1 = diag([kg11 kg12]) is a 2 × 2 diagonal positive definite matrix which
determines the convergence rate. ES achieves the optimization by forcing J1 to
remain on the decreasing sliding surface vector, i.e., σ1 → 0. Thus, the system
moves towards the optimum vector Ψ∗1 = [φ∗ β∗]T .

5.2.2 Torque Regulation (TR) Block

The detailed torque regulation (TR) block applied to the PMSM drive system is
shown in Fig. 5.3. In this block, torque regulation is achieved using an adaptive
PI controller for which the PI gains are tuned on-line based on multi-variable
sliding-mode extremum-seeking method. The MSES tuning method covers the
drawbacks of conventional PI controller by improving the controller performance
in terms of tracking accuracy and robustness against disturbances [86]. This is
achieved through minimization of the following cost function

J2 = 1
T

∫ T

0
e2
Idt (5.31)

where eI = Is,ref − Is,act. The MSES varies the input vector of the PI gains,
Ψ2 = [Kp Ki], such that J2 is minimized. Similar to the MSES scheme utilized
in the TRM block, the following optimization law is used for tuning the PI gains

Ψ̇2 = α2Kg2sgn(sin(πσ2
γ2

) (5.32)

where α2 is the weight associated to TR block, sgn(.) is a 2× 1 signum vector,
γ2 = [γ21 γ22]T is a 2× 1 vector for which each element is a positive constant,
and Kg1 = diag([kg21 kg22]) is a 2 × 2 diagonal positive definite matrix which
determines the convergence rate. As J2 is minimized, the system moves towards
the optimum vector Ψ∗2 = [K∗p K∗i ]T .

5.2.3 Adaptive Weighting (AW) Block

As discussed in previous sections, there are two control objectives assumed for
the system. For torque ripple minimization, it is desired to minimize the objec-
tive function J1 in the TRM block; while for torque regulation, the goal is to
minimize the objective function J2 such that the PI gains are tuned properly.
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Hence, we are facing a multi-objective optimization problem and the perfor-
mance information of the TRM and TR objective functions of the drive system
is required.

When the motor is working at a constant speed (steady state), the torque
ripple minimization becomes more critical than torque regulation. Hence, it is
desired to increase the effect of TRM block so that the adaptive learning gain φ
and the relaxation factor β will have a better effect on suppressing the torque
ripples. During a transient process, the system fails to present periodicity. In
such a case, it is desired to decrease the effect of relaxation factor β in the TRM
block. On the other hand, it is required to increase the effect of TR block so
that a faster and more precise regulation can be achieved.

The proposed scheme assigns an adaptive weight to each objective function
using a scalar sliding-mode extremum seeking tuning method as shown in the
AW block of Fig. 5.3. Hence, it does not require any performance information
from the decision maker and can tune the weights online during the steady state
and transient operation of the system.

The proposed MOES scheme optimizes the two objective functions (5.26)
and (5.31) simultaneously by establishing an optimal trade-off between them and
computing a set of optimal solutions for the system. Hence, the multi-objective
problem is defined as

λ = arg
ω∈χ

min||ω|| (5.33)

where λ represents the minimum norm element and ω represents the convex
combination of sliding-mode vectors sgn(sin(.)). To calculate the solutions of
the multi-objective problem, we assign a weight to each objective function for
scaling. This converts the multi-objective problem into a single objective function
as follows

χ =
{
ω ∈ IR|ω =

2∑
i=1

αisgn(sin(πσi
γi

)); αi ≥ 0;
2∑

i=1
αi = 1

}
. (5.34)

According to (5.34), since the number of objective functions is two, for sim-
plicity consider α1 and α2 in (5.30) and (5.32) as α1 = α and α2 = 1−α; where
α is the value obtained in the MOES block. In this study, the convex sum of
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Figure 5.4: Experimental setup.

sliding-mode components gives the vector ω as

ω = αω1 + (1− α)ω2

= α

sgn(sin(πσ11
γ11

)) 0
0 sgn(sin(πσ12

γ12
))

+

(1− α)

sgn(sin(πσ21
γ21

)) 0
0 sgn(sin(πσ22

γ22
))

 . (5.35)

Assuming ω11 = αsgn(sin(πσ11
γ11

)), ω12 = αsgn(sin(πσ12
γ12

)), ω21 = (1−α)sgn(sin(πσ21
γ21

))),
and ω22 = (1−α)sgn(sin(πσ22

γ22
))), and using the Frobenius norm, ||ω|| is obtained

as follows
||ω|| =

√
(ω11 + ω21)2 + (ω12 + ω22)2. (5.36)

The aim is to set the weights of multi-objective problem such that the minimum
norm element λ is obtained, i.e., ||ω|| is minimized.

5.3 Experimental Evaluation

5.3.1 Implementation of Drive System

Fig. 5.4 shows the experimental setup which can be considered as a proof-
of-concept exercise machine. A Maxon EC brushless permanent magnet syn-
chronous motor is utilized to control the torque applied to the machine. Pa-
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Figure 5.5: Motor-load platform of the setup.

Figure 5.6: Real-time control structure of the setup using dSPACE control board.

rameters of the surface-mounted PMSM used in this study are listed in Table
I.

Fig. 5.5 depicts the motor-load platform of the setup. As shown the PMSM is
connected to an adjustable load through a gear head and motor shaft. The load
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Table 5.1: Experimental Parameters of the Setup

Parameter Value
Terminal resistance phase to phase 0.0829 Ω
Terminal inductance phase to phase 10.033 mH
Torque constant 0.14 N.m/A
Speed constant 659 rpm/V
Number of pole pairs 1
Inverter DC voltage supply 30 V
Rotor inertia 53.8 g.cm2

SVPWM frequency 10 KHz
Gear ratio 6:1

is a retractable handle for which the force applied to can be adjusted manually
by user. Moreover, an incremental optical encoder is employed for measurement
of the rotor digital position and the resolution ratio is 1024 pulse per revolution
(ppr).

Fig. 5.6, illustrates the real-time control/hardware configuration of the setup
using dSPACE DS 1103 real-time control board. As shown, the measured rotor
position as well as the stator three phase currents and voltages are sent to the
controller through analog-to-digital converter (ADC) terminals of the dSPACE.
The proposed controller was built in Matlab/SIMULINK environment with a
sampling frequency of fs = 10 kHz and its performance was studied using
dSPACE Control Desk 3.7.3. The control block executes TRM and TR algo-
rithms and generates the gate signals via SVPWM. The output gate signals of
SVPWM are fed to the inverter switches through the I/O terminals of dSPACE.
The performance evaluation of the proposed controller is presented in the fol-
lowing section.

5.3.2 Results

The proposed controller is applied to the exercise machine for the two cases
i.e. damper and spring behavior of the machine. Performance of the proposed
controller is studied under steady state and transient condition by comparing
the results with an adaptive PI (API) controller. The API used in this study
has been recently proposed in [86] for PMSM torque regulation which utilizes
a similar MSES-tuned PI controller as the one in TR block of Fig. 5.3 and no
TRM method. In the proposed controller, parameters of the MSE tuning scheme
in the TRM block are initialized based on the discussion presented in 4.1.2 and
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4.3.2 as follows: Kg1 = [7.5 0; 0 0.5] , γ1 = [0.075 0.12], and p1 = [−0.5 −0.6].
Moreover, parameter initialization for the MSE tuning block of API the same as
the one in TR block of the proposed controller as follows: Kg2 = [1.7 0; 0 0.3],
γ2 = [0.06 0.07] and p2 = [−0.1 − 0.45]. In the AW block, parameters of the
scalar MSE tuning scheme are set as Kg3 = 0.5, γ3 = 0.07 and p3 = −1.

Damping Effect

Assume that the controller is applied to the system and a user applies a force to
the rope such that the motor speed changes from ωr = 10rpm to ωr = 20rpm
at t = 25s. Then, the test is repeated for 10 times. However, due to space
limitation, only the results for one repetition of the experiment are presented
here. Fig. 5.7 depicts the experimental results for the API controller. As can
be seen, the amplitude of motor torque changes proportionally to the speed
variations from Tm = 0.2N.m to Tm = 0.5N.m at t = 25s. In this study, due to
the small resistance of motor, we have utilized the torque estimation of (5.11)
for which the ohmic losses of the motor windings are ignored. As shown in Fig.
5.7b, at low speeds, the amplitude of torque pulsations are considerable and
a torque ripple minimization method is required to be applied to the system.
Furthermore, the frequency spectrum of torque pulsations is also presented in
Fig. 5.7e. This figure shows relatively high amplitudes for low-order harmonics
at low speeds.

As shown in Fig.5.7a and b, as the transient condition happens during [0s 3s]
and [25s 27s] the system fails to present periodicity and the tracking is not
very precise. Hence, it is desired to increase the weight associated to the torque
regulation block. During the steady state condition, the amplitude of periodic
torque pulsations is considerable and torque minimization becomes more critical
than torque regulation. To this end, the proposed multi-objective extremum-
seeking controller is applied to the system and the experimental results are
obtained as shown in Fig. 5.8. Utilizing an adaptive ILC scheme, the proposed
controller achieves significant reduction in torque ripples as well as harmonic
amplitudes (See Fig.5.8b and g). As shown in Fig. 5.8e, as the transient condition
happens, the weight associated to the TR block, i.e. 1−α increases so that the TR
becomes more effective than TRM. Fig.5.8f shows the evolution of cost functions
for TRM and TR blocks. Despite slight growth of the cost functions during the
transient condition, the MSES tuning scheme used in TRM and TR blocks
have adjusted the control parameters such that J1 and J2 are minimized and a
high torque ripple suppression as well as a fast and precise tracking response is
achieved.
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Figure 5.7: Damping-effect experimental results for the API controller: (a) rotor angular
velocity, (b) torque response, (c) adaptive gains of PI, (d) evolution of cost function for
MSES tuning, and (e) frequency spectrum.
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Figure 5.8: Damping effect experimental results for the proposed controller using MOES
scheme: (a) rotor angular velocity, (b) torque response, (c) adaptive gains of PI, (d) adaptive
gains of ILC, (e) multi-objective adaptive weight α, (f) evolution of cost function for MSES
tuning in TRM (left) and TR (right) blocks, and (g) frequency spectrum.

Spring Effect

Now assume that we would like to generate mechanical spring behavior. The
profile for displacement changes is as depicted in Fig. 5.9(a), where the user
pulls the rope for t = 10s to a distance of x = 14cm from the initial place of the
rope. Then the user keeps the rope at that place for t = 25s and finally returns
it to the beginning point with low speed. The performance of the proposed
controller is compared with the API controller when the discussed displacement
profile is applied to the exercise machine and the test is repeated for 10 times.
Here, only the results for one repetition of the experiment are presented.

As shown in Fig. 5.9, the torque changes proportionally to displacement;
however, the amplitude of torque ripples are high and a TRM method is re-
quired. Fig. 5.10 shows the experimental results when the proposed MOES con-
troller is applied to the system for which the torque ripples have decreased for
' 10% compared with the result obtained using API controller. Furthermore,
comparing the results for the TR cost function and frequency spectrum of the
two controllers one can observe that the proposed controller has a lower cost
function as well as lower amplitude harmonics. This is evidently shown in the
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Figure 5.9: Experimental results for the API controller: (a) rope displacement, (b) torque
response, (c) evolution of cost function for MSES tuning, and (d) frequency spectrum.

zoomed area of Fig. 5.9(d) and Fig.5.10(d) for the frequency interval of [0Hz
95Hz].

Furthermore, consider the torque ripple factor which is defined as the ratio
of the peak-to-peak torque ripple to the rated torque of the PMSM [68]

TRF = Tm,pk−pk
Tm,rated

× 100 (5.37)
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Figure 5.10: Experimental results for the proposed controller using MOES scheme: (a)
rope displacement, (b) torque response, (c) evolution of cost function for MSES tuning in
TRM (left) and TR (right) blocks, (d) multi-objective adaptive weight α, and (e) frequency
spectrum.
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Table 5.2: Comparison of the Average TRF for API and the proposed MOES controller

Damping Effect

Controller TRF
API 38%
MOES 5%

Spring Effect API 18%
MOES 9%

Table 5.3: Comparison of the Average RMSE for API and the proposed MOES controller

Damping Effect

Controller RMSE
API 0.0275
MOES 0.0227

Spring Effect API 0.0128
MOES 0.0036

Also consider the root-mean-square (RMS) of tracking error (eI) over the
first 6× 105 iterations given by [54]

RMSE =

√√√√ 1
n

n∑
p=0

(
ek
)2
. (5.38)

where ek is the error between the desired and actual motor torque at kth iteration
of the control, and n is the total number of iterations. To make a fair comparison,
the average values obtained for the TRF and RMSE for 10 repetitions of the tests
both for damping and spring behavior are presented in Table 5.2 and 5.3. As
can be seen, the proposed MOES controller demonstrates a better performance,
both in spring and damping behavior, when compared with the other controller.

5.4 Conclusion

In this chapter, a multi-objective extremum seeking optimization approach is
proposed and applied for PMSM torque control. The proposed scheme utilizes an
extremum seeking optimization for tuning the gains of an ILC and a PI controller
such that high torque ripple suppression and accurate torque regulation for the
PMSM is achieved under steady state and transient conditions. Performance
of the proposed MOES-based controller was investigated through experiments
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by comparing the results with a recently proposed adaptive PI controller. The
results indicate the effectiveness of the proposed scheme in reducing the torque
ripples up to 33% and 9% as well as improving the torque regulation up to 17%
and 70% when the system is operated to create damping and spring behaviors,
respectively.
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Chapter 6

Summary, Conclusions, and
Suggestions for Future Work

6.1 Summary and Conclusion

In this thesis, a multivariable sliding-mode extremum seeking scheme is proposed
and its performance is studied in several power electronic control/optimization
applications. The key contributions of the present dissertation can be summa-
rized as follows:

1. The control design of the proposed multivariable sliding-mode extremum-
seeking scheme was presented. Then a rigorous analysis of its convergence
and stability both outside and inside the ε-vicinity of the extremum point
was conducted.

2. The proposed scheme was applied for MPPT in an alternator-based energy
conversion system through controlling the alternator field current and out-
put voltage at various speeds. The experimental results demonstrate the
efficiency of the proposed controller in achieving faster convergence and
higher tracking accuracy when compared with a recently proposed multi-
variable gradient-based ESC.

3. The performance of the proposed scheme is verified in an optimization
application. To this end, the proposed MSES is utilized for PI tuning in
PMSM current regulation. The experimental results indicate that the pro-
posed tuning method can improve the control performance in terms of ac-
curacy, parametric variations and load torque disturbances when compared
with recent controllers.

4. A multi-objective extremum-seeking scheme is proposed for PMSM torque
ripple minimization and current regulation at low speeds. The proposed
controller was applied on a proof-of-concept exercise machine and its per-
formance was studied trough several experiments. The results validate the
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effectiveness of the proposed controller in terms of torque ripple suppres-
sion, steady-state and transient performance, as well as load disturbance
rejection.

6.2 Suggestions for Future Research

Based on the experience gained and the results obtained in the course of this
research, the following suggestions may be considered for future work.

6.2.1 Studying the Effect of Coupling Elements in the Proposed
MSES Controller

In the proposed MSES controller, Kg is defined as an n × n diagonal positive
definite matrix. This leads to a straightforward stability analysis and low com-
putational burden. If the coupling control parameters are considered as well,
the precision of the control increases, while the system computational cost will
increase which may not be suitable in some applications where fast tracking is re-
quired. Hence, a compromise should be made. In this regard, studying the effect
of coupling elements in the proposed MSES controller would be an interesting
topic for future work.

6.2.2 PMSM Sensorless Control

One main drawback of using high-resolution position sensors such as pulse en-
coder in PMSMs is their high cost. On the other hand, Hall-effect sensors have
low precision at PMSM low-speed applications such as exercise machine. In this
case, the sensor failure may cause instability in the control system [21]. There-
fore, improving the proposed control strategy to a sensorless control scheme is
an interesting topic for future work.

6.2.3 Removing External PMSM Inductances

The Maxon EC brushless PMSM used in Chapters 4 and 5 is a lightweight
motor with small resistance and inductance values. This gives rise to higher
levels of current/torque ripples as well as current rise time. Hence, in this study
external inductances have been added to the PMSM phase terminals. However,
using external inductances increases the system cost and size. Moreover, in some
applications, using large inductors undesirably slows current control response.
Therefore, removing the external inductances and changing the control topology
such as using a multilevel DC link is proposed as continuation of the present
work.
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6.2.4 Regenerative Exercise Machine

To increase the efficiency of the proposed exercise machine in Chapter 5, it is
desired to convert mechanical vibration energy generated by user in the motor-
load platform into electric battery charge utilized as DC supply of inverter. To
this end, extending the proposed controller as a power electronic regenerative
control scheme is worth to be a subject of future work.

6.2.5 Using Variable DC Link in PMSM Control

In the designed exercise machine, if the back EMF voltage of PMSM becomes
greater than the voltage of DC source, the direction of current flow changes to
DC source. Hence, the DC source trips and disconnects. On the other hand,
in regenerative case, a challenge happens when the back EMF voltage drops to
small values. In this case, even if a boost converter is utilized in the circuit, the
current is not enough to charge the battery. Therefore, as an other opportunity
for future work, it is desired to change the system drive topology to have a
variable DC link.
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