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Abstract 

It is commonly thought that more time spent weight bearing at work increases the risk of 

developing plantar fasciitis, a condition causing pain on the bottom of the foot. This link 

is not recognized by workers compensation boards because the methods used by 

researchers to determine workers activities lack sufficient objectivity. This work aimed to 

solve this problem by developing a prototype of a low-cost smart shoe insole capable of 

accurately recording workplace activities. This device was implemented in a variety of 

workplaces to collect information about 34 worker’s activities over the course of 3-5 

days. An algorithm was developed to classify sitting, standing and walking with an 

accuracy of 99.3% and analysis showed the time spent standing throughout the workday 

was correlated with the presence of foot pain. This work lays the foundation for a large 

population study to provide the objective results needed to change workplace policies.   

Keywords:  Activity Classification; Machine Learning; Force Sensors; Plantar 

Fasciitis; Smart Insole; Workplace Injury 
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Executive Summary 

Purpose: Plantar fasciitis (PF) is a condition that causes foot pain and sometimes even 

prevents you from walking. About 2.77 million people per year in the United States report 

having PF [1]. This costs over $284 million/yr [2]. The exact cause of PF is still unknown. 

Research has shown that workers who are on their feet for the majority of the day have 

an increased risk of foot pain [3]–[5]. However, this work has largely relied on 

participants self-reporting the amount of time spent standing during the workday. This 

can lead to large errors as seen in one study where participants misclassified over 3h of 

activities over 24h [6]. The use of self-report data has produced unreliable results linking 

PF to common workplace activities [7]. These inconclusive results have made it difficult 

and highly subjective to judge the merit of workers compensation claims, leading to 

unreported incidents and a high proportion of rejected claims [8]–[10]. Current 

technologies capable of objectively measuring workplace activities are either too 

expensive or too difficult to use. Without improvements in this technology, it is difficult to 

link foot pain to specific workplace activities.  

Research Questions: The questions asked in this study were: 

1. Can a low-cost, easy to use, unobtrusive device be made that collects 
data from a participant in their natural work environment for use in 
activity classification? 

2. Can an algorithm be developed to classify a participant’s workplace 
activities as sitting, standing or walking using the data output from the 
novel device? 

3. Can the device be used in a workplace setting to collect activity data 
from participants for an extended period of time?  

4. How do self-reported activity times compare to the activity times 
recorded by the device?  

5. Is there a relation between the amount of foot pain experienced by a 
worker and their workplace activities?  

Methods: A novel prototype device was designed based on recommendations from 

existing research and tested in a lab setting to validate functionality. Next, participants 

both with and without foot pain between the ages of 19-60 with a Body Mass Index (BMI) 

under 30 were recruited to wear the novel device for a week while at work. A total of 34 

participants wore our insoles at work for up to 5 days while they went about their regular 
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work activities. At the end of each workday participants were asked about their foot pain 

that day. They were also asked to estimate how much time they spent sitting, standing 

and walking throughout the day. At one point during the study, each participant was 

asked to sit, stand and walk a few times in a certain order while being video recorded. 

This data was used to develop a machine learning algorithm capable of classifying 

sitting, standing and walking throughout the rest of the participant’s work week. The 

resulting activity data was used to gain insights about workers natural activities in a 

variety of workplaces and occupations. The relationship between factors related to 

workplace activities / participant demographics and the presence of foot pain was 

investigated.  

Results: A novel, low-cost instrumented shoe insole called the Posture Differentiating 

Insole (PDI) was developed using force sensitive resistors (FSRs) and an accelerometer 

to collect activity data in a workplace setting. This study showed that the PDI can be 

used in a workplace environment for up to 12 hours per day and up to five days in a row. 

Participants reported that they mostly forgot they were wearing the insoles indicating that 

the device was able to record natural activity at work. The machine learning algorithm 

developed was able to correctly determine the participants activity 99.3% of the time. A 

few devices experienced malfunctions leading to incomplete data, but the majority 

worked for the entire study. Data from devices that didn’t work correctly was discarded. 

This left 92 days of data from 29 participants to be analyzed. The time each participant 

spent sitting, standing and walking each day was determined by the PDI. This data was 

compared to the times that participant reported at the end of each day. The average time 

sitting throughout the workday ranged across participants from 34.26% to 95.80% with 

standard deviations between 0.57% and 20.05%. The average number of activity 

transitions throughout a participant’s workday ranged from 46 to 759. The self-reported 

data had a classification error of 24%, meaning that participants incorrectly reported an 

average of 2.3 hours of their workday. Participants usually reported less walking and 

more sitting and standing than was actually done throughout the day. Comparison of 

workday activity related factors showed that the total time spent standing throughout the 

workday is likely to increase the occurrence of foot pain. The time a participant spent 

doing one activity before switching to a different activity was also investigated. This is 

something that cannot be measured with self-reported activity times. We found that a 
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longer time spent standing before changing activities is likely to increase the occurrence 

of foot pain.  

Conclusion: This study has developed a novel device and algorithm capable of 

objectively classifying workplace activities and shown that the device can be used in a 

workplace setting to greatly improve on self-reported activity data and provide new 

analysis methods. This study highlighted multiple factors that are likely to increase the 

occurrence of foot pain, laying the groundwork for future large population studies. 

Interests and Biases: Michael Ryan is a salaried employee of Kintec Footlabs Inc. 

Keywords: Plantar Fasciitis, Foot Pain, Self-report Data, Smart Insole, Weight-bearing, 

Activity Classification, Workplace Injury 
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Chapter 1.  
 
Introduction 

1.1. Background and Motivation 

Plantar Fasciitis (PF) is one of the most common causes of chronic foot pain [11], 

[12]. Over 329,000 people in Canada and 2.79 million people in the United states over 

the age of 18 suffer from chronic foot pain [1], [13]. It is estimated that approximately 10-

24% of the global population will be impacted by foot pain at some point in their lives 

[14], [15]. Studies have shown that this number rises substantially in individuals 

subjected to prolonged periods of weight bearing (standing or walking) [3]–[5]. This can 

be seen in retail workers where 50% have reported foot pain during work [16]. Other 

occupations where weight bearing is prevalent have reported similar prevalence of foot 

pain including assembly plant workers (69% [17]), and nurses (55 - 74% [18], [19]). PF 

has an estimated economic burden in the US of $284 million per year [2]. However, 

there is insufficient evidence that prolonged standing is a causal factor for foot pain [7].  

PF is often exhibited as pain in the heel or inferior foot and is commonly worst 

when taking the first few steps after getting out of bed in the morning [14]. This pain has 

largely been attributed to microtears in the plantar fascia that cause an inflammatory 

response [2], [11], [12], [14], [20]. The etiology of PF is complex and likely caused by a 

combination of factors [14]. In approximately 85% of cases the exact etiology is unknown 

[3]. Tightness of the Achilles tendon [11], and hamstring [21] have been commonly 

associated with this condition. Other physiological attributes such as arch height, 

metatarsal pressure, and intrinsic foot muscle tightness have also been associated with 

PF [3], [12]. Increased BMI is also correlated to the occurrence of PF [4], [22].  

While data relating to physiological aspects such as arch height, ankle flexion 

and BMI is relatively easy to obtain, time spent walking or standing throughout a typical 

day is much more difficult to accurately measure. Much of the existing research to date 

has used self-reported workplace activity durations [3], [5], [22]. Research has shown 

that self-reported measures are not a reliable source of workplace activity durations [6], 

[23]. The use of self-report data in research regarding risk factors of PF has led to 



2 

unreliable results linking PF to common workplace activities [7]. These inconclusive 

results have made it difficult and highly subjective to judge the merit of workers 

compensation claims for PF related to workplace exposures. This is evidenced by 

WorkSafeBC accepting an average of 19 claims per year and rejecting an average of 38 

claims per year between 2009 and 2013 [10]. However, these numbers highly 

underestimate the prevalence of the condition in the workplace as over 80% of workers 

do not submit claims anticipating that they will be rejected [8], [9]. Each claim accepted 

cost approximately $15,000 in lost time [10].  

One study investigating factors related to PF did use objective measures of 

workplace activities including video recordings and step counters [3], however this study 

only captured snapshots of activity throughout the day, not total activity times. Other 

studies have used accelerometer-based technologies to categorize activities [24]–[27] 

but have not been used to investigate PF etiology. In addition, accelerometers are best 

at distinguishing sitting, standing and walking (common workplace activities) when 

attached to the user’s thigh and waist [28]. This is relatively uncomfortable and difficult to 

precisely orient, therefore making accelerometers difficult to use in large scale studies. 

Insole based systems have shown promising results for activity classification [29]; 

however, at present there are only experimental designs used for academic research 

[30]–[33] or very expensive commercially available insoles such as the F-scan System 

(Tekscan Inc., South Boston, MA, USA) which costs approximately $20,000. There is an 

immediate need for a low-cost technology capable of accurately determining workplace 

activities for use in a large-scale study to determine workplace activity factors related to 

PF.  

The goal of this thesis is to incorporate previous knowledge about instrumented 

insole design to develop a useable prototype that can be deployed in a workplace 

setting. This device will then be used to gather data to train a classification algorithm and 

begin to investigate correlations between workplace activity data and foot pain, laying 

the groundwork for population scale research.  

1.2. Anatomy of the Foot 

To study the forces, loading patterns, and injuries of the foot it is necessary to 

first understand the basic anatomy of the foot. The following section will give a brief 
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overview of the foot anatomy including the anatomical terms used throughout this 

document. The foot is comprised of 26 bones connected with musculature and 

connective tissue forming three arches. The foot helps to distribute the weight of the 

body and maintain balance and stability [34].  

Specific terms are used to describe anatomical directions, they are as follows 

(Figure 1). When viewing a foot from the top, the direction towards the front of the foot is 

the anterior direction, also known as distal, and the direction towards the back of the foot 

is the posterior direction, also known as proximal. The outside of the foot, furthest away 

from the other foot, is the lateral direction, and the opposite is the medial direction. When 

viewing the foot from the side, the top is the superior direction, also known as the dorsal 

surface, and the bottom is the inferior direction, also known as plantar surface. Toe 

flexion (downwards) is known as plantarflexion, while toe extension (upwards) is known 

as dorsiflexion.  

Figure 1 - Directional anatomical terms used in reference to the foot 
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1.2.1. Bony Structures 

The bones of the foot are often divided into three sections called the tarsals 

(talus, calcaneus, cuboid, navicular, and three cuneiform bones), metatarsals (first to 

fifth metatarsal) and the phalanges (proximal, medial and distal phalanges). The foot can 

also be divided into three generalized foot regions, the forefoot, midfoot and hindfoot  

[35]. To provide further clarity, this work has included an additional region, the toes 

(Figure 2). The bones included in each region are described below. 

  The hindfoot is made up of the talus and the calcaneus. The calcaneus is the 

furthest posterior bone of the foot. It serves to transmit the majority of the weight of the 

body to the ground and provides an attachment point for the ligaments from the calf. The 

talus is located superior to the calcaneus and articulates with the tibia and fibula forming 

the ankle joint [35].  

The midfoot contains the navicular, cuboid, medial cuneiform, intermediate 

cuneiform and lateral cuneiform. These bones provide an articulating connection 

Figure 2 - Bones and regions of the foot 
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between the calcaneus and talus, and the metatarsals and help make up the medial 

lateral arch [34]. 

The forefoot includes the five metatarsal bones. The metatarsal bones are 

numbered one through five starting at the medial side of the foot.  

The toes consist of five proximal phalanges, four medial phalanges and five distal 

phalanges. The big toe has two phalanges (distal and proximal) while the other toes 

have three.  

1.2.2. Musculature and Connective Tissue 

There are many muscles and connective tissues in the foot, most of which are 

beyond the scope of required knowledge to understand this work. Typically the muscles 

of the dorsal foot function to extend the toes while the plantar musculature functions to 

flex the toes [35]. The primary connective tissue on the plantar aspect of the foot is the 

plantar fascia, sometimes called the plantar aponeurosis (Figure 3). This tissue is very 

strong and functions to support the longitudinal arches of the foot and absorb forces 

experienced in activities such as walking, running and jumping [20]. The plantar fascia 

Figure 3 - Location and approximate shape of the plantar fascia. Green dots represent 
attachment points. 
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originates on the plantar surface of the calcaneus and extends anteriorly splitting into 

five processes, one attaching to each of the toes. The central tissue is thickest with the 

medial and lateral tissues becoming thinner as they near the outer edges of the foot [35]. 

PF typically occurs at the proximal end of the plantar fascia where it connects to the 

calcaneus. 

1.2.3. Arches 

There are three arches of the foot, the transverse arch, the medial-longitudinal 

arch and the lateral-longitudinal arch (Figure 4). The arches are important for absorbing 

and distributing forces in the foot and maintaining balance. The shape of the arches is 

formed by strong ligaments including the plantar fascia [34]. 

 The medial longitudinal arch is formed by the calcaneus, talus, navicular, three 

cuneiform bones and the first three metatarsal bones. This arch is the highest of the 

longitudinal arches and thus has the most elasticity when loaded [35]. The lateral 

Figure 4 - Arches of the foot including the medial longitudinal arch 
(red), lateral longitudinal arch (green) and transverse arch (blue). 
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longitudinal arch is formed by the calcaneus, cuboid and fourth and fifth metatarsal 

bones. This arch is shorter than the medial longitudinal arch and is more rigid [35]. The 

transverse arch is comprised of the posterior metatarsal bones.  

1.3. Biomechanics of Foot Loading 

1.3.1. Foot Loading and the Gait Cycle 

The gait cycle describes the motions that occur in human bipedal walking. It has 

been shown that the kinematics and kinetics of the gait cycle of adults is very consistent 

[36]. The widely used terminology of the human gait cycle as developed by Perry et al. 

begins by dividing gait into two phases, stance and swing [37]. Stance is the first 60% of 

the gait cycle where the foot is in contact with the ground and swing is the remaining 

40% when the foot is moving forward to begin the next step. Each of these phases is 

further broken down into five and three positions respectively (Figure 5). 

Stance Phase of Gait 

- Initial contact is when the foot first contacts the ground. In normal gait, the 

heel is the first contact point, hence the frequently used term ‘heel strike’. The 

Plantar fascia begins to elongate as soon as the heel touches the ground 

increasing the tensile load in the tissue. Most of the body weight in this 

stance is transferred through the calcaneus. 

Figure 5 - Terminology of the phases of the human gait cycle. The cycle is broken into two phases, the 
stance phase with five positions and the swing phase with three positions. The right leg is the reference 
leg and is shown in black.  
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- Loading response is the period when the weight of the body is transferred to 

the foot from the opposite foot. Tensile loading in the plantar fascia increases 

in this position. 

- Mid stance is marked by the opposite leg moving forward to align with the 

now loaded leg in the sagittal plane. Tensile loading in the plantar fascia is 

maintained at a high level in this position and helps the longitudinal arch 

distribute the weight of the body across the foot (Figure 7-b). 

- Terminal stance is the period when weight is shifted anteriorly in the foot as 

the opposite leg moves further forward. As the heel begins to lift off the 

ground and the toes begin to bend, the plantar fascia is stretched further, 

causing it to stiffen and increase the height of the medial longitudinal arch 

(Figure 7-c). Weight is primarily transferred to the ground through the 

metatarsal heads and the toes in this stance. 

- Pre-swing is characterized by a marked lifting of the forefoot and toes in 

preparation for initial contact of the opposite foot. During this phase, the 

plantar fascia is fully stretched creating a nearly rigid arch capable of 

efficiently transferring energy from the leg muscles. 

Swing Phase of Gait 

- Initial swing begins once the foot is no longer in contact with the ground and 

is characterized by the swinging leg being posterior to the opposite leg. The 

plantar fascia is now unloaded. 

- Mid swing is the period when the swinging leg is approximately equal to the 

opposite leg when viewed in the sagittal plane. 

- Terminal swing is the period when the swinging leg is anterior to the 

opposite leg before the foot contacts with the ground. 

1.3.2. Measuring Gait and Ambulation 

When studying gait, steps or other attributes associated with human ambulation it 

is important to understand the sampling rate required to obtain all necessary information 
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without collecting too much data. Virtually all energy associated with running and walking 

can be represented by frequencies below 20 Hz [38], [39]. The Nyquist Theorem 

suggests that when sampling a signal, the sampling rate should be at minimum twice 

that of the highest frequency component of interest. Therefore, when sampling walking 

and running, a minimum sampling frequency of 40 Hz is suggested by the Nyquist 

Theorem. Research devices designed to interpret gait, number of steps or time spent 

walking and running have a wide range of sampling frequencies including 25Hz [40], 

30Hz [33], 50Hz [41], 100Hz [42] and 118Hz [43]. Some research grade devices can 

have sampling frequencies in excess of 200Hz [44]. This is likely because sampling rate 

can always be digitally reduced after collection by removing intermediate samples, but 

cannot be increased, so collecting too much data is preferable to collecting too little data. 

1.3.3. Shock Absorption and Load Distribution 

There are significant differences in the way people load their feet. Factors such 

as age, gender, body weight, foot anatomical differences, and shoe type have an impact 

on the pattern of plantar pressure loading [45]–[48]. As a result, loads are not always 

distributed across the foot in the same way for each person when standing, walking, 

running, and during other activities. The following description represents typical 

behavior. 

The arches of the feet play an important role in absorbing the forces associated 

with activities such as standing, walking and running. While running, the foot can 

experience forces up to 2.5 times that of standing [34]. Under such loads the tendons, 

ligaments and muscles in the foot stretch causing the arches to collapse slightly, 

absorbing energy that would otherwise be transferred to the rest of the body [49]. In the 

process of unloading the foot, it is beneficial for the arches to return this energy creating 

a spring like response and reducing energy expenditure [50]. The plantar fascia is one of 

the connective tissues that absorbs and returns this energy. While acting in this way 

reduces the likelihood of injury in other locations such as the knees and hips, 

overloading can have negative effects on the plantar fascia [51]. 
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The medial longitudinal arch can be thought of as a three-bar triangular truss with 

the  bony pathway from the calcaneus through to the connection of the plantar fascia at 

the metatarsal heads / proximal phalanges as the upper two bars and the plantar fascia 

as the lower ‘bar’ that prevents the top two bars, from collapsing (Figure 6). The upper 

two bars of the truss maintain a relatively constant stiffness since they are made up of 

bony pathways. The properties of the plantar fascia thus control the movement of the 

three-bar truss under loading.  

To act both in an elastic manner as a shock absorber, and rigidly to efficiently 

transfer energy, the foot uses a technique called the windlass mechanism (Figure 7). 

This mechanism allows the plantar fascia to vary its effective length based on the 

position of the phalanges [52]. When the phalanges are in a neutral position such as 

when standing or sitting (Figure 7-a/b) the plantar fascia is relatively elastic allowing the 

truss of the medial longitudinal arch to act as a spring-damper system cushioning the 

forces associated with shifting weight and other unexpected motions. When taking a 

step or otherwise pushing off the toes, the phalanges dorsiflex causing the plantar fascia 

to stretch over the metatarsal heads known as the windlass mechanism (Figure 7-c). 

This stretching of the plantar fascia pulls the calcaneus towards the forefoot, heightening 

and strengthening the truss of the medial longitudinal arch, a function necessary for 

efficient locomotion [53], [54].  

Figure 6 - The medial longitudinal arch as a three-bar truss. The top two 'bars' are comprised of 
the bones of the forefoot, midfoot and hindfoot, the lower 'bar' is the plantar fascia. 
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1.3.4. Plantar Tissue Loading 

The most likely cause of PF and plantar foot pain is mechanical stress applied to 

the plantar fascia [51], [55]. The plantar fascia is dynamically loaded when taking a step 

due to the nature of loading the foot in the stance phase and the release of stress during 

the swing phase of gait. The plantar fascia is statically loaded to maintain the shape of 

the arch when standing [12]. This loading is primarily exhibited as axial stress in the 

plantar tissue.  

Cyclical tensile loading of tendons has been shown to help maintain their structural 

integrity and health [56]. However, too much or to little cyclical loading can have 

detrimental effects. This could explain why prolonged standing (low cyclical loading) or 

long periods of time running or walking (high cyclical loading) have been identified as 

key contributing factors leading to the microtears exhibited in PF [3], [4], [20]. These 

microtears are often found near the calcaneal attachment of the plantar fascia. Once 

present, the stress on the remaining tissue in increased, sometimes leading to a 

cascading effect culminating in the painful heel or plantar aspect of the foot known as 

plantar fasciitis. 

Figure 7 - The plantar fascia in sitting standing and walking. While sitting (a), the plantar fascia is 
unstretched and therefore under low tensile load (represented by orange arrows). When force (represented 
by red arrows) is applied to the foot while standing (b) the plantar fascia experiences a high tensile load to 
hold the shape of the arch. During the terminal and pre-swing positions of walking (c) the windlass 
mechanism stretches the plantar fascia over the metatarsal head by dorsiflexing the phalanges. This motion 
draws the calcaneus towards the forefoot and strengthens the medial longitudinal arch. 
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1.4. Monitoring Workplace Activities 

1.4.1. Self-Report Data 

Research into risk factors of PF typically requires participants to self-report the 

time spent on their feet throughout the day. However, self-reporting is not an accurate 

measure of time spent in different activity states, as shown in a recent study where 

participants incorrectly reported over 3 hours of activity time over a 24 hour period [6]. 

Importantly, self-reporting also lacks the temporal resolution to track short duration 

changes in posture which may affect overall plantar tissue loading exposure. 

The Occupational Sitting and Physical Activity Questionnaire (OSPAQ) is a 

survey commonly used to determine a participant’s activities throughout a work week 

[57]. It asks participants to report the time they spent at work and the percent of time 

spent sitting, standing, walking and doing heavy labour. While it has an excellent test - 

re-test validity, the comparison to accelerometer measures of actual workplace activities 

showed deviations of up to 12 hours per week for sedentary activities and 4-5 hours for 

standing and walking [58]. The OSPAQ is easy to use as it takes only a few minutes to 

complete and participants only have to fill it out once per week. This has led to 

widespread adoption in workplace activity reporting. While it is low-cost and easy to use, 

the OSPAQ does not show the differences in activities between workdays within the 

week. Additionally, it does not provide the temporal resolution necessary to investigate 

changes in activity throughout the course of the day. 

Self-reported workplace activity has been used in much of the current research 

investigating correlations between workplace exposure and PF [3]–[5]. These studies 

have all found moderate correlations between the time spent weight bearing and the 

presence of PF, however the results have not been widely accepted due to the 

methodological limitations of self-reported workplace activity data [7]. Werner et al. have 

shown that a 10% increase in the time spent weight bearing at work is correlated with a 

52% increase in the risk of PF. To measure impacts of a 10% change in workday 

activities a method of classifying such activities with a minimum accuracy of 90% is 

required.  
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1.4.2. Accelerometer Based Activity Trackers 

Accelerometers have been widely used for activity classification beginning with 

basic step counters and evolving into sophisticated devices capable of tracking many of 

the activities of daily living [28]. Accelerometers are extremely low cost and require less 

power than gyroscopes or magnetometers [59] and thus present an excellent opportunity 

for wearable devices. There are a number of factors that influence the performance of an 

accelerometer based activity tracker including sampling rate, the window size used to 

calculate features, what features are extracted from the data, the location of the sensor 

on the body, and what algorithm is used to process the data. There are many 

combinations of these factors that can yield similar results [59], often with accuracies 

over 95% [60]–[64].  

There are a number of commercially available accelerometers including the 

ActivPAL (PAL Technologies Ltd., Glasgow, Scotland), ActiGraph (ActiGraph LLC., 

Pensacola, FL, USA), and the MTw Awinda (Xsens, Netherlands). These technologies 

typically use high accuracy accelerometers that wirelessly connect to a smartphone or 

computer. Some of these devices come with proprietary algorithms to classify activities 

and others simply provide the raw signal data that must be interpreted. Since these 

devices often cost over $5000, they are typically used in research environments rather 

than consumer applications. However, there is an abundance of low-cost accelerometer 

chips with varying sensitivities and accuracies readily available to easily integrate into a 

wearable device. This has spurred the widespread inclusion of accelerometers in 

consumer devices such as phones, computers, watches and shoes and the need for 

activity classification algorithms to make sense of this data.  

While accelerometer based devices are typically quite good at counting steps or 

differentiating sedentary and non-sedentary activities [25], [60] they often fall short when 

differentiating between sedentary activities such as standing and sitting [59]. This is 

because sitting and standing produce nearly identical acceleration outputs in most 

configurations. For example, an accelerometer located on a user’s wrist, chest or ankle 

experiences very little difference between sitting and standing. Though research has 

shown some success at activity classification using an accelerometer mounted on the 

chest, a sophisticated multi layer neural network was required [64]. The exception to this 

is when an accelerometer is placed on the thigh. In this configuration standing and sitting 
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have different outputs since the thigh is oriented vertically when standing and 

horizontally when sitting. As a result, the accuracy of thigh mounted accelerometers 

when classifying sitting, standing and walking is over 95% [27]. This, however, is not a 

desirable location for long term use as it typically requires the uncomfortable need to 

glue or strap an accelerometer to one’s thigh.  

Ultimately, while accelerometers are low-cost, readily available, widely used, low 

power, and easy to integrate into wearable devices they are not optimal for 

differentiation of passive postures (sitting/standing), a critical ability when investigating 

foot pain conditions. 

1.4.3. Insole Based Activity Trackers 

The patterns of force application to one’s feet is drastically different for sitting, 

standing and walking. When sitting, there is little force applied to the feet. When standing 

there is an increase in force, and it is applied steadily. When walking, there are high 

forces applied to the feet but in a repetitive loaded / unloaded pattern. These distinct 

differences provide an excellent opportunity to place force sensors in a shoe insole to 

differentiate activities. This approach has the ability to provide a comfortable, non-

intrusive, easy to use solution to the challenges present with other types of activity 

trackers. For such a device to be used in population-based foot pain research, it must 

have the following attributes: 

1. Low-cost: The device must be able to be used in large scale studies 

involving upwards of 100 participants. Thus, the device must be reasonably 

priced (<$200) so that many devices can be purchased. 

2. Deployable: The device must be able to function outside of the lab 

environment and without expert supervision.  

3. Non-invasive: The device will be worn for long periods of time so must not 

inhibit the daily activities of the user in any way. Large, or uncomfortable 

devices would not be acceptable. 

4. Easy to use: With such a large-scale study, the device must be easy for the 

user or researcher to set up and maintain. This means it should not require 
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calibration or frequent upkeep and the battery should last for at least 12 hours 

to avoid needing to charge the battery throughout the workday. 

5. Accurately track activities: Whatever design is used, it must be able to 

accurately track sitting, standing and walking in a natural environment in a 

range of shoe styles. 

Several studies have shown the feasibility of placing sensors in shoe insoles for 

use in a wide variety of applications including gait analysis, pressure distribution 

mapping and ground contact kinetics [43], [65]–[69]. In addition, there are insoles that 

have been developed to classify activities (see Table 1). While these insoles have 

shown promising results with accuracies up to 99%, all were tested on less than ten 

participants in a lab setting only.  

Table 1 - Comparison of shoe insoles developed for activity classification 

 Hegde et al. [30] 
‘SmartStep’ 

Chen et al. [70] Kawsar et al. [71] 

Sensors 
used 

Two circular FSRs, 
one rectangular FSR 
and one 3-axis 
accelerometer 

Four round FSRs Eight pressure 
sensors, 
accelerometer and 
gyroscope used from 
smartphone 

Sampling 
frequency 

25-75 Hz 100 Hz 37 Hz 

Calibration 
required? 

Unknown Yes Unknown 

Data 
processing 
method 

Multinomial logistic 
regression 

Decision tree and 
linear discriminant 
analysis 

Decision trees with 
majority vote 

Activities 
classified 

Lie down, sit, stand, 
walk, cycle 

sitting, standing, 
level walking, 
obstacle clearance, 
stair ascent, and stair 
descent 

Sitting, standing, 
walking 

Accuracy 98.3% 98.4% 99% 
Validation 
method 

Three healthy adult 
participants. In-lab 
validation only. 

Five able bodied 
subjects and one 
amputee subject. In-
lab validation only. 

One subject in a lab 
setting. 
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Sensor location is a critical aspect when designing smart insoles. While Sazonov 

et al. did optimize the number and location of sensors used for activity classification, 

they began with only 5 sensors placed in anatomically significant locations [29]. The 

locations chosen were the heel, the first, third and fifth metatarsal heads, and under the 

big toe. This eliminated many locations that may be significant for activity classification 

such as the medial and lateral arch. Merry et al. began with a much larger set of 

potential locations systematically covering the entire insole to identify a list of most 

relevant locations for activity classification [72]. The research presented in this thesis 

builds on the findings from the work done by Merry et al.  

There are commercially available insoles with the ability to measure plantar 

pressure. A summary of some of the more common insoles is found in Table 2. These 

devices have varying degrees of accuracy, resolution, and price. There is no one device 

that is widely accepted in research. Additionally, devices intended for consumer 

applications are being developed but have not yet been widely adopted and are primarily 

focused on sports analytics, not activity classification. 

Table 2 – Comparison of commercially available pressure sensing insoles 

Company Tekscan Novel Moticon Noraxon  
Model F-Scan Pedar Science Medilogic 
Number of 
sensors 

954 256 16 Pressure 
sensors 
+ 
accelerometer 

240 Pressure 
sensors 

Type of 
sensor 

Resistive Capacitive Capacitive Resistive 

Approx. 
Price (CAD) 

$23,000 (w/ 
software) 

$40,000 (w/ 
software) 

$3,000 (w/ 
software) 

$17,500 (w/ 
software) 

Sampling 
frequency 

Up to 100 Hz Up to 235 Hz Up to 100 Hz Up to 300 Hz 

Data 
Processing 

Wireless or 
wired 
communication 
to a computer. 
Limited 
onboard 
storage 

Wireless or 
wired 
communication 
to a computer. 
Limited 
onboard 
storage 

Wireless 
communication 
to a computer. 
Up to 16h 
onboard 
storage of 
basic data 

Wireless or 
wired 
communication 
to a computer. 
Limited 
onboard 
storage 
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In summary, commercially available insoles are primarily intended for in-lab 

research applications as evidenced by their high price, large form factor, and need for 

pairing to a computer. The Moticon Science insole could be used for such research, but 

the data recorded from it would have to be further processed to classify sitting, standing 

and walking and the cost is still prohibitively expensive for a large-scale study. The 

insoles developed by Hegde, Chen and Kawsar are very close to what is required for 

this research; however, the locations of sensors have not been optimized for activity 

classification, appear to require calibration, and most importantly none have been tested 

in real-world scenarios. Additionally, none are commercially available so any research 

using such devices would require either partnership or developing a similar device. 

1.5. Problem and Need: 

The overarching problem driving this research is that while correlations have 

been shown between load bearing and foot pain, causation has not been established. 

This is because not all people who are on their feet for long periods of time throughout 

the day get foot pain. The causes of foot pain need to be more clearly defined. I 

hypothesize that the relationship between workplace activities and foot pain can be more 

clearly defined with a better understanding of the variations in foot loading between 

individuals in the same work environment and across work environments. To answer this 

question, we need a method of objectively determining the duration and variation of 

postures people are doing at any time throughout the workday (walking, sitting standing 

etc.).  

The problem encountered when attempting to identify people’s activities 

throughout the day is that existing technologies and methods used to do so are either 

inaccurate (self-reporting), invasive (video recording), uncomfortable (thigh worn 

accelerometer), or prohibitively expensive (lab-grade instrumented insoles). There is a 

need for a non-invasive, comfortable, low-cost method of accurately identifying people’s 

activities throughout the day. This will lead to a much clearer understanding of what 

people are doing throughout the day, ultimately helping to clarify the factors that cause 

foot pain.    
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1.6. Hypothesis 

The overarching hypothesis investigated in this work is that a device that 

improves accuracy and resolution of measuring workplace activities will enhance the 

ability to identify specific workplace activities that are causes of PF. 

The following specific hypotheses are tested throughout the chapters of this 

thesis. All relate to the problem and need discussed in Section 1.5. 

1. A low-cost unobtrusive device can be made that collects data from a 
participant in their natural work environment for use in activity 
classification. 

2. An algorithm can be developed to classify a participant’s activities as 
sitting, standing or walking to greater than 95% accuracy using the 
data collected from the novel device. 

3. The PDI can be used to unobtrusively and accurately gather activity 
data about participants in their natural workplace environments and 
improve on self-reported activity durations. 

4. Specific aspects of workplace activities will be correlated to the 
presence or absence of plantar foot pain. Particularly the amount of 
time spent weight bearing throughout the workday and how long 
workers stand still before unloading their feet. 

1.7. Objectives  

To address the overarching and specific hypotheses, several objectives were 

defined for this thesis: 

1. Design a prototype device for activity monitoring in the workplace and 
investigate the feasibility of using this prototype device for an 
extended duration in a workplace setting.   

2. Develop an optimized machine learning algorithm and sensor 
combination that produces a high degree of activity classification 
accuracy while identifying redundant sensors. 

3. Conduct an out-of-lab study using the prototype device to show its 
feasibility of use in a workplace setting and collect activity data from 
participants in a variety of workplaces to compare their self-reported 
activity data with data collected by the device. 
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4. Investigate correlations between foot pain and specific workplace 
activities when the activities are measured objectively using the PDI to 
lay the groundwork for larger population studies including 
symptomatic and control groups. 

1.8. Scope of the Thesis 

Chapter 1 presents background information relevant to this research. 

A novel technology to record data from participants in their natural work 

environment is detailed in Chapter 2 by completing the following steps: 1. Reviewing 

existing research to determine the feasibility and practicality of using existing devices. 2. 
Using recommendations from this research to determine the type and specific locations 

of sensors on the body of the participant. 3. Designing a device utilizing these sensors 

and locations. 4. Testing the device five participants in the lab and one participant 

wearing the device for up to a week in their natural work environment. The device 

developed in this chapter is designed to test feasibility for use in a population study and 

therefore the design has not been optimized and it is not fully deployable, but rather 

operated and repaired by a researcher. 

Activity classification accuracy of the novel device is described in Chapter 3 by 

completing the following steps: 1. Gathering data from participants wearing the device 

while completing a sequence of specified activities for approximately 20 minutes while 

simultaneously recording video footage to determine the participants actual activity state. 

2. Designing a machine learning algorithm to output activity state (sitting, standing, 

walking) based on input from seven FSRs on the insole of a participant’s shoe and an 

accelerometer. 3. Using 70% of the data to train and cross validate the parameters of 

the machine learning algorithm. 4. Using the remaining 30% of the data to compare the 

output classifications from the trained algorithm with the video analysis to determine the 

classification accuracy of the device and algorithm. The limited number of participants 

means this algorithm may not be entirely able to generalize to an entire population and 

while activity classification was defined to be robust to different shoes, floor materials 

and seat heights, these variables were not specifically controlled. 

An out-of-lab trial using the novel device is described in Chapter 4 by completing 

the following: 1. Collecting activity data from participants over the course of a typical 

work week using the novel device. 2. At the end of each day asking participants to self-
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report the amount of time spent sitting, standing and walking throughout the day. 3. 
Using the data collected by the novel device to gain insights about workers natural 

activities in a variety of workplaces and occupations. 4. Comparing the activity durations 

recorded by each method to determine the accuracy of self-report data. The novel 

device was hand assembled and therefore has limitations with regard to durability. This 

resulted in some connections breaking and some data being unusable. In addition, the 

classification algorithm may have limitations in a natural environment that cannot be 

verified since each workday was not video recorded or otherwise verified.  

Finally, in Chapter 5 the relationship between specific workplace activities and 

the presence of foot pain was investigated by completing the following: 1. Collecting 

activity data from 34 participants over the course of a typical workweek using the novel 

device. 2. At the end of each day asking participants to self-report their foot pain using 

the foot and ankle disability index. 3. Comparing reported foot pain to participant’s 

activities to investigate the correlation between the occurrence of foot pain and factors 

including: a. The amount of time workers spend weight bearing throughout their 

workday. b. How many times workers switch activities throughout their workday. c. How 

long workers stand still before unloading their feet. This study is limited by only using 

data from a limited cohort of participants who only experienced mild pain.  

Chapter 6 provides conclusions and highlights contributions of this research. 

Future research directions are proposed. 
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Chapter 2.  
 
Posture Differentiating Insole (PDI) Prototype 
Development 

2.1. Introduction 

There are many fitness tracking devices currently available that count the 

number of steps taken in a day. Such devices are often low-cost (under $200) and have 

step count accuracies ranging from 79.8% to 99.1% [73]. However, because these 

devices are usually accelerometer-based they typically cannot accurately differentiate 

passive activities (e.g. lying down, sitting, or standing). These different passive activities 

can have a very different impact on one’s feet.  

Devices that measure plantar pressure such as the F-scan System (Tekscan 

Inc., South Boston, MA, USA) can be used to differentiate activities, however they are 

bulky to wear and prohibitively expensive to use in a large-scale study or to deploy 

outside of the lab. However, such devices have been used to demonstrate that it is 

possible to accurately differentiate sitting, standing and walking with a limited number of 

sensors [72]. Additionally, insoles have been made using low-cost sensors, but have 

only been validated in controlled lab environments on one, three, nine or nineteen 

participants for a maximum of 4 hours [29], [30], [40], [74], [75]. None of these systems 

have been validated in a workplace environment for an extended period of time and only 

one of these studies allowed participants to use their own shoes [30].   

Accelerometer based devices such as the activPAL use thigh-mounted 

accelerometers to track sitting, standing and walking [76]. While these devices are 

accurate, they are uncomfortable to wear and must be applied to the correct location on 

the body every day. This is inconvenient for the user and can result in misplacement of 

the device. 

While there are commercially available devices capable of human activity 

recognition, they either lack the ability to differentiate sitting from standing, are too 

expensive to deploy on a large scale, or are uncomfortable or inconvenient to use [77], 

[26]. Without improvements in technology, it is extremely difficult to link PF to work-
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related activities. A systematic review commissioned by WorkSafeBC to investigate the 

causes of PF found that there was insufficient evidence to link workplace weight bearing 

activities with PF [7], [10]. This study cited a lack of accurate objective measurement of 

workplace activity and foot loading exposure as the primary factor leading to their 

decision. The Posture Differentiating Insole (PDI) is an instrumented shoe insole that 

has been designed to address this need for continuous objective activity measurement 

in the workplace.  

The objectives of this work were 1) to design a prototype device for activity 

monitoring in the workplace and 2) investigate the feasibility of using this prototype 

device for an extended duration in a workplace setting, particularly with regard to 

durability and user experience.   

2.2. Posture Differentiating Insole Design 

The design process used for this chapter followed the subsequent steps. 1) 

define the design criteria that must be met, 2) identify components that meet the criteria, 

3) fabricate a prototype device, 4) test the prototype’s performance in the lab to ensure it 

is ready for out-of-lab experimentation. The intention of this work was not to precisely 

optimize a final design, it was to deliver a functional prototype within the project timeline 

and budget capable of collecting the data required for analysis in the subsequent 

chapters.  

2.2.1. Design Criteria 

The general design requirements for the PDI are that it must be an easily 

fabricated, low-cost device that can be used in large population studies, is unobtrusive 

and easy to use, effective in a workplace setting, and objectively and accurately 

measures activities over an extended time period. The specific criteria are elaborated on 

below. The device developed in this chapter is not required to be an optimized product 

that meets these requirements in the best way possible. It is simply required to be a 

highly functioning prototype that at a minimum fulfills all the requirements listed below. 

This device will be used to determine the feasibility and future direction of a potential 

product but does not attempt to optimize the design. 
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1. Easily fabricated: The device must be able to be produced in the 

NeuroSpine Lab at SFU with only available resources (soldering iron, basic 

hand tools, 3D printer and laser cutter) in under two days by a graduate 

student. 

2. Low-cost: The device must not cost more than $150 per insole, and where 

possible re-use expensive components. 

3. Able to be used in large-scale studies: The fabrication process must be 

repeatable and enable production of many units in a short timeframe. 

4. Unobtrusive: The device must not interfere with the normal workday 

activities of participants or be uncomfortable to wear / use. 

5. Effective in a workplace setting: Participants must be able to wear the 

device in their workplace without it falling off, breaking, or invading their 

privacy or workplace regulations. 

6. Objectively and accurately measure activity: The device must be able to 

measure the time a participant spends sitting, standing and walking to at least 

95% accuracy using objective measures. 

7. Measure activities for an extended period of time: The device must be 

able to function for at least 12 hours without requiring any interaction since 

many work shifts, especially in the healthcare industry are at least this long 

and data will be captured and reported at the end of a shift. 

2.2.2. Component Selection 

Sensor selection 

To meet the design criteria of objectively and accurately measuring common 

workplace activities, sensors were used to record information about the movements of 

participants. Sensors were selected based primarily on previously successful work 

involving instrumented insoles and accelerometer-based activity trackers [6], [29], [30], 

[70], [78], [79].  
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In-shoe Sensors 

With the understanding that activities can be accurately differentiated using 

features derived from plantar pressure measurements, a sensor capable of measuring 

either force or pressure was sought out. The options found in existing research included 

capacitive [80], piezoelectric [66], resistive [29], [30], [41], [43], [65], [70], [74], [75], and 

optical force sensors [81] in addition to pneumatic pressure sensing elements [68]. 

Custom sensor arrays designed for specific purposes were also found in existing 

research [42], [67], [69], [71].  

An off-the-shelf sensor was desirable for this research based on the time 

available to develop the technology and the ease of manufacturing. Because of these 

reasons, creating custom sensors was ruled out. Other sensors including optical and 

piezoelectric force sensors were ruled out due to their high cost (over $20 per sensor) or 

difficulty of procurement. Using such a sensor would be detrimental to the cost and 

fabrication time of the insoles. The pneumatic sensors found were over 5mm thick and 

would therefore detract from the comfort and wearability of an insole deigned to 

incorporate them. After eliminating these sensors, capacitive and resistive force sensors 

were left as the top choices. The Interlink 402-Short FSR was selected for use in the PDI 

primarily based on its low cost ($5.81 CAD / sensor), availability in large quantities, and 

confidence in its performance based on use in many previous studies involving an 

instrumented shoe insole [33], [41], [43], [66], [75]. 

The Interlink 402-Short FSR (Interlink Electronics, CA) has a 1 cm2 actuation 

area with a stand-off resistance of >10 MΩ, a minimum actuation force of 0.2N, a force 

sensitivity range of 0.2 - 20N, a saturation pressure of 103 N/cm2, a thickness of 0.55mm 

and a part-to-part force repeatability of ± 6%.  

The actuation area of an FSR sensor impacts the precision of the location at 

which it measures force. In addition, a smaller actuation area allows more sensors to fit 

onto an insole. The 402-short FSR with an actuation area of 1 cm2 was chosen as it was 

the size used successfully in prior work [41], [43], [66], [75]. The short version of the 

Interlink 402 FSR was chosen to minimize the overall form factor of the FSR making 

fabrication easier. A high standoff resistance helps reduce unwanted noise in the signal 

when no load is applied to the FSR.  
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Maximum pressure observed in young and old adults varies between different 

regions of the foot from a maximum of 4.6 %BW/cm2  in the heel to a minimum of 0.9 

%BW/cm2  in the lateral midfoot [48]. Assuming a maximum participant’s body weight is 

100kg, the maximum pressure applied in the heel of the foot would be approximately 45 

N/cm2. Therefore, with a force sensitivity range of 0.2 – 20N across a 1 cm2 sensor, a 

participant weighing 100kg will likely produce a maximum force that exceeds the 

sensitivity range; however, it will still be less than half of the saturation force meaning the 

sensor will not reach its maximum. A participant would have to weigh 228 kg to exceed 

the saturation pressure of 103 N/cm2. Research comparing five commercially available 

FSRs showed that the Interlink 402 had the best repeatability in dynamic response 

scenarios [82], a factor that is critically important when classifying activities.  

An FSR’s resistance changes with the applied force. To ensure Vout was 

proportional to the resistance of the FSR, each FSR was wired with a 1 kΩ resistor as a 

voltage divider with Vin as 3.3V, and Vout representing the output signal from the FSR 

(Figure 8-a). 

The force response curve of the Interlink 402 follows approximately an inverse 

power-law relationship with resistance decreasing as force increases (Figure 8-b). The 

exact relationship between force and resistance was not determined because it was not 

required for the method used to classify activities. The normalized relative change in 

loading has been shown to be sufficient for classifying activities (Chapter 3). 

Figure 8 - (a) Typical FSR wiring layout, Vin is 3.3V and Vout is connected to an analog pin on the 
microcontroller. (b) Sample force response curve for the Interlink 402-Short FSR. 
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Inertial Measurement Sensor 

There have been multiple studies using IMU based devices to successfully 

classify common activities[6], [78], [79], [83]. Based on this success a 3-axis 

accelerometer was added into the PDI design. It was anticipated that the FSRs would be 

capable of accurately determining workplace activities without additional sensors; 

however, adding an accelerometer into the design allowed for evaluation to prove this 

hypothesis.  

All accelerations experienced at the ankles while ambulating at a pace of 1 m/s 

or slower is contained within ± 6g, and 96% of the acceleration of the ankles is contained 

within ± 6g when ambulating at a rate of 4 m/s [84].  Because of this, a readily available, 

low-cost accelerometer with a measurement range of ± 8g (MMA8451 3-axis 

accelerometer (Adafruit, NY)) was selected to encompass the expected range of 

accelerations experienced in normal walking at approximately 1.5 m/s. This 

accelerometer was purchased pre-connected to a breakout board to enable easy 

assembly to the microcontroller.   

Microcontroller 

A microcontroller was required to collect data from the FSRs and accelerometer 

at a consistent sampling rate and write the collected data to a microSD card for later 

analysis. The requirements of this microcontroller are that it has a small form factor, low 

cost, and ideally a build in microSD card port. Because of prior familiarity with the 

Arduino environment, an Arduino Uno was initially used to prototype this device. 

However, the Arduino Uno has a form factor that is much larger than is desired for this 

application (5.3cm x 6.8cm) and therefore alternate microcontrollers were investigated. 

The Teensy 3.6 was chosen based on its small form factor (1.8cm x 6.1cm), presence of 

a microSD card port, and low cost ($29.25 USD). In addition, the Teensy is compatible 

with the Arduino environment and has many pre-developed libraries and resources 

enabling rapid prototype development. It also contains a built-in real-time-clock chip 

enabling the current date and time to be stored at all times on the device. To capture 

and record data each day without requiring Bluetooth or other wireless communication, 

data was stored on a 16GB microSD card. A typical day of data from one insole was 

approximately 80 MB so multiple days of data could be recorded without the need to 

clear the microSD card. 
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Battery 

The PDI is required to last for at least 12 hours of continuous data recording. 

Once the selected components were assembled and the code was developed to run the 

device the battery life was calculated by testing the current draw of the device under 

normal operating conditions. The PDI used 76.1 mA at 3.7V, resulting in a power 

consumption of 282 mW. The battery capacity required to last for 12 hours under normal 

operating conditions is 76.1 mA * 12h = 913 mAh. Therefore, a readily available 

standardized battery capacity of 1200 mAh (LP503562 3.7V 1200 mAh li-ion battery 

(Shenzhen PKCell Battery, China)) was selected enabling the PDI to operate for over 15 

hours. A coin cell battery (CR1220) was added to the device to continually power the 

real-time-clock chip built into the Teensy 3.6. This allowed the device to keep track of 

time when the main battery died or was disconnected for charging. This was important 

as the current time was used to generate a unique filename each time the device was 

turned on. 

2.2.3. Sensor Locations 

The locations of the FSRs can affect the accuracy of the activity classification 

and the number of sensors needed for accurate classification. Locations were largely 

guided by findings from Merry et al. exploring variations in plantar biomechanics for 

different postures [72], [85]. Using the F-Scan, locations where loading patterns were 

most distinct between sitting, standing and walking were identified [72].  

In this research, a modified version of the PRC mask (Novel GmbH, Munich, 

Germany) was used to subdivide the foot into ten anatomical regions: hallux (HA), 

second toe (T2), third to fifth toes (T35), medial forefoot (MFF), central forefoot (CFF), 

lateral forefoot (LFF), medial midfoot (MM), lateral midfoot (LM), medial heel (MH), and 

lateral heel (LH) (Figure 9-a). This method of subdividing the foot has been used in 

previous plantar pressure research and provides equal or better detail than other 

masking methods [86]–[88]. Potential sensor locations were determined and placed on 

the sensor mask (Figure 9-c). Merry concluded that the top ten sensor locations in rank 

order were sensor 15, 18, 8, 9, 12, 17, 20, 10, 11, and 16. However Merry showed that 

classification accuracy for sitting, standing and walking only falls below 95% for all 

algorithms tested when 3 or fewer sensors were used. Based on these findings and the 
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requirement of a minimum of 95% accuracy, 4 sensors placed at locations 15, 18, 8 and 

9 (Figure 9-c) would meet the minimum requirement. However, since the sensors used 

by Merry were simulated by taking 5 elements from an F-Scan dataset, it was unknown if 

actual FSRs would provide identical outputs at each location. Since it was possible to 

digitally remove sensors after the data was collected, it was decided that having more 

sensors in this initial prototype was preferred. This gave a margin of error to ensure that 

sufficient classification accuracy was attained.  

 

The top 5 sensors (15, 18, 8, 9, 12 in Figure 9-c) were used in the PDI design. In 

addition to the top 5 locations, a sensor placed between locations 19 and 20 was added 

to gather data from the MH region that other research studies have utilized in the past 

[29], [32], [66], and a sensor at location 11 was added to better represent the LFF 

region.  

The PRC mask is designed to reference foot anatomical features. The masking 

method used in this work was therefore is a version of the PRC mask modified to 

reference insole geometry since only the participant’s shoe size was known ahead of 

time, not their specific foot shape. A table of insole dimensions for shoe sizes ranging 

from women’s size 4-12 and men’s size 6-14 was developed by measuring insoles from 

Figure 9 – Breakdown of the foot into ten anatomical regions per the PRC mask. Region locations 
depicted on a foot (a), on F-Scan data (b), and with sensor locations overlaid onto the masks (c) 
(from Merry, 2017) 
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four different sizes of Nike running shoes (sizes W6, W8, M9, and M12) and interpolating 

or extrapolating each dimension to subsequent shoe sizes. This resulted in a consistent 

design across all shoe sizes. The PRC mask references foot geometry beginning with a 

line drawn from the center of the heel to the center of the second toe. Since the end of 

the second toe cannot be located using insole geometry alone, the following method was 

developed to determine a consistent centerline across insole geometries. The width of 

the insole was measured at 10% of insole length and 66% of insole length measured 

from the heel. The centerline was then drawn from the middle of the 10% of insole length 

line through a point on the 66% of insole length line that is 40% of the width away from 

the medial side of the insole (Figure 10-a).   

Next, lines were drawn in the medial / lateral (M/L) direction at 27% (green), 55% 

(red) and 80% (blue) of insole length to divide the heel, midfoot, forefoot and toes 

(Figure 10-b). These dimensions correspond exactly to lines used in the PRC mask 

method, only referenced from the heel end of the insole instead of the toe of the foot 

[87]. A diagonal line (purple) from 68% of insole length connects to the 80% line (blue) 

forming the boundary between the LFF and toes 3-5. This line was not described in any 

known description of the PRC mask method and therefore was determined by averaging 

its location in three of the masks used in Merry’s work [72]. The exact placement of this 

line is not critical as it was not referenced for sensor placement. The MFF and LFF were 

divided in the M/L direction at 30% (orange) and 45% (yellow) of insole width 

respectively as determined by the PRC mask method. The medial and lateral midfoot 

and heel were divided in the M/L direction by the centerline. Since no sensors were 

placed in the toe area, the hallux and toes 2-5 were not divided into regions. The final 

result has eight regions: the toes (T15), medial forefoot (MFF), central forefoot (CFF), 

lateral forefoot (LFF), medial midfoot (MM), lateral midfoot (LM), medial heel (MH), and 

lateral heel (LH) (Figure 11-a).  
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The placement of the FSR sensors was determined based on the geometry of 

the segmented regions and the placement of the sensors used by Merry (Figure 11-b). 

The seven FSRs are identified as FSR-1, FSR-2 etc. in the following text. FSR-2 was 

placed at the center of the CFF region. FSR-1 was aligned in the M/L direction with the 

center of the CFF region but was offset by 10% of the insole length in the anterior 

direction. FSR-3 was aligned with the center of the CFF region in the anterior / posterior 

(A/P) direction and the center of the LFF region in the M/L direction. FSR-4 was aligned 

with FSR-3 in the M/L direction and offset by 10% of the insole length in the posterior 

direction. FSR-5 was aligned along the A/P midline of the MM region and offset by 10% 

of the insole length in the posterior direction from the midpoint of the MM region. FSR-6 

was aligned along the A/P midline of the LM region and offset by 10% of the insole 

length in the posterior direction from the midpoint of the LM region. FSR-7 was aligned 

along the A/P midline of the MH region and offset by 5% of the insole length in the 

anterior direction.    

Figure 10 - Developing segmented insole regions roughly corresponding to the PRC mask method. A 
centerline is drawn based on insole widths at 10% and 66% of insole length measured from the heel 
(a). Regions are segmented based on percentages of insole length measured from the heel and 
width(b) 
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2.2.4. Final Design - Hardware 

The final design of the PDI consists of two components show, the electronics 

case and the instrumented insole (Figure 12). These components are attached together 

by a connection cable consisting of 8 wires. The design of each component is detailed 

below. 

Figure 11 - Segmented insole regions (a), and FSR sensor locations (b) 

Figure 12 - Photo of a complete PDI insole showing the electronics case, the instrumented insole 
and the connection cable. The electronics case attaches to the shoelaces and the insole goes 
inside the participant's shoe. 
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Instrumented Insole 

Sensor Hardware 

The instrumented insole contains seven Interlink 402-Short FSRs (Interlink 

Electronics, CA), arranged in specific locations. The sensors are connected to the 

microcontroller in the electronics case using a connection cable (Figure 12). 

Insole Materials 

The insole is made from two layers of foam, a white EVA foam with a thickness 

of 3mm, and a black puff foam with a thickness of 1.5mm. A laser cutter was used to cut 

the shape of each foam piece and to etch channels into the white EVA foam. Once the 

FSRs and wiring was attached to the white foam base, the black puff foam was glued to 

the EVA foam.  

Sensor Locations 

The seven FSRs are placed in the locations shown in Figure 11-b. One side of 

each FSR is connected to a digital output pin on the microcontroller using 26-gauge wire 

soldered to the connection pin on the FSR. The other connection of each FSR is 

attached to a common analog input pin on the microcontroller. Each FSR is glued in 

place to ensure it does not shift while in use. When assembling the insole, the placement 

Figure 13 - A pair of insoles with FSRs and connection wires installed. Wires are all inlaid into the 
white foam to provide a flat top surface. The black puff foam cover has not yet been added. 



33 

of each FSR is determined by reference geometries laser cut into the white EVA foam, 

removing errors associated with hand-measuring the locations.  

A full description of the fabrication process used to make the instrumented 

insoles can be found in Appendix B. A pair of insoles with all FSRs connected before the 

puff foam was added is shown in Figure 13.  

Electronics Case 

For this pilot study, it was desirable to have the electronics be modular, 

replaceable, and easily accessible for the investigator, but with a small footprint to 

minimize the impact on subjects’ biomechanics (Figure 14).   

The microcontroller, accelerometer and battery were therefore housed inside a 

3D printed case that attaches to the shoelaces of a participant’s shoes. The 3D printed 

case is made of 3 components, the body, the lid, and the shoelace clip (Figure 15). The 

lid is fastened to the body using two screws. This enables relatively easy access to the 

electronics for the investigator, but prevents the participant from accidentally opening the 

case throughout the day. The shoelace clip is designed to slide underneath the 

shoelaces and then clip onto the body, quickly and easily fixing the entire case on the 

shoelaces. In a long term application where the device may not need to be removed 

each day, the shoelaces can be threaded through the holes on the sides of the body to 

attach the case to the shoes.   

Figure 14 - Completed assembly of the components inside the electronics case 
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2.2.5. Final Design - Software 

The Teensy 3.6 was programmed using the Arduino IDE. The code for the PDI 

was designed to record the sensor output values to an onboard microSD card at a 

specific sampling frequency. The following pseudocode outlines the process used to 

accomplish this. When the PDI is turned on, it is initialized to save a new filename to the 

microSD card based on the current time and subject ID number and checks for any 

connection issues. The code described in Loop is run continuously. 

Loop - Main loop that runs infinitely while PDI is turned on 
1: if there are no buffers that are full 
2:  Execute Yield to get more data 
3: else if there is at least one buffer that is full of new data 
4:  Turn on LED 
5:  Write data from full buffer to microSD card 
6:  Move buffer to the empty stack to prepare it for more data 
7:  Turn off LED 
8: Repeat 

Yield is called whenever the Teensy is not doing anything else. This includes 

instances when the data on the microSD card is being rearranged as part of the process 

of saving new data. Calling yield in this way ensures that the sampling rate is kept 

Figure 15 - 3D printed electronics case that attaches to the shoelaces of the user’s shoes. Consists of 
the body (a), the lid (b), and the shoelace clip (c). The lid is fastened to the body with screws and the 
shoelace clip attaches to the bottom of the body (d). 
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consistent. In a 4-hour test, no samples were more that 2μs off the specified sampling 

interval when sampled at 45Hz. 

Yield - Called whenever the Teensy is not doing anything. Samples data at 45Hz 
1: if data is already being collected 
2:  Return 
3: If there is no buffer available to store data in 
4:  Get an empty buffer from the empty stack and Set it as the current buffer 
5: if it is time to collect a sample (collected at 45 Hz sampling frequency) 
6:  acquireData to add new data to the current buffer 
7:  Set next sample time to current time + sampling interval 
8: if next sample time is greater than the overflow value for the microsecond clock 
9:  Reset next sample time to next sample time - maximum microsecond 

value 
10: if the current buffer is full 
11:  Move the full buffer to the full stack 
12: Return 

Each sample is recorded using the acquireData function. In this function, data is 

sampled from the timer, each of the 7 FSRs and each of the 3 axes of the accelerometer 

and then stored in a buffer to be saved to the microSD card once full. 

acquireData - Reads data from the sensors 
1: Get time in microseconds (4 bytes) 
2:  Save it in position 0 of data block 
3: Get FSR1 value (4 bytes) 
4:  Save it in position 1 of data block 
5: Get FSR2 value (4 bytes) 
6:  Save it in position 2 of data block 
7: Get FSR3 value (4 bytes) 
8:  Save it in position 3 of data block 
9: Get FSR4 value (4 bytes) 
10:  Save it in position 4 of data block 
11: Get FSR5 value (4 bytes) 
12:  Save it in position 5 of data block 
13: Get FSR6 value (4 bytes) 
14:  Save it in position 6 of data block 
15: Get FSR7 value (4 bytes) 
16:  Save it in position 7 of data block 
17: Get X acceleration value (4 bytes) 
18:  Save it in position 8 of data block 
19: Get Y acceleration value (4 bytes) 
20:  Save it in position 9 of data block 
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21: Get Z acceleration value (4 bytes) 
22:  Save it in position 10 of data block 
23: Add data block to the current buffer 
24: Return 

The complete code can be found in Appendix C. 

2.2.6. Synchronization of Data 

Since two PDIs were used for each participant (one in each shoe), the data from 

each of the devices needed to be synchronized after being collected. This was done in 

two different ways. The first method used a light that blinked when the PDI turned on 

and began recording data. By video recording the devices being turned on, it was 

possible to determine the time elapsed between the start of each recording. This time 

was then used to synchronize the data. The process of video recording the devices 

being turned on is not practical for large scale studies where the device must be turned 

on every day, so another method was developed to synchronize the data based on step 

patterns. First, a visual synchronization was completed to line up the data to 

approximately ±2 seconds. This was done by finding a time where the participant stood 

up or sat down and lining up the corresponding increases or decreases in output from 

the FSRs. Next, walking data was used to precisely synchronize the data. Since gait in 

healthy humans is symmetrical in the anterior posterior direction [89], when a participant 

is walking at a constant rate the heel strikes of one foot should occur exactly halfway 

between heel strikes of the other foot. Using this assumption, the signal from FSR-7 

located in the heel was processed to determine each instance when the signal increased 

to above a specified threshold. The time between these crossings was then calculated. If 

more than 5 of these crossings fell within ±5% of each other, the participant was 

considered to be walking consistently. The fifth step from each foot was then used to 

synchronize the data by placing the heel strike from one foot exactly in between the 

times of heel strikes of the opposite foot (Figure 16). The heel strikes on the right foot 

are exactly halfway between the heel strikes of the left foot.  
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This method was validated by comparing the synchronization attained from the 

video recordings with the synchronization attained from heel strike measurements on the 

same data. The average absolute difference between the methods was 0.073 ± 0.024 

seconds (mean ± standard deviation) for n=22 participants. This shows that the heel 

strike method of synchronization is a valid method for this sample population. Further 

discussion around the impact of incorrect synchronization can be found in Section 3.4.5.  

2.2.7. In-lab Performance Evaluation 

Once the PDI was fabricated and the software was uploaded to the Teensy, it 

was tested to ensure it functioned properly before being put into a participant’s shoes. 

This testing involved turning the device on, firmly pressing each of the FSRs, shaking 

the electronics case, and finally leaving the device on for approximately one hour. After 

the hour, the temperature of the PDI was tested by feeling the microcontroller and 

battery which should be cool or slightly warm to the touch. The microSD card was 

removed from the PDI and the data from it was uploaded to a computer. The FSR data 

were all plotted to ensure that each FSR was correctly measuring forces from the correct 

location (wires were not crossed). Accelerometer values were plotted to ensure that 

each axis was collecting data. Finally, the time data was analyzed to ensure that 

samples were being collected at the correct sampling frequency. If an insole met all of 

Figure 16 - Synchronization method using heel strikes. Red dots represent heel strikes. Data is shifted 
such that heel strikes on the right foot fall exactly between heel strikes of the left foot. 
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these requirements it was then installed into a participant’s shoe and worn while walking, 

sitting, and standing.  

Data from five preliminary participants (4 males, 1 female) with weights ranging 

from 58 kg to 90 kg was collected to verify the functionality of the PDI and identify any 

potential issues prior to out-of-lab deployment. Each participant was asked to wear one 

PDI in each shoe for approximately 20 minutes while being recorded on video. For the 

first ten minutes, each participant followed a pre-designed pattern of sitting, standing and 

walking in one-minute blocks. For the second ten minutes the participant was asked to 

do everyday activities that may confuse a classification algorithm such as standing on 

one foot, crouching, leaning on a counter, running, jumping, and sitting in abnormal 

positions. This data was collected to verify the durability of the device, check that the 

FSRs selected can measure forces over a wide range of weights without saturating and 

help inform the design of a classification algorithm.  

One researcher wore the PDI in their shoes consistently for five days. This 

researcher put the insoles into their shoes when leaving the house in the morning and 

wore the devices for the entirety of the day. Each day, the PDI was left on so that it 

would record data until the battery ran out to test the real-world battery life. Since each 

datapoint was timestamped it was possible to determine how long the battery lasts. 

2.3. Results 

2.3.1. Design verification 

The PDI outlined in this chapter meets all of the design criteria specified in 

Section 2.2.1 (Table 3). The PDI was made from off the shelf components that were 

soldered together and placed in a 3D printed case. The entire manufacturing process for 

a pair of PDIs took approximately 12 hours and was primarily completed in the 

NeuroSpine Lab at SFU using a soldering iron, hot glue gun, 3D printer, and basic hand 

tools. The laser cutting was done in the neighbouring SIAT shop space.  

The components for a complete PDI cost $139 CAD, $11 less than the targeted 

$150. While a new insole component (including FSRs) was made for each participant, 

the electronics case could be easily re-used from one participant to the next. This saved 

significant money since the components in the electronics case cost $96 CAD.   
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A total of 70 PDIs (35 pairs) were made by hand by one person over the course 

of 4 months, with 42 of those being made within 2 months. This shows that the PDI can 

be used in large scale studies where many devices need to be made in a short 

timeframe. The quantities made in this research study could be scaled up significantly by 

having more people making the devices and optimized manufacturing techniques.    

The results of training a preliminary algorithm showed promising classification 

results leading to the belief that 95% classification accuracy can be attained with a larger 

dataset including more participants. A complete analysis including classification 

accuracy results can be found in Chapter 3. 

The PDI was worn by this researcher for up to 15 hours at a time in a workplace 

environment without any issues requiring the researcher to remove the device. There 

were no instances where the battery ran out during the day. This shows that the PDI is 

capable of capturing data for an extended period of time in a workplace setting. 

Table 3 - Results of PDI design verification 

Criteria 
Met? 
(Y/N) Details 

Easily fabricated: The device 
must be able to be made in the 
NeuroSpine Lab at SFU with only 
available resources (soldering 
iron, basic hand tools, 3D printer 
and laser cutter) in under two 
days by a graduate student. 

Y 

- Fabricated using soldering iron, hot 
glue gun, wire cutters, 3D printer and 
laser cutter 

- Entire fabrication process for a pair of 
PDIs took approximately 12 hours 

Low-cost: The device must not 
cost more than $150 per insole, 
and where possible re-use 
expensive components. 

Y 

- Components for one PDI cost $139 
CAD 

- Electronics case (total cost of $96 
CAD) can be re-used 

Able to be used in large-scale 
studies: The fabrication process 
must be repeatable and possible 
to make many of in a short 
timeframe. Y 

- Laser cutting of foam including FSR 
alignment geometries ensures that 
insole shape and FSR locations are 
highly repeatable.  

- Prefabricated components ensure 
inter-part consistency and reduces 
assembly difficulty 

- 70 PDIs (35 pairs) were made by hand 
by one person in 4 months.  
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Criteria 
Met? 
(Y/N) Details 

Unobtrusive: The device must 
not interfere with the normal 
workday activities of participants 
or be uncomfortable to wear / 
use. 

Y 

- The insole component of the PDI is 
4.5mm thick enabling it to comfortably 
replace the standard shoe insole. 

- Electronics case is small and 
lightweight and attaches to the 
shoelaces.  

Effective in a workplace 
setting: Participants must be able 
to wear the device in their 
workplace without it falling off, 
breaking, or invading their privacy 
or workplace regulations. Y 

- The PDI only records foot pressure and 
movement, not location, audio or video. 

- The PDI never unattached from the 
shoe in preliminary testing 

- The device malfunctions experienced 
in preliminary testing were minor and 
largely due to hand assembly mistakes 

- Device recorded pressure and 
acceleration data correctly across a 
range of body weights, shoe sizes, and 
activities 

Objectively and accurately 
measure activity: The device 
must be able to measure the time 
a participant spends sitting, 
standing and walking to at least 
95% accuracy using objective 
measures 

Y 

- Preliminary testing showed promising 
results indicating that 95% accuracy 
can likely be achieved with data from 
more participants 

- See Chapter 3 for a complete analysis 
of this design criteria 

Measure activities for an 
extended period of time: The 
device must be able to function 
for at least 12 hours without 
requiring any interaction since 
many work shifts, especially in the 
healthcare industry are at least 
this long and data will be captured 
and reported at the end of a shift 

Y 

- In preliminary testing, the battery life of 
the PDI was approximately 17 hours 

2.3.2. Participant Feedback on Design 

Participants that used the PDI were asked if they had any complaints about 

wearing the device in/on their shoes. Most participants stated that the PDI felt different in 

their shoes but was comfortable. They stated that they did not notice the electronics 

case attached to the outside of the shoes and that it did not impeded their activities. A 
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few participants reported that their shoes felt slightly tighter than usual due to the PDI 

but also said that it didn’t bother them too much. The researcher that wore the device for 

five days found that the PDI did not interfere with their normal workday activities and the 

neither the electronics case nor the connection cable caught on any objects, even when 

riding a bike.  

The PDI designed in this chapter was used in 35 participant out-of-lab study, the 

results of which are presented in the following chapters. Specific performance results 

related to the design of the PDI can be found in Section 4.3.3 

2.4. Discussion 

After preliminary testing, it was determined that the prototype design was ready 

for out-of-lab testing as it clearly met all of the design requirements. The design of the 

PDI was similar to other devices in that it used the same Interlink FSRs, and had similar 

electronic components [41], [43], [66], [75]. The PDI differed from other designs 

particularly in the sensor placement. Existing designs have used bony anatomical 

features as placement points such as the center of the heel, metatarsal heads and pad 

of the big toe or have placed as many sensors as possible on the surface of an insole 

[29], [30], [41]. These studies did not begin with sensor locations most capable of 

differentiating common activities as this study has done. Many existing devices do not 

list the overall device costs. The studies known that list the cost of their insoles report 

device costs of under $500 per shoe [66] and under $800 for a pair of shoes [68]. The 

longest testing reported in the known literature was a 4 hour in-shoe test completed in a 

lab [40] and a 36 hour cyclical linear load test [74]. While the linear load test showed 

repeatability of sensor measurements, it did not accurately test the device durability as it 

did not include any bending of the device. 

2.4.1. Hardware Durability 

Within the project constraints, this prototype device showed excellent durability, 

however there are some aspects that arose in initial testing that could be improved in 

future designs. 
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Due to the cost limitations and the relatively small number of devices that were 

made it was decided that multicore layup wires would be used within the insole to 

connect the FSRs. These wires allowed the insole to flex but came at the cost of a 

relatively low tensile strength. In some instances, this caused a wire to break, particularly 

at connections that had been soldered and in high bending areas such as the balls of the 

feet. Conductive thread made of stainless steel was investigated, however the 

fabrication process was slow, and the inability to solder the stainless streel wire at 

connections caused connectivity issues decreasing the signal integrity, particularly when 

moving around. A likely solution to this problem would be to create a custom printed 

flexible electronic component with the FSR sensors and connections built into it. This 

option was explored, and a company called Tangio Printed Electronics in North 

Vancouver was willing to make such a design, however the cost was too high for such a 

small number of devices.  

The holder used for the coin cell battery was selected based on an extremely 

affordable price ($0.76 CAD each) and ability to purchase in large quantities. The 

integrity of this holder was found to be quite poor when soldered directly to wires instead 

of being fixed to a flat surface. This issue caused the device to reset, losing the current 

date and time and requiring connection to a computer to re-program. This shortfall was 

remedied by wrapping the holder in electrical tape, however in future designs a 

perpetual solution to this problem should be investigated. 

The Interlink FSRs used in the PDI were chosen for their low cost ($5.81 CAD 

each) and successful use in many previous studies. While these sensors initially 

responded as expected, in some specific instances the sensors began to degrade in 

sensitivity. This meant the same applied force resulted in a lower output signal (higher 

FSR resistance). In preliminary testing, this only occurred when a researcher wore the 

PDI while running for an hour and did not occur when wearing the device while sitting, 

standing or walking for long periods of time. Since the forces experienced while running 

are higher than when walking or sanding it was assumed that the maximum force of the 

FSRs was reached and caused damage. Therefore; it was assumed that if worn only in 

a workplace setting where running is uncommon, the Interlink FSRs would not exhibit 

this degradation. Had cost and development time not been a constraint I would have 

liked to investigate the potential of capacitive force sensors and/or other FSRs that may 

be more durable.   
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2.4.2. Sensor Calibration 

The FSR sensors were not calibrated in this research meaning that outputs from 

one sensor to the next can experience variability. Calibrating each sensor is a time-

consuming process that should be avoided where possible particularly for a device being 

deployed in a large population study. FSR sensors are shown to drift over the course of 

a few hours due to movement of particles in their materials [82]. If these sensors were 

designed in this device to require calibration the device would need to be re-calibrated 

once every day at a very minimum. This would put a significant resource strain on such 

a study, potentially making it unfeasible to conduct.   

Distinct differences in uncalibrated sensor outputs were observed in preliminary 

testing between sitting (consistent output of approximately 0-200), standing (consistent 

output of approximately 200-600) and walking (rapidly changing output between 0-800). 

The effect of force application from changing activities on sensor output was therefore 

much greater than the approximately 10% drift observed in static weighting for one hour 

[82].  

Because of the clear distinction of sensor outputs experienced in different 

activities across the pilot study group and prior use of uncalibrated FSRs in existing 

research [29], [30], [41], [90] it was decided that calibrating the FSR sensors was 

unnecessary. 

2.5. Future Work 

The PDI developed in this chapter is a highly functioning prototype that has 

successfully show that it is possible to make an easily fabricated, low-cost device that 

can be used in large population studies, is unobtrusive and easy to use, is effective in a 

workplace setting, and objectively and accurately measures activities over an extended 

time period. However, this device is not perfect and still has plenty of room for 

improvement.  

Some participants said that the PDI, while comfortable, they did not like how it 

looked and that would deter them from wearing the device. I recommend for future 

designs to integrate the components of the electronics case into the insole so that the 

user does not need to wear a case on their shoelaces. This would involve miniaturizing 
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the electronic components used and reducing the power consumption to minimize the 

size of the battery. With this integrated design, it should still be possible for the 

expensive components to be removed and re-used in a different insole since this was a 

valuable aspect of the current design, particularly when only using the insole for a short 

period of time.  

 The next recommended improvement would be to use a flexible printed 

component in the insoles. This should include the FSRs along with the connecting wires 

minimizing fabrication time, increasing reliability, and reducing potential breakage points. 

This component should be very durable to both direct force and bending. This may 

involve selecting FSRs that are capable of handling a higher bending force than the 

ones used in this device or switching to a different type of force sensor.  

In future revisions of the PDI design it is recommended that the FSR sensors 

either be placed in locations with low forces such as 5 and 6 where they are less likely to 

degrade in sensitivity over time, or to use a different sensor that is more resilient to the 

extremes of possible forces experienced by an insole. It is interesting to note that none 

of the studies that used these specific sensors in a shoe insole reported similar issues 

[41], [43], [66], [75]. This issue didn’t arise until the very end of a long period of high 

forces, so it is likely that the experiments run in previous studies were not tested over the 

same duration or in situations where the user was applying such high forces to the 

sensors. These situations may be of importance, particularly for studying plantar fasciitis 

and other overuse injuries in the workplace, so these findings should be considered for 

future revisions of the PDI design. 

The heel strike synchronization method used in this study assumes gait 

symmetry which may not be a perfect assumption for all healthy participants and likely 

will not be true for symptomatic participants [91]. Future revisions of the PDI could 

incorporate a wireless connection between devices allowing them to synchronize 

automatically. Once synchronized automatically, the PDI could potentially be used to 

measure gait asymmetry. 
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Chapter 3.  
 
Classification of Activities from PDI Data 

3.1. Introduction 

Sensors are increasingly relied upon for healthcare and activity monitoring applications 

including fall detection, step counting, cardiac monitoring and sleep tracking [92]. These 

sensors are typically built into devices that can be worn for extended periods of time, 

also known as wearables. An area of particular interest is the proliferation of gyroscopes 

and accelerometers in smartphones and wearables allowing for continuous classification 

of the user’s activity. With wearables becoming commonplace devices, researchers have 

begun to investigate more challenging questions. However, due to insufficient 

classification algorithms or sub-optimal sensor locations, many devices lack the 

accuracy required for these challenging applications [73].  

Researchers have tried to improve the accuracy of activity classification algorithms used 

to interpret accelerometer and gyroscope data collected from user’s cell phones [93], 

[94]. Classification accuracy has been improved for some activities; however, these 

algorithms typically still fall short when differentiating between passive activities such as 

sitting and standing [28]. This is due to the similarity of the signals produced by an 

accelerometer during these activities, unless multiple accelerometers are placed at 

specific locations on the user’s body [25]. This shortfall has inspired other researchers to 

use pressure sensors in a shoe insole to differentiate activities [29], [32], [65], [69], [95]. 

Basic classification algorithms have been used to produce a classification accuracy of 

approximately 95% in a lab setting [40] but to the best of my knowledge, none of the 

insoles have been used to classify activities in a workplace setting. The design of these 

insoles has typically included an IMU or accelerometer [29], [32], [95], leading to an 

increased cost and more complex design. These insole designs have placed sensors in 

anatomically significant locations such as the heel or ball of the foot but have not 

assessed the possibility of using other potential locations on the foot that may result in 

higher classification accuracy [29], [69], [96]. Recent research has shown locations of 

the foot where loading is most different between sitting, standing and walking [85]. By 

using sensors in an optimized set of these locations, it is hypothesized that classification 
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accuracy can be improved while reducing computational cost and simplifying the 

algorithm.  

The focus of this chapter is to design an optimized machine learning algorithm and 

sensor combination that produces a high degree of classification accuracy while 

identifying redundant sensors and reducing computational cost. This is necessary to 

lower the cost of the PDI, improve battery life, and reduce manufacturing time enabling 

its use in larger studies with more participants. The data used to train and test this 

algorithm was collected using the PDI developed in Chapter 2. This chapter outlines the 

design and optimization of a machine learning algorithm capable of classifying 

workplace activities as sitting, standing or walking. The algorithms chosen were a 

Support Vector Machine (SVM) and Multinomial Logistic Regression (MLR). An SVM 

was chosen based on its ease of use and robustness at classification problems. MLR 

was chosen as a comparison based on success in other insole based projects, 

particularly with respect to computational cost [40]. The number and specific location of 

sensors was investigated to determine the impact on classification accuracy. 

3.2. Methods 

3.2.1. Participants 

One group of participants was used for all studies involved in this thesis. 

Participants were selected based on the inclusion and exclusion criteria listed below and 

the amount of time they spend on their feet throughout the day. For this preliminary 

exploration of the insole technology and its application, the target was a dataset that 

reflected the possible variation in workplace exposure. This included people that ranged 

from very little time spent weight bearing to most of the day spent weight bearing.  

Participant inclusion criteria: 

1. Between the ages of 19 – 60 

2. Body Mass Index (BMI) less than 30 

3. Employed with at least 6 hours of work per shift 

4. The ability to walk without the use of an ambulation aid (e.g., 
walker or cane) or external orthosis 
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5. Ability and agreement to wear footwear with shoelaces and a 
removable insole for the duration of the study 

Participant exclusion criteria: 

1. Any musculoskeletal injury or condition that inhibits your ability to 
sit, stand or walk. 

2. Currently performing modified work tasks due to an existing 
workers compensation claim of any variety 

3. Any lower extremity amputations 

4. Any history of lower extremity surgery  

5. Any systemic diseases that could affect lower extremity or foot 
posture  

6. Any history of acute trauma to either foot, lower extremity, or 
lumbosacral region within the past 6 months prior to the start of 
the investigation  

7. Any chronic condition that significantly compromises lower 
extremity function 

A total of 34 participants were recruited for this study (10 males, 24 females, age: 

33.1 ± 9.4 (mean, ± standard deviation) years old, mass: 64.9 ± 11.6 kg, height: 1.7 ± 

0.1 m). Each participant consented to participation in this study approved by the Simon 

Fraser University Office of Research Ethics. Each participant was asked to participate 

for their typical work week, usually meaning 4 or 5 days depending on the length of the 

work shift. Some participants were not able to complete the entire week due to schedule 

restrictions, in these instances data from the available days was used. In addition to 

recording data while at work each participant was asked to participate in a 30-minute 

calibration activity. Participants wore self-selected lace-up shoes and worked in a variety 

of workplace settings. The data collected from these participants was used for each of 

the following chapters. 

The data from the calibration activity from 21 of these participants (4 males, 17 

females, age 32 ± 9.7 years) was used for the analysis in this chapter. Calibration data 

from 13 participants was not used in this chapter for a variety of reasons. Three 

calibration datasets were lost due to theft, so were not available for analysis. Four 

calibration datasets had data recorded only from one insole due to an issue with a 

component hitting the reset button when the case was closed that was later resolved. 
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The remaining six datasets excluded were recorded in the participant’s last two days of 

wearing the PDI and had at least one sensor that was not performing as anticipated. 

Such data had a high likelihood of influencing the classification algorithm in an 

unpredictable way and therefore was excluded from this analysis. The resulting dataset 

contains 1,200,259 datapoints (~440 minutes) from 20 sensors. 

3.2.2. Raw Data 

The data collected from one PDI insole consists of one voltage output from each 

of the seven FSRs (Interlink 402-Short FSR, Interlink Electronics, CA) and X, Y and Z 

acceleration measurements from the accelerometer (MMA8451 3-axis accelerometer, 

Adafruit, NY). The output voltage from each FSR was read by the microcontroller as an 

analog measurement with an integer value between 0 and 1023 where 0 corresponds to 

0V (extremely high FSR resistance) and 1023 corresponds to a voltage equal to that of 

the voltage supplied to the FSR (an FSR resistance of zero). Preliminary results did not 

show a need for a calibration factor for the FSR output values, so FSR signals were not 

further processed to simplify the analysis. The FSRs used have a force response that 

approximately follows an inverse power-law characteristic with the exception of very low 

forces (Figure 8-b). This means that FSR measurements are more sensitive to changes 

in force applied to the feet when the feet are not heavily weighted (such as when sitting) 

and less sensitive when the feet are heavily weighted (standing and walking). This has 

the benefit of tending to naturally normalize data to body weight. At low forces the FSR 

will exhibit a switch response, turning on with approximately 0.196N of force. Each FSR 

has a slightly different force-resistance response due to a part-to-part force repeatability 

of ± 6%. Because of this, the analog output was not converted to a calibrated force 

value. Data was collected from each of the two insoles resulting in a total of 20 signals. 

Data was sampled at 45 Hz. 

3.2.3. Data Synchronization 

Since there were two insoles recording data simultaneously, it was necessary to 

synchronize the data from each insole so it could be collectively evaluated. Data used 

for the analysis in this chapter was synchronized using a light on each PDI that turned 

on when the data began recording. The light on each PDI was captured on one 

continuous video at 30fps while the devices were being turned on. The time difference 
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between the start of each recording was extracted from the video and the recorded data 

was shifted and cropped accordingly to synchronize it.  

3.2.4. Calibration Data 

To train a classification algorithm, training data with solutions is required. To 

collect this training data, participants were asked to complete a calibration sequence 

which took approximately 20 minutes. During this calibration sequence, participants 

wore a PDI in each of their shoes and were simultaneously recorded on video (GoPro 

Hero 4, 720p, 30fps). The PDI data and the video recordings were synchronized using 

the light that flashed on the PDI when it began recording data. This light was visible in 

the video recording. The video data was used to classify the participant’s activity as 

either sitting, standing or walking at each instant throughout the calibration sequence. A 

transition between standing and sitting was defined as the instant when a participant’s 

legs / buttocks contacts the chair. The opposite was used for the transition between 

sitting and standing. The walking to sitting transition was also defined by the legs / 

buttocks contact with the chair. The transition between standing and walking was 

defined as the instant the participant’s foot loses contact with the ground when taking the 

first step. The walking to standing transition was defined as the moment when the 

participant’s foot contacts the ground after their last step. If the transition was ever 

Figure 17 - Exemplar activity transitions. Time of transition is defined by the red vertical line. 
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unclear in the video recording the FSR data was used to determine the time when the 

transition occurred (Figure 17). Examples from clearly recorded transitions were 

referenced to ensure similarity between classification methods.  

During the calibration sequence, participants were asked to sit, stand and walk in 

the sequence described below. A researcher timed each activity with a stopwatch and 

instructed the participant when it was time to change positions. 

1. Sit - approximately one minute 

2. Stand - approximately one minute 

3. Walk - approximately one minute (walk back and forth in a straight line 
with a 180º turn at either end in area at least 10m long) 

4. Stand - approximately one minute 

5. Sit - approximately one minute 

6. Walk - approximately one minute 

7. Sit - approximately one minute 

8. Stand with most of their weight on one foot – approximately 30 
seconds 

9. Stand with most of their weight on the other foot – approximately 30 
seconds 

10. Walk to a counter or table 

11. Fill out the participant information form at a table or counter while 
standing (distracted standing) – approximately 8-12 minutes 

12. Walk back to chair 

13. Sit with feet outstretched - approximately one minute 

14. Sit with feet tucked under chair - approximately one minute 

15. Sit while fidgeting feet, tapping toes etc. - approximately 30 seconds 

16. Sit in their favourite position - approximately 30 seconds 

This was either completed in the lab at SFU or at the participant’s workplace, so 

there are variations in chair height, table height, floor type and walkway length between 

participants. Participants self selected their walking speed and the shoes they were 
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wearing. Allowing these variations in environmental factors was intentional to test the 

ecological validity of the insole classification algorithms in a range of workplace settings. 

Data from both insoles along with the activity classification solutions were 

combined to form a training dataset. To be included in the training set, at least 6 out of 7 

FSRs in each insole were required to be fully functioning. Functioning was determined 

by visual inspection of the PDI data. If an FSR recorded only zero as an output, it was 

likely that the connection had come unattached. If it showed sharp drops it was likely 

due to a loose connection (Figure 18). An FSR was considered not functioning if it 

exhibited either of these characteristics. No FSR throughout the entire dataset was ever 

saturated (output value of 1023).  

3.2.5. Feature Generation 

After the data was synchronized it was processed before being input into a 

machine learning classification algorithm using the following steps:  

1. FSR data was normalized based on the maximum value in the training data 

from all 7 FSRs. This is required for input to a machine learning algorithm 

with inputs that have different scales. In this case the FSR data and 

accelerometer data have different ranges of values so they both need to be 

scaled to have the same range. 

Figure 18 - Data collected with a sensor that has a malfunctioning connection. The line for FSR 7 (pink) 
should have a smooth curve similar to the other lines, but it instead drops off sharply. This is likely due 
to a broken wire that intermittently connects when the PDI is loaded or bent in a specific way. 
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2. Accelerometer data was filtered with a second order low pass Butterworth 

filter with a cut-off frequency of 10Hz. The cut-off frequency was chosen 

because 98% of the power in walking is represented by frequencies below 

10Hz [39].  

3. The filtered accelerometer data was then combined to find the resultant 

acceleration by taking the square route of the sum of squares of the x, y and 

z components:  

𝑎𝑎𝑎𝑎𝑎𝑎 =  �𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + 𝑎𝑎𝑧𝑧2 

𝑎𝑎𝑥𝑥 ,𝑎𝑎𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑧𝑧 are the accelerations measured on the x, y and z axis 

respectively.  

4. Once combined, acc was normalized in the same way as the FSR data based 

on the maximum value of acc in the training data. After normalizing, all values 

from the FSRs and acc were between 0 and 1 enabling evaluation using a 

combined algorithm. 

5. The normalized training data was then broken into buffers so that features 

could be extracted from the data. The optimal length of the buffer was 

determined by systematic exploration. A short buffer length was preferred as 

it would yield a higher temporal resolution, however too short of a buffer could 

reduce classification accuracy because the features cannot accurately 

represent the activity. An overlapping buffer window was investigated but 

ruled out to simplify the number of independent variables. 

6. Once buffered, two features were extracted from the data from each sensor: 

Mean and standard deviation. This produced a total of 32 possible inputs for 

the machine learning algorithm (2 features from 16 sensors).  

3.2.6. Algorithms 

Two algorithms were optimized and tested. Both algorithms were implemented in 

Python using the Scikit Learn library. The first was an SVM, an algorithm widely used for 

classification problems due to its robustness; however SVMs can be computationally 
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expensive [29]. This is not currently a problem since the data is processed offline but 

may become a problem in future iterations of this design in which processing is 

completed in the PDI or on a smartphone. Three attributes of the SVM were manipulated 

to maximize performance. These were the kernel type (polynomial, radial basis function 

(RBF), linear or sigmoid), penalty parameter (C), and the kernel coefficient (gamma). 

These parameters were optimized using a grid search. The second algorithm was an 

MLR. It was chosen based on success in a similar application, particularly at reducing 

the computational cost by over two orders of magnitude [40]. The parameters modified in 

the MLR algorithm were the solver type (newton-cg or lbfgs), the tolerance for stopping 

(tol), and the inverse of regularization strength (C). These parameters were again 

optimized using a grid search. 

3.2.7. Classification Accuracy  

Figure 19 outlines the process used to determine classification accuracy. The 

calibration data was pre-processed using the method described in section 3.2.5 and then 

randomly split into training and testing data with a split proportion of 70% / 30% 

respectively. This data was randomly split once at the beginning of the analysis. The 

training data was used to perform the grid search and K-fold cross validation to 

determine the algorithm attributes that provide the highest classification accuracy for the 

Figure 19 – Flow chart showing the process used to train and test the machine learning 
algorithm. 
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training data. Five folds were used for K-fold cross validation. An optimized algorithm 

using the best features was then trained with the training dataset and tested on the 

unseen testing data to determine the classification accuracy.  

3.2.8. Sensor Reduction 

In designing the PDI it was unknown exactly how many sensors were required to 

provide adequate activity classification accuracy. Previous work had determined a 

reduced set of potential locations and began to investigate the number of sensors 

required [72]. For this reason, seven FSRs and an accelerometer were built into the PDI, 

more than were thought to be necessary based on the previous work. A wrapper-based 

approach using backward elimination and forward selection was used in which sensors 

were digitally removed from the data one at a time until only one sensor remained. The 

sensors were then added back one at a time until all sensors were included. This 

approach is similar to that suggested by Maldonado and Weber [97] but was modified 

slightly. The approach used for this analysis added a 5-fold cross-validation using the 

training data to calculate the accuracy of each sensor elimination step. The cross-

validation accuracy was used to select the sensor to be added or removed. Trained 

model accuracy was then calculated using the unseen testing data. The backward 

Figure 20 - Approximate location of FSRs in the PDI insole. Red circles are FSRs and 
the shape labeled acc is the accelerometer that is located on top of the foot in the 
electronics case. 



55 

elimination process was completed as follows: First, the classification accuracy of the 

training data was calculated using all seven FSRs and the accelerometer from each 

insole, 16 sensors in total (Figure 20). Each red dot is an FSR and the accelerometer is 

shown beside the foot. 

 Next, each pair of sensors was removed one at a time from the data (the same 

sensor from each shoe) and the resulting classification accuracy was determined using 

5-fold cross-validation. The pair of sensors that had the lowest impact on classification 

accuracy when removed was taken out of the data. The model was then trained and 

tested with the reduced feature set. The same process was completed until only one pair 

of sensors remained. The opposite process was then completed for forward selection in 

which sensors were added starting from one pair and working up to all 16 sensors. Pairs 

of sensors were added in based on the highest increase in classification accuracy. The 

same method was performed for each algorithm.  

3.3. Results 

3.3.1. Raw data 

The raw data collected from the PDI consisted of 14 outputs from FSRs (seven 

from each foot) and six outputs from accelerometers (X, Y and Z acceleration from each 

Figure 21 - Exemplar data from the seven force sensitive resistors in both the left and right shoes of a 
participant showing sitting, standing and walking 
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foot). With participant body weights ranging from 44 kg to 88 kg none of the FSRs 

reached saturation.  Examples of this raw data can be seen in Figure 21 and Figure 22.  

In Figure 21 the differentiation between sitting, standing and walking can be 

easily seen. When the participant is sitting, the output from each of the FSRs is relatively 

low and remains mostly constant. When the participant is standing, the outputs increase 

but are still relatively constant. When the participant is walking, the outputs fluctuate 

from 0, to a level higher than that of standing during the impacts of heel strike and toe 

off. When a participant is sitting and fidgeting or standing on one leg these clear 

distinctions become less obvious. The maximum values of all FSR outputs from all 

participants was 815 (Table 4). This was observed in the data from SID06 at FSR 1.  

Table 4 - Maximum FSR value for each location recorded in each participant's calibration data. Maximum 
values are in bold. 

Participant FSR 1 FSR 2 FSR 3 FSR 4 FSR 5 FSR 6 FSR 7 Maximum 
SID05 758 748 788 765 497 726 765 788 
SID06 815 788 795 752 563 727 780 815 
SID07 781 776 748 673 671 719 775 781 
SID08 728 783 755 768 506 620 757 783 
SID09 809 794 809 784 677 726 787 809 
SID10 773 769 791 790 632 683 762 791 
SID12 775 758 778 740 475 691 772 778 
SID13 798 787 785 785 540 742 795 798 
SID14 787 661 748 625 597 686 724 787 
SID15 735 701 753 652 541 638 752 753 
SID16 680 714 767 688 620 747 783 783 
SID17 725 544 746 725 689 681 755 755 
SID19 592 551 685 612 672 632 633 685 
SID20 755 517 688 597 648 634 743 755 
SID24 794 752 751 671 661 678 791 794 
SID25 774 782 783 701 575 596 694 783 
SID26 687 472 767 753 645 679 694 767 
SID30 800 647 744 665 716 706 723 800 
SID32 777 809 797 736 529 665 801 809 
SID34 793 759 770 703 591 695 772 793 
SID36 748 752 772 650 652 675 728 772 

A participant’s maximum FSR output occurred at FSR 1 eight times, FSR 2 two 

times, FSR 3 nine times, and FSR 7 twice. 
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Figure 22 highlights the difficulty of using only accelerometer data to differentiate 

between sitting and standing. The two activities look identical since the foot is typically in 

similar orientations and lacks distinct motion when sitting and standing. When a 

participant is walking there are noticeable acceleration spikes that coincide with foot 

contact and foot swing.  

3.3.2. Activity Classification Accuracy 

The results of the grid search method for optimizing both algorithms were as 

follows. For the SVM algorithm, accuracy was as low as 83% and was maximized using 

the polynomial kernel with C = 105 and gamma = 0.05. This produced the highest 

classification accuracy on the training set at 99.31% using all 16 sensors. The MLR 

algorithm produced accuracies as low as 92% and was optimized using the newton-cg 

solver with C = 5000 and tol = 0.01. This produced a maximum classification accuracy 

on the training set of 99.10%. Both algorithms showed the highest classification 

accuracy when using a buffer length of 40 samples, ~0.88 seconds. When considering 

only classification accuracy with a full set of sensors, the SVM algorithm outperformed 

the MLR algorithm by 0.21%. Table 5 below shows a confusion matrix for the results of 

the optimized SVM and MLR algorithms when tested on the test dataset. The SVM 

Figure 22 - Exemplar data collected from the accelerometer on a participant’s right and left shoe while 
sitting, standing and walking. 
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algorithm yielded a test accuracy of 99.31% and the MLR algorithm yielded a test 

accuracy of 99.11% 

Table 5 - Confusion matrices showing results of both the SVM and MLR algorithms when tested on the test 
dataset using all sensors 

 SVM Algorithm   MLR Algorithm 
  Predicted Value    Predicted Value 
  Sit Stand Walk    Sit Stand Walk 
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  Accuracy: 99.31% 
   Accuracy: 99.11% 
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3.3.3. Sensor Reduction 

When sensors were digitally removed one at a time the classification accuracy 

decreased. The decrease in accuracy when removing three sensors was 0.08% for the 

SVM algorithm and 0.11% for the MLR algorithm. With only one sensor, the SVM and 

MLR algorithms had classification accuracies of 93.33% and 96.81% respectively. This 

shows that the full set of eight sensors is not required to maintain a classification 

accuracy of over 99%.  

Results from the backward elimination procedure for the SVM algorithm can be 

seen in Figure 23 below. Classification accuracy was 99.31% with all the sensor pairs 

being used. This reduced to 93.33% using only one sensor. Classification accuracy was 

not reduced by more than 1% until seven pairs of sensors were removed. The sensors 

that had the most impact on the classification accuracy of the SVM algorithm were the 

heel sensor (FSR 7), and the sensor on the lateral longitudinal arch (FSR 6). The 

accelerometer was removed immediately showing that it had limited impact on the 

classification accuracy of the SVM algorithm.   

When applying the forward selection procedure, very similar results were 

obtained (Figure 24). The same two sensors, numbers 6 and 7, were the most important 

sensors and the accelerometer was the least important. The only difference was 

between the order of sensors 1, 2 and 5. The agreement between the backward 

elimination and forward selection suggests that the order of feature importance is not 

coincidental. 

Results of the sensor reduction procedure using the MLR algorithm can be seen 

in Figure 25 below. The accuracy ranges from 99.11% with all sensor pairs being used 

to 96.81% when only one sensor pair is used. Classification accuracy is not reduced by 

more than 1% until 6 pairs of sensors are removed. Similar to the SVM algorithm, sensor 

number 6 on the lateral longitudinal arch has a large impact on classification. Sensor 

number 3 also has a large impact on classification for the MLR algorithm, similar to the 

results of the SVM algorithm where it was third most important. The accelerometer was 

the 4th least important sensor for the MLR algorithm. Sensor number 2 was the least 

important sensor. While the MLR algorithm has a slightly lower classification accuracy 
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when using all sensors, it has a 3.48% higher classification accuracy when using just 

one sensor. 

 The results from the sensor addition procedure using the MLR algorithm were 

quite different from the results from the sensor reduction procedure (Figure 26). This is 

likely due to the reduced capability of the MLR algorithm at handling colinear data 

compared to the SVM algorithm [98], [99]. However, the single most optimal sensor 

selected in both procedures was the same: sensors number 6.     
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Figure 23 - Results of the backward elimination procedure for the SVM algorithm. A sensor shown in red means that it was included, 
white or black sensors were digitally removed from the data. The number below the image is the classification accuracy of the SVM 
algorithm when tested on the test dataset using the sensor configuration depicted above. The confusion matrix below the accuracy 
displays predicted values on the horizontal axis and true values on the vertical axis. 
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Figure 24 - Results of the forward selection procedure for the SVM algorithm. A sensor shown in red indicates that it was included, white 
or black sensors were digitally removed from the data. The number below the image is the classification accuracy of the SVM algorithm 
when tested on the test dataset using the sensor configuration depicted above. The confusion matrix below the accuracy displays 
predicted values on the horizontal axis and true values on the vertical axis. 
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Figure 25 - Results of the backward elimination procedure for the MLR algorithm. A sensor shown in red indicates that it was included, 
white or black sensors were digitally removed from the data. The number below the image is the classification accuracy of the MLR 
algorithm when tested on the test dataset using the sensor configuration depicted above. The confusion matrix below the accuracy 
displays predicted values on the horizontal axis and true values on the vertical axis. 
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Figure 26 - Results of the forward selection procedure for the MLR algorithm. A sensor shown in red indicates that it was included, white or 
black sensors were digitally removed from the data. The number below the image is the classification accuracy of the MLR algorithm when 
tested on the test dataset using the sensor configuration depicted above. The confusion matrix below the accuracy displays predicted 
values on the horizontal axis and true values on the vertical axis. 



65 

3.3.4. Activity Specific Sensitivity and Specificity 

Sensitivity and specificity of each activity were calculated to demonstrate the 

performance of both the SVM and MLR algorithm at individual activity classification. 

Sensitivity, or true positive rate, was excellent for both the SVM and MLR algorithms for 

sitting and standing, remaining greater than 99% even with only 4 sensors in use. 

Sensitivity for walking however was lower, indicating that walking was more difficult to 

classify than sitting or standing for both algorithms. The sensitivity for walking using the 

MLR algorithm remained relatively constant as sensors were removed while the 

sensitivity for walking using the SVM algorithm dropped off significantly when only one 

sensor was used. This was due to significant misclassification of walking as sitting. 

Specificity, or true negative rate, was excellent for all activities, remaining greater than 

99% even with only 4 sensors in use. Table 6 and Table 7 below show the complete 

results of this analysis.   

Table 6 – Sensitivity and specificity (%) for the SVM algorithm broken down by activity type. 
Sensors used are per Figure 23.  

 

 

 

 

 

 SVM Algorithm 
# 

Sens. 
Sitting  Standing  Walking 

Sens. Spec.  Sens. Spec.  Sens. Spec. 
8 99.81 99.78  99.52 99.32  97.16 99.76 
7 99.81 99.78  99.50 99.30  97.00 99.73 
6 99.84 99.72  99.48 99.36  97.00 99.73 
5 99.88 99.72  99.41 99.30  96.83 99.72 
4 99.78 99.64  99.37 99.27  96.83 99.73 
3 99.34 99.72  99.30 99.05  97.00 99.60 
2 99.19 99.09  99.17 99.14  94.33 99.47 
1 96.82 92.27  97.67 97.23  67.39 99.62 
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Table 7 - Sensitivity and specificity (%) for the MLR algorithm broken down by activity type. 
Sensors used are per Figure 25 

 

3.3.5. Leave-One-Out Cross-Validation 

Leave-one-out cross-validation (LOOCV) was performed on the optimized SVM 

and MLR algorithms with all sensors included to determine the impact of excluding a 

participant’s data from the training data. This is particularly important for future 

applications of the PDI device in which a new user will not be asked to complete the 

calibration sequence, but instead will be given the already trained device to use. LOOCV 

was performed using the data from all participants except one as training data, and the 

data from the excluded participant as testing data. This process was repeated for each 

participant resulting in 21 folds of unequal length. 

The results of LOOCV show that both the SVM and the MLR algorithms are 

capable of classifying activities of subjects even when data collected from them is not 

included in the training set (Table 8). The SVM algorithm using all sensors had an 

overall accuracy of 98.30% with a standard deviation of 3.62% while the MLR algorithm 

using all sensors had an overall accuracy of 97.81% with a standard deviation of 4.00%. 

While the SVM outperformed the MLR algorithm in 17 of 21 cases, both performed 

exceptionally well. These results show that it is feasible to design an algorithm using a 

small sample of participants that can then be utilized in a much larger population without 

the need to calibrate the device to each user. 

 MLR Algorithm 
# 

Sens. 
Sitting  Standing  Walking 

Sens. Spec.  Sens. Spec.  Sens. Spec. 
8 99.56 99.60  99.39 99.11  96.83 99.77 
7 99.56 99.57  99.33 99.21  97.16 99.76 
6 99.56 99.55  99.24 99.21  97.25 99.73 
5 99.41 99.52  99.22 99.05  97.08 99.74 
4 99.47 99.52  99.04 99.05  96.83 99.63 
3 98.56 99.52  99.09 98.36  96.83 99.67 
2 97.75 98.76  98.17 97.77  96.75 99.68 
1 96.54 97.91  97.09 96.98  96.50 99.58 
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Table 8 - Results of leave-one-out cross-validation (LOOCV). The classification algorithm was trained on all 
participants except one. Classification accuracy is calculated based on subject’s data that was excluded. 

Excluded 
Participant ID 

SVM Classification 
Accuracy (%) 

MLR Classification 
Accuracy (%) 

SID05 99.35% 96.68% 
SID06 96.95% 97.99% 
SID07 99.44% 99.30% 
SID08 99.25% 98.87% 
SID09 82.70% 80.81% 
SID10 99.10% 98.91% 
SID12 99.27% 97.55% 
SID13 99.13% 97.57% 
SID14 99.68% 99.56% 
SID15 98.65% 96.62% 
SID16 98.77% 98.28% 
SID17 99.00% 98.81% 
SID19 98.89% 99.34% 
SID20 99.30% 99.43% 
SID24 98.66% 98.93% 
SID25 99.65% 99.65% 
SID26 99.46% 99.38% 
SID30 99.53% 99.41% 
SID32 99.20% 98.96% 
SID34 99.21% 99.00% 
SID36 99.06% 98.98% 

Mean (+/- STD) 98.30% (+/- 3.62%) 97.81% (+/-4.00%) 

3.3.6. Activity Misclassification 

While most participants LOOCV results showed a classification accuracy over 

98%, there were two instances where the SVM algorithm fell short, namely SID06 and 

SID09. These are interesting cases to look at to better understand how the classification 

Figure 27 - Activity classification results using the MLR algorithm for SID25.  
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algorithm can be improved in the future. Figure 27 shows exemplar data from SID25 

where all but one instance was classified correctly. The grey line represents the correct 

activity classification obtained from the video analysis. The red line is the activity state 

predicted by the classification algorithm. The one instance that was misclassified was 

during the first stand to sit transition. The algorithm determined that the participant was 

briefly walking before sitting down. In reviewing the data, it was apparent that the 

participant briefly shifted their weight from one foot to the other to position themselves to 

sit down. The algorithm interpreted this shifting of weight as walking. 

Activity classification results for SID06 can be seen in Figure 28 and Figure 29. 

These results show that much of the misclassification came from the phase of the 

calibration sequence when the participant was standing at the counter filling out a form. 

In reviewing the video recording of this segment, it became clear that the participant 

often shifted their weight quickly between their feet and was leaning heavily on the 

counter. The combination of these two factors could have led to the algorithm 

misclassifying activity as walking (when shifting feet) or sitting (when too much weight is 

transferred through the participants arms to the counter).  

Figure 29 - Activity classification results using the SVM algorithm for SID06 

Figure 28 - Activity classification results using the MLR algorithm for SID06 
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Figure 30 and Figure 31 show the classification results for SID09, another 

participant with a low LOOCV classification accuracy. In this case, much of the 

classification error came from misclassifying sitting as standing. Analysis of the video 

recording showed the participant sitting on the edge of the chair the entire time when 

sitting except at the end when they were sitting with feet under the chair etc. This 

method of sitting likely increased the weight transferred through the participant’s feet and 

made the activity appear to be closer to standing than sitting, explaining the 

misclassification.   

The activity directly on either side of a sit to stand or stand to sit transition was 

where most of the misclassification occurred for many of the LOOCV cases. This is 

because it was quite common for participants to take a few steps to reposition 

themselves before sitting or move away from the chair when standing up. These 

instances could be classified as either standing or walking. The decision was made to 

label these instances as standing since it was typically only a minor shift of weight. Had 

these transitions been labeled as walking when the participant shifted their feet the 

classification accuracies would have likely been slightly higher. The standing to walking 

transition did not exhibit many issues.  

Figure 31 - Activity classification results using the SVM algorithm for SID09 

Figure 30 - Activity classification results using the MLR algorithm for SID09 
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3.3.7. Algorithm Resource Intensity 

Resource intensity was measured as the amount of time that each algorithm took 

to classify the test dataset. Each algorithm was tested on the same computer (Intel Core 

i7-4800MQ CPU) using the exact same method, simply the type of algorithm was 

different. The SVM classification took 0.254 seconds to complete and the MLR 

classification took 0.002 seconds. Based on these results, the MLR algorithm required 

significantly less computational power.  

3.3.8. Impact of Incorrect Synchronization 

Analysis was performed to better understand the impact of incorrect 

synchronization of the data from the left and right PDI devices. The calibration data that 

was synchronized using the video footage was used for this analysis. LOOCV using all 

subjects and the SVM algorithm described above was used to test the classification 

accuracy. To simulate incorrect synchronization, the data left out in each validation (test 

data) was manipulated such that data from one insole was offset from the data from the 

other insole by a known time difference. Average classification accuracy and average 

decrease in classification accuracy were calculated (Table 9). These results show that 

deviations less than 0.3s have very little impact on classification accuracy (<0.1% 

decrease in classification accuracy). Even with an offset of 1.98s (90 samples), the 

average decrease in classification accuracy was only 0.94% ± 0.42%.  

Table 9 - Results of incorrect synchronization analysis. R offset means data from the right foot was offset by 
the specified duration. L offset means data from the left foot was offset by the specified duration. 

 Average Classification 
Accuracy (± STD) 

 Average Decrease in 
Classification Accuracy (± STD) 

1.98s L offset 97.43% ± 3.88%  0.86% ± 0.65% 
0.99s L offset 97.85% ± 3.86%  0.45% ± 0.37% 
0.66s L offset 97.74% ± 3.82%  0.56% ± 0.53% 
0.33s L offset 98.15% ± 3.74%  0.14% ± 0.25% 
0.22s L offset 98.24% ± 3.73%  0.06% ± 0.20% 
0.11s L offset 98.26% ± 3.67%  0.03% ± 0.11% 
Synchronized 98.30% ± 3.62%     
0.11s R offset 98.24% ± 3.62%  0.06% ± 0.12% 
0.22s R offset 98.21% ± 3.66%  0.09% ± 0.20% 
0.33s R offset 98.16% ± 3.72%  0.14% ± 0.33% 
0.66s R offset 97.78% ± 3.72%  0.52% ± 0.46% 
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 Average Classification 
Accuracy (± STD) 

 Average Decrease in 
Classification Accuracy (± STD) 

0.99s R offset 97.80% ± 3.68%  0.50% ± 0.32% 
1.98s R offset 97.36% ± 3.80%  0.94% ± 0.42% 

3.3.9. One Insole vs. Two Insoles 

Using only one insole to classify activities would cut the cost of instrumenting one 

participant in half and reduce the data processing requirements. However, doing so 

reduces the classification accuracy of the PDI. This was shown by performing the same 

LOOCV for both the SVM and MLR algorithm as was completed in Section 3.3.4 except 

using only data from the right insole. The classification accuracy of the SVM algorithm 

was reduced to 90.78% ± 6.56% (mean ± STD) and the classification accuracy of the 

MLR algorithm was reduced to 88.55% ± 8.25%. This is a reduction in accuracy of 7.5% 

and 9.3% respectively (or 36 min and 45 min respectively per eight-hour day). 

3.3.10. Impact of Sampling Frequency 

Sampling frequency is an important factor to consider when designing a device 

such as the PDI. There is an inherent trade-off between the accuracy attainable with a 

higher sampling frequency and the power consumption reduction that comes with using 

a lower sampling frequency. The PDI was designed with a sampling frequency of 

95%

96%

96%

97%

97%

98%

98%

99%

Cl
as

sif
ic

at
io

n 
Ac

cu
ra

cy

Decimation (Sampling Frequency, Hz)

Classification Accuracy vs. Decimation

Figure 32 - Classification accuracy as a function of decimation. Equivalent sampling frequency shown in 
parentheses 



72 

45.45Hz with the intention of investigating what impact down sampling this data would 

have on the classification accuracy. The same LOOCV approach was used for this 

analysis as in Section 3.3.4 using the SVM algorithm. The data was down sampled at 

various decimation factors (1,2,4,5,8,10,20, and 40) (Figure 32). These results show that 

there is no significant decrease in classification accuracy until the decimation reaches 20 

(equivalent to a 2.27Hz sampling frequency). The average classification accuracy with a 

decimation of 10 (4.55Hz sampling frequency) was 98.33% ± 3.59% (mean ± STD), 

nearly identical to the classification accuracy with a decimation of 1 (original data) at 

98.30% ± 3.62%.  

3.4. Discussion 

This chapter focused on designing an activity classification algorithm capable of 

accurately classifying sitting, standing and walking using FSR sensors and an 

accelerometer. Both the SVM and the MLR algorithms performed exceptionally well at 

classifying sitting, standing and walking from the FSR and accelerometer data. These 

algorithms had classification accuracies of 99.31% and 99.11% respectively when 

trained on data from 21 participants. This result was validated using LOOCV resulting in 

classification accuracies of 98.31% and 97.81% respectively showing the ability of these 

algorithms to generalize to an unknown participant. The SVM algorithm performed 

marginally better on the LOOCV, likely due to its slightly better ability to generalize to 

new data. This is due to the formation of the algorithm, in which a decision boundary is 

placed to maximize the distance between only the closest separating points. The MLR 

algorithm optimizes its decision boundary based on all of the datapoints, and as such is 

more susceptible to outliers in the data. The same reason is likely why the MLR was 

better at classifying activities using only one FSR. It was able to better comprehend the 

decision boundary from just one sensor where the SVM benefits from more sensors. 

This finding is similar to results found for other classification problems using SVM and 

MLR algorithms [100]. With a reduced set of just three FSR sensors and no 

accelerometer, the SVM and MLR algorithms used in this research could still classify 

sitting, standing and walking with an accuracy of 99.01% and 98.60% respectively. The 

accuracy obtained using this algorithm is comparable to existing work classifying 

activities using an instrumented insole at an accuracy of 98.3% in a lab environment with 

only three participants [30]. 
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Additionally, it has been found that SVM algorithms perform better than MLR 

algorithms on datasets with data that is highly correlated [98]. The features in this 

dataset were highly correlated as many of the sensors were placed in close proximity. 

This could also explain why the MLR performed better than the SVM with one sensor 

(not highly correlated data) and worse when more sensors were included.  

The results of this research show that the PDI and the two algorithms developed 

for activity classification are suitable for use in classifying sitting, standing and walking in 

a workplace environment. Algorithm development and testing combined many of the 

standard machine learning procedures used in existing work including feature selection, 

sensor reduction, algorithm parameter tuning and sampling rate reduction [29], [32], [70], 

[101]. In addition, this work added to what had been previously reported by recording 

data in loosely controlled environments (e.g. self-selected shoes and walking rate, a 

variety of chair heights and walking distances, different workplace environments, and 

different floor types). Rather than detracting from the validity of the results, this highlights 

the ability of these algorithms to classify data that is not structured in the exact same 

way every time. This is an important feature for a device that will be used in a natural 

work environment. The recommendations outlined in a recent article highlighting best 

practices in machine learning for human movement biomechanics [102] were followed 

including the following: 

1. The number of features was significantly less than the number of 

observations. 

2. Two simple models were explored for classification due to the relatively small 

amount of data available. 

3. All data was re-scaled before input to the algorithm to ensure that each 

feature had the ability to contribute equally to the outcome and no bias was 

present. 

4. Algorithm parameters were tuned using only the training data, leaving the 

testing data as an unbiased measurement of the classification performance of 

the algorithm. The parameters were explored in a systematic grid search. 
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5. LOOCV was used to test the algorithms ability to generalize to new data. This 

method removed all data from a particular subject from the training data and 

then asked the algorithm to classify data from a subject whose data had not 

previously been seen by the algorithm. 

6. Multiple evaluation metrics were reported including a confusion matrix, not 

simply the overall accuracy. This enables critical evaluation and future 

verification of results. 

3.4.1. Impact of Classification Accuracy 

Maximizing classification accuracy is important especially when dealing with 

large quantities of data as is the case in this study. 95% accuracy over the course of a 

12-hour workday would result in ~35 minutes of a day being misclassified, whereas 

99.3% accuracy would result in just 5 minutes of misclassification. What may be even 

more important however is the temporal resolution of activity classification. The temporal 

resolution of the PDI is ~0.9 seconds. This allows the PDI to capture activity data at 

approximately 2x the resolution of previous research [29]. This increased temporal 

resolution allows for a closer look into exactly what activities a participant is doing 

throughout the day and enables the PDI to capture things like a brief pause while 

walking, or taking a few steps instead of standing still, factors that could be important to 

foot health.  

3.4.2. Are Accelerometers Necessary? 

While accelerometers are widely used in current technology and have seen 

widespread success at counting steps, their ability to differentiate between sitting and 

standing is limited. The reason for this can be seen in Figure 22, where the output from 

the accelerometer is nearly identical between sitting and standing. The accelerometer 

does have properties that can help to identify walking, but if the FSRs alone can be used 

for accurate classification removing the accelerometer would help to simplify the device, 

reducing cost and lowering power consumption. To test the importance, the 

accelerometer was removed from the full set of sensors and the accuracy was recorded. 

Removing the acceleration from the SVM classifier reduced the classification accuracy 

from 99.31% to 99.28%. Removing the acceleration from the MLR classifier reduced the 
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classification accuracy from 99.21% to 99.04%. These results show that accelerometers 

are not a critical component of the PDI design and removing them does not have a 

detrimental effect on the classification accuracy. While the accelerometer does not 

represent a large proportion of the entire system cost ($10.50 CAD), removing it 

simplifies the design and reduces power consumption. 

3.4.3. Additional Considerations 

Reducing computational time was not a major consideration for this study since 

the data was being processed on a computer after being collected. However, a reduction 

in computational complexity could be useful for future applications of this technology 

where real-time classification may be run on a phone connected to the PDI or on the PDI 

itself. A trade-off does exist between the 0.20% lower classification accuracy and over 

120x faster classification time. 

Using the synchronization method based on heel strikes outlined in Section 

2.2.6, it would not be possible for the data to be offset by more than a full step. It is 

therefore unlikely that synchronization would be anywhere close to the 1.98s offset 

considering the average step ranges from approximately 0.3-1 second during walking 

[103]. As a result, the synchronization method used in this analysis would have 

introduced at very worst a classification error of 0.5% validating the use of this method 

for future analysis on healthy subjects.  

Much of the misclassification observed when using only one insole resulted from 

standing on one foot. In this posture one foot is loaded and the other is not. The PDI on 

the loaded foot would classify this data as standing but the device on the unloaded foot 

would classify it as sitting. Since it is quite common for people to stand with uneven 

weight distribution when they are in a natural environment this is an unacceptable 

misclassification and one that would result in incomplete data. This would be particularly 

true in a natural environment where activities are not as clear cut as they were in this 

study. 

The sampling frequency of 45Hz used in this research had the benefit of 

collecting a very rich dataset. However, analysis showed that using a sampling 

frequency of ~5Hz in future designs would still produce excellent activity classification 
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accuracy. This reduced sampling frequency would reduce the size of the data files by 9x, 

improve computational efficiency and reduce power requirements. These are all aspects 

that would enable a more compact, efficient PDI design.  

One weakness of this study is the relatively small number of participants that 

were involved (n = 21). While this is more subjects than any previously known work 

using novel instrumented shoe insoles to classify activities, it is still likely not sufficient to 

presume generalizability to any population. This is evident in the increased 

misclassification of activities in select participants (Table 7). 

3.5. Future Work 

While the classification algorithm developed in this research is quite good, there 

is still room for improvement. One particular way that this algorithm can be improved is 

by developing a more rigorous calibration sequence including a wider range of typical 

daily postures. These could include activities such as standing on toes, sitting on a stool, 

running, ascending or descending stairs, and crouching. Including these in the 

calibration sequence and labeling them as either sitting, standing or walking will enable 

the algorithm to classify natural environment data in a more predictable way.  

In analyzing the inconsistencies in activity classification, the observation arose 

that simply classifying activities as sitting, standing or walking, while easy to verify on 

video may not be the most appropriate measure when investigating foot health. A more 

appropriate measure may be the overall level of force applied to one’s foot or the strain 

put on the plantar fascia in each position. For example, if a participant is sitting on the 

edge of their chair for a large portion of the day with a significant amount of weight being 

transferred through their feet, the tissues in their feet are likely under more strain than 

someone who is sitting back in a chair. While not possible to classify with the data 

collected in this study, this could be a useful direction for future research. 

Additionally, the algorithm could be trained to classify more activities than sitting, 

standing and walking, particularly if they have significantly different patters of strain on 

the tissues of the foot. This could include activities such as running, biking, climbing and 

descending stairs, lifting weight, or climbing a ladder. This would potentially enable an 

even better understanding of a worker’s activities.  
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Since the PDI has a sampling rate of 45 Hz, it is likely possible to use it to 

investigate different gait characteristics. In visually inspecting the data during walking it 

is possible to notice differences in the way that different subjects load their feet. Some 

are quite heavy on their heels causing high spikes in sensors number 5, 6 and 7 when 

their foot first hits the ground while others tend to walk mainly on their forefoot and toes 

causing a much lower spike in sensors 5, 6 and 7 and an earlier spike in sensors 1, 2, 3 

and 4. These are purely observations at this point, however this may be an interesting 

area for future research. This also shows that the activity classification algorithms 

developed in this chapter are adaptable to various gait and foot loading characteristics. 
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Chapter 4.  
 
Workplace Postures 

4.1. Introduction 

It is estimated that 10% of the global population experiences plantar foot pain at 

some point in their lives [14]. Studies have shown that this number rises substantially in 

individuals when subjected to prolonged periods of weight bearing (standing or walking) 

[3]. This can be seen in retail workers where 50% have reported foot pain during work 

[16]. Approximately 2.77 million people per year in the United States report having PF 

[1]. This has an estimated economic burden of $284 million per year [2]. While the exact 

etiology of PF is unknown, it is thought that prolonged standing is a key contributing 

factor leading to microtears in the plantar fascia causing pain and inflammation [4], [51]. 

The US Bureau of Labour Statistics reported that 47% of workers in the US spend over 

60% of their workday on their feet, which could put them at risk of developing PF [104]. 

However, due to a lack of objective evidence regarding workplace postures [7] the 

causal contribution of prolonged workplace standing on foot pain or PF has not yet been 

explained.   

Research into risk factors for PF typically requires participants to self-report the 

time spent on their feet throughout the day. However, self-reporting is not an accurate 

measure of time spent in different activity states, as shown in a recent study where 

participants incorrectly reported over 3 hours of activity time over a 24 hour period [6]. 

Importantly, self-reporting also lacks the temporal resolution to track short duration 

changes in posture and total number of activity changes in a day which may affect 

overall plantar tissue loading exposure. While there are commercially available devices 

capable of human activity recognition, they either lack the ability to differentiate sitting 

from standing, are too expensive to deploy on a large scale, or are uncomfortable or 

inconvenient to use [77], [26]. Without improvements in technology, it is extremely 

difficult to link PF to work-related activities and differentiate individual behaviours in the 

same workplace. This challenge is evident in worker compensation claims where an 

average of 13 claims relating to PF were accepted and 39 denied per year by 
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WorkSafeBC between 2009 and 2013 [10]. This challenge is further exaggerated by the 

number of people that do not submit claims, anticipating that they will be rejected [8], [9]. 

Accelerometer based devices such as the activPAL use thigh-mounted 

accelerometers to track sitting, standing and walking [76]. While these devices are 

accurate, they are uncomfortable to wear and must be applied to the correct location on 

the body every day. Insole based devices that measure plantar pressure such as the F-

scan System (Tekscan Inc., South Boston, MA, USA) can be used to differentiate 

activities, however they are bulky to wear and prohibitively expensive to use in a large-

scale study. Research has shown that pressure sensors integrated into a shoe insole 

can be used to track activities, but these devices have not been validated in a workplace 

environment [74]. The PDI described in Chapter 2 uses low-cost pressure sensors in 

combination with a machine learning algorithm to provide the activity differentiation 

accuracy of an expensive device at a low cost.  

With the PDI capable of tracking common workplace activities to over 99% 

accuracy in a relatively controlled environment, it is hypothesized that workplace 

activities can be investigated unobtrusively and objectively leading to a much more 

accurate picture of activities in the workplace than is possible with self-report data.  

To demonstrate this, an out-of-lab study conducted using the PDI was conducted 

to show the feasibility of using this device in a workplace setting for an extended 

duration. During this study, data was collected about the activities of a group of workers 

in a variety of workplaces with workdays ranging from primarily sitting to primarily 

standing. This data was used to demonstrate the efficacy of the PDI in a wide range of 

workplaces. This data was then used to compare participant’s self-reported activity times 

to the actual times recorded by the PDI to demonstrate the improvements to self-report 

data made possible by using such a device. 

4.2. Methods 

4.2.1. Participants 

A total of 34 participants were recruited for this study however only data from 29 

participants was used for this analysis due to incomplete or corrupt data caused by 

issues inherent with a hand-made prototype device. Each participant was asked to 
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participate for a typical workweek of 3-5 days with days ranging between 5-13 hours 

depending on the length of their work shift. Participant’s were primarily nurses (n = 20) 

but also included students (n = 6), an engineer (n = 1), an administrative assistant (n = 

1) and a manual labourer (n = 1).  

4.2.2. Data Collection and Analysis 

At the beginning of each workday, the participant’s shoes were fitted with PDI 

insoles that recorded data throughout the day. The participant was informed that they 

would need to report their sitting, standing and walking times at the end of the day. At 

the end of each day participants were asked to report the time spent sitting, standing 

and walking throughout their workday. Participants were asked to report this time in 

hours and minutes (e.g. 4 hours and 35 minutes of sitting). The PDI insoles were 

removed from the participants shoes at the end of the day to collect the data and re-

charge the battery. This procedure was completed each day for the duration of a 

participant’s workweek. Activity durations were calculated from the resulting PDI data 

using the optimized SVM algorithm with all sensors included (99.3% accuracy) described 

in Chapter 3.  

4.2.3. Device Validation 

The PDI design criteria outlined in Section 2.2.1 were validated in an out-of-lab 

setting by taking the following steps: 

1. Asking participants for their feedback after wearing the device each day 

about the PDIs comfort and obtrusiveness, and if there were any unexpected 

issues. 

2. Testing the sensors in each PDI at the end of every day to determine if any 

had broken or come disconnected and checking to ensure that the battery 

had not run out. 

4.2.4. Comparison of PDI Results to Self-report Data 

Statistical analysis was completed using the Scipy Stats package for Python. A 

significance level of 0.05 was used for all analysis methods. The two methods (self-
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report and PDI) were compared using a Bland-Altman plot to investigate the bias in 

measurement techniques. Additionally, a Pearson Product Correlation was used to 

determine if a relationship existed between the activity times reported in the self-report 

data and the activity times recorded by the PDI. Overall classification error was 

calculated as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
�𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

2 �

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
∗ 100% 

4.3. Results 

4.3.1. Participant Demographics 

Data from a total of 34 participants was collected for this analysis. Device 

malfunctions inherent in using a hand-made prototype device occurred for five of these 

participants so their data was excluded leaving data from 29 participants for use in this 

study. The age of the participants was 32.6 ± 9.4 years (mean ± standard deviation). 

There were 21 females and 8 males, with a BMI of 22.9 ± 2.9 (Table 10). These 

participants were primarily nurses (n = 20) but also included students (n = 6), an 

engineer (n = 1), an administrative assistant (n = 1) and a manual labourer (n = 1). The 

job titles were not included in the demographics table for participant privacy reasons. 

Table 10 - Participant demographics 

Participant Age (years) BMI Height (cm) Gender 
SID01 30 23.9 171 M 
SID02 27 27.0 180 M 
SID03 26 21.5 178 M 
SID05 22 21.7 183 M 
SID06 23 26.5 168 M 
SID07 31 19.0 152 F 
SID08 31 19.8 160 F 
SID09 25 25.8 173 F 
SID10 23 21.7 183 M 
SID11 27 23.7 188 M 
SID12 27 18.3 165 F 
SID13 27 24.3 170 M 
SID14 27 20.9 171 F 
SID15 30 20.7 175 F 
SID16 28 24.8 163 F 
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Participant Age (years) BMI Height (cm) Gender 
SID17 29 20.8 155 F 
SID19 35 23.3 165 F 
SID20 51 20.0 165 F 
SID21 29 17.8 175 F 
SID24 32 20.6 159 F 
SID25 25 22.7 160 F 
SID26 22 24.8 160 F 
SID28 36 25.8 165 F 
SID30 50 23.0 152 F 
SID31 45 23.3 165 F 
SID32 53 22.7 168 F 
SID33 52 30.4 157 F 
SID34 40 26.7 157 F 
SID36 42 22.3 157 F 

4.3.2. Workplace Activities 

The total time each participant spent sitting, standing and walking was 

determined based on the activity classification produced by the SVM algorithm. For 

comparison, total time of each activity was converted to percent of workday spent doing 

Figure 33 - Activity breakdown for each participant averaged over their workweek. Shaded regions 
represent +/- one standard deviation. 
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each activity. Mean and standard deviation were determined for each participant. The 

results were plotted in ascending order of percent of workday spent sitting (Figure 33). 

The average time sitting throughout the workday ranged across participants from 

34.26% to 95.80% with standard deviations between 0.57% and 20.05% of workday. 

The average time standing throughout the workday ranged from 1.81% to 52.54% with 

standard deviations between 0.51% and 15.59%. The average time walking throughout 

the workday ranged from 2.39% to 16.09% with standard deviations between 0.10% and 

5.25%. Standard deviation was lower for participants who spent most of their workday 

sitting, and with a few exceptions increased in participants who spent more of their 

workday on their feet.  

The average number of activity transitions throughout a participant’s workday 

ranged from 46 to 759 (Figure 34). This indicated that some people spent most of their 

day doing one activity while others were almost constantly changing activities. The 

number of activity transitions was consistently higher for participants that spent most of 

their day on their feet. Standard deviation was over 100 for four participants, however, 

Figure 34 - Plot of the average number of activity changes made throughout the workday for each 
participant. Participant number is arranged in order from most time spent weight bearing to least time spent 
weight bearing. The error bars represent the standard deviation in activity changes throughout a participant’s 
workdays. 
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was less than 75 for the rest indicating that with the exception of some participants, the 

number of activity changes remains relatively constant throughout a typical work week.  

4.3.3. Out-of-lab PDI Design Validation 

During this research, the PDI was used by 34 participants for three to five days 

each. There were no instances where a device fell off of a shoe, a connection cable 

broke, a battery ran out, an accelerometer stopped functioning, or a 3D printed case 

broke. This showed that the device was effective in a workplace setting. There were a 

number of instances where either an FSR or a wire connecting it to the connection cable 

broke or came unattached. See Section 2.4.1 for further discussion regarding durability. 

The PDI was tested for up to 13 hours at a time in a workplace environment 

without any issues requiring a researcher to go to the workplace to remove the device. 

There were no instances where the battery ran out. This shows that the PDI is capable 

of capturing data for an extended period of time in a workplace setting. 

The PDI was tested for a total of 133 days by 34 participants. 69% (n=92) of 

these days resulted in useable data where no more than one sensor per insole was 

malfunctioning. 30% (n=40) of these days resulted in no sensors being damaged at all. 

In the cases where data was not useable, 71% (n=29) were caused by the common 

ground wire either partially or completely disconnecting. The other 29% (n=12) of cases 

where data was not useable were due to an FSR sensor either becoming disconnected 

or degrading in sensitivity. FSR degradation was typically seen later in the week after the 

insole had been used for several days. It was also much more common in participants 

with a greater weight. This degradation resulted in much higher FSR resistances, 

causing lower output values.  

Participants that used the PDI over the course of their workday were asked if 

they had any complaints about wearing the device in/on their shoes. Of 35 participants 

asked to wear the PDI in their natural work environment for a week, most reported not 

noticing the PDI at all after the first few minutes. One participant even completely forgot 

to return the device at the end of their workday, indicating they had forgotten the device 

was on their shoes. A few participants reported that their shoes felt slightly tighter than 

usual due to the PDI but also said that it didn’t bother them too much. No participants 
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had to remove the insole from their shoes before the study was completed indicating that 

the devices were not overly uncomfortable to wear and did not interfere with the normal 

workday activities of the participants. 

4.3.4. Classification Error 

Classification error was investigated in each participant’s first day of participation 

in the study. There is a large spread of participants both over and underestimating 

activity times for all activities. While some participants are nearly perfectly accurate at 

estimating activity times, others misclassified over 4 hours of an eight-hour day. The 

average difference (average of the absolute values of the differences) was used as a 

measure of how far off of the PDI data the self-report estimates were (either 

overestimate or underestimate). It was found that participants were worst at self-

reporting the time spent walking with an average difference of 163% (1.7 hours). 

Participants typically overestimated the time they spent walking as evidenced by the 

number of overestimates compared to underestimates (Table 11). Participants 

underestimated their time standing with an average difference of 79% (1.3 hours). 

Participants were approximately even with regard to overestimating or underestimating 

the time they spent sitting with an average difference of 31% (1.5 hours). Participants 

were not always accurate at reporting the length of their workday, so the sum of the 

underestimates did not always equal the sum of the overestimates.  

When classification error was calculated for all activities and averaged over the 

number of participants, the result was an overall classification error in the self-report 

data of 24%. This means on average; participants incorrectly classify 2.3 hours of their 

workday when asked to self-report their activities. The classification error ranged from 

5% to 56% resulting in a range of 22 minutes to 5.8 hours of misclassified workplace 

postures when self-reported. 
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Table 11 – Results of comparison between self-report data and PDI data. All times are in minutes. 
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Classification error was analyzed for each activity type, standing, walking and 

sitting using a Bland-Altmann plot. The difference data for all three activities was shown 

to be from a normal distribution using a D’agostino – Pearson test for normality allowing 

for Bland-Altman analysis. Participants underestimated their self-reported time spent 

standing at work (mean difference, 45.29; 95% CI, 6.05 to 84.53 minutes) (Figure 35). 

The 95% confidence interval of the mean difference does not overlap the zero-difference 

line; therefore, this is a statistically significant result. 19 participants underestimated their 

standing time while 10 overestimated their standing time. 13 participants were off by 

over an hour when estimating their standing time. There was a positive strong 

statistically significant correlation (r = 0.7; p < 0.001; n = 29) between the self-reported 

standing time (118 ± 114 minutes) and the standing time measured using the PDI (163 ± 

145 minutes) while at work.  

 

  

Figure 35 - Bland-Altman plot for standing classification using self-report data and PDI data. All 
measurements are in minutes. The grey boundary around the mean difference represents the 95% 
confidence interval of the mean difference value. 
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Participants overestimated their self-reported time spent walking at work (mean 

difference, -90.4; 95% CI, -47.38 to -133.42 minutes) (Figure 36). The 95% confidence 

interval of the mean difference does not cross the zero-difference line; therefore, this is a 

statistically significant result. 7 participants underestimated their walking time while 22 

overestimated their walking time. 16 participants were off by over an hour when 

estimating their walking time. There was a positive strong statistically significant 

correlation (r = 0.7; p < 0.001; n = 29) between the self-reported walking time (157 ± 143 

minutes) and the walking time measured using the PDI (66 ± 44 minutes) while at work.  

 

Figure 37 shows the Bland-Altman plot for sitting. The mean difference between 

the self-report data and the PDI data was 28.9 ± 40.3 minutes. This means that when 

self-reporting, as a whole, participants slightly underestimated the amount of time they 

spent sitting throughout the workday. However, since the 95% confidence interval of the 

mean difference slightly overlaps zero, it cannot be said that this is a statistically 

significant observation. 16 participants underestimated their sitting time while 13 

overestimated their sitting time. 16 participants were off by over an hour when estimating 

their sitting time. There is a positive medium statistically significant correlation (r = 0.5; p 

= 0.001; n = 29) between the self-reported sitting time (279 ± 123 minutes) and the 

sitting time measured using the PDI (308 ± 96 minutes) while at work.  

Figure 36 - Bland-Altman plot for walking classification using self-report data and PDI data. All 
measurements are in minutes. The grey boundary around the mean difference represents the 95% 
confidence interval of the mean difference value. 
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4.4. Discussion 

This research demonstrated the feasibility of using the PDI in a workplace setting 

and in doing so uncovered details about the activities of workers to a much higher 

degree of accuracy and temporal resolution than was possible with self-report data. 

While there were some malfunctions of the PDI, this is to be expected with a hand 

assembled prototype device when used for the first time out of the lab. While these 

issues had an impact on the integrity of some of the data collected, the cause was 

primarily due to wiring connections, something that can be easily fixed with a more 

robust wiring design in future versions of the device.  

The other cause of data loss was the degradation of the sensitivity of the FSR. 

This was only apparent in the data from two participants (SID02 and SID09). This 

degradation was likely caused by a combination of applying too much force to the FSRs 

and also applying bending. It was more common for FSR-1,2,3 and 4 to malfunction in 

this way than FSR-5,6 or 7. This is aligned with the findings that the maximum FSR 

value for most participants was found in the data from FSR-1,2,3 or 4 (Table 4). FSRs in 

location 6 which did not break once in the 133 testing days. FSRs placed in location 7 

were also quite resilient and only degraded in 9 cases.  

Figure 37 - Bland-Altman plot for sitting classification using self-report data and PDI data. All measurements 
are in minutes. The grey boundary around the mean difference represents the 95% confidence interval of 
the mean difference value. 
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In future revisions of the PDI design it is recommended that the FSR sensors 

either be placed in locations such as 6 and 7 where they are less likely to degrade in 

sensitivity over time, or to use a different sensor that is more resilient to the forces 

experienced in standing and walking. It is interesting to note that none of the studies that 

used these specific sensors in a shoe insole reported similar issues [41], [43], [66], [75]. 

This issue didn’t arise until the very end of the first day of testing at the earliest, so it is 

likely that the experiments run in previous studies were not tested over the same 

duration or in situations where the user was on their feet most of the day. These 

situations are of critical importance, particularly for studying plantar fasciitis and other 

overuse injuries in the workplace, so these findings are extremely important to consider 

for future revisions to the PDI design. 

The workplace activity times recorded from each participant showed that workers 

who sit for the majority of the day have less variation in their workdays than those who 

are on their feet for a larger portion of the workday. The variation in number of activity 

changes however does not follow the same trend. There were four participants with very 

high variation in their number of activity changes from one day to another. These four 

participants were all nurses who worked two day shifts followed by two night shifts. The 

tasks a nurse completes on a day shift are typically quite different from the tasks 

completed on a night shift when most patients are asleep. This is likely the cause of the 

variation seen in those four particular participants as the percent of workday spent on 

their feet also had the highest standard deviations of all participants (STD in percent of 

workday spent on feet: 13.2%, 14.7%, 18.1% and 20.0%). 

When investigating the difference between the total time spent sitting, standing 

and walking, the results displayed that as the mean amount of time spent walking 

increases, the difference between the PDI data and self-reported data increases (Figure 

36). This suggests that the more time a participant spends walking throughout the day 

the more they will overestimate the time they spent walking. The same relation does not 

appear to be true for sitting or standing. This analysis shows the variability exhibited in 

the difference between self-report data and the actual activity times recorded by the PDI 

and clearly highlights the need for an objective measurement of activity data in the 

workplace.  



91 

4.4.1. Implication for Research and Policy Decisions 

Comparison between the self-report and PDI activity duration data showed the 

importance of using the PDI device in quantifying workplace exposure. Without a device 

to accurately measure activity times, researchers have relied on self-report data, which 

this study has shown to have a wide range of accuracy, with an average classification 

error of 24%. As a result, outcomes from research that depends on self-report data may 

not be completely accurate. While averaged self-reported activity values using a large 

number of participants may converge towards a reasonable representation of activity 

classifications, the higher accuracy measurement of the PDI presents the potential of 

reducing the number of participants required to reach statistical power in future studies.  

The accuracy of self-report data identified in this study is similar to findings from 

previous studies investigating the use of the Occupational Sitting and Physical Activity 

Questionnaire (OSPAQ) for self-reporting activity durations [6],[105]. However, these 

previous studies used expensive or time-consuming technologies and analysis methods 

to accurately record workplace activities [3], [106]. The PDI provides a low-cost and easy 

to use tool to objectively and accurately measure workplace activities for the first time. 

The results of this study show that the PDI can significantly improve on self-

report data. With a device capable of providing accurate activity information with a high 

temporal resolution in a natural environment, researchers will be able to gain a better 

understanding of the precise activities of workers. This study has shown that the amount 

of time spent sitting, standing and walking throughout a workday cannot be accurately 

captured with self-report data, a finding that Waclawski et al. [7] cited as a shortcoming 

of existing research into the etiology of PF [3], [4], [22]. Werner et al. found that a 10% 

increase in the time spent weight bearing throughout the day is correlated with a 52% 

increase in the risk of PF [3]. The average time spent weight bearing in this cohort was 

195.5 minutes, therefore; a 19.5-minute increase in the time spent weight bearing 

throughout the day could increase the risk of PF by 52%. To study a factor with this level 

of sensitivity, a classification accuracy of at least 96% is required to ensure that no more 

than 19.5 minutes out of an eight-hour workday is misclassified. To address increases in 

risk of less than 52%, even greater accuracies are required. Self-report data was shown 

on average to underreport standing by 45.3 minutes and overreport walking by 90.4 

minutes. These misclassifications are enough to prevent research into the relationship 
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between time spent weight bearing and risk of plantar fasciitis, as these are over double 

the increase in time spent weight bearing that has been shown to affect a 52% increase 

in the risk of PF. Because of this shortcoming, organizations such as WorkSafeBC have 

been reluctant to change their policy regarding workers compensation for PF claims [10]. 

By conducting research using the PDI technology there is great potential to affect 

meaningful change to workplace safety policy and to identify the specific risk factors 

related to prolonged standing at work.  

Future research involving tracking time for any of these activities in a workplace 

setting should use a device such as the PDI to quantify activity times, avoiding the 

inaccuracy of self-report data. Previous studies have typically been limited to measuring 

workplace exposure over a single day [3]–[5], [22]. These studies used a combination of 

self-report data, video snapshots, and in-person observation which did not capture the 

entirety of the day. Existing technologies to objectively measure activities are often 

difficult, time consuming or prohibitively expensive to use for more than a portion of a 

workday. Since the PDI is integrated into a worker’s shoe, comes at a low cost, and is 

non-intrusive, it has the capability of being used for multiple days in a row giving 

researchers a clearer understanding of workplace activities. 

4.4.2. Limitations 

The PDI is a technology that is still being developed, meaning there is a chance 

that some of the activity data reported by the PDI may not be completely accurate. While 

the system was calibrated in the workplace for most participants, the collection of data 

over the complete workday was not directly validated. This means there is the potential 

for errors in the day long activity classification. This can be seen in Section 3.3.4 where 

cross subject validity is tested. While the PDI performs quite well on data from a new 

unseen participant, it does still make some errors. Additionally, the data used to calibrate 

the PDI was from a relatively controlled sequence of activities. Natural workplace 

activities may be more sporadic than this calibration data so some misclassification may 

result from this.  
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4.4.3. Natural Environment Validity 

Unlike the calibration sequence, when participants were asked to use the PDI for 

the day while at work they were not supervised and as a result there were no solutions 

available for this data. The purpose of developing the classification algorithm was to 

acquire these solutions. To validate that the algorithm was correctly classifying the 

natural environment data, random samples from each participant were visually 

inspected. A sample of this inspection is shown with the solutions output from the trained 

algorithm overlaid in shades of grey (Figure 38). This classification was produced by the 

SVM algorithm using all seven of the FSRs but no accelerometer. 

By comparing what sitting, standing and walking look like in the calibration data, 

it was possible to visually inspect this data and determine what portions should be 

sitting, standing and walking. In this case, most of the classifications appear to be 

correct. The first 41 seconds show low steady values from the right insole’s FSRs and 

the values from the left insole are all zero, indicating the participant was most likely 

sitting cross legged with one foot completely unweighted. At 41 seconds, the subject 

stood as seen by a sudden spike in values from both the left and right insole. From 42-

50 seconds the participant was likely standing with most of their weight on their left foot 

and then at 50 seconds took a few steps, paused and then walked steadily until 70 

seconds. The subject then stood still until 120 seconds when they walked again, pausing 

briefly at 134 seconds, standing with most of their weight on their right foot. The subject 

then walked again until 144 seconds. The section between 144 seconds and 158 

seconds was classified as sitting however may not in fact be sitting. In that time period 

the 4 sensors in the toe of the insole were showing high outputs and the three heel 

sensors were showing little or no output meaning most of the participant’s weight was in 

their forefoot. This could either mean the participant was standing on their toes, leaning 

forwards, leaning against a high stool or some other posture that would have resulted in 

that output. While standing on toes and sitting on the edge of a high stool produced a 

similar loading pattern when re-created in a lab environment, there is no way to know for 

certain what this particular participant was doing at this moment other than knowing that 

there was a significant amount of force applied to the forefoot. Next, the participant 

walked with a brief pause at 168 seconds and then stood with relatively evenly 

distributed weight from 192 seconds to 211 seconds. Finally, the participant took a few 

steps before sitting down until the end of the snapshot. While there is one 14 second 
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section of data (~6%) that could be questioned, the rest of the 230 second snapshot 

appeared to be correctly classified. Similar results were found when visually inspecting 

other random samples of natural environment data from other subjects suggesting that 

the SVM algorithm using just FSRs was correctly classifying natural activity data. 
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Figure 38 - Natural environment data recorded from one participant. All 7 FSRs are used in each shoe but no accelerometer is 
used for this classification. Solutions from the SVM classification algorithm are overlaid on top of the raw FSR signals showing the 
predicted activity. White is sitting, light grey is standing, and dark grey is walking. 
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4.5. Future Work 

This research clearly shows the variability present in self-reported data. This 

leads to the recommendation of using a tool such as the PDI to objectively measure 

activities at work when studying conditions such as PF. That being said, the PDI does 

still have some limitations, particularly around its use in natural environments as 

discussed in Section 4.4.3. Future work can be done to improve on this shortcoming by 

obtaining training data from natural environment scenarios. This could be done by video 

recording participants while they are performing their normal workplace tasks. This 

would be a more involved process and would likely not be possible in many workplaces 

due to confidentiality and privacy concerns, however, would provide valuable data that 

has the potential to significantly improve the natural environment classification accuracy 

of the PDI.  

Alternatively, the PDI could be trained for each specific workplace to include job 

relevant activities such as climbing ladders for construction workers, sitting in a car for 

police officers or truck drivers, or bending over and heavy lifting for warehouse staff. 

Training the algorithm for the activities associated with a particular workplace could help 

to further improve the accuracy of the PDI. If conducting research with many participants 

in one workplace this would be a more feasible methodology than if conducting research 

across multiple workplaces.  

Future designs revisions of the PDI are necessary before deployment in large 

scale population studies. The current design has some shortcomings including the wiring 

design and larger than necessary form factor. Both could be addressed to create a more 

reliable and self-sufficient device that participants could take home with them for weeks 

at a time without researcher involvement.  

An improved PDI could be used to characterize both total exposure and 

variations in exposure throughout the day for different professions. It could additionally 

be used to redo other exposure studies that previously used self-report data as a 

measure of activity classification to provide more objective results. 
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Chapter 5.  
 
Effects of Workplace Standing on Plantar Foot Pain 

5.1. Introduction 

It is estimated that approximately 10-24% of the global population will be 

impacted by foot pain at some point in their lives [14], [15]. Studies have shown that this 

number rises substantially in individuals subjected to prolonged periods of weight 

bearing (standing or walking) [3]–[5]. This can be seen in retail workers where 50% have 

reported foot pain during work [16]. Other occupations where weight bearing is prevalent 

have reported similar prevalence of foot pain including assembly plant workers (69% 

[17]), and nurses (55 - 74% [18], [19]). While certain working populations have a higher 

prevalence of PF and foot pain it is not universal in such workplaces. It is therefore 

important to understand how workplace weight bearing interacts with other risk factors 

such as BMI, sex, age etc. to affect the prevalence of PF. Recent research has shown 

that static loading in tissues, such as that experienced in the plantar fascia when 

standing, can detrimental impacts on tissue structural integrity and health [56]. However 

the link between tissue loading and PF and generalized foot pain remains inconclusive 

largely due to a lack of objective evidence [7].  

PF is characterized as degeneration induced by repetitive microtears in the 

plantar fascia [20]. PF and general plantar foot pain have been associated with multiple 

different factors. Older adults, particularly females have been found to have a higher 

prevalence of PF [107]. Increased BMI has commonly been linked to the occurrence of 

PF [4], [22]. Other factors that have shown some degree of correlation with PF include 

time spent walking [4], walking on hard surfaces [3], reduced ankle dorsiflexion [22], and 

calf and hamstring tightness [21]. While factors such as age, BMI and ankle dorsiflexion 

can be studied very accurately in relation to PF, it is much more difficult to determine the 

exact time that a participant spends sitting, standing or walking.  

Much of the existing research attempting to link workplace activities and PF has 

used self-reported workplace activity durations [3], [5], [22]. Self-reported activities are 

known to have errors up to 24% and lack the temporal resolution to distinguish the 

frequency of changes in posture throughout the day. One study has been done with 
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multiple brief activity observations throughout the workday and showed increased 

changes in foot pain thresholds and higher levels of discomfort in workers who stood 

more throughout the day [108]. However, brief observations still ignore both the overall 

exposure and changes in activities throughout the day. Werner et al. used a combination 

of observation, video recording and pedometers to determine activity data [3]. This led to 

a much more complete and accurate dataset but still did not completely capture each 

participant’s activities. It is hypothesized that objective measurement of workers 

activities throughout their entire day / week with a high temporal resolution, will lead to a 

clear link between particular workplace activities and PF and foot pain. 

The lack of objective and accurate workplace activity measurements in the 

previous research has meant that the link between workplace activities and prevalence 

of PF cannot be conclusively drawn. The long-term objective of this research is to define 

the relationship between workplace exposure and PF. The specific objective of this 

chapter is to investigate correlations between foot pain and specific workplace activities 

when the activities are measured objectively with high temporal resolution (< 1 sec). This 

preliminary study will help to lay the groundwork for larger population studies including 

symptomatic and control groups. 

5.2. Methods 

34 participants were recruited to participate in this study over the course of a 

standard work week. Inclusion / exclusion criteria and demographics of participants is 

described in Section 3.2.1 as the same participant group was used throughout this 

thesis. The duration and location of work varied for all participants. Participants wore 

lace up shoes of their choice to accommodate the PDI. At the end of each workday, 

participants were asked to fill out the Foot and Ankle Disability Index (FADI) form 

(Appendix D). At the end of the first workday participants were asked to complete a 

demographic survey (Appendix E). 

5.2.1. Activity Classification 

The data from the PDI consisted of outputs from the FSRs in the insole and the 

accelerometer. This data was broken into samples that resulted in a temporal resolution 

of approximately 0.9s. Each sample showed a snapshot of the participant’s activity. The 
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data from the calibration sequence, along with the solutions attained from the video 

analysis (Section 3.2.4) were used to train a machine learning algorithm to classify each 

of these snapshots as either sitting, standing or walking (Chapter 3). The optimized SVM 

algorithm using all sensors with an accuracy of 99.31% was used to classify each 

participant’s activities throughout their workday as sitting, standing or walking.  

5.2.2. Pain Measurement 

The dependent variable in this study is the level of foot pain reported by the 

participant each day. Foot pain was measured using the FADI form. Specifically, 

questions 23-26 ask participants to rank their general level of pain, pain at rest, pain 

during normal activity, and pain first thing in the morning on a 5-point scale from ‘1 - no 

pain’ to ‘5 - unbearable’. Participants were asked to complete a FADI form at the end of 

each workday. 

Since the maximum value of foot pain reported in this study was two, the 

presence of foot pain was a binary variable with either some pain being reported, or no 

pain being reported. To simplify the analysis, an answer of above one on any of the 

questions regarding foot pain in the FADI form (questions 23-26) was deemed as having 

foot pain. Therefore; each day of data was classified as either having foot pain or not 

having foot pain.  

5.2.3. Data analysis 

Data from each participant’s work week wearing the PDI was used in this 

analysis, meaning each participant contributed 2-5 days of data. Activity times for each 

day were analyzed in multiple ways. The first was the total amount of time that a 

participant spent doing each activity (sitting, standing and walking) throughout the day. 

This number is a good representation of overall activity exposure. Next, activities were 

grouped as time spent weight-bearing (standing or walking) and time spent not weight 

bearing. Activity data was additionally sorted into bins of time spent doing one activity 

before switching to a different activity. The bins selected were based on tertiles for each 

activity from all participants combined. Activities with a duration less than the lower cut-

off of 5 seconds were removed from this analysis to remove any small incorrectly 

classified pieces of activity data that may cause confusing results (see section 4.4.3).  
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Each participant’s multiple days of data was combined in two different ways to 

produce independent datapoints. The first method was averaging in which results for 

each metric were summed and divided by the number of days. This method provides an 

average workday exposure. This method was chosen to enable direct comparison to 

existing results obtained using subjective methods for workplace activity classification 

[3], [4]. Since averaging often removes outliers, and continuous exposure may not be the 

only cause of foot pain, a second analysis was conducted using data from each 

participant’s day with the highest exposure to weight bearing activities (sum of standing 

and walking time). 

5.2.4. Statistical Methods 

Univariate analysis using t-tests (for continuous variables) or fisher exact tests 

(for nominal variables) was completed comparing participant demographics and job 

characteristics between participants with and without foot pain. Multivariable logistic 

regression using normalized data was used to investigate correlations between 

demographic factors (age, BMI, gender, dominant foot, shoe size) workplace loading 

and the presence of foot pain.  

5.3. Results 

5.3.1. Participants 

Data from a total of 34 participants was collected for this analysis. Device 

malfunctions inherent in using a hand-made prototype device occurred for five of these 

participants so their data was excluded leaving data from 29 participants for use in this 

study. The age of the participants was 32.6 ± 9.4 years (mean ± standard deviation). 

There were 21 females and 8 males, with a BMI of 22.9 ± 2.9 (Table 10). A total of 14 

participants reported having foot pain (maximum FADI score of two, meaning mild 

average daily foot pain) and 15 reported no foot pain throughout the day.  
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A boxplot was used to visually analyze the data from all of the 92 available 

datapoints (Figure 39). This plot illustrates the relationships between sitting, standing 

and walking and the presence of foot pain. A trend of correlation between total time 

spent standing throughout the workday and foot pain is clearly seen in this plot while 

time spent walking has a similar but less dramatic difference. Time spent sitting appears 

to have no correlation with the presence of foot pain. 

5.3.2. Averaged Days 

For this portion of analysis, activity durations were averaged across all days 

recorded for a participant. This represents the average exposure for each participant. 

Results of the univariate analysis are shown in Table 11. Factors with p-values less than 

0.05 were considered significantly different between the pain and no-pain groups. Time 

spent standing (p = 0.01), time spent walking (p = 0.02), workday duration (p = 0.01), 

and time spent weight bearing (p = 0.01) were significantly different between the pain 

and no-pain groups. This analysis does not account for relationships that may exist 

between factors.  

Figure 39 - Boxplot including all available data. Each activity is divided into pain and no-pain data and 
plotted as time spent doing each activity. 
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Table 12 - Results of univariate analysis for an average day showing a comparison of factors between 
subjects with and without foot pain 

Factor 

Subjects with foot 
pain (n = 14) 
Mean (STD) 

Subjects without 
foot pain (n = 15) 

Mean (STD) P 
Demographics    
Age (years) 33.5 (10.2) 31.7 (9.2) 0.63 
BMI  23.2 (3.3) 22.6 (2.5) 0.54 
Gender 12 Female / 2 Male 9 Female / 6 Male 0.21 
Dominant foot 1 Left / 13 Right 0 Left / 15 Right 0.48 
Shoe size (US) 7.5 (1.5) 8 (1.5) 0.48 
    
Job Characteristics    
Time sitting (minutes) 315.4 (97.1) 337.5 (67.7) 0.48 
Time standing (minutes) 216.3 (139.5) 94.4 (100.7) 0.01 
Time walking (minutes) 79.9 (41.8) 46.3 (31.5) 0.02 
Workday duration (minutes) 611.6 (134.6) 478.2 (124.3) 0.01 
Time weight bearing (minutes) 296.2 (178.4) 140.7 (128.7) 0.01 
    
Activity Breakdown    
Sit 5-25 sec. (count) 23.2 (29.0) 15.1 (16.3) 0.36 
Sit over 146 sec. (count) 18.8 (6.7) 18.4 (7.8) 0.87 
Stand 5-19 sec. (count) 59.2 (36.2) 31.8 (26.1) 0.03 
Stand over 53 sec. (count) 71.2 (50.2) 31.3 (36.5) 0.02 
Walk 5-12 sec. (count) 65.1 (50.6) 24.2 (28.5) 0.01 
Walk over 24 sec. (count) 61.2 (42.4) 28.9 (27.8) 0.02 
Activity transitions (count) 438.3 (267.8) 232.1 (192.8) 0.02 

 
The activity breakdown data shows the average number of times that 

participant’s activities fell into each of the bins. A participant that stood for 75 seconds 

and then walked for 8 seconds would add one count to the ‘stand over 53 sec.’ bin and 

one count to the ‘walk 5-12 sec.’ bin. This analysis is useful for looking into possible 

relationships between the duration of an activity, not just the sum of all activities 

throughout the day. This analysis showed that the duration of time sitting did not have a 

strong correlation with the presence of pain. While standing for both short and long 

periods of time had strong correlations with the presence of foot pain, standing for longer 

periods of time had a higher correlation with the presence of foot pain (p = 0.02 vs. p = 

0.03). The opposite relationship was true for walking. Walking for short periods of time 
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was significantly correlated with the presence of foot pain (p = 0.01) and while walking 

for longer periods of time was still correlated with the presence of foot pain the 

correlation was slightly weaker (p = 0.02).  

A multivariate logistic regression model using normalized data was built 

beginning with factors that had univariate p-values less than 0.25 and any additional 

factors that were deemed clinically relevant [109]. Time weight bearing was highly 

correlated with time standing and time walking (it is the sum of the two) and was 

therefore removed from the list of factors. BMI was included as it has widely been 

considered a factor related to foot pain [7]. The resulting factors used were BMI, gender, 

time standing, time walking, workday duration, stand 5-19s, stand over 53s, walk 5-12s, 

walk over 24s, and activity transitions. Factors were systematically removed based on 

their Wald statistic p-value indicating contribution to the model. The factor with the 

highest p-value was removed, the model re-fitted, and the process repeated until the p-

value of the likelihood ratio test for the model was minimized. The order of removal of 

variables from first to last removed was activity changes, stand 5-19s, gender, walk over 

24s, time walking, day duration, and BMI. The result of this analysis was a model with 

three factors; time standing, standing over 53s, and walking for 5-12s that was 

significantly correlated with the presence of foot pain (p = 0.009). When added into the 

optimized three factor model, none of the removed factors further improved the model. 

Each of the three factors were checked to confirm that the logit response varied linearly 

with the factor.  

 This final model displays the relative contributions of the three factors that 

contribute the most to the model (Table 13). None of the results are statistically 

significant on their own, however the model created with these three factors is 

statistically significant (p = 0.009) and it can therefore be said that total time spent 

standing, number of time a participant stood for more the 53 seconds, and the number of 

times a participant walked for 5-12 seconds are collectively correlated with the presence 

of foot pain.  
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Table 13 - Results of multivariable logistic regression for the average day with respect to the presence of 
foot pain. 

   95% Confidence Interval 
Factor Odds Ratio p-value 2.5% 97.5% 
Time standing 17.89 0.06 0.90 356.35 
Stand over 53 sec. 0.05 0.06 0.00 1.13 
Walk 5-12 sec. 1.96 0.14 0.80 4.83 
Likelihood ratio test p-value = 0.009 
Note: Odds ratio is based on a 10% increase in the factor value 

5.3.3. Highest Exposure Day 

For this portion of analysis, activity durations were taken from the day in which 

the participant spent the most time on their feet. This represents the participants highest 

exposure to foot loading throughout a typical week. Univariate analysis was only 

completed for the activity related factors since demographic factors did not change 

(Table 14). Factors with p-values less than 0.05 were considered significantly different 

between the pain and no-pain groups. Time spent standing (p = 0.02), workday duration 

(p = 0.01), and time spent weight bearing (p = 0.03) were significantly different between 

the pain and no-pain groups. This analysis does not account for relationships that may 

exist between factors.  

Table 14 - Results of univariate analysis for highest exposure day showing a comparison of factors between 
subjects with and without foot pain 

Factor 

Subjects with foot 
pain (n = 14) 
Mean (STD) 

Subjects without 
foot pain (n = 15) 

Mean (STD) P 
Job Characteristics    
Time sitting (minutes) 268.3 (90.6) 314.5 (78.5) 0.15 
Time standing (minutes) 254.9 (152.5) 128.5 (116.5) 0.02 
Time walking (minutes) 89.2 (45.9) 61.3 (39.6) 0.09 
Workday duration (minutes) 612.46 (129.5) 504.3 (129.8) 0.01 
Time weight bearing 
(minutes) 

296.2 (178.4) 140.7 (128.7) 0.03 

    
Activity Breakdown    
Sit 5-25 sec. (count) 22.8 (25.7) 16.2 (14.0) 0.38 
Sit over 146 sec. (count) 17.0 (6.6) 18.8 (8.3) 0.52 
Stand 5-19 sec. (count) 61.5 (40.9) 43.2 (30.6) 0.18 
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Stand over 53 sec. (count) 80.3 (57.0) 42.5 (40.1) 0.05 
Walk 5-12 sec. (count) 68.9 (55.0) 36.4 (38.6) 0.07 
Walk over 24 sec. (count) 64.9 (37.1) 44.9 (29.1) 0.11 
Activity transitions (count) 467.5 (304.1) 305.5 (213.2) 0.10 

 
The activity breakdown analysis showed that the duration of time was not 

statistically correlated with the presence of pain in any of the activities.  

A multivariate logistic regression model was built using the same process as 

outlined above with the final number of variables being the combination that optimized 

overall model likelihood ratio test p-value. The order of removal of variables from first to 

last removed was day duration, walk over 24s, walk 5-12s, gender, time walking, BMI, 

stand 5-19s, and activity changes. The result of this analysis was a model that was 

significantly correlated with the presence of foot pain (p = 0.01) with two factors; time 

standing, and the number of times spent standing over 53s.  

 This final model displays the relative contributions of the two factors that 

contribute the most to the model (Table 15). None of the results are statistically 

significant on their own, however the model created with these two factors is statistically 

significant (p = 0.01) and it can therefore be said that time spent standing and times a 

participant stands for over 53 seconds are collectively correlated with the presence of 

foot pain.  

Table 15 - Results of multivariable logistic regression for highest exposure day with respect to the presence 
of foot pain. 

   95% Confidence Interval 
Factor Odds Ratio p-value 2.5% 97.5% 
Time standing 4.60 0.05 1.00 21.27 
Stand over 53 sec. 0.27 0.10 0.06 1.28 
Likelihood ratio test p-value = 0.01 
Note: Odds ratio is based on a 10% increase in the factor value 
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5.4. Discussion 

The results of univariate correlation analysis show correlations between foot pain 

and factors including time spent standing / weight bearing throughout the workday and 

the duration of the workday. While these factors alone show statistically significant 

correlation, it is difficult to draw conclusions about causation since there is likely 

collinearity between many of the factors. Most notably, participants who had longer 

workday durations (typically nurses in this study) were also on their feet for more of the 

day. There were no participants to use as a control group that were sitting for the 

majority of the day and had a similarly long workday.  

Time spent weight bearing throughout the workday and its effect on foot pain and 

PF has been researched multiple times finding that a 10% increase in the time standing 

and / or walking increases the risk of PF by 52% [3] and that spending the majority of the 

workday on one’s feet increases the odds of presenting with PF by 3.6x [4]. Additionally 

Gill et al. found that a correlation exists between PF and activity level [5]. However, the 

methods used in these studies to determine the time a participant spent on their feet was 

not sufficiently accurate as previously discussed. By using the PDI, this study was able 

to accurately record a participant’s workplace activities with a temporal resolution of less 

than one second and therefore obtain a clearer picture of the relationship between 

weight bearing and foot pain. The PDI allowed for investigation into activity intervals as 

small as five seconds. Based on the significance of these factors in the univariate 

analysis and two of these activity intervals appearing in the multivariable logistic 

regression this appears to be an important factor that is not possible to capture using 

self-reported total activity durations. The univariate analysis using an averaged day 

showed a strong relationship between an increased time spent weight bearing at work 

and the presence of foot pain (p = 0.01). Total time spent standing throughout the 

workday and time standing for over 53 seconds were both important in the multivariable 

logistic regression model for each analysis method, furthering the case for the suspected 

link between weight bearing and foot pain. This is a similar finding to previous research 

[3]–[5]; however, the improved methods used in this study removed much of the 

uncertainty identified in previous research [7]. Previous research [3]–[5] showed BMI to 

have an impact on the prevalence of PF, particularly in participants with BMI over 35 or 

weight over 200lbs. This same result was not found to be strongly correlated with the 
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presence of foot pain (p = 0.54). However, the relatively small sample size and exclusion 

of participants with a BMI over 30 likely had an impact on this lack of correlation. 

The results from the analysis using averaged days and highest exposure day 

provided similar trends but different overall results. In the univariate analysis, only total 

time standing, workday duration and total time weight bearing were statistically 

significant in both models. The activity breakdown values were quite different between 

the two analysis methods. The lower p-values across most factors in the averaged days 

method indicates that it is a better method of investigation when correlating these factors 

to foot pain.  

Total time standing throughout the workday was statistically significant when 

using both analysis methods for univariate analysis (averaging and highest exposure, p 

= 0.01 and 0.02 respectively) and was the most important factor with the lowest p-value 

using both analysis methods for multivariable logistic regression (OR = 17.89, p = 0.06, 

OR = 4.60, p = 0.05). This indicates that the total time spent standing throughout the 

workday is an important factor associated with the risk of foot pain. 

The multivariable logistic regression analysis shoed that total time standing, and 

number of times spent standing over the course of a workday had impacts on the 

prevalence of foot pain but did not show statistically significant results for individual 

factor impact. This is likely due to the relatively small number of participants (n = 29) and 

the absence of any foot pain greater than mild.  

5.4.1. Limitations 

This study was designed to be a pilot study laying the groundwork for future 

research using the PDI device. As such, there are some limitations to this study. The 

major limitation of this study is that data was only collected from relatively healthy 

participants. While some participants reported pain, it was not severe pain, and none 

were diagnosed with any foot pain conditions such as Plantar Fasciitis. The relatively 

small number of participants in this study is a limitation that has an impact on the ability 

to draw statistical significance from the resulting data. 

No data was collected using the insole outside of work hours. Activities outside of 

work could impact the participant’s level of pain. To begin to capture this correlation, 
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participants were asked to self-report their activities outside of work. Each participant 

only wore the device for up to five days. While this gave a good representation of their 

typical workweek, their activities may vary week to week and may not reflect long term 

exposure risk. A long-term study would be able to pick up these details and may also be 

able to record the onset of foot pain. The instrumented insoles used in this study are a 

novel technology. While the classification of activities produced by this device is quite 

good, it is not perfect. This can especially be seen in activities such as standing on your 

toes where the device could benefit from further training data. 

5.5. Future Work 

This work was intended to lay the groundwork for future large population studies 

using an improved PDI; therefore, one of the most important directions for future work is 

to collect data from more participants, specifically ones with strong symptoms of foot 

pain such as diagnosed plantar fasciitis. It is also important to ensure a wide range of 

characteristics such as age, BMI, and workday duration are included in the study 

population for both symptomatic and healthy participants. Such a dataset will enable a 

much more thorough statistical analysis of factors leading to foot pain.  

The FADI form used to determine a participant’s foot pain was not an ideal 

method as it asked about only the average level of pain throughout the workday on a 

scale of 1-5. This provided a good overall picture, but a participant could have had 

severe foot pain at one instance and then decided to sit down, relieving their foot pain for 

the rest of the day. This would have likely resulted in a relatively low FADI score which 

doesn’t show the complete picture of the participant’s day. A more thorough method of 

determining foot pain would be to use the FADI form but additionally ask what the worst 

foot pain experienced throughout the day was on a scale of 1-10. This gives more 

resolution to the pain measurement and gives a better picture of how pain was 

experienced throughout the day. Additionally, participants should be asked if they did 

anything throughout the day to alleviate their foot pain.  

This study excluded any participants that were currently using orthotics while at 

work. This was done because the participant would have to remove their orthotics from 

their shoes to use the PDI which may have negative impacts on their foot health. This 

excluded many participants that were actively managing foot pain, a group that is 
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important to include in this research. Future studies will need to revisit this issue and 

devise a method of measuring activities with orthotics still in the participant’s shoes or 

showing that removing the orthotics while using the PDI will not have negative health 

implications for the participant. One method of doing this may be to integrate the PDI 

with a custom orthotic design that can provide the same support as the participant’s 

existing orthotics. 
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Chapter 6.  
 
Contributions and Conclusions 

6.1. Contributions 

This work was motivated by a need for an objective measure of workplace 

activities to help better understand the etiology of PF highlighted by a report 

commissioned by WorkSafeBC [7]. Such a device, if used in a large population study 

has the potential to make our workplaces safer. This research has laid the groundwork 

for such a study by designing a device to collect data, a method of converting that data 

in useable metrics, and proof that such a design can be used outside of the lab. 

First, a novel, low-cost, easy to use, unobtrusive highly functioning prototype 

device was designed and tested in a workplace setting. While placing sensors in an 

insole has certainly been done before, this work optimized the sensor locations for 

activity classification, minimized sampling frequency therefore reducing power 

consumption, and proved that such a device can be used in a workplace setting.  

Next, a classification algorithm capable of classifying activity data at an accuracy 

of 99.31% (98.3% using LOOCV) was designed. Previous research has shown that 

activity classification is possible using instrumented shoe insoles in a controlled lab 

environment with a small number of participants [30], [40], [70], [71]. In contrast, this 

algorithm was designed and tested using data collected from 21 participants wearing 

their own shoes in varying workplace environments, something that has not been done 

before. This is a necessary step towards showing feasibility of this device in a natural 

workplace environment.  

The results from sensor location optimization showed that FSR-6 and FSR-7 

were among the most important for activity classification. This coupled with the finding 

that FSRs at these locations were the least likely to break provides a valuable design 

finding for future revisions to the PDI design. By placing sensors at these locations, the 

design can be more robust while still maintaining its activity classification accuracy. 
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Finally, results from the 29 participants who were successfully monitored in their 

workplace over the course of a week show that total time spent standing and time spent 

standing for over 53 seconds are important factors associated with the presence of foot 

pain.  

6.2. Limitations of the Research 

Although limitations have been discussed throughout this work, a number of 

overarching limitations are worth mentioning. First, the data collected in the workplace 

setting was completely unsupervised and therefore no answers exist. While every 

attempt was made to interpret the data (visual inspection, recreation of activities, 

algorithm activity detection) there may still be incorrectly classified portions of data that 

may have an impact on the results found in Chapter 4 and Chapter 5. Additionally, the 

activities captured in the ‘algorithm training’ component of this research do not 

encompass all possible workplace activities. Training the algorithm with a larger dataset 

including more variety of activities could result in a more robust classification of 

activities. While data from more participants (n = 21) was used to train the activity 

classification algorithm than in previous work using instrumented shoe insoles for activity 

classification [30], [40], [70], [71], the limited number means that the algorithm may not 

be able to generalize to an entire population. Finally, there were no participants that 

experienced greater than mild foot pain throughout the course of this study. Future 

studies including symptomatic participants will be better equipped to conclusively 

determine correlation between workplace activities and PF. 

6.3. Future Research Directions 

While the PDI has been developed as a highly functioning prototype there are 

still several aspects that can be improved upon to prepare the device for future research 

applications. These include: 

1. Sensor longevity: There were a number of instances where the Interlink 

FSR 402 sensors chosen for this device either came disconnected or 

degraded in sensitivity over time. While understandable in a prototype device, 

this must be improved upon before use in a population study. Suggestions for 

this improvement include investigating alternative sensors such as capacitive 
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sensors, integrating the wiring and sensors all into one custom flexible 

electronic component, or decreasing the sensor area to reduce the total 

pressure applied to it. 

2. Natural environment training: The activity classification algorithm 

developed could potentially benefit from training data involving more natural 

environment activities such as standing on toes, crouching or climbing 

ladders. 

3. Is activity the right thing to classify?: The results of this research have led 

to the question of whether classifying activities as sitting, standing or walking 

is an appropriate method when investigating workplace exposure in relation 

to foot pain. A more appropriate measure may the total pressure applied to 

the foot or some other measure of tissue stress experienced in the 

workplace.  

4. Miniaturization of the PDI: While participants were overall very receptive to 

the PDI and typically reported not noticing it by the end of the day, most did 

want to see something with a sleeker, less noticeable design. In particular the 

components housed in the box attached to the outside of the shoe could be 

miniaturized and moved to inside of the insole. 

6.4. Significance 

The work completed in this thesis has built upon previous research identifying 

potential locations for sensors in an instrumented insole to produce these most 

significant outcomes: 

1. Developing the PID, a low-cost easy to use technology for objectively 

measuring workplace activities.  

2. Designing an algorithm to accurately classify workplace activities from the 

data collected by the PDI. 
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3. Using the PDI in a 34 person out-of-lab research study showing the efficacy 

of the device and obtain preliminary results linking workplace standing to the 

presence of foot pain. 

As a whole these outcomes lay a strong foundation to build upon in future 

population studies using the PDI to better understand the causes of foot pain. 
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This work is funded by the Natural Sciences and Engineering Research Council (NSERC) through a 

Canadian Graduate Scholarships-Master’s Program scholarship titled “Development of an 

algorithm to accurately interpret signals from an instrumented insole to determine if a wearer is 

sitting, walking or standing.” and by WorkSafeBC through grant number: WCB RS2017-IG17 

titled “Feet First: Instrumented Insoles to Examine Workplace Injury Risk.” 
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Introduction 
- Introduce yourself as an investigator in this study 
- Explain the study purpose and rationale to the participant 
- Introduce the participant to the Posture Differentiating Insole (PDI) and briefly explain 

how it works. 
- Describe and demonstrate the procedure to be performed. (Figure below may be 

helpful) 

- Outline the risks and benefits of the study.  
- Explain how the data collected will be used, stored, shared, and destroyed 
- Explain that their participation is voluntary and that they can withdraw their consent at 

any time without reason. They can also ask to withdraw their data from the study at any 
time. 

Consent Forms 
- Ask if they have read the Participant Information and Consent Form, if not have them 

read it. 
- Ask if there are any questions and answer them to the best of your ability 
- Ask them to thoroughly read the consent pages and if they agree, sign and date each 

page. Do not proceed until this is completed. 
- Record the participant’s unique ID number on their consent form and store it in a safe 

location to be immediately locked in Dr. Sparrey’s office once back at SFU. 

Equip Participant with the PDI 
- Ask the participant to remove their shoes and take the insoles out of them if possible. 
- Attach the PDI to the shoelaces using the clip. 
- Insert the insole into the shoe. 
- Repeat for the opposite shoe. 
- Get participant to put the shoes back on and make sure that the cables etc. are sitting 

neatly and won’t get caught on anything. 
- Adjust shoelaces if necessary, to ensure the shoes are comfortable for the participant. 
- Outline the potential risks of the device, particularly the battery and explain what signs 

the participant should look for if they believe that something isn’t working correctly. 
- Inform participant that the device should blink once every ~15 seconds when 

functioning correctly. 
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- Instruct the participant to immediately remove their shoe with the device on it and to 
call a study administrator should the device malfunction or if they have any hesitation 
whatsoever. 

- Show the participant how to remove the device from their shoes if they need to do so 
throughout the day and let them know that this is okay to do if any situation should 
arise where they need to remove the devices. 

Personal Profile 
- The personal profile form is to be filled out as part of the video calibration sequence but 

is to be introduced prior to the sequence beginning. 
- At the start of the video calibration sequence give the participant the personal profile 

form and introduce it as a form intended to gather personal health metrics relevant to 
the study and state that it will not be directly identifying.  

- Note that if they feel uncomfortable or do not wish to disclose any information they are 
not required to do so. 

- Once completed, store the form in a safe location (not in the same file as the consent 
form) to be immediately locked in a cabinet in the NeuroSpine lab once back at SFU. 

Video Calibration Sequence 
- If the participant has consented to be video recorded, ask participant if they have 

approximately 20 minutes to participate in the calibration sequence right away or if they 
would like to schedule a better time for it. (it should be completed before the end of the 
trial, ideally earlier on to avoid any device malfunction issues) 

o If they cannot complete this step right now, skip to ‘Data Collection Period’ 
o Note that if they would prefer they can come to our lab in Surrey or ICORD to 

complete this step. 
- Begin by identifying a place with approximately 10m of space to walk in a straight line 

back and forth along with a chair and a desk or counter.  
o Note that this area should be away from any sensitive work material or 

personnel so that you will not accidentally capture them on video. 
- Set up the video camera in a location that will only record the participant’s lower body 

but will still record the entire sequence involving sitting in the chair, standing and 
walking back and forth. Arrange the area so that the desk or counter can be reached 
from the chair and from a standing position near the chair with the 10m walkway 
starting at the chair. 

o Note that you need to video the light on the PDI when the device turns on which 
may require you to temporarily move the video camera. 

- Inform the participant of the procedure listed below 
- Follow the procedure listed below 

Procedure: 
1. Turn on the video camera 
2. Turn on each device (be sure to capture the light on video as each device turns on) 
3. Prompt the participants to do the following activities in this order:  
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a. Sit - approximately 1 minute 
b. Stand - approximately 1 minute 
c. Walk - approximately 1 minute (walk back and forth in area at least 10m long) 
d. Stand - approximately 1 minute 
e. Sit - approximately 1 minute 
f. Walk - approximately 1 minute 
g. Sit - approximately 1 minute 
h. Stand with most of weight on one foot – approximately 30 seconds 
i. Stand with most of weight on other foot – approximately 30 seconds 
j. Walk to a counter or table 
k. Fill out the participant information form at a table or counter while standing 

(distracted standing) – approximately 8-12 minutes 
l. Walk back to chair 
m. Sit with feet outstretched - approximately 1 minute 
n. Sit with feet tucked under chair - approximately 1 minute 
o. Sit while fidgeting feet, tapping toes etc. - approximately 30 seconds 
p. Sit in their favourite position - approximately 30 seconds 

- Once the above procedure is complete, turn off the video camera. 
- Turn the devices off so that the calibration sequence is captured on its own file. 
- Once they have completed the video calibration sequence ask the participant if it is okay 

to examine and take pictures of their feet to determine their Foot Posture Index (FPI). 
This involves taking off their shoes and socks and standing on a hard surface. 

- If they agree determine their FPI and record it on the Personal Profile form along with 
their participant ID.  

- If the participant agrees, take pictures of the back, back left, back right, front, front left, 
and front right (6 total pictures) 

- If the participant agrees, take pictures of their shoes. A picture of the soles and a picture 
of them in normal sitting position (2 total pictures) 

Data Collection Period 
- Turn the devices on. 
- Instruct the participant to go about their normal workday, trying to pay as little 

attention to the devices as possible. 
- Remind them that should there be any issues to please call a study administrator and 

make sure that they have your contact information.  
- Set up a time to return to their place of work and remove the device at the end of the 

day. 

Removal of PDI System and Questionnaires 
- Return to the participants place of work at the agreed upon time. 
- Ask the participant to remove their shoes. 
- Turn the PDI off to finish recording for the day and remove it from the shoes, replacing 

the original insoles. 
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o Alternatively, if the participant does not need the shoes for the remainder of 
the evening the device can remain installed on the shoes. Just remove the 
battery to be charged. 

- Take the device with you to be charged overnight. 
- Ask the participant to complete the following three forms 

o EQ5D 
o FADI 
o End-of-Day Questionnaire 

- Ask if the participant has any questions or concerns and answer them to the best of 
your ability. 

- Set up a time to meet the participant the following morning. 

Each Additional Day 
- Meet the participant at the agreed upon time in the morning.  
- Install the device into each shoe (or if just the battery was removed install the charged 

battery) 
- Follow the steps outlined in ‘Data Collection Period’ 
- Set up a time to return at the end of the day 
- Return at the end of the day and follow the steps in ‘Removal of PDI System and 

Questionnaire’ 
- Repeat for one week.  

Final Debriefing 
- If this is the last day of the trial, finish removing the devices ensuring that all parts are 

taken with you. 
- Give the participant the $100 reimbursement for their participation in the trial, ensuring 

that they sign a receipt saying that you gave them the reimbursement. 
- Ask the participant if they have any outstanding questions and ensure that they have 

your contact information should they need to get a hold of you in the future. 
- Explain that once results are available they can contact you to get results from the 

study. 
- Thank them for their time and effort. 
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Appendix B.   
 
Insole Fabrication Procedure 
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Device Fabrication Procedure 
 
Refinement and Deployment of a Low-Cost Device to Classify Human Workplace 

Activities from Foot Pressure Measures 
 

School of Mechatronic Systems Engineering 

250-13450 102 Avenue, Surrey, BC, V3T 0A3 

This work is funded by the Natural Sciences and Engineering Research Council (NSERC) through a 

Canadian Graduate Scholarships-Master’s Program scholarship titled “Development of an 

algorithm to accurately interpret signals from an instrumented insole to determine if a wearer is 

sitting, walking or standing.” and by WorkSafeBC through grant number: WCB RS2017-IG17 

titled “Feet First: Instrumented Insoles to Examine Workplace Injury Risk.” 
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Required Parts (per insole): 
• Teensy 3.6 (Qty. 1) 
• 16GB (minimum) microSD memory card (Qty. 1) 
• Adafuit MMA8451 3-axis accelerometer (Qty. 1) 
• CR1220 coin cell battery (Qty. 1) 
• Coin cell battery holder (Qty. 1) 
• Adafruit JST 2-PH battery connector w/ switch (Qty. 1) 
• LP-503562 1200mAh Li-ion rechargeable battery  
• 1 kΩ resistor (Qty. 1) 
• Interlink FSR 402 Short (Qty. 7) 
• 8-wire bus cable (~30cm) 
• 26-gauge hookup wire (lots) 
• Solid core wire (lots) 
• 1mm diameter heat shrink cable wrap (lots) 
• 3mm EVA55 foam (order from Kintec) 
• 1.5mm puff foam (order from Kintec) 

Required Tools: 
• Soldering iron (and solder) 
• Heat gun 
• Tweezers 
• Wire cutters 
• Laser cutter (ideally) 
• Hot glue gun 

Procedure: 
The Posture Differentiating Insole (PDI) is made up of two components, the insole and the 
electronics case. The instructions below outline the procedure for making these two 
components and assembling them together. 
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Electronics Case (orange box): 
Using the solid core wire, solder the accelerometer, coin cell battery holder, battery connector / 
switch, and resistor together in the arrangement shown in the wiring diagram in Figure 1 below.  

Completed assembly can be seen in Figure 2 and Figure 3 below. Note the grey cable with 8 
strands connected to the Teensy comes from the insole component that will be described in a 
later section. 

Figure 1 - Wiring Diagram for electronics case 

Figure 2 - Top view of electronics case completed assembly 
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 Once electronics are assembled, use the SLT, Solidworks or 3D printer files to produce a 3D 
printed case for the electronics. The completed case will have three parts, the case, the lid and 
the shoelace clip. These should look like the parts seen in Figure 4 below.  

Begin assembly of the completed electronics case by inserting the li-ion battery into the case, 
sliding it underneath the two tabs on the right in Figure 5 (A). Next, attach the battery to the 
connector and insert the electronics assembly, slotting the Teensy into the four tabs on the left 
in Figure 5 (B), aligning them with the micro-USB port on the Teensy. The cables for the insole 
will fit into the slot in the case. Next align the case lid so the screw holes line up with the case 
and the hooks align on the left. Screw the case together using two small screws producing the 
final assembly seen in figure 5 (C). The shoelace connector fits onto the rounded tabs on either 
side of the case and is threaded through the shoelaces before attaching to the case. 

Insole: 
Assembly of the insole begins with cutting the insole foam into the correct shape and size. The 
insole foam consists of two layers, the lower white EVA foam layer with channels cut out of it to 
embed the wires in, and the black puff foam cover. There are Solidworks files of the white foam 

Figure 3 - Bottom view of electronics case completed assembly. Note the resistor is 
in the black heat shrink wrap to prevent accidental contact with other components 

Figure 4 - 3D Printed case components 
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for many common shoe sizes that can be used with a laser cutter to engrave the channels into 
the white EVA foam. You will need to play with the settings of the laser cutter to get the right 
depth of the channels to allow the wires to sit perfectly flush within the foam. Once you have 
the two pieces of foam cut, follow the below procedure to add the FSRs into the insoles. 

1. If the depth of the foam is not quite correct, use box-nose cutters to cut out more foam 
where necessary.  

2. The foam should look something like this before you start adding wires to it.  

Figure 5 - Electronics case assembly 
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3. Cut a ~30cm length of bus cable with 8 strands of wire. 
4. Strip 7 of the wires on one end of it to look like this. Note that the wire on one side has 

been left longer than the others and has not yet been stripped. 

5. Measure out and cut an appropriate length of layup wire to reach the FSR (if in doubt 
make it long) and strip one end. This will be the signal wire going to the FSR. 

6. Twist the piece of layup wire together with the first strand from the bus cable, wrapping 
into a tight bundle, and solder together using a small solder bead (make sure it is not 
large or the shrink wrap will not fit).  
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7. Cut a piece of heat shrink and slide over the soldered joint. 
8. Repeat steps 5-7 for each of the remaining 6 bus cable wires. 
9. Once all 7 wires have been soldered on, use a heat gut to shrink all the heat shrink 

pieces and strengthen the joints.  

10. Next, you will create the analog receiver connection header. This gathers signal 
information from whichever FSR is activated and transmits it to the Teensy. 

11. Cut four wires of the appropriate length (again, longer is better) and wrap them around 
a piece of stripped solid core wire and solder together.  
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12. Next, attach the one wire that was left out of the bus cable. Be careful and solder this 
connection well, if this wire disconnects or breaks, none of the FSRs will work. It is 
important to leave some slack in this cable when attaching it to the insole to remove 
stress from bending etc. 

13. Attach three more layup wires to the stripped solid core wire for a total of 7 wires in the 
arrangement seen below. Trim the ends to form a neat soldered connection.  

14. Using hot glue, attach the wires to the foam insole at the location shown below. The 
soldered connection just created in steps 10-13 can be glued down to the insole at this 
point but leave the other wires free to adjust.  

15. Tape the first FSR in place and trim and strip the layup wires to fit. There should be one 
wire coming from the bus cable to the FSR and then one wire returning to the analog 
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receiver connection for each FSR. Once the wires are stripped, it is easiest to twist the 
ends of each wire, bend a 90 degree kink in the twisted wire, then add a bead of solder 
to the end of the wire (seen in the image below). When doing this ensure to cover the 
FSRs with a piece of cardboard as pieces of solder can spray and damage the FSRs.  

16. Next, use a pair of tweezers to hold the wire with a solder bead on it on top of the FSR 
connection while re-heating it with a soldering iron to connect the wire to the FSR 
connection.  

17. Trim the wires and put a small piece of electrical tape around one of the connections to 
ensure they don’t ever touch. 

18. Remove sticker backing from the back of the FSR and place a dollop of hot glue under 
the wire connections. Place the FSR down and use a piece of parchment paper or the 
backing of an FSR sticker to flatten the hot glue to the insole while it is still hot. Caution 
this may burn your finger, timing is critical, wait until the glue has cooled enough that it 
won’t burn your finger but not too long that you won’t be able to flatten it.  
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19. The result should look like this:  

20. Repeat steps 15-18 for each of the 7 FSRs 
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21. Finally, glue all the wires into the cut-out channels and fill any areas where wires cross 
to make as close to a flat surface as possible. The result should look something like this. 

22. Solder the other end of the bus cable to a 90-degree connector. Cover in hot glue to 
strengthen the connection. The FSR numbers are shown on the image below, assuming 
the same wire routing is used as in the image above. 

23. Solder the 90-degree connector to the Teensy as seen in Figure 2. 
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24. Once you have tested that the device works correctly, use hot glue or rubber cement to 
attach the puff foam top sheet to the EVA foam to complete the PDI. 

Once you finish this procedure, the device hardware will be complete. You will still need to 

program the Teensy using the appropriate data collection software ensuring that data is 

collecting properly and saving to the microSD card. Note that you will need to modify the code 

slightly for each participant to update their ID number. For details see the code description. 
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Appendix C.   
 
PDI Code 

  



144 

1 /*NOTES: 
2 * 
3 * This code is to run the PDI 
4 * Gathers data from the single 3-axis accelerometer and 7 FSRs 
5 * Saves data to the built-in SD card in specific binary format 
6 * Update subname below for each specific subject ID 
7 * 
8 */ 
9 
10 #include <TimeLib.h> 
11 #include "SdFat.h" 
12 #include <SPI.h> 
13 #include <Wire.h> 
14 #include <Adafruit_MMA8451.h> 
15 #include <Adafruit_Sensor.h> 
16 
17 
18 //Declare accelerometer 
19 Adafruit_MMA8451 mma = Adafruit_MMA8451(); 
20 
21 //Declare the digital pins used to power the FSRs 
22 const int FSR6 = 39; // 5VDC input pin number to FSR 
23 const int FSR4 = 38; 
24 const int FSR3 = 37; 
25 const int FSR2 = 36; 
26 const int FSR1 = 35; 
27 const int FSR5 = 34; 
28 const int FSR7 = 33; 
29 
30 //Declare the analog pin used to read ouput from an FSR 
31 const int AnalogIn = A21; // Analog read pin 
32 
33 // Pin with LED which flashes whenever data is written to card, and does a 
34 // slow blink when recording has stopped or if the device checks have not passed. 
35 const int LED_PIN = 13; //built-in LED 
36 
37 // 16 KiB buffer. 
38 const size_t BUF_DIM = 16384; 
39 
40 // Sampling rate 
41 const uint32_t sampleIntervalMicros = 22000; 
42 // 22000 us interval = approx. 45.45 Hz 
43 
44 // Use total of four buffer blocks. 
45 const uint8_t BUFFER_BLOCK_COUNT = 4; 
46 
47 // Number of FSR data points per record (if you change this you need to change 
acquireData() to incorporate new values) 
48 const uint8_t FSR_DIM = 7; 
49 
50 // Number of Accelerometer inputs per record (if you change this you need to change 
acquireData() to incorporate new values) 
51 const uint8_t ACC_DIM = 3; 
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52 
53 // Format for one data record 
54 // note: should be in increments of 4 bytes since teensy stores data in 4 byte 
increments. 
55 struct data_t { 
56 uint32_t timer; //4 bytes 
57 float fsr[FSR_DIM]; //4*FSR_DIM bytes 
58 float acc[ACC_DIM]; //4*ACC_DIM bytes 
59 }; // total of 44 bytes per sample 
60 
61 // SD card declarations 
62 SdFatSdio sd; 
63 File file; 
64 
65 // Number of data records in a block. 
66 const uint16_t DATA_DIM = (BUF_DIM-4)/sizeof(data_t); 
67 
68 // Compute number of filler bytes to insert at end of block so block size is BUF_DIM 
bytes. 
69 // FILL_DIM may be zero depending on number of sample bytes. 
70 const uint16_t FILL_DIM = (BUF_DIM-3) - (DATA_DIM*sizeof(data_t)); 
71 
72 // Format for one block of data 
73 struct block_t { 
74 data_t data[DATA_DIM]; 
75 byte filler[FILL_DIM]; //1 byte per FILL_DIM 
76 }; 
77 
78 // Initialize variables 
79 uint16_t count = 0; 
80 uint32_t nextSampleMicros = 0; 
81 bool collectingData = false; 
82 bool isSampling = false; 
83 
84 // Intialize all buffers 
85 block_t block[BUFFER_BLOCK_COUNT]; 
86 block_t* curBlock; 
87 block_t* emptyStack[BUFFER_BLOCK_COUNT]; 
88 uint8_t emptyTop; 
89 block_t* fullQueue[BUFFER_BLOCK_COUNT]; 
90 uint8_t fullHead = 0; 
91 uint8_t fullTail = 0; 
92 
93 // Variables for making a file name 
94 String SubName = "L6"; //format L# 
95 String DD, MM, YYYY, hh, mm, ss, fileName, SfileName; 
96 char CFileName[9]; 
97 
98 // ----------------------------------------------------------------------------- 
99 // Setup to setup file name, buffers, accelerometer etc. 
100 void setup() { 
101 pinMode(LED_PIN, OUTPUT); 
102 digitalWrite(LED_PIN, HIGH); 
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103 
104 // get date and time. if/else statemnt are to account for leading 0's that I want to 
be in file name. 
105 time_t t = Teensy3Clock.get(); //time from RTC 
106 
107 YYYY =String(year(t)); 
108 if (month(t)<10){ 
109 MM = "0" + String(month(t)); 
110 } 
111 else{ 
112 MM = String(month(t)); 
113 } 
114 if (day(t)<10){ 
115 DD = "0" + String(day(t)); 
116 } 
117 else{ 
118 DD = String(day(t)); 
119 } 
120 if (hour(t)<10){ 
121 hh = "0" + String(hour(t)); 
122 } 
123 else{ 
124 hh = String(hour(t)); 
125 } 
126 if (minute(t)<10){ 
127 mm = "0" + String(minute(t)); 
128 } 
129 else{ 
130 mm = String(minute(t)); 
131 } 
132 if (second(t)<10){ 
133 ss = "0" + String(second(t)); 
134 } 
135 else{ 
136 ss = String(second(t)); 
137 } 
138 
139 //Make file name with date and subjects initials 
140 fileName = YYYY + MM + DD + "_" + hh + mm + "_" + SubName + "."+ "t" + "x" + "t"; 
141 SfileName = DD + hh + mm + SubName + ".bin"; // short file name for name of file to 
match DOS 8.3 filename requirements 
142 SfileName.toCharArray(CFileName,13); // casting file name to a char string to write 
to file name 
143 
144 // Put all the buffers on the empty stack. 
145 for (int i = 0; i < BUFFER_BLOCK_COUNT; i++) { 
146 emptyStack[i] = &block[i]; 
147 } 
148 emptyTop = BUFFER_BLOCK_COUNT; 
149 
150 // Initialize accelerometer 
151 if (! mma.begin()) { 
152 error("accelerometer failed"); 
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153 } 
154 // Set range of accelerometer 
155 mma.setRange(MMA8451_RANGE_8_G); //can be _2_G or _4_G or _8_G 
156 
157 if(!sd.begin()){ 
158 error("error with sd.begin()"); 
159 } 
160 if (!file.open(CFileName, O_RDWR | O_CREAT | O_APPEND)) { 
161 error("open failed"); 
162 } 
163 file.close(); 
164 
165 delay(100); 
166 collectingData=true; 
167 nextSampleMicros = micros(); //begin sampling right now 
168 
169 // Turn off light just as data begins to sample 
170 // This co-ordinates the video data with the PDI data 
171 digitalWrite(LED_PIN, LOW); 
172 } 
173 
174 //----------------------------------------------------------------------------- 
175 // Main loop to gather data 
176 void loop() { 
177 // if there is no data to write to the SD card, collect more data 
178 if (fullHead == fullTail) { // full queue is empty 
179 yield();// acquire data etc. 
180 
181 }else { 
182 // There is at least one full block to write to SD 
183 // Write buffer at the tail of the full queue to the SD card 
184 // and return it to the top of the empty stack. 
185 
186 // Flash LED when data is being written 
187 digitalWrite(LED_PIN, HIGH); 
188 
189 block_t* pBlock = fullQueue[fullTail]; 
190 fullTail = fullTail < (BUFFER_BLOCK_COUNT-1) ? fullTail + 1 : 0; 
191 
192 file.open(CFileName, O_WRITE | O_APPEND); 
193 file.write(pBlock, BUF_DIM); 
194 file.close(); 
195 
196 emptyStack[emptyTop++] = pBlock; //returns block written to SD to top of emptystack 
for re-use 
197 digitalWrite(LED_PIN, LOW); 
198 } 
199 } 
200 
201 //----------------------------------------------------------------------------- 
202 // This does the data collection. It is called whenever the teensy is not 
203 // doing something else. The SdFat library will call this when it is waiting 
204 // for the SD card to do its thing, and the loop() function will call this 



148 

205 // when there is nothing to be written to the SD card (most of the time). 
206 void yield(){ 
207 
208 if (!collectingData || isSampling) //disable yield() while sampling data so no 
duplicate data is gathered. 
209 return; 
210 
211 isSampling = true; 
212 
213 // If we don't have a buffer for data, get one from the top of the empty stack. 
214 if (curBlock == 0) { 
215 curBlock = getEmptyBlock(); 
216 } 
217 
218 // If it's time, record one data sample. 
219 if (micros() >= nextSampleMicros) { 
220 acquireData(&curBlock->data[count++]); 
221 nextSampleMicros += sampleIntervalMicros; 
222 } 
223 if (nextSampleMicros > 4294967295){ 
224 nextSampleMicros = nextSampleMicros-4294967295; //resets nextSampleMicros so that 
when micros() resets data will still record 
225 } 
226 
227 // If the current buffer is full, move it to the head of the full queue. We will get 
a new buffer at the beginning of the next yield() call. 
228 if (count == DATA_DIM) { 
229 fullQueue[fullHead] = curBlock; 
230 fullHead = fullHead < (BUFFER_BLOCK_COUNT-1) ? fullHead + 1 : 0; // says 
if(fillHead<BUFFER_BLOCK_COUNT) then fullHead=fullHead+1 else fullHead=0 
231 curBlock = 0; 
232 } 
233 
234 isSampling = false; 
235 } 
236 
237 //----------------------------------------------------------------------------- 
238 //Gets a block from the top of the empty stack and returns it 
239 block_t* getEmptyBlock() { 
240 block_t* blk; 
241 if (emptyTop > 0) { // if there is a buffer in the empty stack 
242 blk = emptyStack[--emptyTop]; //emptyStack is already a pointer, so assigning to 
blk makes blk a pointer 
243 count = 0; 
244 } else { // no buffers in empty stack 
245 error("All buffers in use"); 
246 } 
247 return blk; 
248 } 
249 
250 //----------------------------------------------------------------------------- 
251 //Format for acquiring data and placing it in the data_t struct 
252 void acquireData(data_t* data){ 
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253 
254 data->timer = micros(); 
255 data->fsr[0] = sweepFSR(1); 
256 data->fsr[1] = sweepFSR(2); 
257 data->fsr[2] = sweepFSR(3); 
258 data->fsr[3] = sweepFSR(4); 
259 data->fsr[4] = sweepFSR(5); 
260 data->fsr[5] = sweepFSR(6); 
261 data->fsr[6] = sweepFSR(7); 
262 
263 data->acc[0] = getAcceleration(1); 
264 data->acc[1] = getAcceleration(2); 
265 data->acc[2] = getAcceleration(3); 
266 } 
267 
268 //----------------------------------------------------------------------------- 
269 //Function that returns the current analog output from a particular FSR 
270 //input is integer value of FSR to sample from. 
271 float sweepFSR(int FSRnum){ 
272 
273 float sensor = 999.0; 
274 switch (FSRnum) { 
275 case 1: 
276 allFloat(); 
277 pinMode(FSR1, OUTPUT); 
278 digitalWrite(FSR1, HIGH); 
279 sensor = analogRead(AnalogIn); 
280 break; 
281 
282 case 2: 
283 allFloat(); 
284 pinMode(FSR2, OUTPUT); 
285 digitalWrite(FSR2, HIGH); 
286 sensor = analogRead(AnalogIn); 
287 break; 
288 
289 case 3: 
290 allFloat(); 
291 pinMode(FSR3, OUTPUT); 
292 digitalWrite(FSR3, HIGH); 
293 sensor = analogRead(AnalogIn); 
294 break; 
295 
296 case 4: 
297 allFloat(); 
298 pinMode(FSR4, OUTPUT); 
299 digitalWrite(FSR4, HIGH); 
300 sensor = analogRead(AnalogIn); 
301 break; 
302 
303 case 5: 
304 allFloat(); 
305 pinMode(FSR5, OUTPUT); 
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306 digitalWrite(FSR5, HIGH); 
307 sensor = analogRead(AnalogIn); 
308 break; 
309 
310 case 6: 
311 allFloat(); 
312 pinMode(FSR6, OUTPUT); 
313 digitalWrite(FSR6, HIGH); 
314 sensor = analogRead(AnalogIn); 
315 break; 
316 
317 case 7: 
318 allFloat(); 
319 pinMode(FSR7, OUTPUT); 
320 digitalWrite(FSR7, HIGH); 
321 sensor = analogRead(AnalogIn); 
322 break; 
323 
324 default: 
325 allFloat(); 
326 } 
327 
328 // Want 1 to be the lowest value. 
329 // This removes noise that happens between 0 and 1 
330 if (sensor == 0){ 
331 sensor = 1.0; 
332 } 
333 return sensor; 
334 } 
335 
336 //----------------------------------------------------------------------------- 
337 //sets all FSR pins to float so there is no interference when sampling 
338 void allFloat (){ 
339 
340 digitalWrite(FSR1, LOW); 
341 digitalWrite(FSR2, LOW); 
342 digitalWrite(FSR3, LOW); 
343 digitalWrite(FSR4, LOW); 
344 digitalWrite(FSR5, LOW); 
345 digitalWrite(FSR6, LOW); 
346 digitalWrite(FSR7, LOW); 
347 
348 pinMode(FSR1, INPUT); 
349 pinMode(FSR2, INPUT); 
350 pinMode(FSR3, INPUT); 
351 pinMode(FSR4, INPUT); 
352 pinMode(FSR5, INPUT); 
353 pinMode(FSR6, INPUT); 
354 pinMode(FSR7, INPUT); 
355 
356 return; 
357 } 
358 



151 

359 //----------------------------------------------------------------------------- 
360 //Function that gets the acceleration of an axis depending on the integer value passed 
to it 
361 // X = 1 
362 // Y = 2 
363 // Z = 3 
364 float getAcceleration(int accNum){ 
365 
366 // Read the 'raw' data in 14-bit counts 
367 mma.read(); 
368 
369 /* Get a new sensor event */ 
370 sensors_event_t event; 
371 mma.getEvent(&event); 
372 
373 float acc = 99.99; 
374 
375 switch (accNum) { 
376 case 1: 
377 acc = event.acceleration.x; 
378 break; 
379 
380 case 2: 
381 acc = event.acceleration.y; 
382 break; 
383 
384 case 3: 
385 acc = event.acceleration.z; 
386 break; 
387 } 
388 
389 //dont want any zero values to make data processing easier. 
390 if(acc == 0){ 
391 acc = 0.01; 
392 } 
393 
394 return acc; 
395 } 
396 
397 //----------------------------------------------------------------------------- 
398 //not currently using the string capability of this, but if debugging can turn 
399 //on Serial and this will print an error code produced from wherever you call error 
400 void error(String msg) { 
401 blinkForever(); 
402 } 
403 
404 //----------------------------------------------------------------------------- 
405 //blinks light in a neverending loop 
406 void blinkForever() { 
407 while (1) { 
408 digitalWrite(LED_PIN, HIGH); 
409 delay(1000); 
410 digitalWrite(LED_PIN, LOW); 
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411 delay(1000); 
412 } 
413 } 
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