
Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142
https://doi.org/10.1186/s12859-018-2131-4

RESEARCH Open Access

On the rank-distance median of 3
permutations
Leonid Chindelevitch1*†, João Paulo Pereira Zanetti2 and João Meidanis2†

From RECOMB-CG - 2017: The Fifteenth RECOMB Comparative Genomics Satellite Conference
Barcelona, Spain. 04-06 October 2017

Abstract

Background: Recently, Pereira Zanetti, Biller and Meidanis have proposed a new definition of a rearrangement
distance between genomes. In this formulation, each genome is represented as a matrix, and the distance d is the
rank distance between these matrices. Although defined in terms of matrices, the rank distance is equal to the
minimum total weight of a series of weighted operations that leads from one genome to the other, including
inversions, translocations, transpositions, and others. The computational complexity of the median-of-three problem
according to this distance is currently unknown. The genome matrices are a special kind of permutation matrices,
which we study in this paper.
In their paper, the authors provide an O

(
n3

)
algorithm for determining three candidate medians, prove the tight

approximation ratio 4
3 , and provide a sufficient condition for their candidates to be true medians. They also conduct

some experiments that suggest that their method is accurate on simulated and real data.

Results: In this paper, we extend their results and provide the following:

• Three invariants characterizing the problem of finding the median of 3 matrices
• A sufficient condition for uniqueness of medians that can be checked in O(n)
• A faster, O

(
n2

)
algorithm for determining the median under this condition

• A new heuristic algorithm for this problem based on compressed sensing
• A O

(
n4

)
algorithm that exactly solves the problem when the inputs are orthogonal matrices, a class that includes

both permutations and genomes as special cases.

Conclusions: Our work provides the first proof that, with respect to the rank distance, the problem of finding the
median of 3 genomes, as well as the median of 3 permutations, is exactly solvable in polynomial time, a result which
should be contrasted with its NP-hardness for the DCJ (double cut-and-join) distance and most other families of
genome rearrangement operations. This result, backed by our experimental tests, indicates that the rank distance is a
viable alternative to the DCJ distance widely used in genome comparisons.

Keywords: Genome rearrangements, Median problem, Polynomial-time solvability

*Correspondence: leonid@sfu.ca
†Equal contributors
1Simon Fraser University, Burnaby, Canada
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2131-4&domain=pdf
mailto: leonid@sfu.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 44 of 62

Background
The present paper advances the study of genome evo-
lution by rearrangements. Genomes are a collection of
linear chromosomes (e.g., in human), circular chromo-
somes (e.g., in E. coli), or a combination of linear and
circular chromosomes (e.g., in Borrelia burgdorferi, the
etiological agent of Lyme disease [1]). Higher organisms
such as eukaryotes tend to have linear chromosomes,
while circular chromosomes are found in bacteria and
other prokaryotes. Cell organelles also have circular chro-
mosomes, even in higher organisms. The techniques we
use in this paper apply equally well to all cases, regardless
of chromosome type, since we focus on the adjacencies
between consecutive syntenic regions.

Evolution can be thought of as a two-part process:
(1) the natural variability of genomic processes leads to
the occurrence of mutations within a population, and
(2) one or more of these mutations are selected by the
environment, meaning that the individuals carrying them
survive to leave descendants. The mutations observed in
genome evolution include point mutations, inversions,
translocations, transpositions, duplications, horizontal
gene transfer, and gene gain and loss, to name the most
common ones. The next section elaborates on some of
these operations.

Our focus here will be on events that preserve the gene
content. We plan to study variations of the methods pro-
posed here to address the important issue of gene content-
changing mutations in the future. For the purposes of this
paper, we do not consider gene content-changing events
such as duplications, gene gain and loss, etc.

We also focus on rearrangements, or large-scale changes,
that is, events that affect the position or the orientation
of large, continuous regions in the genome. This excludes
point mutations and small insertions and deletions, for
instance. Although point mutations are important evo-
lutionary events, in some cases genomes evolve more
rapidly in structure than in sequence, resulting in a more
reliable evolutionary assessment when we focus on rear-
rangements [2].

We briefly summarize previous work on the bioinfor-
matics of genome rearrangements to date. A more com-
plete account can be found in the survey by Moret, Lin,
and Tang [3]. The starting point was the realization that
genes are arranged in chromosomes in a linear fashion [4].
From this observation, scientists began to estimate genetic
distances between genes and other markers by means of
recombination (crossing-over) frequencies, a practice that
continues to this day. Soon, the possibility of reconstruct-
ing evolutionary history from inversions was noticed [5].
With the advent of large-scale DNA sequencing, scientists
had a richer body of data on which to base their research.

At first, it seemed hard to tackle the whole set of possi-
ble rearrangements, so only one or two important events

(or operations) were considered, e.g., inversions [6–8].
However, over time, ways of taking into account many
different operations were introduced [9], sometimes with
weights assigned to them to roughly reflect their relative
frequency. Our research is on a distance measure that tries
to capture all genome rearrangement events that maintain
gene content.

Rearrangement operations
Inversions seem to be the single most common rearrange-
ment operation that has been observed in nature. We
briefly cite three examples to illustrate this point: one
with plant chloroplasts, another with the mammalian X
chromosome, and one with bacterial laboratory strains.
Palmer and Herbon have shown that 3 inversions are
enough to explain the differences between chloroplast
genomes of Brassica oleraceae and Brassica campestris
[2]. Back in 1988, large-scale DNA sequencing was still
expensive, and their analysis was all done with restric-
tion site mappings. They went on to determine the most
parsimonious number of rearrangements separating other
Brassica chloroplast genomes, and constructed a phyloge-
netic tree with 7 species. Pevzner and Tesler show an opti-
mal rearrangement scenario involving 11 long syntenic
regions between human and mouse X chromosomes, with
7 inversions [10]. Inversions have even been observed in
laboratory strains. The strain K12 W3110 of Escherichia
coli, created in 1956 in Barbara Bachmann’s lab [11], was
found to contain a large inversion relative to its par-
ent, involving roughly 20% of its genome, 24 years later,
in 1981 [12].

Transpositions are also significant, but here we will
only be concerned with the kind that moves blocks,
rather than copies blocks, since the latter would imply a
modification of the gene content. Translocations, both
reciprocal and nonreciprocal, can also be selected for by
the environment and go to fixation in a lineage. They pro-
duce changes in linkage and may disrupt coding regions,
and have been associated with several human conditions,
including Down’s syndrome, which in 5% of the cases is
related to a type of translocation called the Robertsonian
translocation [13].

Translocations can mediate chromosome fusion [13].
When two chromosomes with very small arms are
translocated, sometimes the result is a larger chromosome
next to a very small chromosome, which may be lost. This
is thought to be a major reason for different chromosome
numbers across a wide range of taxa, including primates.
Human chromosome 2 is in fact homologous to a pair
of chromosomes in chimpanzee, gorilla, and orangutan
[14]. The pair was probably fused in the lineage leading to
human.

Chromosome fission is also thought to have occurred
in primate evolution. Human chromosomes 14 and 15

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 45 of 62

probably separated from a single chromosome in an
ancestor 10 to 25 million years ago [15]. The macaque
(Macaca mulatta) chromosome 7 mostly resembles this
ancestral chromosome [16].

Although we have no knowledge of chromosome lin-
earization or circularization in nature, both have been
successfully achieved in the laboratory. Volff et al. man-
aged to construct a circular-chromosome version of
Streptomyces lividans, which normally has a linear chro-
mosome [17]. Cui et al., on the other hand, report on an
Escherichia coli strain with a linear genome [18].

Modeling rearrangements
All rearrangement events discussed so far can be seen as
creating, destroying, or replacing adjacencies, which are
links between genome segments. The simplest operation
from the mutational point of view (that is, the one that
changes less adjacencies) is the creation or destruction
of a single adjacency (see Fig. 1). It models circulariza-
tion, linearization, chromosome fusion, and chromosome
fission.

Next in modification complexity is the replacement of
a single adjacency by another one sharing an extrem-
ity (see Fig. 2). When involving linear chromosomes, it
can be seen as a case of nonreciprocal translocation. An
analogous case involving a circular chromosome and a
linear chromosome exists, and can be viewed as circular
DNA integration or excision at the very end of a linear
chromosome.

Finally, there are operations consisting in the replace-
ment of two adjacencies by two other adjacencies involv-
ing the same four extremities (see Fig. 3). This class of
operations include inversions (both on linear and circu-
lar chromosomes), reciprocal translocations, and other,
more exotic operations that resemble the integration or
excision of circular DNA into a linear or circular chro-
mosome, except that in nature this occurs with relatively
small pieces of circular DNA (e.g., plasmids, phages, and
viruses in general), whereas here we are postulating that
this occurs with circular DNA of any size. Such an opera-
tion has been called a 2-break [19], a double swap [20], or
a double-cut-and-join (DCJ), thus giving rise to the DCJ
distance [9].

In summary, we end up with a set of operations that
model a significant portion of the rearrangements that
occur in nature, but also model some rearrangements
that are not seen often, or that seem awkward. Although
scientists are always working on providing more realistic
sets of operations, a balance has to be reached between
modeling power and the ability to design efficient algo-
rithms, and this is the state-of-the-art concerning current
research in the bioinformatics of genome rearrangements.

Genomic distances
A number of genomic distances have been defined that
consider the operations described in the last section.
These distances differ solely by the weight they assign to
each class of operations. Although defined in very differ-
ent ways, Each such distance can be shown to be equal
to the minimum total weight of a series of operations that
corresponds to the differences seen in two genomes A
and B. This suggests that these distances may be good
indicators of the amount of evolution that separates the
two genomes, as measured by the weight of a minimal
series of events transforming A into B.

For the purposes of this paper, we focus on just four of
these distances: the DCJ distance [9], the algebraic dis-
tance [21], the SCJ distance [22], and the rank distance
[23]. Table 1 shows the weights each of these distances
associates with each class of events.

The first observation is that the algebraic distance and
the rank distance differ only by a scalar factor:

drank(A, B) = 2dalg(A, B).

This is intuitively clear from Table 1, but a formal proof
can be found in the literature [23]. The meaning of this
formula is that, although the two distances have been
defined in very different ways, they are equivalent for
all practical purposes. Everything we say about the rank
distance translates in a very straightforward way to the
algebraic distance, and vice-versa. For instance, solving
the genome median problem (the main topic of this paper)
for the algebraic distance is equivalent to solving it for the
rank distance, and so on.

Fig. 1 The simplest form of rearrangement mutation: adjacency creation or destruction. Left: linearization or circularization of chromosomes. Right:
linear chromosome fission or fusion. The red adjacency is acquired or lost in both cases

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 46 of 62

Fig. 2 Replacement of an adjacency by another one sharing an extremity. Left: integration or excision of a circular piece at the end of a linear
chromosome. Right: Nonreciprocal translocation. The red adjacency is exchanged for the black adjacency between green dots in both cases

Regarding the DCJ and algebraic distances, we notice
that they differ only in the weight given to adjacency
creation or destruction. In practice, this turns out to be a
very small difference in general. To begin with, they are
equal for circular genomes (genomes containing circular
chromosomes only). A scatterplot of DCJ versus rank dis-
tance for random linear genomes of various sizes, from
2 to 1000 genes (see Fig. 4), shows that they correlate
extremely well for linear genomes too.

In more technical terms, the difference of 0.5 in adja-
cency creation or destruction has more interesting conse-
quences. One of them is that, while computing medians
under DCJ is NP-hard [24], we show in this paper that we
can compute rank medians in polynomial time. It is true
that the resulting median, in the case of rank distance, is
not always genomic, but it is always an orthogonal matrix,
and this leads to an interpretation of these medians as
probability distributions over adjacencies to be chosen
for a genomic near-median (see “Results” section). It is
also true that the NP-hardness of the median problem
for DCJ has not prevented its successful use in practice,
where we see clever algorithms that can compute DCJ

medians and propose ancestral genomes in a given tree
(which is one of the foremost applications of medians)
running in a matter of minutes to a few hours for genomes
with thousands of syntenic regions [25]. However, due
to the fact that the rank definition uses matrices, which
are widely used and therefore have a lot of code writ-
ten to deal with them, we were able to specify the rank
median algorithm in just 6 lines (see Algorithm 1 below),
as opposed to the complex code needed to compute DCJ
medians. In fact, we believe that the adequate subgraph
techniques used in fast implementations of DCJ median
solvers can also be successfully applied to rank median
computations.

Another noteworthy consequence is that the rank dis-
tance never recombines graph components, while the DCJ
distance sometimes does [26]. For instance, consider the
example depicted in Fig. 5. Here we have two fictitious
genomes, A and B, and two distinct series of operations
transforming A into B. Both genomes have two chromo-
somes, one containing genes a and b, and the other con-
taining genes c and d. It would seem logical to expect that,
since the chromosomes do not have any genes in common,

Fig. 3 Replacement of two adjacencies by two other adjacencies sharing the same four extremities. From top to bottom, and left to right on each
row: inversion on a circular chromosome; integration/excision on a circular chromosome; inversion on a linear chromosome; integration/excision
on a linear chromosome; reciprocal translocation. The red adjacencies are exchanged for the black adjacencies between green dots in all cases

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 47 of 62

Table 1 Basic rearrangement operations and corresponding
weights assigned to them by the DCJ, algebraic, SCJ, and rank
distances

Distances

Operation DCJ Algebraic SCJ Rank

Adjacency creation/destruction 1 0.5 1 1

Single adjacency replacement 1 1 2 2

Double adjacency replacement 1 1 4 2

each chromosome would be treated independently of the
other. Because the rank distance favors linearizations and
circularizations (weight 1) over integration or excision
of circular pieces of DNA (weight 2), it ends up favor-
ing operations that deal with a single chromosome rather
that mixing chromosomes, when there is a choice. In the
case of Fig. 5, the rank distance favors the transformation
series at the bottom, which does not mix chromosomes,
while for the DCJ distance both transformation series are
equally good.

But perhaps a deeper consequence is that the matrix for-
mulation of genomes used for the rank distance provides
a framework in which it is easier to draw conclusions and
get insights. For instance, we prove here that if a genome

B lies on a shortest path between genomes A and C with
respect to the rank distance, then we can write

B = A + P(C − A), (1)

for a certain matrix P. This resembles a similar equation
that describes the line segment between two points in a
multi-dimensional space:

m = x + μ(y − x),

and can be used, for instance, to show that if an adjacency
xy is present in both A and C, then it must be present in B
(see Lemma 1).

Theoretical bounds for the ratios between
distances
As we saw, the rank distance is closely related to other
distances that have traditionally been used in genome
studies. Using multi-genome breakpoint graphs, we can
derive formulas for the DCJ, algebraic, SCJ, and rank dis-
tances based on graph elements, as follows. From these
formulas, we can derive theoretical bounds for the ratios
between the different distances.

Fig. 4 Scatterplot of the DCJ and rank distance between a “standard” and a randomly generated genome of sizes from 2 to 1000 genes. The
equation of the least-squares line of best fit is also shown. Note that the slope is indistinguishable from 1

2 and r2 is indistinguishable from 1

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 48 of 62

Fig. 5 The DCJ distance does not care about mixing components, but the rank distance never mixes them. Here we see two series of operations
transforming a fictitious genome A into a fictitious genome B. Both genomes have two chromosomes, one containing genes a and b, and the other
containing genes c and d. (Top) This series of operations involves an integration, two inversions, and an excision of a circular piece. Notice how it
mixes the two chromosomes right after the first operation. The total DCJ score of this series is 4, which is optimal for DCJ. However, the total rank
score for this series is 8, which is not optimal for rank. (Bottom) This series of operations involves a linearization, two inversions, and a circularization.
Notice that this process actually mutates each chromosome independently, without mixing them. Its total DCJ score is 4, which is optimal for DCJ.
Its rank score is 6, which is optimal for rank. Therefore, as far as DCJ is concerned these two scenarios are equivalent, but for the rank distance only
the bottom one is optimal

The multi-genome breakpoint graph is a graphical way
of representing one or more genomes, but it is mainly used
for two genomes A and B. The graph has a vertex for each
syntenic region endpoint, and the edges correspond to
the genomes’ adjacencies, using a different color for each
genome. If we draw just one genome, we have a matching;
conversely, each matching defines a unique genome. If we
draw two genomes, since each one is a matching, we end
up with a collection of paths and cycles. We can draw any
number of genomes in this way. This is analogous to the
breakpoint graph traditionally used to study genome rear-
rangements [8]. Note, however, that our multi-genome
breakpoint graphs do not contain caps to close linear
chromosomes. The ends of linear chromosomes are just
extremities without adjacencies.

The SCJ distance is defined as the number of adjacencies
that belong to exactly one of the two genomes. Therefore,
we can compute the SCJ distance by counting all adja-
cencies (edges) in the multi-genome breakpoint graph and
subtracting the number of common adjacencies. A com-
mon adjacency will appear in the graph as a 2-cycle, that
is, a cycle composed of two parallel edges. The formula for
the SCJ distance is then:

dSCJ (A, B) = m − 2c2,

where m is the total number of edges (A’s plus B’s) and c2
is the number of 2-cycles in the graph.

The multi-genome breakpoint graph for A and B is a col-
lection of paths and cycles. It can be shown that each path
contributes its number of edges to the rank distance, and
each cycle contributes its number of edges minus 2 to the
rank distance. Therefore, the rank distance is:

drank(A, B) = m − 2c,

where c is the number of cycles of any length in the graph.
From these equations it is easy to derive the following
relationship between the SCJ and rank distances:

drank(A, B) ≤ dSCJ (A, B) ≤ 2rankd(A, B).

These inequalities are tight, as witnessed by cases in
which the graph has no cycles (for the leftmost inequality),
and graphs composed solely of 4-cycles (for the rightmost
inequality).

With respect to the DCJ distance, it can be shown that

dDCJ (A, B) = 1
2

m − c + 1
2

podd,

where podd is the number of paths of odd length (num-
ber of edges) in the graph. From these equations it is easy

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 49 of 62

to derive the following relationship between the DCJ and
rank distances:

drank(A, B) ≤ 2dDCJ (A, B) ≤ 2drank(A, B).

These inequalities are tight as well, as witnessed
by graphs with no paths (leftmost inequality), and by
graphs composed solely of paths of length 1 (rightmost
inequality).

Notice, however, that these theoretical bounds are very
wide, typically stating that a certain distance is between
1 and 2 times some other distance, without any indica-
tion on what their actual relationship is for, say, close
genomes, or genomes drawn at random. Therefore, these
equations are mainly of theoretical interest and should be
used with caution. We mention them here for the sake of
completeness.

The genome median problem
The genome median problem asks, given as input
three genomes G1, G2, G3 and a rearrangement distance
(metric) d, to find the median genome G minimizing∑3

i=1 d(G, Gi). This problem has been extensively studied
due to its many applications in phylogenetics and ances-
tral genome reconstruction [27–29], and is NP-hard for all
but a few known distances d [22, 24, 30, 31]. Many approx-
imation algorithms have been developed for this problem
[30, 32], and some heuristic approaches have also been
successfully applied to this problem [29].

Recently, Pereira Zanetti, Biller and Meidanis [23] have
proposed a new definition of a rearrangement distance. In
this formulation, each genome is represented as a permu-
tation on n elements that is the product of disjoint cycles
of length 1 (telomeres) and length 2 (adjacencies). The
permutations are converted into their matrix representa-
tion, and the distance d is the rank distance between these
matrices.

In their paper, the authors provide an O
(
n3) algorithm

for determining three candidate medians, prove the tight
approximation ratio 4

3 , and provide a sufficient condition
for their candidates to be true medians. They also con-
duct some experiments that suggest that their method is
accurate on simulated data.

In this paper, we extend their results and provide the
following:

• Three invariants characterizing the problem of
finding the median of 3 matrices

• A sufficient condition for uniqueness of medians that
can be checked in O(n)

• A faster, O
(
n2) algorithm for determining the

median under this condition
• A new heuristic algorithm for this problem based on

compressed sensing

• an O
(
n4) that exactly solves the problem when the

inputs are orthogonal matrices, a class that includes
genomes as a special case

Our work thus settles the main problem of determining
the complexity of the median of 3 genomic matrices, or
more generally permutation matrices, with respect to the
rank distance. In general, the medians that our algorithms
identify are not guaranteed to be genomic matrices; how-
ever, we demonstrate that empirically, they frequently
are, and when they are not, they can be converted back
to genomes with minimal loss with respect to the total
distance.

Definitions and invariants
We are mostly interested in working over R, the field of
real numbers, although our results remain valid for any
characteristic 0 field. On the other hand, although the
problem can also be posed in finite fields, the existence of
self-orthogonal vectors in these fields is likely to invalidate
most of our constructions.

Let n ∈ N be an integer and let Rn×n be the set of n × n
matrices with entries in R.

Special matrices
We consider some special classes of matrices. We say that
a matrix M ∈ R

n×n is

• Symmetric if MT = M (i.e. Mij = Mji ∀ i, j)
• Orthogonal if MT = M−1 (i.e. the columns of M are

pairwise orthogonal)
• Binary if Mij ∈ {0, 1} ∀ i, j

A matrix that is both binary and orthogonal must have
a single 1 in each column and each row; it is therefore
a permutation matrix. It defines a permutation π via the
relationship

π(i) = j ⇐⇒ Mi,j = 1.

Lastly, following [23], we say that a matrix M is genomic
if it is a symmetric permutation matrix. Note that, unlike
[23], we do not require n to be even for M to be genomic.

It is easy to see that by symmetry, the permutation π

corresponding to a genomic matrix is also its own inverse,
so it must have order 2 and hence is a product of disjoint
cycles of length 1 and 2. The cycles of length 1 corre-
spond to telomeres while the cycles of length 2 correspond
to adjacencies. The correspondence between a genome G
and a genomic matrix M is defined by

Mi,j = 1 ⇐⇒ (i, j) is an adjacency in G, or
i = j and i is a telomere in G.

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 50 of 62

Rank distance
The rank distance d(·, ·) [33] is defined on F

n×n via

d(A, B) = r(A − B),

where r(X) is the rank of the matrix X, defined as the
dimension of the image (or column space) of X and
denoted im(X). The fact that it is a metric follows from the
following lemma, which also establishes necessary con-
ditions for equality in the triangle inequality that we are
going to use later on.

Lemma 1 The rank distance d is a metric. If d(A, B) +
d(B, C) = d(A, C), then there exists a projection matrix P
such that B = A + P(C − A).

The proof can be found in the Additional files 1 and 2 of
this paper.

We also state a helpful

Corollary 1 If x ∈ R
n is a vector such that Ax = Cx

and d(A, B) + d(B, C) = d(A, C), then Bx = Ax as well. In
particular, if A and C have all row sums equal to 1, so does
B. In addition, if A, B, and C are genomic and both A and
C have an adjacency (i, j), then B does, too.

Proof The distance condition implies that B = A+P(C−
A) for some P, so we can compute Bx = Ax+P(C −A)x =
Ax + P(Cx − Ax) = Ax, so Bx = Ax as claimed. The
second statement follows from the first one by taking x =
e, the vector of n 1’s, since Ae is the vector containing the
row sums of A. The third statement comes from the fact
that having an adjacency (i, j) for genomic A is equivalent
to Aei = ej, where ei is the 0-1 column vector with 1 in
position i and zeros elsewhere.

The rank distance between permutation matrices is
equivalent to the Cayley distance between the corre-
sponding permutations. We will develop this connection
further in the “Permutation matrices” subsection.

Methods
Median of 3 matrices
Given three matrices A, B, C, the median M is defined as a
global minimizer of the score function

d(M; A, B, C) := d(A, M) + d(B, M) + d(C, M). (2)

Since d is a metric, we can use symmetry and the tri-
angle inequality to see that the score has a simple lower
bound:

d(M; A, B, C) = d(A, M) + d(M, B)

2
+ d(B, M) + d(M, C)

2

+ d(C, M) + d(M, A)

2

≥ d(A, B)

2
+ d(B, C)

2
+ d(C, A)

2

= 1
2

[d(A, B) + d(B, C) + d(C, A)] ,

with equality if and only if

d(X, M) + d(M, Y) = d(X, Y) for any distinct X, Y ∈ {A, B, C}.
(3)

The first invariant
We now define the first invariant of the median-of-three
problem via

β(A, B, C) := 1
2

[d(A, B) + d(B, C) + d(C, A)] .

It is easy to see that this is indeed an invariant in the
sense that it does not change under permuting of the three
matrices, or permuting the rows or the columns of all the
matrices in the same way. Namely,

β(A, B, C) = β(A, C, B) = β(B, C, A) = β(B, A, C)

= β(C, B, A) = β(C, A, B),

and, for any n × n permutation matrices P and Q,

β(A, B, C) = β
(

PAQT , PBQT , PCQT
)

.

The fact that d is a metric allows us to establish a first
(trivial) approximation algorithm with an approximation
ratio of 4

3 [27] - namely, pick the matrix among A, B, C
with the smallest score. The approximation ratio follows
from

min
X∈{A,B,C}

d(X; A, B, C) ≤ 1
3

∑

X∈{A,B,C}
d(X; A, B, C)

= d(B, A) + d(C, A) + d(A, B) + d(C, B) + d(A, C) + d(B, C)

3
= 4

3
β(A, B, C).

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 51 of 62

We note that any matrix with score β is necessarily a
median, and that for any matrix M that attains this score,
we necessarily have

d(A, M) = β − d(B, C); d(B, M)

= β − d(A, C); d(C, M) = β − d(A, B).

However, in the general case, it is not possible to attain
the lower bound β . For instance, if

A =
(−1 0

0 −1

)
, B =

(
0 0
0 0

)
, C =

(
1 0
0 1

)
,

then d(A, B) = d(B, C) = d(C, A) = 2, so β = 3, but it is
easy to check that no matrix is simultaneously at unit rank
distance from all three of these matrices, and the min-
imum score is 4 (attained by, for instance, any diagonal
matrix with diagonal entries in {−1, 0, 1}).

The second invariant
The second invariant, which was already identified in [23]
as playing an important role in the median problem, is the
dimension of the “triple agreement” subspace V1, i.e.:

α(A, B, C) := dim(V1), where
V1 := {x ∈ R

n|Ax = Bx = Cx}. (4)

Once again, it is easy to check that it is invariant under
permutations of the three matrices, or permutations of the
rows or the columns of all the matrices.

The third invariant
The third invariant, which is a combination of the first two
and the dimension of the space, is

δ(A, B, C) := α(A, B, C) + β(A, B, C) − n. (5)

We will show in Corollary 3 that it is non-negative for
orthogonal arguments. We therefore call it the deficiency
of A, B and C, by analogy with the deficiency of a chemical
reaction network defined in the work of Horn, Jackson and
Feinberg [34]. Our Theorem 1 is thus also a “deficiency
zero theorem” for medians of permutations.

Permutation matrices
Let us now consider the special case of A, B, C being
permutation matrices. While, as our example showed,
the lower bound β(A, B, C) for the score cannot always
be attained, we will show in “Polynomial-time algorithm
fora median of three orthogonal matrices” section that
the lower bound can always be attained for permuta-
tion matrices (and, more generally, orthogonal matrices),
meaning that the equality conditions in Eq. (3) can always
be satisfied.

Integrality of the first invariant
Let us denote by Sn the group of permutations on n ele-
ments. Pereira Zanetti et al [23] have already shown that,

for any two permutations σ and τ in Sn, the transposition
distance dT (σ , τ), also known as Cayley distance [35]
and counting the minimum number of transpositions
(switches) needed to transform σ into τ , equals d(S, T),
where S and T are the permutation matrices correspond-
ing to σ and τ , respectively, and d is the rank distance.

Let us begin by showing that, if A, B, C are permu-
tation matrices, β(A, B, C) is always an integer; this is
also not the case in general, as can be seen in the one-
dimensional example of three different scalars, for which
β(A, B, C) = 3/2.

To this end, we recall that any permutation τ ∈ Sn can
be written as a product of disjoint cycles, uniquely up to
order of the cycles and order of the elements within the
cycle, provided that fixed points are represented by cycles
of length 1. We define the cycle counter c(τ) as the number
of disjoint cycles in a disjoint cycle representation of τ . For
instance, if τ = (12)(34)(5), then c(τ) = 3.

Lemma 2 If A, B are permutation matrices correspond-
ing to permutations ρ, σ , respectively, then d(A, B) = n −
c
(
ρ−1σ

)
.

Proof It was already shown in [23] that d(A, B) =
dT (ρ, σ), where dT is the transposition distance. Since dT
is left invariant [35], we have

dT (ρ, σ) = dT
(
ρ−1ρ, ρ−1σ

) = dT
(
e, ρ−1σ

)
.

It remains to show that the minimum number of trans-
positions needed to transform a permutation τ into the
identity is n − c(τ). This follows from the facts that a k-
cycle needs exactly k − 1 transpositions to transform into
the identity, the total length of all the cycles (including the
fixed points) is n, and the optimal set of transpositions
affects one cycle at a time.

Corollary 2 If A, B are permutation matrices corre-
sponding to permutations ρ, σ , respectively, then the kernel
of A − B is spanned by the indicator vectors of the cycles of
ρ−1σ (each taking value 1 on the cycle and 0 outside it).

This corollary, which follows from Lemma 2 and the
rank-nullity theorem, could also have been deduced
directly from the following

Remark 1 If the permutation matrix A corresponds to ρ,
Ax = [

xρ(1), . . . , xρ(n)

]T .

Lemma 3 If A, B, C are permutation matrices, β(A,
B, C) is an integer.

Proof Let ρ, σ , τ be the permutations corresponding
to A, B, C, respectively. From the foregoing discussion,
dT (ρ, σ) is the smallest number of transpositions needed

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 52 of 62

to transform ρ into σ . Note that transforming ρ into σ

and then σ into τ also transforms ρ into τ . In addition,
it is known that the number of transpositions needed to
transform one permutation into another has a fixed parity
that only depends on the signs of the permutations [35].
Therefore
d(A, B) + d(B, C) + d(C, A) = dT (ρ, σ) + dT (σ , τ) + dT (ρ, τ) ≡

≡ dT (ρ, σ) + dT (σ , τ) + [dT (ρ, σ) + dT (σ , τ)] ≡ 0 mod 2,

so that β(A, B, C) is indeed an integer.
An alternative proof can be obtained by noting that

(−1)dT (ρ,σ) = det(A−1B), where A, B are the permutation
matrices for ρ, σ respectively; therefore

(−1)dT (ρ,σ)+dT (σ ,τ)+dT (τ ,ρ) =det
(
A−1B

)
det

(
B−1C

)
det

(
C−1A

) =
= det

((
A−1B

) (
B−1C

) (
C−1A

)) = det
(
A−1 (

BB−1) (
CC−1) A

) =
= det(I) = 1 =⇒ dT (ρ, σ) + dT (σ , τ) + dT (τ , ρ) ≡ 0 mod 2.

In Additional file 1 there is a proof that this result
extends to orthogonal matrices A, B, C as well.

Fast computation of the invariants
We now show how to compute the invariants α, β and δ

in O(n) time given the three permutations ρ, σ , τ repre-
sented by A, B, C, respectively. For β , it suffices to use the
identity

β(A, B, C) = 1
2
(
3n−[

c
(
ρ−1σ

) + c
(
σ−1τ

) + c
(
τ−1ρ

)])
,

obtained using Lemma 2 and the definition of β . Per-
mutations can be multiplied and inverted in O(n) time
using standard algorithms, and their cycles can be counted
in O(n) time by using their graph representation (with a
directed edge from i to π(i) for every 1 ≤ i ≤ n) and iden-
tifying the weakly connected components. Therefore, the
computation of β(A, B, C) takes O(n) time overall.

For α, we note that, by Corollary 2,

x ∈ V1 ⇐⇒ Ax = Bx = Cx ⇐⇒ Ax = Bx and Bx = Cx ⇐⇒
⇐⇒ x is constant on the cycles of ρ−1σ and on the cycles of σ−1τ .

The computation of ρ−1σ and σ−1τ is the same as
the one performed for computing β , and the dimension
of V1 is then equal to the number of weakly connected
components of the union of their graph representations
described above.

Indeed, if C1, C2 are 2 disjoint weakly connected com-
ponents of the graph representation of ρ−1σ and there is
an edge between C1 and C2 in the graph representation
of σ−1τ , then any vector x ∈ V1 must be constant on
C1 ∪ C2. By iterating this reasoning, we conclude that α is
precisely the number of weakly connected components of
the union of the graph representations of ρ−1σ and σ−1τ .
Each graph can be computed in O(n) time, and so can

their union and its connected components, so computing
α also requires O(n) time overall.

Finally, δ can be computed from α and β in constant
time using its definition.

Subspace dimensions in terms of invariants
Pereira Zanetti et al [23] showed how to decompose
the space R

n into a direct sum of five subspaces, and
expressed their median candidates using the projection
operators of these subspaces. We now show how to
express the dimensions of these subspaces using the
invariants α, β and δ, and deduce a sufficient condition
for their median candidate to be a true median. Read-
ers familiar with this paper will recognize our use of the
dot notation for partitions introduced there (e.g., .AB.C).
However, all the subspaces needed here are defined here
as well, so the exact meaning of this notation is not
relevant in our context.

The “triple agreement” subspace V1 = V (.A.B.C.) is
defined in Eq. (4), and is the subspace of all vectors on
which all three matrices agree. Its dimension is α, by
definition.

The subspace V2 := V (.AB.C.) ∩ V ⊥
1 is defined via V1

and the subspace

V (.AB.C) := {x ∈ R
n|Ax = Bx}.

The dimension of V (.AB.C) is precisely c(ρ−1σ), where
ρ and σ are the permutations corresponding to A and B,
respectively. This follows from Corollary 2 which tells us
that

Ax = Bx ⇐⇒ A−1Bx = x ⇐⇒ x is constant on every cycle of ρ−1σ .

Since V1 ⊆ V (.AB.C), it follows that a basis of V1 can be
extended to a basis of V (.AB.C) with vectors orthogonal
to those spanning V1, so that

dim(V2) = dim(V (.AB.C.) ∩ V ⊥
1)

= dim(V (.AB.C.) − dim(V1) = c(ρ−1σ) − α.

We can apply a similar reasoning to the subspaces
V3 := V (.A.BC.) ∩ V ⊥

1 and V4 := V (.AC.B) ∩ V ⊥
1 , where

V (.A.BC.) := {x ∈ R
n|Bx = Cx} and V (.AC.B) := {x ∈

R
n|Cx = Ax}, to get

dim(V2) = c
(
ρ−1σ

) − α; dim(V3)

= c
(
σ−1τ

) − α; dim(V4) = c
(
τ−1ρ

) − α.

It was shown by Pereira Zanetti et al. [23] that

R
n = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5, (6)

where V5 is the subspace orthogonal to the sum of the
other four subspaces, and the ⊕ notation represents a
direct sum, i.e. Vi ∩ Vj = {0} whenever 1 ≤ i < j ≤ 5.

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 53 of 62

Since V5 := V (ABC) is the last term in the direct sum
decomposition of Rn, we get that

dim(V5) = n −
4∑

i=1
dim(Vi) = n + 2α − (

c
(
ρ−1σ

)

+ c
(
σ−1τ

) + c
(
τ−1ρ

)) =
= n + 2α(A, B, C) − (3n − 2β(A, B, C))

= 2(α + β − n) = 2δ(A, B, C).

From this, we immediately deduce the following

Corollary 3 δ(A, B, C) ≥ 0 for permutation matrices
A, B, C, with equality if and only if V5 = {0}.

In addition, we can now combine this with the expres-
sion in [23] for the score of their median candidates
MA, MB, MC (obtained by taking the common value on
each vector in an “agreement subspace”, V1 through V4,
and the value corresponding to multiplication by A, B or
C, respectively, on the remaining subspace V5) to get

d(MA; A, B, C) = 2dim(V5) + dim(V2) + dim(V3) + dim(V4)

= n − dim(V1) + dim(V5)

= n − α + 2(α + β − n)

= β + (α + β − n)

= β + 1
2

dim(V5)

= β + δ.

As expected, the median MA achieves the lower bound
if and only if V5 = {0}.
A new algorithm
Next we introduce a new algorithm that can be used to
identify another candidate median, that in general differs
from the candidates MA, MB, MC identified in previous
work [23]. Although we are not able to prove any approx-
imation ratio on its performance, it does allow us to
establish the uniqueness of the median in the special case
of equality in Corollary 3, and gain insight into why this
case is special, in addition to obtaining a faster O(n2)
running time for it.

To this end, let us consider the necessary conditions
from Lemma 1 that must be satisfied in order for the
matrix M to attain the lower bound β :

M = A+S(B−A) = B+T(C−B) = C+U(A−C), (7)

where S, T , U are some projection matrices. This triple
equality follows from the facts that Eq. (3) must be satis-
fied for each pair among A, B and C.

Let us count the independent equations and non-
redundant unknowns in this system. We note that it
suffices to consider the equivalent system

A + S(B − A) = B + T(C − B) ⇐⇒
A − B = T(C − B) − S(B − A);

B + T(C − B) = C + U(A − C) ⇐⇒
B − C = U(A − C) − T(C − B),

(8)

since the third equality automatically follows from the
first two. Furthermore, we will not enforce the condition
of S, T , U being projection matrices, since a projection
matrix is defined by P2 = P and this results in a set of
conditions quadratic in the entries of P.

Consider the effect of multiplying a matrix S by a per-
mutation matrix A corresponding to the permutation ρ. It
is easy to see that this results in permuting the columns of
S according to ρ, so that, denoting by si the i-th column
of S, we get SA = [

sρ(1)sρ(2) . . . sρ(n)

]
. Therefore, the i-th

column of S(B − A) will simply be the difference between
sρ(i) and sσ(i). For each cycle C of ρ−1σ , the corresponding
columns of S(B − A) will add up to 0.

Thus, changing variables to the “difference variables” of
the form

s′i := sρ(C[i]) − sσ(C[i]), (9)

where C [i] denotes the i-th element in the cycle C, we
can see that S(B − A) will have precisely n − c(ρ−1σ) lin-
early independent columns, and one column per cycle will
be linearly dependent on the others in the same cycle. By
applying the same argument to T(C − B) and U(A − C),
we get a grand total of

n−c
(
ρ−1σ

)+n−c
(
σ−1τ

)+n−c
(
τ−1ρ

) = 2β(A, B, C)

linearly independent (non-redundant) columns, each con-
taining n free variables.

We note that the system of Eq. (8), rewritten with
respect to the non-redundant difference variables, splits
into n independent linear systems, one per row, with iden-
tical left-hand sides and only differing by their right-hand
sides:
d(A,B)∑

i=1
pisi +

d(B,C)∑

i=1
qiti = aji − bji ;

d(C,A)∑

i=1
riui −

d(B,C)∑

i=1
qiti = bji − cji ,

(10)

where the pi, qi, ri are coefficients that only depend on the
column (variable) index i, but not on the row j.

Next we count the linearly independent equations
within each system. In the first half of the system (with
right-hand sides coming from the j-th row of A−B), linear
dependence between the left-hand sides of the equations
can only arise from vectors y such that

T(C − B)y = 0 = S(B − A)y ∀ S, T ,

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 54 of 62

since S and T represent the variables in the system and
those variables are distinct. Similarly, in the second half of
the system, they can only arise from vectors y such that

U(A − C)y = 0 = T(C − B)y ∀ T , U ,

since T and U represent the variables in the system and
those variables are distinct. But then, for any such vector
y it must be the case that

Ay = By = Cy ⇐⇒ y ∈ V1,

meaning that there are exactly α(A, B, C) dependence
relationships between the left-hand sides in each of
the half-systems since that is the dimension of the
subspace V1.

Furthermore, all such dependence relationships lead to
the tautology 0 = 0 rather than the contradiction 0 = 1,
because every row of A − B and B − C is orthogonal
to any y ∈ V1, by definition of V1. Lastly, the two half-
systems are linearly independent from one another since
the condition on their linear dependence is subsumed by
the condition of the linear dependence within the half-
systems; more precisely, since the t-variables in the first
half-system appear with coefficients that are exactly the
negative of the coefficients in the second half-system, a
linear dependence relationship between the half-systems
would have to arise from a vector y such that

U(A − C)y = 0 = S(B − A)y ∀ S, U ⇐⇒
Ay = By = Cy ⇐⇒ y ∈ V1.

It follows that after eliminating the redundancies in
each half-system, exactly β variables and n − α equations
remain. Since α + β ≥ n the system is always under-
constrained except in the special case of δ = α+β−n = 0,
in which it has a unique solution (since the remaining
equations are linearly independent).

In the special case when δ = 0, we can furthermore
choose to eliminate precisely those redundant equations
that contain the “composite” difference variables of the
form −s1 − s2 − · · · − sk , corresponding to a cycle of
length k + 1 in the appropriate permutation. In this way,
the remaining equations will only have two active vari-
ables (with non-zero coefficients) each, so the algorithm
by Aspvall and Shiloach [36] can be applied to solve the
resulting system in O(n) time. It follows that the algorithm
will only require O(n2) time to find the median in the
special case.

Although the system is under-constrained outside of
the special case, we can use ideas from the field of com-
pressed sensing [37] to find a solution that is likely to be
sparse, and hence hopefully low rank. Namely, we seek
the solution containing as many zeros as possible. While
this is a hard problem in general, many instances are solv-
able by using the L1 norm minimization, which can be

achieved by using linear programming. The appropriate
linear program becomes

min
∑

i
yi subject to − yi ≤ xi ≤ yi ∀ i and Ux = b,

where Ux = b is the original system of equations, and the
yi serve as the absolute values of the xi whose sum is to
be minimized. Such linear programs can be readily solved
using existing off-the-shelf solvers such as lpsolve [38] or
CPLEX [39].

An example of the algorithm
To clarify the procedure, we now illustrate the running
of our algorithm on ρ = (12)(34), σ = (13)(24), τ =
(14)(23), with n = 4. First, we note that the product of any
two of these equals the third, and they are each their own
inverse. Hence we can compute

β(A, B, C) = 1
2
(
3n − [

c
(
ρ−1σ

) + c
(
σ−1τ

) + c
(
τ−1ρ

)])

= 1
2

[12 − 3 · 2] = 3

and

α(A, B, C) = 1

since the union of the graphs of ρ−1σ = τ and σ−1τ =
ρ has a unique weakly connected component. Therefore,
α(A, B, C) + β(A, B, C) = n and, as we will prove below,
the algorithm will in fact produce the unique median of
A, B, C.

We start by forming the equations in system (8):

A − B = [t4 − t3, t3 − t4, t2 − t1, t1 − t2]
− [s3 − s2, s4 − s1, s1 − s4, s2 − s3]

B − C = [u2 − u4, u1 − u3, u4 − u2, u3 − u1]
− [t4 − t1, t3 − t4, t2 − t1, t1 − t2] .

We now define the “difference variables”

s′1 := s3 − s2; s′2 := s4 − s1; t′1 := t4 − t3; t′2 := t2 − t1;
u′

1 := u2 − u4; u′
2 := u1 − u3,

and express our system in terms of those:

A − B = [
t′1, −t′1, t′2, −t′2

] − [
s′1, s′2, −s′2, −s′1

]

B − C = [
u′

1, u′
2, −u′

1, −u′
2
] − [

t′1, −t′1, t′2, −t′2
]

.

For convenience we will use the same name (with-
out row superscripts) for the variables in each row, to
emphasize that the system of equations for each row has

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 55 of 62

the same left-hand side. For row j it has 2n = 8 equations
that read:

t′1 − s′1 = Aj1 − Bj1 (11.1)
−t′1 − s′2 = Aj2 − Bj2 (11.2)

t′2 + s′2 = Aj3 − Bj3 (11.3)
−t′2 + s′1 = Aj4 − Bj4 (11.4)

u′
1 − t′1 = Bj1 − Cj1 (11.5)

u′
2 + t′1 = Bj2 − Cj2 (11.6)

−u′
1 − t′2 = Bj3 − Cj3 (11.7)

−u′
2 + t′2 = Bj4 − Cj4 (11.8)

As expected from our counting argument above, the
only linear dependencies here are that the first 4 equations
add up to 0 and the second 4 equations add up to 0 (both
their left-hand sides and their right-hand sides), so after
eliminating, say, Eqs. (11.4) and (11.8), we end up with a
consistent and non-redundant system of 2(n − α) = 6
equations in 2β = 6 unknowns, which therefore has a
unique solution. We illustrate this system for the first row,
j = 1, since it looks identical for all the other rows except
for changes in its right-hand side.

t′1 − s′1 = 0 (12.1)
−t′1 − s′2 = 1 (12.2)
t′2 + s′2 = −1 (12.3)

u′
1 − t′1 = 0 (12.4)

u′
2 + t′1 = 0 (12.5)

−u′
1 − t′2 = 1 (12.6)

Since each equation has exactly two variables, we can
use the method of [36] to solve them in O(n) time, which
means that the total time to solve the system for all the n
rows is O(n2). In the case of this system, we see that the
solution for the first row is

s′1 = −1
2

, s′2 = −1
2

, t′1 = −1
2

, t′2 = −1
2

, u′
1 = −1

2
, u′

2 = 1
2

.

After solving the system for all the other rows in the same
way, we conclude that the unique median of A, B, C in this
case is 1

2 J − I, where J = eeT is the matrix of all 1’s and
I is the identity matrix. In particular, this example shows
that the unique median of three genomic matrices may not
itself be genomic (or even binary).

Example of the compressed sensing approach
We now consider a different example, one which does not
fall into the special case α + β = n. We take n = 3
and ρ = (12), σ = (13), τ = (23). In this case, we have
d(A, B) = d(B, C) = d(C, A) = 2 so β(A, B, C) = 3 and
α(A, B, C) = 1. We know that the system of Eq. (8) will be

under-constrained in this case. We start by forming this
system of equations:

A − B = [t1 − t3, t3 − t2, t2 − t1] − [s3 − s2, s2 − s1, s1 − s3]
B − C = [u2 − u1u1 − u3u3 − u2] − [t1 − t3, t3 − t2, t2 − t1]

and introduce the difference variables

s′1 := s3 − s2, s′2 := s2 − s1, t′1 := t1 − t3, t′2 := t3 − t2,
u′

1 := u2 − u1, u′
2 := u1 − u3

to rewrite it as 3 systems (one for each row) of the form

t′1 − s′1 = A1j − B1j (13.1)
t′2 − s′2 = A2j − B2j (13.2)

− (
t′1 + t′2

) + (
s′1 + s′2

) = A3j − B3j (13.3)
u′

1 − t′1 = B1j − C1j (13.4)
u′

2 − t′2 = B2j − C2j (13.5)
− (

u′
1 + u′

2
) + (

t′1 + t′2
) = B3j − C3j (13.6)

As in the previous example, we can eliminate the redun-
dant Eqs. (13.3) and (13.6) from each system, leaving us
with a total of 4 equations in 6 variables.

Let us now show the compressed sensing formulation
for this system for row j = 1. We get the linear program

minimize y1 + y2 + y3 + y4 + y5 + y6

subject to
− [

y1, y2, y3, y4, y5, y6
] ≤ [

s′1, s′2, t′1, t′2, u′
1, u′

2
]

≤ [
y1, y2, y3, y4, y5, y6

]

t′1 − s′1 = 0; t′2 − s′2 = 1; u′
1 − t′1 = −1; u′

2 − t′2 = 0.

The optimal solution to this linear program is

s′1 = 0, s′2 = −1, t′1 = 0, t′2 = 0, u′
1 = −1, u′

2 = 0.

By repeating this for the other two rows we obtain the
solution M = [0 0 e], which unfortunately yields a subop-
timal score of 6, whereas the optimal solutions, given by
the identity matrix, either of the 3-cycles (123) or (132), or
a subset of the affine combinations of those matrices, yield
a score of β = 3. This shows that the compressed sensing
approach is not guaranteed to be optimal, or even bet-
ter than the algorithm that picks the best “corner" option
among A, B, C.

Proof of uniqueness for the special case
We now prove that if δ(A, B, C) = 0, then there is a unique
median, and both the O(n3) algorithm by Pereira Zanetti
et al [23] as well as our O(n2) algorithm proposed here
correctly identify it.

Theorem 1 (Deficiency Zero Theorem) Suppose that
A, B, C are permutations with δ(A, B, C) = 0. Then the
median is unique, and it is found by our algorithm.

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 56 of 62

Proof By the calculations in [23] recapitulated in
Corollary 3, the median MA achieves the lower bound
β . Furthermore, by the calculations in the analysis of the
system (8), we see that there exists a unique matrix M
that simultaneously satisfies the necessary conditions for
attaining the lower bound β . Since MA attains this lower
bound, MA also satisfies these necessary conditions; by
uniqueness, MA = M, so our algorithm also finds a
median, and it is unique.

Rarity of the special case
We now use some asymptotic results from analytic com-
binatorics to show that the probability of three random
genomic matrices satisfying the optimality conditions in
Corollary 3 tends to 0 as n increases. Recall that an invo-
lution is a permutation that is its own inverse; this is
precisely the class of permutations defined by genomic
matrices. We begin by restating, without proof, the follow-
ing result from [40]:

Theorem 2 If σ and τ are random involutions, then the
mean number of cycles of στ is

√
n + 1

2 log n + O(1). If σ

and τ are constrained to be fixed-point free, then the dis-
tribution of the number of cycles of στ is asymptotically
normal with mean log n and variance 2 log n.

Now we can immediately conclude the following

Corollary 4 If A, B, C are the genomic matrices cor-
responding to random involutions (respectively random
involutions with no fixed points, i.e. telomeres), then β ∼
3
2 (n − √

n) or β ∼ 3
2 (n − log n), respectively. In particular,

the probability of these matrices satisfying the optimality
conditions in Corollary 3 tends to 0 as n increases.

However, the result from analytic combinatorics does
not tell us anything about the rate of convergence of this
probability to 0. For this reason, we decided to investigate
the fraction of all distinct triples of genomic matrices of
dimension n for which δ = 0. Due to the combinatorial
growth of the number of involutions, we were only able to
compute this exactly for n ≤ 10 These results are shown
in Fig. 6 below. It is remarkable that the fraction is already
just above 1

4 for n = 10.

Polynomial-time algorithm for a median of three
orthogonal matrices
Permutation matrices are orthogonal matrices. While a
median of permutation matrices is not always a permu-
tation, there is at least one median for each triple of
orthogonal matrices that is orthogonal and satisfies the

Fig. 6 Exact fractions of distinct triples of involutions A, B, C of size n satisfying δ(A, B, C) = 0, for small values of n

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 57 of 62

lower bound β . We present here a proof of this fact and a
polynomial-time algorithm to find such a median.

The idea is to “walk towards the median”, as follows.
Start with orthogonal matrices A, B, and C. If B is on a
shortest path between A and C, then B itself is the orthog-
onal median that satisfies the lower bound. Otherwise, we
have d(A, B) + d(B, C) > d(A, C). From this inequality we
are able to derive that dim(im(A−B)∩ im(C −B)) > 0, and
therefore there is a non-zero vector u ∈ im(A−B)∩im(C−B).
With this vector we construct a rank 1 matrix H =
−2uuT B/uT u which, added to B, produces an orthogonal
matrix B + H that is on a shortest path between B and A,
and also on a shortest path between B and C. The matrix
B + H is then one step closer to the median than B is. Pro-
ceeding in this way, with B+H now replacing B, we repeat
the procedure until we hit a shortest path between A and
C, reaching an orthogonal median that satisfies the lower
bound for the three input matrices.

The corresponding pseudo-code appears in Algorithm 1.

Algorithm 1: Computing a median of three orthogonal
matrices
Median(A, B, C)
Data: Three n × n orthogonal matrices A, B, and C.
Result: An orthogonal median M that satisfies the

lower bound.
1 if d(A, B) + d(B, C) = d(A, C) then
2 return B
3 else
4 Find non-zero u ∈ im(A − B) ∩ im(C − B)

5 H ← −2uuT B/uT u
6 return Median(A, B+H, C)

This algorithm clearly runs in polynomial time, since the
recursion is no more than n levels deep, and each recur-
sive call adds no more than a cubic number of steps to the
total running time, which is then O(n4). To prove that this
algorithm is correct, we need a series of results, as follows:

1 We need to prove that if d(A, B)+ d(B, C) > d(A, C),
then dim(im(A − B) ∩ im(C − B)) > 0;

2 We need to prove that if u is a non-zero vector in
im(A − B) ∩ im(C − B), then the matrix
H = −2uuT B/uT u represents a step from B towards
both A and C simultaneously;

3 We need to prove that any median of A, B + H , and
C that satisfies the lower bound β(A, B + H , C) is
also a median of A, B, and C that satisfies the lower
bound β(A, B, C) as well;

4 We need to prove that B + H is orthogonal.

We prove each one of these partial results in Additional
file 1.

Results
We tested our algorithms on two datasets - first, a simu-
lated one obtained by applying rearrangement operations
to a starting genome, and second, a real one obtained by
taking three genomes at a time from a family of plants.
In this section, we describe the performance of our algo-
rithms as well as our observations. All the data and results
can be accessed at 10.5281/zenodo.1202505.

Implementation
For the implementation of the exact O(n2) and the heuris-
tic compressed sensing algorithms we use the R statistical
computing language [41] as well as the CPLEX linear pro-
gramming solver [39], with which we interface via the
command line. Specifically, our program first computes
the invariants α, β and δ, and then branches into either an
exact solution if δ = 0, or the compressed sensing heuris-
tic if not. In the latter case, R writes the linear program for
finding the solution of system (8) of minimum L1 norm
into a file, then CPLEX solver processes this file, and R
parses the solution to obtain the median candidate.

We use the igraph package [42] to quickly compute
the invariants as well as the cycle decompositions of the
permutations involved in the system (8). The cycle decom-
positions allow us to decide which variables to include in
the system, and which equations to exclude to make it
non-redundant. The resulting system always has 2(n − α)

equations in 2β variables. In order to try to make the
system as sparse as possible even when δ > 0, we
make the variable corresponding to the last (highest) ele-
ment of each cycle non-basic by expressing it in terms
of the others, as per Eq. (9). Furthermore, we eliminate
the equation corresponding to the last (highest) element
of each connected component in the union graph defin-
ing α; since each such connected component is a dis-
joint union of cycles (of each of the three permutations
ρ−1σ , σ−1τ , τ−1ρ), this guarantees that fewer composite
variables remain present, leading to a sparser system (8).

In the special case δ = 0, we use the solve function
from the Matrix package [43], and do not implement
the linear-time algorithm by Aspvall and Shiloach [36].
Therefore, strictly speaking our implementation is cur-
rently not guaranteed to run in O(n2) time despite having
a sparse coefficient matrix with all non-zero coefficients
being ±1. However, since solve is able to take advantage of
the sparsity of the system, the special case runs extremely
efficiently even for the largest input size, n = 500.

For large problem sizes, especially those with n = 500,
the linear program solved by the compressed sensing
heuristic is highly degenerate. This causes the solver to
be relatively slow, occasionally requiring nearly 200,000

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 58 of 62

iterations (for n = 500 and high values of r), and com-
pels it to introduce a perturbation of the problem in
order to make it less degenerate. Nevertheless, even in the
presence of this degeneracy the solution ends up being
reasonably efficient, as discussed below.

We implemented the second algorithm, which finds a
median exactly for any orthogonal input matrices, in GNU
Octave version 3.8.1 [44], to take advantage of its ability to
quickly compute the nullspace of a matrix. The formula

Null
([(

Null
(

AT − BT
))T

;
(

Null
(

CT − BT
))T

])
,

where Null(·) denotes a basis of the nullspace of its argu-
ment, and “;” denotes the “stacking up” of two matri-
ces, provides a fast way of computing the intersection
im(A − B) ∩ im(C − B). Their equivalence follows from
the fact that

(im(A − B) ∩ im(C − B))⊥ = im(A − B)⊥ + im(C − B)⊥

= ker
(

AT − BT
)

+ ker
(

CT − BT
)

,

where we used (imX)⊥ = ker
(
XT)

in the last step. How-
ever, this formula may be numerically unstable at times
(see Additional file 2), incorrectly giving a subspace equal
to {0} when B is not between A and C. In these cases, we
resort to an alternative computation for the intersection
subspace:

Orth((A − B) ∗ Null ([A − B C − B]) (1 : n, :)),

which is slightly slower, but has less Null computations,
and is able to return the correct subspace when the pri-
mary formula does not work. In our 540 simulated exam-
ples, the algorithm resorted to the alternative formula in
just 6 cases, one of which is reported in Additional file 2.
Once again, we only use this algorithm when δ > 0, pre-
ferring the optimal O(n2) algorithm when δ = 0. For the
orthogonal algorithm experiment, we used a tolerance of
ε = 10−6 in all rank computations.

In order to speed up the algorithm we replaced this
nullspace computation by the simpler one involving the
identification of any pair i, j that is in the same cycle of
AB−1 and also in the same cycle of CB−1 whenever A, B, C
are permutation matrices, when such a pair exists. Such a
pair can be computed in O(n) time using the graph rep-
resentations of AB−1 and CB−1. It can furthermore be
shown that in this case, the resulting rotated version of
B will remain a permutation matrix (it is in fact simply B
composed with the transposition (ij)). This simple opti-
mization provides important speed-ups and also improves
the numerical stability.

Numerical stability
Computing the score of the median candidates, as defined
in Eq. (2), requires a rank computation, which is known

to be numerically challenging [45]. In fact, Pereira Zanetti
et al report that despite all their median candidates being
expected to have the same score, this is not true in practice
for random permutation inputs in about 10% of the cases
when using GNU Octave or MATLAB [23].

In order to circumvent this challenge we adopt sev-
eral measures. First, we use the combinatorial expression
from Corollary 3 for the score of the median candidates
proposed in [23] in all our comparisons, which does not
require any rank computation, only a graph-based analy-
sis of the underlying permutations. Second, to score the
candidate median produced by the compressed sensing
algorithm presented here, we use the rankMatrix func-
tion with the QR decomposition method from the Matrix
package [43], with a tolerance of ε = 10−12. Lastly, we
round any entry of the median that happens to be within
ε of an integer (0 or ±1) to this integer. While we cannot
be completely sure that this bypasses all numerical stabil-
ity issues, we observe that in all instances with δ = 0, on
which our algorithm should produce a median achieving
the lower bound β , this is indeed the case.

The exact O(n4) algorithm also converges to a correct
answer on all 540 inputs.

Simulated dataset
The simulated dataset consists of a collection of 540
genomic inputs, ranging in size from 6 to 250 genes (i.e.
n = 12 to n = 500), exactly as in the simulated dataset
used by Pereira Zanetti et al [23]. We generate the sim-
ulated instances as follows. We start with a unichromo-
somal linear genome with n/2 genes and apply a random
number between rn

2 and 3rn
2 DCJ operations [9] to obtain

each of the three input genomes, where r is a fraction
between 0 and 1 (we refer to r as the rearrangement
rate). After that we cut any circular chromosomes so that
the resulting instance has three multi-chromosomal lin-
ear genomes. We use values of r ranging between 0.05 and
0.3, as higher values of r may require a distance correction
and lead parsimony-based methods to produce incorrect
results [46]. For each setting of n and r we generate 10
instances, and report the averages.

First, we observe that the exact O(n2) algorithm for the
case δ = 0 is extremely fast, requiring less than 45 s in total
for all the 473 inputs (or 87.5%) that belong to it, i.e. less
than 0.1 s per instance on average. The compressed sens-
ing algorithm is somewhat slower, requiring a total of 105 s
for the 67 inputs that it ran on, for an average of just over
1.5 s per instance. However, the time for all but the largest
instances is in fact dominated by writing and reading the
linear program file, not the actual solution. For instance,
reading the file and solving the linear program each take
CPLEX around 1.5 s when n = 500. In short, produc-
ing the median candidate using our method is extremely
efficient relative to both the O(n3) computation proposed

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 59 of 62

by Pereira Zanetti et al. [23] as well as the exact and
heuristic methods they compared it to.

Second, we observe that the vast majority of the
inputs produce median candidates that are genomic
matrices. More specifically, only 12 out of 540 out-
puts contain fractional values (and all of these are
actually optimal as they fall into the case δ = 0);
these fractional values are ± 1

2 , ± 1
3 , 2

3 , ± 1
4 and 3

4 .
The remaining 528 out of 540 outputs contain
only integer values, among which 5 contain a −1,
and it is a single −1 in all cases (none of these are opti-
mal in the sense of attaining the lower bound β). The
other 523 are binary (have all entries in {0, 1}), and of
those, 34 are not permutation matrices; as expected from
Corollary 1 they all contain a single 1 per row, but they
each contain multiple 1’s in 1 or 2 columns (and none of
these are optimal). Of the final 489, 3 are permutation
matrices that are not involutions (i.e. genomic matrices),
and interestingly, all of these are optimal and are only
found by our algorithm, not the one in [23]. The final
486 are genomic matrices, and are optimal in all except 7
cases; in those 7 cases, both our algorithm and the one in
[23] are off by 1 from the optimal bound β . The final 479
outputs are both genomic and optimal.

Third, we observe that our compressed sensing-based
algorithm produces strictly more optimal solutions than
the one in [23], namely, 493 instead of 473 - this is reassur-
ing as it shows that our compressed sensing algorithm can
also be optimal in cases where the original one fails (the
other way around is not possible due to Theorem 1). How-
ever, in the non-optimal cases, the approximation ratio of
the original algorithm tends to be lower; this occurs in 39
cases, and 8 other cases result in ties. This is described in
Table 2.

As can be seen from this table, both algorithms tend to
be very close to the optimal, but there is no consistent
winner between them; therefore, it might make sense to
pick the better-scoring candidate among their respective

Table 2 Average percentage excess over the lower bound β ; the
first number denotes our algorithm, while the second one (in
brackets) represents the algorithm by Pereira Zanetti et al [23]

n, r 0.05 0.1 0.15 0.2 0.25 0.3

12 0 (0) 3.3 (1.7) 0 (0) 2 (2.9) 3.64 (1.8) 9.3 (5.1)

16 0 (0) 0 (0) 0 (0) 0 (0) 3 (2.3) 0.7 (1.4)

20 0 (0) 0 (0) 0 (0) 2.3 (1.5) 2.1 (2.8) 6.4 (2.9)

30 3.3 (1.1) 2.2 (1.1) 2 (0.7) 1.9 (1) 1.1 (0.9) 3.7 (2.3)

50 0 (0) 0 (0) 1.1 (0.4) 0.9 (0.3) 1.6 (1) 1.8 (1.5)

100 0 (0) 0.8 (0.3) 0 (0) 0.8 (0.4) 0 (0.2) 0.8 (0.3)

200 0 (0) 0 (0) 0 (0) 0.3 (0.2) 0.1 (0.2) 0.2 (0.3)

300 0 (0) 0 (0) 0.1 (0.1) 0 (0.1) 0.4 (0.2) 0.1 (0.1)

500 0 (0) 0 (0) 0.1 (0.1) 0 (0) 0 (0.1) 0.1 (0.1)

outputs when the best median candidate is desired. Alter-
natively, when more time is available for the computa-
tion, the exact median-finding algorithm presented in this
paper should be used instead.

As expected from the proofs in Additional file 1, the
exact O(n4) algorithm always finds the median that
achieves the lower bound β . This algorithm tends to run
quickly for small problem sizes (up to n = 100), averaging
less than 0.1 s per instance, about 3 s for n = 200, 13 s for
n = 300, and 96 s for n = 500.

For comparison, we also ran the simulated dataset
through an exact DCJ median solver, ASMedian-linear
[47]. This software tends to consume a large amount of
resources, especially for larger instances, or for instances
far from each other. As a result, we had to limit its resource
consumption to 100 GB of disk space per instance. With
this restriction, 86 instances failed to finish, distributed as
follows among the input sizes: 8 of size 100, 23 of size 200,
26 of size 300, and 29 of size 500. Considering only the
454 instances that did complete the job, the average time
per instance in each size range was as follows: 0.2 seconds
for small sizes (up to n = 50, where all instances finished
without an issue), 34 s for n = 100, 43 s for n = 200, 12 s
for n = 300, and 60 s for n = 500. The average time per
instance seems to be comparable to the exact algorithm,
but our sampling of instances that completed the job is
biased. Instances that did not finish typically ran for about
20 min before running out of space. The results are shown
in Table 3.

Real dataset
The real dataset consists of a set of 12 Campanulaceæ
chloroplast genomes as well as the Tobacco chloroplast
genome. We create all possible triples of inputs from this
dataset, for a total of 286 input samples; each input had
105 genes, or n = 210 extremities.

Table 3 Average difference and ratio between scores

Size Instances Dex − DAS Dex/DAS RAS − Rex RAS/Rex

12–50 117 0.21 1.03 0.47 1.04

100 10 0 1 0 1

200 8 0 1 0 1

300 10 0 1 0.1 1

500 6 0 1 0 1

All sizes 151 0.17 1.02 0.37 1.04

We analyze the 151 instances where the exact algorithm produced genomes and
ASMedian-linear executed within the resource bounds. Dex (resp. Rex) is the DCJ
score (resp. rank score) of the solution generated by the exact algorithm. DAS (resp.
RAS) is the DCJ score (resp. rank score) of the solution generated by ASMedian-linear.
Each entry shows the average value for all instances of the corresponding size (first
column). The number of instances in each size range are shown in the “Instances”
column. Notice that all scores are very close. The average difference never surpasses
0.5, and the average ratio is always within 4% of 1. Since the exact algorithm
produces optimum rank scores and ASMedian-linear produces optimum DCJ
scores, we always use the smaller score as reference. Therefore, all differences are
non-negative and all ratios are greater than or equal to 1

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 60 of 62

The total time required for processing all the samples
with the compressed sensing algorithm was 75 s, or less
than 0.3 s per sample on average, which is consistent with
the running times we obtained on simulated data.

Among the 286 test cases, 103 had some fractional
output values. A total of 2448 entries among them, or
0.05% of the total, were fractions, and they included
± 1

2 , ± 1
4 , ± 1

5 , 2
5 , 3

5 and 3
4 . Just over half of them, 52 out of

103, had a score that attained the lower bound β .
Of the remaining 183 median candidates, 3 had a single −1

value in the output and were not optimal. Another 15 were
binary but not permutation matrices (most with multiple
1s in 1 or 2 columns, and one occurrence in which there
were multiple 1s in 3, 4 and 5 columns, respectively),
and those were also not optimal. The remaining 165
were genomic matrices (there were no non-genomic
permutation matrices), and all of these were optimal.

On real data, our compressed sensing algorithm again
outperformed the one in [23] in terms of the number
of optimal medians (those with score β) found - 217 vs.
189 out of 286; however, it did not perform as well in
terms of the average ratio between the obtained score
and the lower bound β - the average was 3% above β

for the compressed sensing algorithm vs. 2% above β

for the original algorithm. Our algorithm had a higher
score more often, 57 vs. 32 out of 286 times, with the
remaining 197 being ties. Once again, the choice of algo-
rithm depends on the user’s preference for a higher chance
of getting an exact median vs. a better approximation
ratio, and the optimal method seems to be to pick the
best-scoring output among the two algorithms. If time is
not of the essence or the input problem size is relatively
small, then the exact median-finding algorithm should be
used.

The total time required for processing all the samples
with the exact polynomial-time algorithm was 85 sec-
onds, or less than 0.3 seconds per sample on average,
which is extremely fast. All the computations converged
without numerical stability issues, and required between
0 and 16 iterations, with an average of 6 iterations. With
this algorithm, 106 out of 286 cases had some fractional
output values, while 170 were genomic and 10 others
were non-genomic permutation matrices.

Among the 106 results with fractional output val-
ues, a total of 4700 entries, or 0.1% of the total,
were non-integers. Some patterns emerged for which
fractions were present - the most frequently found
fractional entries were ± 1

2 , while others included
± 1

8 , ± 1
7 , ± 1

6 , ± 1
4 , ± 2

7 , ± 1
3 , ± 3

8 , ± 3
7 , ± 4

7 , 5
8 , 2

3 , 5
7 , 3

4 , 5
6 . How-

ever, there were some sporadic fractional values with
larger denominators such as 10, 12, 14, 17, and 20, as well
as some irrational numbers likely introduced by the nor-
malization of an orthogonal basis during the computation.
All the computed medians attained the lower bound,

as expected from the theoretical results described
above.

Discussion
When the median is not genomic
The fact that matrix medians of genome inputs are not
always genomic is surprising, but we offer here an inter-
pretation of this result that can be helpful. Even when it is
not a genome, the output of our exact algorithm is always
orthogonal. It follows that, in each row, the squares of
the entries are nonnegative numbers that add to 1. They
can therefore be seen as a probability distribution on the
potential adjacencies. We can use this fact to sample adja-
cencies row by row, avoiding common extremities, and
construct a genome.

For instance, consider the genomes

A =

⎡

⎢⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥⎥
⎦ , C =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥⎥
⎦ .

The unique median of these three matrices is the follow-
ing matrix, which will be returned by the exact algorithm:

M =

⎡

⎢⎢
⎣

−0.5 0.5 0.5 0.5
0.5 −0.5 0.5 0.5
0.5 0.5 −0.5 0.5
0.5 0.5 0.5 −0.5

⎤

⎥⎥
⎦ .

Squaring each entry, we get (◦ denotes the component-
wise product)

M ◦ M =

⎡

⎢⎢
⎣

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

⎤

⎥⎥
⎦ .

If we sample from this distribution, we can choose any
set of adjacencies (provided they have distinct extrem-
ities), since they are all equally likely. If we choose all
adjacencies outside the main diagonal, we end up with
either A, B, or C. They all have score 4, the best among
genomes. So, we reach a genomic median in this case. If
we choose exactly two adjacencies from the diagonal, we
end up with a genome with score 7. If we choose all of
them on the diagonal, we end up with the identity matrix I,
which has score 6. It seems that a good strategy then is to
use the probabilities of M ◦M to sample, but also to use M
to avoid its negative entries. Exploring this idea further is
beyond the scope of this paper, but could be a good topic
for further research.

Conclusion
In this paper we introduced a new algorithm for the
median-of-three problem relative to the rank distance
based on a necessary condition for attaining the lower

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 61 of 62

bound, and used it to prove the uniqueness of the median
in a favorable regime. In addition, we introduced the first
polynomial-time algorithm for finding an exact median of
three genomes (or three permutations) with respect to the
rank distance, placing it in the rare class of tractable rear-
rangement distances. While the median of three genomes
with respect to the rank distance is not always genomic, it
intriguingly appears to be a lot of the time.

There are several remaining open questions, which we
list here.

• What is the approximation ratio of the compressed
sensing algorithm here?

• Are there optimality conditions less restrictive than
the one we found?

• What is the best way to convert a non-genomic
median matrix to a genome?

• What is the complexity of finding the genomic
median of 3 genomic matrices?

Additional files

Additional file 1: Proofs of results. This Additional File, in PDF format,
contains proofs of the following results: Lemma 1, Correctness of the exact
algorithm. (PDF 156 kb)

Additional file 2: Example of numerical unstability of “triple-null” formula
in the Implementation section. This Additional file, in text format suitable
to be read by Octave or MATLAB, contains three 100 × 100 matrices A, B,
and C for which the triple-null formula does not work, and the alternative
single-null formula for the intersection im(A − B) ∩ im(C − B) was used.
The file can be checked in Octave as follows: Save it as triple.mat, Call
Octave, and then type in its prompt: > load("triple.mat")

> meet = null([(null(A’-B’))’;(null(C’-B’))’]);
> size(meet)
ans =
100 0
> meet = orth((A-B)*null([A-B C-B])(1:100,:));
> size(meet)
ans =
100 2

This shows that, while the first formula produced a zero-dimensional
subspace, the second one actually produced a 2-dimensional subspace.
(MAT 222 kb)

Acknowledgements
The authors would like to acknowledge Cedric Chauve, Pedro Feijão, Yann
Ponty, and David Sankoff for helpful discussions.

Funding
LC would like to acknowledge financial support from NSERC, CIHR, Genome
Canada and the Sloan Foundation. JM would like to acknowledge financial
support from FAPESP (Fundação de Amparo à Pesquisa do Estado de São
Paulo) and NSERC, which has supported some of the work described in this
paper during a visit to the University of Ottawa. JPPZ would like to
acknowledge financial support from FAPESP. The publication cost of this
article was funded by LC’s fellowship from the Sloan Foundation and by a
FAPESP publication grant to JM.

Availability of data and materials
The data used in this article is available on Zenodo under URL https://doi.org/
10.5281/zenodo.1202505, and the code used in this article is available from
the authors upon request.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 6, 2018: Proceedings of the 15th Annual Research in
Computational Molecular Biology (RECOMB) Comparative Genomics Satellite
Workshop: bioinformatics. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-19-supplement-6.

Authors’ contributions
LC and JM have contributed equally to this paper and are responsible for every
aspect of its preparation. JPPZ generated the simulated instances and
performed the experiments involving ASMedian-linear.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Simon Fraser University, Burnaby, Canada. 2University of Campinas,
Campinas, Brazil.

Published: 8 May 2018

References
1. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R,

White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B,
Tomb J-F, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR,
Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD,
Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P,
Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B,
Smith HO, Venter JC. Genomic sequence of a Lyme disease spirochaete,
Borrelia burgdorferi. Nature. 1997;390:580–6.

2. Palmer JD, Herbon LA. Plant mitochondrial DNA evolves rapidly in
structure, but slowly in sequence. J Mol Evol. 1988;28:87–97.

3. Moret BME, Lin Y, Tang J. In: Chauve C, El-Mabrouk N, Tannier E, editors.
Rearrangements in Phylogenetic Inference: Compare, Model, or Encode?
London: Springer; 2013, pp. 147–71.

4. Sturtevant AH. The linear arrangement of six sex-linked factors in
Drosophila, as shown by their mode of association. J Exp Zool.
1913;14:43–59.

5. Sturtevant AH, Dobzhansky T. Inversions in the third chromosome of wild
races of Drosophila pseudoobscura, and their use in the study of the
history of the species. Proc Natl Acad Sci U S A. 1936;22(7):448–50.

6. Watterson G, Ewens W, Hall T, Morgan A. The chromosome inversion
problem. J Theor Biol. 1982;99(1):1–7.

7. Day W, Sankoff D. Computational complexity of inferring phylogenies
from chromosome inversion data. J Theor Biol. 1987;124(2):213–8.

8. Hannenhalli S, Pevzner PA. Transforming cabbage into turnip: Polynomial
algorithm for sorting signed permutations by reversals. J ACM. 1999;46(1):
1–27. https://doi.org/10.1145/300515.300516.

9. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic
permutations by translocation, inversion and block interchange.
Bioinform. 2005;21:3340–6.

10. Pevzner P, Tesler G. Genome rearrangements in mammalian evolution:
Lessons from human and mouse genomes. Genome Res. 2003;13:37–45.

11. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E,
Baba T, Wanner BL, Mori H, Horiuchi T. Highly accurate genome
sequences of Escherichia coli k-12 strains MG1655 and W3110. Mol Syst
Biol. 2006;2:2006–7.

12. Hill CW, Harnish BW. Inversions between ribosomal RNA genes of
Escherichia coli. Proc Natl Acad Sci U S A. 1981;78(11):7869–072.

https://doi.org/10.1186/s12859-018-2131-4
https://doi.org/10.1186/s12859-018-2131-4
https://doi.org/10.5281/zenodo.1202505
https://doi.org/10.5281/zenodo.1202505
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-6
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-6
https://doi.org/10.1145/300515.300516

Chindelevitch et al. BMC Bioinformatics 2018, 19(Suppl 6):142 Page 62 of 62

13. Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM. An
Introduction to Genetic Analysis, 7th edn. New York: W. H. Freeman; 2000.

14. Yunis JJ, Prakash O. The origin of man: a chromosomal pictorial legacy.
Science. 1982;215(4539):1525–30.

15. Ventura M, Mudge JM, Palumbo V, Burn S, Blennow E, Pierluigi M,
Giorda R, Zuffardi O, Archidiacono N, Jackson MS, Rocchi M.
Neocentromeres in 15q24-26 map to duplicons which flanked an
ancestral centromere in 15q25. Genome Res. 2003;13(9):2059–68.

16. Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L,
Eichler EE, Ventura M. Hominoid fission of chromosome 14/15 and the
role of segmental duplications. Genome Res. 2013;23(11):1763–73.

17. Volff J. N, Viell P, Altenbuchner J. Artificial circularization of the
chromosome with concomitant deletion of its terminal inverted repeats
enhances genetic instability and genome rearrangement in Streptomyces
lividans. Mol Gen Genet. 1997;253(6):753–60.

18. Cui T, Moro-oka N, Ohsumi K, Kodama K, Ohshima T, Ogasawara N,
Mori H, Wanner B, Niki H, Horiuchi T. Escherichia coli with a linear
genome. EMBO Rep. 2007;8(2):181–7.

19. Alekseyev MA, Pevzner PA. Are there rearrangement hotspots in the
human genome?. PLoS Comput Biol. 2007;3(11):209.

20. Meidanis J, Zanetti JPP, Biller P. A matrix-based theory for genome
rearrangements. Technical Report IC-17-11 Institute of Computing.
Brazil: University of Campinas; 2017.

21. Feijao P, Meidanis J. Extending the algebraic formalism for genome
rearrangements to include linear chromosomes. Trans Comput Biol
Bioinform. 2012;10:819–31.

22. Feijao P, Meidanis J. SCJ: a breakpoint-like distance that simplifies several
rearrangement problems. Trans Comput Biol Bioinform. 2011;8:1318–29.

23. Zanetti JPP, Biller P, Meidanis J. Median approximations for genomes
modeled as matrices. Bull Math Biol. 2016;78(4):786–814.

24. Tannier E, Zheng C, Sankoff D. Multichromosomal median and halving
problems under different genomic distances. BMC Bioinform.
2009;10(1):120.

25. Xu AW, Moret BME. In: Przytycka TM, Sagot M-F, editors. GASTS:
Parsimony Scoring under Rearrangements. Berlin, Heidelberg: Springer;
2011, pp. 351–63.

26. Braga MD, Stoye J. The solution space of sorting by DCJ. J Comput Biol.
2010;17(9):1145–65.

27. Sankoff D, Blanchette M. Multiple genome rearrangement and
breakpoint phylogeny. J Comput Biol. 1998;5(3):555–70.

28. Moret BM, Wang LS, Warnow T, Wyman SK. New approaches for
reconstructing phylogenies from gene order data. Bioinform. 2001;17:
165–73.

29. Bourque G, Pevzner PA. Genome-scale evolution: reconstructing gene
orders in the ancestral species. Genome Res. 2002;12(1):26–36.

30. Caprara A. The reversal median problem. Informs J Comput. 2003;15(1):
93–113.

31. Fertin G, Labarre A, Rusu I, Tannier E, Vialette S. Combinatorics of
Genome Rearrangements. Cambridge: MIT Press; 2009.

32. Pe’er I, Shamir R. Approximation algorithms for the median problem in
the breakpoint model. In: Sankoff D, Nadeau JH, editors. Comparative
Genomics: Empirical and Analytical Approaches to Gene Order Dynamics,
Map Alignment and the Evolution of Gene Families. Dordrecht: Kluwer
Academic Publishers; 2000. p. 225–41.

33. Delsarte P. Bilinear forms over a finite field, with applications to coding
theory. J Comb Theory A. 1978;25(3):226–41.

34. Horn F. Necessary and sufficient conditions for complex balancing in
chemical kinetics. Arch Ration Mech Anal. 1972;49:172–86.

35. Arvind V, Joglekar PS. Algorithmic problems for metrics on permutation
groups. In: SOFSEM 2008: Theory and Practice of Computer Science: 34th
Conference on Current Trends in Theory and Practice of Computer
Science. Lecture Notes in Computer Science, vol. 4910. Berlin: Springer;
2008. p. 136–47.

36. Aspvall B, Shiloach Y. A fast algorithm for solving systems of linear
equations with two variables per equation. Linear Algebra Appl. 1980;34:
117–24.

37. Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52(4):
1289–306.

38. LPsolve Team. lp_solve 5.5 . http://lpsolve.sourceforge.net/. Accessed 13
Oct 2017.

39. IBM. CPLEX Optimizer. http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/. Accessed 13 Oct 2017.

40. Lugo M. The cycle structure of compositions of random involutions.
ArXiv e-prints. 2009. 0911.3604.

41. R Core Team. R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing; 2014. http://www.R-
project.org.

42. Csardi G, Nepusz T. The igraph software package for complex network
research. InterJournal of Complex Syst. 2006;1695(5):1–9. Available at
http://igraph.org.

43. Bates D, Maechler M. Matrix: sparse and dense matrix classes and
methods. 2017. R package version 1.2-10. https://CRAN.R-project.org/
package=Matrix.

44. Eaton J. W, Bateman D, Hauberg S, Wehbring R. GNU Octave Version 3.8.1
manual: a high-level interactive language for numerical computations.
2014. http://www.gnu.org/software/octave/doc/interpreter.

45. Trefethen LN, Bau III D. Numerical Linear Algebra, 1st edn. Philadelphia:
SIAM: Society for Industrial and Applied Mathematics; 1997.

46. Biller P, Guéguen L, Tannier E. Moments of genome evolution by double
cut-and-join. BMC Bioinformatics. 2015;16(Suppl 14):7.

47. Xu AW. The median problems on linear multichromosomal genomes:
graph representation and fast exact solutions. J Comput Biol. 2010;17(9):
1195–211.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://lpsolve.sourceforge.net/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.R-project.org
http://www.R-project.org
http://igraph.org
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
http://www.gnu.org/software/octave/doc/interpreter

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Rearrangement operations
	Modeling rearrangements

	Genomic distances
	Theoretical bounds for the ratios between distances
	The genome median problem
	Definitions and invariants
	Special matrices
	Rank distance

	Methods
	Median of 3 matrices
	The first invariant
	The second invariant
	The third invariant
	Permutation matrices
	Integrality of the first invariant
	Fast computation of the invariants
	Subspace dimensions in terms of invariants
	A new algorithm
	An example of the algorithm
	Example of the compressed sensing approach
	Proof of uniqueness for the special case
	Rarity of the special case

	Polynomial-time algorithm for a median of three orthogonal matrices

	Results
	Implementation
	Numerical stability
	Simulated dataset
	Real dataset

	Discussion
	When the median is not genomic

	Conclusion
	Additional files
	Additional file 1
	Additional file 2

	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

