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This paper studies the notion of hierarchical (chained) structure of stochastic tracking of marked feature points while a person is
moving in the field of view of a RGB and depth sensor. The objective is to explore how the information between the two sensing
modalities (namely, RGB sensing and depth sensing) can be cascaded in order to distribute and share the implicit knowledge
associated with the tracking environment. In the first layer, the prior estimate of the state of the object is distributed based on the
novel expected motion constraints approach associated with the movements. For the second layer, the segmented output resulting
from the RGB image is used for tracking marked feature points of interest in the depth image of the person. Here we proposed two
approaches for associating a measure (weight) for the distribution of the estimates (particles) of the tracking feature points using
depth data. The first measure is based on the notion of spin-image and the second is based on the geodesic distance. The paper
presents the overall implementation of the proposed method combined with some case study results.

1. Introduction

In this paper, a framework is proposed which can be used
to explore the information flow and sharing in a distributed
Bayesian tracking using both RGB and depth sensors. The
proposed hierarchical (cascaded) particle filter first tracks the
human body in the RGB image by exploiting the notion of
importance sampling [1], taking into account the physical
motion constraints. The information regarding the tracked
body obtained from the first layer is then utilized in the
second implementation of particle filter using depth image.
In this implementation, expected sample distribution for
tracking points of interest on the body also takes advantage
of the constraints associated with the body movements
within the segmented depth image. In addition, we have
experimented with two approaches in assigning weight to
each sample distribution within the second particle filter
implementation. The first metric measure is based on the
notion of spin-image at the desired point of interest on the
tracked body. The second metric is based on the notion of

geodesic distance between a reference point and the desired
point of interest on the body.

Tracking the overall movements of the human body
combined with tracking specific points of interest located on
the tracked body has many applications. These applications
can range from virtual/augmented reality (V/AR), surveil-
lance, and motion analysis to human-robot/environment
interaction. However, there also exist various challenges
associated with tracking when using various types of ambient
sensors. Firstly the human body shape and movements are
highly variable and the body parts have a number of degrees
of freedom. Secondly the tracking environment is usually
very complex and can be under different illumination and
background conditions. Such environment is a common
source of ambiguity which would influence the stability
of only RGB based tracking. In our study, we have taken
advantage of combined depth and RGB sensors. Time-of-
flight sensors are able to provide dense depth measurements
at high frame rate, for example, Microsoft Kinect [2].
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In tracking the overall coarse shape of gait, [3] uses a
novel projected top view of the occupied volumes (virtual top
view (VTV)) of the monitoring area. Through segmentation
of the VTV, a bounding box can be defined which encloses
each person and can be extended to corresponding bounding
volume. A particle filtering approach is presented in [4]
for 6-DOF object pose tracking using an RGB-D camera.
An approach is introduced in [5] that can detect and track
people in indoor spaces from a mobile platform without
instrumenting the environment using RJ-MCMC particle
filter. A novel 3D people detection and tracking approach in
RGB-D data is proposed in [6]. The authors combined an
online learning of target appearancemodels using three types
of RGB-D features with multihypothesis tracking. However,
they primarily detect a region of interest (ROI) of tracking
people and some feature points with predefined models.

There also exists a large body of literature aiming at
tracking selected limbs of human body. Majority of these
approaches model the whole body as articulated intercon-
nected segments. However, existing drawbacks in using
articulated model are the high dimensionality of the configu-
ration space and the exponentially increasing computational
cost. There are a number of effective 2D tracking methods
which have been proposed [7, 8]. These are in general used
for applications such as surveillance which do not provide
information regarding 3D kinematic model reconstruction.

In the more recent works, some researchers tended
to combine different features which can complement each
other in order to implement robust tracking. For example,
Xu et al. in [9] proposed a novel tracker which extracted both
gray and color information as the feature maps to compute
the maximum response location via correlation filters. The
KCF tracker, which is trained using a single image patch𝑥 with size 𝑀 × 𝑁 centered around the target, is utilized
for tracking. Another tracking algorithm based on multiple
features with an improved scale-updating scheme is proposed
in [10]. They integrated HoG, color naming, and intensity
feature. Kernel methods on the basis of the STC algorithm
are used to fuse these features to implement tracking. The
region of object is represented by a bounding box and the
experimental results demonstrate that it is promising for
various scenarios. Moreover, in [11] Han et al. presented an
adaptivemultifeature representation for visual tracking.More
specifically, they exploited the internal relationship among
three complementary features, that is, HoG, color naming,
and LBP, by incorporating the idea of cotraining to build
an efficient correlation filter framework which is used for
tracking. In [12], the author focused on the issue regarding
multispeaker tracking by jointly exploiting auditory and
visual features in their feature spaces. The visual observation
they used is a combination of bounding box provided by a
head detector and an audio observation consisting of binaural
features extracted from two-channel audio recordings.

This paper proposes a framework for implementing levels
of detail in tracking based on chained particle filter. Particle
filter (PF) uses a dynamic model to guide the propagation
of the state estimation within limited subspace of target
measurement [13]. This method provides a robust Bayesian
framework for sensor-based tracking of humanmotion. First

we propose an enhanced particle filter implementation based
on RGB frames. It offers a faster convergence of the estimate
where at each sample the prior distributions of the particles
are defined based on the physical constraints associated
with the expected movements of the tracking body. A 3D
bounding box is then used as a coarse level of detail to
represent the location and coarse spatial range of the human
bodymovements for gait analysis. Our second contribution is
cascading information from the previous region of interest of
the moving body in a form of 3D box with another depth-
based particle filter to track points of interests on human
body.

Similar hierarchical framework has been proposed in [14]
for human pose recognition from single depth images in
[15]. Such techniques, for example, [14], have been applied
to tracking faces in low frame-rate video. Our approach
incorporates two different types of particle distributions in
order to acquire a more consistent result for both tracking
coarse shape and points of interest in a real-time tracking
system. The work in [15] has proposed a method to identify
body extremities by adopting a measurement called geodesic
distance. In this paper we have utilized such measure as a
weighting factor in sample distribution [16], while at the
same time exploring and studying anotherweightingmeasure
entitled spin-image.

2. First Layer: Tracking in RGB Image

Our implementation of the levels of detail consists of two
main cascaded layers of particle filter. The first layer is an
enhanced color-based rectangular region tracking and the
second is a depth-based particle filter tracking of selected fea-
ture points in the body within the bounding volume obtained
from the first level. The experimental set-up uses both the
color and depth sensors from a single Microsoft Kinect II.
The sensor is positioned on the top of a tripod and directly
facing the background as well as the person to be tracked. An
adult is asked to walk under normal illumination condition
and in a natural cluttered environment. Simultaneously, the
color and the depth video sequences are captured by Kinect
II sensor. The hierarchical tracking is implemented in C++
and runs for single target on a PC with Intel 3.20GHz CPU.

At the initialization stage, we synchronize RGB frame
and depth frame. However, the original frame size of color
frame is 1920× 1280 pixels, which is different from the depth
frame with size of 512 × 424 pixels. We used calibration
functions to map these two coordinate systems into a single
one. As a result, a combined 3D synchronized frame is
generated which is used in the remaining computation.
After such synchronization, each pixel in the final RGB-D
frame is associated with both its depth distance value and
corresponding RGB color values.

For the first level, we extend the results of [17], which
presented a color-based particle filter (CPF) to track a person
within a bounding box. CPF performed well since it can
capture majority of implementation uncertainties. However,
less likely particles are not discarded immediately. On the
contrary, they are given some prior weight which can be used
in the subsequent steps. This step will result in an added
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Figure 1: (a) Result of tracking a walking person using the CPF in frame number is 70, 75, 80, 95, 115, and 120. (b) Samples propagated using
100 particles.

computational cost since the evaluation of the likelihood
function must be performed at every instance for every
sampled particles [1]. This is one of the main reasons for
increase in the computational cost in a typical implemen-
tation of PF such as condensation algorithm [18]. In this
paper, implementation of theCPF in the first level is improved
through hierarchical sampling in order to reduce the number
of particles needed. To achieve this objective, after initializa-
tion of the target region, the region is represented by system
matrix𝐴 and vectorM𝑡 represented by an 8-tuple state vector{𝑥𝑡, 𝑦𝑡, 𝑥󸀠𝑡, 𝑦󸀠𝑡 , 𝑤𝑡, ℎ𝑡, 𝑤󸀠𝑡 , ℎ󸀠𝑡}. In the state vector description,
(𝑥𝑡, 𝑦𝑡) is the center of the region at time 𝑡; (𝑥󸀠𝑡, 𝑦󸀠𝑡 ) are the
velocities of the box moving in the directions of axes 𝑢 and
V, respectively. (𝑤𝑡, ℎ𝑡) are the associated width and height of
the box at time 𝑡; (𝑤󸀠𝑡 , ℎ󸀠𝑡) are the instantaneous changes of the
width and height at time 𝑡. If the state of the region is known
in the current frame, we can obtain it in the next frame. The
original state of the bounding box is manually initialized in
the first frame of the tracking process. Here in this method
a first-order autoregressive dynamic model is constructed to
represent the propagation of the state vector:

M𝑖𝑡 = 𝐴M𝑖𝑡−1 + 𝑛𝑖𝑡−1, 𝑛𝑖𝑡−1 ∼ 𝜏𝑖𝑁(𝜇𝑖, 𝜎2𝑖 ) . (1)

M𝑡−1 is a part of the recursive estimation computed from
the previous time instance. The propagation is also used to
solve the problem of sample lost diversity. Hence, an added
random value 𝑛𝑖𝑡−1 is introduced at each sample around the
state of the current instance in order to predict the state at the
next instance. 𝑛𝑖𝑡−1 ∼ 𝜏𝑖𝑁(𝜇𝑖, 𝜎2𝑖 ) show that this value follows
a standard distribution where the mean is 𝜇𝑖 and variance
is 𝜎2𝑖 . Parameter 𝐴 is the deterministic component of the
state model. Both 𝐴 and 𝑛𝑡−1 can be modeled based on the
knowledge of the scene and the target being tracked.

Since the incremental velocity and direction of a person
can be estimated through the movement dynamic model,
it can also be utilized to enhance the prior distributing of
particles, that is, in the expected direction of movement.
More precisely, defining the relationship between velocity,
position variation, and property of bounding box is the main
idea of the hierarchical sampling which is utilized in this
paper. The view of the tracking area is based on perspective

geometry. In general and in projected geometry, various
movements and activities of tracking human can be regarded
as a combination of two different types of motion cases, that
is, movements along horizontal (𝑥-direction) and vertical
direction (𝑦-direction).

For example, if the person is moving along 𝑥 direction
in the world frame (Figure 1) and by assuming that there
is no change in the viewpoint, both the width and height
definitions of the ROI remain unchanged. This is due to the
fact that the height andwidthwill only change as a function of
how closer or further away the subject gets with respect to the
camera. Since in this case the subject is moving along the 𝑥
direction, the height andwidth of the projected object remain
nearly unchanged. Based on this expected observation, more
particles should be generated and propagated along the 𝑥-
direction in order to estimate the variation of the position of
the bounding box, along the direction of movement. Since
the velocity vector in 𝑥 and 𝑦 directions is defined as the
state vectors 𝑥󸀠𝑡−1 and 𝑦󸀠𝑡−1, the incremental direction of
movements can be deduced. After determining the direction
of motion of the previous time instance, an increased pro-
portion of the total number of particles can be generated
along this direction. This approach for sampling can result
in a practical guideline without loss of diversity since the
probability of people moving incrementally along a direction
is much higher than sporadic movements to some other
directions. The previous published methods [17] required
generation of a large number of particles which results in the
loss of consistency of the human motion estimation between
each frame and in general results in a lost tracking. Similar
observation can be utilized for the case that the person is
moving in the z-direction of the world coordinate.

In the most general case, the person’s movement is a
combination of the above two cases. A relationship between
parameters {𝑤, ℎ, 𝑤󸀠, ℎ󸀠} and {𝑥, 𝑦, 𝑥󸀠, 𝑦󸀠} can be established
through definition of state propagation matrix 𝐴 [16, 19]
which can result in the following relationship:

𝑤󸀠𝑡 = 𝑤󸀠𝑡−1 + 𝑎 (𝑥󸀠𝑡−1)−1 + 𝑏 (𝑦󸀠𝑡−1) , 𝑎, 𝑏 ∼ 𝑁 (𝜇𝑖, 𝜎2𝑖 )
ℎ󸀠𝑡 = ℎ󸀠𝑡−1 + 𝑎 (𝑥󸀠𝑡−1)−1 + 𝑏 (𝑦󸀠𝑡−1) , 𝑎, 𝑏 ∼ 𝑁 (𝜇𝑖, 𝜎2𝑖 ) ,

(2)
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where 𝑎 follows a standard distribution where both the mean
and variance equal 1. Here 𝑥󸀠𝑡−1 represents the velocity along𝑥 direction and 𝑦󸀠𝑡−1 represents the velocity along 𝑦 direction
at time 𝑡 − 1. The greater the velocity in 𝑥 direction changes,
the smaller the width and height vary. Therefore we selected
an inverse of its distribution in this function. In contrast, the
greater the velocity in the 𝑦 direction changes, the greater
the width and height vary. In this way the previous velocity
can be used as a prior knowledge to distribute these particles.
Figure 1 shows a sample tracking result for this layer of
implementation.

3. Second Layer: Tracking in the Segmented
Depth Image

The second layer of tracking consists of several major steps.
The segmented input depth data inside ROI is first filtered
in order to reduce the dominant noise in the data and to
obtain consistent surface point cloud. Here we use nearest-
neighbor interpolation algorithm [20] and a median filter
with a 3 × 3 window is used throughout the depth frame.The
basic principle of this filter is to replace the value of a certain
point with median of its neighboring points. This method
uses a two-dimensional window which goes point by point
in the whole depth image. Next the human body is further
segmented and two representative points are selected in the
initial frame on the surface of the human body, for example,𝑝𝑟 and 𝑝𝑡.

The integrated depth segmentation algorithm is demon-
strated in the following. Given the bounding box which is
acquired to represent the location and coarse spatial range
of the human body in the previous layer, the foreground
segmentation fully utilized this result and incorporated it
with depth information to decrease the computation cost.
The key idea of this step is designed to check the depth
continuity of neighboring pixels and return all the separated
depth clusters inside the ROI. To start with, we performed
the depth-first searching (DFS) algorithm to these points and
identified the largest depth cluster inside the bounding box
area, which is considered to be the human body. DFS is an
algorithm which can find the largest connected component
in an undirected graph. So after running DFS algorithm, we
label each pixel which belongs to the background as 0 and
label those pixels as a whole belonging to the human body
surface as 1 (Figure 2).This process is iterated in the beginning
of preprocessing the depth frame at each time state.

3.1. Human Body Division. In order to enable further
appearance-based body part matching between successive
occurrences of the tracked person, we extracted surface
mesh on a local patch of point cloud. This body division
method is explored in order to generate local mesh on the
patch including the extremity regions. We initiate the mesh
generation by first detecting the head region. This can be
done by first finding the minimum width associated with
the silhouette of the body. By assuming the natural position
of the head region of a walking person, we first deduce the
searching area to be the top 1/3 of the entire segmented

region. We use the silhouette width along the horizontal
direction, to generate the humanbody silhouettewidth curve.
The variation in the silhouette width curve, representing
a silhouette histogram, is shown in the middle column of
Figure 3. For example, we can start from the top pixel location
of the head region and continuing scan on the horizontal
direction until we find the position of a local minimum; it
gives an indicator of approaching the neck, which also should
be the bottom of the head region.

The computed pixel location in the depth image is
defined with respect to a local sensor coordinates (𝑥, 𝑦, 𝑧)
which needs to be mapped to the (𝑋, 𝑌, 𝑍) defined in world
coordinates in order to construct the 3D surface mesh of
human body. Using the intrinsic parameters of the depth
sensor, a 3D point (𝑋, 𝑌, 𝑍) can be calculated from the depth
image (𝑥, 𝑦, 𝑧) using the simplified pinhole camera model
shown as follows:

[[
[

𝑥
𝑦
𝑧
]]
]

= [[
[

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]]
]

[[
[

𝑋
𝑌
𝑍
]]
]

⇓
𝑋 = 𝑍 (𝑥 − 𝑐𝑥)𝑓𝑥
𝑌 = 𝑍 (𝑥 − 𝑐𝑦)

𝑓𝑦
𝑍 = depth,

(3)

where (𝑥, 𝑦) are pixels of depth image, 𝑍 is the distance
between Kinect and object, (𝑓𝑥, 𝑓𝑦) are the focal length
parameters of the depth sensor, and (𝑐𝑥, 𝑐𝑦) are the principal
point offset parameters, Figures 4(a) and 4(b).

3.2. Mesh Generation. Using the definition of the 3D bound-
ing box coordinate system, a polygonal surface mesh can be
generated as a 3D undirected graph. The undirected graph
in this depth segmentation algorithm is defined as 𝐺ℎ =(𝑉ℎ, 𝐸ℎ), consisting of the set 𝑉ℎ of nodes and the set 𝐸ℎ
of edges, which are unordered pairs of elements of 𝑉ℎ. In
order to transform a depth clustering of points into a surface
mesh, each point becomes a vertex of the graph and edges are
created from these vertices. This process goes through all the
vertices in the biggest depth clustering and checks each pair
of neighboring vertices separately. For each two vertices (𝑝, 𝑞)
inside the bounding box area, an edge is generated between
them if and only if these two rules are both satisfied: (a) their
corresponding pixel location is within the segmented depth
image within the bounding box coordinate system and (b)
their 3D Euclidean distance 𝑑(𝑝, 𝑞) = ‖𝑝−𝑞‖ does not exceed
a predefined threshold. This threshold is set in order not to
connect two points which do not belong to the same object
but are next to each other in the image plane, for example, the
pixels in the contour of the foreground and their neighboring
pixel which belongs to the background. Here the threshold is
set as 5mm, Figure 4(c).
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Figure 2: An example sequence associated with two-stage depth segmentation, that is, background subtraction and DFS in order to find the
largest connected component.
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Figure 3: Human head region detection.

(a) (b) (c)

Figure 4: (a-b) Different views of calibrated point cloud of human body in world space; (c) mesh generation on the segmented and calibrated
point cloud.



6 Journal of Control Science and Engineering

Figure 5: An example of spin-image generated from local depth patch on the segmented body.

3.3. DPF Tracking Using Spin-ImageWeighting. The principle
behind the depth-based particle filter (DPF) is similar to the
implementation in the first layer. Here the idea is to track
points of interest which are initially defined on the point
cloud of the segmented body, for example, 𝑝𝑟 and 𝑝𝑡. Here,
at each frame, samples are generated and propagated which
are weighted based on the notion of spin-image. Then, the
new estimate is defined based on this weighted contribution
of the samples.

The spin-image associated with a certain point of a 3D
object is used as a reference to weigh samples in the DPF [21].
Spin-image is a 2D image which can capture the information
around the neighborhood of a point. An oriented point,
which is a static version of oriented particles, is used to
generate spin-image of a 3D object. The oriented basis is
defined with respect to a basis point as 𝑂 = (p,n), where p is
the position of the basis point and n is the surface normal of
the point [22].This definition transforms the position of each
point from a three-dimensional coordinate system into a new
position in a two-dimensional coordinate system, Figure (4).

𝑆0 (X) 󳨀→ (𝛼, 𝛽)
= (√‖x − p‖ − n ⋅ (x − p)2,n ⋅ (x − p)) . (4)

In this equation, 𝑆0(X) is the spin-image map while x
is a 3D point. Two axes in spin-image coordinate are 𝛼
and 𝛽 where 𝛼 represents the perpendicular distance of any
other point in point cloud to basis normal and 𝛽 is signed
perpendicular distance of it to basis plane [21]. An example
of generating the corresponding spin-image is shown in
Figure 5.

In order to measure similarity between images, correla-
tion coefficient is defined and utilized by [22]. Given two
spin-images, namely, 𝐴 and 𝐵 (with 𝑁 bins), the correlation
coefficient can be calculated through measuring normalized
error in each bin of the two images. Correlation coefficient𝑅(𝐴, 𝐵) varies from −1 to 1 where −1 implies no correlation
and 1 implies complete correlation. Figure 6 illustrates how
spin-image which is generated from two different points in
the same surface mesh is compared. In Figures 6(a), 6(d),

and 6(f), an oriented point 𝐴 is selected from human body
surface mesh with its associated spin-image. In Figures 6(c),
6(e), and 6(h), two different oriented points are selected from
the same human body surface mesh with their associated
spin-images. Point 𝐴 and Point 𝐵 are in similar positions
on the surface mesh, whereas point 𝐴 and point 𝐶 are in
relatively different positions.Thus the spin-images of point𝐴
and point 𝐵 are similar, as is shown by the correlation map
in the images. The correlation maps (see Figures 6(b) and
6(g)) are created by plotting the pixel values in one image
versus the corresponding pixel values in the other image.This
is an effective method of visualizing whether two images are
correlated. For points 𝐴 and 𝐵, their spin-images correlation
map shows large region of similarity. However, for points 𝐴
and 𝐶, since they come from positions which are not similar,
their spin-images are also not similar. The correlation map
of their spin-image has relatively small region of overlap and
thus shows less similarity.

Each particle sample in theDPFof this level is represented
by a 3D point, whose state vector, P𝑡, is defined as P𝑡 ={𝑥𝑡, 𝑦𝑡, 𝑧𝑡, 𝑥󸀠𝑡, 𝑦󸀠𝑡 , 𝑧󸀠𝑡}, in which (𝑥𝑡, 𝑦𝑡, 𝑧𝑡) is the location of
the 3D point at time 𝑡 and (𝑥󸀠𝑡, 𝑦󸀠𝑡 , 𝑧󸀠𝑡) is its velocity. At
the beginning of each time instance, we first extract all the
point locations which belong to the human body. Thus it is
possible to figure out whether a generated sample is on the
body surface or not. Similar to the previous level, the set of
samples is propagated based on the system dynamic model
and the movement patterns. At every time instance, points
are generated mainly based on the direction of movement of
the previous time instance and each sample point is weighted
by the correlation coefficient between the spin-image of the
sample and the spin-image of the reference point. Samples
with the highest weight will be taken as the possible state
of the target point. These samples are then propagated and
updated to estimate the state at next instance.

Figure 7 shows tracking results of the proposed hierar-
chical implementation of particle filter using spin-image for
its DFP. In (a), the red rectangle shows the tracking results
of the CPF obtained from first level. The red solid circle
represents the tracking results of the DPF. This point is first
initialized on the forehead and then tracked through each
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(a) Spin-image of
point A

(f) Spin-image of
point A

(h) Spin-image of
point C

(d) (e)

(c) Spin-image of
point B

(b) Correlation
map between A

and B with

(g) Correlation map
between A and C with

R (A, B) = 0.82

R (A, C) = 0.35

Figure 6: Comparison of spin-images using correlation map between spin-images of similar and unsimilar points. (a) Spin-image generated
from point 𝐴; (b) spin-image correlation map (𝐴-𝐵); (c) spin-image generated from point 𝐵; (d) the position of point 𝐴 which is indicated
in the figure; (e) the positions of point 𝐵 and point 𝐶 which are shown in the figure; (f) spin-image generated from point 𝐴; (g) spin-image
correlation map (𝐴–𝐶); (h) spin-image generated from point 𝐶.

(a)

(b)

Figure 7: Example of the hierarchical implementation of particle filter. (a) State estimation of the designated point of interest on the body
(solid circle). (b) Generated samples (circle point) propagated by the proposed DPF.
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Figure 8: (a) Visualization of geodesic distance computation from the point cloud. (b) Example of surface mesh generation using adjacency
relationships.

frame. (b) of the figure shows example of samples propagation
following our proposed methods. From the results it can be
seen that the whole system can track both coarse body area
and a designated feature point of interest on the human body
during the movement.

3.4. DPF Tracking Using Weighted Geodesic Distance. In the
previous section, given a point of interest on the body, we
utilized spin-image in order to associate weight with the
sample distribution. The objective of the second method of
implementation of DPF is to defined and another approach
for associating weight with the sample distribution is studied.
Here, the desired feature points on the tracked body are
first mapped to the vertices of the constructed surface mesh.
During the tracking the distance between these points of
interest will remain unchanged along the surface mesh.
Hence, during the sample propagation, one can associate a
weighting factor with the sample distribution on how much
they deviate from the reference geodesic distance that is
calculated at the initial time state of the tracking process. Such
approach can result in a method robust against mesh defor-
mations, translations, and rotations. Traditional local color-
based approaches for defining features are very sensitive to
such local deformation. Model-based tracking in defining
features are also very restricted mainly due to their high
computational cost since the human body can be modeled
as an articulated object with high degrees of freedom. Since
Euclidean distance between two feature points can vary
widely with body movement in 3D space (also being inspired
by the concept of Accumulative Geodesic Extrema [15]), we
utilized geodesic distance. Geodesic distance between two
points on the body, for example, the distance from the nose of
a person to the right hand along the body surface, is relatively
invariant and independent of different postures.

Constructing surface mesh from point cloud of the whole
body allows us to measure geodesic distances between any
feature points selected on the body. Geodesic distance [23]
is defined as the number of edges in the shortest path
connecting two vertices in a graph. Dijkstra’s algorithm [24]
is performed to compute the geodesic distance between, for
example, a reference point and all of the generated particles
during the sample propagation process. Figure 8 shows an
example of geodesic distance. In this figure, the yellow grids
show the reconstructed surface mesh of the extracted human
body. The blue circles in this figure show the reference point
and the tracking point of extremity. The red lines between
these two circles show the geodesic distance along the surface
mesh.

Figure 9 shows a sample result associated with hierarchi-
cal implementation of particle filter where geodesic distance
measure was used as a weighting factor on the sample distri-
bution. In (a), the blue circle represents the result of tracking
of a point of interest located at the hand of the subject.
(b) demonstrates how the samples are propagated and in
particular circles correspond to the sample propagation at the
DPF layer.

4. Discussions and Conclusions

In this paper, we proposed an approach for tracking move-
ments of a person in a cluttered environment. The method
is based on the notion of a hierarchical particle filter which
incorporates two layers consisting of coarse-to-fine track-
ing subsystems. In the first layer and by considering the
computational time needed to converge to the true state,
we proposed a sequential approach by defining importance
sampling.This method is implemented by modeling the rela-
tionship between the movement of the person and method
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(b)

Figure 9: (a) Estimated state of the extremity point (solid circle). (b) Samples (circle point) propagated by the cascaded PF.

of populating the particles in the system dynamic model. In
the preprocessing stage of the second layer, we synchronized
depth and color frames, extract the human body inside the
bounding box, and construct a surface mesh from it. In this
layer, we also proposed and utilized two types of measures
to associate and weight the sample propagation in the depth-
based particle filter implementation for tracking points of
interest on the body.

In the second step of our cascaded framework we
attempted to use two different features to implement the
depth-based tracking. Each feature owns its unique prop-
erty which has both advantages and drawbacks under the
different situation. The depth-based PF using spin-image is
a simple and fast adaptive tracking procedure, since this
feature is view-invariant and robust with respect to object
posture rotation and translation. When the subjects have
relative smooth gait patterns the performance of tracking is
satisfactory. However, one drawback of this method is that it
is hard to capture complex situation patterns when subjects
have a significant change in their walking patterns. For the
depth-based PF using geodesic distance, one main advantage
of this feature is that it is largely invariant to surface mesh
deformations and rigid transformations. More precisely, the
geodesic distance from the left hand to the right hand of
a person along the body surface is unaffected by her/his
posture. However, when the surface is not connected, that is,
there is a self-occlusion, it fails to calculate the distance along
its surface mesh and consequently the focus of the target may
fall into other positions on the surface mesh.

Moreover, in our implementation it was observed that
spin-image is sensitive to noise generated from the compu-
tation of surface normal, and computation of the geodesic
distance might result in inconsistent labeling under more
complex scenarios such as self-occlusion. In one of our future
works, we would like to extend the proposed framework
to a network of sensors and also utilize some hardware
accelerators (e.g., GPU) in order to achieve a robust tracking
of multiple people.

Additional Points

This paper is an extended version of our previous work
[19]. This paper further exploits the notion of importance
sampling which was discussed in [1] for the case of tracking
in RGB and depth sensing with added intuitive motivations
for increasing sampling rates. In particular, for the case of
tracking in the second layer, new details are further included
for body segmentation. Our previous work has more details
about the implementation issues. Details of experimental set-
up are omitted (or shortened) by referring to our previous
work and no details are on implementation algorithms.
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