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ABSTRACT 

OPTIMUM PORTFOLIO CONSTRUCTION CONSIDERING VALUE AT RISK 
USING GENETIC ALGORITHMS AND MONTE CARLO SIMULATION 

 
Saber Bayat Movahed | Sina Fanian      
Simon Fraser University  

 

Determining the best portfolio out of set of alternative investment opportunities to 

optimize risk-adjusted return and value-at-risk simultaneously is a challenging issue for 

many practitioners.  In recent years, the application of non-conventional methods for 

portfolio optimization problems has grown in importance in the investment industry. 

As an effective alternative to traditional optimization techniques for handling the 

computationally complicated portfolio optimization problems, many nature-inspired 

optimization methods have emerged and have been developed by researchers. In this 

thesis, a novel algorithm is suggested to construct a promising portfolio in terms of 

Mean return- VaR and Sharpe ratio-VaR from a limited number of securities from a 

set of available equities. The algorithm consist of three stages of refining. The first stage 

is to select 60 stocks out of all the securities in S&P500 index based on fundamental 

factors using factor analysis. In the second stage, the proposed algorithm employs a 

Markowitz' mean-variance optimization model to refine the quality of initial population 

of portfolios of 30 stocks and improve the convergence behaviour of the algorithm. And 

in the third stage, a state-of-the-art genetic algorithm is applied to determine an 

optimized portfolio of assets in terms of risk-adjusted return and value at risk. The 

novel genetic algorithm developed in this research benefits from an innovative solution 

representation which make GA searches over both discrete and continuous variables in 

the problem of optimizing stock and industry selection and weight allocation. In this 

study, the outperformance and effectiveness of the proposed algorithm are 

demonstrated by comparing annual return, annual volatility, Sharpe ratio, Jensen's 

alpha and beta of a constructed portfolio with the S&P 500 index and Mean-Variance 

constructed portfolio. The robustness of our evolutionary algorithm is verified by 

evaluation of the results in both in-sample and out-sample data. 
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Chapter 1 
 

1. Introduction 
 

This study is aimed at finding a solution for selecting a limited number of stocks from 

S&P 500 index while trying to maximize the risk-adjusted return and minimizing Value-

at-Risk of a portfolio. In a capitalization-weighted index like the S&P 500 index the 

exposure to overvalued stocks will be increased while those undervalued stocks will 

carry less weight due to their lower market cap. Although index investing will provide 

us with diversification, we can achieve diversification with a smaller portfolio of stocks 

while benefiting from different advantage. However, in capital market, there exists 

many equities in different industry sectors with different characteristics, and 

construction of a profitable portfolio with limited capital can be challenging.  

In constructing an optimized portfolio, we will face several constraints, such as limiting 

number of stocks from industry sectors, and also limiting weight allocation to an 

individual stock. The aim of this study is to provide a novel approach to select limited 

number of stocks from a large pool of stocks in a way that it maximize the risk-adjusted 

return and minimizes VaR of the portfolio while taking into account constraints that 

limit our portfolio exposure to a certain industry sector or individual stock.  

Since VaR is a non-linear function of return, a small change in the portfolio allocation 

would have considerable impact on the VaR of the portfolio, hence the classic models 

of the portfolio optimization are incapable of optimizing the cost function stated in this 

paper.  

The problem considered in this research is a mixture of the optimal selection of stocks 

,which is an integer programing problem where decision variables in the constraints 

restricted to be either 0 or 1, and optimized weight allocation of stocks where variables 

are not necessary discrete, and a non-linear parameters in the objective of the portfolio. 

Therefore, we face a mixed-integer programing (MIP) problem in this study. Since MIP 

problems are categorized into non-convex problems finding optimal solution with 

traditional optimization methods will be a difficult task with substantial memory and 

time consumption requirement.  
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Therefore, the main objective of this paper is to present a novel metaheuristic approach 

to tackle the presented portfolio optimization problem with cardinality constraints, a 

well-known NP-hard problem due to the non-linearity of objective functions and 

integrality of constraints.  

This approach helps an investor to automatically create her own portfolio from a pool 

of assets with the aim of achieving an active return and be able to beat the index. 

1.1 Portfolio Diversification:  

In this paper, our goal is to make an optimized diversified portfolio of 30 stocks from 

the 5 best performance companies (obtained from factor analysis) in each of 12 sub-

industry of the S&P 500 index. To achieve this goal, our approach is to have at least 

one security from each sub-industry in the S&P 500 but not more than five. We would 

select the five top performance equities out of the 10 largest market cap companies in 

each sub-industry utilizing factor analysis scoring and then optimize the portfolio using 

genetic algorithms considering mean of returns and Value at Risk in a weighted cost 

function. The following shows our steps to find an optimal portfolio of S&P 500 

securities: 

i. Categorization of the S&P 500 stocks (1-Retailing, 2-Software, 3-

Technology & hardware, 4-Healthcare, 5-Consumer service, 6-

Semiconductors, 7-Pharmaceutical & biotechnology, 8-Transportation, 9-

Household & personal goods, 10-Capital goods, 11-Diversified financials, and 

12-Food, beverage and tobaccos.) 

ii. Rank stocks in each sub-industry based on their market capitalization. 

iii. Choose 10 largest market cap stocks in each sub-sector. 

iv. Run factor analysis on 10 selected stocks in each sub-industry. 

v. Choose five stocks in each sub-industry with the highest score obtained from 

factor analysis  

vi. Define objectives and constraints for the portfolio optimization 

vii. Use genetic algorithms model to make an optimized portfolio of 30 stocks 

viii. Compare the result with generated portfolio by mean-variance optimization 

method to see if any improvement happened or not.  

Conventionally, based on the study by (Fisher 1970) it was assumed that 95% of the 

benefit of diversification will be achieved by holding 32 stocks in a portfolio. However, 

it was shown in another study by (Surz 2000) that by having 60 stock portfolios about 

90% of available diversification will be captured. Moreover (Campbell 2001) proposed 

idiosyncratic risk in 50 stocks can became negligible. 
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In other words, by increasing the number of stocks to more than 30 stocks, one might 

not benefit greatly from diversification, and there might be no significant difference in 

diversification benefits of 60 stocks over 30 stocks. Therefore, substantial number of 

stocks needed to be added to an approximately 30 stocks portfolio to completely remove 

idiosyncratic risk whereas by this way you might trade off active management 

advantages with complete diversification of portfolio. While increasing the number of 

stocks in a portfolio can mitigate unsystematic risk however cost of having a portfolio 

with large number of securities (i.e. transaction costs) is considerable. Therefore, the 

ideal range of securities in a portfolio should be between 30 to 50 stocks in order to 

eliminate idiosyncratic risk (Busetti 2005). In this study, we chose a portfolio consist of 

30 assets. 

1.2 Portfolio Optimization 

Of the most common ways of portfolio constructions, market cap weighted (equally 

weighted), inverse volatility, equal risk and maximum diversification methods can be 

mentioned. These are methods with different assumptions considering characteristics of 

securities available in the portfolio, and the main weakness of these methods is picking 

risk or return over other one. The most popular solution for the aforementioned 

weakness, is using portfolio optimization. 

Portfolio optimization is the process of selecting  and combining the best assets to make 

a portfolio, out of many available securities, according to the specified objectives, which 

could be maximizing the return given a certain level of risk or minimizing the risk of 

the whole portfolio having a specified return goal (or more specifically, having the 

highest possible sharp ratio, which is measurement of the excess return for an unit of a 

risk), this usually follows some constraints, such as asset weights, and/or numbers of 

trades.  

Portfolio optimization originated from Modern Portfolio Theory saying that investors 

desire to have the highest possible return for the lowest possible inherent risk. Modern 

Portfolio Theory argues that risk and return are two dependent factors in a portfolio 

which they should be assessed to get the maximum return for a given level of risk. 

Mean-variance optimization has become base of the modern finance theory (Markowitz, 

Portfolio selection. 1952). 

Since the introduction of Modern Portfolio Theory, many have applied portfolio 

optimization with various objectives and constraints on their portfolios to reach an 

optimal asset allocation. Also, some other approaches have been used to overcome 

restrictions in the real-world investments, such as transaction limits and costs. One of 

these approaches is using genetic algorithms method to make an optimal portfolio. 
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Chapter 2 

2. Literature Review  

 

Portfolio optimization is a challenging task for investors to find the best risk-adjusted 

investment which can meet their desired level of risk and return. The most popular 

solution for portfolio optimization is mean-variance model, minimizing the risk level 

(variance of assets considering covariance between them) of a portfolio for a given level 

of return (defining as the mean return of the assets), or maximizing the return of the 

portfolio for a given level of risk, which was introduced by (Markowitz, Portfolio 

selection 1952) 

Although Markowitz model has been the foundation of most portfolio selections and 

researches, but the model, neither contains cardinality constraints (to impel each 

portfolio to have a certain number of assets) nor uses bounding constraint (to limit the 

available amount of money to invest in each asset) (Alberto Fernández 2005). To 

overcome these limitations, some methods such as Constrained 

Optimization  (CO),  Quadratic  Programming  (QP),  Linear 

Programming  (LP)  and  Second-Order  Cone  Programming  (SOCP)  have been 

developed to provide an exact solution for the optimization which most of the time, 

they work based on linear assumptions and a single objective (Davidsson 2011).  

 However, in the current complex financial environment, sometimes; these assumptions 

and objectives are costly (or even inapplicable) to be utilized to solve the portfolio 

optimization with the mentioned methods. Of solutions proposed as an alternative to 

these mentioned methods, is using metaheuristics approaches. Metaheuristics is an 

approach found to solve complex portfolio optimization problem more competently 

than classical optimization problems. Metaheuristic which were first introduced by 

(Glover 1986) are methods to find near-optimal solution for an NP-hard optimization 

problem with relatively low computational costs and close to classical approach results.  

One of the metaheuristic solutions for this problem would be using genetic algorithm 

(GA) which is simply process of generating n random variables to look for the best 

solutions (Holland 1992). Using GA would firstly help to solve the optimization model 

by looking both forward and backward inductions, besides, GA can overcome large 

computational issues existing in the classic model (Yang 2006) . This  stochastic 
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technique can solve non-linear optimization problems, with various characteristics such 

as optimization problems containing non-smooth and non-continuous objectives or 

continuous and integer variables (Chi-ming Lin 2007) 

A genetic algorithm is a natural based selection principle that has been used in the field 

of finance increasingly recently to find the optimum solution for different purposes, and 

one of its main usages is in investment portfolio optimization. A GA works with an 

iterative method by manipulating a population of a constant size including 

chromosomes. Each chromosome, formed by a set of genes, has a solution for the defined 

problem. In each iteration, a new the population is generated using genetic operators 

which are selection, crossover, and mutation. Eventually, every chromosome competes 

with other chromosomes, and consequently; this competition specifies a winner 

chromosome which is the optimum solution for the problem (Benbouziane 2012). 

The application of GA has been increased in the finance field as the effectiveness of its 

results has been proven by much research. (Andrea Loraschi 1996) successfully used 

GA to find optimum weights of different assets in stocks portfolio to minimize the risk 

of the portfolio for the predefined level of return, and it was shown that the approach 

is even effectively applicable when there are multiple equilibriums. 

Many researches have been conducted to use GA in the area of investment portfolio 

optimization. It has been shown that GA would give use more desirable performances 

over the traditional models in managing index funds tied to the benchmark indices even 

when the market is flat (Kyong Joo Oha 2005). To rebalance the asset-liability 

matching portfolio of insurance companies, GA was tested to optimize a portfolio with 

the sensitivity to interest rate changes and consequently, it gave a better allocation for 

different risk situation (Zhang 2010).  

Multi-objective GA techniques, combining with fuzzy logic, were used to optimize 

portfolio with real-world constraints such as floor and round-lot constraints to obtain 

improvement in performance of the Vector Evaluated Genetic Algorithm (VEGA) and 

the result was positive (Prisadarng Skolpadungket 2007) . The efficiency of GA to solve 

portfolio optimization with different risk measures and tendencies was observed and 

also it suggested that small portfolios (around 30 assets) would perform better than 

those of bigger ones (Tun-Jen Chang 2009). Another observation was that using single 

objective GA approach to optimize VaR of a portfolio would give efficient portfolio 

with returns distributed within the given range and potentially minimum risk for 

desired level of return, while multi-objective evolutionary algorithm could give us 

desired return in the range in a shorter time (Vladimir Ranković 2013).  



12 
 
 

Chapter 3 

3. Objective Function 

 

For the objective function of optimization, usually one of Sharpe ratio or a risk factor 

(such as Value at risk) has been used in the previous researches.  

To find the fittest species, minimizing risk and concurrently maximizing return (in 

other words, maximizing sharp ratio assuming risk-free rate is zero) was used as the 

objective function by (Sinha 2015) to calculate the fitness value of the chromosomes 

using GA. 

Sharp ratio was introduced by (Sharpe, Mutual fund performance 1966)  in the attempt 

to evaluate and predict the performance of mutual fund. Sharp ratio is additional 

compensation of an asset over risk free investment for one unit of risk of the asset, 

hence higher ratio, gives you more return for a unit of the risk. It is a good measurement 

for comparing different assets and portfolios, but it becomes problematic when the 

distribution is not normal, since standard deviation would not be a good factor to gauge 

the risk in a non-normally distribution. 

(Vladimir Ranković 2013) defined the objective function as maximizing return and 

minimizing Value-at-Risk at the same time to find the fitness value using GA. 

Value-at-Risk (VaR) is a main measure of risk for different industries, specifically 

financial sector. VaR is the maximum loss can occur in a given time horizon for a given 

confidence level. For an example, if a portfolio has VaR of $50 million at one month 

with 99% confidence level, it means that with the chance of 99%, the loss would not be 

more than $50 million over any given month, in the other words, there is 1% chance 

that the loss would exceed $50 million over any particular month. 

Technically, VaR is a quantile of a portfolio’s profit/loss for a specific horizon and a 

given probability. The variance of a portfolio can be approximated analytically, while 

analytical estimation does not work for VaR, unless it is assumed that portfolio return 

or value distribution can be perfectly estimated using some theoretical distribution. 

However, in reality, especially in highly volatile market or periods, when asymmetry 

increases in data of financial assets (more specifically, stock returns) accurate 

approximation becomes impossible even by theoretical distribution. Considering that, 
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Normally, minimizing VaR is very complex, which usually classical optimization 

methods are unable to solve the optimization problem, however, researchers have shown 

metaheuristics methods (popularly genetic algorithms) are efficient for solving this 

complex portfolio VaR optimizing (Vladimir Ranković 2013). 

In our paper, we not only concentrated on sharp ratio in our main objective function, 

as our primary goal is to have a higher risk-adjusted return, but also; we added VaR 

to the objective, with less concentration, to limit the portfolio loss. For another 

objective, we tested mean return and VaR as our main objective with different 

concentrations. With these objectives, we also would take into account both ex-post 

effects in sharp ratio, and ex-ante effects in VaR using Monte Carlo simulation. The 

code used for simulation of assets paths (Monte Carlo simulation) is based on the code 

written in (Goddard 2006). 

3.1 Mean-Variance 

Different objective functions have been used in literature. The most popular one is the 

mean-variance portfolio framework which was first introduced by (Markowitz, Portfolio 

selection. 1952)  explaining that a portfolio can be optimized by maximizing the return 

and minimizing the risk simultaneously using deterministic algorithm solution. The 

framework can be formulated as the following: 

 

Minimize : 

Objective  𝜎p
2 = ∑ ∑wiwj𝜎ij

m

j=1

n

i=1

  (3.1)      

Subject to : 

rp=∑ wiri
n
i=1        (3.2)    

 ∑wi=1                     (3.3)

30

i=1

 

0.1 ≤ wi ≤  1 ;   i= 1, 2, 3 ,…, 30   (3.4)   

 

Where 𝜎𝑝 represents the portfolio total risk, 𝜎𝑖𝑗 denotes covariance between the ith 

security and the jth security. ri represents the expected return of each security in the 
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portfolio,wi is the weight of each asset in the portfolio consists of n assets and rp  is the 

expected portfolio return. Solving the above equation for a range of different rp will 

offer set of optimal portfolios where risk is minimized for a given level of expected 

return. This efficient set of points will shape a curve known as efficient frontier that 

lies between the global minimum variance portfolio and the maximum return portfolio 

With specified return, the risk can be minimized, or with having the highest tolerable 

risk of investor, the return can be maximized by the Markowitz model. The framework 

is easy to apply and needs the least inputs (return and variance) to work. 

3.1.1 Markowitz Model Limitation 

As the financial market has become more complex the Markowitz model has shown 

more limitations in practice. For examples, the model would become problematic 

practically considering transaction cost, or when number of securities is large, or 

constraints are many; as the computational complexity increases. 

Markowitz model tries to simplify the real word to more focus on theoretical aspect of 

portfolio optimization. However, in practice, many realistic constraints must be taken 

to consideration by portfolio managers in the process of portfolio creation and 

optimization. The important realistic constraints can be categorized into cardinality 

constraints, round-lot constraints, floor constraints and trading constraints 

(Skolpadungket 2007). These constraints might be placed based on the instructions 

given by portfolio investors or might be set for practical reasons such as transaction 

costs and execution efficiency (Jize Zhang 2018). Solving large-scale problem with these 

realistic constraints (e.g. minimum and maximum number of securities) is NP-hard 

(non-deterministic polynomial-time hard). Which means that finding the solution in a 

reasonable amount time will require methods other than mixed integer nonlinear 

programing and other deterministic approaches (Skolpadungket 2007) . 

In this study we enhanced our model with cardinality constraint that restrain the 

number of stocks to be traded from a specific industry and also ceiling constraint that 

determine the minimum and maximum weight that can be held by a security in our 

portfolio. 

3.2 Proposed Fitness Function 

An alternative solution for this problem (cardinality constraints) would be using genetic 

algorithms for our project as we have several constraints such as integer variables and 

50-days forward VaR on returns in cost function.  
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After selecting securities, we are required to find the optimum weights for securities in 

a way that they optimize our cost functions. To achieve this goal, Sharpe ratio which 

was first introduced by (Sharpe, The Sharpe Ratio 1994) is used in the objective 

function and also Monte-Carlo predicted portfolio 50 days VaR is incorporated into the 

objective function.  

 

Maximize: 

Objective= (
Rp

σportfolio
) +

Portfolio  VaR
50days

10
     (3.5)    

 Or  

Objective=𝜆 ×Rp + (1-𝜆) × Portfolio VaR
50days   

  (3.6) 

Subject to : 

∑wi=1                          (3.7)

30

i=1

 

∑ 𝑢𝑖=30                         (3.8)

60

i=1

 

wi ≤ 0.1 ;  ∀(i)           (3.9)  

1≤ uj ≤5 ; ∀(j)      (3.10) 

0.1 ≤ wi ≤  1 ;   i= 1, 2, 3 ,…, 30   (3.11)   

 

Where Rp is the average daily return of the portfolio and 𝜆  is the weight given to each 

parameters in objective function. wj is the weight of  a 𝑖𝑡ℎ security in a portfolio which 

is a continuous variable that takes a value between 0.1 and 1.  𝑢𝑖 is a binary variable 

that takes value 1 if  𝑖𝑡ℎ security (from 60 stocks) is included in 30-stock portfolio and 

takes 0 otherwise. 

Since, VaR in this problem is the least value of the given portfolio return in 50 days 

with 0.05 probability our aim is to maximize this value.   
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3.2.1 Penalty Function  

In an unconstrained optimization problem, genetic algorithm performs a search in 

specific regions of solution space in order to find promising solutions. However, in case 

of constrained optimization problem, every random point may not locate in feasible 

region since it might violate the equality or non-equality constraints. In order to make 

GA to search over feasible solution space, we need to convert them to equivalent 

unconstrained optimization problem. Application of penalty functions (exterior 

functions) are one of the common approaches for constraints handling. Penalty function 

is to quantify the amount of infeasibility, in other words, it measures how far the 

solution is from the feasible region. Thus, penalty function is zero if all constraints are 

satisfied in a solution (Michalewicz 1996). 

In this study, for the purpose of transferring the above optimization problem to the 

unconstrained problem, we incorporated the constraints into the objective function 

using penalty functions. We changed both quality and non-equality constraints in the 

following way:  

 

∑wi = 1            

30

i=1

 → Min(∑wi = 1

N 

i=1

)  

2

                 (3.12) 

wi ≤ 0.1 ;  ∀(i) →   ∑ (Max (0,wi-0.10 ))2  (3.13)30
1  

1≤ uj ≤5 ; ∀(j) →   ∑ (Max (0, 1-uj))
230

1      (3.14) 

Therefore, the objective function in case of weighted Sharpe-VaR is transformed to 

the following equation: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

Objective= 

(
Rp

σportfolio
) +

Portfolio  VaR
50days

10
+ 

102 × [(∑wi = 1

N 

i=1

)  

2

  ] + ∑(Max (0,wi-0.10 ))2  

30

1

+10 × ∑(Max (0, 1-uj))
2

30

1

 (3.16)  

 

The coefficient of penalty functions is determined in tuning process, which is required 

in inclusion of each penalty function based on the value of the main cost function.  
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Chapter 4 

4. The proposed Algorithm 
  

4.1 Factor Analysis Approach 

Based on “Arbitrage pricing theory”, expected return of an investment security can be 

attributed to various macroeconomic factors (Ross, The arbitrage theory of capital asset 

pricing 2013). As the theory does not specify the factors (unlike CAPM), we can expand 

the model to include various factors, considering nature of market and industry. 

Macroeconomic factors (inflation, surprises, etc.), statistical factors (using principal 

components analysis), and fundamental factors (industry characteristics, valuation 

ratios, technical indicators, etc.) are main factors used currently in the market (Jennifer 

Bender 2013). Fama & French model was a very first model considering three factors 

(market, size, value) to connect the return of the stocks to these three factors (Eugene 

F. Fama 1992) which later other factors have been added to consider wider spectrum 

of elements affecting the return. Popularity of using fundamental factors to understand 

return/risk characteristics of a stock, leads to the creation of the multi-factor Barra risk 

models. 

Factor investing is an approach to choose appropriate investments opportunities 

(undervalued securities) out of available securities utilizing factors explaining securities’ 

risk and return for the long-term equity portfolio. There are several factors that have 

shown long-term risk premium and exposure to systematic source of risk such as value, 

growth, ESG, quality, leverage, momentum, sentiment, and etc. In this project, five of 

these factors have been chosen to evaluate stocks performance in each sub-industry of 

the S&P 500 index. 

4.2 Security Selection Scoring System 

Now, it is necessary to select securities from each sub-industry based on a scoring 

system. Our scoring system evaluate securities based on several selective factors 

including value, momentum, quality, ESG and leverage. These factors chose as our 

stocks are mainly from mature large companies.  In the process of initial stock portfolio 

selections, after allocating scores to each security, those with highest score would be 

selected to be in our hypothetical portfolio. 
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In our approach, securities are firstly ranked in each industry based on their market 

capitalization size, and then the top 10 securities have been chosen from each sub-

industry of the S&P 500, this has been done to reduce the size risk in the portfolio. 

However, the asset ranking has also been done using genetic algorithm by  (Lai 2006),  

where financial indicators of assets including return on capital employed (ROCE), 

price/earnings ratio (P/E Ratio), earning per share (EPS) and liquidity ratio are encode 

into the genes and then quality of the asset are evaluated using genetic algorithm.  

For purpose of ranking ten stocks in each sector, factor model analysis is applied 

considering five equity risk premium factors: Value, Momentum, Quality, Leverage, 

and ESG. The data used for factor analysis is based on the securities data on December 

12, 2018. For each factor, three major components have been considered to be 

representative of the factor, and they have been given equal weight, for an example for 

value factor, three components are price-to-earning value ratio, dividend yield and 

ROIC spread (ROIC-WACC) 

Value Score= 33.33% .
P

E
 Score  +  33.33% .  Dividend Yield  +   33.33% .ROIC spread Score              (4.1)  

In the following, elements which have been used to score each factor are described.  

Value  

Metric Explanation 

P/E ratio 

It shows relative value of a share price to a company’s earnings per 
share. It is representative of how market prices the company for $1 
of its income. Lower PE ratio give some sense of cheaper price. To 
score this ratio, we used earning yield which is reverse of the ratio. 

Dividend yield 
It shows how many percentages of a stock paid as divided, higher 

yield means that shareholder’s return is higher. 

ROIC spread 

Return on invested capital is an accounting term to calculate returns 
go back to investors, calculating as Net Operating Profit After Tax 

(NOPAT) divided by sum of debt and shareholder’s equity. ROIC 
spread is excess of return after weighted average cost of capital of the 
capital (WACC), higher ROIC spread is better sense for investors. 
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Momentum   

Metric Explanation 

3 months return It is an indicator of a stock return in a short period of last 3 months. 

6 months return It is an indicator of a stock return in last 6 months. 

12 months return 
It is an indicator of a stock return in the longer period of last 12 
months. Considering all three returns, take the volatility into 
account as well. 

Quality  

Metric Explanation 

ROE 

 
Return on equity (ROE) represents the amount of income could be 
generated for $1 investment of a shareholder. Higher ROE gives 
shareholders the sign of better investment. 
 

Free cash flow 
yield 

It is one of the indicators of cash generation quality, calculating as 
free cash flow generated by the company divided by the stock price. 
The higher yield shows ability of the company in producing cash. 
 

Asset turnover 

Asset turnover, calculating as sales over total assets, giving us a 
picture of efficiency of total assets in making sales for a company, 
put another way, it shows how much a company can make revenue 
from $1 of its total assets. The higher quality of the assets, more 
sales can be supplied. 
 

Leverage  

Metric Explanation 

Net interest 
coverage ratio 

 

Coverage ratio is indicator of a company’s ability to cover its interest 
payable to its creditors, calculating as EBIT (earnings before interest 
and tax) over net interest.  
 

Net debt-to-
EBITDA ratio 

Net debt-to-EBITDA shows how long it takes to pay its current 
debts (after using cash to pay part of the debt) with the current 
operating income or EBITDA (earnings before interest, taxes, 
depreciation and amortization.  

Total debt-to-
equity 

Total debt-to-total equity shows how leverage is a company, and 
how its capital structure is. 
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ESG  

Metric Explanation 

ESG disclosure 

 
It is a rating out of 100. As ESG disclosure is not yet a mandatory 
requirement in behalf of regulatory, if a company has disclosed it 
and has efficient explanations and contribution, it gives advantage 
over others and can get higher score. 

Independent 
director 

 It is a percentage of independent directors from the board, higher 
rate shows more independency. 

 

Based on performance of each company on each factor and allocating appropriate 

weight to each factor, we score the company on each factor and rank companies. By 

doing the same steps for each factor and having suitable weight on each factor (shown 

in the formula below), finally the companies are ranked using weighted average of scores 

in each factor. 

Total Score =  

                               25%  .   Value Score  +  20% .  Momentum Score + 20% . Quality Value  +  

20%  . Leverage Value + 15% .  ESG Value                                                                                                   (4.2)   

4.3 Proposed Genetic Algorithm  

4.3.1 Solution Representation  

The first step in implementation of genetic algorithm is to construct a proper solution 

representation in the form of a gene. In this section we explained our proposed solution 

representation which encoded every possible solution to the optimization problem as a 

chromosome, where sum of all allocated weight percentages is equal to one.  

4.3.2 Proposed Solution Representation  

In the following solution representation industry selection, security selection, and 

weight allocations are encoded into a chromosome. In this representation, every gene 

in every chromosome is represented by a triplet (I, W, S) where W denotes the weight 

of Sth security of industry Ith in our portfolio. I is the index of sub-industries in our 

portfolio which can take a binary number between [1 12] and S can also be a number 

between [1 5] which is the indicator of the security index in that particular sub-industry. 

In this study, we included 30 genes in each chromosome which can be interpreted as a 

portfolio of 30 stocks. This solution representation is inspired from (Defersha 2010) , 

however, it is used in completely different context.  
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4.3.3 Initial population generation: 

The initial population consists of 250 chromosomes, where each chromosome represents 

a possible asset allocation solution.  

For generating random binary numbers for industry index, we have generated binary 

random numbers using uniform distribution with the restriction that a particular 

industry sector index can be repeated for maximum five times. 

Moreover, we have applied the same procedure for generating random numbers for 

security index, however; this time with no restriction on frequency of the index 

numbers.  

For weight allocation to each gene in initial population, the following mean-variance 

optimization has been applied to find the optimum weights for each security, while the 

allocated weight to each security is limited to be 10%.  

Minimize: 

Objective     σportfolio=√W ×   Covariance portfolio  ×   W
 ′
   (4.3) 

Subject to: 

rp=∑ wiri
n
i=1        (4.4)  

 ∑wi=1                     (4.5)

30

i=1

 

0.1 ≤ wi ≤  1 ;   i= 1, 2, 3 ,…, 30   (4.6)   

Where W is the vector of portfolio security’s weight. The main purpose of avoiding 

random weight allocation and determining weights optimally, is to dramatically 

improve convergence rate of proposed algorithm. However, the main issue is to 

determine the suitable amount of required return rp  as one of the mean-variance 

constraints. If a low number is chosen for rp (e.g. The S&P 500 daily return, 3.495×10-4), 
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computational cost would increase due to slow convergence rate. On the other side, if 

we choose a high number as rp (e.g. 9.0×10-4), mean-variance optimization would not 

be able to find feasible solution for every chromosome (i.e. each portfolio created by 

random number assignment to stock and industry index) in initial population. To 

overcome this issue, mean-variance optimization is conducted several times on initial 

portfolios while each time rp  got a value from a range of possible portfolio daily return. 

If the rp of chosen portfolio, which is a constraint for initial mean-variance optimization 

is not realistic, the mean-variance method may not be able to give optimum feasible 

weights for every portfolio security in initial population. 

Each time, Mean-Variance optimization is executed with different rp , number of 

portfolios in initial population (from total 250 of portfolios) where weight constraint 

(i.e. sum of securities weight in a portfolio must be equal to one) have been violated, 

have been counted.  

In this study, we have searched for a rp that Mean-Variance optimization be able to 

allocate feasible weights to at least 75% of portfolios in initial population. Evidently, if 

a low rp is chosen Mean-Variance optimization is able to assign feasible weights to all 

portfolios in initial population, however; this initial population of portfolios will lead to 

a slow convergence rate since GA aims to increase return of portfolios as its objective 

function. On the other hand, if a high rp is chosen, Mean-Variance optimization is able 

to find optimum feasible weights just for few portfolios from initial pool of portfolios. 

Although, these infeasible solutions gradually will be eliminated by GA evolution 

process, GA algorithm starts with less diversified pool of feasible portfolios might result 

in premature convergence of GA. 

The main reason why this approach has been applied to construct initial pool of 

portfolios, is to improve the quality of initial population which greatly has improved 

our proposed GA convergence behavior. In this study, we have employed Mean-

Variance optimization while we have restricted the required return constraint to be 

0.0007. As a result, in constructing of our initial population process, the total weight of 

securities in only 66 out 250 portfolios, were greater than one. However, these changes 

with each random generation of 250 portfolios. In the following flowchart the initial 

population creation is depicted.  
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4.3.4 Selection Operators: 

In our GA approach, we have applied k -way tournament selection operator, which was 

first introduced in (Goldberg 1989). The selection procedure has been done by holding 

tournament among k randomly selected chromosomes and choosing the best fitness as 

a winner of the competition. The copy of the winner chromosome is then copied into 

the mating pool, and all chromosomes participated in the tournament will be returned 

into initial population. The procedure continues until the size of the mating pool reach 

to the current population size. 

4.3.5 Crossover Operators: 

After the selection of chromosomes for mating pool, for the purpose of evolution and 

enriching the population with chromosomes with better fitness, crossover operators 

have been applied. The crossover operator for our proposed algorithm can be 

categorized as industry sector crossover operator.   

Start 

Randomly 
generate 250 
portfolios of 
30 stocks 
from 60 
stocks 

𝑟𝑝 = 

 3.495 × 10−4  

Conduct Mean-
Variance optimization 

Count number of 
portfolios with feasible 
weight allocation (i.e. 
not a portfolio with 

sum of securities’ 
weight more than one) 

If number of 
portfolios in initial 
population with 
infeasible weight 

allocation is equal to 
25% of total 
portfolios 

Add 1 × 10−4 to 𝑟𝑝 

𝑟𝑝 = 7 × 10−4  

Yes 

No 

Initial population creation process flowchart 
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4.3.5.1 Industry Crossover Operator 
 

In this method, the sub-industry allocation information of parent 1 will be preserved 

by far in the new offspring. This operator, initially would select industry (e.g. Capital 

goods) randomly from one parent, then based on the number of associated genes with 

this sub-industry in the other parent, there would be two possible scenarios: 

 Scenario A: when number of associated genes to the selected industry sector in both 

parents are equal 

o In this case, simply the associated genes are exchanged between two parents 

 Scenario B: when number of associated genes to the selected industry sector is not 

equal in both parents 
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Step 1:  

Selecting the sub-industry index (here, I4) 

randomly and then choosing the parent with lower 

number of associated gene to the selected industry 

index as parent 1 

Step 2:  

Copy all the genetic information of parent 1 to the 

new offspring except the security and weight 

attribution of genes associated with the selected 

industry index.  

 
Step 3:  

Final step is to copy security and allocated 

weight properties of genes with same industry 

index in parent 2 to offspring starting from first 

gene (here, gene 1 and 5) until the new offspring 

until all the empty places in the offspring is 

filled. 

Security crossover operator in Scenario B 

1 5 



26 
 
 

4.3.6 Mutation Operator 

For the purpose of maintaining diversity in the mating population and also in order to 

avoid being trapped in local minima, we have needed to perform mutation with low 

pre-specified probability on the offspring resulted from crossover operation. This would 

help us to preserve diversity by exploring the whole solution space.  

In this study, three different mutation operators have been used: 

4.3.6.1 New portfolio mutation operator 
 

A chromosome in a population may undergo new portfolio mutation with a low 

probability. The role of this operator is to create is to create a new portfolio by assigning 

random numbers for security and industry index to each gene while randomly allocation 

weight to each security using following formula:  

Weight  allocation = {

𝛼i = Uniform  Random  Number  in  [0,1] interval      i=1, 2, 3 ,…, 30   (4.7)

wi=
𝛼i

∑ 𝛼i
30

i=1

   i=1, 2, 3 ,…, 30                                                                                              (4.8)
 

4.3.6.2 Security-Industry mutation operator 
 

Security-Industry mutation operator is applied with low probability on few 

chromosomes. The role of security-Industry mutation operator is to alter security and 

sub-industry properties of 10 randomly selected genes in a chromosome.  
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Step 1:  

Selecting 10 genes randomly. 

Step 2:  

Random integer numbers are assigned to the security 

and industry indexes in a way that to avoid any 

identical genes.  
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4.3.6.3 Weight mutation operator 
 

This operator is also applied with low probability of few chromosomes in a population. 

This operator is responsible to randomly change allocated weights of all securities in a 

chromosome. The method for allocating new weights is similar to the equation 

explained in 4.3.6.1. 

4.4 Steps of the Proposed approach  

 

1. Choosing 10 securities with highest market cap in each industry from the S&P 

500 index (total of 120 stocks) 

2. First refinery process: Selecting the best 5 stocks in each sector using factor 

analysis (total of 60 stocks)  

3. Creating initial population of 250 chromosomes, each contains a portfolio of 30 

stocks created from selected 60 stocks 

a. Randomly assign industry and security index to each gene  

b. Second refinery process: Find optimum weight allocation for each created 

portfolio in step 3.a using Mean-Variance method optimization 

4. Calculate fitness value of chromosomes in the initial population   

a. Applying 30-tornoument selection operator to create mating pool  

b. Applying industry crossover operator explained in 4.3.5.1 with probability 

of 0.70  

c. Applying new portfolio mutation operator explained in 4.3.6.1 with very 

small probability (0.25) in order to avoid unnecessary delay in convergence 

to optimal solution  

d. Applying security-industry mutation operator explained in 4.3.6.2 with 

probability of 0.5 in order to avoid being trapped in local minima and 

preserve population diversification. 

e. Applying weight mutation operator explained in 4.3.6.3 with probability of 

0.15. 

f. Simulate 50 days forward portfolio path for each chromosome using Monte 

Carlo simulation  

g. Find 50- days VaR on portfolio return with 95% confidence level is 

h. Calculate fitness value of each chromosome  

5. Repeat Steps “a” to “h” for 3500 generations to find the best solution  
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Following pseudocode is presented in order to clarify the approach mechanism. 

 

  
Proposed Algorithm Pseudocode 
 

1: for N_C (1) ⟶ N_C (Maximum Number of Chromosomes=250) do 
2:    while there is any two identical genes N_C (1) continue  
3:  if it is a first row then assign random integer numbers between 1 to 5 for stock index   
4:  if it is a third row then assign random integer numbers 1 to 12 for industry index   
5: end while  
6: if it is a second row then find optimized weight by executing mean-variance optimization 

while the required return is restricted to 7×10-4 for daily return. 
7: end for 

8: for g (1) ⟶ N_C (Maximum Number of Generations=3500) do 

9:  for N_C (1) ⟶ N_C (Maximum Number of Chromosomes=250) do 
10:   Extract stocks, associated weights and industry index from Chromosome   
11:   Calculate Fitness function of Chromosome  
12:  end for  

13:  for N_C (1) ⟶ N_C (Maximum Number of Chromosomes=250) do 

14:   for t (1) ⟶t (Maximum Number selected for Tournament=30) 
15:    Choose the best chromosome in terms of Fitness  
16:    Place the winner chromosome in the mating pool 
17:   end for  
18:  end for   

19:  for C_R (1) ⟶ C_R (Maximum Number of Chromosomes=250) do 
20:   Randomly choose two chromosomes from mating pool 
21:   Randomly select one industry index and count number of associated genes in 
each chromosome  
22:   if random number is less than Security Crossover Probability (0.70) then 
23:        Operate Security Crossover in Section 4.3.5.1 and create two new 
chromosomes  
24:   end if  
25:  end for  

26:  for N_C (1) ⟶ N_C (Maximum Number of Chromosomes=250) do  
27:   if random number is less than New portfolio mutation Probability (0.25) then 
28:    Create a random chromosome using the approach explained in 4.3.6.1 
and replace it with current chromosome  
29:  end if  
30:   if random number is between New portfolio mutation (0.25) and  
31:   Security-Industry mutation (0.75) then 
32:       while there is any two identical genes N_C (1) continue  
33:    Randomly change the industry index of 10 genes as explained in 4.3.6.2 
34:   end while   
35:   end if  
36:   if random number is greater than Security-Industry mutation (0.75) and  
37:   weight mutation probability (0.9) then 
38:   Change weights of chromosome using the approach explained in 4.3.6.3 
39:   end if  
40: end for    
41: end for  

Initial Population Creation  

Fitness Function Calculation 

Selection Operation 

Crossover Operation  

Mutation Operation  
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Chapter 5 

5. Results 

 

5.1 Analysis of constructed portfolios 

5.1.1 Portfolio Sharpe ratio – VaR as fitness function (10SHV) 

In the following table, the selected equities and their corresponding weights obtained 

by two methods are presented: 

 The following results are obtained as weighted Sharpe-ratio VaR is considered as 

objective function: 

o Minimize  Objective function=  - Sharpe Ratio  - 
(Portfolio  return  VaR 50 days)

10
    (5.1)  

o In the GA column, securities selection and their optimal weight by our 

proposed method is presented 

 In the MV column, allocated optimal weights to 60 stocks obtained by mean-variance 

optimization are presented.  As stated before, these 60 stocks are selected by refining 

the S&P 500 index using factor analysis.  

Fitness Function: Weighted Sharpe ratio- VaR 

Equity GA MV Sub Industry Sector 

HD UN Equity 1.4919% 0.8616% 

Retailing  

LOW UN Equity  0.7409% 

TJX UN Equity 0.5355% 0.7637% 

TGT UN Equity  0.4571% 

ROST UW Equity 0.5641% 0.7562% 

MSFT UW Equity 6.2521% 2.5786% 

Software 

V UN Equity 8.3609% 2.6303% 

MA UN Equity 6.7900% 7.2785% 

IBM UN Equity  0.3720% 

ACN UN Equity  0.8401% 

AAPL UW Equity 1.2482% 1.2419% 

Tech & Hardware 

TEL UN Equity  0.5691% 

APH UN Equity  0.7940% 

HPQ UN Equity 0.8939% 1.0814% 

HPE UN Equity  
0.5821% 
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UNH UN Equity 7.7244% 2.3094% 

Healthcare 

DHR UN Equity  0.8974% 

CVS UN Equity  0.4890% 

ANTM UN Equity 9.3040% 9.9657% 

CI UN Equity 8.2159% 1.5814% 

SBUX UW Equity 0.2685% 0.6815% 

Consumer Goods 

LVS UN Equity  0.5061% 

HLT UN Equity 1.2482% 1.0057% 

RCL UN Equity  0.7391% 

CMG UN Equity 0.5464% 0.8236% 

NVDA UW Equity  1.4190% 

Semiconductor 

MU UW Equity 0.2685% 2.1430% 

AMAT UW Equity  0.5506% 

LRCX UW Equity 0.4403% 0.8312% 

AMD UW Equity 0.3466% 2.5717% 

JNJ UN Equity 3.6760% 0.8881% 

Pharma and 

Biotechnology  

AMGN UW Equity 0.7544% 0.9905% 

ABBV UN Equity 0.1366% 1.1131% 

BMY UN Equity  0.5020% 

GILD UW Equity  0.4835% 

UPS UN Equity  0.4472% 

Transportation 

NSC UN Equity 0.5464% 1.0485% 

LUV UN Equity  0.5743% 

KSU UN Equity  0.6783% 

AAL UW Equity  0.3505% 

PG UN Equity 2.3389% 0.6804% 

Household and Personal 

Goods 

EL UN Equity 9.0097% 3.9988% 

CL UN Equity  0.5420% 

KMB UN Equity 0.5464% 0.5801% 

CLX UN Equity 8.9350% 1.3155% 

BA UN Equity 8.8025% 30.0442% 

Capital Goods 

UTX UN Equity  0.6090% 

LMT UN Equity 1.2482% 0.6950% 

GE UN Equity  0.1650% 

RTN UN Equity 0.6231% 0.7364% 

GS UN Equity  0.3726% 

Diversified Financials 

MS UN Equity  0.4838% 

BLK UN Equity  0.5194% 

SPGI UN Equity 6.7900% 1.2124% 

COF UN Equity  0.4714% 

PM UN Equity  0.5133% 

Food, Beverage and 

Tobacco  

MO UN Equity  0.4271% 

KHC UW Equity  0.3032% 

GIS UN Equity  0.3212% 

BF/B UN Equity 0.7544% 0.8713% 
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5.1.2 Portfolio Sharpe ratio – VaR as fitness function (20SHV) 

In the following table, the selected equities and their corresponding weights which are 

obtained by two methods are presented: 

 The following results are obtained as weighted Sharpe-ratio VaR is considered as 

objective function:  

o Minimize  Objective function= - Sharpe Ratio  - 
(Portfolio  return  VaR 50 days)

20
    (5.2)   

 In the GA column, securities selected and their optimal weight by our proposed 

method is presented 

 In the MV column, allocated optimal weights to 60 stocks obtained by mean-variance 

optimization are presented.  As stated before, these 60 stocks are selected by refining 

the S&P 500 index using factor analysis.  

Fitness Function: Weighted Sharpe ratio- VaR 

Equity GA MV Sub Industry Sector 

HD UN Equity 1.2482% 0.8118% 

Retailing  

LOW UN Equity  0.6967% 

TJX UN Equity 0.1527% 0.7177% 

TGT UN Equity  0.4289% 

ROST UW Equity 1.2482% 0.7115% 

MSFT UW Equity 7.3378% 2.4902% 

Software 

V UN Equity 8.2914% 2.5308% 

MA UN Equity 8.5773% 7.2696% 

IBM UN Equity  0.3480% 

ACN UN Equity  0.7933% 

AAPL UW Equity 2.3389% 1.1831% 

Tech & Hardware 

TEL UN Equity  0.5360% 

APH UN Equity  0.7493% 

HPQ UN Equity 0.5825% 1.0205% 

HPE UN Equity 

 
0.5488% 

UNH UN Equity 8.1673% 2.1893% 

Healthcare 

DHR UN Equity 1.2482% 0.8433% 

CVS UN Equity  0.4581% 

ANTM UN Equity 9.2274% 9.9660% 

CI UN Equity 6.7900% 1.4865% 

SBUX UW Equity 1.1906% 0.6371% 

Consumer Goods 

LVS UN Equity  0.4759% 

HLT UN Equity  0.9427% 

RCL UN Equity  0.6957% 

CMG UN Equity 2.2836% 0.7769% 

NVDA UW Equity  1.3668% 
Semiconductor 

MU UW Equity 1.2366% 2.0722% 
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AMAT UW Equity  0.5185% 

LRCX UW Equity  0.7908% 

AMD UW Equity 0.8939% 2.5537% 

JNJ UN Equity 3.9122% 0.8328% 

Pharma and Biotechnology  

AMGN UW Equity 0.1527% 0.9287% 

ABBV UN Equity 1.1906% 1.0515% 

BMY UN Equity  0.4695% 

GILD UW Equity  0.4541% 

UPS UN Equity  0.4204% 

Transportation 

NSC UN Equity 1.6175% 0.9848% 

LUV UN Equity  0.5407% 

KSU UN Equity  0.6354% 

AAL UW Equity  0.3304% 

PG UN Equity 1.1906% 0.6351% 

Household and Personal 

Goods 

EL UN Equity 9.0097% 3.8014% 

CL UN Equity 0.4760% 0.5082% 

KMB UN Equity  0.5457% 

CLX UN Equity 7.7244% 1.2364% 

BA UN Equity 8.9350% 32.7741% 

Capital Goods 

UTX UN Equity  0.5727% 

LMT UN Equity  0.6498% 

GE UN Equity  0.1546% 

RTN UN Equity 0.4760% 0.6906% 

GS UN Equity  0.3489% 

Diversified Financials 

MS UN Equity  0.4567% 

BLK UN Equity  0.4882% 

SPGI UN Equity 3.1993% 1.1518% 

COF UN Equity  0.4437% 

PM UN Equity 0.1527% 0.4795% 

Food, Beverage and 

Tobacco  

MO UN Equity 0.1785% 0.4006% 

KHC UW Equity  0.2841% 

GIS UN Equity  0.3006% 

BF/B UN Equity 0.8074% 0.8195% 
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5.1.3 Portfolio weighted Mean-VaR as fitness function (10MEV) 

In the following table, the selected equities and their corresponding weights which are 

obtained by two methods are presented (with more weight given to the mean): 

 The following results are obtained as weighted Sharpe-ratio VaR is considered as 

objective function:  

o Minimize  Objective function= - 10 × mean - (Portfolio  return  VaR 
50 days

)        (5.3)   

 In the GA column, securities selected and their optimal weight by our proposed 

method is presented 

 In the MV column, allocated optimal weights to 60 stocks obtained by mean-variance 

optimization are presented.  As stated before, these 60 stocks are selected by refining 

the S&P 500 index using factor analysis.  

Fitness Function: Weighted Mean- VaR 

Equity GA MV Sub Industry Sector 

HD UN Equity 0.5464% 0.7148% 

Retailing 

TJX US Equity  0.5694% 

TGT US Equity  0.6456% 

ROST US Equity  0.3591% 

EBAY US Equity  0.6155% 

MSFT US Equity 6.2521% 2.3934% 

Software 

V US Equity 8.3609% 2.5304% 

MA US Equity 4.2344% 10.0852% 

IBM US Equity  0.2685% 

CAN US Equity 1.5900% 0.6678% 

AAPL US Equity 4.7551% 1.0382% 

Tech & Hardware 

APH US Equity 0.1453% 0.4342% 

KEYS UN Equity 0.7544% 0.6371% 

HPQ US Equity 3.8464% 0.8099% 

HPE US Equity  0.4454% 

UNH US Equity 8.2159% 2.2251% 

Healthcare 

MDT US Equity  0.7325% 

CVS US Equity  0.3699% 

ANTM US Equity 9.3040% 24.4975% 

CI UN Equity 6.8915% 1.2212% 

LVS UN Equity  0.5544% 

Consumer Goods 

YUM US Equity  0.3732% 

CCL US Equity 0.5464% 0.8048% 

HLT US Equity 0.3466% 0.5386% 

CMG US Equity  0.7190% 

INTC US Equity 2.2904% 0.9059% 

Semiconductor QCOM US Equity 3.6760% 1.3261% 

MU US Equity  0.3677% 
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AMAT US Equity 1.4919% 0.5306% 

LRCX US Equity 9.1502% 1.2063% 

JNJ US Equity 0.6231% 0.7829% 

Pharma and 

Biotechnology  

AMGN US Equity 0.6298% 0.8050% 

ABBV US Equity 1.8073% 0.8955% 

BMY US Equity 0.3466% 0.3853% 

CELG US Equity  0.3673% 

UPS US Equity 0.5438% 0.3526% 

Transportation 

DELTA TB Equity  0.7665% 

LUV US Equity  0.4515% 

UAL US Equity  0.5120% 

KSU US Equity  0.2399% 

PG UN Equity 0.3466% 0.5767% 

Household and Personal 

Goods 

EL UN Equity 9.0735% 5.1256% 

CL UN Equity  0.4359% 

KMB US Equity 1.2167% 0.4908% 

CLX US Equity 3.9316% 1.3348% 

HON US Equity 7.9477% 21.8461% 

Capital Goods 

LMT US Equity  0.4808% 

CAT US Equity  0.5357% 

RTN US Equity  0.1181% 

DE US Equity  0.5738% 

AXP US Equity   0.2587% 

Diversified Financials 

MS UN Equity 0.4237% 0.3588% 

BLK UN Equity  0.3767% 

SPGI US Equity  1.0246% 

COF US Equity  0.3627% 

PEP UW Equity  0.4010% 

Food, Beverage and 

Tobacco  

PM UN Equity  0.3386% 

MO UN Equity  0.2295% 

GIS UN Equity  0.2489% 

BF/B US Equity  0.6309% 0.7361% 
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5.2 Results comparison 

In the following table, the results of proposed GA algorithm with different objective 

functions and Mean-Variance optimization are compared. These results are achieved 

based on the in-sample data of securities from December 11, 2016 to December 12, 

2018.  Also, performance of S&P500 index based on different metrics are presented. GA 

algorithm is first executed for each defined objective function, and the return of best 

portfolio generated by GA approach is considered as required level of return for the 

portfolio constructed by Mean-Variance optimization to compare. 

* Required level of return for the portfolio constructed by Mean-Variance optimization 

** Risk free rate is assumed to be equal to zero 

IN-Sample Results | December 11, 2016 to December 12, 2018 
 

Objective Function 
10.Sharpe-VaR 

(SHV) 
20.Sharpe-VaR 

(20SHV) 
10.Mean-VaR 

(10MEV) 
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Annual Return 27.04% 27.04% 27.87% 27.87% 29.09% 29.09% 8.36% 

Annual Volatility  12.73% 15.36% 13.17% 15.62% 16.27% 14.62% 12.00% 

VaR0.95
Return Annual (𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

− 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ) 
21.01% 25.34% 21.73% 25.78% 26.84% 24.12% 19.80% 

Sharpe Ratio** 2.1239 1.7607 2.1162 1.7835 1.6173 1.1631 0.6969 

 

In the following, the performance of the constructed portfolio by proposed GA 

algorithm with different objective functions and Mean-Variance optimization are 

evaluated on the out-sample data from December 13, 2018 to December 12, 2019.  
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OUT-Sample Results | December 13, 2018 to December 12, 2019  

Objective 
Function 

10.Sharpe-VaR 
(SHV) 

20.Sharpe-VaR 
(20SHV) 

10.Mean-VaR 
(10MEV) 
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Annual Return 18.79% 20.56% 20.13% 20.01% 26.21% 18.07% 19.54% 

Annual Volatility  15.14% 17.89% 15.64% 18.16% 18.90% 17.37% 14.34% 

VaR 4.547% 6.561% 4.255% 5.651% 5.369% 7.866% - 

Sharpe Ratio** 1.3933 1.2879 1.4491 1.2360 1.6173 1.1631 1.3629 

Portfolio Beta 0.8560 1.1319 0.8959 1.1375 1.1886 1.0251 1.00 

Jensen's alpha 0.2464 0.1581 0.2530 0.1973 0.2572 0.1970 0.1954 

Holding Period 
Return (251 Days) 

21.09% 23.04% 22.67% 22.45% 30.566% 20.198% 19.54% 

 

 

5.2.1 Average annual return 

The average annual returns of 10SHV, 20SHV and 10MEV constructed portfolios by 

proposed GA, which are calculated using following formula, are 18.79%, 20.13% and 

26.21% respectively.  

AAR = e(Portfolio Daily Return×251) − 1           (5.4) 

These annual returns are calculated based on out-sample prices of securities between 

December 13, 2018 to December 12, 2019. Two of GA constructed portfolios provided 

reasonable active return comparing with 19.54% annual return S&P 500 index for the 

same period.  However, the 10MEV portfolio has higher annual return than 10SHV and 

20SHV portfolios, due to the higher weight given to mean return in cost function.  
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5.2.2 Holding Period Return (251 Days) 

The holding period return of GA-10SHV, GA-20SHV and GA-10MEV constructed 

portfolios by proposed GA are 21.09%, 22.67% and 30.566% respectively.  

These holding period return is between December 13, 2018 to December 12, 2019. 

While, the holding period return of GA-portfolios were higher than S&P500 index and 

portfolios built by mean-variance, evidently GA-10MEV provided the highest holding 

period return among all portfolios.  

5.2.3 Sharpe ratio of portfolio 

Sharpe ratio is the greatest contributor to fitness function in GA-10SHV and GA-

20SHV algorithms. While, VaR amount of portfolio affects the fitness function value, 

more weight is given to Sharpe ratio in GA-10 SHV and GA-20SHV approaches. 

Interestingly, although, Sharpe ratio is not considered in GA-10MEV approach, 

generated portfolio by this method has the highest Sharpe ratio among all the portfolios. 

As Sharpe ratio is a tool to gauge the risk-adjusted performance of a portfolio, Sharpe 

ratio of GA constructed portfolios are compared with Sharpe ratio of S&P index which 

is 1.3629. The higher Sharpe ratio of GA constructed portfolios comparing with both 

S&P index and Mean-variance- portfolio’s Sharpe ratio confirms the fact that proposed 

algorithm with each objective function is able to provide higher risk-adjusted return 

than portfolios created by conventional methods. 
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5.2.4 Beta of portfolio  

The beta of portfolio, which is the weighted sum of securities betas, is a tool for 

volatility measurement of portfolio relative to the market changes. In another word, it 

evaluates the portfolio systematic risk. The beta of constructed portfolios by GA-

10SHV, GA-20SHV and GA-10MEV methods in this study, are 0.8560, 0.8959 and 

1.1886 respectively. This indicates the constructed portfolios have lower systematic risk 

than entire market. Additionally, the lower beta of GA-constructed portfolios than beta 

of Mean-variance constructed portfolios proves that the proposed algorithm in this 

paper, is effective in lowering portfolio exposure to systematic risk and diversifying asset 

allocation. 
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5.2.5 Portfolio Volatility  

In order to validate the robustness of our algorithm, we compared the volatility of our 

GA constructed portfolios with 60-stocks portfolios optimized by mean-variance 

method. As mentioned earlier, initial pool of 60 stocks that we obtained after refining 

the S&P 500 securities by factor analysis, are used by our proposed algorithm to 

construct a 30-stocks portfolio of assets with different objective functions.  We applied 

mean-variance approach on 60 stocks portfolio, while restricting the required return to 

the best daily return obtained from GA approaches with different objective functions.  

 

Evidently, portfolio constructed by GA-10MEV approach is riskier than GA-10SHV 

and GA-20SHV approaches since less weight is given to volatility in cost function of 

GA-10MEV approach.  On the other hand, the results show that GA-10SHV and GA-

20SHV approaches achieved significantly less volatile portfolios than MV-10SHV and 

MV-20SHV portfolios. The annual volatility of 60-stock portfolio obtained by MV-

10SHV was 17.89% while the volatility of our 30-stock GA-10SHV portfolio was 

15.14%, the lowest volatility among all portfolios. Clearly, this result indicates that 

optimized portfolio by mean-variance can provide the higher return as our constructed 

portfolio but in the expense of increasing portfolio risk significantly. Additionally, GA-

10MEV was unable to provide less risky portfolio than MV-10 MEV.   In the above 

Retailing, 
2.59%

Software, 
21.40%

Tech & 
Hardware, 

2.14%

Healthcare, 
25.24%

Consumer 
goods, 
2.06%Semiconductors, 

1.06%

Pharma 
&Biotech, 

4.57%

Transportation, 
0.55%

Household 
& personal 

goods, 
20.83%

Capital 
goods, 
10.67%

Diversified 
financials, 

6.79%

Food, 
beverage & 
Tobacco, 

0.75%

Industry Allocation in 30|Stock Portfolio 
Constructed by GA proposed method| 

10.Sharpe-VaR as objective  

Retailing, 
3.6%

Software, 
13.7%

Tech & 
Hardware, 

4.3%

Healthcare, 
15.2%

Consumer 
goods, 3.8%

Semiconductors, 
7.5%

Pharma 
&Biotech, 

4.0%

Transportation, 3.1%

Household 
& personal 
goods, 7.1%

Capital 
goods, 
32.2%

Diversified 
financials, 

3.1%

Food, 
beverage & 
Tobacco, 

2.4%

Industry Allocation in 60|Stock Portfolio 
Constructed by Mean-Variance method| 10. 

Sharpe-VaR as objective



40 
 
 

and following figures, the industry allocation distribution of GA-constructed versus 

MV-constructed portfolios are illustrated. 
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5.2.6 Portfolio Value at Risk 

For the purpose of demonstrating the improvement attained in portfolio’s Value at Risk 

(VaR) using our proposed algorithm, 50-days VaR on return of GA-constructed 

portfolios are compared with 50-days VaR on return of Mean-Variance constructed 

portfolios. 50 days forward path of assets are simulated using Monte Carlo simulation 

by assuming that securities prices evolve over time according to a Geometric Brownian 

Motion process.  After executing the simulation, the GA-10SHV portfolio VaR on 

return with 95% confidence level was 0.0455 while MV-10SHV portfolio had 0.0656. 

This indicate that GA vas successful at optimizing VaR of portfolio. In the following 

the 50-days portfolio price path simulation is illustrated. 
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Also, the VaR on 50-days return with 95% confidence level for both GA-10MEV and 

MV-10MEV are compared. As illustrated in below, the proposed method in this study 

was successful in improving portfolio VaR on 50-days return from 0.0537 which is 

obtained by Mean-variance approach to 0.0565.  
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Also in the following, the portfolio VaR on return of both GA-20SHV and MV-20SHV 

which are 0.0425 and 0.0787 is depicted. The improvement obtained by GA method in 

all three objective functions indicates that the portfolios constructed by our proposed 

algorithm with 95% probability provide higher return than the portfolios constructed 

by mean-variance method. 
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Chapter 6 

6. Research Outline 

6.1 Summary and Conclusion  

 

The optimization problem discussed in this paper contains cardinality and integer 

(discrete) constraints that turn mathematical formulation of this problem to a difficult 

task. Even though, if we would be able to model the above problem mathematically, 

but owing to the fact that the model will have mixed-integer constraints and non-linear 

objective, and considering that it would be categorized into NP-hard problem, it 

requires application of evolutionary algorithms to solve the problem in reasonable 

amount of time. 

In this study, a metaheuristic method is proposed to tackle the comprehensive portfolio 

optimization which considers the optimum selection of securities, industry allocation, 

and portfolio weight allocation simultaneously. We used genetic algorithm approach for 

this specific problem with solution representations that contains 30 genes where each 

gene in a chromosome represents a security from a specific industry with an allocated 

weight.  

Also, an innovative fitness functions are also employed to further improve promising 

solutions by considering both weighted Sharpe ratio-VaR and weighted Mean-VaR 

objectives. 

As a result, after running for 3500 generations, we achieved promising result by 

comparing our solution with Mean-Variance optimization and S&P500 index. We used 

the return of GA solution as a required return constraint for Mean-Variance 

optimization, and then compared the volatility of the constructed portfolio by our 

proposed method with optimum volatility given by Mean-Variance optimization. As a 

result, constructed portfolio by our proposed algorithm gave us less risky portfolio than 

the one created by conventional Mean-Variance approach, while both portfolios provide 

investors with same annual return.  
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6.2 Future Research and Recommendations 

For further research, a range of weights can be given to two parameters in both Sharpe-

VaR and Mean-VaR objective functions in order to evaluate the results and find the 

optimum weights for each parameter. Also as GA is able to tackle more complex 

problems, inclusion of more realistic constraints into optimization model is suggested 

Finally, in factor analysis, factor weights can be optimized by GA based on the 

historical data. In another word, the factor weights can be found in a way that construct 

the best 60-stocks portfolio based on in-sample data as an input for GA algorithm. This 

might improve the results that obtained without factor weights optimization. 
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8. Appendices 

8.1  Factor Analysis Scoring Results on December 2018 
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AMZN UW 
Equity 

Amazon.com  (1.97) (0.34) (0.51) 0.02 0.18 (0.73) 10 

HD UN 
Equity 

Home Depot  0.52 0.65 0.45 (0.20) 0.37 0.40 4 

BKNG UW 
Equity 

Booking 
Holdings  

0.52 0.11 (0.44) (0.96) (0.39) (0.11) 9 

LOW UN 
Equity Lowe's Cos  0.17 1.88 (0.16) (0.37) 0.35 0.39 5 

TJX UN 
Equity 

TJX Cos  (0.41) 1.92 (0.02) 1.04 (0.05) 0.41 3 

TGT UN 
Equity 

Target 0.16 5.34 0.10 (0.22) 1.51 1.33 1 

DG UN 
Equity 

Dollar General  (0.25) 2.05 (0.26) (0.09) (0.38) 0.21 8 

ROST UW 
Equity 

Ross Stores  0.07 2.31 0.02 1.22 (0.75) 0.56 2 

ORLY UW 
Equity 

O'Reilly 
Automotive  

0.32 1.65 0.69 (0.31) (1.56) 0.28 7 

EBAY UW 
Equity 

eBay  0.86 (0.09) 0.11 (0.12) 0.72 0.35 6 

Retailing Sub-industry 
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MSFT UW 
Equity 

Microsoft Corp (0.01) 4.15 (0.15) (0.22) 0.01 0.77 3 

V UN Equity Visa (0.09) 2.20 (0.29) (0.00) 0.26 0.39 5 

MA UN 
Equity 

Mastercard 0.39 3.61 0.65 0.90 0.45 1.17 1 

ORCL UN 
Equity 

Oracle Corp 0.44 1.46 0.09 (0.25) (1.12) 0.24 7 

CRM UN 
Equity 

salesforce.com (1.18) 0.61 (0.65) (1.04) (0.51) (0.59) 10 

ADBE UW 
Equity 

Adobe (0.40) 2.28 (0.27) 0.07 0.31 0.34 6 

PYPL UW 
Equity 

PayPal Holdings (0.57) 0.08 (0.54) (0.01) 0.99 (0.12) 9 

IBM UN 
Equity 

International 
Business Machine 

1.50 0.25 0.86 (0.12) 0.39 0.71 4 

ACN UN 
Equity 

Accenture PLC 0.57 2.39 0.93 1.02 0.31 1.04 2 

FIS UN 
Equity 

Fidelity National 
Information 

(0.66) 2.49 (0.64) (0.35) (1.10) (0.04) 8 
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Tech & Hardware Sub-industry 
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AAPL UW 
Equity 

Apple  (0.25) 3.06 0.80 (0.35) 0.98 0.79 2 

CSCO UW 
Equity 

Cisco Systems  (0.31) (0.88) (0.37) (0.19) 0.38 (0.31) 8 

TEL UN 
Equity 

TE Connectivity 
Ltd 

0.05 0.62 0.22 (0.12) (0.16) 0.14 4 

APH UN 
Equity 

Amphenol Corp (0.62) 1.31 (0.01) (0.03) 0.11 0.09 5 

MSI UN 
Equity 

Motorola 
Solutions  

(0.73) 0.48 (0.05) (0.06) 0.29 (0.10) 7 

HPQ UN 
Equity 

HP  2.21 0.03 1.68 0.43 0.38 1.13 1 

GLW UN 
Equity 

Corning (0.44) (0.55) (0.92) 0.02 0.61 (0.33) 9 

HPE UN 
Equity 

Hewlett Packard 
Enterprise Co 

1.04 0.86 (0.75) (0.26) (0.29) 0.25 3 

KEYS UN 
Equity 

Keysight 
Technologies  

(0.64) 2.72 (0.48) (1.26) 0.03 0.07 6 

ANET UN 
Equity 

Arista Networks  (0.31) (1.78) (0.13) 1.81 (2.33) (0.55) 10 

Healthcare Sub-industry 

 Scoring Weight 30% 20% 20% 15% 15%  
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UNH UN 
Equity 

UnitedHealth 
Group  

0.58 0.65 1.05 0.26 0.23 0.59 2 

ABT UN 
Equity 

Abbott 
Laboratories 

(0.99) (0.01) (0.66) (0.11) 0.97 (0.30) 9 

MDT UN 
Equity 

Medtronic PLC (0.36) 0.35 (0.65) (0.17) 0.13 (0.18) 7 

DHR UN 
Equity 

Danaher (0.54) 1.35 (0.39) 0.89 (1.92) (0.12) 5 

CVS UN 
Equity 

CVS Health Corp 1.18 1.08 1.08 (0.37) 0.40 0.79 1 

SYK UN 
Equity 

Stryker  (0.37) (0.57) (0.28) 0.08 (0.55) (0.35) 10 

ANTM UN 
Equity 

Anthem  0.65 (0.25) 0.21 (0.44) 0.13 0.14 4 

BDX UN 
Equity 

Becton Dickinson 
and Co 

(0.75) 0.04 (0.84) (0.02) 0.85 (0.26) 8 

CI UN Equity Cigna  1.29 0.36 0.79 (1.04) 0.35 0.52 3 

ISRG UW 
Equity 

Intuitive Surgical  (0.71) 0.42 (0.32) 0.91 (0.58) (0.14) 6 
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Consumer Service Sub-industry 
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MCD UN 
Equity 

McDonald's  0.07 (0.39) (0.31) (0.25) 0.47 (0.08) 9 

SBUX UW 
Equity 

Starbucks  (0.11) 0.97 1.48 0.49 0.00 0.53 1 

LVS UN 
Equity 

Las Vegas Sands  0.76 2.04 0.34 (0.26) (1.20) 0.49 2 

MAR UW 
Equity 

Marriott 
International 
Inc/MD 

(0.56) 1.44 (0.12) (0.38) (0.17) 0.01 8 

YUM UN 
Equity 

Yum! Brands 0.67 (0.60) 0.02 (0.38) 0.47 0.10 6 

CCL UN 
Equity 

Carnival  0.95 (1.32) (0.26) 0.43 0.05 0.04 7 

HLT UN 
Equity 

Hilton Worldwide 
Holdings  

(0.81) 2.15 0.31 (0.27) 0.93 0.35 4 

RCL UN 
Equity 

Royal Caribbean 
Cruises Ltd 

0.22 0.79 (0.87) (0.15) 0.53 0.11 5 

CMG UN 
Equity 

Chipotle Mexican 
Grill  

(0.62) 2.43 0.13 1.20 (0.13) 0.48 3 

MGM UN 
Equity 

MGM Resorts 
International 

(0.57) 1.47 (0.73) (0.44) (0.94) (0.23) 10 

Semiconductor Sub-industry 
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INTC UW 
Equity 

Intel  (0.12) 0.48 (0.33) 0.29 1.12 0.21 7 

NVDA UW 
Equity 

NVIDIA  (0.07) 2.29 0.34 0.53 0.33 0.63 4 

AVGO UW 
Equity 

Broadcom  0.14 0.60 (0.00) (0.31) (2.01) (0.19) 8 

TXN UW 
Equity 

Texas 
Instruments  

0.05 0.22 0.20 0.47 0.40 0.23 6 

QCOM UW 
Equity 

QUALCOMM  (1.15) 1.60 (1.32) (0.60) 0.55 (0.30) 10 

MU UW 
Equity 

Micron 
Technology 

2.10 1.49 1.11 1.15 (0.15) 1.30 1 

AMAT UW 
Equity 

Applied Materials  0.12 2.72 0.20 0.04 0.25 0.66 3 

LRCX UW 
Equity 

Lam Research  0.04 3.98 0.17 (0.49) 0.40 0.83 2 

ADI UW 
Equity 

Analog Devices  (0.35) 0.27 (0.65) (0.28) 0.00 (0.22) 9 

AMD UW 
Equity 

Advanced Micro 
Devices  

(0.75) 3.62 0.30 (0.80) (0.88) 0.31 5 
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Pharma Sub-industry 
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JNJ UN 
Equity 

Johnson & 
Johnson 

(0.33) (1.11) 0.00 1.67 1.51 0.16 4 

MRK UN 
Equity 

Merck & Co  (0.50) (0.21) (0.32) 0.30 0.38 (0.16) 7 

PFE UN 
Equity 

Pfizer  0.84 (1.91) 0.37 0.19 (0.48) (0.10) 6 

AMGN UW 
Equity 

Amgen  (0.30) 1.45 (0.44) (0.83) 0.45 0.05 5 

TMO UN 
Equity 

Thermo Fisher 
Scientific  

(1.39) 0.43 (0.59) (0.23) (0.48) (0.55) 10 

ABBV UN 
Equity 

AbbVie  1.37 0.29 0.58 (0.63) (0.48) 0.42 1 

LLY UN 
Equity 

Eli Lilly & Co (0.75) (0.54) (0.39) 0.18 0.09 (0.37) 9 

BMY UN 
Equity 

Bristol-Myers 
Squibb Co 

(0.07) 1.75 0.21 (0.22) 0.31 0.38 2 

CELG UW 
Equity 

Celgene Corp 0.72 (1.03) (0.03) (0.46) (0.82) (0.19) 8 

GILD UW 
Equity 

Gilead Sciences  0.43 (0.10) 0.61 0.04 (0.48) 0.17 3 

Transportation Sub-industry 
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UNP UN 
Equity 

Union Pacific 0.46 (1.37) (0.23) (0.11) 0.30 (0.15) 10 

UPS UN 
Equity 

United Parcel 
Service  

(0.53) 1.76 1.38 (0.11) 0.44 0.52 2 

CSX UW 
Equity 

CSX  0.59 0.08 (0.24) (0.11) (1.21) (0.05) 7 

NSC UN 
Equity 

Norfolk Southern  (0.58) 1.44 (0.37) (0.11) 1.48 0.25 3 

FDX UN 
Equity 

FedEx  (0.12) (0.57) (0.11) (0.11) 0.38 (0.13) 9 

DAL UN 
Equity 

Delta Air Lines  (0.04) 0.21 0.13 (0.07) (0.33) (0.01) 6 

LUV UN 
Equity 

Southwest 
Airlines  

0.69 0.84 0.30 (1.15) (1.05) 0.11 5 

UAL UW 
Equity 

United Airlines 
Holdings  

(0.03) 0.21 0.34 (0.10) (0.93) (0.05) 8 

KSU UN 
Equity 

Kansas City 
Southern 

(1.15) 5.11 (0.58) (0.11) 0.30 0.59 1 

AAL UW 
Equity 

American Airlines 
Group  

0.72 (1.75) (0.62) 1.96 0.60 0.12 4 
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Pharma Sub-industry 
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PG UN 
Equity 

Procter & 
Gamble  

(0.09) 2.86 (0.41) 0.52 0.32 0.59 2 

EL UN 
Equity 

Estee Lauder Cos  (0.68) 3.32 (0.39) 1.12 (1.05) 0.39 3 

CL UN 
Equity 

Colgate-Palmolive  0.74 (0.50) 0.55 0.05 0.28 0.28 4 

KMB UN 
Equity 

Kimberly-Clark  1.14 1.40 0.14 (0.93) 0.94 0.65 1 

CLX UN 
Equity 

Clorox  0.62 (0.66) 0.96 (0.74) 0.36 0.19 5 

CHD UN 
Equity 

Church & Dwight 
Co  

(0.07) (0.57) (0.05) 0.05 (0.20) (0.17) 7 

COTY UN 
Equity 

Coty (1.66) 3.13 (0.79) (0.08) (0.64) (0.14) 6 

Transportation Sub-industry 
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BA UN 
Equity 

Boeing  0.55 (0.41) 0.66 (0.35) 0.67 0.26 4 

HON UN 
Equity 

Honeywell 
International 

(1.09) 1.00 (0.04) (0.08) 0.00 (0.15) 10 

UTX UN 
Equity 

United 
Technologies  

0.06 1.68 (0.21) (0.10) 0.19 0.32 3 

LMT UN 
Equity 

Lockheed Martin  0.08 1.25 1.36 0.13 0.73 0.68 1 

MMM UN 
Equity 

3M  0.42 (0.92) 0.39 (0.15) (0.12) (0.02) 7 

GE UN 
Equity 

General Electric  (1.33) 3.70 (1.59) 0.48 0.00 0.09 5 

CAT UN 
Equity 

Caterpillar  0.96 (1.86) (0.21) (0.36) 0.54 (0.10) 9 

RTN UN 
Equity 

Raytheon  (0.11) 1.92 0.11 1.34 0.19 0.60 2 

NOC UN 
Equity 

Northrop 
Grumman  

0.31 0.81 0.30 (0.08) (1.60) 0.06 6 

DE UN 
Equity 

Deere  0.16 1.15 (0.78) (0.81) (0.60) (0.09) 8 
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Diversified Financials Sub-industry 

 Scoring Weight 30% 20% 20% 15% 15%  
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BRK/B UN 
Equity 

Berkshire 
Hathaway  

(0.09) 0.35 0.21 0.04 (1.94) (0.20) 10 

AXP UN 
Equity 

American Express  (0.61) (0.13) 0.24 (0.25) 1.22 (0.01) 8 

GS UN 
Equity 

Goldman Sachs 
Group  

0.69 1.82 (0.98) (0.54) (0.25) 0.25 4 

MS UN 
Equity 

Morgan Stanley 0.44 2.33 0.02 (0.46) (0.30) 0.49 3 

BLK UN 
Equity 

BlackRock  (0.18) 2.29 (0.30) (0.95) (0.22) 0.17 5 

CME UW 
Equity 

CME Group  (0.20) (0.58) (0.36) 1.58 (0.01) (0.01) 7 

SPGI UN 
Equity 

S&P Global  0.11 3.82 1.66 0.87 1.20 1.44 1 

SCHW UN 
Equity 

Charles Schwab  (0.46) 1.77 (0.46) 0.04 (0.28) 0.09 6 

ICE UN 
Equity 

Intercontinental 
Exchange  

(0.52) 0.15 (0.35) (0.01) 0.26 (0.16) 9 

COF UN 
Equity 

Capital One 
Financial  

0.82 1.97 0.32 (0.33) 0.31 0.70 2 

Food, Beverage and Tobacco Sub-industry 

 Scoring Weight 30% 20% 20% 15% 15%  
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KO UN 
Equity 

Coca-Cola  (0.78) 0.46 (0.86) (0.17) 0.02 (0.34) 8 

PEP UW 
Equity 

PepsiCo (0.51) 0.66 0.43 (0.11) 0.17 0.08 6 

PM UN 
Equity 

Philip Morris 
International  

0.64 0.92 0.55 0.01 0.09 0.50 2 

MO UN 
Equity 

Altria Group 1.40 0.24 1.27 0.53 0.34 0.85 1 

MDLZ UW 
Equity 

Mondelez 
International  

(0.51) 0.37 (0.72) 0.35 0.38 (0.11) 7 

STZ UN 
Equity 

Constellation 
Brands  

(0.32) (1.00) (0.39) (0.31) 0.09 (0.41) 9 

KHC UW 
Equity 

Kraft Heinz  1.37 (0.68) (1.18) 0.20 0.34 0.12 5 

MNST UW 
Equity 

Monster Beverage  (0.69) 0.21 0.24 (1.00) (1.74) (0.53) 10 

GIS UN 
Equity 

General Mills 0.08 1.04 0.58 (0.25) 0.36 0.36 3 

BF/B UN 
Equity 

Brown-Forman  (0.67) 1.40 0.09 0.75 (0.05) 0.20 4 

 

 


