
Optically Active Nanoparticle Coated Polystyrene Spheres 
 

 

Brandy Kinkead, Abdiwali A. Ali, John-C. Boyer, and Byron D. Gates1  

 
1Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, 

Burnaby, BC V5A 1S6, Canada 

 

ABSTRACT 

Nanoparticles (NPs) with either plasmonic or upconverting properties have been 

selectively coated onto the surfaces of polystyrene (PS) spheres, imparting their optical 

properties to the PS colloids.  These NP coated PS spheres have many potential applications, 

such as in medicine as drug-delivery systems or diagnostic tools.  To prepare the NP coated PS 

spheres, gold or core-shell NaYF4Tm0.5Yb30/NaYF4 NPs were synthesized and separately 

combined with amino-functionalized PS spheres.  The mechanism by which the NPs adhered to 

the PS spheres is attributed to interactions of the NP and a polyvinylpyrrolidone additive with the 

surfaces of the PS spheres. Two-photon fluorescence microscopy and SERS analysis 

demonstrate the potential applications of these NP coated PS spheres. 

 

INTRODUCTION 

The unique optical properties of some nanoparticles (NPs) make them useful for an array 

of applications that include advances in medical, sensing and advanced computing technologies. 

Nanoparticle-based diagnostics, for example, have the potential to improve specificity and 

sensitivity for earlier and more accurate detection of pathogens and disease [1, 2]. Nanoparticles 

may also be used in medical treatment for photothermal therapy of cancer or as drug delivery 

agents [2, 3]. Other researchers are looking into the use of NPs for optical memory applications, 

for new sensors and to improve security technologies [4-6]. 

Upconverting (UC) NPs are of interest for their unique nonlinear optical properties [2, 4, 

5, 9-11]. The UC NPs can perform photon upconversion, whereby the NPs absorb low energy 

radiation (i.e. near IR wavelengths) and emit high energy radiation (i.e. visible wavelengths). 

The potential of UC NPs in diagnostics has been shown in many studies [2, 5].  In vivo detection 

of UC NPs has been demonstrated in worms [10] and mice [11] with a good depth of detection 

owing to the low energy of the excitation wavelengths. Other researchers have used UC NPs for 

sensor applications [4] and nanoscale thermometry [9]. The applications of these nanomaterials 

will expand as research continues in this area. 

Gold NPs are a relatively chemically inert platform whose chemical functionality is often 

determined by the molecular coatings on their surfaces [12].  Their surface chemistry can be 

easily modified to suit the needs of particular applications.  In addition, their size, shape, and 

morphology can be fine-tuned to optimize their optical properties [13].  Gold NPs have an 

established track record as a stable and tunable platform for biological imaging, cancer 

therapeutics, and optical-based diagnostics [14]. One of the relatively unique applications for Au 

NPs is as surface enhanced Raman spectroscopy (SERS) substrates [15]. The tunable surface 

plasmon resonance (SPR) of the Au NPs is used in SERS to enhance the Raman spectral 

intensity of molecules bound or otherwise adhered to the surfaces of the Au.   



This paper presents a simple method for the preparation of PS spheres decorated with 

either a uniform coating of UC or Au NPs. These materials are prepared by adhering 

polyvinylpyrrolidone (PVP) stabilized NaYF4Tm0.5Yb30/NaYF4 NPs or Au NPs onto the surfaces 

of amino functionalized polystyrene (amino-PS) spheres. Previous literature reports the 

decoration of Au [17, 22] and UC NPs [16] onto larger spheres by a number of methods with 

varying degrees of uniformity and distribution of NPs across the surfaces of the larger sphere. 

Our method achieves a highly uniform coating of NPs on larger spheres by a two-step process.  

In this process, the NPs can be synthesized and fine-tuned prior to decoration onto the larger 

spheres, which is particularly useful for a range of applications as demonstrated herein. This 

method of coating the NPs onto larger spheres can overcome challenges for dispersing, 

purifying, and otherwise manipulating the NPs. The NPs can also be coated onto spheres of 

varying size.  Control over the size of the larger spheres may be of use for in vitro or in vivo 

studies where uptake by cells is dependent on size of the particles [7] or for selective removal of 

these materials from a solution of interest.  In addition, the incorporation of optically active NPs 

into photonic crystals is of interest for further tuning of their photonic properties [8]. 

 

EXPERIMENTAL 

The core-shell UC NPs of NaYF4Tm0.5Yb30/NaYF4 were synthesized using a 

modification of a previously reported procedure [18].  The exact experimental procedure is 

detailed in our recent publication [19]. Chloroform, dichloromethane (DCM) and 

dimethylformamide (DMF) were purchased from Sigma-Aldrich. Hexanes and diethyl ether 

from Caledon Inc. and anhydrous ethyl alcohol (EtOH) from Commercial Alcohols were also 

used. All chemicals were used as received, without any further purification. The UC NPs were 

transferred to the aqueous phase post-synthesis for coating onto the PS spheres following a 

procedure modified from a previous report [20]. A dispersion of oleate-coated NPs in chloroform 

(0.15 mL, 4wt%) was added to a 50 mL round bottom flask equipped with a stir bar, followed by 

5 mL each of DCM and DMF. The reaction mixture was stirred and 150 mg of PVP (~ 10 kg 

mol−1, Sigma Aldrich) was added. Once the PVP had dissolved, the resulting mixture was 

refluxed for 12 hours. The reaction solution was then cooled to RT and the PVP-coated NPs 

precipitated by adding them to an excess of diethyl ether (90 mL) via Pasteur pipette.  The NPs 

were isolated via centrifugation. The resulting pellet was washed with diethyl ether and isolated 

via centrifugation. The NPs were then dispersed in 5 mL of EtOH for further use. 

 Gold NPs were prepared by a modification of two previously reported syntheses [21].  

Hydrogen tetracholoroaurate trihydrate (HAuCl4·3H2O), 99.9%; tetrakis (hydroxymethyl) 

phosphonium chloride (THPC), 80% in H2O; PVP (~ 55 kg mol−1) and sodium hydroxide 

(NaOH) , ≥ 97% were purchased from Sigma-Aldrich. A solution of 25 mM HAuCl4 was 

prepared with deionized (DI) water (18.2 MΩ·cm) at least one day prior to use. PVP (1.22 g) 

was added to 45.5 mL DI water in a 100 mL round bottom flask equipped with a stir bar. Once 

dissolved, 2 mL of the 25 mM gold solution was added. After 5 minutes, 0.2 M NaOH (1.5 mL) 

and 84 mM THPC (1.0 mL), both prepared with DI water, were added to the round bottom flask 

and allowed to stir for 10 min. The mixture was then heated to 100°C and held for 3 hours.  After 

cooling to RT, the Au NP dispersion was centrifuged for 30 minutes at 13500 RPM to remove 

less stable NPs from the solution. The resulting supernatant was used for further experiments. 

 The NP coatings were prepared by combining Au or UC NPs with amino-PS spheres 

(Polysciences, Inc. or Bangs Laboratories, Inc.).  Before use, PS spheres were washed with EtOH 

and isolated via centrifugation.  The pH of the reaction was adjusted by addition of 1% HCl, 



prepared by dilution of concentrated HCl (Sigma Aldrich) with DI water.  To prepare the UC NP 

coated spheres (UC-PS), 2 mL of the UC NP dispersion, 1% HCl (~50 µl) and 1-µm diameter PS 

spheres (50 mg dispersed in 0.5 mL DI H2O) were combined in a 20 mL glass vial equipped with 

a stir bar.  The mixture was held for 3 hours at 55°C before cooling to RT and isolating the 

products via centrifugation.  To purify the UC-PS from residual UC NPs, the isolated pellet was 

dispersed in EtOH and the UC-PS allowed to settle out of solution.  After several hours, the UC 

NP containing supernatant was removed.  Gold NP coated spheres (Au-PS) were similarly 

prepared with180-nm diameter PS spheres. After 3 days held at 55°C, the solution was cooled to 

RT and the product isolated via centrifugation. The resulting pellet was washed several times 

with EtOH and water and isolated via centrifugation to remove residual Au NPs. 

 The as-prepared NPs and purified samples of NPs coated onto PS spheres were analyzed 

by transmission electron microscopy (TEM) on a FEI Tecnai G2 field emission scanning TEM.  

Purified UC-PS were drop cast from a dispersion in EtOH onto a glass slide, allowed to dry and 

sealed with a cover slip for imaging on a Leica SP5 laser scanning confocal two-photon 

microscope (FM) with a 980 nm laser-diode excitation source (150 W cm −2).  An extinction 

spectrum of the Au NPs was obtained with a Varian Cary Win 300 Bio UV-Vis 

spectrophotometer.   To perform Raman analysis, purified Au-PS were cast onto a piece of 

polished silicon wafer.  The sample was then soaked for 2 days in a solution of ~ 1 mM 1,4 – 

benzenedithiol (1,4 – BDT) (Sigma-Aldrich, 99%) prepared in EtOH. Raman spectroscopy was 

performed with a Renishaw inVia Raman spectrometer coupled to a Leica DM2500 microscope.  

Spectra were obtained through a 50X objective lens (NA = 0.63) with excitation by either a 514 

nm laser (output power ~ 15mW) or a 785 nm laser (200 mW). 

DISCUSSION  

 The coatings of UC and Au NPs uniformly cover the surfaces of the PS spheres (Figures 

1 and 2).  The NPs adhere to the surfaces of the PS spheres due to interactions between the NP, 

the PVP stabilizer, and the surfaces of the amino-PS spheres.  The interactions of the PVP with 

the amino-PS are based on adsorption, and not on chemical reaction [22].  Attempts in our 

laboratory to coat the amino-PS spheres with NPs stabilized by groups other than PVP (i.e. 

sodium citrate) did not produce the same uniform coatings, suggesting that PVP plays an 

important role in the formation of uniform coatings by regulating the interactions between the 

NPs and the PS spheres.  We suspect that differences in the time required for coating of UC NPs 

and Au NPs onto the amino-PS spheres results from differences in their interactions with the 

PVP stabilizing agent.  Presumably, the Au NPs exhibit a stronger interaction with the PVP.  

This stronger interaction leads to a slower rate of assembly onto the PS spheres, since the PVP 

must be displaced to promote interactions between the amino-PS and the Au NPs.  The density 

of NP loading on the surfaces of the PS spheres cannot be readily compared between the coatings 

of UC NPs and Au NPs due to differences in the density of amino-groups on the surfaces of the 

PS spheres and their nominal size.  Further studies are required to elucidate the exact mechanism 

by which the NPs and PVP stabilizer interact with the amino-PS to induce uniform NP coating. 

The core-shell UC NPs (Figure 1A) readily coat the surfaces of ~1-µm diameter PS 

spheres with an exceptionally high density (Figure 1B). The UC-PS were successfully purified 

from residual UC NPs in solution, as evident from the TEM images.  Analysis by FM of the UC-

PS sample demonstrated imaging of discrete particles, with emission peaks from approximately 

λ = 400 to 700 nm (Figure 1C).  The lack of other emission sources in the background of the FM 

image further illustrates the lack of residual, unbound UC NPs after purification.  This 



demonstration also shows the potential utility of these materials for diagnostic applications, 

which include use as discrete UC-PS particles that are readily traced by microscopy techniques 

for in vitro or in vivo studies. 

 
Figure 1. Transmission electron microscope (TEM) images of upconverting nanoparticles (UC NPs) 

(NaYF4Tm0.5Yb30/NaYF4) before (A) and after (B) coating onto ~1-µm diameter polystyrene (PS) 

spheres.  (C) Two-photon fluorescence microscope (FM) image of the UC NP coated PS spheres 

dispersed (UC-PS) onto a glass slide.  The red box indicates that each particle seen in the FM image 

corresponds to a single UC-PS (based on size comparison). 

 
Figure 2. (A) Low and high (inset) magnification TEM images of Au NP coated ~180-nm diameter PS 

spheres (Au-PS). (B) Extinction spectrum of Au NPs dispersed in water. (C) SERS of 1,4-benzenedithiol 

on substrates of Au-PS drop cast on a piece of polished silicon wafer (offset for clarity).  The Raman 

spectra were normalized by the background peak at ~940 cm-1.  

 Gold NPs were coated onto the surface of ~180-nm diameter PS spheres and employed as 

a medium for SERS.  Imaging by TEM reveals a uniform coating of Au NPs on the PS spheres 

and successful removal of residual unattached Au NPs. Wafer supported Au-PS were used for 

Raman spectroscopic analysis of 1,4 - BDT.  As a control, a Raman spectrum was first collected 

with laser excitation at 785 nm (Figure 2C, dashed trace). This wavelength does not overlap with 

the SPR of the Au NPs (Figure 2B) and, therefore, does not induce a SERS effect. The observed 

peaks correspond to signal from silicon and PS [23]. Excitation by a 514 nm laser, which 

overlaps with the SPR of the Au NPs, results in SERS of the 1,4 - BDT  (Figure 2C, solid trace). 

The observed peaks correspond with those reported in the literature for 1,4 - BDT [24]. The 

Raman enhancement of 1,4 - BDT on the Au-PS particles shows that these materials exhibit 

properties that make them suitable for other applications and further investigations in SERS.  

 

CONCLUSIONS  

Core-shell UC NPs of NaYF4Tm0.5Yb30/NaYF4 and Au NPs have been decorated as 

uniform coatings onto larger diameter PS spheres.  These NP coated PS spheres are readily 



purified from residual, unattached NPs after their preparation, as evident from TEM analysis of 

the purified products.  The NP-based coatings formed as a result of interactions between the NPs, 

PVP stabilizers, and the surfaces of the amino-PS spheres.  Differences were observed in the 

time required to coat the UC NPs and Au NPs onto the PS spheres.  These variations likely result 

from differences in the relative strength of interactions between the PVP stabilizing agent and the 

corresponding NP.  The potential utility of UC-PS as a diagnostic tool has been demonstrated by 

the use of FM, which could image discrete UC-PS particles of ~1-µm diameter.  The SPR 

properties of the Au-PS assemblies were used to demonstrate SERS of 1,4–BDT.  The methods 

demonstrated herein provide a suitable route to creating uniform particles that retain the optical 

properties of NPs, but have the size and utility of particles >10x larger in diameter.  
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