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A PARALLEL NONUNIFORM FAST FOURIER TRANSFORM
LIBRARY BASED ON AN ``EXPONENTIAL OF SEMICIRCLE""

KERNEL\ast 

ALEXANDER H. BARNETT\dagger , JEREMY MAGLAND\dagger , AND LUDVIG AF KLINTEBERG\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The nonuniform fast Fourier transform (NUFFT) generalizes the FFT to off-grid
data. Its many applications include image reconstruction, data analysis, and the numerical solution
of differential equations. We present FINUFFT, an efficient parallel library for type 1 (nonuniform
to uniform), type 2 (uniform to nonuniform), or type 3 (nonuniform to nonuniform) transforms, in
dimensions 1, 2, or 3. It uses minimal RAM, requires no precomputation or plan steps, and has
a simple interface to several languages. We perform the expensive spreading/interpolation between

nonuniform points and the fine grid via a simple new kernel---the ``exponential of semicircle"" e\beta 
\surd 

1 - x2

in x \in [ - 1, 1]---in a cache-aware load-balanced multithreaded implementation. The deconvolution
step requires the Fourier transform of the kernel, for which we propose efficient numerical quadrature.
For types 1 and 2, rigorous error bounds asymptotic in the kernel width approach the fastest known
exponential rate, namely that of the Kaiser--Bessel kernel. We benchmark against several popular
CPU-based libraries, showing favorable speed and memory footprint, especially in three dimensions
when high accuracy and/or clustered point distributions are desired.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . nonuniform, NFFT, spreading, kernel, Kaiser--Bessel, parallel

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65T50, 65T40, 65Y05, 68N01

\bfD \bfO \bfI . 10.1137/18M120885X

1. Introduction. The need for fast algorithms for spectral analysis of non-
uniformly sampled data arose soon after the popularization of the FFT in the 1960s.
Many early methods came from signal processing [44] and astronomy [58, 39, 49],
[50, sect. 13.8], but it was not until the 1990s that Dutt and Rokhlin [12] gave the
first rigorous analysis of a convergent scheme. The nonuniform fast Fourier transform
(NUFFT) has since become crucial in many areas of science and engineering. Several
imaging methods, including magnetic resonance imaging (MRI) [57, 35], X-ray com-
puted tomography (CT) [18], ultrasound diffraction tomography [9], and synthetic
aperture radar [3], sample the Fourier transform at non-Cartesian points [60, 23]
and hence require the NUFFT or its inverse for accurate reconstruction. Real-time
Fourier-domain optical coherence tomography (OCT) relies on rapid one-dimensional
(1D) NUFFTs [63]. Periodic electrostatic and Stokes problems are commonly solved
by fast ``particle-mesh Ewald"" summation, whose spectral part is equivalent to a pair
of NUFFTs [37, 42]. Spectrally accurate function interpolation may be efficiently per-
formed with the NUFFT [30, sect. 6], [20]. The numerical approximation of Fourier
transforms using non-Cartesian or adaptive quadrature grids arises in heat solvers [35],
cryo-electron microscopy [64, 6], and electromagnetics [38]. Many more applications
are found in the reviews [62, 33, 48, 30, 25].

Our purpose is to describe and benchmark a general-purpose software library
for the NUFFT that achieves high efficiency with an open-source compiler by com-
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C480 A. H. BARNETT, J. MAGLAND, AND L. AF KLINTEBERG

bining mathematical and implementation innovations. The computational task is to
approximate, to a requested relative accuracy \varepsilon , the following exponential sums. Let
d = 1, 2, or 3 be the spatial dimension. Let Ni be the number of desired Fourier modes
in dimension i = 1, . . . , d; in each dimension the Fourier mode (frequency) indices are

\scrI Ni
:=

\biggl\{ 
\{  - Ni/2, . . . , Ni/2 - 1\} , Ni even,
\{  - (Ni  - 1)/2, . . . , (Ni  - 1)/2\} , Ni odd.

The full set of mode indices is the Cartesian product that we denote by

\scrI = \scrI N1,...,Nd
:= \scrI N1\times \cdot \cdot \cdot \times \scrI Nd

,

containing a total number of modes N = N1 \cdot \cdot \cdot Nd. The M nonuniform points have
locations xj , j = 1, . . . ,M , which may be taken to lie in [ - \pi , \pi )d, with corresponding
strengths cj \in \BbbC . Then the type 1 NUFFT (also known as the ``adjoint NFFT""
[48, 30]) approximates the outputs1

(1.1) f\bfk :=

M\sum 
j=1

cje
i\bfk \cdot \bfx j , k \in \scrI (type 1, nonuniform to uniform).

This may be interpreted as computing, for the 2\pi -periodic box, the N Fourier series
coefficients of the distribution

(1.2) f(x) :=

M\sum 
j=1

cj\delta (x - xj) .

Up to normalization, (1.1) generalizes the discrete Fourier transform (DFT), which is
simply the uniform case, e.g., in one dimension, xj = 2\pi j/M with M = N1.

The type 2 transform (or ``NFFT"") is the adjoint of type 1. Unlike in the DFT
case, it is not generally related to the inverse of type 1. It evaluates the Fourier series
with given coefficients f\bfk at arbitrary target points xj , that is,

(1.3) cj :=
\sum 
\bfk \in \scrI 

f\bfk e
 - i\bfk \cdot \bfx j , j = 1, . . . ,M (type 2, uniform to nonuniform).

Finally, the more general type 3 transform [35] (or ``NNFFT"" [30]) may be interpreted
as evaluating the Fourier transform of the nonperiodic distribution (1.2) at arbitrary
target frequencies sk in \BbbR d, k = 1, . . . , N , where k is a plain integer index, that is,

(1.4) fk :=

M\sum 
j=1

cje
i\bfs k\cdot \bfx j , k = 1, . . . , N (type 3, nonuniform to nonuniform).

All three types of transform, (1.1), (1.3), and (1.4), consist simply of computing
exponential sums that naively require \scrO (NM) work. NUFFT algorithms compute
these sums to a user-specified relative tolerance \varepsilon , in close to linear time in N and M .

Remark 1. In certain settings the above sums may be interpreted as quadrature
formulae applied to evaluating a Fourier transform of a function. However, these
tasks are not to be confused with the ``inverse NUFFT"" (see problems 4 and 5 in

1Note that our normalization differs from that of [12, 25].
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PARALLEL NONUNIFORM FAST FOURIER TRANSFORM C481

[12, 25]) which involves, for instance, treating (1.3) as a linear system to be solved
for \{ f\bfk \} , given the right-hand side \{ cj\} . For some nonuniform distributions this
linear system can be very ill-conditioned. This inverse NUFFT is common in Fourier
imaging applications; a popular solution method is to use conjugate gradients to solve
the preconditioned normal equations, exploiting repeated NUFFTs for the needed
matrix-vector multiplications [16, 18, 23, 60], [53, sect. 3.3]. Thus, efficiency gains
reported here would also accelerate this inversion method. See [13, 31] for other
approaches. We will not explicitly address the inversion problem here.

1.1. Prior algorithms, kernels, and implementations. There are two main
approaches to the fast approximation of the sums (1.1) or (1.3), both of which
build upon the FFT: (1) interpolation between nonuniform points and an upsam-
pled regular grid, combined with an upsampled FFT and correction in Fourier space
[12, 7, 16, 25, 30]; or (2) interpolation to/from an N -point (i.e. , not upsampled)
regular grid, combined with the N -point FFT. In the univariate (1D) case, there
are several variants of the second approach: Dutt and Rokhlin [13] proposed spec-
tral Lagrange interpolation (using the cotangent kernel applied via the fast multipole
method), combined with a single FFT. Recently, Ruis-Antol\'{\i}n and Townsend [53]
proposed a stable Chebyshev approximation in intervals centered about each uniform
point, which needs an independent N -point FFT for each of the \scrO (log 1/\varepsilon ) coeffi-
cients, but is embarrassingly parallelizable. This improves upon earlier work [2] using
Taylor approximation that was numerically unstable without upsampling (see [33, Ex.
3.10] and [53]).

We now turn to the first, and most popular, of the two above approaches. For the
type 1 and type 2 transforms one sets up a regular fine grid of n = \sigma dN points where
the upsampling factor in each dimension, \sigma > 1, is a small constant (typically \leq 2).
Taking the type 1 as an example, there are three steps. Step 1 evaluates on the fine grid
the convolution of (1.2) with a smooth kernel function \psi , whose support has width w
fine grid points in each dimension (see Figure 3.1(a)). This ``spreading"" requires wdM
kernel evaluations. Step 2 applies the FFT on the n-point grid, needing \scrO (N logN)

work. Step 3 extracts the lowest N frequencies from the result, then divides by \^\psi , the
Fourier transform of the kernel, evaluated at each of these frequencies; this is called
deconvolution or roll-off correction. There is a class of kernels, including all those we
discuss below, whose analysis gives an error \varepsilon decreasing exponentially (up to weak
algebraic prefactors) with w, hence one may choose w \approx c| log \varepsilon | . Thus the total effort
for the NUFFT is \scrO (M | log \varepsilon | d +N logN).

The choice of spreading kernel \psi has a fascinating history. A variety of kernels
were originally used for ``gridding"" in the imaging community (e.g. , see [26, 48, 30]).
The truncated Gaussian kernel (see Figure 1.1) was the first for which an exponential
convergence rate with respect to w was shown [12]. This rate was improved by Steidl
[56, 14]: fixing \sigma , for an optimally chosen Gaussian width parameter the error is

\varepsilon = \scrO (e - 
1
2
\pi (1 - (2\sigma  - 1) - 1)w). Beylkin [7] proposed B-splines for \psi , with the estimate

\varepsilon = \scrO ((2\sigma  - 1) - w). In both cases, it is clear that increasing \sigma improves the convergence
rate; however, since the cost of the upsampled FFT grows at least like \sigma d, a tradeoff
arises. In practice, many studies have settled on \sigma = 2 for general use [26, 18, 16,
30, 25, 46]. For this choice, both the above Gaussian and B-spline rates imply that
| log10 \varepsilon | , the number of correct digits, is approximately 0.5w. For instance, to achieve
12 digits, a spreading width w = 24 is needed [25, Remark 2].

However, Jackson et al. [26] realized that the criteria for a good kernel \psi are very
similar to those for a good window function in digital signal processing (DSP). We

D
ow

nl
oa

de
d 

09
/2

3/
19

 to
 1

30
.2

37
.4

1.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C482 A. H. BARNETT, J. MAGLAND, AND L. AF KLINTEBERG

-1 0 1
0

0.2

0.4

0.6

0.8

1

(a)

ES

K-B

Gauss

0 0.5 1

10 -10

10 -5

10 0

(b)

0 20 40

10 -10

10 -5

10 0

(c)

Fig. 1.1. The proposed ES (exponential of semicircle) spreading kernel (1.8) (solid blue lines),
the Kaiser--Bessel (KB) kernel (1.5) (dashed green), and the best truncated Gaussian (dotted pink)

\phi (z) = e - 0.46\beta z2 in | z| \leq 1. Figure (a) shows all kernels for \beta = 4. The discontinuities at
\pm 1 are highlighted by dots. Figure (b) shows a logarithmic plot (for positive z) of the kernels for
\beta = 30 (corresponding to a spreading width of w = 13 grid points). The graph for ES is a quarter-
circle. Figure (c) shows the magnitude of the kernel Fourier transforms, and the ``cutoff"" frequency
\xi = \beta . ES and KB have shape close to a quarter-ellipse in | \xi | < \beta (see (4.7) and (1.6)). All have
exponentially small values for | \xi | > \beta , but the Gaussian has exponential convergence rate in terms
of \beta only around half that of ES or KB. (Figure in color online.)

summarize these criteria:
(a) The numerical support of \psi in fine grid points, w, should be as small as

possible, in order to reduce the \scrO (wdM) spreading cost.

(b) A certain norm of \^\psi (k) in the ``tails"" | k| \geq (\sigma  - 1
2
)N should be as small as

possible, relative to values in the central range | k| < N/2; see Figure 3.1(b).
The two criteria conflict: (a) states that \psi should be narrow, but (b), which derives
from aliasing error, implies that \psi should be smooth. (We postpone the rigorous state-
ment of (b) until (4.3).) It has been known since the work of Slepian and coworkers
in the 1960s [54] that, if one chose L2-norms in (b), the family of prolate spheroidal
wavefunctions (PSWF) of order zero [45] would optimize the above criteria. It was
also DSP folklore [28] that the ``Kaiser--Bessel"" (KB) kernel,

(1.5) \phi KB,\beta (z) :=

\biggl\{ 
I0(\beta 

\surd 
1 - z2)/I0(\beta ) , | z| \leq 1,

0 otherwise

scaled here to have support [ - 1, 1], where I0 is the regular modified Bessel function
of order zero [43, eq. (10.25.2)], well approximates the PSWF. However, unlike the
PSWF, which is tricky to evaluate accurately [45], (1.5) needs only standard special
function libraries [40]. Its Fourier transform (using the convention (3.1)) is known
analytically2 [28],

(1.6) \^\phi KB,\beta (\xi ) =
2

I0(\beta )

sinh
\sqrt{} 
\beta 2  - \xi 2\sqrt{} 

\beta 2  - \xi 2
.

This transform pair (1.5)--(1.6) is plotted in green in Figure 1.1.
Starting with imaging applications in the 1990s, the KB kernel (1.5) was intro-

duced for the NUFFT [26, 48, 16]. Note that the function (1.6), truncated to [ - \beta , \beta ],

2This pair appears to be a discovery of B. F. Logan, and its use pioneered in DSP by J. F. Kaiser,
both at Bell Labs, in the 1960s [21]. Curiously, the pair seems absent from all standard tables [22,
section 6.677], [51, section 2.5.25], and [52, section 2.5.10].
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outside of which it is exponentially small, may instead be used as the spreading kernel
[18, 30]. This latter approach---which we call ``backward KB""3---has the computa-
tional advantage of spreading with cheaper sinh rather than I0 evaluations. The error
analyses of the two variants turn out to be equivalent. Despite being only condi-
tionally convergent, the tail sum of (1.6) needed for criterion (b) may be bounded
rigorously; this subtle analysis is due to Fourmont (see [17, pp. 30--38] and [18, section
4]). Its optimal convergence with w, summarized in [47, pp. 30--31] and [29, App. C],
is (see (4.3) for the definition of the error \varepsilon \infty )

(1.7) \varepsilon \infty \leq 4\pi (1 - 1/\sigma )1/4

\Biggl( \sqrt{} 
w  - 1

2
+
w  - 1

2

\Biggr) 
e - \pi (w - 1)

\surd 
1 - 1/\sigma .

This is the fastest known exponential error rate of any kernel, equalling that of the
PSWF [4]: for the choice \sigma = 2 gives over 0.9w correct digits. This is nearly twice that
of the Gaussian; 12 digits are reached with only w = 13. Attempts to further optimize
this kernel give only marginal gains [16], unless restricted to cases with specific decay
of the mode data f\bfk [41], or minimal upsampling (\sigma \approx 1) [27].

Turning to software implementations, most are based upon the Gaussian or KB
kernels (in both its variants). Greengard and Lee [25] presented ``fast Gaussian grid-
ding"" which reduced the number of exponential function evaluations from wdM to
(d+1)M , resulting in a several-fold acceleration of the spreading step. This was imple-
mented by those authors in a general-purpose single-threaded CMCL Fortran library
[24]. The mature general-purpose NFFT code of Keiner, Kunis, and Potts [29, 30] is
multithreaded [61] and uses backward KB by default (although fast Gaussian gridding
is available). It allows various precomputations of kernel values (requiring a ``plan""
stage), demanding a larger RAM footprint but accelerating repeated calls with the
same points. There are also several codes specialized to MRI, including MIRT (which
uses full precomputation of the KB kernel) by Fessler [15], and recently BART [59]
and PyNUFFT [36]. Various specialized GPU implementations also exist (reviewed
in [46]), mostly for MRI [34, 32] or OCT [63]. Unlike general-purpose codes, these
specialized packages tend to have limited accuracy or dimensionality, and tend not to
document precisely what they compute.

1.2. Contribution of this work. We present a general purpose documented
CPU-based multithreaded C++ library (FINUFFT) [5] that is efficient without need-
ing any precomputation stage. This means that the RAM overhead is very small and
the interface simple. For medium and large problems in two dimensions and three
dimensions its speed is competitive with state-of-the-art CPU-based codes. In some
cases, at high accuracies, FINUFFT is faster than all known CPU-based codes by a
factor of 10. The packages against which we benchmark are listed in Table 6.1.

We spread with a new ``exponential of semicircle"" (ES) kernel (see Figure 1.1),

(1.8) \phi \beta (z) :=

\biggl\{ 
e\beta (

\surd 
1 - z2 - 1), | z| \leq 1

0 otherwise,

which has error convergence rate arbitrarily close to that of (1.7); see Theorem 7.
It is simpler and faster to evaluate than either of the KB pair (1.5)--(1.6), yet has
essentially identical error. We demonstrate further acceleration via piecewise poly-
nomial approximation. Equation (1.8) has no known analytic Fourier transform, yet

3The distinction between forward and backward use of the KB pair is unclear in the literature.
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we can use numerical quadrature to evaluate \^\phi \beta when needed with negligible extra
cost. Unlike interpolation from the fine grid (needed in type 2), spreading (needed
for type 1) does not naturally parallelize over nonuniform points, because of collisions
between threads writing to the output grid. However, we achieve efficiency in this
case by adaptively blocking into auxiliary fine grids, after bin-sorting the points.

The rest of the paper is structured as follows. The next section outlines the
software interfaces. In section 3 we describe the algorithms and parameter choices
in full, including various novelties in terms of quadrature and type 3 optimization.
In section 4 we summarize a rigorous aliasing error bound for the ES kernel, and
use this to justify the choice of w and \beta . We also explain the gap between this
bound and empirically observed relative errors. Section 6 compares the speed and
accuracy performance against other libraries, in dimensions 1, 2, and 3. We conclude
in section 7.

2. Use of the FINUFFT library. The basic interfaces are very simple [5].
From C++, with x a double array of M source points, c a complex (std::complex!`
double?`) array of M strengths, and N an integer number of desired output modes,

status = finufft1d1(M,x,c,isign,tol,N,f,opts);

computes the 1D type 1 NUFFT with relative precision tol (see section 4.2), writ-
ing the answer into the preallocated complex array f, and returning zero if suc-
cessful. Setting isign either 1 or  - 1 controls the sign of the imaginary unit in
(1.1). opts is a struct defined by the required header finufft.h and initialized by
finufft\.default\.options(\&opts), controlling various options. For example, set-
ting opts.debug=1 prints internal timings, whereas opts.chkbnds=1 includes an ini-
tial check whether all points lie in the valid input range [ - 3\pi , 3\pi ]. The above is one
of nine routines with similar interfaces (types 1, 2, and 3 in dimensions 1, 2, and 3).
The code is lightweight, at around 3300 lines of C++ (excluding interfaces to other
languages). DFTs (discrete Fourier transforms) are performed by FFTW [19], which
is the only dependency.

Interfaces from C and Fortran are similar to the above, and require linking with
-lstdc++. From high-level languages one may call

[f status] = finufft1d1(x,c,isign,tol,N,opts); \% MATLAB or octave,

status = finufftpy.nufft1d1(x,c,isign,tol,N,f) \# python (numpy).

Here M is inferred from the input sizes. There also exists a Julia interface [1].

Remark 2. The above interface, since it does not involve any ``plan"" stage, incurs
a penalty for repeated small problems (N andM of order 104 or less), traceable to the
overhead (around 100 microseconds per thread in our tests) for calling fftw\.plan()

present when FFTW reuses stored wisdom. To provide maximal throughput for
repeated small problems (which are yet not small enough that a dense matrix-matrix
multiplication approach wins), we are adding interfaces that handle multiple inputs
or allow a plan stage. At the time of writing these are available in two dimensions
only, and will be extended in a future release.

3. Algorithms. For type 1 we use the standard three-step procedure sketched
above in section 1.1. For type 2 the steps are reversed. Type 3 involves a combination
of types 1 and 2. Our Fourier transform convention is

(3.1) \^\phi (k) =

\int \infty 

 - \infty 
\phi (x)eikxdx , \phi (x) =

1

2\pi 

\int \infty 

 - \infty 
\^\phi (k)e - ikxdx .
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For the default upsampling factor \sigma = 2, given the requested relative tolerance \varepsilon , the
kernel width w and ES parameter \beta in (1.8) are set via

(3.2) w = \lceil log10 1/\varepsilon \rceil + 1 , \beta = 2.30w .

The first formula may be summarized as follows: the kernel width is one more than the
desired number of accurate digits. We justify these choices in section 4.2. (FINUFFT
also provides a low-upsampling option \sigma = 5/4, which is not tested in this paper.)

3.1. Type 1: Nonuniform to uniform. We describe the algorithm to compute
\~f\bfk , an approximation to the exact f\bfk defined by (1.1).

3.1.1. 1D case. We use xj to denote nonuniform source points, and k \in \scrI to
label the N = N1 output modes. For FFT efficiency the DFT size n is chosen to be
the smallest integer of the form 2q3p5r not less than \sigma N nor 2w, the latter condition
simplifying the spreading code.

Step 1 (spreading). From now on we abbreviate the ES kernel \phi \beta in (1.8) by
\phi . We rescale the kernel so that its support becomes [ - \alpha , \alpha ], with

(3.3) \alpha := wh/2 = \pi w/n ,

where h := 2\pi /n is the upsampled grid spacing. This rescaled kernel is denoted

(3.4) \psi (x) := \phi (x/\alpha ) , thus \^\psi (k) = \alpha \^\phi (\alpha k) (1D case),

and its periodization is

(3.5) \~\psi (x) :=
\sum 
m\in \BbbZ 

\psi (x - 2\pi m) (1D case).

We then compute, at a cost of wM kernel evaluations, the periodic discrete convolution

(3.6) bl =

M\sum 
j=1

cj \~\psi (lh - xj) for l = 0, . . . , n - 1 ,

as sketched in Figure 3.1(a).
Step 2 (FFT). We use the FFT to evalute the n-point DFT

(3.7) \^bk =

n - 1\sum 
l=0

e2\pi ilk/nbl for k \in \scrI .

Note that the output index set \scrI is cyclically equivalent to the usual FFT index set
k = 0, . . . , n - 1.

Step 3 (correction). We truncate to the central N frequencies, then diagonally
scale (deconvolve) the amplitudes array, to give the outputs

(3.8) \~fk = pk\^bk for k \in \scrI ,

where a good choice of the correction factors pk comes from samples of the kernel
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Fig. 3.1. (a) 1D illustration of spreading from nonuniform points to the grid values bl,
l = 0, . . . , n  - 1 (shown as dots) needed for type 1. For clarity, only two nonuniform points x1
and x2 are shown; the former results in periodic wrapping of the effect of the kernel. (b) Semi-
logarithmic plot of the (positive half of the) Fourier transform of the rescaled kernel \psi (x), showing
the usable frequency domain (and the dynamic range rdyn over this domain), and a useful approxi-
mate relationship between the aliasing error bound \varepsilon \infty and the ES kernel parameter \beta . From (4.7),
below cutoff the curve is well approximated by a quarter ellipse.

Fourier transform,4

(3.9) pk = h/ \^\psi (k) = 2/(w \^\phi (\alpha k)), k \in \scrI .

A new feature of our approach is that we approximate \^\psi (k) by applying Gauss--
Legendre quadrature to the Fourier integral, as follows. This allows kernels without
an analytically known Fourier transform to be used without loss of efficiency. Let qj
and wj be the nodes and weights for a 2p-node quadrature on [ - 1, 1]. Since \phi is real
and even, only the p positive nodes are needed, thus

(3.10) \^\psi (k) =

\int \alpha 

 - \alpha 

\psi (x)eikxdx \approx wh

p\sum 
j=1

wj\phi (qj) cos(\alpha kqj) .

By a convergence study, we find that p \geq 1.5w + 2 (thus a maximum quadrature
spacing close to h) gives errors less than \varepsilon , over the needed range | k| \leq N/2. A
rigorous quadrature bound would be difficult due to the small square-root singularities
at the endpoints in (1.8). The cost of the evaluation of pk is \scrO (pN), and naively
would involve pN cosines. By exploiting the fact that, for each quadrature point qj ,
successive values of ei\alpha kqj over the regular k grid are related by a constant phase
factor, these cosines can be replaced by only p complex exponentials, and pN adds
and multiplies, giving an order of magnitude acceleration. We call this standard trick
``phase winding.""5

3.1.2. The case of higher-dimension \bfitd > 1. In general, different fine grid
sizes are needed in each dimension. We use the same method, so that ni \geq \sigma Ni,
ni \geq 2w, ni = 2qi3pi5ri , i = 1, . . . , d. The kernel is a periodized product of scaled 1D
kernels,

(3.11) \psi (x) = \phi (x1/\alpha 1) \cdot \cdot \cdot \phi (xd/\alpha d) , \~\psi (x) :=
\sum 

\bfm \in \BbbZ d

\psi (x - 2\pi m) ,

4It is tempting instead to set pk to be the DFT of the grid samples of the kernel \{ \~\psi (lh)\} n - 1
l=0 .

However, in our experience this causes around twice the error of (3.9), as can be justified by the
discussion in section 4. Fessler and Sutton [16, section V.C.3] report a similar finding.

5In the code, see the function onedim fseries kernel in src/common.cpp
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where \alpha i = \pi w/ni. Writing hi := 2\pi /ni for the fine grid spacing in each dimension,
and l := (l1, . . . , ld) to index each fine grid point, the discrete convolution becomes

(3.12) b\bfl =

M\sum 
j=1

cj \~\psi ((l1h1, . . . , ldhd) - xj) , li = 0, . . . , ni  - 1, i = 1, . . . , d .

In evaluating (3.12), separability means that only wd kernel evaluations are needed
per source point: the wd square or cube of \~\psi values is then filled by an outer product.
The DFT (3.7) generalizes in the standard way to multiple dimensions. Finally, the
correction factor is also separable,

(3.13) p\bfk = h1 . . . hd \^\psi (k)
 - 1 = (2/w)d(\^\phi (\alpha 1k1) \cdot \cdot \cdot \^\phi (\alpha dkd))

 - 1 , k \in \scrI ,

so that only d repetitions of (3.10) are needed, followed by an outer product.

3.2. Type 2: Uniform to nonuniform. To compute \~cj , an approximation to
cj in (1.3), we reverse the steps for type 1. Given the number of modes N , and the
precision \varepsilon , the choices of n, w, and \beta are as in type 1. From now on we stick to the
case of general dimension d.

Step 1 (correction). The input coefficients f\bfk are precorrected (amplified) and
zero-padded out to the size of the fine grid,

(3.14) \^b\bfk =

\biggl\{ 
p\bfk f\bfk , k \in \scrI ,
0 , k \in \scrI n1,...,nd

\setminus \scrI ,

with the same amplification factors p\bfk as in (3.13).
Step 2 (FFT). This is just as in type 1. Writing the general-dimension case of

(3.7), with the index vectors l and k (and their ranges) swapped,
(3.15)

b\bfl =
\sum 

\bfk \in \scrI n1,...,nd

e2\pi i(l1k1/n1+\cdot \cdot \cdot +ldkd/nd) \^b\bfk for li = 0, . . . , ni  - 1, i = 1, . . . , d .

Step 3 (interpolation). The adjoint of spreading is interpolation, which outputs
a weighted admixture of the grid values near to each target point. The output is then

(3.16) \~cj =

n1 - 1\sum 
l1=0

\cdot \cdot \cdot 
nd - 1\sum 
ld=0

b\bfl \~\psi ((l1h1, . . . , ldhd) - xj) .

As with type 1, because of separability, this requires wd evaluations of the kernel
function, and wd flops, per target point.

3.3. Type 3: Nonuniform to nonuniform. This algorithm is more involved,
but is a variant of standard ones (see [25, Alg. 3], [14, Alg. 2], [35], and [48, sect. 1.3]).
Loosely speaking, it is ``a type 1 wrapped around a type 2,"" where the type 2 replaces
the middle FFT step of type 1. Given \varepsilon , we choose w, \beta , and p as before. We
will present the choice of ni shortly (see ``step 0"" below). It will involve the following

bounds on source and target coordinates xj = (x
(i)
j , . . . , x

(d)
j ) and sk = (s

(i)
k , . . . , s

(d)
k ):

(3.17) Xi := max
j=1,...,M

| x(i)j | , Si := max
k=1,...,N

| s(i)k | for i = 1, . . . , d .

Step 1 (dilation and spreading). For spreading onto a grid on [ - \pi , \pi )d, a
dilation factor \gamma i needs to be chosen for each dimension i = 1, . . . , d such that the
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rescaled sources x\prime j
(i)

:= x
(i)
j /\gamma i lie in [ - \pi , \pi ). Furthermore, these rescaled coordinates

must be at least w/2 grid points from the ends \pm \pi in order to avoid wrap-around of
mode amplitudes in step 2. This gives a condition relating ni and \gamma i,

(3.18) Xi/\gamma i \leq \pi (1 - w/ni) , i = 1, . . . , d .

We may then rewrite (1.4) as fk :=
\sum M

j=1 cje
i\bfs \prime k\cdot \bfx 

\prime 
j , k = 1, . . . , N , where s\prime k

(i)
= \gamma is

(i)
k .

We spread these rescaled sources x\prime 
j = (x\prime j

(i)
, . . . , x\prime j

(d)
) onto a regular grid using

the usual periodized kernel (3.11) to get

(3.19) \^b\bfl =

M\sum 
j=1

cj \~\psi ((l1h1, . . . , ldhd) - x\prime 
j) , l \in \scrI n1,...,nd

.

Unlike before, here we have chosen a (cyclically equivalent) output index grid centered
at the origin, because we shall now interpret l as a Fourier mode index.

Step 2 (Fourier series evaluation via type 2 NUFFT). Treating \^b\bfl from
(3.19) as Fourier series coefficients, we evaluate this series at rescaled target points
using type 2 NUFFT (see section 3.2), thus

(3.20) bk =
\sum 

\bfl \in \scrI n1,...,nd

\^b\bfl e
i\bfl \cdot \bfs \prime \prime k k = 1, . . . , N ,

where the rescaled frequency targets have coordinates s\prime \prime k
(i)

:= his
\prime 
k
(i)

= hi\gamma is
(i)
k ,

i = 1, . . . , d. Intuitively, the factor hi arises because the fine grid of spacing hi has to
be stretched to unit spacing to be interpreted as a Fourier series.

Step 3 (correction). Finally, as in type 1, in order to compensate for the
spreading in step 1 (in primed coordinates) a diagonal correction is needed,

\~fk = pkbk,

pk = h1 . . . hd \^\psi (s
\prime 
k)

 - 1 = (2/w)d
\bigl( 
\^\phi (\alpha 1s

\prime 
k
(1)

) \cdot \cdot \cdot \^\phi (\alpha ds
\prime 
k
(d)

)
\bigr)  - 1

, k = 1, . . . , N.

But, in contrast to types 1 and 2, the set of frequencies at which \^\phi must be evaluated
is nonuniform, so there is no phase winding trick. Rather, dpN cosines must be
evaluated, recalling that p is the number of positive quadrature nodes. Despite this
cost, this step consumes only a small fraction of the total computation time.

Remark 3. Empirically, we find that using the same overall requested precision
\varepsilon in the above steps 1 and 2 gives overall error still close to \varepsilon . It has been shown in
one dimension (see term E3 in [14, p. 45]) that the type 3 error is bounded by the

error in performing the above step 2 multiplied by rdyn, the dynamic range of \^\psi over
the usable frequency band (see Figure 3.1(b)). Using n \approx \sigma N , (4.7), and (4.5) with
\gamma \approx 1 we approximate

(3.21) rdyn :=
\^\psi (0)

\^\psi (N/2)
=

\^\phi (0)

\^\phi (\pi w/2\sigma )
\approx e\beta  - 

\surd 
\beta 2 - (\pi w/2\sigma )2 = e

\bigl( 
1 - 

\surd 
1 - (2\sigma  - 1) - 2

\bigr) 
\beta ,

which for \sigma = 2 gives rdyn \approx e0.057 \beta . From (3.2), \beta \leq 36 for any \varepsilon \geq 10 - 15, so
rdyn \leq 8, which is quite small. This helps to justify the above choice of tolerances.

Choice of fine grid size (``Step 0"" for type 3). Finally, we are able to give
the recipe for choosing the fine grid sizes ni (which, of course, in practice precedes
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the above three steps). This relies on aliasing error estimates [14] for steps 1 and
3 that we explain here only heuristically. In section 4.1 we will see that spreading
onto a uniform grid of size hi induces a lattice of aliasing images separated by ni
in frequency space, so that the correction step is only accurate to precision \varepsilon out to

frequency magnitude ni/2\sigma . Thus, since | s\prime k
(i)| \leq \gamma iSi for all i and k, the condition

(3.22) \gamma iSi \leq 
ni
2\sigma 

, i = 1, . . . , d,

is sufficient. Combining (3.18) and (3.22), then solving as equalities for the smallest
ni gives the recipe for the optimal parameters (similar to [35, Rem. 1]),

(3.23) ni =
2\sigma 

\pi 
XiSi + w , \gamma i =

ni
2\sigma Si

, i = 1, . . . , d .

Remark 4 (FFT size for type 3). The product of the grid sizes ni in each dimen-
sion i = 1, . . . , d sets the number of modes, hence the FFT effort required, in the type
2 transform in step 2. Crucially, this is independent of the numbers of sources M and
of targets N . Rather, ni scales like the space-frequency product XiSi. This connects
to the Fourier uncertainty principle: ni scales as the number of ``Heisenberg boxes""
needed to fill the centered rectangle enclosing the data. In fact, since the number of
degrees of freedom [55, p. 391] (or ``semiclassical basis size"" [11]) needed to represent
functions living in the rectangle [ - Xi, Xi]\times [ - Si, Si] is its area divided by 2\pi , namely
2XiSi/\pi , we see that ni is asymptotically \sigma times this basis size.

Efficiently handling poorly centered data. The above remark shows that
type 3 is helped by translating all coordinates xj and sk so that their respective
bounding boxes are centered around the origin. This reduces the bounds Xi and Si

defined by (3.17), hence reduces ni and thus the cost of the FFT. Translations in x
or in s are cheap to apply using the factorization

(3.24)

M\sum 
j=1

cje
i(\bfs k+\bfs 0)\cdot (\bfx j+\bfx 0) = ei(\bfs k+\bfs 0)\cdot \bfx 0

M\sum 
j=1

(ei\bfs 0\cdot \bfx jcj)e
i\bfs k\cdot \bfx j .

Thus the type 3 transform for translated data can be applied by prephasing the
strengths by ei\bfs 0\cdot \bfx j , doing the transform, then postmultiplying by ei(\bfs k+\bfs 0)\cdot \bfx 0 . The
extra cost is \scrO (N+M) complex exponentials. In our library, if input or output points
are sufficiently poorly centered, we apply (3.24) using as x0 or s0 the means of the
minimum and maximum coordinates in each dimension.

Remark 5 (type 3 efficiency). Remark 4 also shows that input data can be chosen
for which the algorithm is arbitrarily inefficient. For example, with only two points
(M = N = 2) in one dimension with x1 =  - X, x2 = X, s1 =  - S, s2 = S, then by
choosing XS huge, (3.23) implies that the algorithm will require a huge amount of
memory and time. Obviously, in such cases a direct summation of (1.4) is preferable.
However, for N andM large but with clustered data, a butterfly-type algorithm which
hierarchically exploits (3.24) could be designed; we leave this for future work.

4. Error analysis and parameter choices. Here we summarize a rigorous
estimate (proven in [4]) on the aliasing error of the 1D type 1 and 2 algorithms
of section 3, when performed in exact arithmetic. We then use this to justify the
algorithm parameter choices stated in (3.2). Finally, we evaluate and discuss the gap
between this estimate and empirical errors.
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4.1. Theoretical results for the ES kernel. Let f be the vector of fk outputs
defined by (1.1) in one dimension, and let \~f be the analogous output of the above
type 1 NUFFT algorithm in exact arithmetic. We use similar notation for type 2. By
linearity, and the fact that the type 2 algorithm is the adjoint of type 1, the output
aliasing error vectors must take the form

(4.1) \~f  - f = Ec (type 1) , \~c - c = E\ast f (type 2)

for some matrix E. Standard analysis (see [48, eq. (1.16)], [18, eq. (4.1)], [16,
sect. V.B]), or [4]) involving the Poisson summation formula shows that, with the
choice (3.9) for pk, E has elements

(4.2) Ekj = gk(xj) , where gk(x) =
1

\^\psi (k)

\sum 
m\not =0

\^\psi (k +mn)ei(k+mn)x .

Since | k| \leq N/2, error is thus controlled by a phased sum of the tails of \^\psi at frequency
magnitudes at least n - N/2; see Figure 3.1(b).

It is usual in the literature to seek a uniform bound on elements of E by discarding
the information about xj , so that | Ekj | \leq \varepsilon \infty \forall kj, where

(4.3) \varepsilon \infty := max
| k| \leq N/2

\| gk\| \infty \leq 
max| k| \leq N/2, x\in \BbbR 

\bigm| \bigm| \bigm| \sum m \not =0
\^\psi (k +mn)ei(k+mn)x

\bigm| \bigm| \bigm| 
min| k| \leq N/2 | \^\psi (k)| 

.

The latter inequality is close to tight because rdyn, defined by (3.21), controls the loss
due to bounding numerator and denominator separately, and is in practice small.

Remark 6. A practical heuristic for \varepsilon \infty is sketched in Figure 3.1(b): assuming

that (i) \^\psi (k) decreases monotonically with | k| for | k| \leq N/2, and (ii) the worst-case
sum (numerator in (4.3)) is dominated by the single value with smallest | k| , then we

get \varepsilon \infty \approx | \^\psi (n - N/2)/ \^\psi (N/2)| , whose logarithm is shown in the figure.

A common use for (4.3) is the simple \ell 1-\ell \infty bounds for (4.1) (see [56] and [16, p.
12]):

(4.4) max
k\in \scrI 

| \~fk  - fk| \leq \varepsilon \infty \| c\| 1 (type 1), max
1\leq j\leq M

| \~cj  - cj | \leq \varepsilon \infty \| f\| 1 (type 2).

These results apply to any spreading kernel; we now specialize to the ES kernel.
Fix an upsampling factor \sigma > 1. Given a kernel width w in sample points, one must
choose in (1.8) an ES kernel parameter \beta such that \^\psi defined in (3.4) has decayed to its
exponentially small region once the smallest aliased frequency n - N/2 = n(1 - 1/2\sigma )
is reached; see (4.3) and Figure 3.1(b). To this end we fix a ``safety factor"" \gamma , and set

(4.5) \beta = \beta (w) := \gamma \pi w(1 - 1/2\sigma ) ,

so that for \gamma = 1 the exponential cutoff occurs exactly at n  - N/2, while for \gamma < 1
the cutoff is safely smaller than n - N/2. With this set-up, the following states that
the aliasing error converges almost exponentially with respect to the kernel width w.

Theorem 7 (see [4]). For the 1D type 1 and 2 NUFFT, fix N and \sigma (hence the
upsampled grid n = \sigma N) and the safety factor \gamma \in (0, 1). With \beta (w) as in (4.5), then
the aliasing error uniform bound (4.3) converges with respect to kernel width w as

(4.6) \varepsilon \infty = \scrO 
\Bigl( \surd 

we - \pi w\gamma 
\surd 

1 - 1/\sigma  - (\gamma  - 2 - 1)/4\sigma 2
\Bigr) 
, w \rightarrow \infty .D
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Its somewhat involved proof is detailed in [4]. A key ingredient is that, asymp-

totically as \beta \rightarrow \infty , \^\phi has the same ``exponential of semicircle"" form (up to algebraic
factors) in the below-cutoff domain ( - \beta , \beta ) that \phi itself has in ( - 1, 1); compare Fig-
ures 1.1(b) and (c). Specifically, fixing the scaled frequency \rho \in ( - 1, 1), [4] proves
that

(4.7) \^\phi (\rho \beta ) =

\sqrt{} 
2\pi 

\beta 

1

(1 - \rho 2)3/4
e\beta (

\surd 
1 - \rho 2 - 1)

\bigl[ 
1 +\scrO (\beta  - 1)

\bigr] 
, \beta \rightarrow \infty .

Remark 8 (comparison to KB bounds). In the limit \gamma \rightarrow 1 - , (4.6) approaches
the same exponential rate as (1.7), and with an algebraic prefactor improved by a
factor

\surd 
w. On the other hand, (1.7) has an explicit constant.

4.2. ES kernel parameter choices and empirical error. We now justify
and test the parameter choices (3.2). With \sigma = 2, the factor 2.30 in (3.2) corresponds
to a safety factor \gamma \approx 0.976 in (4.5), very close to 1. Note that \gamma = 1 would give a
factor 2.356; however, we find that the factor 2.30 gives a slightly lower typical error
for a given w than pushing \gamma closer or equal to 1 (this is likely due to the continued
drop for \xi > \beta visible in Figure 1.1(c)). Fessler and Sutton found a similar factor 2.34
when optimizing the KB kernel [16, Figure 11].

The width w is set by solving (4.6) with its algebraic prefactor dropped, to give
w \approx | log \varepsilon \infty | /\pi \gamma 

\sqrt{} 
1 - 1/\sigma  - (\gamma  - 2  - 1)/4\sigma 2 + const. Interpreting \varepsilon \infty as the requested

tolerance \varepsilon (see Remark 10 below), and inserting \gamma \approx 0.976, gives

(4.8) w \approx 1.065| log10 \varepsilon | + const .

As we show below, the factor 1.065 may be replaced by unity while still giving empiri-
cal errors close to the requested tolerance. The constant term in (4.8) is fit empirically.
Thus we have explained the parameter choices (3.2).

In many applications one cares about relative \ell 2 error in the output vector, which
we will denote by

(4.9) \epsilon :=
\| \~f  - f\| 2
\| f\| 2

(types 1 and 3) , \epsilon :=
\| \~c - c\| 2
\| c\| 2

(type 2) .

Following many references [12, 48], we will use this metric for testing. Figure 4.1 mea-
sures this metric for FINUFFT for all nine transform types at two different problem
sizes, with random data and randomly located nonuniform points. This shows that,
using the choice (3.2), the achieved relative error \epsilon well matches the requested toler-
ance \varepsilon , apart from when round-off error dominates. The mean slope of the logarithm
of the empirical error \epsilon with respect to that of \varepsilon in Figure 4.1 is slightly less than
unity, due to the design choice of approximating the slope 1.065 in (4.8) by unity in
(3.2).

Remark 9 (rounding error). Double-precision accuracy is used for all machine
calculations in the library by default, and also in the studies in this work. The
resulting rounding error is only apparent above aliasing error for the large 1D and two-
dimensional (2D) transforms at high accuracy. Figure 4.1(a) shows that our library's
accuracy is limited to nine relative digits in one dimension for M = N = 107; more
generally, Figure 6.2 shows that rounding error is similar, and essentially the same
for all tested libraries. When M \approx N we find, in one dimension, that the rounding
contribution to \epsilon is roughly N times machine precision. Taking into account their
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Fig. 4.1. Comparison of empirical relative \ell 2 error (\epsilon ) versus the requested tolerance (\varepsilon ) for
all nine FINUFFT routines. In each case N \approx M , with Ni roughly equal, with two problem sizes
included (M = 103 and 107). Nonuniform points are uniformly randomly distributed in [0, 2\pi )d,
while strength data is complex Gaussian random. v denotes the true output vector, either \bff or \bfc 
(this is computed with tolerance 10 - 15), and \~v the computed output vector at requested tolerance \varepsilon .

choice of error norm, this concurs with the findings of [53, Figure 2.3]. See [48,
section 1.4] for NUFFT rounding error analysis in one dimension. We observe in two
dimensions and three dimensions that it is maxiNi that scales the rounding error;
thus, as Figure 4.1(b)--(c) shows, it is largely irrelevant even for large M .

Finally, we discuss the gap between any theoretical aliasing error estimate deriving
from (4.3)---this includes (1.7) and (4.6)---and the empirical relative \ell 2 error \epsilon due to
aliasing. The best possible type 1 bound from (4.1)--(4.3) is via the Frobenius norm
\| E\| F \leq 

\surd 
MN\varepsilon \infty , so

\| \~f  - f\| 2 \leq 
\surd 
MN\varepsilon \infty \| c\| 2.

Writing the transform (1.1) as f = Ac, where A has elements Akj = eikxj , this gives

(4.10) \epsilon \leq 
\surd 
MN\varepsilon \infty 

\| c\| 2
\| f\| 2

\leq 
\surd 
MN\varepsilon \infty 

1

\sigma min(A)
,

where in the last step the best bound applying to all nontrivial c is used, and \sigma min(A)
denotes the smallest singular value of A, or zero if M > N . Thus if M > N , there
cannot be a general type 1 bound on \epsilon , simply because, unlike the DFT, the relative
condition number of the type 1 task (1.1) may be infinite (consider c \in Nul A, so
f = 0).6

However there are two distinct mechanisms by which (4.10) is pessimistic in real-
world applications:

1. For typical input data, \| f\| 2 is not smaller than \| c\| 2; in fact (as would be ex-
pected from randomized phases in A), typically \| f\| 2 \approx 

\surd 
N\| c\| 2. The growth

factor is close to \sigma max(A). Thus the problem is generally well-conditioned. See
B\"ottcher and Potts [8, section 4] for a formalization in terms of ``probabilistic
condition number.""

2. The uniform bound (4.3) discards phase information in the elements of E,
which, in practice, induce large cancellations to give errors that are improved

6The condition number may also be huge even if M \leq N . The following MATLAB code, in
which nonuniform points lie randomly in only half of the periodic interval, outputs typically 10 - 15:
M=80; N=100; A = exp(1i*(-N/2:N/2-1)'*pi*rand(1,M)); min(svd(A))
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by a factor
\surd 
M over bounds such as (4.4). Such ideas enable improved

aliasing error estimates in a looser norm: e.g., interpreting (1.3) as point
samples of a function c(x) =

\sum 
\bfk \in \scrI f\bfk e

 - i\bfk \cdot \bfx , the error of the latter is easily

bounded in L2([ - \pi , \pi ]d), as clarified by Nestler [41, Lemma 1] (also see [27]).

Remark 10 (empirical \ell 2 relative error). Assuming both mechanisms above apply
in practice, they can be combined to replace (4.10) with the heuristic

\epsilon \approx 
\surd 
N\varepsilon \infty \| c\| 2\surd 
N\| c\| 2

= \varepsilon \infty ,

which justifies the interpretation of the requested tolerance \varepsilon as the uniform bound \varepsilon \infty 
in (4.3) when setting kernel parameters. The result is that, as in Figure 4.1, barring
rounding error, relative error \epsilon is almost always similar to the tolerance \varepsilon .

To summarize, rather than design the kernel parameters around the rigorous
but highly pessimistic worst-case analysis (4.10), we (as others do) design for typical
errors. Thus, before trusting the relative error, the user is recommended to check that
for their input data the desired convergence with respect to \varepsilon has been achieved.

5. Implementation issues. Here we describe the main software aspects that
accelerated the library. The chief computational costs in any NUFFT call are the
spreading (types 1 and 3) or interpolation (type 2), scaling as \scrO (wdM), and the FFT,
scaling as \scrO (N logN). We use the multithreaded FFTW library for the latter, thus
in this analysis we focus on spreading/interpolation. In comparison, the correction

steps, as explained in section 3, are cheap: 1D evaluations of \^\psi are easily parallelized
over the p quadrature nodes (or, for type 3, the frequency points) with OpenMP, and
the correction and reshuffling of coefficients is memory-bound and so does not benefit
from parallelization.

5.1. Bin sorting of nonuniform points for spreading/interpolation. When
N is large, the upsampled grid (with \sigma dN elements) is too large to fit in cache. Un-
ordered reads/writes to RAM are very slow (hundreds of clock cycles), thus looping
through the nonuniform points in an order which preserves locality in RAM uses cache
well and speeds up spreading and interpolation, by a factor of typically 2--10, includ-
ing the time to sort.7 Each nonuniform point requires accessing a block extending
\pm w/2 grid points in each dimension, so there is no need to sort to the nearest grid
point. Thus we set up boxes of size 16 grid points in the fast (x) dimension, and,
in two dimensions or three dimensions, size 4 in the slower (y and z) dimensions.
These sizes are a compromise between empirical speed and additional RAM needed
for the sort. Then we do an ``incomplete"" histogram sort: we first count the number
of points in each box and use this to construct the breakpoints between bins, then
write point indices lying in each box into that bin, finally reading off the indices in the
box ordering (without sorting inside each bin). This bin sort is multithreaded, except
for the low-density case M < N/10 where we find that the single-thread version is
usually faster.

5.2. Parallel spreading. The interpolation task (3.16) parallelizes well with
OpenMP, even for highly nonuniform distributions. Each thread is assigned a subset
of the points \{ xj\} ; for each point it reads a block of size wd from the fine grid, does a

7This is illustrated by running test/spreadtestnd 3 1e7 1e7 1e-12 x 0 1 where x is 0 (no sort)
or 1 (sort). For interpolation (dir=2), we find a speed-up factor 6 on a Xeon, or 14 on an i7.
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w

outer product of kernel values

w

outer product of kernel values

n1

n2

fine grid
add to

...

jxnonuniform points

spread

spread...

THREAD 2

THREAD 1

to fine grid
wrapped add

wrapped

subproblem

jc

cj (omp critical)

Fig. 5.1. Sketch of parallel load balanced spreading scheme used for type 1 and type 3 transforms,
showing the 2D case. Only two of the threads are shown.

weighted sum using as weights the tensor product of 1D kernels, then writes the sum
to a distinct output cj .

In contrast, spreading (3.12) adds to blocks in the fine grid. Blocks being over-
written by different threads may collide, and, even if atomic operations are used to
ensure a correct result, false sharing of cache lines [10, sect. 5.5.2] makes it inefficient.
A conventional solution is to assign threads equal distinct slices of the fine grid [29];
however, for nonuniform distributions this could lead to arbitrarily poor load bal-
ancing. Instead, we group sorted points \{ xj\} into ``subproblems"" of size up to 104,
which are assigned to threads; see Figure 5.1. (This choice is heuristic; an optimal
size would depend on L3 cache and the number of threads.) To handle a subprob-
lem, a thread finds the cuboid bounding all \{ xj\} in the subproblem, allocates a local
cuboid of this size, spreads onto the cuboid, and finally adds the cuboid back into
the fine grid. Since subproblems may overlap on the latter grid, this last step needs a
\#pragma omp critical block to avoid collisions between writes; however, this causes
minimal overhead since almost all the time is spent spreading to cuboids. The scheme
is adaptive: regardless of the point distribution, all threads are kept busy almost all
of the time. The scheme requires additional RAM of order the fine grid size.

A further advantage is that the periodic wrapping of grid indices, which is slow,
may be avoided: cuboids are padded by w/2 in each dimension and written to without
wrapping. Index wrapping is only used when adding to the fine grid.

5.3. Piecewise polynomial kernel approximation. The 1D ES kernel (1.8)
requires one real-valued exp and sqrt per evaluation. However, we find that the
throughput depends drastically on the CPU type (i7 or Xeon), compiler (GCC versus
Intel ICC), and kernel width w (the inner loop length that the compiler may be able
to vectorize via SIMD instructions). For instance, a Xeon E5-2643 (with AVX2) with
GCC version \leq 7.x achieves only 40M evals/sec/thread, while the same CPU with
ICC gives 50--200M evals/sec/thread. We believe this is due to compiler-provided
exp instructions that exploit SIMD. Similar variations occur for the i7. Seeking a
reliably efficient kernel evaluation on open-source compilers (e.g., GCC), we replaced
the kernel evaluation by a polynomial look-up table. The result gives 350--600M
evals/sec/thread, and accelerates 1D spreading/interpolation by a factor 2--3 (the
effect in d = 2, 3 is less dramatic).

The look-up table works as follows. For each nonuniform point coordinate, the
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1D kernel \psi (x) must be evaluated at w ordinates x, x+h, . . . , x+(w - 1)h (see Figure
3.1(a)). We break the function \psi into w equal-width intervals and approximate each
by a centered polynomial of degree p. Ordinates within each of the w intervals are
then the same, allowing for SIMD vectorization. The approximation error need only
be small relative to \varepsilon \infty ; we find p = w + 3 suffices. Monomial coefficients are found
by solving a Vandermonde system on collocation points on the boundary of a square
in the complex plane tightly enclosing the interval. For each of the two available
upsampling factors (\sigma = 2 and 5/4), and all relevant w, we automatically generate C
code containing all coefficients and Horner's evaluation scheme.

Remark 11. Piecewise polynomial approximation could confer on any kernel (e.g.,
KB, PSWF) this same high evaluation speed. However, AVX512 and future SIMD
instruction sets may accelerate exp evaluations, making ES even faster. Since we do
not know which will win with future CPUs, our library uses the ES kernel.

6. Performance tests. Tests were run on a desktop with two Intel Xeon 3.4
GHz E5-2643 CPUs (each with 20 MB L3 cache), giving 12 total physical cores (up
to 24 threads), and 128 GB RAM, running EL7 linux. Unless specified we compile all
codes with GCC v.7.3.0. We compiled FINUFFT version 1.0 with flags -fPIC -Ofast

-funroll-loops -march=native. Experiments were driven using the MEX interface
to MATLAB R2016b. In the codes that use FFTW (i.e., FINUFFT and NFFT), we
use version 3.3.3 and set its plan method to FFTW\.MEASURE (see [19]), which sometimes
takes a very long time to plan during the first call. Thus, to show realistic throughput
we time only subsequent calls, for which FFTW looks up its stored plan. To minimize
variation we take the best of the three subsequent calls.

Tasks. To assess the efficiency of our contributions---rather than merely measure
the speed of FFTW---we choose ``high density"" tasks where M is somewhat larger
than N , so the FFT is at most a small fraction of the total time. In one dimension,
since timings do not vary much with point distribution, we always test with xj i.i.d.
uniform random in [ - \pi , \pi ]. For d = 2, 3 we use the following distributions (see insets
in Figures 6.3--6.5):

\bullet 2D ``disc quad"": a polar grid over the disc of radius \pi , using roughly
\surd 
M

radial Gauss--Legendre nodes and
\surd 
M equispaced angular nodes.

\bullet Three-dimensional (3D) ``rand cube"": i.i.d. uniform random in [ - \pi , \pi ]3.
\bullet 3D ``sph quad"": a spherical grid in the ball of radius \pi , using

\surd 
M/2 radial

Gauss--Legendre nodes and a
\surd 
M\times 2

\surd 
M tensor-product grid on each sphere.

Here the first and last are realistic quadrature schemes for NUFFT applications [6].
They involve a divergence in point density at the origin of the form r1/2 - d for d = 2, 3.
We choose input strengths or coefficients as i.i.d. complex Gaussian random numbers.

Parallel scaling. Figure 6.1 shows parallel scaling tests of 3D type 1 and
2 FINUFFT. The highly nonuniform ``sph quad"" distribution was used in order to
test the load balancing described in section 5.2. For \varepsilon = 10 - 12, where each point
interacts with 133 = 2197 fine grid points, weak scaling (where M grows with p the
number of threads) shows 90\% parallel efficiency for p \leq 12 (one thread per physical
core). Above this, hyperthreading is used: as expected, although it provides a slight
net speed boost, measured in threads its parallel efficiency falls far short of that for
p \leq 12. Strong scaling (acceleration at fixedM) is a tougher test, dropping to 62--74\%
at p = 12.

For a low-accuracy test (\varepsilon = 10 - 3), the kernel is narrower, touching only 43 = 64
fine grid points, thus the RAM access pattern is more random relative to the number of
flops. We believe the resulting lower parallel efficiencies are due to memory bandwidth,
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Fig. 6.1. Parallel scaling of FINUFFT in 3D, for p threads of a Xeon desktop with 12 physical
cores. Both type 1 and type 2 tasks are tested. In all cases there are N = 1003 Fourier modes,
and M , the number of ``sph quad"" nodes (see section 6), is as shown. Figures (a)--(b) show a high-
accuracy case (12 digits). Figures (c)--(d) show low accuracy (three digits). For strong scaling the
efficiency is the speed-up factor divided by p; for weak it is the speed-up factor for a problem size M
proportional to p.

Table 6.1
Summary of NUFFT libraries tested. ``Kernel"" lists the default spreading function \psi (some

allow other kernels). ``Language"" is the coding language. A ``yes"" in the column ``on-the-fly""
indicates that no precomputation/plan phase is needed, hence low RAM use per nonuniform point.
``omp"" shows if multithreading (e.g., via OpenMP) is available. See sections 1.1 and 6.1 for more
details.

Code name Kernel Language On-the-fly OMP Periodic domain Notes

FINUFFT ES C++ yes yes [ - \pi , \pi ]d
CMCL Gaussian Fortran yes no [ - \pi , \pi ]d
NFFT bkwd. KB C yes or no yes [ - 1/2, 1/2]d

MIRT optim. KB MATLAB no no [ - \pi , \pi ]d
BART KB, w = 3 C yes yes

\prod d
i=1[ - Ni/2, Ni/2] d = 3 only

rather than flops, being the bottleneck. That said, at p = 24 threads (full hyper-
threading), both transforms are still 5--7 times faster than for a single core.

6.1. Benchmarks against existing libraries. We now compare FINUFFT
against several popular open-source CPU-based NUFFT libraries mentioned in sec-
tion 1.1. Their properties (including their periodic domain conventions) are summa-
rized in Table 6.1. We study speed versus accuracy for types 1 and 2 for d = 1, 2, 3,
covering most applications. The machine, OS, and default compiler were as above.
In multithreaded tests we set p = 24 (two threads per core). Each code provides a
MATLAB interface, or is native MATLAB. For reproducibility, we now list their test
parameters and set-up (also see https://github.com/ahbarnett/nufft-bench):

\bullet FINUFFT, version 1.0. Compiler flags are as in the previous section. We
tested tolerances \varepsilon = 10 - 2, 10 - 3, . . . , 10 - 12.

\bullet CMCL NUFFT, version 1.3.3 [24]. This ships with MEX binaries dated
2014. It uses dfftpack for FFTs. For fairness, we recompiled the rele-
vant *.mexa64 binaries on the test machine using gfortran with flags -fPIC
-Ofast -funroll-loops -march=native, and mex. We tested tolerances
10 - 1, 10 - 2, . . . , 10 - 11.

\bullet NFFT, version 3.3.2 [29]. A compiler error resulted with GCC 7.x, so we used
GCC 6.4.0. We used the default (backward KB) kernel. We used the ``guru""
interface with FFT grid size set to the smallest power of two at least 2Ni,
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where Ni is the number of modes in dimension i, following their examples.
Since they increased speed, we set the flags PRE\.PHI\.HUT, FFT\.OUT\.OF\.PLACE,
NFFT\.OMP\.BLOCKWISE\.ADJOINT, and NFFT\.SORT\.NODES (the latter is not part
of the standard MATLAB interface). We tested three variants:

-- no kernel precomputation; kernel is evaluated on the fly (labeled``NFFT"");
-- ``pre"": option PRE\.PSI which precomputes wdM kernel values (with

tensor products done on the fly);
-- ``full pre"": option PRE\.FULL\.PSI which precomputes and then looks up

all wdM kernel values.
We tested kernel parameters m = 1, 2, . . . , 6 (kernel width is w = 2m + 1),
apart from ``full pre"" where RAM constraints limited us to m = 1, 2.

\bullet MIRT (Michigan Image Reconstruction Toolbox), no version number; how-
ever, the latest changes to the nufft directory were on Dec. 13, 2016 [15].
This native MATLAB code precomputes a sparse matrix with all kernel val-
ues. Its matrix-vector multiplication appears to be single-threaded, thus
we place this library in the single-threaded category. We use oversampling
\sigma = 2.0 and the default kernel minmax:kb, which appears to be close to
KB (1.5). RAM constraints limited us to testing width parameters J = 2, 4
(equivalent to our w).

\bullet BART (Berkeley Advanced Reconstruction Toolbox), version 0.4.02 [59]. This
is a recent multithreaded C code for three dimensions only by Uecker, Lustig,
and Ong, used in a recent comparison by Ou [46]. We compiled with -O3

-ffast-math -funroll-loops -march=native. The MATLAB interface
writes to and reads from temporary files; however, for our problem sizes with
the use of a local SSD drive this adds less than 10\% to the runtime. BART
did not ship with periodic wrapping of the spreading kernel; however, upon
request8 we received a patched code src/noncart/grid.c. It has fixed accu-
racy (w = 3 is fixed). We empirically find that a prefactor

\surd 
N1N2N3/1.00211

gives around 5-digit accuracy (without the strange factor 1.00211 it gives only
three digits).

The above notes also illustrate some of the challenges in setting up fair comparisons.
We now discuss the results (Figures 6.2--6.5). In each case we chose M \approx 10N ,

for reasons discussed above. To be favorable to codes that require precomputation,
precomputation times were not counted (hence the label ``after pre"" in the figures).
As in section 4.2, \epsilon denotes relative l2 error, measured against a ground truth of
FINUFFT with tolerance \varepsilon = 10 - 14.

1D comparisons. Figure 6.2 compares single-thread codes (left plots), and
then, for a larger task, multithreaded codes (right plots). For single-threaded, FIN-
UFFT outperforms all libraries except MIRT, which exploits MATLAB's apparently
efficient sparse matrix-vector multiplication. However, what is not shown is that the
precomputation time for MIRT is around 100 times longer than the transform time.
For multithreaded type 1, FINUFFT is around 1.5--2\times faster than NFFT without
precomputation, but around 2\times slower than ``NFFT pre."" For type 2, FINUFFT and
``NFFT pre"" are similar, but, of course, this does not count the precomputation time
(and higher RAM overhead) of ``NFFT pre."" As per Remark 9, all libraries bottom
out at around 9--10 digits due to rounding error.

2D comparisons. Figure 6.3 shows similar comparisons in 2D, for a point
distribution concentrating at the origin. Compared to other codes not needing pre-

8M. Uecker, private communication.
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Fig. 6.2. 1D comparisons. Execution time versus accuracy is shown for various NUFFT
libraries, for random data in 1D. Precomputations (needed for codes labeled ``pre"") were not included.
The left shows single-threaded codes, the right multithreaded. The top pair are type 1, the bottom
pair type 2. See section 6.1.

computation, FINUFFT is 2--5\times faster than CMCL (when single-threaded), and 4--8\times 
faster than NFFT. When NFFT is allowed precomputation, its type 2 multithreaded
speed is similar to FINUFFT, but for type 1 FINUFFT is 2\times faster at high accuracy.

3D comparisons. Figure 6.4 compares single-threaded codes (now including
BART). The left pair of plots shows random points: FINUFFT is at least 2\times faster
than any other code, apart from MIRT at 1-digit accuracy. CMCL is a factor 4--50\times 
slower than single-threaded FINUFFT, we believe in part due to its lack of sorting
nonuniform points. (The evidence is that for the right pair, where points have an
ordered access pattern, CMCL is only 2--10\times slower). NFFT without precomputation
is 3--5\times slower than FINUFFT; precomputation brings this down to 2--4\times . As for
d = 1, 2, we observe that ``NFFT full pre"" is no faster than ``NFFT pre,"" despite its
longer precomputation and larger RAM overhead.

Figure 6.5 shows larger multithreaded comparisons against NFFT; now we cannot
include ``NFFT full pre"" due to its large RAM usage. At low accuracies with random
points, FINUFFT and ``NFFT pre"" have similar speeds. However, for type 1 ``sph
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Fig. 6.3. 2D comparisons. Execution time versus accuracy is shown for the tested libraries, for
2D polar ``disc quad"" nodes (see section 6) illustrated in the insets at smaller M . Precomputations
(needed for codes labeled ``pre"") were not included. The left figures show single-threaded codes, the
right figures show multithreaded. The top pair are type 1, the bottom pair type 2. See section 6.1.

quad"" (panel (b)), for \epsilon < 10 - 6, FINUFFT is 8--10\times faster than NFFT even with
precomputation. FINUFFT is at least 10\times faster than BART in all cases.

In Table 6.2 we compare FINUFFT and NFFT in terms of both speed and memory
overhead, for the same large, medium-accuracy, multithreaded task. We emphasize
that, since Ni = 256, i = 1, 2, 3, is a power of two, the fine grids chosen by the
two libraries are an identical ni = 512. This means that the memory use, and the
FFTW calls, are identical. Furthermore, the kernel widths are both w = 7 so the
numbers of fine grid points written to are identical. If precomputations are excluded,
FINUFFT is 16\times faster than NFFT, and 8.6\times faster than ``NFFT pre."" For a single
use (i.e., including initialization and precomputation), these ratios become 17\times and
13\times , respectively.

Remark 12. We believe that the following explains the large type 1 performance
gain of FINUFFT over NFFT for the 3D clustered ``sph quad"" nodes, shown by Figure
6.5(b) and Table 6.2. NFFT assigns threads to equal slices of the fine grid (in the
x-direction), whereas FINUFFT uses subproblems which load balance regardless of
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Fig. 6.4. 3D single-threaded comparisons. Execution time versus accuracy is shown for the
tested libraries, for uniform random (left pair) and spherical quadrature (right pair) nodes (see
section 6). Node patterns are shown in the insets at a smaller M . Precomputations (needed for
codes labeled ``pre"") were not included. The top pair are type 1, the bottom pair type 2. See section
6.1.

Table 6.2
Performance of FINUFFT and NFFT for a large 3D type 1 transform with roughly 6-digit

accuracy, using 24 threads. N = 2563 modes are requested with M = 3\times 108 ``sph quad"" nonuniform
points. The spreading time dominates over the FFT. For NFFT, tplan+pre counts both planning and
kernel precomputation. RAM is measured using top, relative to the baseline (around 12 GB) needed
to store the input data in MATLAB. See section 6 for machine and NFFT parameters.

Code and parameters \epsilon (rel. \ell 2 error) tplan+pre trun RAM overhead
FINUFFT (tol. 10 - 6) 1.4e-06 N/A 14.6 s 8.8 GB
NFFT (m = 3) 4.7e-06 10.4 s 238 s 20.9 GB
NFFT (m = 3) PRE\.PSI 4.7e-06 67.3 s 125 s 67.1 GB

the clustering of nodes. We find that only a couple of threads are active for the entire
run time of NFFT; most complete their jobs quickly, giving low parallel efficiency.

Finally, Table 6.2 shows that if NFFT precomputation is used, its RAM over-
head is around 8\times that of FINUFFT. The ``NFFT pre"" RAM overhead of around 28
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Fig. 6.5. 3D multithreaded comparisons. For an explanation, see the caption of Figure 6.4.

doubles per point is consistent with the expected wd = 21 stored kernel values per
point.

7. Conclusion. We have presented an open-source parallel CPU-based general-
purpose type 1, 2, and 3 NUFFT library (FINUFFT) for dimensions 1, 2, and 3 that
is competitive with existing CPU-based libraries. Using a new spreading kernel (1.8),
all kernel evaluations are efficiently done on the fly: this avoids any precomputation
phase, keeps the RAM overhead small, and allows for a simple user-friendly interface
from multiple languages. Efficient parallelization balances the work of threads, adapt-
ing to any nonuniform point distribution. For all three types, we introduce numerical
quadrature to evaluate a kernel Fourier transform for which there is no known ana-
lytic formula. Rigorous estimates show almost exponential convergence of the kernel
aliasing error, with rate arbitrarily close to that of the best known. We explained the
gap between such estimates and empirical relative errors. We benchmarked several
NUFFT libraries in detail. We showed that for certain 3D problems with clustered
distributions FINUFFT is an order of magnitude faster than the other libraries, even
when they are allowed precomputation. In the latter case, FINUFFT has an order of
magnitude less RAM overhead.
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There are several directions for future work, starting with benchmarking the less-
common type 3 case. An efficient interface for the case of repeated small problems
(Remark 2) should be completed. There is also a need for a carefully benchmarked
general-purpose GPU NUFFT code, following Kunis and Kunis [34], Ou [46], and
others. Implementation of both of the above is in progress.

Remark 13. In some particle-mesh Ewald applications [37] one needs spatial
derivatives of the spreading kernel.9 However, (1.8) has unbounded derivatives (with
inverse square-root singularity) at the endpoints. Instead one may prefer the exponen-
tially close variant \phi (z) = 2e - \beta cosh\beta 

\surd 
1 - z2 since it is smooth up to the endpoints.

This kernel requires one extra reciprocal, or approximation as in section 5.3.
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