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Towards the Organic Double Heterojunction Solar Cell 

Loren G. Kaake 

Department of Chemistry, Simon Fraser University  

8888 University Dr. Burnaby, BC V5A 1S6 Canada 

 

ABSTRACT 

A perspective on the operating principles of organic bulk heterojunction solar cells is outlined and used to suggest 

an alternative device configuration, employing two type II semiconductor heterojunctions in series. Guiding 

principles to the implementation of this configuration, called a double heterojunction, are summarized. Assuming 

an exciton binding energy of 0.3 eV or less, results in a maximum achievable power conversion efficiency of well 

over 25%. Achieving a high efficiency organic double heterojunction requires a specific energy level alignment, 

charge separation in the absence of driving forces, high phase purity and excellent diode quality. Fully conjugated 

triblock polymers of the form [D1-A1]-[D1-A2]-[D2-A2] appear to be a system that can fulfill these requirements. 

Going forward, the primary challenge is the identification and development of synthetically tractable materials 

which have the necessary properties. 

MAIN 

The nearly limitless variety of organic synthesis is a major part of the fundamental interest in organic electronics 

and organic solar cells in particular. This aspect cannot be overstated, the truly enormous parameter space that 

these materials occupy makes it difficult to accurately describe fundamental limitations and identify unexpected 

opportunities. More specifically, this space is not easily characterized by a few simple parameters because it exists 

in an incredibly high number of dimensions. Optimization in high dimensional space presents a challenge because 

the space is not simply connected in the way that common intuition suggests. One way to visualize high 

dimensional space is the Cayley tree, or Bethe lattice[1] pictured in figure 1. Overlaid on this figure is a false-color 

representation of a parameter one wishes to optimize. When the local maximum is placed at the center of the 

figure, it gives the misleading impression that this region of space is easily approached from any direction. 

Translating the center of the local maximum towards the edge provides a slightly more faithful representation. As 

the number of intermediate steps increases, the number of possible alternatives increases as 3^n (in this particular 

example of the simplest possible tree). In this example, most of these alternatives, including the points between 

a and the desirable region of parameter space are “dead,” i.e., do not exhibit the desired property to a degree 

sufficient to guide an empirical optimization scheme.  This description of the broader optimization problem puts 

into context an empirical fact which any materials chemist knows. Making highly novel materials with good 

performance is difficult, especially with the first few compounds of the series. This article will introduce an 

underexplored organic solar cell configuration, termed a double heterojunction, and will describe computational 

efforts to identify fertile regions of parameter space. The discussion will be developed from a brief review of bulk 

heterojunction solar cells as a means of highlighting the underlying assumptions and developing the necessary 

language to discuss the double heterojunction configuration.  

Manuscript Click here to access/download;Manuscript;solar rev draft05.docx

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/tcr/download.aspx?id=9487&guid=95575c84-23d1-4689-871c-efa8545bde88&scheme=1
https://www.editorialmanager.com/tcr/download.aspx?id=9487&guid=95575c84-23d1-4689-871c-efa8545bde88&scheme=1


Despite the rather alarming challenges posed by the breadth of parameter space, the development of organic 

solar cell materials has been highly successful.[2] The first organic solar cell was constructed from a bilayer 

heterojunction.[3] The importance of a semiconductor heterojunction in organic photovoltaics results from the 

nature of the molecular excited states. In particular, the primary photoexcitations are most easily thought of as 

excitons, bound electron-hole pairs that are lower in energy than the charge separated state by an amount called 

the exciton binding energy (EB).[4] This binding energy prevents all but a small fraction of excitons from being 

converted directly to charge carriers in a single component polymer or molecular film. Excitons are formed upon 

the absorption of solar radiation and must diffuse within the active layer of an organic photovoltaic until reaching 

an interface where charge separation can occur.[5] 

The lifetime of the exciton and its diffusivity can be used to parameterize the relevant length scale for this process, 

called the exciton diffusion length. In disordered molecular and polymeric films, this length scale is ~20 nm,[6] 

which also appears to be the relevant length scale regardless of transient delocalization effects.[7] In highly ordered 

films, molecular excitons can become delocalized over much greater distances, with observed delocalization 

lengths reaching nearly 1 micron.[8] However, solar cell designs that take full advantage of this property have yet 

to be developed. In contrast, organic solar cell materials often employ the bulk heterojunction whereby nanoscale 

phase separation of creates an interpenetrating network of electron donating (p-type) and electron accepting (n-

type) materials.[9] This nanoscale phase separation is aided by processing techniques including solvent additives.[10]  

Providing excitons ample opportunity to reach the heterojunction interface is a necessary, but not sufficient 

condition for achieving high power conversion efficiency (η); efficient charge separation is also required.  The key 

to efficient charge separation is defeating the charge-transfer exciton, a bound electron-hole pair across an 

organic semiconductor heterojunction.[11] Several groups have demonstrated the importance of ultrafast electron 

transfer in allowing charges to travel a sufficient distance from one another to circumvent the binding energy of 

this species.[12] This factor, not large energy offsets at the heterojunction interface appear to be the more 

fundamentally important aspect of efficient charge generation, an idea underscored by recent results with non-

fullerene acceptors.[2c, 2e, 13]  

In addition to the efficient separation of excitons, mobile electrons and holes must make their way to their 

respective electrodes in order to produce photocurrent. Several recombination mechanisms must be avoided, 

two of particular importance are associated with charge trapping. Trapped charges can recombining with the 

opposite charge[14] or causing the recombination of excitons through exciton-charge annihilation.[15] The latter 

mechanism is often overlooked because it does not affect solar cell fill factor, but instead manifests as a lower 

than expected solar cell current at short circuit conditions (JSC). As a parenthetical aside, the term “free charges” 

should be avoided in the discussion of organic photovoltaic materials because it implies the Bloch waves typical 

of metals and crystalline inorganic semiconductors. 

The term “mobile charges” is preferable as it avoids 

this implication. 

Another important charge recombination 

mechanism that is necessary to avoid is the 

formation of low energy triplet excitons. This can 

happen via a charge transfer exciton intermediate. If 

these species are lower in energy than the charge 

separated state, a significantly increased bimolecular 

recombination rate will be observed.[16] Although the 

triplet and singlet charge transfer excitons have a 

similar binding energy, the triplet charge transfer 

exciton serves as an intermediate to the formation of 

 

Figure 1. Cartoon illustrating aspects of optimization 

problems in high dimensions. Nodes of the graph 

represent a set of parameters, colors represent the 

magnitude of a desirable quantity with red being the 

largest value. 
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a triplet exciton, presumably through a Dexter energy transfer mechanism. Because the triplet excited state is 

lower in energy than the singlet excited state that participates in charge transfer reactions, the triplet state is not 

likely to be converted back to mobile charges and recombines through radiative or non-radiative means. 

Fortunately, high performance organic photovoltaic devices frequently exhibit radically reduced bimolecular 

recombination rates,[17] indicating that some aspect of organic photovoltaic devices actively inhibit this pathway.  

The fundamental challenge to the creation of organic photovoltaic devices with efficiencies approaching that of 

silicon is improving the open-circuit voltage (VOC). This is accomplished by reducing voltage losses in the device.[13b, 

18] The plain fact is that organic photovoltaic devices regularly achieve >90% quantum efficiency,[19] meaning that 

dramatic improvements to charge extraction are not possible and radical departures from conventional bulk 

heterojunction architectures in pursuit of higher JSC appear misguided.  Instead, approaches to increase 

photocurrent by increasing cell thickness,[17] or creating tandem cells,[2b, 20] are more fruitful approaches.    

The Scharber equation[21] specifies an empirical relationship between the optical gap of an organic solar cell and 

the maximum Voc that can be achieved. This relationship places limits on the maximum efficiency of any solar cell 

that obeys it to around 15%.[22] Alternatively, recent analyses of solar cells based on non-fullerene acceptors 

indicate that efficiencies closer to 20% are possible.[18] A key aspect to understanding device efficiencies is 

quantifying energy levels and their alignment. From a fundamental/theoretical perspective, energy levels can be 

described in terms of ionization potentials and electron affinities, following the description of Zhu,[23] hereafter 

referred to as XYZ diagrams. This description is preferable to Jablonski diagrams because the latter obfuscates the 

importance of material specific energy levels and their relationship in the heterojunction. While XYZ diagrams 

appear similar to the “zero order” diagram describing the HOMO/LUMO energies of a heterojunction cell, they 

are superior because they rigorously describes excitonic energy levels in a way that makes it possible to predict 

the enthalpic favorability of a specific charge transfer reaction. 

Figure 2 shows an XYZ diagram of a bulk hetrojunction material. The diagram is labeled in terms of ionization 

potentials (IP) and electron affinities (EA) which rigorously describe the energy required to remove or add an 

electron to a state, respectively. By convention, both energies are given as positive quantities. The states are also 

labeled according to whether they belong to the ground state (S0) a singlet excited state (S1) or a triplet excited 

state (T3). Lastly, each state can be further labeled to differentiate which component of the cell it originates from, 

the electron donating (P) electron accepting (N) or the charge transfer state (CT) which arises at the heterojunction 

interface.  

An unfortunate challenge with the conventional nomenclature exists. The term “donor” can refer to either the 

electron donating component of a solar cell (for example, 

P3HT or PCDTBT) or “donor” can refer to the electron rich 

subunit of a copolymer (for example, carbazole). To simplify 

the discussion, and maintain clarity in regards to the two 

different senses of “donor” and “acceptor,” I will use the term 

“p-type” to refer to the electron donating, hole transporting 

component of the cell, and reserve “donor” for the electron 

rich subunit of the copolymer. Similarly, I will use “n-type” for 

the electron accepting and electron transporting component 

of the cell, and use “acceptor” for the electron poor subunit 

of the copolymer. It must be admitted that referring to “n-

type” and “p-type” materials outside the context of doped 

inorganic semiconductors is a colloquial usage, put forward 

for the purpose of clarifying the discussion. 

 

Figure 2. Diagram showing ionization 

potentials (IP) and electron affinities (EA) of 

key energy levels of an organic solar cell. 

Adapted from (28) 
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A few states and processes from fig. 2 deserve further comment. The ground state of the system is characterized 

by its HOMO (IPS0) and LUMO (EAS0) levels. The optical gap (𝐸𝑂𝑃𝑇) can be represented either in terms of ionization 

energy or electron affinity. For the former, it is given by the difference between the ionization energy of the 

ground state and the deepest lying singlet exciton state (𝐸𝑂𝑃𝑇 = 𝐼𝑃𝑆1 − 𝐼𝑃𝑆0). In terms of electron affinities, the 

optical gap is the difference between the unoccupied LUMO and the singlet state (𝐸𝑂𝑃𝑇 = 𝐸𝐴𝑆0 − 𝐸𝐴𝑆1). The 

exciton binding energy is given in terms of the electron affinity of the lowest unoccupied state (LUMO) and the 

ionization potential of the lowest excitonic level (𝐸𝐵 = 𝐸𝐴𝑆0 − 𝐼𝑃𝑆1). Alternatively, the exciton binding energy can 

be given in terms of the highest electron affinity of the exciton and the ionization potential of the ground state 

(𝐸𝐵 = 𝐸𝐴𝑆1 − 𝐼𝑃𝑆0). Finally, the enthalpic favorability of an electron transfer reaction (often called the driving 

force) from the p-type to the n-type material can be assessed by the difference in energy between the ionization 

potential of the excitonic state and the electron affinity of the state into which the electron is transferred.  

 ∆𝐸𝑒(𝑃 − 𝑁) = 𝐼𝑃𝑆1(𝑃) − 𝐸𝐴𝑆0(𝑁)       (1) 

In a similar manner, the enthalpic driving force for hole transfer is as follows: 

 ∆𝐸ℎ(𝑃 − 𝑁) = 𝐼𝑃𝑆0(𝑃) − 𝐸𝐴𝑆1(𝑁)        (2) 

As in eq. 1, the parentheses indicate the cell component from which the state is primarily located. In short, XYZ 

diagrams provide a straightforward way to describe the energy of important processes in solar cell function, 

making it well worth the effort necessary to become comfortable with the symbols and terminology. 

Improving device efficiency has provided an excellent impetus for fundamental mechanistic inquiry, however 

important practical challenges associated with organic bulk heterojunction solar cells are receiving much needed 

attention. For example, a push towards lower cost feedstocks and away from Stille coupling reactions is bringing 

material production costs into the range of industrial feasibility.[24] In addition, scale-up of organic solar cell 

production also requires a move away from chlorinated solvents during casting.[25] A related issue, and one whose 

importance cannot be overstated, is robustness to variations in film formation conditions. A process developed 

on a lab-scale blade coating machine is not straightforward to implement in to a roll to roll printing press. The 

challenge is caused by the morphological requirements of a high efficiency material, a difficult to obtain nanoscale 

morphology that also hinders long-timescale device stability.[26] While progress on this problem has been made, 

this is a particularly difficult challenge for the traditional solution cast two-component bulk heterojunction to 

address. As a result, a one-component active layer whose optimal morphology is thermodynamically favored is 

highly desirable. This point cannot be overstated. A one-component organic photovoltaic material which reliably 

adopts the optimum morphology to maximize solar cell efficiency is an enormously important goal. 

To summarize the introductory review above, the primary factor limiting the efficiency of conventional organic 

solar cells is a low Voc. As a consequence of the binding energy of electrons and holes, organic heterojunctions 

require an energy offset between the HOMO and LUMO levels at the heterojunction interface to exhibit adequate 

diode behavior and separate excitons. Unfortunately, the energy offset reduces VOC and limits single junction cell 

efficiency to far less than a comparable inorganic counterpart. This limitation appears innate to all variations of 

the standard two component organic bulk heterojunction. Although the bulk heterojunction is a highly successful 

configuration and is likely to see further improvements, it is likely not the best possible configuration given the 

enormous diversity of organic materials. In a pair of papers, my group has been developing an alternative 

configuration through a series of computational studies, hereafter referred to as a double heterojunction. A 

summary of the key findings of these studies comprises the remainder of the article. 

The concept of the double heterojunction solar cell can be developed from two key observations. Charge transfer 

reactions can be efficient with a minimal driving force. Second,  the open circuit voltage is limited by the electronic 

gap of the lowest energy state which serves as the precursor to voltage-driven charge carrier recombination. In 
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other words, detailed balance considerations determine VOC.[27] 

In the bulk heterojunction, this precursor state is the charge 

transfer exciton, making the electronic gap of the charge 

transfer exciton the state which determines VOC. While the 

electronic gap of the charge transfer exciton is a purely 

theoretical quantity, it can be used to specify an upper bound 

on the efficiency of the bulk heterojunction. Given a charge 

transfer exciton binding energy of 0.3 eV, an estimate of 16% is 

obtained.[28]   

The key concept of the double heterojunction is to decrease the 

binding energy of the charge transfer exciton by spatially 

separating mobile electrons and holes with a subunit called the 

bridge. In this case, VOC is determined by the electronic gap of 

the bridge. Because minimal driving force is required for charge 

transfer, this allows the open circuit voltage to be increased to 

the lowest optical gap. Thus, the Shockley-Quiessar limit[29] can be approached. The concept of a donor-bridge-

acceptor material is not entirely new, charge transfer in covalently linked molecular dyads and triads is a well-

established field of research.[30] However, leveraging the double heterojunction to its maximum utility requires a 

number of special considerations which heretofore have not been addressed. This also differentiates the double 

heterojunction from a structure referred to as an energy cascade or more generally, a  ternary blend[2a, 31] which 

creates a bulk heterojunction from three intimately mixed components. This line of investigation, while interesting 

in its own right, does not directly address the issue of increasing cell VOC. As we will see, improving cell voltage 

requires stringent conditions on the elimination of recombination pathways that do not include the bridge.   

The term double heterojunction in this context means two type II semiconductor junctions in series.  This could, in 

theory, be accomplished by a fully conjugated triblock polymer. Full conjugation is important because the inclusion 

of aliphatic chains between the blocks creates insulating layers between the type II heterojunctions. Thus, the 

material should no longer be expected to perform like a semiconductor heterojunction. A double heterojunction 

could, in theory, be created with small molecule or ternary blend. Obtaining the full benefit of the double 

heterojunction requires phase purity on ppm levels, which points toward a block polymer approach. This will 

discussed in the context of direct p-type to n-type contacts.  

An XYZ diagram of a double heterojunction solar cell is shown in fig 3. The arrangement of type II semiconductor 

junctions proceeds from p-type to bridge then bridge to n-type. Ensuring enthalpic favorability for charge transfer 

reactions into the bridge requires exciton binding energies to be accounted for. In symbols this is represented as 

follows: 

 ∆𝐸𝑒(𝑃 − 𝐵) ≥ 0           (3) 

 ∆𝐸ℎ(𝐵 − 𝑁) ≥ 0         (4) 

The next step in device function is charge transfer out of the bridge. The important fundamental question, yet to 

be answered, is whether the exciton binding energy plays an important role in the charge transfer reaction out of 

the bridge. I will focus on the best possible scenario, where the electron transfer reaction from the bridge into the 

n-type section proceeds when 𝐸𝐴𝑆0(𝐵) − 𝐸𝐴𝑆0(𝑁) ≥ 0 and hole transfer from the bridge to the p-type section 

proceeds when 𝐼𝑃𝑆0(𝐵) − 𝐼𝑃𝑆0(𝑃) ≥ 0. This likely requires that the fundamental charge transfer reactions are 

ultrafast, another rationale for the fully conjugated block polymer approach.  

 

Figure 3. Diagram of important energy levels 

in a double heterojunction solar cell. Green 

bars indicate hole and electron transfer 

pathways during current photogeneration. 
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Provided that electron transfer reactions 

proceed across the bridge with unit efficiency, 

detailed balance considerations can be used in 

a straightforward manner to calculate the 

upper limits on device efficiency.[28] Maximum 

efficiencies are obtained when the lower 

bounds of eq. 3 and eq. 4 are saturated. That is, 

the case in which the enthalpic driving force for 

the charge transfer reactions are minimized. 

Every millielectron volt used for electron 

transfer from donor to bridge or hole transfer 

from acceptor to bridge is taken at the expense 

of VOC. In order to reduce the optimization 

problem into 2D where it can be visualized, we 

set the optical gap of the donor and acceptor 

blocks equal to one another. This configuration 

was found to maximize efficiency when unit 

absorption above the optical gap is assumed. 

Fig. 4 shows the resulting 2D optimization 

surface relating the n-type and p-type optical 

gap to the optical gap of the bridge. The power 

conversion efficiency for a variety of exciton 

binding energies is shown.  

As fig. 4 demonstrates, the maximum power conversion efficiency of a double heterojunction cell is predicted to 

remain at or above 30% for exciton binding energies lower than or equal to 0.3 eV, nearly double that obtained 

from a similar bulk heterojunction. The reason for the improved efficiency relative to the bulk heterojunction is a 

direct result of improved VOC. In turn, this requires that all recombination occur through the bridge with the VOC 

being limited by the electronic gap of the bridge, that is 𝐸𝐸𝐿𝐸𝐶(𝐵) = 𝐸𝐴𝑆0(𝐵)  −  𝐼𝑃𝑆0(𝐵).  Contrast this with the 

bulk heterojunction where the charge transfer states limit VOC, which is inevitably lower in energy than the optical 

gap of either material.  

The shape of the optimization surfaces in fig. 4 demonstrate a few design heuristics. The first is that the each step 

of the charge transfer reaction must be enthalpically favorable. This consideration limits the design space to the 

upper left half of the figure. The second heuristic is that lower exciton binding energies are favorable for higher 

solar cell efficiencies, suggesting that “push-pull” or “donor-acceptor” polymers are preferable to obtaining high 

efficiency cells. These materials tend to have lower exciton binding energies. The third, and more subtle aspect, 

is that the maximum efficiency is found when the electronic gap of the bridge is ~ 2 kBT greater than the optical 

gaps of the p-type and n-type sections. A way to think of this result is that a slight energy offset between 𝐸𝐴𝑆0(𝐵) 

and 𝐸𝐴𝑆0(𝑁) helps to prevent electrons from entering the bridge from the acceptor side, improving the quality 

of the diode. Similarly, a slight offset between 𝐼𝑃𝑆0(𝐵) and 𝐼𝑃𝑆0(𝑃) helps to reduce hole recombination currents. 

Further increases in the offsets at the bridge may improve the diode characteristics, but would likely cause 

extremely large carrier densities to build in the p-type and n-type sections of the cell near VOC. In this case, the 

absorption characteristics of the polymers would be dramatically altered due to polaron formation.[32] In this case 

p-type and n-type sections would no longer functions as a semiconductors, and the photocurrent is would drop 

precipitously. This consideration is necessary to obtain realistic predictions of cell efficiency.  

 

 

Figure 4. Calculated double heterojunction solar cell 

efficiencies based on the optical gaps of each component for 

several exciton binding energies. Adapted from (29) 
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Morphology is likely to be an important consideration for the double heterojunction. With the most important 

considerations being more easily expressed in terms of structures and circumstances to avoid. Columnar stacks 

are a common morphology in the few examples of materials based on donor-bridge-acceptor small molecules.[30a, 

30b] To aid in self-assembly, the molecules are surrounded by insulating aliphatic chains making the charge 

transport limited to one dimension (along the stack). Unfortunately, columnar stacks that rely on non-covalent 

interactions are an extremely poor morphology for charge transport. A single defect in the column destroys charge 

transport.[1] As a result, it is difficult to draw broad conclusions from poorly performing solar cells that rely on this 

motif. In contrast, the block polymer approach to a double heterojunction cell takes advantage of covalent 

interactions to enable 1-D charge transport and non-covalent interactions to move charges between chains. This 

increases the dimensionality of the transport, making the system tremendously more defect tolerant.   

Phase purity is an important consideration in a double heterojunction cell. As discussed above, improvements in 

VOC arise from the energy alignment between the bridge and the p-type or n-type sections. This improvement 

implicitly requires that all recombination currents flow across the bridge, which in turn requires that there are no 

direct contacts between the p-type and n-type sections. Lapses in phase purity act as short circuits, parallel circuit 

components with considerably worse diode performance characteristics owing to the presence of charge transfer 

excitons at the interface between p-type and n-type sections. Figure 5 shows the calculated effect of phase purity 

on the power conversion efficiency of a double heterojunction cell, demonstrating that high phase purities are 

required to obtain the full benefit of the double heterojunction configuration. The effect of phase purity also 

explains why a small increase in cell efficiency could be observed from an energy cascade or three component 

system. However, phase purity greater than parts per thousand levels is unlikely to be achieved in such systems, 

leaving much of the possible benefit out of reach for ternary blends. 

The effect also suggests the importance of a block polymer approach. In the ideal case of long n-type and p-type 

sections, perfect phase purity is the thermodynamically favored state.[33] The importance of this cannot be 

overstated, as it represents a major advantage of the double heterojunction concept relative to the bulk 

heterojunction. Phase separation in rod-rod block copolymers has been reported by several groups.[34] One should 

therefore expect that a well-designed system would be highly stable and relatively insensitive to processing 

conditions. The self-assembly of fully conjugated block polymers is a topic of current interest.[35] This makes it 

difficult to comment more generally, except to say that a double heterojunction cell based on block polymers 

 

Figure 5. Effect of phase purity on solar cell efficiency. Left, center: power conversion efficiency versus the 

optical gaps of solar cell components for different levels of phase purity, expressed in terms of the 

probability of direct p-type to n-type contacts. Right, maximum achievable cell efficiency as a function of the 

probability of direct p-type to n-type contacts. Adapted from (29)  
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represents a possibility for a solution processable, 

single-component material that is highly robust to 

processing conditions with a power conversion 

efficiency well over 20%. 

The design considerations for a double heterojunction 

cell presented thus far are expressed abstractly in 

terms of energy alignments. However, designing a 

synthetic target requires considerably more specific 

information regarding useful structural motifs. One 

common motif in semiconducting molecules is the 

donor-acceptor system, with the general formula of 

(D-A) where in D represents an electron rich aromatic 

group, like carbazole or fluorene and A represents an 

electron poor aromatic group like benzothiodiazole or 

napthalene diimide. Because a large number of such 

groups are known, it would be useful to evaluate the 

entire class of donor-acceptor block polymers using a 

low level of theory rather than evaluating specific 

target molecules in order to provide a starting point 

for molecular design. Once a unique molecule has 

been identified, its properties could be evaluated at a 

higher level of theory. Therefore, we performed a 

series of self-consistent field calculations on a triblock 

system of the form (D1-A1)-(D1-A2)-(D2-A2) where D1 

and D2 are differing donor groups.[36]  

When thinking of an appropriate synthetic target, the 

primary consideration must be the correct positioning 

of the energy levels. The first question to address is 

whether the energy levels of the n-type and p-type 

sections of the polymer can be tuned independently. 

In practice, this should be expected. In theory, this 

requires some degree of electron localization, 

necessitating a self-consistent field approach rather 

than a simple Huckel matrix diagonalization. Fig. 6 

shows the calculated energy levels of the p-type, 

bridge, and n-type sections of a model system of the form (D1-A1)4-(D1-A2)2-(D2-A2)4. The p-type and n-type sections 

are represented as (D1-A1)4 and (D2-A2)4, respectively. A tetramer was found to sufficiently approximate the energy 

levels of arbitrarily long systems.  

Fig. 6 shows how the energy of each component changes in response to a change in the energy of D1. Changing 

this energy while leaving all other components unchanged will alter the energy of the p-type section. This effect 

was accounted for by altering A1 such that the energy levels the tetramer would remain constant. This allows one 

to focus on the effect of coupling the different sections of the block polymer. As one would intuitively expect, the 

energy of the n-type and p-type sections are largely unchanged, meaning that in a block polymer, these sections 

can be tuned independently of one another.    

 

Figure 6. Energy levels of each component of a 

double heterojunction material with different 

compositions as described in the text. Panels a,b,c 

represent different energy offsets between p-type 

and n-type sections. Reproduced from (36) 
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The ideal case for the electron transfer pathway is described in terms of the energy levels of the bridge as follows: 

𝐼𝑃𝑆1(𝑃) = 𝐸𝐴𝑆0(𝐵)  and 𝐸𝐴𝑆0(𝐵) = 𝐸𝐴𝑆0(𝑁) + 0.05 𝑒𝑉 at room temperature. Fig. 6 shows the energy levels of 

the bridge and their alignment with the n-type and p-type sections. Importantly, the energy of the bridge appears 

to pin to 0.15 eV above the n-type section. Identical results were obtained for the hole transfer pathway, with 

energy offsets varying from 0.10 to 0.15 eV at the p-type/bridge interface. Forming a double heterojunction as 

described above yields an energy offset compatible with favorable charge transfer pathways. Although a the 

bridge pins slightly above the ideal position from a device efficiency perspective, the extra 0.1 eV provides an 

additional tolerance factor which is highly desirable from the perspective of an initial synthesis. In summary, a 

bridge with appropriate energy level alignments for a double heterojunction can be formed with the electron 

donating portion of the p-type section and the 

electron accepting portion of the n-type section.  

Block polymer systems without a bridge have been 

synthesized and tend to have poor fill factors, 

presumably because of large recombination currents 

and poor diode quality.[35d] Another important 

consideration in determining a synthetic target for a 

double heterojunction material is the length of the 

bridge necessary to obtain high quality diode 

behavior. There appears to be two main 

considerations. The first is to increase the separation 

of electron and hole to a degree sufficient to lower 

the binding energy of the charge transfer exciton to 

near or below thermal energy. The second is to 

hinder recombination via tunneling through the 

bridge. As a means of estimating both, the spatial 

overlap of electron and hole probability density as 

function of bridge length was calculated. Figure 7 

shows the predictable result, that direct overlap is 

large for short bridge lengths and decreases as the 

bridge is made longer. In addition, the overlap also 

decreases with increasing offsets between p-type 

and n-type sections.  

The results of self-consistent field calculations 

suggest that a triblock polymer of the type (D1-A1)-

(D1-A2)-(D2-A2) produces the energy level alignment 

necessary for a high performance double 

heterojunction material. In addition, the results of 

figure 7 show that a bridge of at least a few repeat 

units is necessary to inhibit recombination. However, 

the bridge should be considered the shortest section 

of the system. The cell should be much less sensitive 

to the length of the p-type and n-type sections as well 

as their relative ratios so long as the system shows 

good phase separation.  

 

Figure 7. Lowest-energy excited states. (a) Offset of 

0.4 eV without a bridge section. (b) Offset of 0.9 eV 

with bridge of 6 monomer units (12 sites). Red 

illustrates the hole density, and blue illustrates the 

electron density. (c) Spatial overlap between the 

electron and hole density for a series of double 

heterojunction systems. Reproduced from ref (36) 
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While these results point to a general class of materials, the complexity from a synthetic perspective remains high. 

With that in mind, it would be preferable to design a diblock system capable of functioning as a double 

heterojunction. One possibility is to synthesize the p-type and n-type polymers separately, forming the bridge 

from end groups that are bonded together in the final synthetic step. Such an approach would not allow for long 

bridge lengths, but direct electron-hole overlap across the bridge could be reduced through a variety of means 

including the induction of large dihedral angles in the bridge through steric effects. Computational studies to 

demonstrate the potential of this approach are ongoing.  

The following are suggestions for researchers interested in identifying an exact synthetic target using the results 

presented here: (1) using figure 4 and an estimate of the exciton binding energy, determine the optical gap of the 

p-type polymer. This can be used to identify a target compound. (2) Determine a candidate n-type polymer with 

a very similar optical gap as the p-type polymer. The HOMO and LUMO levels of the n-type polymer should be 

offset by an amount slightly larger than the assumed exciton binding energy. (3) Use the structure of the p-type 

and n-type candidates to develop a bridge candidate using the donor unit of the p-type polymer and the acceptor 

unit of the n-type polymer as describe above. (4) The reasonableness of the target (i.e. each block should have 

close to the desired energy levels) should be assessed by DFT calculations and/or synthesizing the individual 

components.  The development of synthetic methods for creating fully conjugated block polymers is a highly 

sought after research goal in this context.  

SUMMARY  

Based on the computational estimates which assume an exciton binding energy of 0.3 eV, conventional single-

junction organic bulk heterojunction cells appear limited to a power conversion efficiency of close to 15%. 

However, this is not a fundamental limit of the materials, but rather the device configuration. Using the highly 

developed current mechanistic understanding, we suggested an alternative configuration, employing two type II 

semiconductor heterojunctions in series, called a double heterojunction. Detailed balance calculations suggest 

that this configuration could reach power conversion efficiencies just under 30%. However, a number of 

conditions must be met in order to achieve superior performance relative to the highly optimized bulk 

heterojunction configuration including proper energy alignment, phase purity, and an avoidance of 1-D columnar 

structures. According to a set of self-consistent field calculations, this can be accomplished using a triblock system 

of the general structure [D1-A1]-[D1-A2]-[D2-A2]. Limiting charge recombination through the central block is an 

important challenge, as is the development of more synthetically tractable structures.  
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