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Abstract

Formalization of knowledge is an important aspect of reasoning about change. We review
how knowledge is formalized in the Situation Calculus (a logical formalism for reasoning
about action and change) and discuss the problems that occur when unexecutable actions
(those actions whose preconditions are not met at the time of execution) are involved. We
then provide a generalized framework that addresses these problems by tracing back source
of the problem to the answer provided to the Frame Problem in the Situation Calculus.
We develop a more generalized form for Successor Sate Axioms based on the new account
of the solution to the Frame Problem and show how this solves the problems related to
involvement of unexecutable actions.

Keywords: Knowledge Representation and Reasoning, Theories of Action, Situation Cal-
culus, Event Calculus, Frame Problem
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Chapter 1

Introduction

A theory of action is a set of axioms that captures the dynamics of the world, and make
it possible to reason about and represent actions. Examples of theories of actions are -but
not limited to- Situation Calculus[15], Event Calculus[12], Action Languages[8] and Fluent
Calculus[9].

The Situation Calculus is among the first and more popular of these formalisms, and
we use it as the main formalism throughout this thesis. We use the Event Calculus in some
sections for comparison.

Formalizing knowledge is an important aspect of reasoning about change. The standard
approach to this problem in the Situation Calculus is based on works of Moore ([19], [20])
which provides a possible-world account of knowledge by using situations to represent pos-
sible worlds. There have been several variants of formalization of knowledge in the Situation
Calculus based on this approach. We will argue that these approaches does not work when
unexecutable actions (i.e. those actions which their preconditions are not met at the time of
execution) are involved. In addition to formalization of knowledge, presence of unexecutable
actions causes problems in some other areas such as the Projection Problem (given an initial
state and a sequence of actions, determining whether a formula holds in the resulting state)
as well. We trace back the source of problem to the answer provided to the frame problem
in the Situation Calculus. We provide a more general solution to the frame problem in the
Situation Calculus and develop a more general form for successor state axioms.

We will show that this new form solves the aforementioned problems. Another result
of the new framework is a different reading of the term do(a, s). While in the traditional
framework it is defined as “the successor situation to s, resulting from performing action
a”, in our framework the reading would be “the successor situation to s, resulting from
attempting action a.” In other words, it is not assumed that actions always succeed.

In Chapter 2 we start with review of the required background material by giving a
summary of the Situation and Event calculus along with their epistemic versions. Chapter
3 includes discussion of problems and limitations that exist in the current framework in
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presence of unexecutable situations. In Chapter 4 we introduce our framework and discuss
how it solves the aforementioned problems in the traditional framework of the Situation
Calculus. Finally in Chapter 5 we conclude and present directions for future work.
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Chapter 2

Background

In this section we review two of the most well-known formalism for representing and reason-
ing about actions and change, namely the Situation Calculus and the Event Calculus. We
then briefly review syntax and semantics of modal logics and discuss the epistemic versions
of the Situation and the Event Calculus.

2.1 Situation Calculus

The Situation Calculus is a first-order formalism (with some second-order elements) de-
signed for representing and reasoning about actions. It was first proposed by J. McCarthy
[15], [16] but it was not widely investigated until Reiter reintroduced it in the early Nineties.
Since then it has been an active field of research. The version of the Situation Calculus we
discuss in this thesis is mainly based on [24]. Definitions and axioms in this section are from
[24] unless stated otherwise.

The language of the Situation Calculus Lsitcalc is a many-sorted second-order language.
There are three sorts: action for actions, situation for situations, and object for all other
domain objects.

Informally, a basic action theory consists of a set of distinguished symbols, a set of
domain-independent axioms describing how the theory formalizes the dynamics of the world
and some domain-specific axioms which describe the dynamics of the specific domain under
consideration.

Distinguished Symbols
There are three distinguished symbols: A constant symbol S0 called the initial situation

which represents the initial state of the world where no action has been executed, a function
symbol do which maps an action-situation pair to a new situation where the action has been
executed and a predicate symbol Poss where Poss(a, s) denotes “it is possible to perform
action a is situation s”.
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A situation is a finite sequence of actions. A binary predicate symbol @ defines an or-
dering relation on situations.1 A fluent is a predicate or function whose value may change
in different situations as a result of performing actions. Syntactically a fluent is a predicate
or a function (depending on whether it is a relational or a functional fluent) that takes a
situation as the final argument.

Domain-Specific Axioms
Domain-specific axioms consist of an action precondition axiom for each action symbol,

a successor state axiom for each fluent symbol, plus unique name axioms.
An action precondition axiom of Lsitcalc is a formula of the form:2

Poss(A(~x), s) ≡ ψA(~x, s)

where A is an action, ≡ is biconditional, and ψA(~x, s) is a formula that is uniform3 in s and
whose free variables are among ~x, s.

Successor state axioms for relational fluents F and functional fluents f are sentences of
Lsitcalc of the form:

F (~x, do(a, s)) ≡ φF (~x, a, s) (2.1)

f(~x, do(a, s)) = y ≡ φf (~x, y, a, s)

where φF (~x, a, s) and φf (~x, y, a, s) are formulas uniform in s. The uniformity requirement
in s is to make sure that the definition of Poss, the truth value of F in the successor sit-
uation and value of f in the successor situation are determined only by the current situation.

In practice, the following forms of relational and functional successor state axioms are
used in the literature:

F (~x, do(a, s)) ≡ γ+
F (~x, a, s) ∨ [(F (~x, s) ∧ ¬γ−F (~x, a, s))]

f(~x, do(a, s)) = y ≡ γf (~x, y, a, s) ∨ [(f(~x, s) = y ∧ ¬(∃y′)γf (~x, y′, a, s))]

where γ+
F (~x, a, s) and γ−F (~x, a, s) represent the conditions under which action a affects the

value of fluent F positively or negatively, and γf (~x, y, a, s) states “the conditions under which
action a can cause the functional fluent f to take on value y in the successor situation”[24].

1s v s′ is an abbreviation for s @ s′ ∨ s = s′.

2The free variables are implicitly universally quantified.

3A formula of Lsitcalc is uniform in σ iff “it does not mention the predicates Poss or @, it does not quantify
over variables of sort situation, it does not mention equality on situations, and whenever it mentions a term
of sort situation in the situation argument position of a fluent, then that term is σ.”[24]
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Note that γ+
F (~x, a, s) and γ−F (~x, a, s) are first-order formulas with free variables among ~x, a, s,

and γf (~x, y, a, s) is a first-order formula with free variables among ~x, y, a, s. Our focus will
be on relational fluents.

Let A and B be two different actions. Unique names axioms for actions are as follows.

A(~x) 6= B(~y)

A(x1, . . . , xn) = A(y1, ..., yn) ⊃ x1 = y1 ∧ . . . ∧ xn = yn.

Domain-Independent Axioms
The following are the domain-independent (aka foundational axioms) of the Situation

Calculus:

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2 (2.2)

(∀P ).P (S0) ∧ (∀a, s)[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s) (2.3)

¬s @ S0 (2.4)

s @ do(a, s′) ≡ s v s′ (2.5)

Axiom (2.3), called the induction axiom, is the second-order element of Situation Cal-
culus. It “has the effect of limiting the sort situation to the smallest set containing S0, and
is closed under the application of the function do”[24]. Axiom (2.2) can be seen as a unique
names axiom for situations.

A basic action theory is a collection of axioms D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0 where
Σ,Dap,Dss,Duna are the set of foundational, action precondition, successor state and unique
name axioms respectively, as defined above, and DS0 is the set of formulas uniform in S0

describing the initial situation.
An important concept in the Situation Calculus is the concept of an executable situation

(i.e. those sequences of actions in which all the actions are possible as determined by Poss).
It is formally defined as

executable(s) def= (∀a, s′).do(a, s′) v s ⊃ Poss(a, s′)

If action a is not executable in situation s, the resulting situation do(a, s) is what Re-
iter calls a ghost situation which represents an imaginary state of the world where a was
actually executed (although it was not possible to be executed). Only executable situations
are regarded as “useful” and ghost situations are excluded from consideration.

Automated reasoning in the Situation Calculus is done using regression. Intuitively, to
prove that the axiomatization entails a formula φ, instead of a direct proof we first replace
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fluents and Poss atoms in φ with equivalent formulas given by successor state and action
precondition axioms. We repeat this until we have a formula which is uniform in S0. We then
determine whether this transformed formula is entailed or not. Since we are substituting
equivalent formulas, the original formula is entailed by the axiomatization if and only if the
transformed formula is.

2.2 Event Calculus

The Event calculus was introduced by Kowalski and Sergot [12] as a logic-based approach
for reasoning about events with special focus on incorporating the element of time in the
formalism. A variety of different versions and extensions of the original Event Calculus have
been developed. Here we review a simple version. In what follows, definitions are taken from
[18] unless stated otherwise.

The language of the Event Calculus is a many-sorted first-order language. There are
four sorts: action for actions, fluent for fluents, time for time points and object for all other
domain objects.

Distinguished Symbols
The language contains five distinguished predicate symbols as described in the following

table along with their intended meanings:

Happens(a, t) Action a occurs at time t
Initiates(a, f, t) An occurrence of a at time t has an initiative influence on f
Terminates(a, f, t) An occurrence of a at time t has a terminating influence on f
HoldsAt(f, t) Fluent f holds at time t
t1 < t2 standard linear order relation between time points

It is convenient to define the following predicates:

Clipped(t1, f, t2) .= (∃a, t).Happens(a, t) ∧ t1 ≤ t < t2 ∧ Terminates(a, f, t)

Declipped(t1, f, t2) .= (∃a, t).Happens(a, t) ∧ t1 ≤ t < t2 ∧ Initiates(a, f, t)

clipped(t1, f, t2) means fluent f is terminated between t1 and t2 (because of the occurrence
of some action which has a terminating effect on f , i.e. after that action the fluent f doesn’t
hold). Declipped(t1, f, t2) is defined similarly.
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Domain-Independent Axioms
There are four domain-independent axioms as follows:4

HoldsAt(f, t2)← Happens(a, t1) ∧ Initiates(a, f, t1) ∧ t1 < t2 ∧ ¬Clipped(t1, f, t2)
(EC1)

¬HoldsAt(f, t2)← Happens(a, t1) ∧ Terminates(a, f, t1) ∧ t1 < t2 ∧ ¬Declipped(t1, f, t2)
(EC2)

HoldsAt(f, t2)← HoldsAt(f, t1) ∧ t1 < t2 ∧ ¬Clipped(t1, f, t2) (EC3)

¬HoldsAt(f, t2)← ¬HoldsAt(f, t1) ∧ t1 < t2 ∧ ¬Declipped(t1, f, t2) (EC4)

These axioms state the effects of actions and persistence of truth values for fluents. Note
that axioms (EC3) and (EC4) are needed only for time points when the fluents have not
yet changed value. If an initiating or terminating action happens then the persistence of
truth values and effects of actions will be taken care of by (EC1) and (EC2). As a result,
for domains with non-negative time we can replace (EC3) and (EC4) with the following:

HoldsAt(f, t)← InitiallyP (f) ∧ ¬Clipped(0, f, t) (EC3′)

¬HoldsAt(f, t)← InitiallyN (f) ∧ ¬Declipped(0, f, t) (EC4′)

InitiallyP (f)∨InitiallyN (f) (EC5)

where InitiallyP (f) and InitiallyN (f) formalize the initial state of the world (whether f
is true at time 0 or not).

Domain-Specific Axioms
Domain-specific axioms define the predicates Initiates, Terminates and Happens.

After writing domain-dependent axioms, we need to do minimization on these axioms.
This basically boils down to making the one-sided conditionals into bi-conditionals. This
will be explained in the following example. The minimization of Initiates and Terminates
captures the assumption that “actions have no unexpected effects”, and the minimization
of Happens captures the assumption that “there are no unexpected event occurrences”[18].

Consider the following example which is a shorter version of an example from [17]. There
is a robot that can lock or unlock a door by inserting a key card. We have fluents hasKey
and locked, and actions pickup and insert. We assume we have unique name axioms stating

4Traditionally, in Situation Calculus conditionals are represented using⊃ symbol and in the Event calculus
using backward arrows (←) where consequents are written first (in the style of logic programming).
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these constant symbols refer to different objects. We have the following axioms for Initiates
and Terminates:

Initiates(pickup, hasKey, t) (2.6)

Initiates(insert, locked, t)← ¬HoldsAt(locked, t) ∧HoldsAt(hasKey, t) (2.7)

Terminates(insert, locked, t)← HoldsAt(locked, t) ∧HoldsAt(hasKey, t) (2.8)

and the following axioms:

HoldsAt(locked, 0), Happens(pickup, 2), Happens(insert, 4)

Applying minimization to Initiates, Terminates and Happens gives

Initiates(a, f, t) ≡ (a = pickup ∧ f = hasKey)

∨ (a = insert ∧ f = locked ∧ ¬HoldsAt(locked, t) ∧HoldsAt(hasKey, t))

Terminates(a, f, t) ≡ (a = insert ∧ f = locked ∧HoldsAt(locked, t) ∧HoldsAt(hasKey, t))

Happens(a, t) ≡ (a = pickup ∧ t = 2) ∨ (a = insert ∧ t = 4)

From the above axioms it follows that for example ¬HoldsAt(locked, 5) holds.

It is worth noting that while in the Situation Calculus we need to axiomatize in what
situations and under what conditions fluents are true (using successor state axioms), in
the Event Calculus in contrast we axiomatize how and when fluents change value (using
Initiates and Terminates predicates). It is interesting that such a seemingly minor differ-
ence makes the two formalisms develop in different paths.

2.3 Modal Logic

Modal logic is a formalism that extends propositional and first order logic by adding oper-
ators to the language to express modalities (e.g. epistemic, doxastic, temporal, . . .). Here
we briefly review propositional modal logic based on [3] and [4].

2.3.1 Syntax

Given a set of modality symbols MOD, the language of propositional modal logic LM is
inductively defined using the following BNF where m ∈ MOD:

ϕ ::= p | > | ⊥ | ¬ϕ | (ϕ ∧ ϕ) | �mϕ
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The denotation of �mϕ depends on the context. For example in the context of reasoning
about beliefs, �mϕ denotes “agent m believes that ϕ”. The symbol ♦ is defined as ♦ϕ ≡
¬�¬ϕ.

2.3.2 Semantics

The semantics of modal logic is based on the concept of possible worlds. These worlds
comprise of the actual world and alternative worlds representing different ways the world
could have been. The idea of possible worlds dates back to the German philosopher Gottfried
Leibniz but its usage in modal logic and development of possible world semantics (described
below) is attributed to Saul Kripke.

Given a set W of possible worlds and a set {Rm}m∈MOD of the accessibility relations
between worlds, a frame is a tuple 〈W, {Rm}m∈MOD〉. A (Kripke) model M is a triple
〈W, {Rm}m∈MOD, V 〉 where 〈W, {Rm}m∈MOD〉 is a frame and V is a valuation function, map-
ping each propositional variable to a subset W of worlds in which p is true. If |MOD| = 1,
we write R instead of {Rm}m∈MOD and � instead of �m.

Given a model M = 〈W, {Rm}m∈MOD, V 〉 and w ∈ W , definition of ϕ being true (or
satisfied) in M at w is as follows:

M,w � p iff w ∈ Vp

M,w � ¬p iff M,w 2 p
M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ

M,w � �mϕ iff for all v ∈W such that wRmv we have M,v � ϕ

A formula ϕ is true in M , written M � ϕ, if M,w � ϕ for all w ∈ W . A formula is valid,
written � ϕ, if it is true at every model.

2.4 Epistemic Situation Calculus

2.4.1 The Standard Model

Formalizing knowledge is an important aspect of reasoning about change. The standard
approach to this problem in the situation calculus, based on works of Moore ([19], [20]),
provides a possible-world account of knowledge by using situations to represent possible
worlds. There have been several variants of formalization of knowledge in the Situation
Calculus based on this approach ([27], [2], [13], [24], [25]). These approaches differ in how
they formalize the accessibility relation. The most recent of these approaches (i.e. [25])) has
been used as the standard representation in the literature. In the sequel we review epistemic
Situation Calculus based on this approach.
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The accessibility relation is represented by a relational fluent K. K(s′, s) denotes “sit-
uation s′ is accessible from situation s”. Knowledge is then defined naturally using the K
fluent:

Knows(φ, s) def= (∀s′).K(s′, s) ⊃ φ[s′]

where φ is an expression derived from a formula ϕ where all situation arguments are sup-
pressed and φ[s] denotes ϕ.

We have the following definition:

KWhether(φ, s) def= Knows(φ, s) ∨Knows(¬φ, s)

There are two kinds of actions:

• ordinary/physical actions that make changes in the world,
• knowledge-producing actions or sensing actions that make changes in the state of
mind of agents. These actions inform the agent about the truth value of a relational
fluent or value of a functional fluent.

A key part in formalizing knowledge is to define how the accessibility relation changes
as a result of an action. This is done using the following successor state axiom for fluent K:

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s) (2.9)

∧ Poss(a, s′) ∧ sr(a, s) = sr(a, s′)

where sr is called the sensing result function and is defined as:

sr(senseQ, s) = r ≡ (r = “Yes” ∧Q(s)) ∨ (r = “No” ∧ ¬Q(s))

sr(readt, s) = r ≡ r = t(s)

For example if holding(x, s) is a relational fluent and info(x, s) is a functional fluent,
then we have

sr(senseholding(x), s) = r ≡ (r = “Yes” ∧ holding(x, s)) ∨ (r = “No” ∧ ¬holding(x, s))

sr(readinfo(x), s) = r ≡ r = info(x, s)

For physical actions, the result of sr is defined to be always the same. So for an ordinary
action a, it can be defined as for example sr(a, s) = r ≡ r = “ok”.

The authors then make the following axiomatization policy: Actions are to be axiom-
atized as affecting only either the K fluent or other fluents. In other words Knowledge-
producing actions only affect the K fluent, and physical actions only affect other fluents.
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They argue that this assumption does not limit the capabilities of the formalism as any ac-
tion that affects both the K fluent and other fluents can be replaced by two actions where
one affects only the K fluent and the other affects only the world. They give the example
of the action openBag which opens the bag and makes the contents of the bag known to
the agent. They suggest this action can be replaced by two actions open (which only opens
the bag) and a sense action (which makes the contents known to the agent).

Foundational Axioms for Epistemic Situations Calculus
Since in the epistemic Situation Calculus we consider more than one initial situation, the
sort Init is introduced which contains S0 and the situations which are K-accessible from
an Init situation.5 Nothing else is in Init. Init(s) is defined as follows

Init(s) def= ¬(∃a, s′)s = do(a, s′).

The following five axioms form the new set of foundational axioms.

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2,

s @ do(a, s′) ≡ s @ s′.

Init(s′) ⊃ ¬s @ s′,

(∀P ).(∀s)[Init(s) ⊃ P (s)] ∧ (∀a, s)[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s).

K(s, s′) ⊃ [Init(s) ≡ Init(s′)]

The first two are the same as before. The second two are the generalized form of their coun-
terparts for more than one initial situation. The last one states that only initial situations
can be K-related to an initial situation.

We have also the following theorem stating properties of the accessibility relation are
preserved over executable situations:

Theorem 2.4.1. ([25]) If the K relation on the set of initial situations is restricted to
conform to the reflexive condition along with some subset of the symmetric, transitive and
Euclidean properties, then the K relation at every situation, resulting from the execution of
a sequence of possible actions (as defined by Poss), will satisfy the same set of properties.

2.4.2 Extensions

The standard model discussed above is limited to a single agent, which has perfect sensors,
and whose actions are sequential and deterministic. There has been a significant number
of papers in the literature relaxing these assumptions. For example, in [26] the standard

5Introducing this sort is not necessary for defining knowledge, but it is useful for reasoning about prop-
erties of the formalism.
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formalization has been extended with time and concurrent actions. [2] generalizes an earlier
version of the standard framework [27] to accommodate noisy sensors. [1] extends the above
formalism to accommodate noisy effectors (i.e. noise in the effect of physical actions), which
formalizes non-deterministic actions. While [1] can be regarded as a quantitative charac-
terization of non-deterministic actions, [6] gives a qualitative account of non-determinism
(but with perfect sensors i.e. no noise). [29] extends the standard framework to account for
multiple agents. Considering the multi-agent case brings up other questions such as whether
the environment is fully observable (i.e. each agent is aware of all the actions performed
by all the other agents) and whether the domain is synchronized (i.e. agents always know
when an action has occurred). [10] and [11], among others, discuss these issues.

2.5 Epistemic Event Calculus

The possible-world approach to formalization of knowledge is an old idea which dates back
to introduction of Kripke models in the Sixties, and can still be considered among the more
intuitive approaches (though not computationally very efficient).

Since Situation Calculus has a branching model of time, for a possible-world account of
knowledge, situations are good candidates to be regarded as possible worlds. But te Event
Calculus has a linear model of time, and therefore does not have any ‘natural’ candidates for
representing possible worlds for a possible-world account of knowledge. As a result treatment
of knowledge in the Event Calculus has been different from the Situation Calculus. We have
to formalize knowledge in a more ‘direct’ way, something like:

Initiates(sensef ,Knows(f), t)← HoldsAt(f, t)

where knowledge production is formalized directly without using possible-worlds. The prob-
lem is that formulas like the one above are not well-formed; if we consider Knows as a pred-
icate then it cannot appear as an argument of Initiates, and if we consider it as a function
then it is not clear how we can interpret it (the denotation needs to be an object in the
domain).

In general for adding belief or knowledge to first-order logic we have a few options. Con-
sider for example the sentence “John knows that block A is on the table”. One approach is
to extend the language of FOL with a modal operator, and use the possible world seman-
tics on top of Tarskian semantics of FOL [5]. In this approach we can formalize the above
sentence as �(on(A, Table)). We can avoid using modal operators by formalizing possible
worlds in the object language (first introduced by [19]) as done in the Situation Calculus, i.e.
formalizing the accessibility relation in the language using a fluent (K) and using situations
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as possible worlds. Knowledge is then an abbreviation for a formula in the language:

Knows(on(A, Table), s) .= (∀s′). K(s′, s) ⊃ on(A, Table, s′)

There is another approach which avoids possible worlds and is adopted in formalization
of knowledge in the Event Calculus. This approach is based on the formalism developed by
Morgenstern in [21]. She developed a sorted FOL L which has the sort str (among other
sorts) for string objects. For any expression φ, its string counterpart ‘φ’ is an object of sort
str. For example ‘FatherOf(John, Bill)’ represents the formula FatherOf(John,Bill). This
makes it possible to practically use formulas as arguments in predicates, while remaining in
FOL. This solves the problem mentioned above.

The general term for this approach is syntactic theory which dates back further in the
past. The problem with this approach is that it is too strong. Strings make it possible to
talk “about expressions of L within L” [21]. As a result we can formalize self-referential
statements as well (e.x. liar’s paradox), and this leads to paradoxes. There have been sev-
eral solutions proposed to resolve this issue, but we don’t go further into details.

In [7] the authors provide a “meta-language representation” of knowledge in the Event
Calculus, utilizing the third approach describe above. They introduce the following axioms
(note that the first argument in the following axioms is actually the string representation
of the formula, omitted for simplicity)

HoldsAt([k(f1 → f2)→ (k(f1)→ k(f2))], t) (K1)

HoldsAt(k(f)→ f, t) (K2)

HoldsAt(k(f)→ k(k(f)), t) (K3)

HoldsAt([∀x k(f)→ k(∀x f)], t) (K4)

If f is a classical tautology then HoldsAt(k(f), t) (K5)

HoldsAt(kw(f) ≡ k(f) ∨ k(¬f), t) (K6)

The first three are counterparts of axioms K, T and 4 in modal logic. (K5) is a weaker
version of the necessitation rule (not all axioms are known; only tautologies). There are also
the following axioms

HoldsAt(f1 → f2, t)→ (HoldsAt(f1, t)→ HoldsAt(f2, t))

∀x HoldsAt(f1, t)→ HoldsAt(∀x f1, t)

HoldsAt(¬f, t) ≡ ¬HoldsAt(f, t)

Sensing actions produce knowledge:
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Initiates(sense(f), kw(f), t)

In other words, after sensing a fluent, the agent knows whether the fluent is true or not.

There has been other approaches in formalization of knowledge in the Event Calculus
(e.g. [14], [22]), but we don’t go further into details.
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Chapter 3

The Problem with the Standard
Formalization

If we look at different proposals for the successor state axiom of fluent K in the Situation
Calculus; we see that there has been an uncertainty on how to take into account possibility
of performing actions (I have applied the terminology of [25] to all proposals for ease of
comparison):

(Scherl and Levesque, 1993) [27]

P oss(a, s) ⊃ K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s) ∧ sr(a, s) = sr(a, s′) (3.1)

(Bacchus et al., 1995) [2]

P oss(a, s) ⊃ K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s) (3.2)

∧ P oss(a, s′) ∧ sr(a, s) = sr(a, s′)

(Levesque et al., 1998) [13]

K(s′′, do(a, s)) ≡(∃s′).s′′ = do(a, s′) ∧K(s′, s) (3.3)

∧ P oss(a, s) ≡ P oss(a, s′) ∧ sr(a, s) = sr(a, s′)

(Scherl and Levesque, 2003) [25]

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s) ∧ P oss(a, s′) (3.4)

∧ sr(a, s) = sr(a, s′)

The following toy example shows that none of these proposals work properly when
unexecutable actions (i.e. those actions whose preconditions are not met in a situation) are
involved.

Example 1. Suppose we have a robot that has one arm and can pick up objects. Suppose
block A is on the floor and the agent doesn’t know whether it is glued to the floor or not.
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Figure 3.1: Desired accessibility relations and possible worlds after action pickup(A)

So we have two initial situations which the agent cannot distinguish between; one where A
is glued to the floor (S0), and one where it isn’t (S1). Suppose further that A actually is
glued to the floor. Now we want to reason about what the agent believes after the action
pickup(A). We expect from a ‘correct’ formalization of the problem that after the action,
the agent be uncertain between two possible worlds: One where A is still glued to the floor,
and one where the agent is holding the block A.

But applying the above successor state axioms we see that after the action pickup(A)
either the accessibility relation is silent about truth value of K(s′′, do(pickup(A,S0))) (3.1,
3.2), or the agent believes that it is holding block A (3.3, 3.4). And none of these are the
desired results. Formally

Action Precondition Axiom:

Poss(pickup(x), s) ≡ ¬gluedToF loor(x) ∧ (∀y)¬holding(y, s)

Successor State Axioms:

holding(x, do(a, s)) ≡ a = pickup(x) ∨ holding(x, s)

gluedToF loor(x, do(a, s)) ≡ gluedToF loor(x, s)

Initial Situations:

(∀x)¬holding(x, S0), gluedToF loor(Obj, S0),

(∀x)¬holding(x, S1),¬gluedToF loor(Obj, S1)

Initial Accessibility Relations:

K(S0, S0),K(S0, S1),K(S1, S0),K(S1, S1)

Depending on which successor state axiom we opt for, the above formalization yields the
following results on beliefs of agent in do(pickup(A), S0):
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(3.1) and (3.2) are silent on whether Knows(holding(A), do(pickup(A), S0)) holds (be-
cause of ¬Poss(pickup(A,S0))).

From (3.3) and (3.4) we can deduce that both of the following formulas hold

Knows(holding(A), do(pickup(A), S0))

Knows(holding(A), do(pickup(A), S1))

In other words the agent believes that it is holding A after the action pickup(A) in S0,
which should not be the case.

The reason that none of the above proposals works in general, is that using ghost
situations to represent possible worlds causes the agent to obtain incorrect beliefs about the
domain. Recall from the background section the form of successor state axioms:

F (~x, do(a, s)) ≡ γ+
F (~x, a, s) ∨ [(F (~x, s) ∧ ¬γ−F (~x, a, s))]

We can see that in this form, truth or falsity of a fluent after an action is independent
of whether the action is executable or not. For example for the fluent holding(x, s) we have

holding(x, do(a, s)) ≡ a = pickup(x) ∨ [holding(x) ∧ a 6= drop(x)]

Note that holding(x, do(pickup(x), s)) is always true for all x and s, no matter whether
executing the action pickup(x) is possible in s or not.

As a result, the fluents that hold in a situation are independent of whether the actions
comprising the situation are executable or not. If the actions comprising a situation are all
executable then the resulting situation is an executable situation. But if any of such actions
is not executable then the resulting situation is a ghost situation. While ghost situations are
perfectly fine situations, they are not physically realizable. Therefore using them as possible
worlds causes the agent to have incorrect beliefs about the domain.

In fact the problem with unexecutable actions is not limited to formalization of knowl-
edge. There are also issues in dealing with the projection problem:

Given an initial situation, a sequence of actions a1, . . . , an, and a formula G,
determine whether G is true in the resulting situation.

We can solve this problem in the traditional framework only if the resulting situation is
executable (i.e. all the actions in the action sequence are possible to be executed). In this
case the projection problem is equivalent to whether Axioms � G(do([a1, . . . , an], S0)1, and
we can use Regression to answer it.

1do([a1, . . . , an], s) abbreviates do(an, do(an−1, . . . do(a1, s) . . .))
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To see why this doesn’t work when unexecutable actions are involved, consider the
following example.

Example 2. Suppose we have a robot that has one arm and can pick up objects and
move. Agent is ordered to pickup an object from room 1 and move to the next room. But
the pickup is not possible, say as a result of the object being glued to the floor. In the
current framework, following the pickup-and-move sequence, in the resulting situation the
agent is holding the object and is in the next room (which is impossible), as formalized
below:

We have fluents holding(x, s) denoting “the robot is holding object x, in situation s”,
gluedToF loor(x, s) with the obvious intended meaning and loc(x, y, s) denoting “location
of x is y, in situation s”.

We have two actions pickup(x) andmoveTo(x) denoting the actions of picking up object
x and going to location x, respectively. R1 and R2 denote room 1 and room 2.

Action Precondition Axioms

Poss(pickup(x), s) ≡ ¬gluedToF loor(x) ∧ (∀y)¬holding(y, s)

Poss(moveTo(x), s) ≡ True

Successor state axioms:

holding(x, do(a, s)) ≡ a = pickup(x) ∨ holding(x, s)

gluedToF loor(x, do(a, s)) ≡ gluedToF loor(x, s)

loc(x, y, do(a, s)) ≡ [a = moveTo(y) ∧ (holding(x, s) ∨ x = Robot)]

∨ [loc(x, y, s) ∧ ((¬∃z 6= y).a = moveTo(z) ∨ ¬holding(x, s))

The initial situation:

(∀x)¬holding(x, S0), gluedToF loor(Obj, S0), loc(Obj,R1, S0), loc(Robot,R1, S0).

The following formulas are entailed by the formalization:
holding(Obj, do([pickup(Obj),moveTo(R2)], S0)
loc(Obj,R2, do([pickup(Obj),moveTo(R2)], S0)
loc(Robot,R2, do([pickup(Obj),moveTo(R2)], S0)

This is clearly impossible and the (separate) limitation of situations to executable ones
rules out such a (ghost) situation. As a result we cannot correctly formalize these scenarios
in the traditional framework. Clearly a more desirable outcome of this pickup-and-move
sequence is that the agent is in the next room and the object’s location is unchanged. This
will be the result in our proposed framework.
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3.1 Why this Form for Successor State Axioms?

In the previous section we observed that the current form of successor state axioms does
not give the desired result when unexecutable actions are involved, as a result of being
insensitive to possibility of actions. In this section we explore the roots of this form and
review how it was developed as a solution to the Frame Problem. This will be helpful when
we provide our framework and show how it solves the aforementioned problems.

First introduced by McCarthy and Hayes in the late Sixties [16], the frame problem is
the problem of formalizing effects of an action without explicitly formalizing a large number
of fluents that are not affected by it. For example for the action pickup(x) we have

color(x, s) = c ⊃ color(y, do(pickup(x), s))

meaning picking up an object does not have an effect on its color. These kinds of axioms
are called frame axioms. Naively writing frame axioms requires one axiom for each pair of
action and fluent. So the total number of axioms needed would be O(F × A), where A is
the number actions and F the number of fluents. This is expensive and not desirable. In
response to this, in [23], Reiter presented a solution to the frame problem building on the
previous solutions provided by Davis, Haas and Schubert [28]. The following is a review of
a more recent version of the solution taken from [24].

3.1.1 Review of Reiter’s solution to the Frame Problem

The basic idea is illustrated using the following example which is a simplified version of one
from [24]. There is a robot that can pick up, drop or hold objects. The formalization of the
problem is as follows:

Action Precondition Axioms:

Poss(drop(x), s) ≡ holding(x, s)

Poss(repair(x), s) ≡ hasGlue(s) ∧ broken(x, s)

A set of Effect Axioms are used to formalize the effects of actions (effect axioms were being
used before developing successor state axioms). For the fluent broken(x, s) the effect axioms
are as follows:

fragile(x, s) ⊃ broken(x, do(drop(x), s)) (3.5)

⊃ ¬broken(x, do(repair(x), s)) (3.6)
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We can rewrite (3.5) and (3.6) in the logically equivalent form:

(a = drop(x) ∧ fragile(x, s)) ⊃ broken(x, do(a, s)) (3.7)

a = repair(x) ⊃ ¬broken(x, do(a, s)) (3.8)

Reiter then employs a completeness assumption, that formulas (3.7) and (3.8) “charac-
terize all the conditions under which fluent broken can become true or false” as a result of
action a. In other words we assume all the different ways that the fluent broken(x, s) can
become true or false are captured in the effect axioms.

So if the truth value of broken changes, for example ¬broken(x, s) and broken(x, do(a, s))
are true, this change must have occurred because the following was true:

(a = drop(x) ∧ fragile(x, s))

So we have the following explanation closure axioms [28]:

¬broken(x, s) ∧ broken(x, do(a, s)) ⊃ (a = drop(x) ∧ fragile(x, s))

broken(x, s) ∧ ¬broken(x, do(a, s)) ⊃ a = repair(x)

For the general case, the effect axioms of a domain for a fluent F can be written in the
form

γ+
F (~x, a, s) ⊃ F (~x, do(a, s))

γ−F (~x, a, s) ⊃ ¬F (~x, do(a, s))

where γ+
F (~x, a, s) and γ−F (~x, a, s) are the conditions under which action a affects the value

of fluent F positively or negatively.
So explanation closure axioms resulting from the completeness assumption are of the

form:

F (~x, s) ∧ ¬F (~x, do(a, s)) ⊃ γ−F (~x, a, s)

¬F (~x, s) ∧ F (~x, do(a, s)) ⊃ γ+
F (~x, a, s)

We have two axioms for each fluent. Note that explanation closure axioms yield the general
form of frame axioms:

F (~x, s) ∧ ¬γ−F (~x, a, s) ⊃ F (~x, do(a, s)) (3.9)

¬F (~x, s) ∧ ¬γ+
F (~x, a, s) ⊃ ¬F (~x, do(a, s)) (3.10)
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Therefore we need only O(F) axioms to produce all frame axioms, and this provides a
solution to the frame problem.

Reiter then introduced successor state axioms which merge effect and explanation closure
axioms:

F (~x, do(a, s)) ≡ γ+
F (~x, a, s) ∨ [(F (~x, s) ∧ ¬γ−F (~x, a, s))] (3.11)

3.2 Does the Event Calculus Suffer from a Similar Problem?

The problems described in the previous section were due to the fact that although action
preconditions are part of the axiomatization, successor state axioms were not sensitive to
possibility of actions. So a question that arises is that how does the Event Calculus deal
with action preconditions?

In the Event Calculus literature there is very little discussion of action preconditions. In
[12], which introduced the Event Calculus, they ignored handling the precondition of events
and assumed all events are possible at any time. The first treatment of preconditions of
actions that I found was in [17]. They make a distinction between fluent preconditions and
action preconditions. For instance in the example

Initiates(insert, locked, t)← ¬HoldsAt(locked, t) ∧HoldsAt(hasKey, t)

they regard the right hand side as fluent preconditions. They then introduce the predicate
Impossible to characterize conditions under which actions are not possible. For example

Impossible(pickup, t)← ¬HoldsAt(HasGrabber, t)

They state that this type of knowledge can be interpreted in two ways. Based on one reading
of Impossible(A, T ), the effects of attempting to perform ‘impossible’ action A at time T is
undefined (this reading can be enforced by a set of axioms). This reading is similar to the
[23] version of the Situation Calculus where successor state axioms are of the form

Poss(a, s)→ {F (~x, do(a, s)) ≡ γ+
F (~x, a, s) ∨ [(F (~x, s) ∧ ¬γ−F (~x, a, s))]}

Note that in this version the truth value of F in do(a, s) is undefined if performing a is not
possible in s (i.e. ¬Poss(a, s)).
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Based on another reading of Impossible(A, T ), the effects of attempting to perform
‘impossible’ action A at time T is that nothing happens. This can be captured by

Happens(a, t) ≡ [(perform(a, t) ∧ ¬Impossible(a, t)) ∨Occured(a, t)]

¬Occurred(a, t)← Impossible(a, t)

where Occurred represents actions that have happened in the past and perform represents
actions that “the agent will (possibly) perform in the future”[18].

In the latter reading of Impossible, it seems more intuitive that instead of incorporat-
ing Impossible into Happens (as described above), we incorporate it into Initiates and
Terminates predicates. In this case the reading of Happens(a, t) becomes “an attempt to
execute action a is done at time t”.

3.3 A Note on the Axiomatization Policy

In section 2.4.1 when reviewing the standard model for epistemic Situation Calculus we men-
tioned that there is an assumption (they called it ’axiomatization policy’) that “Knowledge-
producing actions only affect the K fluent, and physical actions only affect other fluents”.
One place that this assumption can be utilized is the following theorem:

Theorem 3.3.1. For relational fluent P the following holds:

KWhether(P, do(senseP , s))

Proof. For the sake of obtaining a contradiction assume that (i) does not hold. Therefore
based on definition ofKWhether we have ¬Knows(P, do(senseP , s))∧¬Knows(¬P, do(senseP , s)).
In addition, in a given situation, a fluent is either true of false. So we have P (s)∨¬P (s). We
prove that P (s) together with ¬Knows(P, do(senseP , s)) leads to contradiction. A similar
argument proves that ¬P (s) together with ¬Knows(¬P, do(senseP , s)) leads to contradic-
tion; and this completes the proof.

The proof is as follows
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1) P (s) Premise
2) ¬Knows(P, do(senseP , s)) Premise
3) ∃s′.K(s′, do(senseP , s)) ∧ ¬P (s′) (2), definition of Knows
4) ∃s′′.s′ = do(senseP , s

′′)
∧sr(senseP , s) = sr(senseP , s

′′) (3), successor state axiom of K fluent
5) ¬P (do(senseP , s

′′)) (3), (4)
6) ¬P (s′′) (5), axiomatization policy
7) sr(senseP , s) 6= sr(senseP , s

′′) (1), (6), definition of sr
8) sr(senseP , s) = sr(senseP , s

′′) (4)
9) Contradiction (7), (8) �

Although the axiomatization policy can be used to derive intuitive results, we believe
that it is needlessly restrictive. It involves two assumptions: 1) Physical Actions does not
affect the K fluent, 2) Sensing actions can only affect the K fluent. Relaxing the first part
requires rewriting the successor state axiom for fluent K by taking physical actions into
consideration, which we do not do here. But we believe that the second part can be relaxed
to some extent.

Obviously in real scenarios there are actions that are both informative and make changes
in the world. The solution that was provided was to consider such actions as two actions, one
sensing and one physical. But this doesn’t seem to be very intuitive. For example consider
a tasting action to determine the sweetness of a jar of honey. This is a sensing action, but it
make changes to honey as well (e.x. affecting the amount of honey left). Splitting this action
into two actions does not seem to capture the essence of this action. A better solution is
to allow sensing actions to make changes in the world as well, and as a result take them
into account when writing successor state axioms for all fluents (not just the K fluent).
One problem with this approach is that we cannot prove some intuitive results such as the
theorem above. Our solution to this problem is that we limit effect of sense actions in the
following narrow way: Sensing for a fluent F does not change value of F (but it may change
value of other fluents). For example tasting a jar of honey to determine how sweet it is does
not affect its actual sweetness, but it can affect other fluents such as the amount of honey
left. This way we allow sensing actions to affect other fluents and at the same time we are
able to derive the intuitive results such as the theorem above. We believe that this approach
not only makes a weaker assumption, but also it is more natural and intuitive.
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Chapter 4

Proposed Framework

We saw in chapter 3 that insensitivity of successor state axioms to possibility of actions
produced some problems. In section 3.1 we traced the source of the problem to Reiter’s
solution to the frame problem. In this section we provide a more general solution to the
frame problem which results in a more general form for successor state axioms. The new
form does not suffer from the aforementioned limitations.

4.1 A More General Solution to the Frame Problem

Our approach to the frame problem differs from Reiter’s in the following way: Intuitively,
if an action is not possible in a situation, then “executing” it should not make any changes
in the model1. Therefore other than axioms (3.9) and (3.10), we believe that the following
forms should be regarded as frame axioms as well:

F (~x, s) ∧ ¬Poss(a, s) ⊃ F (~x, do(a, s))

¬F (~x, s) ∧ ¬Poss(a, s) ⊃ ¬F (~x, do(a, s))

To produce these extra frame axioms we need a generalized form of explanation closure
axioms. Since these axioms were derived from effect axioms let’s consider effect axioms
where possibility of actions is taken into account. For example for the action drop(x) (after
rewriting) we have

a = drop(x) ∧ fragile(x, s) ∧ Poss(a, s) ⊃ broken(x, do(a, s))

a = repair(x) ∧ Poss(a, s) ⊃ ¬broken(x, do(a, s))

1There are very special cases of fluents that may change value even if the action is not possible (e.x. the
functional fluent NumberOfActionsAttemptedSoFar(s)). We assume we don’t have these kinds of fluents
in our models.
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From the completeness assumption we get the following explanation closure axioms:

¬broken(x, s) ∧ broken(x, do(a, s)) ⊃ a = drop(x) ∧ fragile(x, s) ∧ Poss(a, s)

broken(x, s) ∧ ¬broken(x, do(a, s)) ⊃ a = repair(x) ∧ Poss(a, s)

So in the general case we have the following form for effect axioms

Poss(a, s) ∧ γ+
F (~x, a, s) ⊃ F (~x, do(a, s)) (4.1)

Poss(a, s) ∧ γ−F (~x, a, s) ⊃ ¬F (~x, do(a, s)) (4.2)

and the following form for explanation closure axioms:

F (~x, s) ∧ ¬F (~x, do(a, s)) ⊃ γ−F (~x, a, s) ∧ Poss(a, s) (4.3)

¬F (~x, s) ∧ F (~x, do(a, s)) ⊃ γ+
F (~x, a, s) ∧ Poss(a, s) (4.4)

Note that explanation closure axioms yield all the frame axioms:

F (~x, s) ∧ ¬Poss(a, s) ⊃ F (~x, do(a, s))

¬F (~x, s) ∧ ¬Poss(a, s) ⊃ ¬F (~x, do(a, s))

F (~x, s) ∧ ¬γ−F (~x, a, s) ⊃ F (~x, do(a, s))

¬F (~x, s) ∧ ¬γ+
F (~x, a, s) ⊃ ¬F (~x, do(a, s))

So explanation closure axioms (4.3) and (4.4) qualify as a solution to the more general form
of frame problem.

4.2 A More General Form for Successor State Axioms

In this section we develop a more general form for successor state axioms where possibility
of actions is taken into account.

Theorem 4.2.1. Let Γ be the union of axioms (4.1) − (4.4) and the formula
¬(∃~x, a, s).(γ+

F (~x, a, s) ∧ γ−F (~x, a, s)). Then Γ entails

F (~x, do(a, s)) ≡ (γ+
F (~x, a, s) ∧ Poss(a, s)) (4.5)

∨ [F (~x, s) ∧ (¬γ−F (~x, a, s) ∨ ¬Poss(a, s))]

Proof: For convenience let P, γ+, γ−, F1, F2 denote Poss(a, s), γ+
F (~x, a, s), γ−F (~x, a, s), F (~x, s),

F (~x, do(a, s)) respectively.

25



Rewriting 4.1− 4.4 using this notation yields

P ∧ γ+ ⊃ F2 (4.6)

P ∧ γ− ⊃ ¬F2 (4.7)

F1 ∧ ¬F2 ⊃ γ− ∧ P (4.8)

¬F1 ∧ F2 ⊃ γ+ ∧ P (4.9)

Rewriting using logically equivalent formulas yields

P ∧ γ+ ⊃ F2 (4.10)

¬P ∨ ¬γ− ⊂ F2 (4.11)

F1 ∧ (¬γ− ∨ ¬P ) ⊃ F2 (4.12)

F1 ∨ (γ+ ∧ P ) ⊂ F2 (4.13)

Rewriting using logically equivalent formulas yields

From (4.10), (4.12) (P ∧ γ+) ∨ (F1 ∧ (¬γ− ∨ ¬P )) ⊃ F2 (4.14)

From (4.11), (4.13) (¬P ∨ ¬γ−) ∧ (F1 ∨ (γ+ ∧ P )) ⊂ F2 (4.15)

Left hand side of (4.14) and (4.15) are equal:

LHS of (4.14) = (P ∧ γ+) ∨ (F1 ∧ (¬γ− ∨ ¬P ))

≡ ((P ∧ γ+) ∨ (F1)) ∧ ((P ∧ γ+) ∨ (¬γ− ∨ ¬P ))

≡ ((P ∧ γ+) ∨ (F1)) ∧ (¬γ− ∨ ¬P ∨ γ+)

∧ (¬γ− ∨ ¬P ∨ P )

≡ ((P ∧ γ+) ∨ (F1)) ∧ (¬γ− ∨ ¬P ∨ γ+) ∧ T

Given ¬(γ+ ∧ γ−)

≡ ((P ∧ γ+) ∨ (F1)) ∧ (¬γ− ∨ ¬P )

= LHS of (4.15)

Therefore

F2 ≡ (P ∧ γ+) ∨ (F1 ∧ (¬γ− ∨ ¬P ))

�

The successor state axiom (4.5) gives Reiter’s successor state axiom (3.11) as a special case
when we have Poss(a, s) ≡ > (i.e. when all actions are possible in every situation).
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4.3 Consequences of New Form of Successor State Axioms

The new form of successor state axioms has several consequences; some conceptual changes
and some changes in the formalizations. In the sequel we briefly review these changes.

1. Definition of do(a, s). This is among the conceptual changes. In Reiter’s Situation
Calculus, do(a, s) is defined as “the successor situation to s, resulting from performing (i.e.
executing) action a”. In other words, it is assumed that actions always succeed. If action
a is not possible in situation s, then do(a, s) and subsequent situation are what Reiter
calls “ghost” situations. In these cases the actions still succeed but the situations are not
physically realizable.

In the new framework, since possibility of actions are taken into account in successor
state axioms, do(a, s) now is defined as the successor situation to s, resulting from attempting
action a. An attempt to do an action is different from performing (or executing) an action
in the sense that it is not assumed that it succeeds. If it is possible to perform an action in
a situation then the action has its expected effects, otherwise nothing happens (i.e. a null
action is executed). This is reasonable because for example if it is not possible to execute
action pickup(x) (say, because x is glued to the floor), then after (attempting) the action
pickup(x), it is reasonable to assume that nothing happens.

We make this an assumption of our framework: If an action is not possible in a situation,
“executing” it (in fact attempting to execute it) does not make any changes in the model.
Formally

¬Poss(a, s) ⊃ F (~x, do(a, s)) ≡ F (~x, s)

In fact this was the assumption that led to extra frame axioms in section 4.1.2

2. Projection Problem. In the new framework we can solve the more general form
of the problem where the sequence of actions does not have to be executable. The solution
for the projection problem is still the same and is equivalent to whether

Axioms � G(do([a1, . . . , an], S0),

but now we apply regression using the new successor state axiom (4.5).

Consider again example 2 where an object Obj is glued to the floor and we want to
formalize the result of the agent picking up the object followed by moving to the next room.

2For more details on the alternative definition of do(a, s) see [30].
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The new successor state axioms are

holding(x, do(a, s)) ≡ [a = pickup(x) ∧ Poss(a, s)] ∨ holding(x, s)

loc(x, y, do(a, s)) ≡ [a = moveTo(y) ∧ Poss(a, s) ∧ (holding(x, s) ∨ x = Robot)]

∨[loc(x, y, s) ∧ ((¬∃z 6= y).a = moveTo(z) ∨ ¬holding(x, s) ∨ ¬Poss(a, s))

The new formalization entails
¬holding(Obj, do([pickup(Obj),moveTo(R2)], S0)
loc(Obj,R1, do([pickup(Obj),moveTo(R2)], S0)
loc(Robot,R2, do([pickup(Obj),moveTo(R2)], S0)

So after the sequence of pickup-and-move actions, the agent is in room 2, not holding
any object, and the object is still in room 1, which is the desired result.

3. Formalization of Knowledge. The ability of our framework to formalize the re-
sult of unexecutable actions (by means of the new form of successor state axioms) enables
situations to correctly represent possible worlds. This solves one of the problems with for-
malization of knowledge in the Situation Calculus. To make it fully work, we need to develop
a successor state axiom for fluent K as well.

First note that, if an agent in situation s considers n situations as possible worlds,
no matter what action a she attempts, in situation do(a, s) the number of situations she
considers as possible worlds is less than or equal to n. In other words, as a result of actions,
the number of indistinguishability (aka accessibility) relations either decreases or stays the
same; it never increase. This is because physical actions do not change the agent’s knowledge
(as enforced in the definition of sensing result function) and sensing actions can only produce
knowledge (by eliminating indistinguishability relations). As a result, γ+

K(~x, a, s) is always
false.

If we assume that sensing actions are always possible (which is the case in the literature),
then the following formula qualifies as the successor state axiom for fluent K

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s) ∧ sr(a, s) = sr(a, s′) (4.16)

Which can be written in a simpler form as

K(do(a, s′), do(a, s)) ≡ K(s′, s) ∧ sr(a, s) = sr(a, s′)

Note that sr(a, s) 6= sr(a, s′) is γ−K(~x, a, s) (i.e. it is what eliminates indistinguishability
relations).

Consider again example 1 where an object was glued to the floor but the agent was
uncertain about it, and we wanted to see what the agent’s beliefs are after (attempting)
to pick up the object . Using the above successor state axiom for K fluent and the below
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successor state axiom for the fluent holding(x), we see that after the pickup action, the
agent is uncertain between two possible worlds, one where the object is on the floor and
one where the agent is holding the object, which is the desired result.

holding(x, do(a, s)) ≡ (a = pickup(x) ∧ Poss(a, s)) ∨ holding(x, s)

Let’s now relax the assumption that sensing actions are always possible. Regarding what
should happen in attempting an unexecutable sensing action, we choose the same policy
as we chose for physical actions, namely nothing happens (i.e. a null action is executed).
In other words, attempting a sensing action that is not possible (for example detecting the
color of an object when there is no light) does not change the indistinguishability relations
in the resulting situation and therefore does not add to the agent’s knowledge.

In this case we need to account for the possibility of sensing actions in the successor
state axiom of the K fluent. Following the pattern of (4.5) we arrive at the following formula

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧K(s′, s) (4.17)

∧ [sr(a, s) = sr(a, s′) ∨ ¬Poss(a, s)]

Which can be written in a simpler form as

K(do(a, s′), do(a, s)) ≡ K(s′, s) ∧ [sr(a, s) = sr(a, s′) ∨ ¬Poss(a, s)]

As an example of the consequences of our more general form for successor state axioms
mentioned above, here we prove a generalization of the theorem 2.4.1 where it is not limited
to executable situations:

Theorem 4.3.1. If the K relation on the set of initial situations is restricted to conform
to the reflexive condition along with some subset of the symmetric, transitive and Euclidean
properties, then the K relation at every situation, will satisfy the same set of properties.

Proof. The proof is similar to that of [25], with the difference that now we use the new
form for successor state axiom of K (for simplicity we use 4.16 instead of 4.17).

Using induction, it suffices to prove that if a property holds at s then it holds at do(a, s)
for arbitrary a and s. The proof for reflexivity is straightforward because sr(a, s) = sr(a, s).

Regarding other properties, we prove the case for symmetry property, the other ones
are proved similarly.

So suppose we have (∀s′).K(s′, s) ⊃ K(s, s′). We need to prove that

(∀s′′).K(s′′, do(a, s)) ⊃ K(do(a, s), s′′)
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For the sake of obtaining a contradiction suppose that it doesn’t hold. So we have

(∃s′′).K(s′′, do(a, s)) ∧ ¬K(do(a, s), s′′)

The proof continues as follows

(1)(∀s′).K(s′, s) ⊃ K(s, s′) Premise
(2) K(s′′, do(a, s)) Premise
(3) ¬K(do(a, s), s′′) Premise
(4) (∃s∗).s′′ = do(a, s∗) ∧K(s∗, s)

∧sr(a, s∗) = sr(a, s) (2), successor state axiom for K
(5)K(s, s∗) ∧ sr(a, s∗) = sr(a, s) (1), (4)
(6)K(do(a, s), do(a, s∗)) (5), successor state axiom for K
(7)K(do(a, s), s′′) (6), (4)
(8)Contradiction (3), (7)

4.4 Consistency Check

In this section we prove that the changes that we have made so far does not produce any
problem, in the sense that whatever was holding in the Reiter’s version of the Situation
Calculus, holds in our generalized framework.

Recall from the background section the definition of a basic action theory was a collection
of axioms D = Σ∪Dap∪Dss∪Duna∪DS0 where Σ,Dap,Dss,Duna are the set of foundational,
action precondition, successor state and unique name axioms respectively, and DS0 is the
set of formulas describing the initial situation.

Note that the only part of the above definition we have been dealing with in the previous
chapter is Dss where we suggested using (4.5) as a generalized form for successor state
axioms (compared to 3.11). All the other parts are untouched. So if our more general form
for successor state axioms conforms to the required conditions of successor state axioms, we
are done.

In fact there is a problem here. Recall from the background section the definition of a
successor state axiom for fluent F was

F (~x, do(a, s)) ≡ φF (~x, a, s)

where φ is uniform in s. And among the necessary conditions for uniformity of a formula
was not having the predicate Poss as part of the formula. But since Poss appears in the
right hand side of (4.5), our general form for successor state axioms is not uniform in s, and
technically problematic. But this issue can be resolved.
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As we will see, not allowing Poss to appear in the right hand side is only necessary for
action precondition axioms and not for the successor state axioms. We don’t want Poss to
appear in the right hand side of action precondition axioms because (among other possible
problems) it can result in circular definitions. For example we could have

Poss(A(x), s) ≡ P (s) ∧ Poss(B(x), s)

Poss(B(x), s) ≡ P (s) ∧ Poss(A(x), s)

which should not be allowed.
But having Poss on the right hand side of successor state axioms does not produce any

problem, as we prove in the sequel.

Lemma 4.4.1. Let φ be a successor state axiom in the form of (4.5) and A be the set
of action precondition axioms for the actions mentioned in φ. Let φ′ be the formula ob-
tained from φ where occurrences of Poss in φ is replaced with the right hand side of their
corresponding action precondition axioms from A. Then

A, φ � φ′,

A, φ′ � φ

Proof: Let φ be the following formula (without loss of generality we assumed γ+
F (~x, a, s)

and γ−F (~x, a, s) contain only one action)

F (~x, do(a, s)) ≡ (a = A(~x) ∧ Poss(A(~x), s)) ∨ [F (~x, s) ∧ (a 6= B(~x) ∨ ¬Poss(B(~x), s))]

and A be the following two formulas

Poss(A(~x), s) ≡ ψA(~x, s)

Poss(B(~x), s) ≡ ψB(~x, s)

So φ′ is (replacing Poss(A(~x), s) with ψA(~x, s) and Poss(B(~x), s) with ψB(~x, s) in φ):

F (~x, do(a, s)) ≡ (a = A(~x) ∧ ψA(~x, s) ∨ [F (~x, s) ∧ (a 6= B(~x) ∨ ¬ψB(~x, s))]

Now the proofs of A, φ � φ′ and A, φ′ � φ are similar to proof of

(∀x).P (x) ≡ Q(x) ∧R(x), (∀x).R(x) ≡ R′(x) � ∀(x).P (x) ≡ Q(x) ∧R′(x)

We prove this using Resolution. The proofs of A, φ � φ′ and A, φ′ � φ can be done in a
similar manner.
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We convert the left-hand-side formulas and negation of the right-hand-side formula to
clausal form and derive an empty clause using Resolution which completes the proof.

Negation of the right-hand-side formula: (∃x).(P (x)∧(¬Q(x)∨¬R′(x)))∨(Q(x)∧R′(x)∧
¬P (x))
Negation of the right-hand-side formula in clausal form (after simplification and Skolemiza-
tion): [P (a), Q(a)], [P (a), R′(a)], [Q(a), R′(a), P (a)]
Left-hand-side formulas in clausal form: [P (x), Q(x)], [P (x), R(x)],[Q(x), R(x), P (x)],
[R(y), R′(y)], [R′(y), R(y)]
Resolving [P (a), Q(a)] and [P (x), Q(x)] yields [Q(a)]
Resolving [P (a), R′(a)] and [P (x), R(x)] yields [R(a), R′(a)]
Resolving [R′(y), R(y)] and [R(a), R′(a)] yields [R(a)]
Resolving [R(y), R′(y)] and [R(a)] yields [R′(a)]
Resolving [Q(a)] and [Q(x), R(x), P (x)] yields [R(a), P (a)]
Resolving [R(a), P (a)] and [R(a)] yields [P (a)]
Resolving [Q(a)] and [Q(a), R′(a), P (a)] yields [R′(a), P (a)]
Resolving [R′(a), P (a)] and [R′(a)] yields [P (a)]
Resolving [P (a)] and [P (a)] yields [ ] �

Theorem 4.4.1. Let D∗ = Σ ∪ Dap ∪ D∗ss ∪ Duna ∪ DS0 where Σ,Dap,Duna,DS0 are as
defined before and D∗ss is a set of successor state axioms in the form of (4.5). Let Dss be
the set of successor state axioms in D∗ss where all occurrences of Poss predicate is replaced
with the right hand side of their corresponding action precondition axioms from Dap. Then
D = Σ∪Dap ∪Dss ∪Duna ∪DS0 is a basic action theory and for an arbitrary formula ψ the
following holds

D∗ � ψ iff D � ψ

Proof: Since the Poss predicates that appeared in formulas contained in D∗ss do not appear
in Dss formulas (because Poss occurrences were replaced), the successor state axioms in
Dss conform to uniformity requirement and therefore D is a basic action theory.
For the second part, note that from the above lemma it follows thatD∗ss � Dss andDss � D∗ss.
Therefore every formula that is entailed by D∗ is also entailed by D and vice versa. �

4.5 A Note on Different Versions of Reiter’s Solution to the
Frame Problem

In general there are two accounts of Reiter’s solution to the frame problem. The first one
was in his 1991 paper [23], and the second one in his book [24]. We reviewed the latter in
section 3.1.1. Those familiar with the former notice that our more general solution to the
frame problem starts with the same form for effect axioms as [23]. So it could be helpful
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in better understanding of the approaches if we compare our solution with the solution
provided in [23]. We use terminology of [24] for consistency of representation.

Reiter starts with the same form for effect axioms as (4.1) and (4.2):

Poss(a, s) ∧ γ+
F (~x, a, s) ⊃ F (~x, do(a, s)) (4.18)

Poss(a, s) ∧ γ−F (~x, a, s) ⊃ ¬F (~x, do(a, s)) (4.19)

The completeness assumption then states effect axioms (4.18) and (4.19) capture all
conditions under which fluent F changes value as a result of action a.

Reiter continues as follows ([23], page 10):

“Hence, if action a is possible and F ’s truth value changes from false to true
as a result of doing a, then γ+

F (~x, a, s) must be true; similarly, if F ’s truth value
changes from true to false.”

Formally

Poss(a, s) ∧ F (~x, s) ∧ ¬F (~x, do(a, s)) ⊃ γ+
F (~x, a, s) (4.20)

Poss(a, s) ∧ ¬F (~x, s) ∧ F (~x, do(a, s)) ⊃ γ−F (~x, a, s) (4.21)

While this is a valid derivation from the completeness assumption, it is not the strongest
statement we can derive. The stronger derivation would be

F (~x, s) ∧ ¬F (~x, do(a, s)) ⊃ γ−F (~x, a, s) ∧ Poss(a, s) (4.22)

¬F (~x, s) ∧ F (~x, do(a, s)) ⊃ γ+
F (~x, a, s) ∧ Poss(a, s) (4.23)

These are in fact (4.3) and (4.4), the ones we used to derive the more general form for
successor state axioms.

To sum up, in the solution provided in [24], since the possibility of actions is not ac-
counted for, the resulting successor state axiom becomes insensitive to action executability.
On the other hand, in the solution provided in [23], although possibility of actions is ac-
counted for, since the completeness assumption is not fully used, the resulting successor
state axiom is silent on actions that are not executable.
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Chapter 5

Conclusion

We reviewed two of the most important theories of action and discussed their epistemic
intricacies. We provided a more nuanced and expressive version of the Situation Calculus
by presenting a more general form for successor state axioms which was developed based
on a more general solution to the frame problem in the Situation Calculus.

We described some advantages of the new framework. In the traditional framework we
can solve the projection problem but only for executable situations. We can regard situations
as possible worlds but only when the situation is executable. We showed that the current
formalization of knowledge has some flaws (although it works fine if we assume all actions
are executable in every situation starting from any of the initial situations which is a very
strong assumption.). In our framework we don’t have these limitations and it allows us to
utilize the power of the Situation Calculus in a broader area.

Studying other impacts and applications of the new framework is subject of the future
research.
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