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Abstract

Live streaming of immersive multimedia content, e.g., 360-degree videos, is getting popular due to

the recent availability of commercial devices that support interacting with such content such as smart

phones, tablets, and head-mounted displays. Unicast streaming of immersive content on cellular

networks consumes substantial network resources and does not scale to large number of users.

Multicast, on the other hand, offers a scalable solution but it introduces multiple challenges, which

include handling user interactivity, ensuring smooth quality, supporting user mobility, conserving

the energy of mobile receivers, and ensuring fairness among users. We propose a comprehensive

solution for the problem of live streaming of 360-degree videos to mobile users, which we refer to

as VRCast. VRCast is designed for cellular networks that support multicast, such as LTE. It divides

the 360-degree video into tiles and then solves the complex live streaming problem in two steps to

maximize the viewport quality of users and ensure a smooth quality within the same viewport while

saving the energy of mobile devices and achieving fairness across users. Extensive trace driven

simulation and real LTE testbed results show that VRCast outperforms the closest algorithms in the

literature by wide margins across several performance metrics. For example, compared to the state-

of-the-art, VRCast enhances the median frame quality by up to 22% and reduces the variation in the

spatial quality by up to 53% and improves the energy saving for mobile devices by up to 250%.
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Chapter 1

Introduction

1.1 Introduction

Mobile data traffic has grown 18 folds over the past five years, and it is expected to continue grow-

ing at an annual rate of 47% in the coming few years [16]. The majority (60–80%) of the mobile

data traffic carries video content. To partially cope with this substantial demand, cellular network

operators have recently been considering multicast services for live video sessions. Unicast services

cannot support large-scale live sessions, because the required radio resources grow linearly with the

number of users, even when all users receive the same content. Multicast offers an efficient and scal-

able approach to stream live videos to many users. The current generation (4G) of cellular networks

already have support for multicast services. For example, the evolved Multimedia Broadcast Mul-

ticast Service (eMBMS) is part of the LTE standard [38]. And because of recent enhancements to

eMBMS [1] that addressed limitations observed in early deployments, many cellular operators have

started deploying or experimenting with multicast services. For instance, Verizon, Korea Telecom,

and China Unicom have launched multicast services using eMBMS [52, 20]. Telstra, AT&T, and

Globe have committed to launching eMBMS, and 31 other operators have been testing the technol-

ogy [29]. Furthermore, Google has introduced eMBMS support in the developer preview of Android

8.1 for its Nexus and Pixel phones [26].

Prior works have proposed various optimizations for mobile multicast services in terms of band-

width, video quality, and mobile energy consumption [8]. Most of these works, however, are de-

signed for traditional, single-view videos. In addition, despite the significant practical interest in

mobile multicast as mentioned above, current commercial base stations do not yet efficiently sup-

port streaming immersive multimedia content [29]. We consider mobile multicasting of 360-degree

videos, which is a more complex problem than multicasting single-view videos. This is not only be-

cause 360-degree videos require multiple times the amount of bandwidth of single-view videos, but

also because 360-degree videos offer unprecedented interactivities between users and the content.

Specifically, users watching a 360-degree video can dynamically change/select their viewing direc-

tion, resulting in an immersive and engaging experience, but creating challenges for the network
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that needs to support this interactivity in addition to handling user mobility and varying channel

conditions.

Immersive multimedia content, including 360-degree and virtual/augmented reality (VR/AR)

videos, is projected to be quite popular in the near future. As evidence of this expected popularity,

recently, major companies such as Facebook and Google have been integrating support for such

rich content in their platforms [23, 27]. And many manufacturers have introduced various consumer

devices to render and interact with immersive content, such as HTC Vive, Oculus Rift, Samsung

Gear VR, and the enhanced touch screens on many mobile phones and tablets. Furthermore, mo-

bile data traffic carrying immersive content is expected to grow 11 folds by 2021 relative to 2016

[16]. Therefore, the problem of efficiently delivering immersive multimedia content is of practical

importance.

In this thesis, we present a comprehensive solution (called VRCast) for the problem of live

streaming of 360-degree videos to mobile users. Our solution supports user interactivity (viewport

switching), optimizes the energy consumption for mobile receivers, accounts for the heterogeneous

and dynamic nature of wireless channel conditions, ensures the smoothness of the rendered 360-

degree content, maintains fairness among mobile users, achieves high spectral efficiency of the

expensive wireless link, and runs in real time.

We evaluate VRCast using trace-driven simulations and implementation in a real LTE testbed.

Our results show that VRCast outperforms the state-of-the-art algorithms across multiple perfor-

mance metrics. For example, VRCast improves the median frame quality by up to 22% and reduces

the variation in the spatial quality by up to 53% and increases the energy saving for mobile devices

by up to 250%. In addition, we develop an LTE testbed and show that our system adapts to different

user activity patterns, scales well with large number of users and does not cause rebuffering events

at user side.

1.2 Problem Statement

The problem addressed in this thesis is to optimally multicast a live 360-degree video of a pop-

ular event to a large number of mobile users with dynamic channel conditions watching different

viewports. The 360-degree video to stream is in the form of a grid of N ×M tiles, so that we can

control the quality of each part of the video individually. Our objective is to maximize the average

viewport quality for all users given a limited number of radio resource blocks (RBs) in the cellular

network. This is a fairly complex problem, since other metrics should also be considered as they

affect the user experience, e.g., temporal/spatial smoothness of rendered viewport tiles, energy of

mobile devices, fairness among mobile users, and spectral efficiency.

We propose decomposing the complex problem of mobile multicast streaming of 360-degree

videos into two sub-problems. In the first sub-problem, we divide users into multicast groups to

maximize the assigned bitrate for each group. Then, these bitrates are used as a budget in the second

sub-problem where we divide them among tiles to optimize video quality. This decomposition is
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intuitive and allows us to carefully model and solve each sub-problem optimally. In addition, it

allows us to solve each sub-problem at a different time scale, which is an important advantage for

our approach as it offers more flexibility. Notice that the first sub-problem deals with optimizing

network parameters and the second optimizes the 360-degree video streaming parameters. Both

clearly can vary at different time scales.

1.3 Thesis Contributions

The contributions of the thesis can be summarized as follows:

1. A comprehensive solution for the problem of live streaming of 360-degree videos to mobile

users over LTE networks.

2. Extensive trace-driven simulations showing that VRCast outperforms the state-of-the-art al-

gorithms across multiple performance metrics.

3. An LTE testbed that supports multicast streaming of 360-degree videos. Using the testbed,

we show the practicality of VRCast.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background information

needed to understand the concepts discussed in this thesis and summarizes the related work in

the literature. Chapter 3 describes the considered system model and states the addressed problem.

Chapter 4 presents the mathematical formulation of the problem and our proposed solution. Chapter

5 presents our trace-driven simulations and comparisons against other works in the literature and

describes our LTE implementation and analyzes various aspects of VRCast. Chapter 6 concludes

the thesis.
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Chapter 2

Background and Related Work

In this chapter, we present a brief background on 360-degree videos, adaptive streaming, and LTE

networks. Then, we summarize the related work in the literature.

2.1 Background

2.1.1 360-degree Videos

In 360-degree videos, a view in every direction is recorded at the same time. These videos are shot

using omnidirectional cameras or a collection of cameras, and then the output videos are stitched

together to get the final spherical view of the 360-degree video. During playback, the viewer has

control of his viewport using his mobile phone or a head mounted display (HMD) such as GearVR

and Oculus Rift. The controls can be simplified using Euler angles (pitch, yaw, roll) which cor-

responds to rotations around the (x, y, z) axes, respectively. The user viewport can be defined as

their head rotation angles, and the Field of View (FOV) of the HMD or the mobile phone. This

introduces one of the main challenges in 360-degree video streaming which is wasting bandwidth

on video parts that will not be viewed by the user. In addition, the bandwidth requirements for

streaming 360-degree videos are more than the normal 2D videos (usually 3 or 4 times more).

There are multiple projections for the 360-degree videos in order to transform their spherical

nature into 2D planar format in order to use the usual encoding techniques applied on 2D videos.

Multiple sphere-to-plane mappings have been proposed in the literature, including equirectangular

[12], cubemap [44], pyramid [36], offset-cubemap [34], rhombic dodecahedron [24], and barrel

projections [35].

Our solution can be applied to any of the projections used for 360-degree videos as long as we

have a set of non-overlapping regions that covers the whole video frame. Also, there should be a way

to get the area of the overlap between any viewport and each region. In our work, we use the simplest

projection, i.e, equirectangular projection which is the most commonly used mapping. It can be

described as unwrapping a sphere on a 2D rectangular plane with the dimensions (2πr, πr), where r

is the radius of the sphere. Equirectangular projection is widely supported and easily viewable even

with no special players. On the other hand, one of its main drawbacks is the amount of redundant
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pixels, specially around the top parts of the sphere, which will waste the user’s limited bandwidth

in a streaming scenario. Other projections try to address this drawback [44, 36, 35].

We chose equirectangular projection as defining the non-overlapping regions covering the frame

is straightforward and also supported by HEVC encoder. The frame is divided into a N ×M grid

of rectangular tiles. The motion-constrained tile set feature of HEVC [41] can be directly used to

produce these tiles without any synchronization problems between tiles. Also, a single decode can

be used to output the final video that consists of multiple tiles.

2.1.2 Adaptive Streaming

Most current multimedia streaming services have adopted a pull-based approach for delivering me-

dia content over the Internet using the widely popular Hyper-Text Transfer Protocol (HTTP). Adap-

tive streaming over HTTP is introduced to support instant streaming and bitrate adaptation. Video

content is divided temporally into a number of non-overlapping segments, each corresponds to a

few seconds of the media. Each segment is encoded at multiple bitrates and/or resolutions, called

representations. A manifest file is used to describe the different representations of segments and the

location and duration of each segment. This manifest file is shared with users interested in stream-

ing the video. Then, users continuously monitor the available resources, such as available bandwidth

and the buffer capacity, and dynamically select the right encoding bitrate for the next segment. Af-

ter that, users generate requests to download these segments. There are different bitrate adaptation

algorithm on the client side to choose the suitable segment bitrate such as: Festive [31], BBA [30],

Pensieve [40], and MPC [58].

There are various implementations of adaptive streaming over HTTP, including Adobe HTTP

Dynamic Streaming (HDS), Microsoft Live Smooth Streaming, and Apple HTTP Live Streaming

(HLS). An international standard for this streaming class is called Dynamic Adaptive Streaming

over HTTP (DASH) [50]. In DASH, the manifest file is known as a media presentation description

(MPD) file and it describes the properties and URLs of the content and its segments.

MPEG DASH standard [42] proposes two methods for low latency streaming, which is crucial

for live streaming. The first method is based on very short segment durations, which is the most

commonly used approach to reduce streaming latency. DASH clients define their buffer capacities

according to the number of segments, ignoring the segment duration. Therefore, clients start play-

back when a certain number of segments are received. Accordingly, decreasing the segment size

also reduces the buffer duration before playback starts.

The second method is based on dividing each segment into multiple fragments. Each fragment

can be encoded and packaged before the whole segment is available. On the client side, HTTP

chunked delivery is used to request individual fragments. Essaili et al [19] presented a prototype

for a low latency live streaming system based on DASH using multi-fragment segments and HTTP

chunked delivery.

In our work, we use DASH to stream the 360-degree videos from the server to the base station.

Then the base station forwards the data to the mobile users using FLUTE [51, 46], which is the
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standard protocol used for multicast in LTE networks. Note that our system is independent of the

different streaming protocols as long as the video is available in the form of independent tiled

segments with different qualities.

2.1.3 Streaming 360-degree videos

The traditional method of streaming 360-degree videos is to use the 2D streaming adaptative bitrate

algorithms built on DASH. The whole video is encoded uniformly with the same target bitrate. This

leads to a big waste in bandwidth because the user only views about 30% of the whole frame. Two

approaches have been proposed in the literature to improve 360-degree video streaming: region-of-

interest (ROI) streaming and tiling.

In ROI-based streaming, the 360-degree video is projected onto a geometric structure such as a

pyramid [36] or cube map [34] such that more bits are allocated to the viewport. Multiple versions

of the video are created for each possible viewport. During streaming, users choose the version that

overlaps the most with their current viewport.

In tile-based streaming, a 360-degree video is divided into a grid ofN×M tiles. A higher bitrate

is given to tiles in the viewport while a lower bitrate is given to other tiles. MPEG-DASH Spatial

Relationship Description (SRD) [45] supports tiled streaming, because SRD can describe a video

as a spatial collection of synchronized videos. Using SRD, we can stream to users the area they are

currently viewing with the highest quality possible based on their available bandwidth. In addition,

the motion-constrained tile set (MCTS) feature of HEVC [41] has been investigated in [37, 49, 61]

to reduce the transport complexity and reduce synchronization problems between tiles such that a

single decoder can be used.

In our work, we tile the videos and encode each tile in different bitrates using HEVC encoding.

We describe the available representations for each tile in the MPD using SRD. Then, the server

decides what representation to send for each tile.

Wang et al. [54] did subjective experiments to study the impact of having different qualities

for tiles in the viewport [54]. They conclude that in most cases, by mixing tiles from HD 1920 ×
1080p stream and 1600 × 900p stream, 14%-20% bandwidth can be saved without any noticeable

perceptual quality loss.

2.1.4 Cellular Networks

Our system is independent of the cellular network technology, provided that we can schedule physi-

cal network resources with different capacities to users with various channel conditions. In our work,

we use LTE as a sample cellular network. We can extend our work to 5G because both of them use

Orthogonal frequency-division multiplexing (OFDM). The high-level network architecture of LTE

is comprised of three main components: User Equipment (UE), Evolved UMTS Terrestrial Radio

Access Network (E-UTRAN), and Evolved Packet Core (EPC). EPC communicates with packet

data networks in the outside world such as the Internet. E-UTRAN handles the radio communica-
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Figure 2.1: LTE frame.

tions between UEs and EPC and has one component, the evolved base stations, called eNodeB or

eNB.

As shown in Figure 2.1, the LTE downlink channel is divided into fixed time frames, each

spanning 10 ms. Each frame is further divided into 10 sub-frames, each spanning 1 ms and contain-

ing two slots (0.5 ms each). The base station (eNB) transmits each subframe using OFDM, which

divides available radio resources into grids in both time and frequency domain. Each grid cell (span-

ning 15 kHz × 66.7 µs) is called a resource element (RE). The eNB schedules radio resources at

the granularity of a physical resource block (RB) comprising multiple resource elements. Each RB

spans half a subframe (0.5 ms) in the time domain and 12 OFDM subcarriers (180 kHz) in the

frequency domain. UEs are dynamically allocated non-overlapping sets of RBs depending on their

channel conditions.

To accommodate the time-varying radio channel conditions of UEs, LTE uses a link adaptation

method known as adaptive modulation and coding (AMC) which adapts the modulation scheme and

code rate based on the channel’s signal-to-noise ratio (SNR). The quality of a channel is periodically

measured at the UE and sent to the eNB in the form of so-called channel quality indicators (CQIs).

The modulation and coding scheme (MCS) used for the resource blocks assigned to a UE is then

chosen based on the reported CQI value such that the block error rate is less than a threshold. Higher

MCS modes require good channel quality and lead to higher number of bits per resource block.

In order to improve energy efficiency of mobile users, LTE specifies the Discontinuous Recep-

tion Mechanism (DRX) [5]. Enabling DRX allows UEs to wake up and sleep in a periodical manner.

The sleeping/waking period is multiple of subframes (1ms). Scheduling RBs has to consider the

DRX parameters to ensure that data is sent when the receiver is awake. The energy consumption in

the sleep time is much less than wake up time.

2.1.5 Evolved Multimedia Broadcast Multicast Services (eMBMS)

The 3GPP standard specifies the Evolved Multimedia Broadcast Multicast Service (eMBMS) for

multicast over LTE networks [2]. eMBMS enables LTE cellular networks to deliver video streams
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over multicast, which allows a streaming server to substantially reduce the wireless network load

by serving mobile devices interested in the same video stream using a single multicast session.

A multimedia multicast service consists of four network elements: Broadcast/Multicast Service

Center (BMSC), Gateway (GW), Mobile Management Entity (MME), and Multi-cell/multicast Co-

ordination Entity (MCE).

First, the service center (BMSC), which is located within the core network, is responsible for

authenticating and authorizing the content providers, managing the charging process, and control-

ling the overall configuration of data flow through the core network. Second, the eMBMS gateway

is considered as a logical node that helps in multicasting any IP packet generated from BMSC to

all base stations located in a certain area. Moreover, the gateway handles further session control

signaling via the mobile management entity (MME). MME plays an important role in performing

a number of controlling procedures such as user tracking, paging, and bearer activating. Finally,

MCE ensures the full functionality by performing the time synchronization as well as coordinating

the usage of the same radio resources and transmission parameters across all cells belonging to a

particular area.

Multicast services are offered on a time-shared basis with unicast connections. The frame struc-

ture in an LTE network is subdivided into 10 equal sub-frames whose lengths are equal to 1 mil-

lisecond. Some of these sub-frames (numbered 0, 4, 5, and 9) are reserved for unicast connections

and cell specific information. Any or all of the remaining six sub-frames may be allocated to the

multicast service. A mobile terminal is informed about which sub-frames are assigned to its mul-

ticast session via a broadcast channel and this allocation can be changed dynamically at specified

intervals.

2.2 Related Work

2.2.1 Mobile Video Streaming

Mobile video streaming of traditional single-view video streams has been extensively studied in the

literature, for both unicast and multicast. For example, Yu et al. [60] utilize scalable video coding

(SVC) to optimize the energy consumption of mobile devices, whereas Almowuena et al. [8] divide

users into groups based on their channel conditions to achieve the same goal. Chen et al. [14] discuss

fairness among users in mutlicast groups and present a resource allocation method for user grouping.

Chen et al. [15] introduce a unicast framework for adaptive streaming of single-view videos over

LTE networks. None of these works, however, addresses the characteristics of 360-degree videos,

such as the large size of the streams and the user interactivity with the content.

Xie et al. [57] present piStream, a DASH-compatible adaptive video streaming framework

that exposes LTE’s physical layer information to facilitate video rate adaptation. piStream’s PHY-

informed design enables a more accurate bandwidth estimation and agile video rate adaptation.
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2.2.2 360-degree video streaming

Few recent works addressed various aspects of 360-degree video streaming, especially in the unicast

model, e.g., [62, 47, 28, 56, 17]. Two common themes can be identified in previous works: tiling

and region-of-interest (ROI) streaming.

In tile-based streaming, a 360-degree video is projected on an equirectangular map [59] and

divided into an N ×M grid of tiles. Tiles in the viewport of the user are streamed with high quality

and other tiles are either streamed with lower quality or not sent at all. One of the earliest solutions

for adaptive 360-degree video streaming is proposed in [7]. The authors formulate and solve a

bandwidth-optimal system for selecting the quality of tiles that maximizes the quality of viewport

depending on available bandwidth. Another tile-based method is proposed in [48] that examines

three prediction approaches to predict the user’s future viewport, and selects the optimal sequence

of tiles which minimizes bandwidth consumption. The presented results show that viewport can be

predicted rather accurately for the next second. In addition, the recent High Efficiency Video Coding

(HEVC) standard supports tiling [61], which further helps in adopting tile-based streaming.

Graf et al. [28] discuss streaming of 360-degree videos over HTTP by exploring different tiling

patterns. We use the analysis in [28] to select tile sizes in our work. Petrangeli et al. [47] construct a

360-degree streaming framework over HTTP/2, which aims to reduce the high bandwidth require-

ments and storage costs of current streaming solutions for 360-degree videos. Nasrabadi et al. [43]

investigate a buffer-efficient approach using scalable video coding in 360-degree video streaming

and provide a comprehensive buffer analysis. Xie et al. [56] propose a probabilistic tile-based adap-

tive streaming system. They apply a target-bufer-based control algorithm to ensure continuous play-

back within a small buffer and construct a probabilistic model to cope with the viewport prediction

error. Xiao et al. [55] compute the optimal tiling to minimize storage and bandwidth. They formulate

these storage and bandwidth concerns as an integer linear programming problem. Their experiments

show that non-uniform tiling solutions can significantly outperform existing tiling schemes.

In ROI-based streaming, the 360-degree video is projected onto a geometric structure such as

a pyramid [17] or cube map [59], where regions of the structure represent different user viewports.

For each viewport, a video version is created where more bits (quality) are allocated to parts of

the 360-degree video in the viewport and less bits are allocated to the other parts. The versions are

stored on the server, and during streaming, the version that aligns the most with the user’s current

viewport is served to that user. Zhou el al. [62] analyze the ROI-based streaming approach used

by Facebook and its impact on user experience and bandwidth consumption. Corbillon et al. [17]

investigate the effect of various projections and quality arrangements on the video quality displayed

to the user.

Multicast of 360-degree videos has received much less attention in the literature thus far. We

are only aware of one recent algorithm that considers adaptive streaming of VR content over LTE

networks which is referred to as MVR (Multicast of Virtual Reality content) [6]. MVR proposes

a heuristic algorithm that divides users into subgroups based on their channel conditions and tile
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weights, and determines the bitrate for each tile in each subgroup. Unlike MVR, VRCast divides

the problem into two subproblems, one is related to the mobile channel conditions and the other

considers viewports of users. This division allows us to solve each problem optimally and efficiently

in real time. However, MVR considers both aspects together and this leads to a suboptimal solution

that can not run in real time.

In our experiments, We compare VRCast against MVR as well as the closest work for single-

view video streaming [14] after adding some extensions to support 360-degree videos. The au-

thors of [14] propose a multicast grouping that maximizes the proportional fairness. They provide

a mathematical formulation for their problem and solve it optimally using a dynamic programming

approach.
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Chapter 3

System Model and Problem Definition

This chapter explains the considered system model and its components. It also defines the problem

addressed in this thesis and its challenges.

3.1 System Model

We consider live streaming of popular 360-degree videos over 4G/5G cellular networks that support

multicast services, such as eMBMS in LTE networks [38]. As shown in Figure 3.1, our scenario

is similar to regular mobile multimedia streaming, where a content server provides a video stream,

through high-speed wired links, to a Broadcast Multicast Service Center (BM-SC) which announces

streaming services to multiple users connected to one or more cellular base stations. Each base

station serves users within its range. Our work manages the wireless channel between each base

station and its users to optimize the delivery of 360-degree videos. The radio resources of this

wireless channel are divided across time and frequency. The smallest unit of radio resources that

can be allocated is referred to as a resource block (RB). In current LTE networks, each RB is 180

kHz wide in frequency and occupies 1 slot (0.5 ms) in time [4].

The channel conditions of each mobile user fluctuate over time due to mobility and channel im-

pairments such as shadowing, interference, and multi-path fading. Mobile users periodically report

their channel quality indicator (CQI) to the associated base station. Each CQI value is mapped to a

modulation and coding scheme (MCS), which determines the bitrate per RB for each user. Higher

MCS modes require good channel qualities and lead to higher resource block capacity (bits/RB).

On the other hand, lower MCS modes are more robust and usable for diverse (both strong and

weak) channel qualities. The MCS mode must be chosen to accommodate all users in a multicast

group, which means that the MCS mode must be chosen based on the user with the worst channel

conditions. Thus, putting all users within a cell in a single multicast group may not yield the best

performance. The first aspect of our problem is how to divide mobile users into multiple multicast

groups to maximize the average bitrate received while maintaining fairness.

To save the energy of mobile devices, the base station transmits the video data in bursts, which

allows mobile devices to wake up the reception component of the device to receive the data during
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Figure 3.1: A high-level illustration of the considered model.

the burst and put it in low-energy (idle/sleep) mode when there is no burst. The second aspect of

our problem is how to construct bursts and compute sleep durations to maximize the energy saving

of mobile users. In LTE, the Discontinuous Reception Mechanism (DRX) is used to implement the

computed bursts to save energy [5].

We consider interactive 360-degree videos served to mobile users who can utilize various de-

vices such as smartphones, tablets, and head-mounted displays (HMDs). Users can dynamically

choose which parts of the video to watch, via for example, the tablet touchscreen or moving their

heads when using HMDs. We refer to the part currently being viewed as viewport. Users can be

watching different viewports at the same time. The viewports of users are periodically sampled and

sent back to the base station. The frequency of sending this data is low for each user, once every few

seconds or more according to the number of users. On the server side, a prediction module is used

to estimate future viewports.

Each 360-degree video is divided into a grid ofN×M tiles. The video is also temporally divided

into segments, each is in the order of one to a few seconds. Each tile in each segment is encoded at

multiple quality representations. Information about segments and their bitrates are stored in Media

Presentation Description (MPD) files, according to the Spatial Representation Description (SRD)

feature of the widely-used DASH protocol [45]. The final aspect of our problem is to determine

which tiles to transmit and the DASH representation for each tile to maximize the quality for all

users and maintain spatial smoothness across tiles.
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3.2 Problem Definition

The problem addressed in this thesis is to optimally multicast a live 360-degree video of a popular

event to a large number of mobile users with dynamic channel conditions watching different view-

ports such that the average viewport quality for all users is maximized given a limited number of

resource blocks (RBs) in the cellular network. This is a fairly complex problem, as a solution for

it not only needs to maximize the utilization of the wireless resources, but it also should optimize

the perceived quality for users in terms of viewport bitrates and temporal/spatial smoothness of the

rendered viewport tiles. Furthermore, the solution needs to save the energy of mobile devices, and

to support the user interactivity with 360-degree videos.

To illustrate the complexity of this problem, we discuss various trade offs. First, consider a

simple approach that puts all users in the same multicast group. In this case, users with poor channel

conditions impose a restriction on the modulation and coding scheme used for the whole group,

leading to low quality for all users. On the other end, each user can be served with a unicast session

to maximize the quality for that user. But this approach consumes significant resources and does

not scale. Thus, we need to find an optimal number of multicast groups to achieve the best possible

quality given the available resources.

Second, consider streaming different viewports of 360-degree videos using a given bitrate bud-

get. Unlike traditional single-view videos, only a fraction of each 360-degree video frame can be

watched (viewport) by each user. Thus, the quality of experience is heavily impacted by the quality

of the viewport. In addition, some viewports are more popular (watched by more users) than others.

Therefore, it is important to carefully allocate the available bitrate to tiles to achieve high quality

within the viewport and across successive viewports.

Third, once the bitrate is decided for each tile, the bits need to be transmitted over the wire-

less channel using the resource blocks. Resource blocks span two dimensions: frequency and time.

Naively choosing resource blocks for tiles may spread them over longer time than necessary, and

thus reduces the opportunity for energy saving for mobile devices (as the reception component needs

to be active during the entire transmission time of the resource blocks). Therefore, it is important to

carefully construct bursts of data for different parts of the 360-degree video to save energy.
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Chapter 4

Proposed Solution

This chapter presents our proposed solution (VRCast) for 360-degree video multicast streaming

over LTE networks. It further explains the steps of our solution by an illustrative example.

4.1 VRCast Solution Overview

We propose decomposing the complex problem of mobile multicast streaming of 360-degree videos

into two sub-problems. In the first sub-problem, we divide users into multicast groups to maxi-

mize the assigned bitrate for each group. Then, these bitrates are used as a budget in the second

sub-problem where we divide them among tiles to optimize video quality. This decomposition is in-

tuitive and allows us to carefully model and solve each sub-problem optimally. In addition, it allows

us to solve each sub-problem at a different time scale, which is an important advantage for our ap-

proach as it offers more flexibility. Notice that the first sub-problem deals with optimizing network

parameters and the second optimizes the 360-degree video streaming parameters. Both clearly can

vary at different time scales.

We note that our solution manages the last hop (wireless link between base stations and mobile

users). Thus, it does not introduce any additional delay from the source server to the base station.

The content is assumed to be divided into tiles and encoded in multiple representations using stan-

dard DASH; this happens at the server and typical for current live streaming services. Our solution

at the base station divides users into groups and selects the quality representations for different tiles.

This occurs in real time for each scheduling window ∆ (in the order of 1–2 sec). Meaning, while

users are consuming data for window at time t1, the decisions for window t1 + ∆ are computed.

Since our solution is efficient and takes much less time (≈ milliseconds) than the window size to

compute, we do not introduce any additional delay into the live streaming session, which is crucial

for such sessions.

It is also important to note that each multicast group receives all tiles, but tiles have different

qualities depending on their importance. This is indicated in Figure 3.1 by different shades of the

tiles in the two multicast groups. The availability of all tiles supports fast switching, especially for

unusual random viewport changes occasionally made by some users.

14



Symbol Description
C Number of MCS modes
K Number of multicast groups
M Number of mobile users
Q Number of quality representations
R Total number of resource blocks (RBs)
S Number of time slots
T Number of tiles
bt,q Bitrate of quality representation q for tile t
ci MCS for user i (bits/RB)
ĉk Minimum MCS for multicast group k (bits/RB)
Gk Set of users in multicast group k
wt,i Weight of tile t according to the viewport of user i
Wk,t Average weight of tile t for multicast group k
xk RBs assigned to multicast group k
yk,t,q Indicator variable showing if quality q is assigned to tile t for multicast group k

Table 4.1: Symbols used in the thesis.

The details of each step are explained in the following subsections, followed by an illustrative

exampling showing all steps of VRCast. Symbols used in this thesis are listed in Table 4.1.

4.1.1 Grouping Users

Given a budget of resource blocks R and a number of mobile users M with different channel condi-

tions (and hence MCS modes), we would like to optimally partition users into multicast groups and

assign resource blocks to each group, such that the average bitrate received by users is maximized

while maintaining fairness among users in different groups.

The mathematical formulation of this problem is given in Eq. (4.1), which is a two-level nested

optimization problem. The outer optimization computes the optimal grouping of users to maximize

the average bitrate as shown in Eq. (4.1a). The inner optimization computes the optimal allocation

of resource blocks to multicast groups that maximizes the proportional fairness, which is defined as

the sum of the log of bitrates in Eq. (4.1e). The inner optimization is similar to the ones presented in

[14], and it has an analytic solution which distributes the resource blocks among groups proportional
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to the number of users in each group. That is, the optimal solution for the inner optimization problem

is given by x∗k = |Gk|/M ×R.

max
Gk,xk

K∑
k=1

|Gk|
M
× ĉk × xk

S
(4.1a)

subject to ĉk = min
i∈Gk

ci ∀k ≤ K (4.1b)

|G1 ∪G2 ∪ · · · ∪GK | = M (4.1c)

Gk ∩Gl = φ ∀k, l ≤ K, k 6= l (4.1d)

xk = arg max
xk

{
K∑

k=1
|Gk| log( ĉk × xk

S
) :

K∑
k=1

xk 6 R

}
(4.1e)

variables K,xk,Gk (4.1f)

The objective of the outer optimization problem, Eq. (4.1a), is to maximize the average bitrate

for all users. The bitrate for each user is the number of bits sent to that user divided by the total

scheduling time, represented by the number of available time slots S. The number of bits sent

equals the product of the MCS mode of the user’s group ĉk and the number of RBs allocated to this

group according to the inner optimization problem x∗k. The constraint in Eq. (4.1b) guarantees that

all users in a multicast group can receive all data by setting the MCS for this group according to the

user with minimum MCS. The constraints in Eq. (4.1c) and Eq. (4.1d) ensure that each user belongs

to only one multicast group.

We design an efficient algorithm using dynamic programming to compute the optimal solution,

which is shown in Algorithm 1. The basic intuition used in this algorithm is that users with similar

MCS values are more likely to be in the same group than users with quite different MCS values.

Therefore, The algorithm starts by sorting users based on their MCS values. It then forms MCS

groups consisting of users having the same MCS value. Then, we can think of the problem as

placing partitions between users, and we want to decide the optimal number and positions of these

partitions. The best solution for k groups can be found by considering the optimal solution for k−1
groups plus the utility of the new group. The dynamic programming array used U(K, l, i) is the

total utility for the first i MCS groups forming l partitions, when there are a total of K multicast

groups such that U(K, l, i) = max∀j<i U(K, l − 1, j) + utility(K,Gl), where j is the number of

MCS groups forming l − 1 partitions.

After finding the optimal grouping and allocation of RBs, we schedule these RBs in the time-

frequency grid to save the energy of mobile users. Since there are no RBs shared between any two

multicast groups, the optimal solution is to arrange the RBs of each multicast group contiguously,

i.e., no RBs from a multicast group is allocated in the middle of the RBs of another group. Then,

we form data bursts based on the grouped RBs. A burst is specified by the start and end times of the
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Algorithm 1: Group users and assign RBs.

1 Function GroupUsers
Input : ci sorted, N
Output: K∗,G∗l , x∗l

2 for K = 1 : N do
3 // Partition the 1st multicast group G1
4 for i = 1 : N − (K − 1) do
5 U(K, 1, i) = GetGroupUtility(K, {1, ..., i})
6 end
7 // Partition the lth group Gl

8 for l = 2 : K do
9 // Partition users till MCS i

10 for i = l : M − (K − l) do
11 // Partition users from MCS greater than j
12 for j = l − 1 : i− 1 do
13 Gl = {j + 1, . . . , i}
14 u = U(K, l − 1, j) +GetGroupUtility(K,Gl)
15 U(K, l, i) = max(U(K, l, i), u)
16 end
17 end
18 end
19 end
20 // Backtrack to find optimal G∗l and x∗l
21 K∗,G∗l , x∗l = constructSolution(U)
22 Function GetGroupUtility (K, Gl)

23 x∗l = |Gl|
M
×R // Optimal RBs allocation

24 ĉl = mini∈Gl
ci

25 return ul = |Gl|
M
× ĉl × x∗l

S
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grouped RBs. In LTE networks, this is implemented by setting the DRX parameter, which instructs

the reception component of mobile devices to wake up only during the transmission period of their

group’s RBs and sleep otherwise.

Time Complexity and Notes. It is straightforward to show that the time complexity of the

proposed user grouping algorithm is O(C4), where C is a constant that represents the maximum

number of MCS modes, and it does not depend on the number of mobile users in the system. In

current LTE networks, the maximum value of C is 30 [38]. Thus, the proposed algorithm can easily

run in real time.

We note that we group users based on their channel conditions only. This is to maximize the

utilization of the available wireless resources. We did try to further classify users based on their

current viewports in addition to channel conditions. This, however, resulted in worse performance in

terms of the achieved video quality and energy saving, because users with diverse channel conditions

but sharing similar viewports may end up in the same group, which forces the whole group to use

lower MCS mode (i.e., lower bitrate) and hence reduces the quality for all users. Our user grouping

method does not mean that users will be receiving data that they are not interested in, since all tiles

are sent to each group to support fast interactivity. The importance of viewports is considered in

assigning different qualities to tiles.

4.1.2 Assigning Quality Representations to Tiles

The second step of VRCast is to distribute the computed resource blocks in step 1 among tiles

in the different multicast groups. That is, for each multicast group Gk with MCS mode ĉk and

x∗k RBs assigned to it, we need to assign a quality representation q to each tile to maximize the

average viewport quality and minimize the spatial variance between viewport tiles of each user

while maintaining fairness among users with different viewports. The mathematical formulation of

this problem is given in Eq. (4.2).

The formulation in Eq. (4.2) computes the optimal quality representation for each tile. Two

alternative utilities could have been adopted in step 2. The first one is the weighted sum of tiles

bitrates (WSTB). WSTB maximizes the average viewport bitrate. However, it does not consider

the spatial smoothness of the tiles in the viewport. In order to consider spatial smoothness, We use

the weighted product of tiles bitrates (WPTB) as our utility. WPTB is defined as
∏

t b
Wk,t

t,q , which

is equivalent to
∑

tWk,t × log(bt,q). WPTB improves spatial smoothness because maximizing the

product of tiles bitrates leads to variance minimization among them. The constraint in Eq. (4.2b)

restricts the available number of resource blocks for multicast group Gk to x∗k. The constraint in

Eq. (4.2c) calculates the weight of each tile as the aggregate of the weights of tiles across sampled

users in the group. The tile weight for each user is defined as the percentage of overlap between the

tile and the viewport of the user. The constraints in Eq. (4.2d) and Eq. (4.2e) ensure that only one
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quality representation is assigned to each tile. Note that yk,t,q is a decision variable that determines

whether the quality q is assigned to tile t for multicast group k.

max
yk,t,q

T∑
t=1

Q∑
q=1

Wk,t × log(bt,q)× yk,t,q (4.2a)

subject to:
T∑

t=1

Q∑
q=1

⌈
bt,q

ĉk

⌉
× yk,t,q 6 x∗k (4.2b)

Wk,t =
∑

i∈G∗
k

wi,t (4.2c)

Q∑
q=1

yk,t,q = 1,∀t (4.2d)

yk,t,q ∈ {0, 1}, ∀t, q (4.2e)

variables yk,t,q (4.2f)

It is straightforward to show that the problem in Eq. (4.2) falls in the category of Multi-choice

Knapsack problems [33], which is NP-Complete. Each tile is equivalent to a class and the available

quality representations for each tile are equivalent to the items in each class. Constraints (4.2d) and

(4.2e) ensures that only one quality is picked from every tile. Each quality has a utility (Wtlog(bt,q))

defined in the objective function (4.2a). The cost of each quality is the number of RBs required to

stream the chosen quality, which equals to dbt,q

ĉk
e defined in (4.2b).

Algorithm 2 shows our solution for the problem in Eq. (4.2). We design an algorithm to solve

the optimization problem in Eq. (4.2). The algorithm first assigns a minimum quality representation

for each tile, since all tiles need to be transmitted to each multicast group. It then searches across

all possible assignments of quality to tiles using dynamic programming. The best solution for t tiles

is computed by considering the optimal solution for t − 1 tiles plus the utility of the new tile. The

dynamic programming array used V (t, τ) is the best utility for the first t tiles using τ RBs such that

V (t, τ) = max∀q V (t− 1, τ −R(t, q)) + utility(t, q), where R(t, q) is the number of RBs needed

to stream tile t with quality q.

Time Complexity. The proposed algorithm for assigning qualities to tiles terminates in O(T ×
Q × x∗k), where T is the number of tiles, Q is the number of quality representations, and x∗k is the

number of RBs.

To shed some light on this time complexity, we mention the practical ranges of the three param-

eters T,Q, and x∗k. The number of tiles T is in the order of few tens. For example, recent works

that adopt tiling, e.g., [47, 28, 56], set T around 50. The number of DASH quality representations

Q is typically less than 10 in practice. For x∗k, the maximum total number of resource blocks for all

multicast groups in one second (the typical scheduling window) is less than 60,000 in LTE [38, 3].
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Algorithm 2: Assign quality representation to each tile.

1 Function AssignTileQuality
Output: bk,t ← Bitrate for each tile in group k.

2 ∀t, bk,t = bt,1 // Assign min bitrates to tiles
3 ∀τ, V (0, τ) = 0
4 for t = 1 : T do
5 for τ = bt,1

ĉk
: x∗k do

6 for q = 1 : |bt| do
7 if τ − bt,q

ĉk
≥ 0 then

8 uk,t,q = Wk,t × log(bt,q)
9 u = V (t− 1, τ − bt,q

ĉk
) + uk,t,q

10 V (t, τ) = max(V (t, τ), u)
11 end
12 end
13 end
14 end
15 // Backtrack to find optimal bk,t

16 bk,t = constructSolution(V )

Thus, for each multicast group, the number of resource blocks x∗k is in the order of a few tens of

thousands. Putting all numbers together indicate that our algorithm can easily run in real time.

4.2 Illustrative Example

For illustration, we explain the steps of our solution using the following simple scenario. A budget

of 54 RBs is available in a time-frequency grid of 6 time slots and each slot has 9 RBs. Nine users

are streaming a live 360-degree video. The 360-degree video is divided into 3 tiles and each tile

is encoded into 3 quality representations of bitrates 4, 20, and 32 bits per second respectively. The

channel condition (MCS value) and viewport tiles of each user is shown in Table 4.2. In real LTE

networks, there is a direct mapping between the channel conditions of the user to an MCS value. The

MCS value and number of assigned RBs define the bits capacity of each RB (bits/RB). However,

for simplicity, we define MCS values as number of bits per RB.

Applying step 1, we have three different MCS values (1, 2, and 4) with number of users equal

(2, 4, and 3) for each MCS, respectively. There are 4 possible groupings as shown in Table 4.3.

For each grouping, we have one or more multicast groups (row 1). Each multicast group is served

by the minimum MCS of all users in the group (row 3). The number of RBs (row 4) assigned to

each group is proportional to the number of users in the group. The number of bits received by each

group (row 5) is the multiplication of the number of RBs and the minimum MCS of the group users

(bits/RB). Group bitrate (row 6) equals the number of bits divided by the total number of time slots

(6 slots). Users average bitrate (row 7), our utility, is calculated as a weighted average of group
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User Index MCS Viewport tiles
User 1 1 bit/RB 1, 2
User 2 1 bit/RB 3
User 3 2 bits/RB 2
User 4 2 bits/RB 1, 3
User 5 2 bits/RB 1, 2
User 6 2 bits/RB 2, 3
User 7 4 bits/RB 1, 2
User 8 4 bits/RB 2
User 9 4 bits/RB 2, 3

Table 4.2: MCS values and viewport tiles of users in the example.

G1 G2 G3 G4
1. M/C groups [1,2,4] [1,2] [4] [1] [2,4] [1] [2] [4]
2. No. of users 9 6 3 2 7 2 4 3
3. Min. MCS 1 1 4 1 2 1 2 4
4. No. of RBs 54 36 18 12 42 12 24 18
5. No. of bits 54 36 72 12 84 12 48 72
6. Bitrate 9 6 12 2 14 2 8 12
7. Avg. bitrate 9 8 11.33 8

Table 4.3: Possible groupings in the example.

Bitrate
MCS 1 bit/RB 2 bits/RB 4 bits/RB

4 bits (L) 4 RBs 2 RBs 1 RBs
20 bits (M) 20 RBs 10 RBs 5 RBs
32 bits (H) 32 RBs 16 RBs 8 RBs

Table 4.4: RBs required to send each quality representation.

Quality Assignment Utility RBs
MMM 35.95 30
MHM 38.79 36

HHL, LHH 35.35 34
HHM, MHH 40.18 42
LHM, MHL 33.94 28

Table 4.5: Feasible quality assignments for group 2.
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bitrates according to the number of users per group (row 2). As shown in 4.3, grouping 3 is optimal

and maximizes the utility.

In step 2, we have 3 tiles and 3 quality representations for each tile of bitrates 4 (L), 20 (M), and

32 (H) bits. Table 4.4 shows the required RBs to send each quality representation to users of different

channel conditions (MCS). The number of possible quality assignments is 27. For each group, we

calculate the utility for each feasible assignment. For Group 1, we have 2 users of minimum MCS

1 and 12 RBs assigned to it and the tile weights are 1, 1, 1. There is only one feasible quality

assignment for MCS = 1 and RBs 6 12 which is to set the low quality representation (4 bits)

for each tile (LLL). For Group 2, we have 7 users of minimum MCS 2 and 42 RBs assigned to it

and the tile weights are 3, 6, 3. All quality assignments except HHH are feasible for MCS = 2 and

RBs 6 42. As the middle tile has the maximum weight, the optimal solution assigns the highest

quality to the middle tile. So, HHM or MHH gives the highest utility. Table 4.5 shows the feasible

quality assignments with highest utilities for group 2.
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Chapter 5

Evaluation

This chapter presents an extensive evaluation using trace-driven simulation and an LTE testbed to

assess the performance of VRCast compared to the closest works in the literature.

5.1 Simulation Setup

5.1.1 360-degree Videos and User Interactivity Traces

We used and combined two datasets of 360-degree videos in our experiments to cover a wide variety

of content and user viewing behavior. The first dataset [11] contains 16 videos at 4K resolution; we

refer to these videos as V1 to V16. The length of each video is around 30 seconds. The dataset

contains different video categories including sports, landscape, and entertainment. Each of the 16

videos was watched multiple times by 153 volunteers, resulting in a total of 985 recording sessions.

In each session, the view angle of the user is recorded every 0.1 second, in the form of Euler angles.

The second dataset [18] contains 7 videos at 4K resolution, which we refer to as V17 to V23. The

length of each video is around 60 seconds. The dataset contains different video categories including

sports, entertainment, and documentary. These videos were watched by 59 participants in a total of

350 sessions. The view angles are recorded in the form of the Hamilton quaternions representation.

We converted the Hamilton quaternions to Euler angles. The recording of view angles in this dataset

was not done at a constant interval. We used linear interpolation to have uniform samples every 0.1

seconds, as in the first dataset.

In total, we created unified traces with 1,335 sessions of 23 diverse 360-degree videos, where

each video is watched on average by 50 users and the viewport is recorded every 0.1 second. To

exercise different network conditions and user mobility with realistic speeds, we generate longer

traces of length 15 minutes by concatenating sessions from the 23 videos together.

We divided each video in the traces into an 8x4 grid of tiles, similar to [6], and encoded each

tile at five quality representations using Kvazaar, [53], an open source HEVC encoder that supports

tiling. We used variable bitrate encoding (VBR) with different quantization parameters (QP) of {18,

24, 30, 36, 42}. Then, we used GPAC [45] to segment the video into one-second segments and

generate the MPD DASH manifest.
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During simulation, each user randomly selects one of our traces and starts interacting with the

video (i.e., changing viewports) according to the trace. The decision for a segment at time t is based

on a sample of 10% of the viewports at t−0.5, after applying the Auto Regressive Moving Average

(ARMA) prediction module proposed in [25] to predict their future viewport at time t.

5.1.2 LTE Network Configuration and User Mobility

We simulate a mobile network using the LTE module in the NS3 simulator. Our scenario contains

one base station (eNodeB) with a cell radius of 10x10 km and 300 mobile users registered with

the base station. We use a configurable ratio of the available resource blocks to live stream 360-

degree videos to all 300 users. VRCast operates periodically each second to allocate resource blocks

according to the channel conditions and viewports of mobile users. Users move according to the

Self-similar Least Action Walk (SLAW) mobility model [39]. This model is more realistic than the

random-way point model. It represents mobility of users within a community, such as students on

a university campus and visitors of a theme park. We generate mobility traces of length 15 minutes

each using Bonnmotion, [10], which is a Java-based tool commonly used for investigation of mobile

network characteristics. We configure the tool to generate mobility traces with different speeds to

represent the case where some users are walking and others are riding buses or cars. We import

the generated mobility traces into NS3 to control the movements of mobile users. The movements

of users affect their channel conditions, and hence the MCS modes used and the bitrate they can

receive.

In practical scenarios, mobile operators usually install base stations in crowded areas to serve

most users with strong signals. Accordingly, in our simulations, users are distributed such that 2/3

of them are close to the base station (within 1/3 of the cell radius), while other users are scattered

further away from the base station. Moreover, mobile users can move with different speeds depend-

ing on whether they are standing, walking, or riding a bus. We simulate users with moving speed of

1 m/sec (walking) and others with speed up to 10 m/s (riding a bus).

5.2 Algorithms Compared Against

We compare our algorithm against the closest, most recent, algorithm in the literature, which is

MVR (Multicast of Virtual Reality content) [6]. MVR solves the problem of 360-degree mobile

video multicast. It is a heuristic algorithm that divides users into subgroups based on their channel

conditions and tile weights, and determines the bitrate for each tile in each subgroup. The authors

of MVR showed that it outperforms the previous algorithms in the literature.

In addition, we compare against another state-of-the-art grouping algorithm, which is called

Proportional Fairness (PF) [14]. PF handles the heterogeneity of channel conditions by partitioning

users into multicast groups so that users with good signal strength do not suffer by being grouped

together with users with poor signal strength. PF, however, was not designed for tiled streaming. We
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slightly modified it to support tiling, by uniformly distributing the computed bitrate for each frame

across all tiles in that frame.

We consider the following performance metrics, which were used in similar previous works,

e.g., [6, 8, 28, 56].

• Frame Quality: is the bitrate of the video frame sent to a multicast group containing all tiles.

• Viewport Quality: is the weighted sum of the bitrate assigned to tiles in the viewport. The

weight of each tile is the percentage of its overlap with the viewport.

• Spatial Variance: is the variance in the quality of tiles in the viewport. A recent work [56]

showed that the spatial variance has a direct effect on QoE.

• Energy Saving: is the average fraction of time that the reception component of a mobile de-

vice is closed to the total time. Users in the same group only wake up while the group’s video

frame is being sent and sleep otherwise according to the DRX parameters [5]. We note that

the networking module consumes about 30% of the total energy of the mobile device during

video streaming [32]. The energy saving that we measure, is only related to the networking

component while other modules in the mobile device are not affected by our solution.

• Fairness: captures the relative quality observed by each user compared to others in the same

multicast group. It is defined as the Jain’s index of the ratio between each user viewport bitrate

and the total frame bitrate.

• Spectral Efficiency: is the total transmitted data rate (in bits per second) divided by the

channel bandwidth (in Hertz). This metric shows the efficiency of the streaming algorithm in

using the cellular network resources, which is an important aspect for network operators.

In the following sections, we first present the comparisons of our algorithm against previous

works. Then, we analyze the performance of our algorithm from different perspectives. In both

cases, we repeat each experiment 30 times and plot and analyze the average results across all repe-

titions.

5.3 Performance of VRCast versus others

We compute and plot the cumulative distribution function (CDF) for each performance metric across

time for all users and all video traces. Figures 5.1, 5.2, and 5.3 summarize the comparison results

for all metrics. The figures show that our algorithm (VRCast) substantially outperforms the other

algorithms (MVR and PF). Specifically, Figure 5.1(a) shows that VRCast results in much higher

quality for all video frames than MVR and PF. For example, for VRCast, about 25% of the frames

are assigned a bitrate of 7.7 Mbps or higher, while none of the frames is assigned that bitrate for

MVR and PF. The median frame quality for VRCast is about 7.25 Mbps while it is 5.97 Mbps for

MVR, which is an improvement of 22%.
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Figure 5.1: Performance of VRCast against other algorithms.
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Figure 5.2: Performance of VRCast against other algorithms (continued 1).

In addition, as shown in Figures 5.1(b) and 5.2(a), VRCast distributes the allocated bitrate of

each frame to viewport tiles not only to improve the viewport quality but also to achieve smooth

quality across all tiles. The smooth quality is shown by the much lower spatial variance achieved by

VRCast compared to MVR. The figure shows a reduction in the median of the spatial variance by

up to 53% compared to MVR. We note that PF assigns all tiles the same bitrate and thus there is no

variance in quality. This, however, yields poor quality for the viewports (Figure 5.1(b)).

Mobile devices have limited battery lifetimes. Receiving and rendering 360-degree videos con-

sume substantial energy. The proposed VRCast algorithm reduces the energy needed to receive

360-degree videos by carefully transmitting the video data in bursts. As shown in Figure 5.2(b),

VRCast achieves substantial improvements in the energy saving compared to the other algorithms.

For example, using MVR and PF, no mobile user was able to achieve energy saving more than 20%

(i.e., turn off the receiving components in the mobile device 20% of the time). Whereas using VR-
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Figure 5.3: Performance of VRCast against other algorithms (continued 2).

Cast, more than 80% of the users achieved at least 20% energy saving. The figure also shows that

VRCast increases the median of the energy saving by more than 241% compared to MVR and PF.

Maintaining fairness among different users is another desirable feature of the proposed VRCast.

As illustrated in Figure 5.3(a), VRCast does not sacrifice the fairness among users to achieve the

quality improvements shown in Figure 5.1. The fairness index of VRCast is fairly high and close to

1. For example, Figure 5.3(a) shows that VRCast achieves a fairness index of more than 0.95 for at

least 50% of the users, which is much higher than the fairness index achieved by MVR. PF achieves

a similar fairness index, but it yields much less video quality than VRCast.

Finally, an important metric for cellular network operators is the spectral efficiency, which in-

dicates how the (expensive) spectrum of the wireless channel is utilized to carry bits. Figure 5.3(b)

shows that VRCast is much more efficient in utilizing the wireless spectrum than the other algo-

rithms. As an example, VRCast achieves a spectral efficiency of at least 1.6 bits/s/Hz for 40% of the

time, while PF and MVR almost never achieve this efficiency.

5.4 Analysis of VRCast

In this section, we take a close look at the performance of the proposed VRCast algorithm. First, We

analyze the viewport quality of users across time. We choose 3 users with high (user 1), medium

(user 2), and poor (user 3) channel conditions. We select two videos: boxing match and diving

scene. We analyze the viewport bitrate while these users watch and interact with these videos. This

experiment is to show that VRCast efficiently adapts to dynamic changes in channel conditions and

viewports.

Figure 5.4(a) shows the viewport bitrate across time for the first video. User 1 and user 2 are

in the same multicast group with high MCS while user 3 is in another group with low MCS. The

viewport bitrate of each user does not change significantly across time, because in the boxing match

most users watch the same region of interest (the boxing ring). As a result, each user experiences
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Figure 5.4: Sample results of VRCast with different videos.
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Figure 5.5: Running time of VRCast and MVR as the number of users increases.

almost the same viewport quality across time (i.e., low temporal variance). Although users 1 and 2

are in the same group, user 2 receives higher viewport bitrate because s/he is watching more popular

tiles. During the time between 20 and 25, user 1 changes their viewport to less popular tiles (the

audience) and receives less viewport bitrate.

Figure 5.4(b) shows the viewport bitrate across time for the second video. Due to the fast mo-

bility of user 2, their channel conditions change during watching the video. In the first 15 seconds,

user 2 has relatively low channel conditions and is grouped with user 3. After that, the channel con-

dition of user 2 improves, thus is grouped with user 1. The viewport bitrate of each user changes

substantially across time, because in the diving scene, the viewports of users are distributed on the

whole video frame without a specific region of interest. Therefore, the weights of tiles change from

time to time leading to changes in the viewport bitrate.

Next, we analyze the scalability of VRCast by measuring and analyzing its average execution

time with different number of users. The results in Figure 5.5 show that: (i) the running time of
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VRCast does not depend on the number of users, and (ii) VRCast terminates in a few hundreds of

milliseconds on a commodity PC. In contrast, MVR’s running time grows linearly with the number

of users and it is multiple orders of magnitudes greater than that of VRCast.

5.5 Testbed Implementation

We developed an LTE testbed to validate our proposed solution in real systems. Building LTE

testbeds for multicast services is quite challenging as there are many hardware and software compo-

nents that need to be developed and integrated correctly to get the testbed running. We summarize

our experience in building an LTE testbed in this section.

The testbed is similar to Figure 3.1 and it has base station, mobile devices, and BM-SC server.

The hardware of the base station is implemented using the Ettus USRP B210 [21] software de-

fined radio to transmit/receive data to/from mobile devices. The software of the base station is the

Amarisoft LTE stack [9], which implements the functions of the eNB, Evolved Packet Core (EPC),

and eMBMS gateway according to the 3GPP specifications. We configured the eMBMS gateway

to have multiple physical multicast channels (PMCH), one channel for each multicast group. Each

channel has one multicast service that listens to a specific IP address.

We use Bittium mobile phones [13]. We chose these phones because they support the Expway

eMBMS middleware [22], which allows the phones to discover multicast services and connect to

them. The testbed has two phones in two different channel conditions. This is by placing one phone

close to the base station and the other few meters away (the range of the base station is small as we

did not use power amplifiers). The MCS mode for the phone close to the base station is 23 and for

the far away phone is 12. Each phone represents a user. We make each phone run one of the user

interactivity traces (Section 5.1).

In addition, we integrate simulated users in the testbed in order to test a realistic live streaming

scenario in which multiple users, connected to the eNB, are streaming the video. Specifically, in

addition to the two real users, we generate 298 simulated mobile users with different channel con-

ditions and user interactivities. The information about all users (real and simulated) is periodically

given to our algorithm (VRCast) to divide them into groups and decide on the quality for individual

tiles in real time. Thus, although we have only two real users, the network situation is continuously

changing because of the simulated users dynamics (mobility and interactivity with the video). The

results and analysis in this section are only from the two real phones.

The last main part of the testbed is the BM-SC server, which runs VRCast. VRCast groups

users, chooses quality representation for each tile, and concatenates tiles to generate a video file for

each multicast group. It also computes the start and end times of data bursts to be transmitted to the

mobile users. The decisions from VRCast are then mapped to various configuration parameters of

the Amarisoft LTE software as, the number of allocated subframes for each service and minimum

MCS for each PMCH.
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Figure 5.6: Performance of VRCast in the LTE testbed.

0 5 10 15 20 25
Time (sec)

0

1

2

3

4

5

V
ie

w
p
o
rt

 Q
u
a
li
ty

 (
M

b
it

s
)

user1

user2

(a) Viewport Quality (Mbits)

0 1 2 3 4 5
Time (sec)

0

1
On

/O
ff

user1

(b) Energy User 1

Figure 5.7: Performance of VRCast in the LTE testbed (continued).

5.6 Empirical Results from Testbed

The testbed is a proof-of-concept to show the practicality and correctness of VRCast. To this end, we

analyze the buffer level at the two real phones as the streaming session progresses. The maximum

buffer size was set at 50 Mbits. Figure 5.6(a) plots the buffer level as the time progresses, which

shows that the playback of the video was smooth without any stalls or rebuffering events because

the buffer always has data. Also the buffer level never exceeded the max value.

Next, we measure the actual frame quality and viewport quality received on the phones in Fig-

ures 5.6(b) and 5.7(a). User 1 has good channel conditions so s/he experiences a better frame and

viewport qualities while user 2 has a poor channel condition but still gets decent qualities.

Finally, we analyze the burst transmission behavior of VRCast which provides energy saving

for mobile receivers. At each mobile user, we record the start and end of the data reception (burst).

We plot the results for user 1 in Figure 5.7(b) for 5-sec period. The figure clearly shows that the

data of the 360-degree video was sent in bursts allowing mobile receivers to turn off the reception
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circuits to save energy, while the quality and smoothness of the video are maintained as shown in

Figures 5.6(b) and 5.7(a).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Multicast is an intuitive choice to stream live 360-degree videos to a large number of mobile users.

However, it is a challenging task due to the large volume of the video data, dynamic nature of the

wireless channel conditions, and high user interactivities with the content. To address this chal-

lenge, we presented VRCast, a comprehensive solution for the problem of live multicast streaming

of 360-degree videos to mobile users over cellular networks. VRCast supports user interactivity and

viewport switching, optimizes the energy consumption for mobile receivers, accounts for the hetero-

geneous and dynamic nature of wireless channel conditions, ensures the smoothness of the rendered

360-degree content, maintains fairness among mobile users, achieves high spectral efficiency of the

expensive wireless link, and runs in real time.

VRCast divides each 360-degree video into tiles where each tile is encoded in multiple DASH

representations. It optimally divides mobile users into multiple multicast groups and assigns a qual-

ity representation to each tile to maximize the user-perceived video quality. Finally, VRCast trans-

mits data in bursts to save energy for mobile receivers.

We evaluated VRCast using trace-based simulations. We used interactivity traces representing

1,335 sessions from 50 users watching 23 diverse 360-degree videos. We used a realistic mobility

model to produce channel conditions for users. Our results showed that VRCast significantly out-

performs the closest algorithms in the literature across multiple performance metrics. For example,

compared to the state-of-the-art (MVR), the median frame quality is improved by up to 22% and

the variance in the spatial quality is reduced by up to 53% and the energy saving for mobile de-

vices is enhanced by up to 250%. Also, VRCast still achieves fairness among users and achieves

a fairly high fairness index while utilizing LTE netowrk resources efficiently and providing high

frame bitrates.

Furthermore, we developed a complete LTE testbed and evaluated VRCast in it. Our empirical

results show that VRCast achieves smooth quality (no stalls or buffer overflows) and it effectively

utilizes standard LTE features to transmit data in bursts to save energy of mobile devices.
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6.2 Future Work

The work in this thesis can be extended in multiple directions. First of all, the tiling scheme can be

further investigated to figure out what is the most suitable tiling for multicast streaming of a specific

video. We can have a non-uniform tiling in which tile sizes change according to the regions of

interest in the 360-degree video. Another direction is enhancing the prediction of users viewports to

be more interactive to the changes in head movements during the transmission time and throughout

the segment duration. Therefore, if the user suddenly moves his head to watch another part of the

video, the quality of experience does not change significantly which further reduces temporal quality

variance.

In addition, some outlier users can be watching less popular tiles and receiving very low quality.

Scalable video coding (SVC) can be useful in this situation because of the idea of base layer and

enhancement layers. We can have unicast sessions for enhancement layers to increase the quality of

the viewport tiles of these users. Furthermore, we can find a more representative way of assigning

weights to tiles. For example, sampling viewports of users in a more representative way instead of

random sampling so that we have a better idea about the summary of the aggregate of the viewports

of users. Also, the history of the viewports can be used to enhance tile weights. Finally, we can

further investigate cases of mobile users handover, in which a UE is transferred from one base

station to another without disconnecting the session. In this case, users might face a degradation in

viewport quality. We can predict these cases and improve our adaptation algorithm to take care of

these scenarios.
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