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Abstract

The goal of masquerade detection is to "detect" when an intruder has infiltrated a computer
system by looking for evidence of malicious behaviour. In this project, I use a topic model
based intrusion detection system to search for intruders within the SEA and Greenberg
datasets of Unix computer commands. Using LDA topic modeling I was able to find a
probability distribution for each user for both the topics over a block of commands and
over each command. Using these two probability distributions and building on previous
detection techniques I was able to create five different detection techniques. I describe how
I created the five LDA based models and combine them to find a sixth model. All of these
techniques performed on par with their non-LDA counter-parts. Therefore, combined with
the reduction in dimensionality afforded by the LDA topic model, I conclude that my meth-
ods perform better than the current models.

Keywords: Intrusion Detection; masquerader; masquerade detection; latent direchlet al-
location; topic modeling
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Chapter 1

Introduction

With an increase in the number of companies moving data to computer systems and an
increase in the quantity of information a company stores, the threat of cyber attacks has
increased in recent years. For example, in 2015 the networking technology firm Ubiquiti
Networks Inc. suffered a $46.7 million loss due to a form of cyber attack known as spear
phishing and only managed to recoup a small portion of this loss (approx. $8.1 million)
[12]. Any company which uses computer systems to access and store critical information is
vulnerable to attack. Thus, security of computer systems and networks has become a main
priority for many companies. Specifically, companies want to intercept or block intrusions
into their computer system. Such intrusions come in many forms, for example, spoofing
(impersonating other users), viruses, eavesdropping (interception of network traffic), or
tampering of data. Most of these intrusions leave a trace in the log file which links the
attack to a specific user. However, arguably, one of the more serious security threats to
companies is a type of spoofing known as masquerading which doesn’t leave a log file
trace [17]. In particular, masquerading is carried out by a person or entity known as a
masquerader who impersonates a legitimate user, typically by stealing the legitimate user’s
password, forging the legitimate user’s email, or violating the system authentication, in
an attempt to gain access to a computer system and carry out malicious behaviour. This
malicious behaviour can range from disrupting operations or corrupting data to stealing
sensitive information. In addition, masqueraders can either be outsiders, who gain access
to the computer network via a legitimate user’s identity, or insiders, who are legitimate
users, but purposefully perform tasks which are malicious to the computer network. In
practice, masqueraders are typically insiders as outsiders quickly try to gain access to the
account of a super-user and are easily detected [22]. Therefore, detection of masqueraders
is an area of great interest for today’s companies.

The outline of my project is as follows. In Chapter 2, I provide some background infor-
mation on intrusion detection, topic modeling, and Principal Component Analysis (PCA)
and I discuss previous work done on intrusion detection. In Chapter 4, I introduce the topic
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modeling methodologies I used to analyze the masquerader data, which is summarized in
Chapter 3. In Chapter 5, I provide the results of the six methods. Finally, in Chapter 6, I
discuss how the proposed method relates to previous methodologies and provide suggestions
for future work.

The goal of this project is to design robust intrusion detection systems, which can detect
masqueraders more efficiently and with less compute time than the current methodologies.
This new intrusion detection system will work on host based systems and thus consider
anomalies based on individual user command traces.
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Chapter 2

Background and Literature Review

In this chapter, I briefly outline some of the most common masquerade detection tech-
niques. I first give a brief overview of intrusion detection systems followed by a literature
review of masquerade intrusion detection systems. Next, I discuss latent dirichlet alloca-
tion (LDA) topic modelling, the principal methodology underlying the intrusion detection
systems proposed herein. In addition, although LDA has not, to my knowledge, been used
for masquerade detection, I discuss some modern research in intrusion detection using LDA
based methods. Finally, I provide some background on principal component analysis that
is used in two of the proposed methodologies.

2.1 Intrusion Detection

2.1.1 Background

Ideally, I would like computer systems to be completely secure and block all forms of
intrusions. However, most experts agree that complete security will never be reached [16].
Think of this as a hypothesis test that always makes the correct decision. Thus, the goal
of intrusion detection is to detect when an intruder has entered a computer system. That
is, "[i]ntrusion detection refers to the detection of malicious activity [8]". Strictly speaking,
intrusion detection doesn’t actually detect intrusions, but, rather, looks for evidence (as
specified by the detection technique used) which may indicate that an intruder is in the
system. The techniques and technologies used to perform intrusion detection are refered to
as an intrusion detection systems (IDS).

Early intrusion detection systems focused on detection after the fact, performing intru-
sion detection at the end of the day when system activity was low. More recent intrusion
detection systems focus on detection techniques which can be used immediately to stop an
intrusion as it happens. In this project, I consider IDS which work immediately.

In addition, IDS fall into two categories: host based and network based. In host based,
the IDS considers only one computer, or host, and detects intrusions based on operating
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system call traces [8]. In contrast, network based IDS considers intrusions to a computer
or computers via a network. Intrusion detection is done by considering network data such
as packet traces. In this project, I are concerned with host based IDS.

Finally, there are two types of intrusion detection techniques: anomaly detection and
misuse detection (also known as sequence matching). First, anomaly detection assumes that
behaviour during intrusions differs from normal activity. Thus, anomaly detection looks for
changes in a user’s, or application’s, normal behaviour. Second, misuse detection considers
the behaviour of a pre-defined set of attacks and compares the attack behaviour to the
current behaviour being tested. In comparison, anomaly detection allows for previously
unknown attacks to be detected, while misuse detection only considers a set of known
attacks. Allowing for unknown attacks leads to higher false positive (FP) rates as legitimate
changes in behaviour will also be labelled as masqueraders [16, 24]. For this project, only
IDS based anomaly detection is investigated.

2.1.2 Masquerade Detection Literature Review

DuMouchel [11] proposed a Bayes, one-step Markov model for masquerade detection. This
method used a Bayes factor to test whether the one-step transition probabilities between
test commands were consistent with a historic transition matrix from the training data.
The method was found to have satisfactory behaviour when there are no masqueraders, but
has low statistical power. That is, the false positive (FP) was close to the desired value,
but the false negative (FN) rate was relatively high.

Later, Schonlau and Theus [21, 22] proposed a uniqueness method which considered
detecting masqueraders based on the use of unpopular/unique commands. The authors
posit that commands which have not been used before may indicate a masquerader and
that the probability that a command is from a masquerader is inversely related to the
number of users who use the command. Like DuMouchel’s approach this method (referred
to hereafter as the "uniqueness method") has a relatively low false positive detection rate,
but also a high false negative rate.

Next, Wan et al [24] built on the uniqueness method by using high frequency commands
rather than unique commands to detect masqueraders. In this method, two vectors are built,
one with profile/training frequencies and one with signature/testing frequencies of the top
n commands. These two vectors are then compared either directly or with smoothing. This
method had a similar false negative rate to the Bayes one-step Markov, but had a very large
false positive rate.

An adaptive Naive Bayes method was proposed by Dash et al [10]. This method con-
siders deviations from normal behaviour to be suspicious if they are only temporary and
masqueraders if the deviation continues for longer periods. In this way, blocks of commands
are labelled as legitimate, doubtful, and masquerader. If a block is labelled as doubtful then
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the following block has to go through a more rigorous test, and only if the previous 2-3 blocks
have been classified as doubtful, will a block be classified as a masquerader.

Additionally, Camina et al. [5] proposed an intrusion detection system for masquerade
detection based on file system structure and use. That is, the authors consider "how and
what a user browses while working on her own file system [5]" rather than the actual
commands. Later, Rodriquez et al. [19] built on the file system navigation model of
Camina et al. and the use of tasks (a collection of interrelated files). The authors refined
the notion of a task which was first introduced by Camina et al. in 2014 [6]. In particular,
they created an additional single task which encompasses all elements which do not belong
to the user specified tasks. This allowed for the large number of small tasks to be relocated
to a single task and thus better classify the user [19].

Finally, a data-driven semi-global alignment (DDSGA) technique was proposed by Kholidy
et al [17]. In this paper, the authors propose an improvement in both the computational and
security efficiency of the Enhanced-SGA. In particular, the SGA algorithm matches large
sequences of the test data to the training signature while still preserving local alignments.
Then, Enhanced-SGA allows for changes to the training signature over time to account
for changes in the user’s behaviour due to things like changing roles. The improvement of
DDSGA is to label areas of misalignment as anomalous and then signal an attack if the
percent of anomalous areas is larger than a set threshold. In addition, DDSGA allows for
user specific scoring parameters which increases the detection accuracy.

The performance of these methods can be compared on the SEA dataset (more on this
later) as shown in Table 2.1. First, as mentioned previously, the uniqueness method achieves
the lowest false positive rate at just over 1%, but the false negative is the largest. Next,
the high frequency method betters the false negative rate by half, but the false positive is
greatly increased. The Bayes, one-step markov method achieves a false negative rate similar
to the high frequency method, and the false positive rate is halved. Next, the adaptive naive
Bayes method achieves a false positive similar to the Bayes, one-step markov method, and
the detection rate is greatly increased. Finally, the DDSGA method achieves a very low
false positive rate, 3.4%, nearly half that of the adaptive naive Bayes method, while still
maintaining a low false negative rate.

Technique Detection Rate False Positive Rate False Negative Rate
DDSGA 83.3 3.4 16.7

Adaptive Naive Bayes 87.8 7.7 12.2
High Frequency 69.7 13.9 30.3
Uniqueness 39.4 1.4 60.6

Bayes One-Step Markov 69.3 6.7 30.7

Table 2.1: Comparison of previous masquerade detection techniques using the SEA dataset.
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2.2 Topic Modelling - Latent Dirichlet Allocation (LDA)

2.2.1 Background

Topic models, are used to discover the main themes or topics of a large collection of un-
structured documents, and the primary methodology underlying my proposed intrusion
detection systems. LDA is the most commoly used approach for topic modeling. In order
to understand LDA, it is important to first define some key terms. In particular, a word
is a "basic unit of discrete data [3]", a document is a list or sequence of words, a corpus
is a collection of documents, and a topic is a distribution over a fixed vocabulary of all
words within a corpus. In the context of host based masquerade detection, a word is a
unix command, a document is a group of commands from the same user and a corpus is a
collection of command groups from a variety of users.

LDA is a probabilistic model for a corpus which assumes that documents are made up
of a small number of latent topics [3]. In order to model the latent topics, LDA considers
finding the hidden structure (topics, topic distribution per-document, and topic assignments
per-document per-word) which generated the observed corpus. In particular, this can be
thought of as reversing the assumed generative process (see Figure 2.1). That is, for a
random document d, made up of words w = (w1, . . . , wN ), it is assumed to be generated by
the following steps. First, randomly choosing a distribution over topics (θd), in practice θd is
the Dirichlet distribution. Second, randomly choose the proportions of the topic distribution
(φZd,n

), the Dirichlet distribution in practice. Finally, for the nth word within the document,
randomly choose a topic (Zd,n), in practice the topics follow a multinomial distribution,
based on the chosen topic distribution, θd and given φZd,n

. It is important to note that
LDA assumes a bag-of-words approach to document generation, in that each word within
a document is generated independently and thus the order of the words doesn’t matter.
Formally, the LDA generative process corresponds to the following joint distribution,

p(φ, θ, Z,W ) =
T∏

t=1
p(φt)

D∏
d=1

p(θd)[
N∏

n=1
p(Zd,n|θd)p(Wd,n|φt, Zd,n)].

In particular, LDA assumes the following distributions,

θd ∼ Dirichlet(α),

φt ∼ Dirichlet(β),

Zd,n ∼Multinomial(θd), and

Wd,n ∼Multinomial(φZd,n
),

(2.1)

where α and β are hyperparameters defined at the corpus level.
Computing the conditional distribution of the topics based on the observed documents

(the posterior) is equivalent to doing the reverse of the generative process. Formally, the
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posterior is denoted by
p(φ, θ, Z|W ) = p(φ, θ, Z,W )

p(W ) .

However, p(W ) is the sum of the joint distribution of every possible topic structure which
is intractable [2].

Figure 2.1: Graphical representation of the LDA assumed generative process for documents.
([7], Chapter 3, p. 3)

2.2.2 LDA Based Intrusion Detection Literature Review

Research pertaining to the use of LDA methods for masquerade detection has focused on
broad network based intrusion detection techniques. In particular, initial research into using
topic modeling to do intrusion detection was in [9]. The authors apply LDA and dynamic
LDA (dLDA), a time evolving LDA, as a means of identifying underlying topics within a
network based computer system. Although, they do not actually apply intrusion detection,
they posit that topic modeling can be used as a means of reducing the dimensionality of the
intrusion detection problem. Finally, they outline two possible ways to carry out intrusion
detection after topic modeling has been done. First, they consider topic modeling both
normal and malicious activity and then relate a subset of the topics to malicious activities.
The authors note that topics wouldn’t necessarily correspond directly to malicious activities
and thus suggest that a sparse Bayesian classifier could be used. Second, they suggest using
only normal activities to do topic modeling and then consider how well the topics explain
new activities. This second approach is considered by the authors to be a more realistic
tactic to intrusion detection using topics.

Similarly, in 2014, Huang et al [14] proposed a LDA based misuse detection technique.
They suggest using event types (ie. unknown IP address, SSH connection) to create topics
using LDA. These topics are created for both known malicious events and normal events
as determined via clean training data. Once this is done, new logged events are assigned
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probabilities of belonging to each topic which correlates to probabilites of being malicious
or not. This approach, however, doesn’t allow for new malicious events.

2.3 Principal Component Analysis (PCA)

2.3.1 Background

Principal component analysis (PCA), one of the most widely used multivariate techniques,
has a variety of goals such as dimension reduction or searching for structure to simplify
interpretation [1].

Extracting only the most important information in a dataset allows PCA to reduce
the dimensionality of a dataset, which may contain a large number of correlated variables,
while at the same time accounting for as much variability in the data as possible [15]. For
dimension reduction, the original multivariate data is transformed onto a new smaller set
of orthogonal variables known as principal components [1]. That is, a principal component
is a linear combination of the original data. Note, the reduction in dimensionality of the
data allows for easier interpretation when the number of kept dimensions is small, 2 or 3,
as, graphically, PCA fits the original dataset into an 2 or 3 dimensional ellipsoid with axes
corresponding to principal components.

Additionally, the principal components are sorted so that the first principal component
accounts for the largest variability in the original dataset, and each successive principal
component accounts for the largest variability given that the principal component is or-
thogonal to all the proceeding principal components [1]. It is important to note that when
doing PCA, only a subset of the principal components are used, namely those that explain
the most variability in the system. The number of principal components that are kept and
used to describe the dataset depends on the desired amount of variability accounted for at
any given time. If thought of in terms of the n-dimensional ellipsoid, these largest variability
principal components, which are kept when doing the PCA, correspond to the longest axes.
Therefore, it can be easily seen visually that not much information/variability is lost if the
smaller axes or principal components are not used to describe the original dataset as they
do not change the data very much.

Typically, prior to performing PCA the original dataset is standardized. This standard-
ization is done to account for variables with differing scales and to allow each variable to
receive equal weight in the subsequent analysis [15]. This amounts to conducting PCA on
the correlation matrix of the data rather than the covariance matrix.

2.3.2 PCA Based Intrusion Detection Literature Review

Initially, PCA was used in intrusion detection only as a tool to reduce the dimensionality of
the problem (See [4] for example). Later, Shyu et. al. [23] proposed a method which used
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PCA as an outlier or anomaly detection tool on network data. They were able to distinguish
deviations from normal behaviour which they identified as intrusions. The authors consider
detecting anomalies using 2 methods. First, they detect large values compared to original
features by using the principal components which explain around 50 percent of the total
variation. Second, observations which have differing correlation structures are detected
using the remaining components.

Later, Wang, Guan, and Zhang [25] proposed using principal component analysis as a
means of detecting anomalies within a computer system. Specifically, the authors suggest
using frequencies of system calls in a trace or of individual commands as input. Then, PCA
is used to reduce the dimensionality of the problem. Finally, distances between the projec-
tion onto the principal components and the original data is used as a means of detecting
anomalous behaviour. That is, normal behaviour assumes that the data and its projection
are similar and thus the distance between them would be small. They consider three dif-
ferent distance measures; squared Euclidean, cosine, and signal-to-noise ratio (SNR). See
Chapter 2 from [25] for a more detailed explanation of the distance measures. Using the
SEA dataset, they observe a 100% detection rate. However, the results are based on only
one test which used a combination of two users data out of the 50 possible so the detection
rate is not accurate.

Further research on masquerade detection using PCA has taken a misuse detection
approach and used methods similar to that of Wang [25]. Finally, most new research on
intrusion detection is focused on network data and will not be discussed here as my project
considers host based rather than network based systems.
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Chapter 3

Data

For the purposes of the methodologies explored this project, there are two publicly available
datasets: SEA and Greenberg. Both datasets contain blocks of Unix commands.

The SEA dataset is available from Schonlau’s website [20]. The SEA dataset consists
of audit data for 50 users. For confidentiallity, the audit data has been stripped of all iden-
tifying characteristics such that only the plain unix commands without arguments remain.
Each user has 15,000 commands (some legitimate and some masquerader) organized into
blocks of 100 commands in the sequence in which they occurred. These blocks are then
broken into training and testing data. The first 5,000 commands (50 blocks) are training
data and are free of any masqueraders. The remaining 10,000 commands (100 blocks) are
testing data made up of both audit data from the user and randomly interspersed audit data
(command blocks) from users outside the 50 included in the dataset. These randomly inter-
spersed command blocks are meant to act as masqueraders. See Figure 3.1 for a graphical
representation of the data.

Along with the SEA data is a file containing the location of the masquerade blocks. It is
a matrix of 100-by-50 corresponding to the 100 testing blocks for all 50 users. The matrix is
made up of 0’s and 1’s where 0 means that the block of data does belong to a masquerader.

Figure 3.1: Graphical representation of the SEA dataset for random user i with some toy
data filled in.
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The Greenberg dataset [13] contains unix commands from 168 users, broken into four
categories of users (novice programmers, experienced programmers, computer scientists,
and non-programmers). The data also contains information pertaining to session start and
end times, unix command aliases, history use, current working directory, and any errors.

Since the Greenberg dataset contains extra information and no masqueraders some
pre-processing of the data was required. First, I are not interested in the different user
categories so all users were grouped together. Second, I are only interested in the raw
unix commands so all extra information pertaining to alias etc was disregarded. Third, I
introduced masqueraders into the data by using a portion of the users as masqueraders and
inserting some of their command blocks into the other users’ testing blocks. In particular,
I followed the method of Dash et al [10]. That is, users were kept to be used for testing
the methodologies if they had between 2000 and 5000 commands, otherwise their blocks of
commands were used as masquerader blocks. Next, the users commands were truncated to
2000 and the first 800 were used as training data. The rest of the commands were treated
as test data with 10 commands per block. Then, ten masquerade blocks were randomly
chosen and inserted into the test data where the masquerade blocks were of size 30, but once
inserted the blocks were treated as size 10. In this way, there were always three consecutive
masquerade blocks of size 10, which is needed for one of the methods.
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Chapter 4

Methodology

In this project, new methodologies are proposed and evaluated to see if I can improve the
current IDS methodologies. In this chapter, the LDA topic model is described, innovations
to intrusion detection methods are proposed to describe how I created and used a LDA
topic model, and how I combined these five methods to try to improve the results of any
one individual method is discussed. Finally, the approach for validating the thresholds from
all five methods is described.

4.1 Topic Model

First, I performed topic modeling by considering blocks of training commands from all users
to create one topic model for all users. In particular, I treated each block of commands as
a separate ’document’ and the individual commands as ’words’. Then, I used a variational
expectation-maximization (VEM) topic modeling procedure with a given number of topics,
k.

Using the trained topic model, a probability distribution over the topics for each test
block was attained. Therefore, each user had the number topic distributions equal to the
number of training blocks. For example, using the SEA dataset, all 50 training blocks from
all 50 users are combined to make one corpus of 2500 blocks and a topic model is run on this
corpus of 2500 blocks. Then, for each of the user’s 100 test blocks a probability distribution
is obtained such that the probability of topic i occuring in block b from user u is pi,b,u. The
first method, PCA on topic probability, uses these probabilities as the data and then runs
a PCA on them (more on this later).

Similarly, the topic model gives a probability distribution over the topics for each com-
mand. Then, I assigned each command to a single topic. In this way I reduced the dimen-
sionality of the problem from a large number of commands to a small number of topics.
Furthermore, similar commands or commands which are more likely to occur together were
clustered into one topic prior to performing masquerade detection.
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First I separated the commands into three categories; (i) used in the topic model, (ii)
used in the training data, but too rare to include in the topic model, and (iii) only used in
the test data. Next, I assigned all commands in categories (ii) and (iii) to separate topics
which increased the number of topics from k to k + 2. Then, for commands used in the
topic model I considered doing this assignment using three algorithms (see Algorithm 4).
The first algorithm, best topic, assigns the command to the topic where the command has
the highest probability of occuring. The second algorithm, topic weights, randomly assigns
a command to a topic using weights which are proportional to the probabilities associated
with the command occuring in each possible topic. The third algorithm, coin flip, randomly
assigns a command to a topic by ’flipping a coin’. That is, each possible topic, where possible
means that the probability of assigning the topic to the command is above some threshold,
has the same likelihood of having the command assigned to it.

4.2 PCA

Moving onto specific methods of anomaly detection considering two different modifications
to the Principal Component Analysis anomaly detection methodology proposed by Wang
[25]. Before getting to the specifics of how I modified the methodology, the basic steps
needed for the methodology of Wang are: (1) given a set of training data x1, . . . , xm,
calculate the mean vector µ of the training data and the set of mean-adjusted test, or
validation, data, (t1 − µ), . . . , (tn − µ), where, tj is the jth test data point; (2) perform
Principal Component Analysis on the training data to identify the set of most influential
eigenvalue-eigenvector pairs {(λi, ui)|i = 1, . . . , k < m}; (3) these k eigenvectors are then
used to form a n x k matrix UT ; (4) calculate the projection of the mean-adjusted test
data onto the principal component subspace, U , denote this by y; (5) calulate the distance
between the original test data and its projection, Φ− Φf , using

Φ = ti − µ,

y = UT Φ,

Φf = Uy;

and finally, (6) the authors then proposed that test data is from the user if the distance
between it and its projection is small. Using the squared Euclidian distance, a test block
was deemed to be a masquerader if ε was below a threshold, where

ε = ||Φ− Φf ||2.

13



4.2.1 Method 1: Topic Probability

We built on the above methodology of Wang et al. [25] in two ways. First, I used my
topic model rather than commands prior to performing PCA. Second, I performed PCA on
both the test block topic distributions and the test block topic frequencies to create two
different methods. Finally, each user had a different threshold, θ, at which the test data
was considered a masquerader. To determine which threshold to use, I chose the threshold
which resulted in the smallest distance between the false negative and false positive rates
while still maintaining a false positive rate below 20%.

For this first method, by using topic distributions rather than command frequencies for
the PCA (see Algorithm 1) I modified the methodology of Wang. Afterwards, I proceeded
as in the original paper and used the eigenvalue-eigenvector pairs which accounted for 99.9%
of the total variation and the squared Euclidean distance.

4.2.2 Method 2: Individual Command Topics

For this second modification to the methodology of Wang [25] outlined above, first, I used
the same definition of ’frequency’ as Wang used in his paper. That is, I count the number
of times a topic occurs within a block and then divide by the length of the block (ie. 100).
The frequency of the individual commands rather than the occurance of a command alone
was used to define an occurance of a command. Thus, the frequency of the topics is the
frequency of all associated commands. I calculated the training frequencies by aggregating
over the 50 training command blocks.

Next, I proceeded as in Wang [25] and calculated the principal components of the topic
frequencies. As before, I chose to use the eigenvalue-eigenvector pairs which accounted for
99.9% of the total variation and the squared Euclidean distance to be consistent with the
original paper. For an outline of the method see Algorithm 1.

4.3 Frequency of Topics

The next two methods build on the work of Schonlau [22] and Dong Wan et al [24] by
incorporating topic modeling into frequency based detection techniques. These two methods
will be refered to as "high frequency" and "low frequency" methods. That is, I initially
performed topic modeling as a way of grouping commands into specific topics and then I
performed frequency based detection methods. Thus, I detected masqueraders based on
anomalies within the frequencies of topics rather than frequencies of individual commands.

We use the topics associated with the individual commands attained from the topic
probability distribution of commands. Using these k+2 topics, I calculated the frequency of
topics within the training and testing data for each user. Specifically, I calculated the within
block probability of a topic using the training data and compared this to the frequency of
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topics within each test block. To do this, I first calculated the topic frequency within each
training block using the frequencies of the associated commands. Secondly, I summed up
all of the frequencies and divided by the number of blocks the topic occured in to get an
average frequency per block. Third, I divided this average by the total number of blocks
within the training dataset to get the probability of a topic occuring within a block.

In the high and low frequency methods I looked for dissimilarity between the training
topic probabilities and each test block’s topic frequency by performing a χ2 test with a
null hypothesis that there was no dissimilarity between the training probability and testing
block frequency. If the χ2 test did indicate evidence of a difference then the test block was
marked as a masquerader.

4.3.1 Method 3: High Frequency

For this high frequency method, I only considered the top nH topics which occured with high
frequency when performing the χ2 test. In addition, high frequency topics were considered
to be any topic which occured with probability greater than zero within the training dataset.
I allowed for each individual to have a different nH ≤ the number of high frequency topics.
I choose the ’optimal’ nH to be the number of topics which resulted in the smallest distance
between the false negative and false positive rates while still maintaining a false positive
rate below 20%. Therefore, I could achieve a good detection rate and false positive rate.

4.3.2 Method 4: Low Frequency

Similar to the previous high frequency method, I considered using the bottom nL topics
which occured with low frequency when performing the χ2 test. For this method I needed to
consider both nL and a threshold for what is considered to be a low frequency topic, fL ≥ 0.
Therefore, for this method, each user had two thresholds to optimize over. Otherwise, the
method proceeded as with the high frequency method and similarly considered the ’optimal’
(nH , fL) threshold pair to be the one which resulted in the smallest distance between the
false negative and false positive rates while still maintaining a false positive rate below 20%.

4.4 Method 5: Combination of Methods

I tried to combine the above four methods in an attempt to improve the average rates.
First, I combined the methods by looking for an agreement of the methods. That is, a
block was considered to be from a masquerader if at least two of the methods indicated
that it was a masquerader. In this way, all of the methods were considered to be equally
good at predicting masqueraders.
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4.5 Method 6: Adaptive Naive Bayes

The next method I modified was the Adaptive Naive Bayes method proposed by Dash et
al [10]. This method allows for short term changes in behaviour which are legitimate, but
marks long term changes in behaviour as a masquerader. This is achieved by marking a
block of commands as legitimate, doubtful or masquerade. A block is marked as doubtful
if it doesn’t match with the training data and preceeding blocks were legitimate. If the
preceeding two blocks were also doubtful then all three blocks are marked as masquerade.
Also, since a masquerade block is more likely followed by another masquerade block, once
a block is marked as doubtful the following block has to pass a more stringent test. Finally,
if a doubtful block is followed by a legitimate block, then it is assumed that the doubtful
block was a legitimate deviation in behaviour by the user and is changed to legitimate. I
modified this methodology by using topic frequencies rather than command frequencies.
For a complete overview of the method see Dash et al [10].

4.6 Cross Validation

All of the methods used in this project require at least one threshold. These thresholds have
been chosen to obtain the best possible results given the SEA dataset or the Greenberg
dataset depending on which dataset is being used at the time. In addition, I have used
a subset of the dataset to demonstrate the usefulness of these methods in general. In
particular, using the original topic model, I repeatedly randomly chose 45 of the possible
50 training blocks and used these to train each method. Next, for each randomly chosen
training set, I randomly chose 100 test blocks from all users and calculated the best possible
threshold. The test block selection was repeated a number of times such that for each
training set there was a set of thresholds. Then, I used the given method with the random
training set, the set of all possible thresholds, and the original testing set to obtain a matrix
of masquerader indicators for each block (see Table 4.1). Next, I used a consensus method
to determine if a block was a masquerader or not. That is, I considered a block of commands
to be a masquerader if more than half of the test thresholds indicated that the block was
a masquerader. This resulted in a vector of masquerader indicators for each training set.
Thus, I used the same consensus method to calculate an overall masquerader vector for each
user and then caluclated the false negative and false positive rates. See Algorithm 3 within
the appendix for pseudocode of this validation method.
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User i - Training Set j
Test Set Block 1 . . . Block 100

1 1 . . . 0
...
k 0 . . . 1

Table 4.1: Example of matrix of masquerade indicators for a given user and training set for
the cross validation method.
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Chapter 5

Results

This section compares the six masquerade techniques and outlines the results of the six
masquerade detection methods using both the SEA dataset and the Greenberg dataset.
The optimal thresholds for the SEA dataset are shown in Table E.1. For each of the
methods I consider a false positive (FP) to be when a test block is incorrectly identified as
a masquerader, a false negative (FN) to be when a test block is incorrectly identified as a
user, a true positive (TP) to be when a test block is correctly identified as a masquerader,
and a true negative (TN) to be when a test block is correctly identified as a user.

To compare the methods in a real-world setting, I consider the average FP, FN, TP, and
TN rates (hereafter refered to as ’average rates’) over the 50 users in the SEA dataset and
the 41 users in the Greenberg dataset. First, I compare the average rates for a method to
the average rates of the same method using the actual commands rather than the topics.
In this way, I can see if there is a benefit to using topic modeling beyond a reduction in
dimensionality. Second, I compare the rates of my methods to the rates of the DDSGA
method [17] as this is the method that achieved the best rates. Finally, I compare the rates
from all of my methods against one another.

Lastly, I look at the computational times of each method. I compare the original IDS
method to the novel topic based extension when running the SEA dataset with predefined
thresholds.

5.1 Topic Model

For the SEA topic model, I have 50 users which have 856 words, 2500 documents and use
80 topics. This gives 100 topic distributions. For the Greenberg topic model I have 41 users
with 2400 words, 3280 documents, and I use 80 topics.
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5.2 Mahalanobis Distance

Since the two datasets that I are using use simulated masqueraders by inputting another
users’ data into one of the test users’ data, it could be the case that the user and the
masquerader would have similar sets of commands. In this case, the methods proposed here
will not be able to detect the masqueraders as there is not enough of an anomaly within
the data. Is it fair to say, then, that a method failed to detect the masquerder, or is it more
appropriate to conclude that the masquerader isn’t really a masquerader at all but simply
another instance of a similar user? To determine whether any of these similar masquerade
blocks are found within the datasets I need a measure of dissimilarity of the user and their
masquerade blocks. FOr this, I used the Mahalanobis distance.

The Mahalanobis distance is the distance between two points in multivariate space. For
uncorrelated variables, the Mahalanobis distance is the same as the Euclidean distance.
However, for correlated variables, Euclidean distance no longer makes sense, but the Maha-
lanobis distance works even for correlated points. The Mahalanobis distance measures the
distance of a point relative to the centroid of the multivariate data. Larger Mahalanobis
distances mean the point is further from the centroid.

In the case of the SEA dataset, I treat the distribution to be the topic probability distri-
bution from the training set of commands for each user. Then, I calculate the Mahalanobis
distance from the mean of the distribution to the point corresponding to the count data
for the masquerade blocks of count data. That is, for each user I treat only the 50 training
blocks as the distribution made up of count data (either commands or topics) and calculate
the Mahalanobis distance for each masquerade block within the users 100 test blocks. I want
these masquerade blocks to have large distances indicating that they are truly dissimilar to
the users expected behaviour, ie. an anomaly.

For the Greenberg dataset, since I are introducing the masqueraders ourselves I want to
do so in a meaningful manner. Rather than randomly selecting a user and then randomly
choosing a block of commands to insert I can calculate the Mahalanobis distance so as to
choose a user and command block which is far from the expected users blocks. In particular,
I first treat each users’ count of number of commands which occur in a block as separate
distributions (both training and testing blocks), then I calculate the distance between all
users mean and all possible masqueraders mean count. Next, for each user and for each
inserted command block acting as a masquerader, I randomly select a masquerade user with
probability proportional to the Mahalanobis distance. Then, I select the masquerade blocks
randomly from the chosen masquerader.

Figure 5.1 shows the Mahalanobis distance of each test block topic counts from the
average of the training blocks topic counts for users with masqueraders. As seen in Figure
5.1a the Mahalanobis distance for the SEA dataset has masqueraders which are quite dis-
similar compared to the rest of the test blocks. This indicates that there is a large enough
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difference in the masquerader blocks to potentially be detected by the IDS. Not all users
have these large distances though thus some users may be harder to detect masqeurader
blocks than others. See Table F.1 for exact distances for each users’ masquerade block
from the training centroid and the mean of the test blocks Mahalanobis distance. For the
Greenberg dataset, Figure 5.1b, on the other hand, the masquerader block distances to the
non-masqueader’s test blocks are relatively small. This may provide some evidence that my
methods will struggle to detect these masqueraders (ie. high FN rate). There are several
users who have test blocks that are a large distance away from the average training block
which may be falsely identified as masqueraders. See Table F.2 for exact distances.

The Greenberg dataset points out the limitations of the methodology. When the mas-
querader looks like a user or when the test blocks don’t look like the user, then it is difficult
to correctly identify the masqueraders. Therefore, before using such approaches, it is im-
portant to perform similar analyses and define what sort of intruder one expects. Only then
can one decide whether or not the methodology is likely to be effective in specific settings.

(a) SEA Dataset (b) Greenberg Dataset

Figure 5.1: Mahalanobis distance of test blocks from average train block point.

5.3 Evaluation of Individual Methods

In the following sections, I compare the methods first on the SEA datset, followed by the
Greenberg dataset. I begin with the PCA based methods, followed by the frequency based
methods, then the combination method, and, finally, the adaptive naive Bayes method.
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5.3.1 Method 1 and 2: PCA Based

SEA Dataset

The two PCA methods were both applied to the SEA dataset using the thresholds shown in
Table E.1. The results are summarized in Table 5.1. Looking at the table, I see that there
is little change in the average false positive rate when using command frequencies rather
than topic frequencies. However, there is a small benefit provided for the false negative
rate. On the other hand, when using topic probabilities I achieve a decrease in average false
positive rate over the two frequency based methods, but see a large increase in average false
negative rate.

Overall, there is evidence that using my PCA Topic Frequency based detection method
has a minor improvement over the PCA Command Frequency based detection method
presented by Wang [25] when considering the average rates. When combined with the fact
that the proposed method also reduces the dimensionality of the problem and thus the
compute time, I can see that my PCA Topic Frequency method may be preferable.

It is worth noting that I observe an improvement in the false negative rate, the false
positive rate achieved by the proposed method is not as good as the DDSGA methods.
The topic probability PCA method, on the other hand, does well if false positives are more
severe than false negatives.

Next, Figure 5.2 shows the individual user’s FN and FP rates. First, when I look at
which method(s) gives the best false negative rate for each user (Figure 5.2b), I see that
only three users have best FN rates which are achieved by a unique methods rather than
having multiple methods giving the same FN rate. In particular, two users (users 7 and 36)
achieve the lowest FN rate using the PCA topic frequency method and one user (user 3)
has the PCA command frequency method resulting in the best FN rate. However, the FN
rate from the PCA topic frequency method for user 3 is only slightly greater than the best
FN rate (see Figure 5.2d). All other users have at least two methods resulting in the same
FN rate. Furthermore, of these users, all of the best methods come from the PCA topic
frequency method. The PCA topic probability method, on the other hand, gives a lot of
FN rates well above the other two PCA methods and rarely results in the best FN rate.

Finally, it is important to note, two users (user 12 and 16) have a FN rate of nearly
100% for all three methods. This means that all three methods miss all of the masquerade
blocks. Looking more closely at user 12 reveals that all but one of the masquerade blocks
have around 20% of their commands coming from topic 46. However, when I look at which
other blocks have a similar percent of commands from topic 46 I find that the percent of
commands belonging to each block is similar for all of the blocks (including the masquerade
ones). Therefore, the masquerade blocks are indistinguishable from the users true blocks.
The same can be said for the one masquerade block with a low number of commands from
topic 46. This can be seen in Figure 5.3a where all of the masquerader blocks are close to
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the x-axis indicating that the masquerader blocks are all close to the training average block.
Therefore, when doing PCA these masquerade blocks would look similar to the users blocks
and thus won’t be able to be found.

Simarly, user 16 has most of its masquerade blocks close to the average training block
as seen in Figure 5.3a. However, there are four masquerade blocks which stand out as being
far from the training blocks and from the other testing blocks. Therefore, it is surprising
that these blocks are missed. Next, I look at the commands which occur (and thus the
corresponding topics) compared to the other testing blocks and also the training blocks
(see Figure 5.3b). From here I can see that the masquerader blocks are consistent with
the training data and thus they could have easily been misslabeled as users rather than
masqueraders.

Next, I look at Figure 5.2a which shows which method(s) result in the lowest FP rates
for each user. Unlike the best FN rate, here I can see that half of the users have their
best FP rate from the PCA topic probability method. Furthermore, only 8 users achieve
their best FP rate from methods other than the PCA topic probability method. However,
looking at the FP rate from the PCA topic probability method for these 8 users (see Figure
5.2c) I see that the best rate and the PCA topic probability rate are very close. Therefore,
for all users the PCA topic probability method results in the best (or close to it) FP rate
and thus does a overall better job than either of the other two methods. It is also important
to note that all of the users have a good false positive rate of under 20%.

Finally, Table 5.1 shows the average rates obtained by the cross validation method
outlined in Algorithm 3. Both topic based methods have low false positive rates when
performing the cross validation which is consistent with the results I found using the entire
SEA dataset. The false negative rate for the topic probability based method, however, is
vastly greater for the cross validation.

TP FP TN FN
PCA with Command Frequencies 82.93 4.60 95.41 17.07

PCA with Topic Frequencies 86.04 4.50 95.50 13.96
PCA with Topic Probabilities 61.54 2.22 97.78 38.46

PCA Topic Freq CV 86.07 2.22 97.78 13.93
PCA Topic Prob CV 25.02 2.22 97.78 74.98

Table 5.1: True Positive, false positive, true negative, and false negative rates averaged over
all 50 users for the three Principal Component Analysis methods using the SEA dataset.
Also included are the cross validation averaged rates.
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(a) (b)

(c) (d)

Figure 5.2: Comparison of false positive/negative rates for the three PCA based intrusion
detection methods.
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(a) Mahalanobis distance of test blocks from av-
erage train block point for User 12 and 16 which
had 100% FN rates.

(b) Command occurance by block

Figure 5.3: Closer look at the users which have high FN rates for all three PCA methods.

Greenberg Dataset

Now I repeat the analysis of the three PCA based methods using the Greenberg dataset.
First, Table 5.2 shows that all three methods have similar average rates (around 16% FP
and 85% FN). Therefore, none of the methods were very good at detecting masqueraders as
the FN rates are very high. However, with the reduction in computational effort from the
topic model I have evidence that my methods perform slightly better than the command
based counter-part.

Second, I look more closely at which users had high or low FN and FP rates. To do
this I look at Figure 5.4. I see from Figure 5.4a that all the methods have FP rates at or
below 20% and the topic probability method has most users with FP rates just below 20%.
Next, Figure 5.4b shows the FN rates for the three methods for all users. Here I see that
all users with all methods have false negative rates between 60% and 100%. No users stand
out as doing particularly well in terms of FN or FP rate no matter which method is used.
This low power is as I expected as the Mahalanobis distances showed that the Greenberg
dataset had test users which were not dissimilar from the masqueraders.

Finally, I look at the cross validation of the two topic based methods. See average rates
in Table 5.2. Both topic based methods cross validations achieve a false positive of around
16-19% and a false negative of approximately 80-85%. This is as I expected from the initial
results using the entire dataset.

24



TP FP TN FN
PCA with Command Frequencies 15.31 14.59 85.31 84.69

PCA with Topic Frequencies 17.26 16.10 83.90 82.74
PCA with Topic Probabilities 13.93 17.70 82.30 86.07

PCA Topic Freq CV 18.66 17.70 82.30 81.34
PCA Topic Prob CV 15.43 17.70 82.30 84.57

Table 5.2: True Positive, false positive, true negative, and false negative rates averaged
over all 41 users for the three Principal Component Analysis methods using the Greenberg
dataset. Also included are the cross validation averaged rates.

(a) (b)

Figure 5.4: Comparison of false negative and false positive rates for individual users based
on the three PCA methods using the Greenberg dataset.

5.3.2 Method 3: High Frequency Topics

SEA Dataset

From Table 5.3 I can see that the original high frequency commands method does an overall
better job then the high frequency topics method when considering the average users’ false
positive rates. The reduction in dimensionality gained from the high frequency topics
method, and thus the reduction in compute time, may be enough to consider this method
to be superior or as good as the command based method.

Next, when considering individual users, to see where the method does well and where
it doesn’t, I look at figure 5.5. From figure 5.5a I see that the high frequency topic method
has a higher false positive rate for most users. It is also important to note that two users

25



(user 30 and 31) had approximately 100% false positive rates when using the topic frequency
method. See that user 30 has the same nearly 100% false positive rate for both methods.
This is due to the fact that almost every block of topics was assigned to be a masquerader.
For this user, a topic only had to occur 2 or more times to be considered a high frequency
topic. This meant that almost every topic used by user 30 was a high frequency topic.
It turns out that user 30 is the only user where such a low threshold was used and may
indicate that this user had a number of sparse topics and thus small changes were mistaken
for masqueraders. This can be seen in Figure 5.6a where the training, and most of the
testing, blocks all belong to the same small number of commands and thus any changes
from this seem to indicate a masquerader.

Figure 5.5b shows the comparison of the individual users false negative rates for the
two methods. As with the false positive rates there are only a number of users which have
higher rates for the command based or the topic based and all other users are about the
same rate for both methods. This suggests that both methods do about the same for false
negative rates. It is important to note that users 12 and 35 have nearly 100% false negative
rate using the command based method and users 29, 35, and 37 have nearly 100% false
negative rates for the topic based method. Looking at user 35, as both methods do poorly,
I see that there is only one masquerade block, therefore, the entire false negative rate comes
from mislabelling this one block. Moreover, most of the commands in this masquerade block
belong to topic 23, 32 commands out of a possible 100, which is a topic that occurs in the
training blocks with a frequency of 25%. Therefore, this block appears to be from the user
instead of a masquerader. This can further be seen from Figure 5.6b as the one masquerader
block has mostly the same commands as the training data. Only a few commands are new to
this block of commands, but, as I are only considering high frequency topics and commands,
these seem to not be enough of a difference to signal a masquerader.

Next, I compare the results from my high frequency topic model based method to the
DDSGA method (see Table 2.1). I can see that the proposed method doesn’t do as well
as the DDSGA method. Lastly, I look at the cross validation of the high frequency topic
method. As with the entire SEA dataset, I get a false positive of 22.44%. Similar false
negative rates are also found (approx. 30%).

TP FP TN FN
High Frequency Commands 67.27 6.91 93.09 32.73

High Frequency Topics 69.88 22.44 77.56 30.12

Cross Validation 71.71 22.44 77.56 28.29

Table 5.3: True Positive, false positive, true negative, and false negative rates averaged
over all 50 users for the high frequency topics method compared to using high frequency
commands using the SEA dataset. Also included are the cross validation averaged rates.
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(a) (b)

Figure 5.5: Comparison of false negative and false positive rates for individual users based
on the high frequency methods using the SEA dataset.

(a) User with high FP rate. (b) User with high FN rate.

Figure 5.6: Closer look at command occurance by block for the users which have high FP
and FN rates for all high frequency methods.

Greenberg Dataset

We have now repeated the analysis using the Greenberg dataset rather than the SEA dataset
for the high frequency methods. Although neither of the high frequency topic based methods

27



do particularly well at finding masqeraders (high false negative rates), from Table 5.4 I see
that the average false positive rate is much lower for the topic based method than for the
command based method. This, however, is achieved at the expense of the false negative
rate which goes from 63% to 83%.

Next, I want to investigate individual users false negative and false positive rates to see
which users are causing the changes in the average rates. For this I look at Figure 5.7. First,
Figure 5.7a shows the individual users’ false positive rates. The figure shows that about
2/3 of the users have a false positive rate at or just below 20% when using the topic based
method and the command based method. The other users, for both methods, have FP rates
between 60% and 80%. Second, Figure 5.7b shows the individual users’ false negative rates.
From this figure, I see that almost all of the users have rates above 60% when using the
both the topic based and command based methods.

Next, I consider the cross validation of the high frewuency method to see how the method
works with a subset of the Greenberg data. Table 5.4 shows that the CV values are on par
with the command based method for the false negative rate and slightly imporoved for the
false positives. In particular, the FP is around 22% compared to the 35% I achieved using
the entire dataset, in addition, the FN is around 80% compared to 83% for the command
based method and the topic based method on the entire dataset. The cross validation
results indicate that the proposed high frequency method performs slightly better than the
initial results suggested when considering false positives.

TP FP TN FN
High Frequency Commands 16.18 35.37 64.63 83.82

High Frequency Topics 17.15 35.85 64.14 82.85

Cross Validation 20.26 21.68 78.32 79.74

Table 5.4: True Positive, false positive, true negative, and false negative rates averaged
over all 41 users for the high frequency topics method compared to using high frequency
commands using the Greenberg dataset. Also included are the cross validation averaged
rates.
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(a) (b)

Figure 5.7: Comparison of false negative and false positive rates for individual users based
on the high frequency methods using the Greenberg dataset.

5.3.3 Method 4: Low Frequency Topics

SEA Dataset

Similar to the high frequency topics method, both the command based and topic based
methods have about the same average rates. This, combined with the reduction in dimen-
sionality afforded by the topic method, indicates that the low frequency topics method does
a slightly better job than the low frequency commands method.

Next, I consider the individual users false positive and false negative rates (Figure 5.8).
Both methods have a low false positive rate as seen in Figure 5.8a. All users have a false
positive rate below 20% with about half having a 0% false positive rate. Additionally, when
comparing the two methods, neither appears to have a better false positive rate for all the
individuals. In fact, the rates are very similar for all users.

Next, I consider the false negative rates (see Figure 5.8b). Here I see that in about
one-third of the users, both methods have an approximately 100% false negative rate. Also,
of those users with approximately 100% false negative rates using the command frequency
method, only a handful have a better rate using the topic frequency method, but, no user
has a 100% false negative rate using the topic frequency method and a better rate using the
command frequency method. All other users have similar rates using both methods. This
provides further evidence that the low frequency topic method does slightly better than the
low frequency command method.
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Next, I compare my results to the DDSGA method (see Table 2.1). I can see that
the proposed method doesn’t do as well as the DDSGA method. Finally, I look at the
cross validation of the low frequency method using a subset of the SEA dataset. The false
positive rates for the cross validation are very similar to the method using the entire SEA
dataset. As for the false negatives, I see that the cross validation has a lower average rate
which indicates that the low frequency method applied to the entire SEA dataset may be
an extreme case meaning that this method may work better, in terms of false negative rate,
for other datasets.

TP FP TN FN
Low Frequency Commands 58.27 5.70 94.30 41.73

Low Frequency Topics 46.65 5.19 94.81 53.35

Cross Validation 66.91 5.06 94.94 33.09

Table 5.5: True Positive, false positive, true negative, and false negative rates averaged over
all 50 users for the low frequency topics method compared to using low frequency commands
using the SEA dataset. Also included are the cross validation averaged rates.

(a) (b)

Figure 5.8: False negative and false positive rates for individual users comparing the low
frequency topics and low frequency commands methods using SEA dataset.

Greenberg Dataset

As with the low frequncy method on the SEA dataset, the average rates are similar for both
the topic and command based methods using the Greenberg data. Therefore, the reduction
in dimensionality afforded by the LDA topic model and the fact that my rates are on par
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with the non-topic based method I conclude that the proposed novel intrusion detection
method does a slightly better job at finding masqueraders.

Now, I considered the individual rates for each user (see Figure 5.9). First, Figure 5.9a
shows the FP rates for each user. Here I see that the majority of users from both methods
have a FP rate around 5%. All of the users FP rates for both methods were below 20%.
Figure 5.9b shows the individual users FN rates. From here I see that most of the users
have rates around 100% with slightly better rates for the command based method. This is
as expected given the average rates.

Finally, I consider the cross validation of the topic based low frequency method using
a subset of the Greenberg dataset. Table 5.6 shows that the false positive average rate is
around 15% which is higher than I expected given the rate of the full dataset. However, the
false negative has lowered to 80% from approximately 100%. Therefore, the cross validation
achieved a slightly better result for the false negatives but at the cost of the false posiives.

TP FP TN FN
Low Frequency Commands 5.69 7.63 92.37 94.31

Low Frequency Topics 1.87 4.25 95.75 98.13

Cross Validation 18.76 14.51 85.49 81.24

Table 5.6: True Positive, false positive, true negative, and false negative rates averaged over
all 41 users for the low frequency topics method compared to using low frequency commands
using the Greenberg dataset. Also included are the cross validation averaged rates.

(a) (b)

Figure 5.9: False negative and false positive rates for individual users comparing the low
frequency topics and low frequency commands methods using Greenberg dataset.
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5.4 Method 5: Combination of Methods

Next I investigate combining the four methods above to try and better the true positive and
negative rates using the SEA dataset. Table 5.7 shows the overall rates for the combined
method plus the best individual method for comparison. I can see that the combined
method does no better than a single individual method, but requires additional effort and
thus additional computational time.

TP FP TN FN
PCA Topic Frequency 86.04 4.50 95.50 13.96

Combined 87.19 4.56 95.44 12.81

Table 5.7: True Positive, false positive, true negative, and false negative rates averaged
over all 50 users for the combined method compared to using the best single method (PCA
Topic Frequency) using the SEA dataset.

5.5 Method 6: Adaptive Naive Bayes

SEA Dataset

From the average rates shown in Table 5.8 there is a slight increase in the average false
negative rates when comparing the topics and command based methods. The false positives
also have a slight difference with the proposed method having almost 1% less. However, the
dimensionality and compute time are reduced for the topic based method thus providing
evidence that the method proposed here using topic frequencies rather than command
frequencies has benefits.

Next, consider the individual user’s false negative and false positive rates rather than the
averaged rates (see Figure 5.10). First, looking at Figure 5.10a, the individual false positives,
the rates are similar for both methods. There are a number of users which have slightly
higher rates for the topic based method and similarly for the command based method but
not overly large compared to their counterpart. Importantly, one user, user 13, has high
false positive rates using both methods. This indicates that for this user the adaptive naive
Bayes method is overfitting. From Figure 5.11 the testing data and the training data is
quite different, however, there are no masqueraders. This difference is due to changes in
the users behaviour. My method, however, captures these changes and wrongly contributes
them to a masquerader.

Second, from Figure 5.10b the individual false negatives are essentially the same for all
users, with the exception of three users who have higher false negative rates for the topic
based method. It is also important to note that the users with less than three masquerade
blocks will most likely be mislabelled as the adaptive naive Bayes method requires three
consecutive blocks to be labelled as doubtful before the blocks are labelled as masqueraders.
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Next, compare the new topic model based method the DDSGA method. From Table
2.1 the DDSGA method achieves a false positive rate of 3.4 where as the proposed method
has a false positive rate of 7.13. Additionally, the proposed method achieves much worse
false negative rates.

Finally, compare the proposed method using the entire SEA dataset to using a cross
validation on a subset of the SEA dataset. In the cross validation case, I achieve a false
positive rate of approximately 4% compared to the 7% I got using the entire SEA dataset.
This slight diiference in false positive rate, however, is negligible. This was achieved at the
expense of the false negative rate which doubled. However, this high false negative rate
is probably due to the fact that adaptive naive Bayes requires consecutive blocks to be
masqueraders which is built into the SEA dataset, but not necessarily found in the cross
validation test set.

TP FP TN FN
Ad. Naive Bayes Commands 77.40 8.86 91.14 22.60

Ad. Naive Bayes Topics 75.69 7.13 92.87 24.31

Cross Validation 49.76 4.29 95.71 50.24

Table 5.8: True Positive, false positive, true negative, and false negative rates averaged
over all 50 users for the adaptive naive Bayes for topics method compared to using adaptive
naive Bayes for commands method using the SEA dataset.

(a) (b)

Figure 5.10: False negative and false positive rates for individual users comparing the
adaptive naive Bayes topics and adaptive naive Bayes commands methods using the SEA
dataset.
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Figure 5.11: Topic occurance by block for user 13 which has a high FP rate.

Greenberg Dataset

We repeat the analysis of the adaptive naive Bayes method using the Greenberg dataset.
Table 5.9 shows the average rates which are consistent between the topic and command
based methods. Both methods were only able to identify a masquerader correctly about
half of the time. There is no obvious benefit to using one method over the other, other
than the reduction in compute time from the reduction in dimensionality due to using topic
modelling for the topic based method over the command based method.

Next, consider individual users FN and FP rates (see Figure 5.12). For both the false
negative and false positive rates about half the users have good rates and half have bad
rates which is why the average rate is approximately 50%. It is really a ’coin toss’ to see if
the masqeurader is detected correctly or not.

Finally, consider the cross validation of the topic based adaptive naive Bayes method
using a subset of the Greenberg dataset. Table 5.9 shows that the cross validation average
rates are on par with the full dataset results, of a nearly 50% detection rate.

TP FP TN FN
Ad. Naive Bayes Commands 45.20 51.36 48.64 54.80

Ad. Naive Bayes Topics 52.52 56.22 43.78 47.48

Cross Validation 44.40 47.53 52.47 55.60

Table 5.9: True Positive, false positive, true negative, and false negative rates averaged
over all 41 users for the adaptive naive Bayes for topics method compared to using adaptive
naive Bayes for commands method using the Greenberg dataset.
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(a) (b)

Figure 5.12: False negative and false positive rates for individual users comparing the adap-
tive naive Bayes topics and adaptive naive Bayes commands methods using the Greenberg
dataset.

5.6 Modified Block Size

To further investigate the proposed methods I use the dataset with large block sizes and
make new datasets with smaller block sizes. That is, originally block sizes were x now I
tried sizes x/2, x/4 and x/10. Similarly, I use my dataset with small block sizes and create
a new dataset with larger blocks, originally blocks were of size y and I tried blocks of size
2y and 5y. I use these modified block sizes to test my methods to see which works better,
a smaller number of larger blocks or a larger number of smaller blocks. In this way, I get a
better understanding of what type of data is needed for my methods to perform well. I only
use these new datasets on the method which performed the best for the original dataset.

Here look at what happens to the average rates when the block sizes are modified. To
get a better understanding of what block size should be used to get the best average rates.
First, consider the SEA dataset which originally had blocks of 100 commands. I modified
this by considering blocks of size 50, 25, and 10. I then use the PCA with topic frequencies
method as this method had the best results for the original dataset. Looking at Table 5.10
having more smaller blocks results in higher FP and FN average rates. As the block sizes
got smaller the average false positive rate increased slightly and the average false negative
rate increased considerably.
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Block Size TP FP TN FN
10 59.22 6.97 93.03 40.78
25 64.61 7.33 92.67 35.39
50 71.49 6.92 93.08 28.51
100 86.04 4.50 95.50 13.96

Table 5.10: True Positive, false positive, true negative, and false negative rates averaged
over all 50 users for the Principal Component Analysis with Topic Frequencies method using
the SEA dataset with varying block sizes.

Second, I use the Greenberg dataset which originally had blocks of size 10 and modify
the data to have blocks of size 2, 20, 50, and 100. I then used the adaptive naive Bayes
topics method and the PCA topic frequency method as these provided the best results for
the original dataset. Table 5.11 shows the averaged rates for the varying block sizes using
the adaptive naive Bayes method. From this table, I see that the average FP rates seems to
be unaffected by the block size, but the false negative average rate appears to be decreasing
as the block size increases.

Table 5.12 shows the average rates using the PCA topic frequency method. From this
table I see a slight increase in false negatives as the block size gets really small, 2, and a
decrease as the block size gets really big, 100. The false positives, on the other hand, seem
to remain the same with a slight decrease for a block size of 2.

Block Size TP FP TN FN
2 52.93 54.10 45.90 47.07
10 52.52 56.22 43.78 47.48
20 52.03 57.56 42.44 47.97
50 55.20 57.52 42.48 44.80
100 56.10 56.30 43.70 43.90

Table 5.11: True Positive, false positive, true negative, and false negative rates averaged
over all 41 users for the adaptive naive Bayes topic method using the Greenberg dataset
with varying block sizes.
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Block Size TP FP TN FN
2 10 9.57 90.43 90
10 17.26 16.10 83.90 82.74
20 15.61 18.05 81.95 84.39
50 14.80 16.67 83.33 85.20
100 22.85 16.06 83.94 77.15

Table 5.12: True Positive, false positive, true negative, and false negative rates averaged
over all 41 users for the Principal Component Analysis with Topic Frequencies method using
the Greenberg dataset with varying block sizes.

5.7 Computational Effort

We finally look at the actual run times of the SEA dataset for all six of my methods
compared to their original non-topic based counter-parts (see Figure 5.13).

First, for the PCA based methods I extended the original method in two ways so the
command based counter-part compute times for both methods is the same. Next, I see that
both of my proposed PCA-based extensions run in under a second where as the original
method takes nearly 37 seconds. Therefore, my methods 1 and 2 run considerably faster.
This is due to the reduction in dimensionality afforded by doing topic modelling.

Second, I look at method 3, the high frequency method, and method 4, the low fre-
quency method. For the high frequency commands method using the SEA dataset I achieve
a runtime of 4.09 seconds compared to the proposed method which has a better 3.11 sec-
onds. Although that may seem like an insignificant difference, real-world data will be much
larger and have higher dimensionality and thus this small difference will become a larger
difference as the compute times increase. Therefore, there appears to be some evidence
that the proposed method runs faster and is therefore better. Next, the command based
low frequency method. In this case the proposed method runs considerably slower than the
command based counter-part. This provides evidence that the proposed method may not
be as good as the original command based one.

Third, I look at the combination of the first four methods and compare it to the runtime
of the single best individual method (PCA Frequency). The runtime for the combined
method is the combined runtime of all the methods plus the runtime to compare the methods
and find the consensus. This means that the runtime for this combined method is always
going to be more than the best individual method and in this case it is considerably more
and the low and high frequency methods each take five times as long as the PCA Frequency
based topic model. Therefore, I have evidence that the combined method doesn’t do as well
as the best individual method.
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Finally, I consider the runtime of the Adaptive Naive Bayes method. Here I see that
my topic based extension runs in 6.6 seconds where as the command based one takes a
whopping 127 seconds. This is a huge improvement for the proposed method and provides
evidence that the proposed method is superior.

Out of all of the methods I find that the PCA Topic Frequency based method and the
Low Frequency Command based method have the fastest runtimes and the Adaptive Naive
Bayes has the best improvement over the command based counter-part.

It is important to note that the run times are just for the given methods and an initial
run time of 905 seconds for the LDA topic modeling needs to be taken into account as well.

Command Based Topic Based
PCA Prob 36.96 0.95

PCA Frequencies 36.96 0.58
High Frequency 4.09 3.11
Low Frequency 0.23 3.24

Combined - All+0.36
Ad. Naive Bayes 126.83 6.6

Table 5.13: Comparison of compute times (in seconds) for the command based and topic
based models using the SEA dataset.
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Chapter 6

Conclusions and Future Work

This project considered intrusion detection techniques based on topic modelling to extend
current intrusion detection techniques. Namely, I extended the PCA based technique pro-
posed by Wang [25] in two ways. First, I used topic distributions rather than command
frequencies when doing PCA. Second, I used topic frequencies within a block for the PCA.
Additionally, several approaches were modified so that the high [24] and low [22] frequencies
of commands I instead used frequencies of topics. In this way, I created two new methods:
high frequency topics and low frequency topics. Finally, I modified the adaptive naive Bayes
technique proposed by Dash et al. [10] by using topic frequencies rather than command
frequencies.

The methods were implemented on the Unix command data from SEA and from Green-
berg. Experimental results indicated that all of the methods were on par with the command
based counterparts in terms of overall average and individual user FP and FN rates. Com-
bining these findings with the lower computational complexity achieved by the dimension
reduction of topic modelling I found that my topic modelling based methodologies work as
well as or better than the command based methodologies.

However, no one method seems to provide the best results for both datasets. For in-
stance, the PCA topic frequency method and the combined method performed well on the
SEA dataset, although the combined method takes much longer to compute thus the PCA
topic frequency method is prefered. For the Greenberg dataset, on the other hand, the low
frequency method works well for false positives, but has nearly a 100% false negative rate.
Both the PCA based methods work relatively well for the Greenberg dataset, but still have
a high false negative. In the end, we recommend that following the steps for comparison of
methods, as was done here, is required before using any method in a practical setting.

When considering why the methods appear to work well on the SEA dataset, but poorly
on the Greenberg dataset, the approach I took when constructing Figure 5.1 sheds some
light. The Mahalanobis distance for each test block of topic frequencies from the average
training topic frequencies. Using the SEA dataset, most of the masquerader blocks truely

39



are different and far from the training data and, usually, the testing data is close to the
training data. For those users with dissimilar test blocks compared to the training blocks I
would expect to get false positives and similarly for masquerader blocks which are similar
to the training data giving false negative. These are rare in the SEA dataset but common in
the Greenberg dataset. Furthermore, the Greenberg dataset doesn’t appear to have many
blocks, masquerader or otherwise, which are far from the training data. All blocks appear
to be of a similar distance from the training data.

Since the success of the intrusion detection technique is dependent on the dataset, a
company wishing to perform intrusion detection should follow these steps:(1) First, the
company needs to choose 2-3 models that they wish to use. These models will then be
tested using training data to see which one works the best for the given dataset. (2) The
company then needs to get some clean data to test the models with. This data is typically
taken from the previous day(s). (3) A block size needs to be chosen. The company can
choose any block size, but I suggest that they try blocks of size 50, 25, and 10. Each of these
block sizes will be tested with each of the chosen methods and then the best block size will
be used for future testing. (4) The clean data needs to be split into training and testing
data. Thus, the company needs to decide on a number of blocks to train each method on
and the rest of the blocks will be used to test the methods. (5) The number of times a
command occurs within a block needs to be calculated. (6) The clean testing data then
needs to be interspersed with simulated masquerade data. This can be done in a number
of ways. First, the data can be split into users and potential masqueraders. Then, the
Mahalanobis distance will be calculated from the mean of each user to the mean of each
potential masquerader and the furthest masqerader will be chosen. Some data from the
chosen masquerader is randomly inserted into the users test data. Second, the company
could instead use the Mahalanobis distance to calculate the distance between the training
data and each command and then assume this distribution of command counts is normal
and get simulated data blocks of command counts such that the simulated blocks have
around 30% of their commands from commands which have large Mahalanobis distances.
(7) Run each IDS which was chosen in step 1 with the training and testing data with block
sizes chosen in step 3 to see which IDS method and block size combination works best with
the data. (8) Select the best IDS and block size such that the average FN and FP rates are
lowest. (9) Once and intrusion detection system and block size has been selected, new data
can be checked for masqueraders as soon as it occurs.

To extend this project one could consider first grouping the users in a reasonable manner.
This could include grouping users based on similarity of commands. Therefore, although the
methods proposed in this project have been done at an individual user level (see Algorithm
5 and 7), it is possible to also do the topic modelling at a user group/cluster level (see
Algorithm 6 and 8).
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Another possible extension to this project is to use Markov Random Field LDA topic
modelling. As mentioned previously, one of the key assumptions of LDA is the bag-of-words
approach to word (in this case command) selection. However, in the context of masquerade
detection, this assumption may not be appropriate. This is due to the fact that commands
are often correlated to one another and occur close together. For instance, if a user makes
a directory (mkdir) it is likely that shortly afterwards the user will change to that newly
made directory (cd). Therefore, the basic LDA approach needs to be extended to account for
correlations between words. In 2005, Metzler and Croft [18] proposed a model to incorporate
term dependencies into topic modeling using Markov Random Field (MRF). Similarly, in
2015 Pengtao Xie et. al. [26] proposed a MRF regularized LDA method which extends
the LDA method to include a matrix of word correlations and uses these correlations to
encourage similar words to belong to the same topic. These two methods could be used as
the topic modelling step in my proposed methods which would allow for correlation between
commands to be taken into account.

In conclusion, my six topic model based intrusion detection methodologies do as well
or better than their current command based counter-parts. In addition, using topic models
allows for a reduction in dimensionality which leads to a reduction in compute time and
thus provides more timely real-world use. Out of the six methods proposed in this project
the PCA Topic Frequency based method provided the best overall rates and compute time
reduction for the SEA data and the low frequency based method works the best for the
Greenberg data. The Greenberg dataset had no statistical power for any of the methods used
for either the command or the topic based methods. I have also outlined the methodology
needed for a company to run intrusion detection using one of my systems and provided
some guidelines on block size vs number of blocks needed to get good results.
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Appendix A

Method Pseudocode

This section provides pseudocode for the methods used in this project. For all of the
methods,

1. Let M be the topic model created using training data from all users.

2. Let p be the list of matrices of topic probability distributions using M such that p[i]
is the m-by-n matrix for user i, where m is the number of data blocks and n is the
number of topics in M.

p[i]=

prob block 1 prob block 2 . . . prob block m
belongs in topic 1 belongs in topic 1 belongs in topic 1

. . .
prob block 1 prob block 2 . . . prob block m

belongs in topic n belongs in topic n belongs in topic n

3. Let c be the vector of associated topics for each command as chosen using the topic
distribution of the commands using M.

4. Let C be the list of matrices of the frequency of topics, using c, within a block of
commands such that C[i] is the m-by-n matrix for user i.

C[i]=

freq of topic 1 freq of topic 1 freq of topic 1
in block 1 in block 2 . . . in block m

. . .
freq of topic n freq of topic n freq of topic n
in block 1 in block 2 . . . in block m
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A.1 Method 1 and 2: PCA LDA

Algorithm 1 Pseudocode for Principal Component Analysis based methods
For method 1 data is p[i]
For method 2 data is C[i]

Divide data by the number of commands per block
Split the modified data into training, Di, and testing, di

Let τ be a vector of possible thresholds

Calculate mean(Di) and the eigenpairs of the sample covariance of Di

Keep eigenvectors which explain 99.9% of variance, denoted U
for all di and τ pairs do

Calculate the mean adjusted di (denoted φ),
the projection of di onto the subspace given by U (denoted y),
φf = Uy,
and the squared Euclidean distance between φ and φf (ε)
Compare ε and τ to determine if di is a masquerader

Select best τ for each di

A.2 Method 3 and 4: High and Low Frequency Topics

Algorithm 2 Pseudocode for method 3 and 4
Split C[i] into training and testing blocks
Calculate average freq of topics in training blocks by

F =
∑

(C[i][,1:ntrain])/
∑

(C[i][,1:ntrain] > 0)
Calculate probability of topic occuring in block by dividing F by length of block
Sort probability of topics occuring by highest (lowest) probability
if method 3 then

Only keep k highest probability of occuring topics
else

Only keep k lowest non zero probability of occuring topics
for all test blocks in C[i] do

Calculate the probability of the k kept topics within the test block
Test for masquerader by comparing test block probability to training block probability

for k kept topics
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Appendix B

Threshold Validation

Algorithm 3 Pseudocode for method validation
Let Di be the set of training data for user i
Let d be the set of testing data for all users
Let di be the set of testing data for user i
Let Mk

j be the vector of masquerader indicators for threshold j with data k where 0
indicates the block of data is from the user and 1 indicates the data block is a masquerader
Let {Mk}|m be a set of m masquerader indicator vectors for data k

function Masquerade Indicator Consensus({Mk}|m)
for all i = 1 . . . length(Mk) do

if
∑
Mk[i] ≥ 0.5m then return 1

else return 0

for all Users i do
for j = 1 . . . n do

Let Ru be N train randomly chosen blocks of data from Di

Let Rn be the remaining blocks of data from Di

for k = 1 . . . N do
Let r be N test randomly chosen blocks of data from d
Let T be the set of r and Rn

Run method using training data Ru and testing data T to find threshold ωk

Using Ru, di and ωk get Mdi
ωk

function Masquerade Indicator Consensus({Mdi}|N )
function Masquerade Indicator Consensus({Mdi}|n)
Calculate FN, FP, TN, and TP
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Appendix C

Assignment of LDA topics to
commands

Algorithm 4 Assignment of topics to individual commands
1: Let C be the vector of commands
2: Let Pij be the probability that command C[i] belongs in topic j
3: Let T be the vector of chosen topics such that T[i] is the topic for C[i]
4: function Best Topic(i)
5: T[i] = maxjPij

6: function Topic Weights(i)
7: T[i] = Select topic with probability Pi

8: function Coin Flip(i)
9: Let τ be the probability threshold

10: Let tij be the topics such that Pij ≥ τ
11: Let n be length(ti)
12: T[i] = Select topic from ti with probability 1

n

Algorithm 5 Topic Model Individual Command Frequencies without Clusters
1: Perform topic modeling using training data from ALL users
2: Assign individual commands to topics via Algorithm 4
3: for all users do
4: Calculate expected frequency of topics using only the 50 training blocks for the user
5: for all test blocks do
6: Calculate frequency of topics
7: Test if masquerader
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Algorithm 6 Topic Model Individual Command Frequencies with Clusters
1: Perform topic modeling using training data from ALL users
2: Assign individual commands to topics via Algorithm 4
3: T = (number of training blocks)x(block size) matrix of topic numbers such that each

row corresponds to one block of commands within the training data
4: Cluster users based on topic model of training data
5: for all clusters do
6: Nijk = number of times topic i appears in training block j within cluster k as seen

from T
7: Nik =

∑
j Nijk

8: pik = probability of topic i appearing in cluster k = Nik/Nk

9: for all users do
10: Nijl = number of times topic i appears in training block j within user l as seen from

T
11: Nil =

∑
j Nijl

12: pil = probability of topic i appearing in user l = Nil/Nl

13: for all test blocks do
14: Calculate frequency of topics
15: Test if masquerader using expected frequency determined from individual user
16: if Test block not from user as indicated from individual masquerader test then
17: for users cluster do
18: Test if masquerader using expected frequency determined from cluster
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Appendix D

Assignment of LDA topics to
command blocks

Algorithm 7 Topic Model Blocks of Commands without Clusters
1: Perform topic modeling using training data from ALL users
2: for all training blocks do Get probabilities associated with each topic
3: for all users do
4: function Expected topic probabilities(users training data prob.)
5: Each training block corresponds to a vector of probabilities
6: Expected topic probability = average topic probability over all training blocks
7: for all test blocks do
8: Calculate probabilities for the test block belonging to each topic
9: Test if masquerader

Algorithm 8 Topic Model Blocks of Commands with Clusters
1: Perform topic modeling using training data from ALL users
2: for all training blocks do Get probabilities associated with each topic
3: Cluster users
4: for all clusters do
5: function Expected topic probabilities(cluster training prob.)
6: Each training block corresponds to a vector of probabilities
7: Expected topic probability = average topic probability over all training blocks
8: for all users do
9: function Expected topic probabilities(users training prob.)

10: for all test blocks do
11: Calculate probabilities for the test block belonging to each topic
12: Test if masquerader using expected probability determined from individual user
13: if Test block not from user as indicated from individual masquerader test then
14: for users cluster do
15: Test if masquerader using expected probability determined from cluster
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Appendix E

Threshold

User PCA Distance Num Topics Low Freq (fL)Topic Freq Probability High Freq (NH) Low Freq (nL)
1 0.131 1e-05 56 1 0.01
2 0.009 1e-05 39 1 0.01
3 0.002 1e-05 39 37 0.01
4 0.016 1e-05 42 14 0.01
5 0.005 1e-05 47 1 0.01
6 0.009 1e-05 33 1 0.01
7 0.004 1e-05 39 5 0.01
8 0.018 1e-05 45 1 0.01
9 0.014 1e-05 47 11 0.01
10 0.149 6e-05 42 5 0.01
11 0.215 8e-05 55 1 0.01
12 0.018 3e-05 51 13 0.01
13 0.323 5e-05 54 1 0.01
14 0.035 1e-05 44 1 0.01
15 0.003 1e-05 56 18 0.01
16 0.155 7e-05 49 15 0.01
17 0.013 1e-05 54 1 0.01
18 0.016 1e-05 33 14 0.01
19 0.022 3e-05 51 1 0.01
20 0.806 9e-05 54 1 0.01
21 0.056 3e-05 33 1 0.01
22 0.006 1e-05 52 1 0.01
23 0.097 3e-05 56 16 0.01
24 0.008 1e-05 46 21 0.01
25 0.007 1e-05 47 35 0.01
26 0.015 3e-05 54 3 0.01
27 0.781 4e-05 54 1 0.01
28 0.019 3e-05 41 1 0.01
29 0.033 1e-05 37 1 0.01
30 0.014 1e-05 2 1 0.01
31 0.004 1e-05 33 1 0.01
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32 0.025 3e-05 41 1 0.01
33 0.626 7e-05 43 1 0.01
34 0.002 1e-05 50 32 0.01
35 0.041 1e-05 36 1 0.01
36 0.02 1e-05 35 4 0.01
37 0.002 1e-05 47 23 0.01
38 0.007 1e-05 48 17 0.01
39 0.987 6e-05 49 1 0.01
40 0.201 3e-05 50 1 0.01
41 0.006 1e-05 44 19 0.01
42 0.004 1e-05 47 12 0.01
43 0.006 1e-05 49 23 0.01
44 0.028 1e-05 45 25 0.01
45 0.01 1e-05 34 9 0.01
46 0.001 1e-05 33 29 0.01
47 0.081 2e-05 27 1 0.01
48 0.024 1e-05 51 2 0.01
49 0.13 3e-05 55 1 0.01
50 0.025 1e-04 51 1 0.01

Table E.1: Optimal thresholds for the methods proposed in this project. For each of the two
principal component analysis (PCA) based methods one threshold is used, namely the PCA
distance. Both of the topic frequency based methods require a threshold for the number
of topics used to indicate that a block is either high or low frequency. The low frequency
topics method requires an additional threshold for the number of topics which have a within
training block frequency of topics below this threshold. This threshold is present in the high
frequency command method as well, but is set to zero and the threshold is for above zero
rather than below.
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Appendix F

Mahalanobis Distance

User Average Test Distance Masquerader Distance Masquerader Distance from Avg
2 190899 73740726 , 6021310 ,

260342238
73549827 , 5830411 ,
260151339

3 203886 2276377 , 9201376 , 2275291 ,
2324725 , 841244 , 10299454 ,
2537689 , 62228 , 47099506 ,
55372776 , 1259503

2072491 , 8997490 , 2071405 ,
2120839 , 637358 , 10095568 ,
2333803 , 141658 , 46895620 ,
55168890 , 1055617

4 95739 76240708 , 14880304 76144969 , 14784565
7 797720 6677382 , 3731425 , 3781733 ,

39345122 , 177798222 ,
14666808 , 4762228 ,
27796669 , 81888841 ,
82565635 , 7750985 , 4349511
, 4000654

5879662 , 2933705 , 2984013 ,
38547402 , 177000502 ,
13869088 , 3964508 ,
26998949 , 81091121 ,
81767915 , 6953265 , 3551791
, 3202934

9 916709 2252771 , 1968574 , 1960816 ,
2069811 , 1968574 , 1960816 ,
2035997 , 1960816 , 1238403 ,
3286050 , 4841856 , 5163817 ,
16162651 , 10291829 , 784016
, 1066469 , 2829757 , 385046
, 321701 , 702255 , 2194344 ,
1552062 , 2877503 , 914501

1336062 , 1051865 , 1044107 ,
1153102 , 1051865 , 1044107 ,
1119288 , 1044107 , 321694 ,
2369341 , 3925147 , 4247108 ,
15245942 , 9375120 , 132693 ,
149760 , 1913048 , 531663 ,
595008 , 214454 , 1277635 ,
635353 , 1960794 , 2208

10 13151766 1025012692 , 1025012692 ,
1025012692 , 1025012692 ,
1025012692 , 1025012692 ,
1025012692 , 1025012692 ,
1025012692 , 1025012692 ,
1025012692 , 1025012692 ,
1025012692

1011860926 , 1011860926 ,
1011860926 , 1011860926 ,
1011860926 , 1011860926 ,
1011860926 , 1011860926 ,
1011860926 , 1011860926 ,
1011860926 , 1011860926 ,
1011860926

12 1603555 1242 , 22345 , 2423 , 24180 ,
35436 , 1228

1602313 , 1581210 , 1601132 ,
1579375 , 1568119 , 1602327
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15 769759 11771483 , 11687308 ,
10090487 , 12673395 ,
5296277 , 572249

11001724 , 10917549 ,
9320728 , 11903636 , 4526518
, 197510

16 10438616 2789617 , 227726 , 1048513 ,
33700143 , 70918378 ,
2686632 , 12413500 , 4497578
, 91812736 , 49736727

7648999 , 10210890 , 9390103
, 23261527 , 60479762 ,
7751984 , 1974884 , 5941038 ,
81374120 , 39298111

18 3516746 15352278 , 14789060 ,
20161321 , 10692047 ,
23587536 , 20384175

11835532 , 11272314 ,
16644575 , 7175301 ,
20070790 , 16867429

23 428604 1018563603 1018134999
24 187024 837261104 , 377707425 ,

245667815 , 164741024 ,
553520054 , 579520054 ,
572920054 , 579520054 ,
579520054 , 506588412 ,
354312150 , 313032844 ,
537920054 , 508538128 ,
249854654 , 769619486 ,
514510313 , 815814860 ,
700788246 , 962588412 ,
550286458

837074080 , 377520401 ,
245480791 , 164554000 ,
553333030 , 579333030 ,
572733030 , 579333030 ,
579333030 , 506401388 ,
354125126 , 312845820 ,
537733030 , 508351104 ,
249667630 , 769432462 ,
514323289 , 815627836 ,
700601222 , 962401388 ,
550099434

25 35248 12403540 , 45031311 ,
354061291 , 2626861 ,
108131997 , 70879201 ,
108131997 , 103089484 ,
85080688

12368292 , 44996063 ,
354026043 , 2591613 ,
108096749 , 70843953 ,
108096749 , 103054236 ,
85045440

26 2848132 96453082 , 11203243 ,
10881802 , 26113627 ,
10674307 , 6629469 ,
72482198 , 81755614 ,
35301082 , 41369965 ,
40624035 , 56336773 ,
34490616

93604950 , 8355111 , 8033670
, 23265495 , 7826175 ,
3781337 , 69634066 ,
78907482 , 32452950 ,
38521833 , 37775903 ,
53488641 , 31642484

28 1773481 23780470 , 24225495 , 22434680 22006989 , 22452014 , 20661199
29 14974173 35123560 20149387
30 257998 309540533 , 359213623 , 347013623 309282535 , 358955625 , 346755625
34 269131 106786344 , 111227023 ,

90392129 , 115293105 ,
106081465 , 4173038 ,
4687338 , 263592 , 1081895 ,
5924 , 2563758 , 15752

106517213 , 110957892 ,
90122998 , 115023974 ,
105812334 , 3903907 ,
4418207 , 5539 , 812764 ,
263207 , 2294627 , 253379

35 468295 42984759 42516464
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36 5497129 19063716 , 45603681 ,
33967036 , 17476337 ,
55571430 , 47623191

13566587 , 40106552 ,
28469907 , 11979208 ,
50074301 , 42126062

37 127694 979939 , 339404 852245 , 211710
38 23137035 3050994 , 11066800 , 963947 ,

18560400 , 28961300 ,
125668949 , 243834886 ,
238034886 , 237301442

20086041 , 12070235 ,
22173088 , 4576635 , 5824265
, 102531914 , 220697851 ,
214897851 , 214164407

41 2325086 4143 , 20040273 , 539806829 2320943 , 17715187 , 537481743
42 1450392 67574852 , 35130001 ,

9700179 , 9980493 , 1902693 ,
2921711 , 3059481 , 13234726
, 472552 , 2310002 , 6797122
, 70281100 , 98021078 ,
19424683 , 42031750 ,
53159810 , 80080287 ,
40071324 , 40406267 ,
3074044

66124460 , 33679609 ,
8249787 , 8530101 , 452301 ,
1471319 , 1609089 , 11784334
, 977840 , 859610 , 5346730 ,
68830708 , 96570686 ,
17974291 , 40581358 ,
51709418 , 78629895 ,
38620932 , 38955875 ,
1623652

43 4751945 1120659 , 397774 , 506978 ,
4972886 , 1999108 , 273301 ,
482486 , 300642 , 525571 ,
5232756 , 4408105 , 1300846 ,
4152330 , 13272475 , 304994 ,
8776784

3631286 , 4354171 , 4244967
, 220941 , 2752837 , 4478644
, 4269459 , 4451303 , 4226374
, 480811 , 343840 , 3451099 ,
599615 , 8520530 , 4446951 ,
4024839

44 676451 29668860 , 1022765555 ,
1022765555 , 1022765555 ,
1022765555 , 1022765555

28992409 , 1022089104 ,
1022089104 , 1022089104 ,
1022089104 , 1022089104

45 960952 7283146 , 4251675 , 11033258
, 2717611 , 4140745

6322194 , 3290723 ,
10072306 , 1756659 , 3179793

46 4411 1322433 , 1322433 , 1322433 ,
1322433

1318022 , 1318022 , 1318022
, 1318022

48 1285358 82227988 , 36904297 80942630 , 35618939

Table F.1: Mahalanobis distance of testing data for users with masqueraders using the
SEA dataset. The masquerade distance column indicates how close the masquerade blocks
are from the average training data point and the masquerader distance from avg column
indicates how close the masquerade blocks are from the rest of the test blocks (ie. the
average test block).
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User Average Test Distance Masquerader Distance Masquerader Distance from Avg
1 1062235 411405 , 411127 , 410939 ,

102816 , 212953 , 102830 ,
212644 , 173 , 103768 ,
1643272 , 134 , 324401 ,
2832587 , 1767676 , 210843 ,
325147 , 3573257 , 1767610 ,
3832555 , 1197566 , 410960 ,
410874 , 1643281 , 410838 ,
102717 , 924336 , 76 ,
3697332 , 5032487 , 5032487

650830 , 651108 , 651296 ,
959419 , 849282 , 959405 ,
849591 , 1062062 , 958467 ,
581037 , 1062101 , 737834 ,
1770352 , 705441 , 851392 ,
737088 , 2511022 , 705375 ,
2770320 , 135331 , 651275 ,
651361 , 581046 , 651397 ,
959518 , 137899 , 1062159 ,
2635097 , 3970252 , 3970252

2 638255 103400 , 1653373 , 58 ,
413400 , 88 , 11 , 103496 ,
530062 , 68 , 169 , 43 , 44 ,
2583359 , 930058 , 2583371 ,
103412 , 413410 , 41 , 413366
, 413535 , 413361 , 103539 ,
103460 , 930019 , 103396 ,
413375 , 1653351 , 26 ,
930010 , 234

534855 , 1015118 , 638197 ,
224855 , 638167 , 638244 ,
534759 , 108193 , 638187 ,
638086 , 638212 , 638211 ,
1945104 , 291803 , 1945116 ,
534843 , 224845 , 638214 ,
224889 , 224720 , 224894 ,
534716 , 534795 , 291764 ,
534859 , 224880 , 1015096 ,
638229 , 291755 , 638021

3 499824 15 , 1382396 , 929759 , 49 ,
413261 , 47 , 124 , 103 , 106 ,
2582310 , 103334 , 1652687 ,
413322 , 103306 , 103307 ,
1652668 , 103300 , 106250 ,
2582310 , 2582310 , 2582310 ,
2582302 , 2582297 , 1652678 ,
2582293 , 413210 , 54 ,
1652696 , 413191 , 103319

499809 , 882572 , 429935 ,
499775 , 86563 , 499777 ,
499700 , 499721 , 499718 ,
2082486 , 396490 , 1152863 ,
86502 , 396518 , 396517 ,
1152844 , 396524 , 393574 ,
2082486 , 2082486 , 2082486 ,
2082478 , 2082473 , 1152854 ,
2082469 , 86614 , 499770 ,
1152872 , 86633 , 396505

4 558724 2580770 , 929055 , 103236 ,
26 , 3716148 , 3716146 ,
103248 , 412911 , 264 ,
103232 , 3716147 , 412938 ,
529042 , 529057 , 103238 ,
943 , 27 , 32 , 212950 ,
1651629 , 103234 , 103263 ,
212918 , 8 , 929075 , 412913 ,
103231 , 25 , 103291 , 103239

2022046 , 370331 , 455488 ,
558698 , 3157424 , 3157422 ,
455476 , 145813 , 558460 ,
455492 , 3157423 , 145786 ,
29682 , 29667 , 455486 ,
557781 , 558697 , 558692 ,
345774 , 1092905 , 455490 ,
455461 , 345806 , 558716 ,
370351 , 145811 , 455493 ,
558699 , 455433 , 455485
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5 1673663 321 , 527296 , 3709618 ,
1648562 , 927344 , 927648 ,
3709224 , 927473 , 5094037 ,
103168 , 103168 , 412177 ,
2575797 , 1648517 , 103095 ,
103094 , 2575795 , 1648544 ,
927293 , 3709148 , 927301 ,
223 , 527336 , 5048609 ,
1648980 , 1648533 , 1648709 ,
103189 , 22 , 103060

1673342 , 1146367 , 2035955
, 25101 , 746319 , 746015 ,
2035561 , 746190 , 3420374 ,
1570495 , 1570495 , 1261486 ,
902134 , 25146 , 1570568 ,
1570569 , 902132 , 25119 ,
746370 , 2035485 , 746362 ,
1673440 , 1146327 , 3374946 ,
24683 , 25130 , 24954 ,
1570474 , 1673641 , 1570603

6 366014 100120 , 100117 , 12 ,
10009585 , 2502439 , 801563 ,
200408 , 900892 , 200518 ,
100064 , 900906 , 14 , 400409
, 100109 , 400406 , 100049 ,
182 , 100044 , 85 , 446 ,
100046 , 900955 , 400400 ,
100125 , 19 , 23 , 16 , 9585 ,
9585 , 9585

265894 , 265897 , 366002 ,
9643571 , 2136425 , 435549 ,
165606 , 534878 , 165496 ,
265950 , 534892 , 366000 ,
34395 , 265905 , 34392 ,
265965 , 365832 , 265970 ,
365929 , 365568 , 265968 ,
534941 , 34386 , 265889 ,
365995 , 365991 , 365998 ,
356429 , 356429 , 356429

7 485826 400655 , 400609 , 100179 ,
401867 , 401867 , 103827 , 83
, 100175 , 100216 , 34 ,
100120 , 100154 , 70 ,
3606492 , 901695 , 49 , 43 ,
405096 , 400790 , 201464 , 50
, 272 , 100302 , 1602915 ,
901758 , 100207 , 901649 , 44
, 100179 , 400552

85171 , 85217 , 385647 ,
83959 , 83959 , 381999 ,
485743 , 385651 , 385610 ,
485792 , 385706 , 385672 ,
485756 , 3120666 , 415869 ,
485777 , 485783 , 80730 ,
85036 , 284362 , 485776 ,
485554 , 385524 , 1117089 ,
415932 , 385619 , 415823 ,
485782 , 385647 , 85274

8 726098 100401 , 52 , 100338 , 32 ,
273 , 2610295 , 2506885 ,
902823 , 3610442 , 902577 ,
401191 , 1604666 , 53 , 129 ,
101048 , 100307 , 31 , 100328
, 100735 , 401223 , 67 ,
100368 , 100311 , 6418234 ,
8122954 , 1604565 , 401166 ,
33 , 526 , 100343

625697 , 726046 , 625760 ,
726066 , 725825 , 1884197 ,
1780787 , 176725 , 2884344 ,
176479 , 324907 , 878568 ,
726045 , 725969 , 625050 ,
625791 , 726067 , 625770 ,
625363 , 324875 , 726031 ,
625730 , 625787 , 5692136 ,
7396856 , 878467 , 324932 ,
726065 , 725572 , 625755
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9 657270 102949 , 102956 , 411817 ,
2573991 , 102983 , 411854 ,
1905910 , 103163 , 411783 ,
3844152 , 3844150 , 1905977 ,
103103 , 103056 , 411851 ,
1647072 , 2705931 , 103041 ,
214318 , 926493 , 926613 ,
3844168 , 2574342 , 411948 ,
39 , 103052 , 104 , 3705986 ,
411834 , 1647082

554321 , 554314 , 245453 ,
1916721 , 554287 , 245416 ,
1248640 , 554107 , 245487 ,
3186882 , 3186880 , 1248707 ,
554167 , 554214 , 245419 ,
989802 , 2048661 , 554229 ,
442952 , 269223 , 269343 ,
3186898 , 1917072 , 245322 ,
657231 , 554218 , 657166 ,
3048716 , 245436 , 989812

10 585075 103024 , 4180 , 83 , 926506 ,
411801 , 38 , 49 , 21 , 103062
, 3844134 , 36 , 92 , 40 , 40 ,
117 , 211820 , 2105894 ,
3844131 , 1373556 , 926541 ,
411829 , 103048 , 102953 , 14
, 2573542 , 102988 , 926498 ,
30 , 103106 , 411822

482051 , 580895 , 584992 ,
341431 , 173274 , 585037 ,
585026 , 585054 , 482013 ,
3259059 , 585039 , 584983 ,
585035 , 585035 , 584958 ,
373255 , 1520819 , 3259056 ,
788481 , 341466 , 173246 ,
482027 , 482122 , 585061 ,
1988467 , 482087 , 341423 ,
585045 , 481969 , 173253

11 869246 1648527 , 103046 , 1648607 ,
412224 , 103086 , 1648498 ,
103053 , 103038 , 927283 ,
927329 , 92 , 927299 ,
8345510 , 1648496 , 927285 ,
23 , 412177 , 33 , 103048 , 16
, 12 , 103369 , 412139 ,
412145 , 2575776 , 5345509 ,
927365 , 927287 , 412142 ,
103057

779281 , 766200 , 779361 ,
457022 , 766160 , 779252 ,
766193 , 766208 , 58037 ,
58083 , 869154 , 58053 ,
7476264 , 779250 , 58039 ,
869223 , 457069 , 869213 ,
766198 , 869230 , 869234 ,
765877 , 457107 , 457101 ,
1706530 , 4476263 , 58119 ,
58041 , 457104 , 766189

12 253575 102967 , 411872 , 526651 ,
136 , 103244 , 27 , 102974 ,
81 , 102983 , 70 , 46 , 39 ,
149 , 121 , 180 , 102989 , 10 ,
42 , 103308 , 102985 , 103036
, 14 , 12 , 926630 , 1647242 ,
79 , 926576 , 411989 , 411950
, 411847

150608 , 158297 , 273076 ,
253439 , 150331 , 253548 ,
150601 , 253494 , 150592 ,
253505 , 253529 , 253536 ,
253426 , 253454 , 253395 ,
150586 , 253565 , 253533 ,
150267 , 150590 , 150539 ,
253561 , 253563 , 673055 ,
1393667 , 253496 , 673001 ,
158414 , 158375 , 158272

57



13 4460713 103542 , 413363 , 930094 ,
213397 , 213413 , 103621 ,
8370055 , 10333406 , 8370055
, 10333406 , 6613378 ,
5063373 , 413355 , 8370069 ,
10333406 , 10333406 ,
10333406 , 10333406 ,
10333406 , 10333406 , 413661
, 1383645 , 1653647 , 930041
, 3720108 , 2583425 , 3720041
, 333406 , 333406 , 333406

4357171 , 4047350 , 3530619
, 4247316 , 4247300 , 4357092
, 3909342 , 5872693 , 3909342
, 5872693 , 2152665 , 602660
, 4047358 , 3909356 , 5872693
, 5872693 , 5872693 , 5872693
, 5872693 , 5872693 , 4047052
, 3077068 , 2807066 , 3530672
, 740605 , 1877288 , 740672 ,
4127307 , 4127307 , 4127307

14 250691 413305 , 2575983 , 3594003 ,
927388 , 103162 , 9 , 27 , 9 ,
412141 , 103092 , 757 , 1169 ,
103080 , 23 , 98 , 16 , 38 , 99
, 567 , 89 , 103060 , 29 , 24 ,
71 , 120 , 927308 , 412163 ,
26 , 24 , 85

162614 , 2325292 , 3343312 ,
676697 , 147529 , 250682 ,
250664 , 250682 , 161450 ,
147599 , 249934 , 249522 ,
147611 , 250668 , 250593 ,
250675 , 250653 , 250592 ,
250124 , 250602 , 147631 ,
250662 , 250667 , 250620 ,
250571 , 676617 , 161472 ,
250665 , 250667 , 250606

15 506681 27 , 21 , 103638 , 414498 ,
1058014 , 1657983 , 18 , 15 ,
103635 , 103673 , 13 , 414498
, 24 , 31 , 103634 , 12 ,
103641 , 20 , 1657984 ,
3730452 , 103635 , 8 , 53 ,
1530452 , 103636 , 932632 ,
414514 , 414506 , 414546 , 19

506654 , 506660 , 403043 ,
92183 , 551333 , 1151302 ,
506663 , 506666 , 403046 ,
403008 , 506668 , 92183 ,
506657 , 506650 , 403047 ,
506669 , 403040 , 506661 ,
1151303 , 3223771 , 403046 ,
506673 , 506628 , 1023771 ,
403045 , 425951 , 92167 ,
92175 , 92135 , 506662

16 1378955 47 , 5066809 , 414104 ,
3722549 , 1654690 , 930689 ,
103410 , 103413 , 103420 ,
103535 , 413633 , 3722586 ,
930643 , 103411 , 103415 ,
1054580 , 2666837 , 2585111 ,
930687 , 930761 , 103434 ,
1654477 , 6617858 , 413629 ,
103487 , 413738 , 930656 ,
340400 , 340400 , 340400

1378908 , 3687854 , 964851 ,
2343594 , 275735 , 448266 ,
1275545 , 1275542 , 1275535 ,
1275420 , 965322 , 2343631 ,
448312 , 1275544 , 1275540 ,
324375 , 1287882 , 1206156 ,
448268 , 448194 , 1275521 ,
275522 , 5238903 , 965326 ,
1275468 , 965217 , 448299 ,
1038555 , 1038555 , 1038555
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17 302606 412931 , 60 , 85 , 2583975 ,
103239 , 103283 , 31 , 23 ,
103320 , 13 , 38 , 20 , 10 , 9 ,
459 , 131 , 8 , 11 , 103545 ,
80 , 103518 , 929788 , 25 ,
413008 , 395 , 45 , 413443 ,
96 , 470 , 145

110325 , 302546 , 302521 ,
2281369 , 199367 , 199323 ,
302575 , 302583 , 199286 ,
302593 , 302568 , 302586 ,
302596 , 302597 , 302147 ,
302475 , 302598 , 302595 ,
199061 , 302526 , 199088 ,
627182 , 302581 , 110402 ,
302211 , 302561 , 110837 ,
302510 , 302136 , 302461

18 282492 533343 , 103818 , 533424 , 53
, 103714 , 103766 , 414825 ,
94 , 414824 , 414844 , 414846
, 103712 , 414941 , 103726 ,
20 , 91 , 103748 , 41 , 79 ,
100 , 94 , 414846 , 933433 ,
414908 , 76 , 103724 , 103735
, 370417 , 370417 , 370417

250851 , 178674 , 250932 ,
282439 , 178778 , 178726 ,
132333 , 282398 , 132332 ,
132352 , 132354 , 178780 ,
132449 , 178766 , 282472 ,
282401 , 178744 , 282451 ,
282413 , 282392 , 282398 ,
132354 , 650941 , 132416 ,
282416 , 178768 , 178757 ,
87925 , 87925 , 87925

19 724544 1653741 , 1653721 , 1653717
, 413484 , 413525 , 413482 ,
103529 , 413439 , 103393 ,
413535 , 507 , 103593 ,
930331 , 444 , 288 , 213 ,
103403 , 103385 , 103823 ,
1654774 , 10335612 , 413461 ,
414220 , 1653869 , 3721065 ,
6614886 , 2583936 , 2583909 ,
2583906 , 3720856

929197 , 929177 , 929173 ,
311060 , 311019 , 311062 ,
621015 , 311105 , 621151 ,
311009 , 724037 , 620951 ,
205787 , 724100 , 724256 ,
724331 , 621141 , 621159 ,
620721 , 930230 , 9611068 ,
311083 , 310324 , 929325 ,
2996521 , 5890342 , 1859392 ,
1859365 , 1859362 , 2996312

20 1169480 103049 , 1648807 , 6594009 ,
103047 , 33 , 412205 , 176 ,
103299 , 103164 , 412544 , 19
, 103084 , 412173 , 103126 ,
43 , 103050 , 103203 ,
3709115 , 412143 , 13 ,
103058 , 103094 , 2575781 ,
412130 , 2575784 , 1648710 ,
1648686 , 103177 , 412647 ,
46

1066431 , 479327 , 5424529 ,
1066433 , 1169447 , 757275 ,
1169304 , 1066181 , 1066316 ,
756936 , 1169461 , 1066396 ,
757307 , 1066354 , 1169437 ,
1066430 , 1066277 , 2539635 ,
757337 , 1169467 , 1066422 ,
1066386 , 1406301 , 757350 ,
1406304 , 479230 , 479206 ,
1066303 , 756833 , 1169434
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21 182181 24 , 37 , 102809 , 149 ,
411132 , 58 , 43 , 20 , 102935
, 102822 , 44 , 44 , 925229 ,
2569506 , 102841 , 102827 ,
69 , 71 , 39 , 46 , 158 , 84 ,
102819 , 52 , 49 , 86 , 24 , 64
, 32 , 56

182157 , 182144 , 79372 ,
182032 , 228951 , 182123 ,
182138 , 182161 , 79246 ,
79359 , 182137 , 182137 ,
743048 , 2387325 , 79340 ,
79354 , 182112 , 182110 ,
182142 , 182135 , 182023 ,
182097 , 79362 , 182129 ,
182132 , 182095 , 182157 ,
182117 , 182149 , 182125

22 259007 70 , 454 , 411824 , 6588284 ,
610 , 358 , 103106 , 927652 ,
411946 , 926521 , 88 , 89 ,
2573676 , 647129 , 103052 ,
926488 , 411772 , 411772 ,
411820 , 45 , 108 , 102972 ,
102953 , 1647111 , 926600 ,
102966 , 102959 , 103027 ,
102987 , 102980

258937 , 258553 , 152817 ,
6329277 , 258397 , 258649 ,
155901 , 668645 , 152939 ,
667514 , 258919 , 258918 ,
2314669 , 388122 , 155955 ,
667481 , 152765 , 152765 ,
152813 , 258962 , 258899 ,
156035 , 156054 , 1388104 ,
667593 , 156041 , 156048 ,
155980 , 156020 , 156027

23 2412947 81 , 3697648 , 411488 , 91 ,
924412 , 5032809 , 44 , 12 ,
1643408 , 411200 , 924464 ,
2567796 , 102843 , 2632812 ,
2597671 , 5032834 , 6573472 ,
5032798 , 102735 , 102746 ,
410951 , 3373462 , 5032862 ,
80 , 102927 , 410971 , 139928
, 2402 , 104669 , 924441

2412866 , 1284701 , 2001459
, 2412856 , 1488535 , 2619862
, 2412903 , 2412935 , 769539
, 2001747 , 1488483 , 154849
, 2310104 , 219865 , 184724 ,
2619887 , 4160525 , 2619851 ,
2310212 , 2310201 , 2001996 ,
960515 , 2619915 , 2412867 ,
2310020 , 2001976 , 2273019 ,
2410545 , 2308278 , 1488506

24 737959 602 , 213777 , 1197 , 104746
, 59 , 413344 , 20 , 24 ,
931117 , 103345 , 23 , 413364
, 23 , 103353 , 103353 ,
413379 , 207 , 2633425 , 15 ,
103340 , 10 , 103410 , 413397
, 930084 , 6613442 , 104878 ,
464305 , 153365 , 11 , 103349

737357 , 524182 , 736762 ,
633213 , 737900 , 324615 ,
737939 , 737935 , 193158 ,
634614 , 737936 , 324595 ,
737936 , 634606 , 634606 ,
324580 , 737752 , 1895466 ,
737944 , 634619 , 737949 ,
634549 , 324562 , 192125 ,
5875483 , 633081 , 273654 ,
584594 , 737948 , 634610
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25 1078703 3702906 , 925742 , 103080 ,
102979 , 2571550 , 1645746 ,
411849 , 6582916 , 6582916 ,
1645740 , 411461 , 2571490 ,
2571476 , 2571471 , 1645849 ,
6582964 , 1645788 , 925889 ,
925743 , 103224 , 1646202 ,
1771669 , 103165 , 411977 ,
24 , 103021 , 102870 , 32 ,
102930 , 102914

2624203 , 152961 , 975623 ,
975724 , 1492847 , 567043 ,
666854 , 5504213 , 5504213 ,
567037 , 667242 , 1492787 ,
1492773 , 1492768 , 567146 ,
5504261 , 567085 , 152814 ,
152960 , 975479 , 567499 ,
692966 , 975538 , 666726 ,
1078679 , 975682 , 975833 ,
1078671 , 975773 , 975789

26 700538 3700150 , 925200 , 925214 ,
3700027 , 289 , 411472 , 27 ,
26 , 54 , 411126 , 2569661 ,
1387 , 102829 , 1644466 ,
102805 , 1644485 , 102794 ,
1644483 , 42 , 102834 , 63 ,
241 , 411141 , 29 , 1644489 ,
411203 , 102825 , 5036165 ,
1644468 , 250

2999612 , 224662 , 224676 ,
2999489 , 700249 , 289066 ,
700511 , 700512 , 700484 ,
289412 , 1869123 , 699151 ,
597709 , 943928 , 597733 ,
943947 , 597744 , 943945 ,
700496 , 597704 , 700475 ,
700297 , 289397 , 700509 ,
943951 , 289335 , 597713 ,
4335627 , 943930 , 700288

27 1022422 103385 , 929927 , 120127 ,
24 , 91 , 28 , 103444 , 929958
, 1053190 , 1783156 , 1783133
, 103523 , 531587 , 616342 ,
2109632 , 1783156 , 3777871 ,
3862892 , 1183139 , 213320 ,
1783157 , 1053271 , 1053210 ,
929987 , 11 , 22 , 14 , 14 , 19
, 1383168

919037 , 92495 , 902295 ,
1022398 , 1022331 , 1022394 ,
918978 , 92464 , 30768 ,
760734 , 760711 , 918899 ,
490835 , 406080 , 1087210 ,
760734 , 2755449 , 2840470 ,
160717 , 809102 , 760735 ,
30849 , 30788 , 92435 ,
1022411 , 1022400 , 1022408 ,
1022408 , 1022403 , 360746

28 517242 412950 , 1651671 , 104116 ,
103305 , 929127 , 1651659 ,
412976 , 2580711 , 929063 ,
413018 , 413010 , 103289 ,
412933 , 103280 , 31 , 103280
, 413084 , 35 , 412954 ,
1651961 , 2581561 , 103293 ,
198 , 103640 , 149 , 21 , 16 ,
412944 , 103242 , 1651671

104292 , 1134429 , 413126 ,
413937 , 411885 , 1134417 ,
104266 , 2063469 , 411821 ,
104224 , 104232 , 413953 ,
104309 , 413962 , 517211 ,
413962 , 104158 , 517207 ,
104288 , 1134719 , 2064319 ,
413949 , 517044 , 413602 ,
517093 , 517221 , 517226 ,
104298 , 414000 , 1134429

61



29 833433 152922 , 925738 , 3702893 ,
1771486 , 1645770 , 525731 ,
1645738 , 102878 , 411561 ,
925736 , 925747 , 1645738 ,
211468 , 525748 , 211461 ,
411443 , 525756 , 925763 ,
325747 , 102882 , 1171450 ,
102891 , 411500 , 925735 ,
925777 , 1045775 , 1045769 ,
285762 , 285762 , 285762

680511 , 92305 , 2869460 ,
938053 , 812337 , 307702 ,
812305 , 730555 , 421872 ,
92303 , 92314 , 812305 ,
621965 , 307685 , 621972 ,
421990 , 307677 , 92330 ,
507686 , 730551 , 338017 ,
730542 , 421933 , 92302 ,
92344 , 212342 , 212336 ,
547671 , 547671 , 547671

30 545020 102870 , 102921 , 1645738 ,
925739 , 467 , 53 , 411495 ,
102951 , 102972 , 1645757 ,
925788 , 103317 , 411438 ,
411440 , 411443 , 926229 ,
103040 , 103254 , 411462 ,
1045744 , 411467 , 411444 ,
411476 , 411484 , 102912 ,
411457 , 102904 , 411451 ,
411454 , 2571454

442150 , 442099 , 1100718 ,
380719 , 544553 , 544967 ,
133525 , 442069 , 442048 ,
1100737 , 380768 , 441703 ,
133582 , 133580 , 133577 ,
381209 , 441980 , 441766 ,
133558 , 500724 , 133553 ,
133576 , 133544 , 133536 ,
442108 , 133563 , 442116 ,
133569 , 133566 , 2026434

31 1295081 107842 , 411777 , 412879 ,
412873 , 442 , 526075 ,
1646343 , 212418 , 3704186 ,
349095 , 945943 , 1646310 ,
1646366 , 411595 , 2572351 ,
926058 , 411609 , 102936 ,
411656 , 926083 , 102930 ,
411587 , 3704188 , 2572355 ,
3704373 , 926102 , 1646307 ,
411618 , 112 , 411612

1187239 , 883304 , 882202 ,
882208 , 1294639 , 769006 ,
351262 , 1082663 , 2409105 ,
945986 , 349138 , 351229 ,
351285 , 883486 , 1277270 ,
369023 , 883472 , 1192145 ,
883425 , 368998 , 1192151 ,
883494 , 2409107 , 1277274 ,
2409292 , 368979 , 351226 ,
883463 , 1294969 , 883469

32 336735 328625 , 177 , 103161 , 21 ,
16 , 13 , 40 , 103193 , 114 ,
458 , 413734 , 1779075 ,
213031 , 212755 , 928417 ,
412562 , 103155 , 928260 ,
103154 , 2186 , 528472 , 245 ,
80 , 81 , 32 , 103226 , 2126 ,
12401 , 528293 , 88

8110 , 336558 , 233574 ,
336714 , 336719 , 336722 ,
336695 , 233542 , 336621 ,
336277 , 76999 , 1442340 ,
123704 , 123980 , 591682 ,
75827 , 233580 , 591525 ,
233581 , 334549 , 191737 ,
336490 , 336655 , 336654 ,
336703 , 233509 , 334609 ,
324334 , 191558 , 336647
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33 750113 24 , 412521 , 928154 ,
2578166 , 1650052 , 412529 ,
412591 , 102 , 103261 ,
412533 , 1650026 , 103144 ,
412514 , 1178149 , 2112520 ,
412536 , 928162 , 412536 ,
928258 , 928221 , 2578150 ,
103156 , 103146 , 31 , 103160
, 3712529 , 1778145 , 103164
, 103140 , 412548

750089 , 337592 , 178041 ,
1828053 , 899939 , 337584 ,
337522 , 750011 , 646852 ,
337580 , 899913 , 646969 ,
337599 , 428036 , 1362407 ,
337577 , 178049 , 337577 ,
178145 , 178108 , 1828037 ,
646957 , 646967 , 750082 ,
646953 , 2962416 , 1028032 ,
646949 , 646973 , 337565

34 1005626 103418 , 103389 , 930135 ,
413345 , 930013 , 1653453 ,
60 , 930020 , 1653442 , 21 ,
103355 , 34 , 413420 , 413917
, 413341 , 530140 , 1653825 ,
413485 , 930347 , 2583453 ,
413700 , 64 , 930012 , 103351
, 103367 , 213498 , 213392 ,
530011 , 1653437 , 530030

902208 , 902237 , 75491 ,
592281 , 75613 , 647827 ,
1005566 , 75606 , 647816 ,
1005605 , 902271 , 1005592 ,
592206 , 591709 , 592285 ,
475486 , 648199 , 592141 ,
75279 , 1577827 , 591926 ,
1005562 , 75614 , 902275 ,
902259 , 792128 , 792234 ,
475615 , 647811 , 475596

35 1243743 104015 , 416014 , 416017 ,
416013 , 416138 , 1400028 ,
104005 , 20 , 104014 , 416052
, 28 , 104011 , 14 , 416029 , 9
, 416034 , 28 , 416033 ,
104139 , 8 , 416098 , 2600019
, 936015 , 6656038 , 2744034
, 416085 , 104033 , 400052 ,
400052 , 400052

1139728 , 827729 , 827726 ,
827730 , 827605 , 156285 ,
1139738 , 1243723 , 1139729 ,
827691 , 1243715 , 1139732 ,
1243729 , 827714 , 1243734 ,
827709 , 1243715 , 827710 ,
1139604 , 1243735 , 827645 ,
1356276 , 307728 , 5412295 ,
1500291 , 827658 , 1139710 ,
843691 , 843691 , 843691

36 194921 26 , 4 , 3 , 417474 , 8 , 2 ,
104364 , 10 , 4 , 104363 , 3 ,
104364 , 15 , 10 , 417427 , 17
, 14 , 4368 , 104363 , 24 ,
417431 , 939206 , 6 , 8 , 12 ,
6 , 6 , 435604 , 435604 ,
435604

194895 , 194917 , 194918 ,
222553 , 194913 , 194919 ,
90557 , 194911 , 194917 ,
90558 , 194918 , 90557 ,
194906 , 194911 , 222506 ,
194904 , 194907 , 190553 ,
90558 , 194897 , 222510 ,
744285 , 194915 , 194913 ,
194909 , 194915 , 194915 ,
240683 , 240683 , 240683
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37 154909 29 , 4 , 12 , 5 , 23 , 104682 ,
104682 , 13 , 19 , 4 , 10 , 9 ,
15 , 17 , 104691 , 7 , 6 , 6 , 8
, 104690 , 56 , 104704 ,
104711 , 218718 , 104714 , 6 ,
9 , 467665 , 467665 , 467665

154880 , 154905 , 154897 ,
154904 , 154886 , 50227 ,
50227 , 154896 , 154890 ,
154905 , 154899 , 154900 ,
154894 , 154892 , 50218 ,
154902 , 154903 , 154903 ,
154901 , 50219 , 154853 ,
50205 , 50198 , 63809 , 50195
, 154903 , 154900 , 312756 ,
312756 , 312756

38 792071 5081558 , 1133490 ,
10370467 , 50151 , 104142 ,
13 , 9 , 9 , 9 , 25 , 414849 ,
1659291 , 9 , 9 , 8 , 200093 ,
200089 , 9 , 54 , 10 , 10 , 59 ,
50108 , 46 , 85 , 25 , 25 ,
5081533 , 3733370 , 1659375

4289487 , 341419 , 9578396 ,
741920 , 687929 , 792058 ,
792062 , 792062 , 792062 ,
792046 , 377222 , 867220 ,
792062 , 792062 , 792063 ,
591978 , 591982 , 792062 ,
792017 , 792061 , 792061 ,
792012 , 741963 , 792025 ,
791986 , 792046 , 792046 ,
4289462 , 2941299 , 867304

39 607614 2 , 103707 , 103705 ,
8570419 , 2733499 , 8400098 ,
3099 , 3076 , 1976 , 136 ,
103898 , 414851 , 933433 ,
933422 , 3733363 , 488 , 3069
, 2 , 214817 , 103716 , 33 , 2 ,
2 , 5 , 6 , 12 , 2 , 6800097 ,
414987 , 2592710

607612 , 503907 , 503909 ,
7962805 , 2125885 , 7792484 ,
604515 , 604538 , 605638 ,
607478 , 503716 , 192763 ,
325819 , 325808 , 3125749 ,
607126 , 604545 , 607612 ,
392797 , 503898 , 607581 ,
607612 , 607612 , 607609 ,
607608 , 607602 , 607612 ,
6192483 , 192627 , 1985096

40 605449 1975693 , 2500338 , 6 , 2 ,
104141 , 104171 , 15 , 1 , 2 ,
132 , 84 , 36 , 1 , 1360 , 9 ,
382 , 1164 , 112666 , 15 , 1 ,
2 , 99 , 121 , 11 , 4 , 66 , 10 ,
138973 , 22 , 141565

1370244 , 1894889 , 605443 ,
605447 , 501308 , 501278 ,
605434 , 605448 , 605447 ,
605317 , 605365 , 605413 ,
605448 , 604089 , 605440 ,
605067 , 604285 , 492783 ,
605434 , 605448 , 605447 ,
605350 , 605328 , 605438 ,
605445 , 605383 , 605439 ,
466476 , 605427 , 463884
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41 356415 1986483 , 267352 , 866112 ,
18 , 8 , 416532 , 537215 , 525
, 104149 , 2748749 , 2148771
, 416569 , 1666134 , 104172 ,
26 , 53 , 104168 , 104138 ,
416532 , 104141 , 416532 ,
416553 , 104137 , 416548 , 70
, 416534 , 34 , 537218 , 33 ,
537218

1630068 , 89063 , 509697 ,
356397 , 356407 , 60117 ,
180800 , 355890 , 252266 ,
2392334 , 1792356 , 60154 ,
1309719 , 252243 , 356389 ,
356362 , 252247 , 252277 ,
60117 , 252274 , 60117 ,
60138 , 252278 , 60133 ,
356345 , 60119 , 356381 ,
180803 , 356382 , 180803

Table F.2: Mahalanobis distance of testing data for users with masqueraders using the
Greenberg dataset. The masquerade distance column indicates how close the masquerade
blocks are from the average training data point and the masquerader distance from avg
column indicates how close the masquerade blocks are from the rest of the test blocks (ie.
the average test block).
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