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Abstract

In this thesis, we develop and apply three new methods for ecological data sets. We present
two new developments related to capture-recapture studies and one development related to
integrated population modeling.

In the first project, we present new methods using partial stratification in two-sample
capture-recapture experiments for closed populations. Capture heterogeneity is known to
cause bias in estimates of abundance in capture-recapture experiments. This heterogene-
ity is often related to observable fixed characteristics of the animals such as sex. If this
information can be observed for each handled animal at both sample occasions, then it
is straightforward to stratify (e.g. by sex) and obtain stratum-specific estimates. However
in many fishery experiments it is difficult to sex all captured fish because morphological
differences are slight or because of logistic constraints. In these cases, a sub-sample of the
captured fish at each sample occasion is selected and additional and often more costly mea-
surements are made, such as sex determination through sacrificing the fish. We develop new
methods to estimate abundance for these types of experiments. Furthermore, we develop
methods for optimal allocation of effort for a given cost. We also develop methods to account
for additional information (e.g. prior information about the sex ratio) and for supplemental
continuous covariates such as length. These methods are applied to a problem of estimating
the size of the walleye population in Mille Lacs Lake Minnesota, USA.

In the second project, we present new methods using partial stratification in k-sample
(k ≥ 2) capture-recapture experiments of a closed population with known losses on capture
to estimate abundance. We present the new methods for large populations using maximum
likelihood and a Bayesian method and simulated data with known losses on capture was
used to illustrate the new methods.

In the third project, we present an integrated population model using capture-recapture,
dead recovery, snorkel, and radio telemetry surveys. We apply this model to Chinook salmon
on the West Coast of Vancouver Island, Canada to estimate spawning escapement and to
describe the movement from the ocean to spawning grounds considering the stopover time,
stream residence time, and snorkel survey observer efficiency.
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Chapter 1

Introduction

Capture-recapture is a method used in Ecology to estimate abundance of an animal popu-
lation. This method can be used to estimate abundance in both ‘closed’ and ‘open’ animal
populations (Schwarz and Seber, 1999). The capture-recapture method can be simply de-
scribed as follows. A sample of the animal population is captured, marked and then released.
After some time another sample is captured from the population and the number of marked
individuals marked earlier is counted along with the number of newly captured animals.
New animals may be marked and released. The simplest of the capture-recapture methods
is the Lincoln-Petersen method (Williams et al., 2002) which is used for closed populations
(number of individuals in the population do not change through out study period) under
certain assumptions. When there are two or more strata (i.e. categories of fish based on fixed
attributes such as sex) in the population and there is capture heterogeneity (i.e. animals in
different strata have different capture probabilities), then stratification is required at each
sampling occasion to obtain unbiased estimates of abundance. Stratum specific estimates
can be obtained by full stratification. However, full stratification at each sample occasion
might not be possible in experiments. In that case, partial stratification at each sample
occasion is considered in capture-recapture experiments.

When there are more than one type of survey data available from the same population
(e.g. capture-recapture, simple counts, radio telemetry), data can be analyzed separately
for each survey method to obtain estimates of abundance and other population parameters.
However if we can jointly analyze these data using integrated modeling, then we can obtain
more precise estimates for the population parameters. Another advantage of integrated
modeling is that estimates can be obtained for certain parameters that cannot be obtained
by analyzing a single survey data. For example, mean stopover time of fish (the mean
length of time spent by a fish in the tagging pool before moving to the stream) cannot
be estimated using capture-recapture data and snorkel data alone. However an integrated
population model that combines both capture-recapture data and snorkel data allows to
calculate mean stopover time. In this kind of a study, radio telemetry data perform an
integral part of the integrated population modeling because radio telemetry can provide
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very high detectability. For example, movements from stopover pool to the stream can be
directly observed using radio telemetry but that cannot be observed using capture-recapture
data or snorkel data.

The organization of this thesis is as follows. The thesis consists of three major projects
and they are presented in Chapters 2, 3 and 4. Chapter 3 can be considered as an extension
of the Chapter 2. Each chapter starts with an introduction, survey protocol and notations.
Because notations are not shared between chapters these three chapters can be read in any
order.

In Chapter 2, we develop new methods for two-sample capture-recapture studies using
partial stratification. First we develop a method using maximum likelihood method and
moreover, we determine optimum allocation of sampling effort for a given cost. We further
develop a method using a Bayesian approach when prior information is available. A sim-
ulation study is used to compare MLE and Bayesian Methods. We also develop a method
using partial stratification in two-sample capture-recapture experiments involving continu-
ous covariates. Finally we apply these new methods to estimate the abundance of walleye
in Mille Lacs Lake, MN, USA in 2013.

Chapter 3 is an extension of Chapter 2. In Chapter 3, we develop new methods for partial
stratification in k-sample capture-recapture experiments for large closed populations. We
develop new methods using maximum likelihood method and a Bayesian method. Because
we do not have access to real life data for this kind of experiment setting, we considered
simulated data when k = 3. Finally we use simulation studies to test the validity and the
precision of the estimates provided by these new methods.

Chapter 4 considers the integrated population modeling under a Bayesian approach to
estimate Chinook salmon escapement (salmon population return from the ocean to the
spawning area in upstream) in Burman River on the West Coast of Vancouver Island. Data
from multiple surveys (capture-recapture, snorkel, dead recovery, and radio telemetry) are
available for the Burman River in 2012. A Bayesian integrated population model was devel-
oped (Beliveau, 2016) using capture-recapture, snorkel and dead recovery surveys. Burman
River Chinook stay for some time (may be few days) at the stopover pool when they enter
the river and then move upstream for spawning and die. Once a Chinook salmon is radio
tagged at the stopover pool (where capture-recapture surveys take place), its movement
can be determined until death in the upstream of the river using radio telemetry surveys.
Because radio telemetry surveys can provide very high detectability and some parts of the
system can only be directly observed using radio telemetry surveys, we can obtain improved
estimates for population parameters and other related quantities. Therefore incorporation
radio tagged data in integrated population modeling is important. This chapter focus on
how the radio telemetry data provide insight on escapement, stopover times, survey life,
and snorkel observer efficiency when it is included in integrated population modeling.
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Chapter 2

Partial Stratification in
Two-Sample Capture-Recapture
Experiments

The work in this chapter is published (Premarathna, Schwarz and Jones, 2018) in Envi-
ronmetrics, the official journal of the International Environmetrics Society published by
Wiley.

2.1 Introduction

Capture-recapture is a method used to estimate the abundance of an animal population.
Many methods have been used to estimate the parameters relating to both ‘closed’ and
‘open’ animal populations (Schwarz and Seber, 1999) and new methods are rapidly de-
veloping. The simplest of the capture-recapture methods is the Lincoln-Petersen method
(Williams et al., 2002). Under the assumptions that the population is closed (the number of
individuals is not changing through birth, death, immigration, or emigration), animals do
not lose their marks, their marks are correctly recorded and animals act independently, the
two-sample Lincoln-Petersen estimate (maximum-likelihood) for abundance is N̂ = n1n2/m.
Here n1 is the total number of animals captured, marked and released in the first sample
occasion, n2 is the total number of animals captured in the second sample occasion and
m is the number of marked animals captured in the second sample occasion. Various sam-
ple protocols have been proposed to justify the Lincoln-Petersen estimate and obtain the
associated standard error. The simple two-sample capture-recapture models for estimating
population abundance of a closed population also assume that all animals have the same
capture probability at each sample occasion. But this assumption is not satisfied in most
applications and heterogeneity in capture probability is expected.

The estimate of population abundance of a closed population can be biased (negatively
or positively) when there is heterogeneity in capture probability. For example consider a
population of fish in a lake and the population consists of two categories of fish; male and
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female. Capture probabilities for each category may vary between categories and also be-
tween the first and second sample occasions. If the sex was known at each sample occasion
the problem is straightforward. Simply stratify the population into male and female, and
use the Lincoln-Petersen estimate on each sex separately to calculate the estimates of abun-
dance for each sex. Then add these stratum-specific estimates to get the estimate of total
population abundance. However in some cases, each sampled fish cannot be sexed due to
various reasons such as time constraints, total resources allocated for the study, or diffi-
culty in sexing. In the situations where all the fish cannot be sexed, a partial stratification
is done (a sub-sample of the captured fish at each sampling occasion is selected and sex
determined).

We develop new methods for two-sample capture-recapture experiments using partial
stratification and we apply these methods to estimate the abundance of walleye in Mille
Lacs Lake, MN, USA in 2013. In these types of experiments, there is a cost to capture a fish
in each occasion and there is a cost to categorize a fish from the sub-sample. Furthermore,
given the relative costs of sampling for simple capture and for stratifying the sub-sample,
the optimal allocation of effort for a given cost is determined. First we develop a method
using maximum likelihood to estimate the population abundance and to find the optimal
allocation of effort for given a cost. Then we develop a method using a Bayesian approach
when prior information is available. Finally we develop a method using individual continuous
covariates. The R programing language (R Development Core Team, 2016) was used for
analysis of Mille Lacs Lake walleye data and for simulation studies discussed in this chapter.

2.2 MLE approach to Partial Stratification in Two-Sample
Capture-Recapture Experiments

2.2.1 Notation

Let t = 1, 2 be the capture occasion. We consider that the population can be stratified into
k categories. The following notation is used to represent an animal at each sample occasion.

0 - animal is not captured
U - animal is captured but not stratified
C - animal is captured and identified as category C, where

C = {Category1, Category2, ..., Categoryk}
In practice we use a unique letter to represent each category in the
population. For example, if we stratify a population as male and female,
then C = {M,F}.

All the animals in the population are represented by a capture history. For example, the
capture history U0 represents an animal caught but not stratified in the first sample occasion
and not captured in the second sample occasion. CC is the capture history that represents
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an animal captured and identified to category at both sample occasions. In general, the
possible capture histories for partial stratification in a two-sample capture-recapture model
are U0, UU, 0U,C0, CC, 0C and 00. Note that the capture history 00 is unobservable. Since
there are k capture histories related to each of the representations C0, CC, and 0C for the
k distinct categories, there are a total of 3k + 4 different capture histories.

Let PU0, PUU , P0U , PC0, PCC , P0C , and P00 denote the probabilities of the capture his-
tories U0, UU, 0U,C0, CC, 0C and 00 respectively.

Costs related to capture and stratification are denoted as follows.
C0 - total cost available to perform two-sample capture-recapture study
c1 - cost to capture an animal at the first sample occasion
c∗

1 - cost to stratify an animal at the first sample occasion
c2 - cost to capture an animal at the second sample occasion
c∗

2 - cost to stratify an animal at the second sample occasion
cf - fixed cost for the study regardless of the sample size

2.2.2 Statistics
nU0 - number of animals with capture history U0
nUU - number of animals with capture history UU
n0U - number of animals with capture history 0U
nC0 - number of animals with capture history C0
nCC - number of animals with capture history CC
n0C - number of animals with capture history 0C
n - total number of animals captured in the study

n = nU0 + nUU + n0U +
∑
C
nC0 +

∑
C
nCC +

∑
C
n0C

n1 - total number of animals captured at the first sample occasion
n1 = nU0 + nUU +

∑
C
nC0 +

∑
C
nCC

n∗
1 - sub-sample size at the first sample occasion

n∗
1 =

∑
C
nC0 +

∑
C
nCC

n2 - total number of animals captured at the second sample occasion
n2 = nUU + n0U +

∑
C
nCC +

∑
C
n0C

n∗
2 - sub-sample size at the second sample occasion

n∗
2 =

∑
C
n0C
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2.2.3 Model Parameters
ptC - capture probability of animals belong to category C at sample occasion t
λC - proportion of category C animals in the population;

∑
C
λC = 1

θt - sub-sample proportion at sample occasion t
N - population abundance
NC - population abundance of category C ; NC = N × λC

As defined above, the total number of model parameters relating to ptC , λC , θt, and N
is 3k + 3. However there are only 3k + 2 parameters to be estimated with the constraint∑
C
λC = 1.

2.2.4 Model Development

Sampling Protocol

Consider an animal population that can be divided into non-overlapping categories where
the stratification variable has been determined. At the first sample occasion a random
sample of size n1 is captured. Then a sub-sample of size n∗

1 is selected from n1 and the
stratum is determined for all animals in the sub-sample. All captured animals are tagged,
usually with a unique tag number. All captured animals are released to the population after
marking. Again some time later, another sample of animals of size n2 is captured randomly
from the population. The animals captured at the second sample occasion contains animals
captured and marked at the first occasion (some of them might be stratified and some of
them might not be stratified) as well as animals not captured at the first occasion. One of the
requirements here is that some of the stratified sub-sample at the first occasion is recaptured.
Furthermore, animals must not be sacrificed to determine stratification membership at the
first sample occasion. Again, a sub-sample of size n∗

2 is selected from the captured sample
at the second sample occasion including only animals not marked at the first occasion. A
pictorial view of the sampling protocol is given in Figure A.1 in Appendix A.

Model Assumptions

In addition to the assumptions related to the standard capture-recapture experiments, some
additional assumptions about the subsample are required.

• The population is closed (geographically and demographically). The number of indi-
viduals does not change during the study through birth or immigration and/or death
or emigration.

• The population can be divided into non-overlapping categories.

• Mark status is correctly identified at each sample occasion.
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• Marks are not lost between sample occasions.

• Capture and marking does not affect subsequent catchability of an animal.

• The sub-sample at each occasion is a random sample of animals that are not marked.

• The category of each animal in the sub-samples is successfully identified.

• Animal captures are independent.

Probability Statements of Capture History

Probability expressions for capture histories including the history 00 can be explicitly given
using the parameters λC , θt and ptC as follows.

PU0 =
∑
C
λC p1C (1− θ1) (1− p2C)

PUU =
∑
C
λC p1C (1− θ1) p2C

P0U =
∑
C
λC (1− p1C) p2C (1− θ2)

PC0 = λC p1C θ1 (1− p2C)
PCC = λC p1C θ1 p2C

P0C = λC (1− p1C) p2C θ2

P00 =
∑
C
λC (1− p1C) (1− p2C)

where PU0 + PUU + P0U +
∑
C
PC0 +

∑
C
PCC +

∑
C
P0C + P00 = 1

Likelihood

Under the model assumptions, the number of animals related to each of the capture histories
has a multinomial distribution with an unknown index.

L = N !
nU0! nUU ! n0U !

∏
C
nC0!

∏
C
nCC !

∏
C
n0C ! (N − n)! ×

(PU0)nU0 × (PUU )nUU × (P0U )n0U ×∏
C

(PC0)nC0 ×
∏
C

(PCC)nCC ×
∏
C

(P0C)n0C × (P00)N−n (2.1)

We use the logit-link functions to re-parameterize the model parameters ptC , λC , θt, and
the log-link function for N .
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Model Constraints

Constraints on the parameters in the likelihood defined in equation 2.1 (e.g. equal capture
probability across time or category) are implemented using design matrices. Offset values
also allow additional constraints (e.g. fixed at certain values) to be placed on real parameter
estimates in the model likelihood.

For example, the vector of parameters {ptC} can be constrained by using the design
matrix X, offset vector and using beta parameter vector β.

logit(ptC) = Xβ + offset

Consider a model with two categories (say M and F ) in which all individuals can be
successfully assigned to a category. Then there are four capture probabilities relating to the
two categories and two sample occasions. If there is a restriction on parameters such that
p1M = p1F and p2M = p2F , then we use design matrices and offsets as follows:

logit(


p1M

p1F

p2M

p2F

 )=


1 0
1 0
0 1
0 1


[
β1

β2

]
+


0
0
0
0


Parameter Estimation

Parameters are estimated numerically using maximum likelihood. With the use of the logit-
link and the log-link functions, the parameter estimates and variance-covariance matrix are
obtained in logit and log scales. The delta-method (Casella and Berger, 2002) is used to
obtain the variance-covariance matrix on the back-transformed scale.

Closed form solutions under the maximum likelihood method are not available, but
moment estimates (Davidson and Solomon, 1974) can be derived (see Appendix A.2.4).

Model Specification, Selection and Assessment

Model specification follows the notation used for naming models in the computer program
MARK (White and Burnham, 1999).

c ∗ t = parameter varies by category and time
t = parameter varies by time but not by category
c = parameter varies by category but not by time
. = parameter does not vary by time or by category

c+ t = additive model: variation to be parallel between categories across time

For example, the model defined by {p(c ∗ t) θ(t) λ(c)} is the model in which capture
probabilities vary by category and time, sub-sample proportions vary by time, and category
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proportions vary by category. The model defined by {p(c ∗ t) θ(t) λ(0.4)} is the same as the
previous model but the category proportions are fixed such that the category one proportion
is 0.4 and the category two proportion is 0.6.

Large numbers of different models can be defined for a given data set using the appro-
priate design matrices and offset vectors. Model selection is based on Akaike’s Information
Criterion (AICc) (Burnham and Anderson, 2004).

There is no guarantee that the model that has the smallest AICc value actually fits the
data well. Therefore we need to check whether the selected model can describe the data
adequately. Model fitness can be assessed using two methods. One way to assess the specified
models for a data set is through residual plots using the standardized residual (Dupuis and
Schwarz, 2007) for all observable capture histories as (Oi−Ei)/σi, where Oi and Ei are the
observed and expected counts for the capture history i and σi is its standard deviation where
σi ≈

√
Ei. Model fitness can also be assessed using the parametric bootstrap goodness of fit

test using the deviance statistic and the Tukey statistic (Brooks, Catchpole and Morgan,
2000). Identification of violation of assumptions and a poor model fit are illustrated in
Appendix A.2.1 through goodness of fit plots using simulated data.

Planning Experiments

In this partial stratified two-sample capture-recapture study, there is a cost to capturing an
animal at each sample occasion, a cost to identify the category of the captured animal in the
sub-samples, and also a fixed cost regardless of the sample size. If there is a fixed amount
of funds (C0) to be used in the study, then the objective is to find the optimal number
of animals to capture at both sample occasions and the optimal sizes of the sub-samples
to be categorized so that the variance of the estimated population abundance (Var(N̂)) is
minimized.

The total cost (C) of the experiment can be considered as a linear function of sample
sizes and it is given by

C = cf + n1c1 + n∗
1c

∗
1 + n2c2 + n∗

2c
∗
2 ≤ C0 (2.2)

where,
n∗

1 ≤ n1 and n∗
2 ≤ n2 − E(nUU +

∑
C nCC)

Numerical optimization methods are used to find the optimal allocation of n1, n2, n
∗
1

and n∗
2 with respect to the linear constraint defined in equation 2.2 such that Var(N̂) is

minimized.
It is also important to assess the performance of the model that is going to be used in

the experiment before data collection. Power, bias and precision assessments are performed
using the method based on expected values given by Devineau, Choquet and Lebreton
(2006).
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Figure 2.1: Sampling Protocol: Walleye sampled in a two-sample capture-recapture experi-
ment, Mille Lacs Lake, MN, USA in 2013. The notations U and 0 represent a fish in each
sampling time as described in Chapter 2.2.1 and C ≡ {M,F} whereM represents a fish that
is captured and identified as a male and F represents a fish that is captured and identified
as a female. Shaded areas represent marked fish. n1, n∗

1, n2 and n∗
2 are as in Chapter 2.2.2.

Results of the power analysis for partial stratification in two-sample capture-recapture
experiments with two categories in the population are given in Appendix A.2.2.

2.3 Example : Analysis of Mille Lacs Lake Walleye Data -
MLE Approach

2.3.1 Sampling Protocol

The study took place on Mille Lacs Lake, MN, USA in 2013. Walleyes were captured on
the spawning grounds. Almost all the fish were sexed in the first sample occasion. All the
captured fish were tagged and released, and recapture occurred three to six weeks later
using gill-nets. At the time of recapture, all of the fish could not be sexed by external
examination. From a sample of fish captured at the second sample occasion with no tags, a
random sample was selected and sexed internally. Figure 2.1 shows the sampling protocol
of the walleye data.

Capture histories for walleye from Mille Lacs Lake are provided in Table 2.1.

2.3.2 Best Fitted Model

Six different models were fitted as given in Table 2.2. According to the AICc criteria, the best
model for the walleye data is the model {p(c ∗ t) θ(t) λ(c)}. This conclusion is confirmed by
examining residual plots (Figure A.6 in Appendix A), the deviance and Tukey statistic for
observed data (Table 2.2), parametric bootstrap p-values, and the corresponding histograms
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Table 2.1: Capture histories for walleye sampled in a two-sample capture-recapture experi-
ment, Mille Lacs Lake, MN, USA in 2013.

Capture History Number of Fish
U0 42
UU 1
M0 5071
MM 40
F0 1555
FF 32
0M 41
0F 237
0U 3058

for 1000 parametric bootstrap samples (Figures A.7 and A.8 in Appendix A) for each of
the top four models.

The estimates for all the parameters and their standard errors using the best MLE model
{p(c ∗ t) θ(t) λ(c)} for the walleye data are shown in Table 2.3. Because there is substantial
capture heterogeneity between the two sexes, the Lincoln-Peterson estimator is biased and
overestimates the population abundance (N) with a larger standard error compared to the
estimate given by the model {p(c ∗ t) θ(t)λ(c)}. Usually, the effect of ignoring heterogeneity
is to cause negatively bias estimates. However, we did not observe a negative bias in the
Lincoln-Peterson estimate because the heterogeneity observed was mixed heterogeneity.
Pure heterogeneity, which results in negative biases (Pollock et al., 1990), occurs when
individuals from one category of the study animal (e.g. males) are more likely to be observed
in both the initial sampling occasion and subsequent occasions. Mixed heterogeneity occurs
when one category is more likely to be sampled in the first occasion, but another category is
more likely to be sampled in a subsequent occasion. In the case of Mille Lacs Lake walleyes,
males were more likely to be observed at the first sample occasion and less likely at the
second sample occasion. Conversely, females were less likely at the first sample occasion and
more likely at the second sample occasion. Mixed heterogeneity can result in positive biases
in Lincoln-Peterson estimates.

Approximate closed form solutions for the parameter estimates using the best model for
the walleye data are given in Appendix A.2.4.
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Table 2.3: Estimates for the parameters under MLE method, Bayesian
method and individual covariate method using models {p(c ∗ t) θ(t) λ(c)},
{p(c ∗ t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)}, and {p(length ∗ category ∗ time +
length2 ∗ category ∗ time), θ(t), λ(c)} respectively. N̂LP in the last row is the Lincoln-
Peterson estimate for population abundance. The model {p(t) θ(t) λ(c)} is the model
related to two-sample Lincoln-Peterson method.

Parameter
MLE model Bayesian model Covariate model

Estimate SE Posterior Mean SD Estimate SE
p1M 0.076 0.015 0.082 0.013
p1F 0.011 0.002 0.013 0.002
p2M 0.008 0.001 0.008 0.001
p2F 0.020 0.004 0.023 0.003
λM 0.323 0.060 0.336 0.042 0.293 0.068
λF 0.677 0.060 0.664 0.042 0.707 0.068
θ1 0.994 0.001 0.993 0.001 0.993 0.001
θ2 0.083 0.005 0.083 0.005 0.083 0.005
N 209,067 27,032 192,229 22,923 279,230 57,034
NM 67,527 13,335 64,327 9,990 81,833 25,398
NF 141,540 24,771 127,902 18,631 197,397 44,625

N̂LP 314,673 36,232

2.3.3 Optimal Allocation of Sampling Effort

We consider the problem of how to optimally allocate sampling effort at the two sample
occasions. We need to find optimal values for n1, n∗

1, n2, and n∗
2 for given cf , c1, c∗

1, c2, c∗
2,

and C0 such that the variance for the estimate of abundance is minimized (i.e. minimize
Var(N̂)).

The following costs were considered for the analysis of optimal allocation: cf = 0, c1 = 4,
c∗

1 = 0.4, c2 = 6, c∗
2 = 0.4, and C0 = 90, 000. In this study cost can be considered as the

time in minutes. C0 = 90, 000 is the total number of minutes (i.e. 1500 hours) available for
this study. Then the total cost (C) of the experiment can be considered as a linear function
of sample sizes and it is given by equation 2.2.

Optimal allocation is carried out before collecting the data with suitable guesstimates
for the parameters using the previous studies or researcher’s experience. For the Mille Lacs
Lake walleye data, we found the estimates for the parameters (Table 2.3) using the MLE
method for the best fitted model {p(c ∗ t) θ(t) λ(c)} out of the candidate models. We
considered these estimates as our guesstimates for the optimal allocation to see how much
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the precision of the estimate of population abundance can be improved compared to the
current allocation. We used the guesstimates for the parameters as follows considering the
model {p(c ∗ t) θ(t) λ(c)}.

N = 209, 000, λM = 0.33, r1 = 6.5, r2 = 0.4

where r1 is the guesstimate of the ratio of p1M/p1F and r2 is the guesstimate of the ratio
of p2M/p2F . It is difficult to give guesstimates for capture probabilities for each category
at each sample occasion. But in practice we can give a ratio of the capture probabilities at
each sample occasion. For example, if detection probability of males is half that of females
at the first sample occasion then the ratio r1 is 0.5. The guesstimates of the ratios r1 and
r2 given above are calculated using the estimates for capture probabilities given in Table
2.3 under the MLE model.

Optimal allocation of sample sizes and sub-sample sizes produced by numerical methods
(general-purpose optimization with L-BSGS-B method (Byrd, Lu, Nocedal, & Zhu, 1995)
was used for numerical optimization and Rsolnp package (Ghalanos & Theussl, 2015) was
used for optimization the cost function with constraints in R programing language) for the
given costs are n1 = 8, 929, n∗

1 = 8, 908, n2 = 8, 359, and n∗
2 = 1, 412. At these optimal

values SE(N̂) is 13,657. This standard error is 50% lower than the SE(N̂) obtained from
the current allocation (Table 2.3).

Different solutions are available for n1, n2, n∗
1, and n∗

2 at optimal allocation. Conditional
contour plots were used to see these different solutions. A conditional contour plot in this
situation is a contour plot for standard error of N̂ where two values of n1, n2, n∗

1, or n∗
2 are

fixed at the optimal values. Conditional contour plots for standard error of N̂ when n∗
1 and

n∗
2 are fixed at the optimal values and when n1 and n2 are fixed at the optimal values are

given in Figure A.9 and Figure A.10 respectively in Appendix A. These contour plots show
that many solutions are possible for optimal allocation.

2.3.4 Precision of the Estimates when Additional Information is Available

Now consider how well the precision of the estimate of population abundance can be im-
proved in the presence of additional information. For example, we can compare the precision
of the estimate under the best fitted model to the model where the sex ratio is known.

In the case of walleye in Mille Lacs Lake, let the first model be {p(c∗t)θ(t)λ(c)} and the
second model be {p(c∗ t) θ(t)λ(MLE)}. The first model is the best fit model to the walleye
data and the second model can be considered as the model where the sex ratio is known and
fixed at the MLE values obtained from the first model. Therefore λM is fixed at 0.323 (i.e.
λF is 0.677) for the second model. The first model has 8 parameters to be estimated and the
second model has only 7 parameters to be estimated since male and female proportions are
fixed. Estimates for the parameters produced by the model {p(c ∗ t) θ(t) λ(MLE)} are the
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same as the estimates given in the Table 2.3 under the model {p(c∗t)θ(t)λ(c)}. However the
standard errors for the population estimates produced by these two models are different.
Standard errors for the estimates of the parameters N , NM and NF are 27,032, 13,335 and
24,771 under the model {p(c ∗ t) θ(t) λ(c)} and 26,103, 8,431 and 17,632 under the model
{p(c ∗ t) θ(t) λ(MLE)}. According to these standard errors there is little improvement of
the precision of the estimate of population abundance (N) when the second model is used.
However the precision of the estimates of population abundance for each category NM

and NF is considerably better (around 35% improvement) when the second model is used
compared to the best fitted model. Standard errors for all the estimates produced by these
two models are given in Table A.5 in Appendix A.

2.4 Bayesian Analysis

The previous analysis shows that prior knowledge about the parameters in the model may
have a substantial impact on the precision of the estimate of the population abundance
and especially the precision of the estimates for each category. This motivates the use
of a Bayesian analysis approach to develop models of partial stratification in two-sample
capture-recapture experiments. In this section we use Bayesian methods to develop such
models and apply them to the walleye data from Mille Lacs Lake.

2.4.1 Model Development

Prior Selection

We consider sensible prior distributions for each of these parameters. Since the parameters
ptC , θt are probabilities between 0 and 1, Beta prior distributions are suitable for them.
Because we re-parameterize these parameters using the logit-link function, we use Normal
distributions on the logit-scale as prior distributions with suitable means and variances to
closely represent these Beta distributions. The Dirichlet prior distribution is used for the
category proportions because all of the category proportions sum to 1. Because population
abundance (N) is an unknown large value, we use a Normal flat prior distribution (Gelman
et al., 2004) on the log-scale.

logit(ptC) ∼ N(µtC , σ2
tC)

logit(θt) ∼ N(µt, σ2
t )

λC ∼ Dirichlet(m,n), where m,n > 0

log(N) ∼ N(µN , σ2
N ),

We use informative priors based on expert opinion or prior data. For example, let prior
belief for capture probability for a particular category at a certain sample occasion be
located in the interval (0,0.3) with an average around 0.15. A Beta(2, 10) would be a good
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prior distribution to represent this information. Because we model the capture probabilities
on the logit-scale, N(−2, 1) would closely represent this prior information. However when
informative priors are not available, U(0, 1) can be used. Because we use priors on the
logit-scale, N(0, 1.78) distribution is considered as the prior distribution because it closely
represents U(0, 1) on the logit-scale.

Model Specification, Selection and Assessment

Models are defined using the notation as described in Chapter 2.2.4 and also using prior
information. For example, the model defined by {p(c∗ t)(0, 0.3)θ(t)(0.7, 1)(0, 0.3)λ(c)(2, 4)}
is the model where the capture probabilities vary by category and time, sub-sample propor-
tions vary by time, and category proportions vary by category. Prior information is given
within the parenthesis for each parameter. p(c ∗ t)(0, 0.3) means prior belief for all the cap-
ture probabilities that are in the interval (0,0.3). In this case N(−2, 1) prior distributions
are used on the logit-scale. θ(t)(0.7, 1)(0, 0.3) means two different prior beliefs are used for
sub-sample proportions at two sampling occasions. The sub-sample proportion at the first
sample occasion is in the interval (0.7,1), the sub-sample proportion at the second sample
occasion is in the interval (0,0.3). N(2, 1) and N(−2, 1) prior distributions on the logit-scale
are suitable for the sub-sample proportions at these two occasions respectively. λ(c)(2, 4)
means that the prior distribution of category proportions is Dirichlet(2, 4). In this case, we
need to specify only one Normal prior distribution on the logit-scale because there are only
two categories; defining one category automatically also defines the second. A N(−0.7, 0.95)
on the logit-scale is a good prior distribution for the first category proportion. The model
defined by {p(c∗t)(0, 0.3)θ(t)(0.7, 1)(0, 0.3)λ(0.5)} is the same model described above except
the category proportions are fixed at 0.5.

Model selection is performed using the deviance information criterion (DIC) for finite
sample sizes where the posterior distributions of the model have been obtained by MCMC
simulations using the Metropolis-Hasting method. Two methods are considered for the DIC
calculation, the first using pD (Spiegelhalter et al., 2002), and the second using pv (Gelman
et al., 2004). The model which has the smallest DIC value is considered the best fitted
model for the data.

For a likelihood p(y|θ), we define the deviance as D(θ) = −2log(p(y|θ)) where y are the
data and θ are the unknown parameters. Posterior mean deviance is defined as D̄ where
D̄ = E[D(θ)]. Then we define pD and pv as follows.

pD = D̄ −D(θ̄) pv = 1
2Var(D(θ))

where θ̄ is the expectation of θ. Then the DIC values are

DIC = pD + D̄ or DIC = pv + D̄
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Model assessment of fit is done using the Bayesian p-value (Brooks, Catchpole and
Morgan, 2000). Two discrepancy statistics; (a) Deviance statistic and (b) Freeman Tukey
Statistic (FT) are used. Bayesian p-value close to 0.5 implies that the distribution of the
discrepancy statistics for the observed and the simulated data are similar and the given
model can describe the data well.

2.4.2 Example : Bayesian Analysis of Mille Lacs Lake Walleye Data

For the Mille Lacs walleye data given in Table 2.1, a MCMC Metropolis-Hasting method
was used with 3 chains, 60,000 iterations for burn-in, and 100,000 iterations for post burn-in
samples. The MCMC output was thinned by a factor of 50. This produced a sample of 6,000
(3 chains each with 2,000) to approximate the posterior distribution.

Table A.6 in Appendix A shows the DIC values and related information for six different
models denoted by M1 to M6 using two methods; one involving the value pD and the
other involving the value pv as described in Chapter 2.4.1. Informative prior distributions
for capture probabilities and sub-sample proportions were considered for the first three
models M1 to M3. Under the pv method, the model with the lowest DIC value is M1 ≡
{p(c ∗ t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)}. This model also has a DIC value very close
to the lowest value under the pD method.

Figure A.11 in Appendix A shows the Bayesian p-value goodness of fit plots (King, Mor-
gan, Gimenez, & Brooks, 2010) using two discrepancy statistics, the deviance statistic and
the Freeman Tukey statistic for the best four models according to the DIC criteria. Bayesian
p-value using both discrepancy statistics for the modelM1 ≡ {p(c∗t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3)
λ(c)(20, 40)}, which was selected from the DIC criteria, was close to 0.5. Hence the selected
model fit the Mille Lacs Lake walleye data well.

Trace plots, autocorrelation plots, and potential scale reduction plots (R̂ plots) of the
beta parameters for the best fitted model showed that the convergence of the posterior
distributions is rapid and dependence between iteration is small.

The results obtained by the MCMC Metropolis-Hasting simulations for the best fitted
model {p(c ∗ t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)} are given in Table A.7 in Appendix
A. Means and standard deviations of the posterior distributions produced from this best
fitted Bayesian model are given in Table 2.3. The means of the posterior distributions for all
the parameters were similar to the estimates of the MLE model { p(c ∗ t) θ(t) λ(c)} given in
Table 2.3 with improved standard deviation for the parameters. Variance estimates reveal
that the Bayesian method gives improved precision over the MLE method when estimating
population abundance N and population category totals NM and NF . Bayesian analysis
provides models with improved precision for estimates if we can provide informative prior
distributions for the parameters. Consider the two models M1 and M3 given in Table A.6
in Appendix A. The prior distributions are the same for these two models except for the
category proportions. Model M1 has a Dirichlet(20, 40) prior and the model M3 has a
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Dirichlet(2, 4) prior. Model M1 produced improved precision for estimates compared to
the model M3 because the Dirichlet(20, 40) prior distribution has less variance than the
Dirichlet(2, 4).

Posterior distributions for the population abundance and category totals are given in
Figure 2.2. Posterior distributions for the capture probabilities, category proportions and
the sub-sample proportions are given in Appendix A.3.4.

Figure 2.2: Posterior distributions for population abundance (N) and for each cate-
gory total for males (NM ) and females (NF ) using a sample of 6000 (3 chains each
with 2000) observations from the posterior distribution using the best model {p(c ∗
t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)}. Vertical bars are the 95% credible interval.

2.5 Simulation Studies for MLE and Bayesian Methods

Bayesian methods produced estimates for population abundance and category totals with
improved precision compared to the MLE method when walleye data were used. The sample
size (n) of walleye data is about 10,000, which is a large sample. To investigate the effect
of sample size, we conducted two simulation studies to test the performance of MLE and
Bayesian models development.

We simulated 1,000 samples (total sample size was around 10,000) from a large popula-
tion with a true population size of 212,000. We also simulated 1,000 samples (total sample
size was around 300) from a small population with a true population size of 1,000. Results
of simulation studies from both situations are given in Table 2.4. Estimates of the param-
eters are similar to the true parameter values under the both MLE and Bayesian method.
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However the Bayesian method produced improved precision for population abundance and
category totals for both large and small populations.

Table 2.4: Simulation study considering a large population and a small popula-
tion where 1000 samples were simulated from each population. The model { p(c ∗
t) θ(t) ν(t) λ(c)} was fitted to samples under the MLE method. The model {p(c ∗
t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)} was fitted to the samples from the large popu-
lation and the model {p(c ∗ t)(0, 0.3) θ(t)(0.7, 1)(0.25, 0.0.55) λ(c)(30, 20)} was fitted to the
samples from the small population under the Bayesian method. Under the both MLE and
Bayesian methods, the SE matches the actual mean SD of estimates over the simulated
samples.

Parameter
Samples from a large population Samples from a small population

True MLE Method Bayesian Method True MLE Method Bayesian Method
value Mean SE Mean SD value Mean SE Mean SD

p1M 0.07 0.069 0.010 0.075 0.009 0.15 0.151 0.029 0.153 0.017
p1F 0.01 0.010 0.002 0.011 0.001 0.10 0.106 0.043 0.111 0.019
p2M 0.01 0.010 0.001 0.010 0.001 0.25 0.253 0.045 0.253 0.024
p2F 0.02 0.020 0.004 0.022 0.003 0.15 0.155 0.057 0.174 0.020

λM 0.35 0.352 0.057 0.359 0.028 0.6 0.588 0.111 0.615 0.025
λF 0.65 0.648 0.057 0.641 0.028 0.4 0.411 0.111 0.384 0.025

θ1 0.9 0.900 0.004 0.900 0.004 0.9 0.898 0.026 0.899 0.021
θ2 0.2 0.200 0.007 0.199 0.006 0.4 0.400 0.035 0.399 0.024

N 212,000 218,797 30,126 198,174 20,616 1,000 1,073 289 967 80
NM 74,000 76,301 12,028 70,669 8,239 600 611 118 594 64
NF 138,000 142,496 28,520 127,505 15,434 400 462 271 372 40

2.6 Analysis with Individual Covariates

In this section we develop a method to estimate the abundance of a closed population
with partial stratification in two-sample capture-recapture experiments using observable
individual covariates. For example, the individual covariates for a fish population can be age,
weight, length etc. To develop the method with partial stratification in capture-recapture
experiments, we used methods described in Huggins (1989), Huggins (1991), and Alho
(1990) for estimating population abundance in capture-recapture experiments in a closed
population with heterogeneous capture probabilities.

2.6.1 Likelihood

Let the population consists of i = 1, 2, . . . , N individuals. Then the likelihood is

L∗ =
N∏
i=1

(PU0i)∆U0i (PUUi)∆UUi (P0Ui)∆0Ui
∏
C

(PC0i)∆C0i
∏
C

(PCCi)∆CCi
∏
C

(P0Ci)∆0Ci

× (P00i)
(1−
∑
h

∆hi)
(2.3)
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where

∆hi =


1 ; if the ith individual captured has a capture history in the set h, where

h = {U0, UU, 0U,C0, CC, 0C}
0 ; otherwise

PU0i =
∑
C
λC p1Ci (1− θ1) (1− p2Ci)

PUUi =
∑
C
λC p1Ci (1− θ1) p2Ci

P0Ui =
∑
C
λC (1− p1Ci) p2Ci (1− θ2)

PC0i = λC p1Ci θ1 (1− p2Ci)
PCCi = λC p1Ci θ1 p2Ci

P0Ci = λC (1− p1Ci) p2Ci θC

P00i =
∑
C
λC (1− p1Ci) (1− p2Ci)

and
PU0i + PUUi + P0Ui +

∑
C

PC0i +
∑
C

PCCi +
∑
C

P0Ci + P00i = 1

Capture probabilities for each individual depend on the individual covariates and those
probabilities can be represented by ptCi where t = {1, 2}. We consider a logistic model for
the capture probabilities. For example, if the individual covariate is length, then the capture
probabilities are given by

logit(ptCi) = log

(
ptCi

1− ptCi

)
= β0 +β1 (lengthi)+β2 (lengthi)2 +β3 (category)+β4 (time)

In this capture probability formula time takes values 0 and 1 where it represents the
sample time 1 and 2 respectively. If there are two categories in the population then the
variable category takes values 0 and 1 representing each respective category. When there
are more than 2 categories in the population, more indicator variables have to be defined
accordingly.

We can write the likelihood given in Equation 2.3 by letting i = 1, 2, . . . , n as the
captured individuals in the experiment and i = n + 1, . . . , N for animals not captured in
the experiment.

L∗ =
n∏
i=1

(
(PU0i)∆U0i (PUUi)∆UUi (P0Ui)∆0Ui

∏
C

(PC0i)∆C0i
∏
C

(PCCi)∆CCi
∏
C

(P0Ci)∆0Ci

)

×

 N∏
i=n+1

(P00i)
(1−
∑
h

∆hi)
 (2.4)
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Now we condition on the captured individuals because we have covariate information
only on the individuals captured at least once in the study. Therefore (1−P00i) denotes the
probability that the ith individual is captured at least once in the study for i = 1, 2, ..., n.
Then the conditional likelihood can be written as

L =
n∏
i=1

(PU0i)∆U0i (PUUi)∆UUi (P0Ui)∆0Ui
∏
C

(PC0i)∆C0i
∏
C

(PCCi)∆CCi
∏
C

(P0Ci)∆0Ci

1− P00i


(2.5)

The conditional likelihood involves only the captured individuals. Therefore the maxi-
mum conditional estimates of the parameters can be found.

The Horvitz-Thompson estimator (Huggins, 1991) gives an estimate for population
abundance N .

N̂(β) =
n∑
i=1

1
φi(β) with φi(β) = 1− P00i

where φi is the probability for the ith individual captured at least once in the study for
i = 1, 2, ..., n and β is the parameter vector associated with the model.

As described in Huggins (1991), when β is estimated from the data by β̂, the variance
of N̂(β) is

V ar(N̂(β̂)) = s2(β̂) + D̂T Î−1D̂

where
s2(β̂) =

n∑
i=1

φi(β̂)−2
[
1− φi(β̂)

]
,

Î is a matrix of second derivatives (Hessian matrix) of the conditional log-likelihood
evaluated at β̂ and D̂ is a vector calculated as follows.

dN(β)
dβ

∣∣∣∣
β̂

=
n∑
i=1

φi(β̂)−2 dφi(β)
dβ

∣∣∣∣
β̂

2.6.2 Model Fitting and Parameter Estimation for Mille Lacs Walleye
Data

Now we consider the individual lengths as additional information available for all captured
and recaptured walleyes in both sampling occasions for the Mille Lacs Lake walleye data
given in Table 2.1. The distribution of length for males (M), females (F) and for the walleyes
whose sex is not determined (U) in the captured samples in both sampling occasions is given
in Figure A.15 in Appendix A.

Seven different models were fitted to walleye data as shown in Table A.8 in Appendix A.
According to the AICc criteria, the best model for the walleye data is the model {p(length∗
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category ∗ time+ length2 ∗ category ∗ time), θ(t), λ(c)}. In the best fitted model, θ(t) means
sub-sample proportions vary by time, λ(c) means category proportions vary by category
and p(length ∗ category ∗ time+ length2 ∗ category ∗ time) represents the capture formula.
The capture probabilities for each individual i for each category C at time t can be found
by this capture formula as follows;

logit(ptCi) = log

(
ptCi

1− ptCi

)
= β0 + β1 (lengthi) + β2 (category) + β3 (time) + β4 (lengthi)2+

β5 (lengthi)(category) + β6 (lengthi)(time) + β7 (category)(time)+

β8 (category)(lengthi)2 + β9 (time)(lengthi)2+

β10 (lengthi)(category)(time) + β11 (category)(time)(lengthi)2

Motivation to use this complicated capture formula with quadric length can be explained
by considering the size selectivity of the gill nets used to capture walleyes (Figure A.15
in Appendix A). Very large and very small walleyes are difficult to capture. The length
frequency of captured walleyes displays a unimodal distribution suggestive of a quadratic
relationship of catchability versus length.

Estimates of the parameters were obtained by maximizing the conditional log likelihood
function. Table 2.3 gives the estimates for the parameters and their standard errors for sub-
sample proportions, category proportions and population abundance using the best fitted
covariate model {p(length∗ category ∗ time+ length2 ∗ category ∗ time), θ(t), λ(c)} with the
individual covariate length. Estimates and the standard errors for β0, β1, ... , β11 are given
in Appendix A.4.3. The estimate of population abundance N is 279,230 (SE = 57, 034).
Variance estimates of population abundance N and category totals NM and NF under
the individual covariate model are higher compared to the methods discussed in previous
Chapters 2.3 and 2.4. Higher estimates are a result of residual individual heterogeneity
having been modeled. Also the individual covariate model is highly parameterized compared
to the models used in the previous sections. Estimates of category proportions under the
individual covariate model are λM = 0.293 (SE = 0.068) and λF = 0.707 (SE = 0.068).
These estimates are similar to the estimates found without the individual covariate in
Chapters 2.3 and 2.4 using MLE and Bayesian methods, respectively.

Figure 2.3 shows that estimated capture probabilities for male and female walleyes
against length at sample occasions 1 and 2. According to this figure, male walleyes have
a much higher capture probability at sample occasion 1 than female walleyes. At the sec-
ond occasion, females have a higher capture probability compared to males. Moreover the

22



Figure 2.3: Estimated capture probabilities versus the individual covariate length (inches)
of males and females at capture time 1 and 2 using the model {p(length ∗ category ∗ time+
length2 ∗ category ∗ time), θ(t), λ(c)}.

catchability of males between 17 inches and 21 inches in length was very high at the first
occasion. Virtually all walleyes longer than 27 inches were female.

The estimated capture probabilities in Figure 2.3 can be explained by using the summary
distribution of length of walleyes in Figure A.15 in Appendix A. Therefore we can expect
that the fitted model using the individual covariate length fits the walleye data well.

2.7 Discussion

Capture heterogeneity can cause bias in estimates of abundance in two-sample capture-
recapture experiments for closed populations. In fishery experiments this heterogeneity is
often related to characteristics such as sex or size of the fish.

If there is heterogeneity in capture probabilities in each category, the simplest way to
address the heterogeneity is to stratify it into different categories and use the stratum-
specific estimates. Then the sum of these stratum-specific estimates gives the estimate for
the overall abundance. But complete stratification is not always possible in experiments. In
such cases we can do a partial stratification where a sub-sample of the captured animals
are selected at each sampling occasion and assigned to categories.

The optimal allocation procedures helps us to find sampling effort for a given cost among
the various costs of the study to obtain the estimate for the population abundance with
smallest variance. It also shows that many different solutions are possible at the optimal
allocation.

The Bayesian method provides improved precision for the estimates of population abun-
dance and category totals because it allows us to use expert prior knowledge on the pa-
rameters of the model. We observed that the Bayesian solutions are sensitive to the choice
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of prior distributions. It is important to use informative prior distributions, especially on
category proportions (sex ratios) in order to fit a better model. Having good knowledge of
the sex ratio is important to obtain estimates of the population abundance with improved
precision.

When additional information such as a continuous covariate length is available for each
captured sample, the model development with individual covariates should be expected to
produce better estimate for the population abundance compared to the methods developed
without individual covariates. It is important to define an appropriate logistic regression
model (e.g. quadratic relationship of catchability versus length for the walleye data) for
capture probabilities to fit a good model for the given data with individual continuous
covariates. However the precision of the population abundance produced by a highly pa-
rameterized model that uses continuous covariates can be worse compared to the precision
given by models that were developed without individual covariates because there is always
a compromise between accuracy and precision.

Bayesian models produced estimates with improved precision for population abundance
and category totals over the MLE method for walleye data. Simulation studies show that
performance under large population sizes and small population sizes are similar for both
MLE and Bayesian model development methods. When the individual lengths are considered
for the walleye data, the conditional likelihood method produced estimates for category
proportions and sub-sample proportions that were quite similar to the MLE and Bayesian
methods. However the estimates of population abundance under the conditional likelihood
method produced somewhat different values with poor precision compared to the previous
two methods because the best fitted covariate model was highly parameterized.

We need to consider the issue of non-identifiability in model fitting. All the parame-
ters can be estimated in two-sample capture-recapture studies similar to Lincoln Peterson
(Williams et al., 2002) model fitting. However we would not be able to estimate some of
the parameters, for example, if no females were observed. There is no non-identifiable issue
on model fitting with walleye data because both males and females were observed. However
there can be a non-identifiability issue with the population abundance parameter when
modeling with individual heterogeneity as described in Link (2003), because reasonable
alternative models might predict identical observations from population of different sizes.
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Chapter 3

Study of k-Sample
Capture-Recapture Experiments
under Partial Stratification on
Closed Population

3.1 Introduction

Capture-Recapture methods used to estimate abundance have been developed considering
two types of populations classified as open and closed. Open populations allow additions
due to birth or immigration or losses due to death or emigration during the period of study
(Pollock et al., 1990). Closed populations do not allow additions or losses over the period of
study. However known removals or losses on capture or known additions on capture (Otis
et al., 1978) are also allowed in closed populations. Development of methods for estimating
animal population abundance considering both open and closed populations are discussed
in Schwarz and Seber (1999), Seber (1992), and Seber (1986). While using these methods
in ecological experiments, new methods for capture-recapture experiments are developing
rapidly over time.

In a simple capture-recapture experiment with two sample times, the simple Lincoln-
Petersen (Williams et al., 2002) method can be used to estimate the abundance of a closed
population. The Lincoln-Petersen estimate for abundance is N̂LP = n1n2/m where n1 is
the total number of individuals captured, marked and released in the first sample time, n2

is the total number of individuals captured in the second sample time and m is the number
of marked individuals captured in the second sample time. When there are more than two
sample times, the Schnabel method (Schnabel, 1938) can be used. The Schnabel method is
an extension of the Lincoln-Petersen method where the individuals are captured, examined
for previous marks, marked and then released at each of k sample times. The estimate for
the abundance using Schnabel method is N̂S =

∑k
t=1CtMt/

∑k
t=1Rt. Here Ct is the total

number of individuals caught in the current sample time t, Mt is the number of marked
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individuals in the population just before the current sample time (i.e. (t−1)th sample time)
and Rt is the number of marked individuals caught in sample time t. Both the Lincoln-
Petersen and Schnabel methods assume that the all individuals in the population have the
same capture probability in each sample time. But this assumption might not be satisfied
in most of the ecological experiments. We can expect heterogeneity in capture probabilities.

Estimate of animal abundance for a closed population can be biased when there is het-
erogeneity in capture probabilities. For example if we stratify a particular animal population
as males and females, capture probabilities might vary between these two categories as well
as the subsequent sample times. However if we can stratify all the captured animals at each
sample time, then finding an unbiased estimate for abundance is straightforward. We can
simply use the Lincoln-Petersen method or Schnabel method and find stratum specific esti-
mates. Then the estimate for the entire population abundance is computed by adding these
stratum specific estimates. However stratification might not be possible for each sampled
animal due to various reasons such as time/resources constraints or because morphological
differences are slight. In such cases partial stratification can be done where a sub-sample is
selected at each sample time and the stratum is determined. Methods for partial stratifica-
tion in two-sample capture recapture experiments to estimates the populations abundance
are developed by Premarathna, Schwarz and Jones (2018).

In this chapter we present new methods for partial stratification in k-sample (k > 2)
closed capture-recapture experiments. We developed these new methods using maximum
likelihood method and a Bayesian method. When k = 2, we developed methods for par-
tial stratification in two-sample capture-recapture experiments (Premarathna, Schwarz and
Jones, 2018) and applied those methods to Mille Lacs Lake walleye data, MN, USA. In
k-sample case we did not have a real life data. Therefore we used these methods to a simu-
lated data with three sample times and with two categories available in the population and
allowing loss on capture. Analysis of this simulated data was carried out using R programing
language (R Development Core Team, 2016).

3.2 Design Protocol

The protocol for the partial stratification in k-sample capture-recapture experiments can
be explain as follows. An animal population of interest can be divided into non-overlapping
categories. The experiment is carried out k sample times. At the first sample time a random
sample of size n1 animals is captured from the population. Then a sub-sample is selected
randomly from the sample n1. All animals in the sub-sample are stratified. All animal are
marked with a unique tag number. All the animals captured are marked including the ones
considered as loss on capture. All the marked animals are released to the population except
the ones lost on capture. At each of the successive sample time t ( t = 2, 3, ..., k), a random
sample of size nt animals is selected from the population. Sample nt contains animals already
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captured and marked during previous sample times (some of them are stratified and some
of them are not stratified) and also animals not captured in previous sample times. A sub-
sample of animals is selected randomly from those animals not captured during previous
sample times. Again the animals in the sub-sample are stratified and marked with a unique
tag. All the newly captured animals not selected to the sub-sample are also marked. Marked
animals are released to the populations except the animals considered as loss on capture.
All the captured animals are marked such that the sample times are identifiable from the
marks. One of the requirements in this experiment is that some of the stratified sub-sample
at previous sample times is recaptured at the current sample time.

Assumptions about the experiment are similar to standard capture-recapture experi-
ments and some additional assumptions are also made.

• Known losses on capture might be occurred at each sample time.

• The population is considered as closed.

• The population can be divided into non-overlapping categories.

• Mark status is correctly identified at each sample time.

• Marks are not lost between sample times.

• Capture and marking does not affect subsequent catchability of an animal.

• The sub-sample at each sample time is a random sample of animals that are not
marked at least once during previous sample times.

• The category of each animal in the sub-samples is successfully identified.

• Animal captures are independent.

3.3 Notations

Classical capture-recapture experiments use 1’s or 0’s to represent the capture history vector
where ’1’ represents the individual was captured and ‘0’ represents the individual was not
captured in each sample time. In this experiment we use the following notation to represent
the status of the all animals in the population at each sample time similar to Premarathna,
Schwarz and Jones (2018). Some notations are defined similar to the notations defined by
Cowen and Schwarz (2006).
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0 - animal is not captured
U - animal is captured but not stratified
C - animal is captured and identified as belonging to the category C, where

C = {Category1, Category2 ..., Categoryd}
In practice we use an unique letter to represent each category in the
population. For example, if we stratify a population as male and female,
then C = {M,F}.

Loss on capture is allowed in the experiment. Capture histories with negative number for
the frequency indicate loss on capture. For example consider few possible capture histories
and corresponding number of animals captured for a 3-sample capture-recapture study with
C = {M,F} in Table 3.1.

Table 3.1: Example data for 3-sample capture recapture data with loss on capture

Capture History Number of animals
U00 1234
U00 -23
MM0 45
MM0 -2

...
...

If the number of animals related to the capture history U00 is positive (1234), it represents
1234 animals caught but not stratified at the first sample time and not caught them in the
second or third sample times. Capture history U00 with negative number (-23) represents
that 23 animals lost on capture but not stratified at the first sample time and then
removed from the population. Capture history MM0 with a positive number represents
animals caught at the first sample time and stratified and identified the category as ‘male’
and caught at the second sample time and not caught at the third sample time.
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3.3.1 Statistics and Indicator Variables
k = number of sample times, k ≥ 2
t = index for sample time, where t = 1, 2, ..., k
m = number of uniquely observed capture histories. This does not include

the capture history ω0 which represents individuals never caught in
any sample time. A particular observed capture history can be paired
with a positive number as well as a negative number where the loss on capture
is indicated by the negative sign. In that case there are two unique
capture history status for that particular capture history.

i = index for number of uniquely observed capture history status,
where i = 0, 1, 2, ...,m ; i = 0 is used to refer the history ω0. ω0 is unobserved.

d = number of categories (strata) in the population
r = index for number of categories, where r = 1, 2, ..., d
ωi = uniquely observed capture history.

where ωi = (ωi1 ωi2 ... ωik) and
nωi = absolute value of the total individuals captured with history ωi.

n = total number of individuals captured in the study, n =
m∑
i=1

nωi

ωit =



U : individual i captured at the sample time t was captured prior to the sample
time t and marked as U or individual i is captured for the first time at the
sample time t but not stratified

C : individual i captured at the sample time t was captured prior to the sample
time t and identified as belonging to the category C or individual i is
captured for the first time at the sample time t and identified as belonging
to the category C

0 : individual i is not captured at the sample time t

hit - capture indicator for history at sample time t. i.e. ωit

hit =
{

1 : individual i is captured at sample time t
0 : individual i is not captured at sample time t

zit - indicator to identify the availability to capture for ωit

zit =
{

1 : individual i is available in the population at sample time t
0 : individual i is not available in the population at sample time t
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sit - indicator to identify whether the stratification done at sample time t for ωit.

sit =
{

1 : individual i is stratified at sample time t
0 : individual i is not stratified at sample time t

fit - indicator to identify sample time that the individual with the capture history ωit is
captured for the first time.

fit =
{

1 : individual i is captured for the first time at sample time t
0 : individual i is captured before the sample time t

κit - loss on capture indicator for the capture history ωit.

κit =
{

1 : not lost at sample time t
0 : lost at sample time t

uir - indicator to identify whether the individuals with capture history ωi identified as
belonging to a particular category C, where C = {category1, category2, ..., categoryd}

uir =


1 : individuals with capture history ωi identified as belonging to categoryr or

capture history ωi contains at least one U
0 : individuals with capture history ωi identified as belonging to one of the

categories but do not belong to categoryr

Partial stratification in k-sample capture-recapture experiment with d number of cat-
egories in the population has m = 2(d + 1)(2k − 1) uniquely observable capture histories
allowing for loss on capture. However many of the possible observable unique capture his-
tories may not be observed in an experiment. Note that the capture history ω0 (e.g. for a
3-sample capture-recapture study ω0 is 000) is unobservable in an experiment.

3.3.2 Model Parameters
ptC = capture probability of animals belong to category C at sample time t
λC = proportion of category C animals in the population,

∑
C
λC = 1

θt = sub-sample proportion at sample time t
νt = loss on capture probability at sample time t
N = population abundance
NC = population abundance of category C ; NC = N × λC
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3.4 MLE Model Development

3.4.1 Probability Statements of Capture History

The probability statement for each of the uniquely observed capture history ωi can be given
explicitly as follows using the parameters ptC , λC , θt, and νt.

Pωi =
∑
C

λC ∗ uiC
{ k∏

t

phitzittC (1− ptC)(1−hit)zit (1− νt)hitκit νhit(1−κit)
t θsitt (1− θt)(1−sit)fit

}

Even though the capture history ω0 is unobservable in an experiment, the probability
statement can be given as follows.

Pω0 =
∑
C

λC

{ k∏
t

(1− ptC)
}

For example, the probability expressions for the following capture histories for a 3-sample
capture-recapture study with C = {M,F} can be given as follows.

Capture Number of
Probability statement

History animals
U00 1234

∑
C
λCp1C(1− θ1)(1− ν1)(1− p2C)(1− ν2)(1− p3C)(1− ν3)

U00 -23
∑
C
λCp1C(1− θ1)ν1

MM0 45 λMp1Mθ1(1− ν1)p2M (1− ν2)(1− p3M )(1− ν3)
MM0 -2 λMp1Mθ1(1− ν1)p2Mν2

3.4.2 Likelihood

We can model the number of animals related to each unique capture history ωi using the
multinomial distribution with unknown index (i.e. nω0 = N − n). The likelihood is

L = N !
nω1 ! nω2 ! ... nωm ! (N − n)!

m∏
i=1

(Pωi)nωi × (Pω0)(N−n) (3.1)

This can be written as L = L1 × L2 (Sanathanan, 1972) where

L1 = N !
n! (N − n)! (1− Pω0)n (Pω0)(N−n)

L2 = n!
nω1 ! nω2 ! ... nωm !

m∏
i=1

(
Pωi

1− Pω0

)nωi
(3.2)
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Estimator for N based on Equation 3.1 is the maximum likelihood estimator and estima-
tor based on the L2 is the conditional maximum likelihood estimator where it is conditioned
on the observed total n. The conditional maximum likelihood estimator for N is asymptot-
ically equivalent to the maximum likelihood estimator (Sanathanan, 1972).

3.4.3 Parameter Estimation and Model Constraints

Estimates of the parameters ptC , λC , θt, νt and N were computed using standard numerical
methods. We used logit-link functions for the parameters ptC , λC , θt and νt because it
constrains probabilities between 0 and 1. We used log-link function for the parameter N
because N is a positive number and log-link function constrains the value between 0 and
infinity. First we computed the estimates and the variance-covariance matrix in the logit
and log scales. Then we applied the delta-method to obtain the variance-covariance matrix
in back-transformed scale.

Additional constraints on parameters can be placed through design matrices and offset
vectors (offset value is used to fix a parameter at a certain value). We modeled the pa-
rameters ptC , λC , θt and νt using logistic regression as described in White and Burnham
(1999).

For example, the vector of parameters for capture probabilities {ptC} can be constrained
by using the appropriate design matrix X, offset vector and using beta parameter vector β.

logit(ptC) = Xβ + offset

The number of parameters to estimate is depend on the specified model. For example,
consider a k-sample study with d number of categories in a population with the model
where no constraints on the parameters. Then there are kd number of ptC parameters,
k number of θt parameters, k number of νt parameters, d − 1 number of λC parameters
(because of the constraint

∑
C λC = 1) and the parameter N to be estimated corresponding

to the unconstrained model.

3.4.4 Model Specfication and Selection

Standard model identification notations were considered for naming the models as used in
the computer program MARK (White and Burnham, 1999).

c ∗ t = parameter varies by category and time
t = parameter varies by time but not by category
c = parameter varies by category but not by time
. = parameter does not vary by time or by category

For example, the unconstrained model can be denoted as {p(c ∗ t) θ(t) ν(t)λ(c)}. In this
model p(c∗t) represents capture probabilities that vary by category and time; θ(t) represents
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sub-sample proportions that vary by time; ν(t) represents loss on capture proportions that
vary by time; and λ(c) represents category proportions that vary by category. If there is
no variation of capture probabilities by category and time then it is represented as p(.).
The model denoted by {p(c ∗ t) θ(t) ν(t) λ(0.3)} is the same as the unconstrained model
except the category proportions are fixed. Here the category 1 proportion is fixed at 0.3
and category 2 proportion is fixed at 0.7.

Model selection was done using the Akaike’s Information Criterion (AICc) and related
methods (Burnham and Anderson, 2004).

3.4.5 Goodness of fit

Goodness of fit of the model to the data was assessed by two different methods. First method
we applied was the residual plot using the standardized residuals (Dupuis and Schwarz,
2007) and the second method was the parametric bootstrap goodness fit test using the
deviance statistic and the Tukey statistic (Brooks, Catchpole and Morgan, 2000).

Residual plots were created taking the standardized residuals for all unique capture
histories. Standardized residual for the capture history ωi is (Oωi − Eωi)/σωi , where Oωi
and Eωi are the observed and expected counts for the capture history ωi and and σωi is its
standard deviation where σωi ≈

√
Eωi . Many of the possible capture histories relating to this

experiment may not be observed during the experiment. Expected value of these observable
but unobserved histories is small. We grouped all these counts into one history and denoted
as ωOTHER. Then the expected value of the capture history ωOTHER was calculated and it
is EωOTHER = n −

∑m
i Eωi . Because OωOTHER = 0, standardized residual for ωOTHER was

calculated as (0− EωOTHER)/σωOTHER .
The parametric bootstrap goodness of fit tests involve the conditional likelihood where it

is conditioned on the observed total n. Here we compared the fitted model to the saturated
model. The saturated model is a multinomial model with probability for each capture history
ωi is nωi/n. We calculated the deviance statistic and the Tukey statistic of the observed data
and compared those statistics with bootstrap samples. Then we calculated the bootstrap
p-value related to each method by calculating the number of deviance (Tukey) statistics
calculated from the bootstrap samples greater than the deviance (Tukey) statistic calculated
from the observed data and dividing by number of bootstrap samples. Larger goodness of
fit p-value suggest that the fitted model is a good fit to the observed data.

3.5 Example : MLE Approach

3.5.1 Example with 3-sample study with two categories in the population

Simulated data set with 3-sample capture-recapture study under partial stratification with
two categories in the population allowing loss on capture was considered to apply this new
methods. The two categories in the population were denoted as ‘M ’ and ‘F ’ to represent
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males and females in the population. We simulated the data such that there is heterogeneity
in catchability. Data was simulated using R programing language and the true values of the
parameters used for simulation are given in Table 3.5. Capture histories of one simulated
data set are provided in Table 3.2.

Table 3.2: Simulated data for 3-sample capture-recapture study. M and F represent the
two categories males and females in the population. If the number of animals captured
is a negative values, it represents loss on capture. Following true parameter values were
considered to simulate data.
p1M = 0.015, p1F = 0.005, p2M = 0.009, p2F = 0.010, p3M = 0.005, p3F = 0.007
λM = 0.7, λF = 0.3
θ1 = 0.8, θ2 = 0.3, θ3 = 0.4
ν1 = 0.005, ν2 = 0.001, ν3 = 0.004
N = 300, 000

Capture Number of Capture Number of
History animals History animals

00F -2 0MM 1
00M -1 0U0 1960
00U -3 0UU 6
0M0 -2 F00 333
0U0 -3 F0F 3
F00 -2 FF0 5
M00 -13 M00 2485
U00 -5 M0M 10
00F 246 MM0 18
00M 431 U00 700
00U 1024 U0U 4
0F0 275 UU0 6
0M0 540

Six different models were fit to the data in Table 3.2 and the summary of model fitting
is given in the Table 3.3. According to the AICc values and the related information, the best
model fit to the data is the model {p(c ∗ t) θ(t) ν(t) λ(c)} where the capture probabilities
vary by category and time, sub-sample proportions vary by time, category proportions vary
by category and loss on capture proportions vary by time.
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Table 3.3: Model comparison table for simulated data in Table 3.2. np is the number of
parameters to be estimated in the model.

Model np
N̂ s.e.(N̂)

AICc ∆AICc
AICc

’000s ’000s Weights
{ p(c ∗ t) θ(t) ν(t) λ(c)} 14 382 52 165.9 0.0 0.84
{ p(c ∗ t) θ(t) ν(t) λ(0.5)} 13 476 65 169.2 3.3 0.16
{ p(t) θ(t) ν(t) λ(c)} 11 397 54 473.4 307.5 0.00
{ p(t) θ(t) ν(t) λ(0.7)} 10 397 54 704.2 538.3 0.00
{ p(.) θ(t) ν(t) λ(c)} 9 412 56 1139.6 973.6 0.00
{ p(c) θ(t) ν(t) λ(c)} 10 413 56 1141.5 975.6 0.00

Goodness of fit plots provide us whether the model selected according to the AICc
criteria is a good fit to the simulated data. Standardized residual plots for the best four
models according to the AICc criteria are given in Table 3.1. Parametric bootstrap goodness
of fit plots for these four models using the deviance statistic and Tukey statistic are given
in Figure B.1 and Figure B.2 in Appendix B. 1,000 bootstrap samples were considered for
both parametric bootstrap methods using the deviance statistic and the Tukey statistic.
Parametric bootstrap p-values and the standardized residual plots provide that the model
{p(c ∗ t) θ(t) ν(t) λ(c)} is a good fit to the simulated data in Table 3.2.
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Figure 3.1: Standardized residual plots for the best four models according to AICc values.
Note that the x-axis represents absolute values of the expected counts for unique capture
histories. Solid triangles represent the loss of capture histories. Dashed horizontal lines are
drawn at ±1.96 to represent the region where most 95% of residuals should lie if model
assumptions were met completely. A good fit occurs only in top left model.

Parameter estimates and their standard errors are given in Table 3.4 for the data in Table
3.2 using the MLE model fitting with the best fitted model {p(c∗t) θ(t) ν(t) λ(c)}. According
to this model fitting, estimated population abundance is N = 381, 808 (SE = 52, 232),
estimated abundances for category M is NM = 279, 327 (SE = 45, 638) and category F is
NF = 102, 481 (SE = 33, 593).
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Table 3.4: Parameter estimation under MLE model fitting and Bayesian model fitting. Model
under MLE method is {p(c ∗ t) θ(t) ν(t) λ(c)} and the model under Bayesian method is
{p(c ∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1) λ(c)(30, 10)}.

Parameter
MLE model fitting Bayesian model fitting
Estimate SE Posterior Mean SD

p1M 0.011 0.001 0.012 0.001
p1F 0.004 0.001 0.005 0.001
p2M 0.006 0.001 0.007 0.001
p2F 0.009 0.003 0.011 0.002
p3M 0.003 0.001 0.004 0.001
p3F 0.006 0.002 0.007 0.002

λM 0.732 0.076 0.751 0.045
λF 0.268 0.076 0.249 0.045

θ1 0.800 0.006 0.800 0.006
θ2 0.293 0.008 0.294 0.008
θ3 0.398 0.011 0.398 0.011

ν1 0.005 0.001 0.006 0.001
ν2 0.001 0.001 0.002 0.001
ν3 0.003 0.001 0.004 0.001

N 381,808 52,232 352,892 42,638
NM 279,327 45,638 264,927 35,821
NF 102,481 33,593 87,965 19,590

3.6 Bayesian Model Development

3.6.1 Motivation for Bayesian Analysis

It is important to investigate how well the precision of the estimates can be improved
when we have prior information available. We considered the best fitted model {p(c ∗
t) θ(t) ν(t) λ(c)} under the MLE method and the model {p(c ∗ t) θ(t) ν(t) λ(MLE)}
where the prior information is available for the category proportions and they are fixed at
the MLE estimates produced by the best fitted model under the MLE method to compare
the improvement of precision of population abundance estimates. Estimates for the param-
eters ptC , λC , θt, νt and N are identical when we applied both {p(c∗t) θ(t) ν(t) λ(c)} model
and {p(c ∗ t) θ(t) ν(t) λ(MLE)} model, yet the second model produced improved precision
of the estimates compared to first model. First model produced standard errors of 52,232,
45,638 and 33,593 respectively for the estimates of population abundance (N), abundance
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of categoryM (NM ) and abundance of category F (NF ). Model {p(c∗t) θ(t) ν(t) λ(MLE)}
produced standard errors of 51,962, 38,011, 13,951 for the estimates of the parameters N ,
NM and NF . The improvement of the precision of the estimate of N is small for the second
model. But there are around 16% and 55% improvement of the precision of the estimate of
NM and NF .

Comparison of the standard errors using these two models shows that we can expect
improved precision for the estimates of the population abundance and category abundance
when we have prior information about category proportions. This was motivated to apply
Bayesian methods to k-sample capture recapture experiments under partial stratification
allowing loss on capture at each sample time with appropriate prior distributions for all the
parameters in a model.

3.6.2 Prior Distributions

Prior distributions for the parameters were defined similar way as in Premarathna, Schwarz
and Jones (2018). Because parameters ptC , θt and νt takes values between 0 and 1, Beta prior
distributions are appropriate for them. However we used normal prior distributions on the
logit-scale for these parameters because we applied logit-link function in optimization of the
likelihood. Prior distribution for λC was considered as Dirichlet prior because

∑
C λC = 1.

Population abundance (N) is an unknown large value. Hence we used a Normal flat prior
(Gelman et al., 2004) on the log-scale because we applied log-link function to re-parameterize
N when optimizing the likelihood.
The prior specification are:

logit(ptC) ∼ N(µptC , σ2
ptC

)

logit(θt) ∼ N(µθt , σ2
θt

)

logit(νt) ∼ N(µνt , σ2
νt)

λC ∼ Dirichlet(m,n), where m,n > 0

log(N) ∼ N(µN , σ2
N )

Informative priors can be used based on previous data or expert opinion. Usually for
an experiment with a large population, the capture probabilities and the loss on capture
probabilities are small. These probabilities can be considered in the interval (0,0.1). A
Beta(2,50) may be a good prior distributions to represent this information. Beta(2,50)
distribution can be closely represented by the N(-4,1) distribution on the logit-scale (using
trial and error method). In this situation we can use N(-4,1) distributions on the logit-
scale as prior distributions for capture probabilities and loss on capture probabilities. When
informative priors are not available, Beta(1,1) distribution can be used as prior distributions.
Because we use priors on the logit-scale, N(0, 1.78) distribution is considered as the prior
distribution because it closely represents Beta(1,1) on the logit-scale.
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3.6.3 Model Specification

Models specification was done similar to the models defined in Bayesian analysis section by
Premarathna, Schwarz and Jones (2018). For example, consider the model denoted by {p(c∗
t)(0, 0.1) θ(t)(0, 1) ν(t)(0, 0.1) λ(c)(30, 10)} in Table B.1 in Appendix B. Prior information
is given within the parenthesis in front of each of the parameters in this model. p(c ∗
t)(0, 0.1) represents capture probabilities vary by category and time and the prior belief for
all the capture probabilities are withing the interval (0,0.1). In this situation Beta(2,50) is a
good prior distribution for capture probabilities. Because we use Normal prior distribution
on the logit-scale, N(−4, 1) is suitable distribution as descried in Section 3.6.2. In the
model, θ(t)(0, 1) represents sub-sample proportions vary by time and prior belief for all
the sub-sample proportions are withing the interval (0,1). In this situation a suitable prior
distribution is Beta(1,1) and we use N(0, 1.78) on the logit-scale as the prior distribution
because it closely represents Beta(1,1). ν(t)(0, 0.1) represents loss on capture proportions
vary by time and prior distributions for loss on capture proportioare are similar to those are
defined for capture probabilities in this model. λ(c)(30, 10) represents category proportions
vary by category and prior distribution of category proportions is Dirichlet(30,10).

3.6.4 Model Selection and Goodness of Fit

We used the deviance information criterion (DIC) for Bayesian model selection procedure
using posterior distributions. Posterior distribution of a given model was obtained by MCMC
simulations using the Metropolis-Hasting method. The model with the smallest DIC value
is considered as the best model for the data out of the given models. we considered two
methods for the DIC calculation; the method using pD (Spiegelhalter et al., 2002) and the
method using pv (Gelman et al., 2004).

Goodness of the fit of the selected model can be assessed by using Bayesian p-values
(Brook, Catchpole and Morgan, 2000). Bayesian p-value is also called posterior predictive
p-value and it is calculated using some discrepancy measure D using u number of posterior
samples as follows.

p− value = 1
u

u∑
j

1[D(Xj ,θj) >D(X,θj)]

where X is the data, θj is the jth posterior sample and Xj is the jth data set simulated
from θj using the model.

If there is no significant difference between the observed data discrepancies and simulated
data discrepancies relating to the selected model, then the bayesin p-value should be close
to 0.5 and it indicates that the selected model can describe the observed data well.

We considered two discrepancy statistics; deviance statistic and the Freman Tukey statis-
tic to calculate p-values. Discrepancy calculated using Freeman-Tukey statistics (Freeman
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and Tukey, 1950) has the form
∑
i(
√
Oi −

√
Ei)2 where Oi and Ei are observed count and

expected count for capture history i for each posterior sample.

3.6.5 Example Baysian Analysis

MCMC Metropolis-Hasting method was applied for the data in Table 3.2 with 3 chains and
each chain using 60,000 iterations for burn and 100,000 iterations for post-burn. MCMC
output was thinned by a factor of 50. This produced a sample of 6,000 (3 chains each with
2,000 iterations) from the posterior distribution.

According to the DIC information, using two methods given in Table B.1 in Appendix
B, the model {p(c ∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1)λ(c)(30, 10)} where informative priors are
considered for capture probabilities and for loss on capture probabilities is the best model
as it has the minimum DIC value.

Bayesian p-value goodness of fit plots are given in Figure 3.2. The Bayesian p-values for
the model {p(c ∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1)λ(c)(30, 10)} is close to 0.5. It shows that this
model fits the data well in Table 3.2.
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Figure 3.2: Bayesian p-value scatter plots for the first four models according to DIC crite-
ria as in Table B.1 in Appendix B. Deviance Statistic and Freeman Tukey Statistic (FT)
were considered as discrepancy functions to calculate p-values. For each of the model, 6000
samples from the posterior (3 chains each with 2000) were considered.

Convergence of the posterior distributions for all the parameters under best fitted model
{p(c∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1)λ(c)(30, 10)} were assessed through trace plots, autocorre-
lation plots, and potential scale reduction plots (R̂ plots). These plots indicate that chains
mixed well. Figure B.4 in Appendix B shows the trace plots of all the beta parameters of
the model. R̂ (Rhat) values and the effective sample sizes (n.eff) for estimating the mean
of the parameters are given in Table B.2 in Appendix B. Effective sample sizes are smaller
for some of the parameters compared to the size of posterior samples 6000. It indicates that
even though the chains mixed well, there is some autocorrelation between posterior samples
even after thinning by 50.

Table B.2 in Appendix B shows the posterior distributions produced by the best fitted
model {p(c ∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1)λ(c)(30, 10)}. Posterior means and standard devia-
tions produced from this best fitted model are given in the Table 3.4. According to the Table
3.4, there is little difference between the estimates produced by Bayesian model fitting and
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Figure 3.3: Posterior distributions for population abundance (N) and for each category total
for categoryM (NM ) and category F (NF ) using samples of 6000 (3 chains each with 2000)
from the posterior under the best model {p(c ∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1)λ(c)(30, 10)}.
Vertical lines are the 95% credible intervals.

MLE model fitting. But precision of the estimates of the parameters are improved under the
Bayesian model fitting compared to the MLE model fitting and approximately 20%, 25%
and 40% improvement of the precision of estimates of population abundance N , population
category totals NM and NF respectively.

3.7 Simulation Studies for MLE and Bayesian Methods

Bayesian methods produced population estimates with improved precision compared to the
MLE method when the simulated data in Table 3.2 were used. Because we used a simulated
data for the analysis using MLE method and Bayesian method, we conducted a simulation
study to test the validity and the precision of the estimates provided by this new methods.
We simulated 1,000 samples (total sample size was around 8,000) for 3-sample capture-
recapture study with two categories in the population (M,F ). We applied the method of
partial stratification and allowed loss on capture at each sample time. True parameter values
used to simulate data in Table 3.2 were used to simulate the 1,000 samples. Mean parameter
estimates and the standard errors for all the parameters ptC , λC , θt, νt and N using both
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the MLE best fitted model {p(c ∗ t) θ(t) ν(t) λ(c)}, and the Bayesian best fitted model
{p(c ∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1) λ(c)(30, 10)} are given in Table 3.5. Histogram of the
estimates of the parameters ptC , λC , θt, νt and N for 1,000 simulated samples are given in
Figure B.3 in Appendix B.

Table 3.5 shows that the mean estimates calculated from 1,000 simulated samples un-
der both MLE and Bayesian methods are close to the true parameter values. That is a
good indication that our methods produce unbiased estimators for all the parameters with
reasonable precision. Further it shows that the Bayesian method produced improved preci-
sion for the population estimate because the standard deviation for population estimate is
smaller compared to the MLE method.

Table 3.5: Simulation study considering a large population where 1,000 samples were simu-
lated from the population. The model { p(c ∗ t) θ(t) ν(t) λ(c)} was fitted to samples under
the MLE method and the model {p(c ∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1) λ(c)(30, 10)} fitted to
samples under the Bayesian method. Under both the MLE and Bayesian methods, the SE
matches the actual mean SD of estimates over the simulated samples.

Parameter True MLE Method Bayesian Method
value Mean SE Mean SD

p1M 0.015 0.0150 0.0020 0.0153 0.0018
p1F 0.005 0.0050 0.0015 0.0063 0.0009
p2M 0.009 0.0090 0.0012 0.0092 0.0011
p2F 0.010 0.0101 0.0031 0.0125 0.0018
p3M 0.005 0.0050 0.0007 0.0051 0.0006
p3F 0.007 0.0071 0.0022 0.0088 0.0013

λM 0.7 0.6882 0.0828 0.7350 0.0294
λF 0.3 0.3117 0.0828 0.2650 0.0294

θ1 0.8 0.8000 0.0067 0.7996 0.0068
θ2 0.3 0.3001 0.0087 0.3000 0.0088
θ3 0.4 0.4002 0.0115 0.3999 0.0117

ν1 0.005 0.0049 0.0011 0.0053 0.0011
ν2 0.001 0.0010 0.0005 0.0018 0.0005
ν3 0.004 0.0040 0.0015 0.0049 0.0013

N 300,000 312,797 49,533 288,466 29,920

3.8 Discussion

Capture heterogeneity can lead to biased population estimates in k-sample capture-recapture
experiments. When capture heterogeneity exists in experiments, we can stratify the pop-
ulation into different categories and then can calculate stratum specific estimates. When
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complete stratification is not possible in experiments, then we can use partial stratification
method in each sample time.

In this chapter we developed methods for estimating the abundance using partial strat-
ification in k-sample capture-recapture experiments with known losses on capture allowed
at each sample time. Both the MLE method and Bayesian method produced similar re-
sults for the estimates. However the Bayesian method produced estimates for population
abundance with improved precision compared to MLE method, because Bayesian methods
incorporate prior knowledge about the parameters in the model. We also could observe that
more informative prior distributions lead to estimates with improved precision in Bayesian
model fitting. Therefore prior distributions should be defined for each parameter sensibly,
specially for category proportions.

Simulation studies show that our methods produce unbiased estimators for all the pa-
rameters with reasonable precision under the both MLE and Bayesian model development.
Further it shows that the Bayesian method produced improved precision for the population
estimate
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Chapter 4

Integrated Population Modeling of
Chinook Salmon with
Capture-Recapture, Snorkel, Dead
Recovery and Radio Telemetry
Surveys

4.1 Introduction

Chinook salmon (Oncorhynchus tshawytscha) are one of five Pacific salmon species broadly
distributed in North American waters from California to Alaska. Chinook salmon also known
as “spring” salmon because they return to some rivers earlier than other Pacific salmon
species. Chinook salmon originating from the West Coast of Vancouver Island (WCVI) are
a large portion of the Chinook population in North America. According to the report by
Fisheries and Oceans Canada (DFO), “Chinook (Oncorhynchus tshawytscha) from the west
coast of Vancouver Island (WCVI) are one of British Columbia’s most important natural
resources. These stocks have long been major contributors to First Nations, commercial troll,
and sports catches, from Alaska to southern Vancouver Island” (DFO, 2012). This report
also states that WCVI Chinook salmon inhabit over 100 rivers, with 60 rivers supporting
population exceeding 100 spawners and spawning population sizes can range from less than
100 to more than 100,000 Chinook in rivers with major hatcheries. As reported by the DFO,
2012 science advisory report, these hatcheries contribute an average of about 90% of the
annual WCVI Chinook production.

Current WCVI Chinook salmon are a population of concern. Wild WCVI Chinook
salmon population has been declining over the last 15 years (DFO, 2012). Even with man-
agement actions such as hatchery supplementation, restrictions on harvest, and restriction
on recreational fisheries etc., WCVI Chinook population status remains poor and stable at
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low levels. However the factors affecting to the low level abundance are uncertain (DFO,
2012).

Pacific salmon migrate from ocean to their streams of origin where they spawn on
gravel beds and die after spawning. Chinook salmon spend their early life in streams and
swim to the ocean. Then they return to the upstream freshwater of origin to spawn when
they have matured. Salmon escapement is the number of fish returning to the fresh water
spawning habitat. Estimates of Pacific salmon escapement helps to enumerate spawn salmon
population and used for conservation decisions such as determining fishing quotas.

Chinook salmon on the West Coast of Vancouver Island return to their spawning habi-
tat in the fall. Peak spawning for Chinook salmon on the West Coast of Vancouver Island
is usually from late September to mid-October (DFO, 2012). Depending on the rate of re-
turning to the stream and water condition, timing of the peak can differs by a week or two
across years. Burman River is one of the rivers in WCVI which has naturally spawned Chi-
nook salmon. Chinook salmon escapements in Burman River are monitored under the 2009
Pacific Salmon Treaty between Canada-US for managing Pacific salmon. Burman River
Chinook spend some time in stopover site (a pool in the lower stream near the upper limit
of tidal influence) when returning to stream from the ocean, that is from saltwater to fresh-
water. This is because osmoregulatory transformation is needed to maintain homeostasis
in freshwater. Also Chinook are waiting in stopover site until they have adequate water
condition in the river to mover upstream. Stopover behaviours of Chinook in other nearby
rivers in WCVI such as Gold River are similar to the Burman River. Upstream movements
and spawning in these rivers are largely affected by the first significant freshet (Dunlop,
2015). Generally upstream movement from the stopover site is completed by mid-October
and spawning is completed around end of October.

Figure 4.1 (Dunlop, 2015) shows the stopover site of the Burman River on the West
Coast of Vancouver Island and the spawning area (Km 0 to 7.5 km).

In many salmon management and conservation decisions, the estimates of escapement
are based on “area-under-the-curve” (AUC) method (Hilborn et al., 1999; Parken et al.,
2003). DFO also use AUC method to estimate escapement in WCVI using snorkel surveys
(count number of observable salmon in stream periodically). Under the AUC method, es-
capement can be estimated by dividing the area under the curve (snorkel counts are plotted
over time with observer efficiency and the resulting area bounded by the curve is the area
under the curve) by the residence time (length of time spent by a fish in the survey area)
and multiplied by a correction factor for observer efficiency (fish visibility). This method
requires counts of fish over time, survey life and observer efficiency (Hilborn et al., 1999).
DOF escapement estimate in WCVI using AUC method was not reliable because mean
residence time and observer efficiency are chosen subjectively (DFO 2014).

Funding was provided annually for surveys from 2009 to 2014 to improve estimates
of Chinook salmon escapement in Burman River in WCVI due to the lack of certainty
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Figure 4.1: Study area and overview of Burman River on the West Coast of Vancouver
Island, BC, Canada.

of estimates obtained with AUC approach (DFO 2015). Sentinel Stocks Program (SSP)
under the 2009 Pacific Salmon Treaty provided funding from 2009-2013 and PSC Southern
Endowment Fund supported for 2014 data. While capture-recapture survey, snorkel surveys
and dead recovery (carcass) surveys were conducted every year in Burman River from 2009
to 2014, radio telemetry surveys were conducted only in 2012.

An integrated population model was developed using data from capture-recapture sur-
vey, snorkel survey and carcass survey and applied to the Burman River data collected
in 2012 (Beliveau, 2016) to estimate escapement and other related parameters. A variant
of Jolly-Seber method (Jolly 1965; Seber 1965) was also applied to 2012 data to estimate
escapement and transition probability from the stopover pool to the spawning area and
capture probabilities using capture-recapture data. The integrated population model de-
veloped for Burman River data has the advantage over the Jolly-Seber method because it
provides insight on mean stopover time, mean residence time and snorkel observer efficiency
(Beliveau, 2016).

In this chapter we further develop and apply the integrated population model under
Bayesian approach which was developed (Beliveau, 2016) with data from capture-recapture,
snorkel and carcass surveys by additionally incorporating data from radio telemetry surveys
in the Burman River in 2012. This chapter mainly focuses on how the radio telemetry data
provides insight on escapement, stopover times, survey life, and snorkel observer efficiency.
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We present notation in Section 4.3, methods in Section 4.4 and we apply it to the Burman
River data in Section 4.5.

4.2 Sampling Protocol

The study area of Burman River is located on the West Coast of the Vancouver Island,
British Columbia, Canada (Figure 4.1). The Burman River watershed is 244.16 km2 and
drains into Matchlee Inlet in Nootka Sound. The main river channel is 31.3 km in length.
Salmon spawning occurs in the river upto 7.5km along the river from the ocean because
downstream gravels and cobbles and the channel gradient are suitable for spawning (Dunlop,
2015). In 2012, Burman River Chinook salmon surveys were conducted in September to early
November. Capture-recapture surveys, snorkel surveys, dead recovery (carcass) surveys and
radio telemetry surveys were conducted in 2012. Sampling protocols for these surveys are
described (Dunlop, 2015) as follows (Figure 4.2).

Figure 4.2: States and transitions of integrated population model and survey protocols.

Capture-Recapture Surveys

Capture-recapture surveys took place in lower river stopover pool (Figure 4.1) located near
the upper limits of tidal influence. Chinook salmon started to arrive to the stopover pool
from the ocean in September. Capture-recapture surveys took place two to three days per
week. Fish were captured with a beach seine. Three beach-seine sets per day were used for
sampling over the sampling period in an effort to keep the sampling effort roughly constant
each week. Capture-recapture surveys continued until no catch in three consecutive survey
days. This suggests that most fish had moved to the spawning area from the stopover
pool. Chinook captured for the first time were visually examined and assigned sex, tagged
and measured post-orbital hypural (POH) length to nearest 5 mm. Fish with POH length
less than 500 mm were classified as ’jacks’ and fish identified as jacks during the capture-
recapture survey are not considered for this study. Dorsally visible 80 lb monofilament-cored
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individually numbered tags were used for tagging fish. These tags were secured with a size
‘J’ aluminum sleeves. Further, secondary permanent marks were applied to asses tag loss.

Snorkel Surveys

As Chinook salmon moved upstream (Spawning area) from the stopover pool, snorkel sur-
veys continued until live fish were no longer present. Snorkel surveys were carried out peri-
odically in the Burnam River over the 0-7.5 km (Figure 4.1 and Figure 4.2). Two snorkelers
recorded observations of fish as marked or unmarked and the tag colour of marked fish
in each 500 m snorkel section. It is difficult to record the the tag number of marked fish
because it is usually not clear enough in snorkel surveys. The visibility of the stream dur-
ing the snorkel survey is also recorded. Snorkel surveys also depends on flood conditions
because of visibility and safety reasons. Joint observations from two snorkelers from each
500m section of the river are available from the snorkel surveys.

Carcass Surveys

Carcass surveys are conducted in the Burman River over the 7.5 km reach until carcasses
were no longer present. On the days selected for carcass surveys, crew recovered dead fish
along a selected route down the stream with foot-based visual counts. Tag id, tag color, sex
and POH length were recorded for recovered carcasses those were marked. We avoid double
sampling of carcasses by sectioning the head of the sampled carcasses and removing the
otoliths from carcasses. All carcasses present in the river in a given carcass survey day were
not sampled because of inaccessibility. Some of them could have been stuck in unreachable
places in the river and some of them may have been flushed out. Carcasses identified as
jacks during the carcasses survey are not considered for this study.

Radio Telemetry Surveys

Some of the Chinook salmon in the Burman River were fitted with external radio tags (Lotek
MCFT2-3L), 2.5 cm white visual spaghetti tags (80 lb monofilament-cored secured with a
size ‘J’ aluminum sleeve) and also had a mutilation mark. Radio tags were fitted to adult
Chinook salmon at the downstream (stopover pool) of the river. Each radio tags contained a
motion sensor that transmits an identification code. Chinook movements into the spawning
area were monitored with fixed radio telemetry receiver stations and by mobile surveys
(surveys on foot, or occasionally by raft) using radio telemetry receivers with an antenna
to identify the signals from radio-tagged fish. Radio tags were intended to emit signals
differently to identify dead individuals after 12 hour period of inactivity. Fixed telemetry
sites were established at the lower level and upper level of the spawning area.
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Hatchery Removals

Natural production is augmented by a hatchery program at the Burman River in 2012.
Unrelated to the sampling protocol, hatchery removal samples were collected in the stopover
pool during the survey period and number of fish removed from the pool was recorded.

4.3 Notations

In this study, we use same notations used in integrated population model developed by
Beliveau (2016) using capture-recapture, snorkel and carcass surveys. Data summary tables
for that model development used an m-array (Williams et al., 2002) form where applicable.
We use notation for the integrated modeling with additionally incorporating radio telemetry
data as consistent with the notations used in the model developed by Beliveau (2016).

Snorkel survey data and radio telemetry data outside the combined range of dates from
capture-recapture surveys and carcass surveys are discarded form this study. We denote the
survey dates as follows.

Kcapt = last day with non-zero catch occurred during the capture-recapture survey
Kpool = last day that we assume Chinook salmon are present in the stopover pool
Kcarc = last day of carcass survey

Day one of the study is considered to be the first day of the capture-recapture survey.
The last day of the study is Kcarc.

There are 3 types of individual fish in this study; marked (under the capture-recapture
survey), unmarked, and radio tagged. Even though almost all the radio tagged fish are
marked in these type of studies, there can be unmarked but radio tagged fish. Data collected
from capture-recapture, snorkel, carcass and radio telemetry surveys and number of hatchery
removal at the Burman River are represented using the notation in Table 4.1.

Parameters related to integrated population model are defined the same way as used in
Beliveau (2016) and given in Table 4.2.

Table 4.1: Notations to describe the data collected in all surveys at the Burman River in
2012.

Survey Variable Definition
Capture-recapture Cmj,s Number of fish of sex s captured, marked and released for

the first time on day j
Capture-recapture Mm

i,j,s Number of fish of sex s marked and released on day i and
recaptured next on day j

Continued on next page
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Table 4.1 – continued from previous page
Survey Variable Definition
Capture-recapture Rmj,s Number of marked fish of sex s released on day j

This can be computed from C and M
Rmj,s = Cmj,s +

∑j−1
i=1 M

m
i,j,s

Capture-recapture CnRmj,s Number of fish of sex s captured, marked and released
without radio tags for the first time on day j
Cmj,s = CnRmj,s + CRmj,s

Capture-recapture CRmj,s Number of fish of sex s related to capture-recapture
& Radio telemetry survey released for the first time on day j with a radio

tag
Capture-recapture MR

j,s Number of radio tagged fish of sex s recaptured on day j
& Radio telemetry
Radio telemetry CRuj,s Number of radio tagged fish of sex s not related to

capture-recapture survey (unmarked), released for the first
on day j

Radio telemetry CRj,s Number of radio tagged fish of sex s released for the
first time on day j
CRj,s = CRuj,s + CRmj,s

Radio telemetry NR
j,s Number of radio tagged fish of sex s in the stopover pool

at midday on day j
Radio telemetry TRj,s Number of radio tagged fish of sex s that transition from

the stopover pool to the spawning area after midday on
day j and before midday the next day

Radio telemetry ARj,s Number of radio tagged fish of sex s alive in spawning
area before midday on day j

Radio telemetry DR
j,s Number of radio tagged fish of sex s that died after

midday on day j and before midday the next day
Radio telemetry XR

j,s Number of dead radio tagged fish of sex s present in the
river at midday on day j

Snorkel survey Y u
j Snorkel count of unmarked fish on dayj

Snorkel survey Y m
j Snorkel count of marked fish on dayj

Snorkel survey Y R
j Snorkel count of radio tagged fish on day j

Snorkel survey νj Fish visibility on day j. Visibility can be low, medium,
high or unknown

Carcass survey Zuj,s Number of unmarked fish of sex s whose carcass recovered
on day j

Continued on next page
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Table 4.1 – continued from previous page
Survey Variable Definition
Carcass survey Zmi,j,s Number of marked fish of sex s whose carcass recovered

on day j and that were released previously on day j
and not recaptured since

Carcass survey ZRj,s Number of radio tagged fish of sex s whose carcass
& Radio telemetry recovered on day j
Hatchery removals Hu

j,s Number of unmarked fish of sex s removed by the
hatchery on day j

Table 4.2: Notations for parameters related to integrated population model. Superscripts
u,m, and R represents unmarked, marked and radio tagged fish respectively. Subscript s
represents either males (m) or females (f).

Parameter Definition
Bj,s Number of fish of sex s that arrive (from the ocean) to the stopover pool

after midday on day j and before midday the next day.
B0,s is the number of individuals of sex s in the pool right before midday on
day 1.

Nu
j,s Number of unmarked fish of sex s in the stopover pool at midday on day j.

Nm
i,j,s Number of marked fish of sex s in the stopover pool at midday on day j and

were released previously on day i and not recaptured prior to day j.
T uj,s Number of unmarked fish of sex s that transition from the stopover pool to

the spawning area after midday on day j and before midday the next day.
Tmi,j,s Number of marked fish of sex s that transition from the stopover pool to the

spawning area between midday on day j and midday on next day and were
released previously on day i and not recaptured since.

Auj,s Number of unmarked fish of sex s alive in spawning area before midday on
day j.

Ami,j,s Number of marked fish of sex s alive in the spawning area before midday on
day j and were released previously on day i and not recaptured since.

Du
j,s Number of unmarked fish of sex s that died after midday on day j and

before midday the next day.
Dm
i,j,s Number of marked fish of sex s died between midday on day j and midday

the next day and were released previously on day i and not recaptured since.
Continued on next page

52



Table 4.2 – continued from previous page
Parameter Definition
Xu
j,s Number of dead unmarked fish of sex s present in the river at midday on

day j.
Xm
i,j,s Number of marked fish of sex s died and are present in the river at midday

on day j and were released previously on day i and not recaptured since.
F uj,s Number of dead unmarked fish of sex s got flushed out between midday on

day j and midday the next day.
Fmi,j,s Number of dead marked fish of sex s got flushed out between midday on

day j and midday the next day and were released previously on day i and
not recaptured since.

FRj,s Number of dead radio tagging fish of sex s that got flushed out between
midday on day j and midday the next day.

pcaptj,s Capture probability of fish of sex s in the stopover pool at midday on day j
pmove
j,s Probability ofr fish of sex s in the stopover pool at midday on day j to

move to the spawning area before midday the next day.
φj,s Probability of fish of sex s alive in the spawning area at midday on day j

to survive until midday the next day.
pflushj Probability of dead fish in the river at midday on day j to get flushed out

before midday the next day.
precov Recovery probability of carcasses present in the river at midday on a given

carcass survey day.
psnorj Probability of fish alive in the river at midday on day j to be counted in

the snorkel survey.
µsnorlow Intercept, on the non-logit scale, used to model logit

(
psnorj

)
αv Linear effect of fish visibility v, on the logit scale, used to model

logit
(
psnorj

)
. αlow is set equal to 0.

σv Standard deviation used to model logit
(
psnorj

)
for a given visibility v.

∆j Number of marked fish miscounted as unmarked in the snorkel survey on
day j.

p∆ Probability of marked fish to be miscounted as unmarked in a given
snorkel survey.
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4.4 Integrated Population Model

4.4.1 Model Development

We present a integrated population model, specifically to estimate escapement (number of
salmon migrate from the ocean to their freshwater spawning habitat in the river) of the
Burman River Chinook salmon in the West Coast of Vancouver Island (WCVI) and other
related parameters using data from capture-recapture survey, snorkel survey, carcass survey
and radio telemetry survey. In this study we modify the integrated model developed in
Beliveau (2016) with additional source of radio telemetry data. Figure 4.2 and Figure 4.3
shows the states (fish in the stopover pool, alive in the stream and dead in the stream) and
transitions (arrive to the river from the ocean, move upstream, die and get flushed out)
related to migration of Chinook salmon at the Burman River in WCVI. Table 4.3 gives
variables, parameters and data related to the integrated population model.

Some assumptions are required to develop the integrated population model (Beliveau,
2016). We assume that adult Chinook salmon are in the ocean near to the Burman River
and studies start at the time Chinook start to migrate to the river. At the first capture-
recapture survey day, we assume that there are male and female (B0,m and B0,f ) Chinook
salmon has already present in the stopover pool. We consider that Bj,m and Bj,f Chinook
salmon newly arrive to the stopover pool from the ocean each day between midday of day
j = 1, . . . ,Kcapt − 1 and midday of the next day. Also we assume that Chinook arrive to
the stopover pool on a particular day do not leave to the spawning area until the midday
of the next day. The probability of moving from stopover pool to the spawning area and
number of transitions for unmarked, marked and radio tagged fish are as defined in Table
4.2. Even though the last day of the capture-recapture studies is on Kcapt, the last day that
we assume Chinook salmon are present in the stopover pool is a arbitrary day Kpool. That
is we allow new arrivals to the stopover pool from the ocean to move from the stopover
pool to the spawning area up to the day j = Kpool − 1 but no further movement after
that. We assume that all remaining Chinook in the stopover pool move to the spawning
area by midday of j = Kpool. Therefore we set Bj,s = 0 for j = Kpool, . . . ,Kcarc − 1 and
pmove
Kpool = 1. The number of fish (either marked or unmarked) transition from stopover pool

to the spawning area also set to zero for j = Kpool + 1, . . . ,Kcarc − 1. Another assumption
is number of fish alive in the spawning area in the day 1 of the study is equal to the number
of fish alive at day 2 of the study. The probability that a fish dies before midday of the next
day that is alive in day j = 1, . . . ,Kcarc−1 is 1−φj,s. We assume that there are no carcasses
in the midday of day 1 of the study period. We set the capture probabilities equal for each
sex for the first two captures occasions as in the integrated model developed by Beliveau
(2016) to avoid identifiability issues. We consider the same equality assumption for the last
two capture occasions. The probability that a dead fish in the river at midday on day j

gets flushed out before midday the next day for j = 2, . . . ,Kcarc − 1 is pflushj . On a snorkel
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survey day, alive fish are counted with probability psnorj and these counts are dependent on
visibility level of the stream. Carcasses are recovered in the stream with probability precov

on a carcass survey day j.
Integrated population model under Bayesian framework allows to estimate parameters

for each day (including the days that a survey was not conducted) within the survey days
according to the above assumptions. Once the posterior sample is obtained, we can calculate
escapement and other parameters interested such as mean stopover time by arrival day to
the stopover pool and mean residence time by arrival day to the spawning area for males
and females, population size in the stopover pool over the time and median snorkel observer
efficiency.

Figure 4.3: Schematic representation to link together all state equations and data. Horizontal
arrows represent state transitions. Dashed lines represent observed data.

State equations for size of populations of sex s in the stopover pool for unmarked, marked
and radio tagged fish at midday on day j are given by following equations. Subscript s
represents either males (m) or females (f). Schematic representation to link together all of
states equations and data is given in Figure 4.3.

Number of unmarked fish of sex s in the stopover pool at midday on day j

Nu
j,s = Nu

j−1,s +Bj−1,s − Cmj−1,s − T uj−1,s − CRuj,s −Hu
j−1,s ; j = 2, . . . , kpool (4.1)
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where
Nu

1,s = B0,s

Cmj,s = CnRmj,s + CRmj,s

CRj,s = CRuj,s + CRmj,s

Number of marked fish of sex s in the stopover pool at midday on day j and were
released previously on day i and not recaptured prior to the day j

Nm
i,i+1,s = Rmi,s − Tmi,i,s (4.2)

and
Nm
i,j,s = Nm

i,j−1,s −Mm
i,j−1,s − Tmi,j−1,s ; j = i+ 2, . . . ,Kpool (4.3)

Number of radio tagged fish in the stopover pool at midday on day j

NR
j,s = NR

j−1,s + CRj−1,s − TRj−1,s ; j = 2, . . . ,Kpool (4.4)

Capture-recapture data are modeled as

• Cmj,s ∼ Binomial
(
Nu
j,s, p

capt
j,s

)
, for capture survey days j ∈ {1, . . . ,Kcapt}

• Mm
i,j,s ∼ Binomial

(
Nm
i,j,s, p

capt
j,s

)
, for capture survey days j ∈ {i+ 1, . . . ,Kcapt}

Radio tagged recapture data are modeled as

• MR
j,s ∼ Binomial

(
NR
j,s, p

capt
j,s

)
, for capture survey days j ∈ {2, . . . ,Kcapt}

Radio tagged transition data are modeled as

• TRj,s ∼ Binomial
(
NR
j,s + CRj,s, p

move
j,s

)
, for j = 1, . . . ,Kpool

Unobservable transitions are modeled as

• T uj,s ∼ Binomial
(
Nu
j,s − Cmj,s, pmove

j,s

)
, for j = 1, . . . ,Kpool

• Tmi,i,s ∼ Binomial
(
Rmi,s, p

move
i,s

)
Tmi,j,s ∼ Binomial

(
Nm
i,j,s −Mm

i,j,s, p
move
j,s

)
, for j = i+ 1, . . . ,Kpool

State equations for number of alive fish of sex s in the stream for unmarked, marked and
radio tagged fish in the in the river at midday on day j are given my following equations.
Subscript s represents either males (m) or females (f).
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Number of unmarked fish alive in the stream at midday on day j

Auj,s = Auj−1,s + T uj−1,s −Du
j−1,s ; j = 2, . . . ,Kcarc and with Au1,s = Au2,s

Number of marked fish alive in the stream at midday on day j

Ami,j,s = Ami,j−1,s + Tmi,j−1,s −Dm
i,j−1,s ; j = i+ 1, . . . ,Kcarc

Number of radio tagged fish alive in the stream at midday on day j

ARj,s = ARj−1,s + TRj−1,s −DR
j−1,s ; j = 2, . . . ,Kcarc and AR1,s = 0

The number of fish of sex s that died after midday on day j and before midday the next
day are modeled as

• Du
j,s ∼ Binomial

(
Auj,s + T uj,s, (1− φj,s)

)
, for j = 1, . . . ,Kcarc − 1

• Dm
i,j,s ∼ Binomial

(
Ami,j,s + Tmi,j,s, (1− φj,s)

)
, for j = i, . . . ,Kcarc − 1

• DR
j,s ∼ Binomial

(
ARj,s + TRj,s, (1− φj,s)

)
, for j = 1, . . . ,Kcarc − 1

The snorkel count of sex s on snorkel survey days on day j are modeled as

• Y u
j ∼ Binomial

((
Auj,m +Auj,f + ∆j

)
, psnorj

)
, for snorkel survey days j ∈ {1, . . . ,Kcarc}

• Y m
j ∼ Binomial

((∑
all possible i

[
Ami,j,m +Ami,j,f

]
−∆j

)
, psnorj

)
, for snorkel survey days

j ∈ {1, . . . ,Kcarc}

• Y R
j ∼ Binomial

((
ARj,m +ARj,f

)
, psnor

)
, for snorkel survey days j ∈ {1, . . . ,Kcarc}

• logit
(
psnorj

)
∼ Normal

(
logit (µsnorlow ) + αvj , σ

2
vj

)
, for snorkel survey days j ∈ {1, . . . ,Kcarc}

• ∆j ∼ Binomial
(∑

all possible i

[
Nm
i,j,m +Nm

i,j,f

]
, p∆

)
, for snorkel survey days j ∈ {1, . . . ,Kcarc}

State equations for number of dead fish (carcasses) of sex s in the stream for unmarked,
marked and radio tagged fish in the in the river at midday on day j are given my following
equations. Subscript s represents either males (m) or females (f).

Number of unmarked dead fish of sex S present in the stream at midday on day j

Xu
j,s = Xu

j−1,s +Du
j−1,s − F uj−1,s − Zuj−1,s ; j = 2, . . . ,Kcarc

Number of marked dead fish of sex S present in the stream at midday on day j

Xm
i,j,s = Xm

i,j−1,s +Dm
i,j−1,s − Fmi,j−1,s − Zmi,j−1,s ; j = 2, . . . ,Kcarc
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Number of radio tagged dead fish of sex S present in the stream at midday on day j

XR
j,s = XR

j−1,s +DR
j−1,s − FRj−1,s − ZRj−1,s ; j = 2, . . . ,Kcarc

The number of fish of sex s that got flushed out between midday on day j and midday
the next day are modeled as

• F uj,s ∼ Binomial
(
Xu
j,s, p

flush
j

)
; j = 2, . . . ,Kcarc − 1

• Fmi,j,s ∼ Binomial
(
Xm
i,j,s, p

flush
j

)
; j = 2, . . . ,Kcarc − 1

• FR
j,s ∼ Binomial

(
XR
j,s, p

flush
j

)
; j = 2, . . . ,Kcarc − 1

The number of fish of sex s whose carcass recovered on day j are modeled as

• Zuj,s ∼ Binomial
(
Xu
j,s, p

recov
)
, for carcasses survey days j ∈ {1, . . . ,Kcarc}

• Zmi,j,s ∼ Binomial
(
Xm
i,j,s, p

recov
)
, for carcasses survey days j ∈ {1, . . . ,Kcarc}

• ZR
j,s ∼ Binomial

(
XR
j,s, p

recov
)
, for carcasses survey days j ∈ {1, . . . ,Kcarc}

4.4.2 Model Specification and Parameter Estimation

Data from multiple surveys are used to jointly analyze a population of interest in integrated
population modeling. Under the Bayesian framework many integrated population models
are possible for the data from Burman River surveys in 2012. We consider the models
given in Table 4.4 to study the impact of the radio telemetry survey data on estimates on
population parameters and other related quantities. Table 4.5 gives the formulas used to
calculate interested quantities for each model defined in Table 4.4.
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Table 4.4: Model specification with integrated population modeling for analysis of the data
collected at Burman River in 2012.

Model Description
B Integrated population model developed by Beliveau (2016) considering

data from capture-recapture, snorkel and dead recovery surveys.
No radio telemetry data were considered in this model.

BC Radio telemetry data collected in capture-recapture survey and data used
in model B are considered in this model. The data used in model B is
augmented with information on the number of radio tagged fish in the
stopover pool and capture prior to moving upstream in model BC.

BCT Radio telemetry data collected in transitions and data used in model BC
are considered for this model. The data used in model BC is augmented
with number of radio tagged fish moving from stopover pool to upstream
(spawning area) in model BCT.

BCTS Radio telemetry data collected in snorkel survey and data used in model
BCT are considered in this model. The data used in model BCT is
augmented with number of radio tagged fish alive in the stream and
counted in snorkel survey in model BCTS.

BCTSD Radio telemetry data collected in carcass survey and data used in model
BCTS are considered in this model. The data used in model BCTS is
augmented with number of radio tagged carcasses present and recovered
in the stream in model BCTSD.
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Table 4.5: Formulas used to estimate quantities of interest for integrated population model.
Number of individuals in the stopover pool and the spawning area at day j represents
‘midday’ on day j. Stopover time and residence time on day j represent individuals arriving
between “midday on day j” and “midday of next day”. Time unit is in days. Under the
assumption that movement of fish is distributed uniformly within a day, we use (d-0.5) in
the mean stopover time and mean residence time.

Estimates of interest Formula

Kpool−1∑
j=0

Bj,sEscapement for sex s

Kpool−1∑
j=0

(Bj,m +Bj,f )Total Escapement

Total number of individuals
Nu
j,s +

j∑
i=1

Nm
i,j,s +NRum

j,sof sex s in the stopover pool
at day j
Mean stopover time for

0.5pmove
j,s +

Kpool−j∑
d=2

(d− 0.5) pmove
j+d−1,s

j+d−2∏
l=j

(
1− pmove

l,s

)
individual of sex s arriving
at the stopover pool on day j
Mean residence time for

0.5 (1− φj,s) +
Kcarc−j∑
d=2

(d− 0.5) (1− φj+d−1,s)
j+d−2∏
l=j

φl,sindividual of sex s arriving
at the spawning area on day j
Total number of individuals

Auj,s +
j∑
i=1

Ami,j,s +ARumj,sof sex s alive in the spawning
area at day j
Snorkel survey observer

logit−1 (logit (µsnorlow ) + αν)efficiency at visibility
level ν

4.5 Analysis of Burman River 2012 Data

Burman River Chinook salmon surveys were conducted using four methods; Capture-recapture,
snorkel surveys, dead recovery (carcass) and radio telemetry surveys in September to early
November in 2012. Data also available for hatchery removals during this period. The time
line of data collection in the Burman River is given in Figure 4.4. We did not consider data
for other surveys outside of the combined range of dates from capture-recapture surveys
and carcass surveys for this analysis. We considered the survey period from September 10,
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2012 to October 27, 2012 corresponding to the first day of the capture-recapture survey and
the last day of the carcass survey.

Figure 4.4: Time line of Chinook salmon surveys at Burman River in WCVI. Snorkel survey
data and radio telemetry data outside the combined range of dates from capture-recapture
surveys and carcass surveys are discarded form the analysis. Mobile radio telemetry surveys
occurred every other day during survey period. Only the tagged dates and dead dates for
radio tagged fish are presented in this survey time line.

A total of 1179 adult Chinook salmon (407 males and 772 females) were marked during 19
capture-recapture survey days and 348 marked fish were recaptured. Most of the recaptured
fish were recaptured only once. Twenty-five snorkel surveys were conducted from September
10 and November 10, 2012. During the snorkel survey days, the minimum snorkel count
reported was 7 (November 10, 2012) and the maximum snorkel count was 725 (October17,
2012). No marked Chinook salmon were observed (before September 10 or after October 27)
during the snorkel survey outside the study period that was considered for the data analysis.
A total of 299 adult carcasses (199 males and 115 females) were recovered during dead
recovery surveys and 65 of them were marked (44 males and 21 females) during capture-
recapture surveys. Out of recovered carcasses approximately 40% were unmarked males,
38% were unmarked females, 15% were marked males and 7% were marked females. Radio
telemetry surveys were carried out with 108 (66 males and 42 females) radio tagged adult
Chinook salmon. Fixed radio telemetry station placed in both lower and upper stream
detected signals from radio tagged fish through out the survey period and mobile telemetry
surveys occurred every other day during survey period. Adult Chinook salmon were removed
for the hatchery on September 21 and 22, 2012. Unmarked fish were considered for hatchery
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and 55 males and 25 females were removed on September 21, 2012 and 47 males and 67
females were removed on September 22, 2012.

Summary of the radio tagged data is given in Figure 4.5. Summaries of the data for
capture-recapture surveys, snorkel surveys, carcass survey, and radio telemetry survey are
given in Appendix C.

Figure 4.5: Summary of radio tagged Chinook salmon fish data at Burman River in 2012
survey.

Chinook salmon transition from the stopover pool to the stream in the Burman River is
related to water discharge. However water discharge data in Burman River is not available.
Mean daily discharge (m3s−1) at the Gold River in 2012 during the Chinook salmon migra-
tion period is given in Figure 4.6 and is believed to have similar water discharge pattern
to the nearby Burman River. The first big freshet was observed on October 14, 2012. How-
ever the last day of positive capture in capture-recapture surveys was October 11, 2012.
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Therefore we believe that there were Chinook salmon in the stopover pool after October 11.
We assume all remaining fish were moved to upstream from stopover pool by October 15
because the big freshet was on October 14. We consider Kpool is October 15 in integrated
population model development and set pmove

j,s = 1 (Beliveau, 2016) on this day.

Figure 4.6: Mean daily discharge (m3s−1) at the Gold River in 2012 during the Chinook
salmon migration period. Water discharge data is not available for Burman River. Although
Gold River discharge records have not been correlated with Burman River flows, the date
of the first major freshet is identical. The first big freshet was on October 14, 2012.

We fit integrated population models as defined in Table 4.4 with Bayesian approach
using the JAGS software and used 2 chains each with 2 million iterations for post-burn
in samples. We ran 250,000 iterations for adaptation and burn-in phase. We thinned post-
burn in samples by a factor of 1000. This produced a samples of 4,000 from the posterior
distribution. Results from these posterior samples were summarized with posterior mean
estimates and corresponding highest probability density (HPD) credible intervals. Trace
plots, potential reduction scale values (Rhat), and effective sample sizes showed that the
convergence of posterior distributions are good and dependence between posterior samples
among (thinned) samples were very small.

We consider sensible prior distributions for parameters (Beliveau, 2016). Uniform(0,400)
prior distributions are used for Bj,s. Because Bj,s is the number of fish of sex s that ar-
rive to the stopover pool from the ocean after midday on day j and before midday the
next day, values from the prior distributions are rounded to the nearest integer. We use
Beta(1,1) distributions (i.e. Uniform(0,1) distributions) as prior distributions for various
probability parameters pcaptj,s , pmove

j,s , φj,s, pflushj , precov, psnorj , µsnorlow and p∆. Visibility levels
considered during snorkel surveys were low, medium, high and unknown. We considered
Gamma(shape=0.5, rate=0.005) as the prior distribution for visibility effect αmedium. This
ensure that observer efficiency for medium visibility is higher than low visibility because we
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set αlow = 1. Moreover observer efficiency for high visibility should be higher than medium
visibility. Therefore we add Gamma(shape=0.5, rate=0.005) effect to the prior on αmedium

as the prior for αhigh. Gamma(shape=0.5, rate=0.005) prior distribution is considered for
αunknown. We use Uniform(0,4) distributions for σν as priors.

Table 4.6 shows escapement estimates for five models defined in Table 4.4. Model B is
the integrated model developed (Beliveau, 2016) using data from capture-recapture, snorkel,
and carcass surveys. The remaining models in Table 4.6 consider data from radio telemetry
surveys and the data used in model B. Even though credible intervals overlap for escapement
estimates for males, females and total for all five models, the credible intervals become
narrower with the addition of radio telemetry data to the model B in different states of the
study. Model BCTSD which use radio telemetry data collected during capture-recapture
surveys, transitions, snorkel surveys and dead recovery surveys has the narrowest credible
intervals for escapements of males, females and total. Table 4.6 shows the biggest change in
the credible intervals (narrower) particularly in female escapement and the total escapement
for the models those were integrated with radio telemetry data. It is a good indication that
the radio telemetry data can produce estimates for escapement with improved precision in
integrated population modeling.

Estimates of male and female Chinook salmon in the stopover pool at midday using
five integrated models are given in Figure 4.7 with highest posterior density (HPD) credible
intervals. In model development we assumed all Chinook salmon moved to the spawning
area by October 15, 2012. Therefore number number of Chinook at the stopover pool on
October 16 is zero. Models BCT, BCTS, and BCTSD have similar estimates throughout
the stopover pool days and we can see some deviation from the remaining models starting
around October 4 to the last day at the pool. Three models BCT, BCTS, and BCTSD use
radio telemetry data for transition from stopover pool to the spawning area and Figure C.5
shows that most of the radio tagged fish moved to the spawning area after October 3. Also
the number of alive fish in the spawning area given in Figure 4.10 explains the behaviour
of the models in Figure 4.7 starting around October 4 to the last day at the stopover pool.

Estimates for transition probabilities for males and female Chinook salmon are given
in Figure 4.8 and transition probabilities are similar for all five integrated models. As we
assumed in model development that all fish moved to the spawning area by October 15, the
probability of transition is 1. Credible intervals for the last three days before October 15 are
wide because there is no capture-recapture data for those dates (last date of the capture-
recapture survey was October 11) are available and only few radio tagged fish remain in
the stopover pool and no transitions were observed for those days.

Figure 4.9 shows estimated mean stopover time for male and female Chinook salmon
by arrival day to the stopover pool for five models as defined in 4.4. The model BCTSD
produced narrowest credible intervals for the estimates compared to other models. Stopover
time estimates are similar for all five integrated models for males. However, the estimates
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from the models vary considerable at the start of the survey period (roughly between
September 10, 2012 to September 19, 2012) for females. This is explained by the tran-
sition probabilities for females given in Figure 4.8. Transition probabilities are also different
for females at start because only few female radio tagged fish were available around the first
week and hence almost no transitions during that time.

The number of alive Chinook salmon in the the stream estimated by five models are
given in Figure 4.10. This figure shows all five models give similar estimates in most of the
days during the study period except around October 4 to October 16. Deviations during
this period are given by models BCTS and BCTSD because most of radio tagged fish moved
to spawning area from the stopover pool during this period.

Mean residence times are given in Figure 4.11 for five integrated models by arrival day
to the spawning area. Both models BCTS and BCTSD have different estimates compared
to the other models because these two models use radio telemetry data in transitions and
snorkel survey. The model BCTSD has different estimates for mean residence time specially
for females. Probability of fish alive in the spawning area is used to calculated the mean
residence time. Since the model BCTSD uses information on number of radio tagged fish
alive and die in each survey day in the stream, probability of fish alive at each day can be
estimates with improved precision compared to the remaining models. Therefore the model
BCTSD can produce different estimates for mean residence time compared to other models.
Residence time is one of the important components used in AUC method in DFO analysis.

Observer efficiency estimates in the snorkel surveys and recovery probability in carcass
surveys for all models are given with HPD credible intervals in Table 4.7. Observer efficiency
estimates produced by models B, BC, and BCT are almost similar. While the two models
BCTS and BCTSD produced similar estimates observer efficiency, these is big change (esti-
mates and credible intervals are considerably smaller than the other three models) compared
to the remaining three models. The reason to have this big difference is that the number of
alive fish and snorkel counts for radio tagged fish are considered in both models BCTS and
BCTSD.

Estimates for carcasses recover probabilities are given in the last row of Table 4.7. These
estimates are very much the same for all integrated population models.
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(a)

(b)

Figure 4.7: Estimates of the population size for males (graph a) and females (graph b)
Chinook salmon in the stopover pool based on five models defined in Table 4.4 and formulas
defined in Table 4.5. 95% HPD credible intervals are given for selected days for five models.
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(a)

(b)

Figure 4.8: Estimates of transition probabilities from stopover pool to the spawning area
for males (graph a) and females (graph b) Chinook salmon based on five models defined in
Table 4.4. 95% HPD credible intervals are given for selected days for five models.

70



(a)

(b)

Figure 4.9: Estimates of stopover times for males (graph a) and females (graph b) Chinook
salmon by arrival day to the stopover pool based on five models defined in Table 4.4 and
formulas defined in Table 4.5. 95% HPD credible intervals are given for selected days for
five models.
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(a)

(b)

Figure 4.10: Estimates of the alive population size for males (graph a) and females (graph
b) Chinook salmon in the spawning area based on five models defined in Table 4.4 and
formulas defined in Table 4.5. 95% HPD credible intervals are given for selected days for
five models.
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(a)

(b)

Figure 4.11: Estimates of residence times for males (graph a) and females (graph b) Chinook
salmon by arrival day to the spawning area based on five models defined in Table 4.4 and
formulas defined in Table 4.5. 95% HPD credible intervals are given for selected days for
five models.
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Goodness of the fit of the integrated population model can be assessed by using Bayesian
p-values (Brook, Catchpole and Morgan, 2000). A Bayesian p-value is calculated using some
discrepancy measure D using n posterior samples as follows.

p− value = 1
n

n∑
j

1[D(Xj ,θj) >D(X,θj)]

where X is the data, θj is the jth posterior sample and Xj is the jth data set simulated
from θj using the model.

We considered number of marked fish of sex s released in capture-recapture survey as
the discrepancy measure using Freeman-Tukey statistics (Freeman and Tukey, 1950) which
has the form (

√
O−
√
E)2 where O and E are observed count and expected count for each

posterior sample. The discrepancy statistic in this case is

D(X,θj) =

√Rj,s −
√√√√√
Nu

j,s +
j∑
i=1

N.i, j, s
m +NRum

j,s

 pcaptj,s


2

for possible capture-recapture days i. We used u = 4, 000 posterior samples to calculate
p-values for each model. If there is no significant difference between the observed data
discrepancies and simulated data discrepancies relating to the selected model, then the
Bayesin p-value should be close to 0.5.

Figure 4.12: Bayesian p-values using Freeman Tukey statistics for the assessment of inte-
grated population models defined in Table 4.4. Bayesian p-values are calculated at each
capture-recapture survey day considering the number of male Chinook salmon.

Bayesian p-values for males and females for each capture-recapture day for all the models
defined in Table 4.4 are given in Figure 4.12 and Figure 4.13. All p-values for all the models
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are close to 0.5 except for first two survey days and the last two survey days of the capture-
recapture survey. We assumed that the capture probabilities for the first two days are same
and those are same for the last two days. However the larger p-values at these days suggest
that those assumption might not be suitable in model development. However average p-
value considering both males and females is close to 0.5 for each integrated population
model. This suggest that each model fits well to the Burman River data.

Figure 4.13: Bayesian p-values using Freeman Tukey statistics for the assessment of inte-
grated population models defined in Table 4.4. Bayesian p-values are calculated at each
capture-recapture survey day considering the number of female Chinook salmon.

4.6 Discussion

In this study, we developed and applied integrated population models using Bayesian ap-
proach using data from capture-recapture, snorkel, carcasses and radio telemetry surveys
and hatchery removal data collected in the Burman River in the West Coast of Vancouver
Island (WCVI) in 2012. A sequence of integrated models obtained by adding radio telemetry
data sources to model one at a time showed we can obtain better estimates (with narrower
credible intervals) for escapements, mean stopover times, mean residence time and number
of alive Chinook population in the stream when radio telemetry data available for all sur-
veys. This is because radio telemetry survey can provide very high detectability throughout
the survey period. That is, once a fish is radio tagged at the stopover pool, its movement
can be determined until die in the spawning area. Escapements estimates show that there
is high impact of radio telemetry data in the stopover pool and transition from stopover
pool to the spawning area because the model BCT provide estimates with narrower credible
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intervals. Estimates on observer efficiency show that radio telemetry data on snorkel sur-
vey cause high impact on estimates. However there is not much impact of radio telemetry
data in carcass survey because estimates for carcass recovery probabilities for all integrated
models are almost the same. We can conclude that the integrated population model with
radio telemetry data used in the stopover pool, transitions, and snorkel survey has a big
impact on estimates. The reason for low impact of radio telemetry data in carcass survey is
that the number of radio tagged carcasses recovered were fairly low. The number of radio
tagged fish used for radio telemetry survey is small compared to other surveys. One can
suggest that we can have estimates with improved precision if we can have a larger sample
size in radio telemetry survey. However the fixed and operational cost for radio telemetry
surveys are really high compared to other surveys and therefore larger sample sizes are not
available in radio telemetry survey.

In this study we did not consider tag loss and loss on capture. Also in this study, we
did not consider hatchery removals of marked fish because there were no marked fish in
hatchery removals in 2012 in the Burman River data.

Chinook salmon surveys (capture-recapture, snorkel, carcass recovery) were conducted in
Burman River from 2009 to 2014. Integrated population model incorporating radio teleme-
try surveys can only be used for 2012 because radio telemetry surveys were employed only
in 2012. Chinook salmon surveys were conducted in 2014 in the Conuma River that is a
nearby river to the Burman River in WCVI. Radio telemetry surveys also conducted in
Conuma River (Dunlop, 2015). In future work, we can apply integrated population model
incorporating radio telemetry data to Conuma River survey data in 2014.
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Chapter 5

Summary

In this thesis we have considered three research projects and developed new methods for
estimating abundance of fish population and other related parameters in the study. New
methods developed for the first two projects are given in Chapter 2 and Chapter 3 in this
thesis. These new methods are developed using capture-recapture surveys. New methods
developed for the last project is given in Chapter 4 of this thesis. In that chapter we discuss
development of new methods using integrated population modeling with a capture-recapture
survey, a snorkel survey, a dead recovery survey and a radio telemetry survey.

In Chapter 2, we present new methods using partial stratification in two-sample capture-
recapture experiments for closed populations (number of individuals in the population do
not change throughout the study period). Capture heterogeneity (i.e. animals in different
strata have different capture probabilities) can cause bias in estimates of abundance in
two-sample capture-recapture experiments for closed populations. Capture heterogeneity
is often related to observable fixed characteristics of the animals such as sex. If this in-
formation can be observed for each handled animal at both sample occasions, then it is
straightforward to stratify (e.g. by sex) and obtain stratum-specific estimates. However in
many experiments full stratification at each sample occasion might not be possible because
it is difficult to stratify all captured animals. In that case, partial stratification at each sam-
ple occasion is considered in capture-recapture experiments. For these types of experiment,
we developed new methods to estimate population abundance using maximum likelihood
estimation, a Bayesian method and also using conditional likelihood when individual co-
variates are available. We apply these methods to estimate the abundance of walleye in
Mille Lacs Lake, MN, USA. Both Bayesian and MLE methods produced similar estimates
using walleye data. However Bayesian models produced estimates with improved precision
for population abundance and category totals over the MLE method for walleye data. When
the individual lengths are considered for the walleye data, the conditional likelihood method
produced estimates for category proportions and sub-sample proportions that were quite
similar to the MLE and Bayesian methods. However the estimates of population abundance
under the conditional likelihood method were higher with worse precision compared to the
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previous two methods because the best fitted covariate model was highly parameterized and
there is individual capture heterogeneity at each sample time.

Further we developed optimal allocation of sampling effort for given cost. In a partial
stratified two-sample capture-recapture study, there is a cost to capturing an animal at each
sample occasion, a cost to identify the category of the captured animal in the sub-samples,
and also a fixed cost regardless of the sample size. If there is a fixed amount of funds to be
used in the study, then the objective is to find the optimal number of animals to capture
at both sample occasions and the optimal sizes of the sub-samples to be categorized so
that the variance of the estimated population abundance is minimized. Optimal allocation
examples show that there are many optimal solutions are available.

We performed simulation studies with the models developed under the MLE and Bayesian
methods. Simulation studies show that our models fit well to the data produced by partial
stratification in two-sample capture-recapture experiments. Simulation studies also show
that both MLE and Bayesian model development methods equally perform in estimating
population abundance under large population sizes and small population sizes. Bayesian
models produced estimates with improved precision for population abundance a when in-
formative priors are used in model fitting.

Chapter 3 is an extension of the models developed in Chapter 2. Now we consider partial
stratification of capture-recapture experiments in k-samples (k ≥ 2) times. In Chapter
3, we developed new methods using partial stratification in k-sample capture-recapture
experiments of a closed population with known losses on capture to estimate abundance.
Loss on capture occurs when the captured animal is not available for successive sampling due
to various reasons (e.g. animal may die when capturing or removed from the population for
further investigation). In this study we allow the experiment to be carried out in successive
sample times (k ≥ 2). The population may consist of two or more non-overlapping categories
and capture probabilities may vary between categories and also between sample times.
We present the new methods using maximum likelihood method and using a Bayesian
method for a large population. Simulated data was used to illustrate the new methods
presented in this study. Simulation studies show that our model developments are good
for data collected from partial stratification two-sample capture-recapture experiments and
our methods produce unbiased estimators for all the parameters with reasonable precision
under the both MLE and Bayesian model development. Further, it shows that the Bayesian
method produced improved precision for the population estimate when informative priors
are used.

In Chapter 4, we developed integrated population models under Bayesian approach using
data from capture-recapture surveys, snorkel surveys, carcass surveys and radio telemetry
surveys. We applied these models to the Burman River data collected in 2012 to estimate
escapement (number of fish migrate from the ocean to the spawning ground in the upper
levels of the river) of Chinook salmon and other related parameters. We also focused on
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how the radio telemetry data provides insight on escapement, stopover times, survey life,
and snorkel observer efficiency. A sequence of integrated models obtained by adding radio
telemetry data sources to model one at a time showed we can obtain improved estimates
(with narrower credible intervals) for escapements, mean stopover times, mean residence
time and number of alive Chinook population in the stream when radio telemetry data
available for all surveys. Escapements estimates show that radio telemetry data collected in
the stopover pool and transition from stopover pool to the spawning area cause high impact
on estimates because these radio tag data produced estimates with improved precision.
Estimates on observer efficiency show that radio telemetry data on snorkel survey produce
estimates with improved precision. We can conclude that the integrated population model
with radio telemetry data used in the stopover pool, transitions, and snorkel survey produced
estimates with improved precision. However adding radio tagged carcass survey data to
integrated population model does not provide any improvement to the precision of the
estimates. This is because radio tagged carcasses recovered were fairly low compared to the
total number of dead radio tagged individuals available at a given day.
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Appendix A

Supplementary Materials for
Chapter 2: Partial Stratification in
Two-sample Capture-Recapture
Experiments

A.1 Sampling Protocol

Consider an animal population that can be divided into non-overlapping categories where
the stratification variable has been determined. At the first sample occasion a random
sample of size n1 is captured. Then a sub-sample of size n∗

1 is selected from n1 and the
stratum is determined for all animals in the sub-sample. All captured animals are marked,
usually with a unique tag number. All captured animals are released to the population after
marking. Again some time later, another sample of animals of size n2 is captured randomly
from the population. The animals captured at the second sample occasion contains animals
captured and marked at the first occasion (some of them might be stratified and some of
them might not be stratified) as well as the animals not captured at the first occasion.
From animals not previously captured, a sub-sample of size n∗

2 is selected and the stratum
determined. A pictorial view of the sampling protocol is given in Figure A.1.
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Figure A.1: Sampling protocol: Partial stratification in two-sample capture-recapture ex-
periments. The shaded areas represent marked animals. some of the marked animals in the
sample occasion 1 are stratified into strata C1, ... , Ck; some are left unstratified (U). A
similar representation is used at sample occasion 2.

A.2 MLE Approach

A.2.1 Identify Poor Model Fit and Violation of Assumptions Through
Residual Plots

The assumptions of partial stratification in two-sample capture-recapture experiments might
be violated in an experiment. In such cases it is important to know whether the model
assessment procedures can identify model violations through standardized residual plots
and goodness of fit plots. We considered the following four cases for identifying model
violation of assumptions through standardized residual plots.

(a) Heterogeneity in catchability among the animals within each category
(b) Failure of non-death assumption
(c) Entering of new animals to the sampled population between the first and second

time period
(d) Fit a model forcing the capture probabilities to be equal when actually they vary

between categories and/or occasion

Each of these cases was tested using simulated data. The violation of assumptions given in
the first three cases cannot be identified by residual plot or goodness of fit plots because the
generated capture histories do not have any information attached regarding those failures
of assumptions. However the residual plots revealed that the violation given by the last case
can be well identified.
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To test the last case given above, we simulated data where the capture probabilities varied
between categories and sample occasions, and fitted a model where they are forced to be
equal. We considered the following information in Table A.1 for data generation when there
are two categories in the population, M and F .

Table A.1: Data generation information to test model fit

Parameter Value
p1M 0.07
p1F 0.05
p2M 0.08
p2F 0.10
λM 0.60
λF 0.40
θ1 0.60
θ2 0.50
sample size = n = 4000

The model { p(.) θ(t) λ(c)} was fitted to the generated data assuming that capture proba-
bilities do not vary by time and by category. The standardized residual plot for this model
clearly shows that the fitted model does not fit the generated data because some residuals
fall outside ±1.96 (Figure A.2). In general, we can find poor model fitting of a given data
set through residual plots.

Figure A.2: Identify violation of assumptions for generated data using standardized residual
plot. Data is generated from the model {p(c∗t)θ(t)λ(c)}. The fitted model is {p(.)θ(t)λ(c)}.
Dashed lines are drawn at ±1.96 to represent the region where approximately 95% of resid-
uals should lie if model assumptions were met completely.
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A.2.2 Power Analysis

Power analysis is carried out with generated data with two categories (M and F ) in the
population to detect the changes of capture probabilities, category proportions and sample
sizes. The method based on expected values (Devinue et al., 2006) is considered for power
analysis and then we used simulation to verify the power. In each situation, we set α = 0.05.

For power analysis to detect changes of capture probabilities, we generated data where the
capture probabilities vary between categories and sample occasions and fit a model where
capture probabilities vary only by sample occasions. We then calculated the power with the
change (∆p) of the capture probabilities for category F . We considered the values for ∆p

from 0 to 0.1. Parameter values used for data generation are given in Table A.2.

Table A.2: Data generation information for power analysis with capture probabilities

Parameter Value
p1M 0.08
p1F 0.08 + ∆p

p2M 0.04
p2F 0.04 + ∆p

λM 0.60
λF 0.40
θ1 0.80
θ2 0.50
sample size = n = 2000

We considered the null model H0 and the alternative model Ha as follows

H0 : { p(t) θ(t) λ(c)}

Ha : { p(c ∗ t) θ(t) λ(c)}

Figure A.3 shows the power analysis using the method based on expected values (Devinue
et al., 2006) and verifies the power using a simulation study for capture probability with
α = 0.05. According to Figure A.3, 80% power was achieved with ∆p = 0.040 for a sample
size 2000.
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Figure A.3: Power analysis with capture probability using Devineau method and verified
power using simulation study with sample size = 2000 at α = 0.05. ∆p (denoted in the
graph as Delta_p) is the difference between the capture probability of two categories (F
- M capture probabilities) at each sample occasion. Models under H0 and Ha are H0 :
{ p(t) θ(t) λ(c)} and Ha : { p(c ∗ t) θ(t) λ(c)}. Horizontal dotted line indicates 80% power.

The power analysis was repeated for sample sizes ranging from 1,000 to 4,000 (Figure
A.4). Parameter values used for data generation are given in Table A.2. Larger samples
allowed us to detect small differences between the capture probabilities of two categories
at each occasion. For example, with a sample size of 4,000, 80% power was achieved when
∆p = 0.025.

Figure A.4: Power analysis with different sample sizes at α = 0.05. Delta_p is the difference
between the capture probability of two categories (F - M capture probabilities) at each
sample occasion. Models underH0 andHa areH0 : {p(t)θ(t)λ(c)} andHa : {p(c∗t)θ(t)λ(c)}.
Horizontal dotted line indicates 80% power.

For the power analysis to detect changes of category proportions, we used generated data
such that the capture probabilities varied between categories and sample occasions, and
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category proportions were different. Then a model was fitted that forced fixed category
proportions. Parameter values used for data generation are given in Table A.3.

Table A.3: Data generation information for power analysis with category proportions

Parameter Value
p1M 0.05
p1F 0.08
p2M 0.10
p2F 0.12
λM 0.4
λF 0.6
θ1 0.80
θ2 0.50
sample size = n = 2000

We considered the the Null model H0 and the alternative model Ha as follows.

H0 : { p(c ∗ t) θ(t) λ(0.4 + ∆M )}

Ha : { p(c ∗ t) θ(t) λ(c)}

We considered different values for ∆M as 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4.
Then the corresponding values of λM under H0 are 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,
and 0.8. We used these values for power analysis. Finally we verified the power using a
simulation study.

Figure A.5 shows the power analysis for λM with α = 0.05 with sample size 2,000. At
n = 2, 000 80% power was achieved with ∆M = 0.2.

Figure A.5: Power analysis with category proportion (λ) using Devineau method and veri-
fyied power using simulation study with sample size = 2,000 and α = 0.05. Delta_M (∆M )
is the increment of λM from 0.4. Models under H0 and Ha are H0 : {p(c∗t)θ(t)λ(0.4+∆M )}
and Ha : { p(c ∗ t) θ(t) λ(c)}. Horizontal dotted line indicates 80% power.
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A.2.3 Model Assessment: Analysis of Mille Lacs Lake Walleye Data

Standardized Residual Plots

Standardized residual plots for the top four models in Table 2.2 in Chapter 2 are given in
Figure A.6 .

Figure A.6: Standardized residual plots for the best four models according to AICc values
in Table 2.2. Dashed lines are drawn at ±1.96 to represent the region where approximately
95% of residuals should lie if model assumptions were met completely. Good fit in top row;
poor fit in bottom row.

Model Assessment using Parametric Bootstrap Method

Figure A.7 and A.8 show the parametric bootstrap goodness of fit plots for the best four
models according to the AICc criteria using the two discrepancy statistics; the deviance
statistic and the Tukey statistic for 1,000 bootstrap samples. Plot (a) in both of these
figures refers to the model {p(c ∗ t) θ(t) λ(c)} which has the smallest AICc value. The
observed deviance and the observed Tukey statistic and the corresponding p-values suggest
that the model {p(c ∗ t) θ(t) λ(c)} fits to the walleye data.
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(a) (b)

(c) (d)

Figure A.7: Parametric bootstrap plots using deviance statistic for 1,000 bootstrap samples.
The vertical dashed line indicates the deviance for the observed walleye data.

(a) (b)

(c) (d)

Figure A.8: Parametric bootstrap plots using the Tukey statistics for 1,000 bootstrap sam-
ples. The vertical dashed line indicates the Tukey statistic for the observed walleye data.
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A.2.4 Approximate Closed Form Estimates

A closed form solution for the parameter estimates is derived with the use of a moment
type estimation method (Davidson and Solomon, 1974). We consider two-sample capture-
recapture experiments with two categories (M and F ) in the population. The two capture
histories UU and U0 are combined as U∗, and counts nUU and nU0 for the combined histories
are combined to n∗.

The moment type estimation method gives

ni = E[ni] = N × Pi

where ni =n∗, nM0, nMM , nF0, nFF , n0M , n0F , and n0U and Pi = PU∗ , PM0, PMM , PF0,
PFF , P0M , P0F , and P0U respectively.

Then the resulting moment equations are

n∗ = N [λM p1M (1− θ1) + (1− λM ) p1F (1− θ1)]
nM0 = N λM p1M θ1 (1− p2M )
nMM = N λM p1M θ1 p2M
nF0 = N (1− λM ) p1F θ1 (1− p2F )
nFF = N (1− λM ) p1F θ1 p2F
n0M = N λM (1− p1M ) p2M θ2
n0F = N (1− λM ) (1− p1F ) p2F θ2
n0U = N [λM (1− p1M ) p2M (1− θ2) + (1− λM ) (1− p1F ) p2F (1− θ2)]

Closed form solutions are obtained by solving these equations to give:

θ1 = 1
1 + n∗

n0M+nMM+n0F+nFF

θ2 = 1
1 + n0U

n0M+n0F

p1M = 1
1 + n0M (n0M+nMM+n0F+nFF )(n0M+n0F+n0U )

nMM (n0M+n0F )(n∗+n0M+nMM+n0F+nFF )

p1F = 1
1 + n0F (n0M+nMM+n0F+nFF )(n0M+n0F+n0U )

nFF (n0M+n0F )(n∗+n0M+nMM+n0F+nFF )

p2M = 1
1 + nM0

nMM

p2F = 1
1 + nF0

nFF

λM = 1
1 + nF0p1M (1−p2M )

nM0p1F (1−p2F )

λF = 1− λM
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N = nM0 + nMM

λMp1Mθ1

The closed form solutions for the parameter estimates using the model { p(c ∗ t) θ(t) λ(c)}
for the walleye example are given in Table A.4. These estimates are very similar to the
numerical MLEs in Table 2.3 in Chapter 2.

Table A.4: Closed form MLEs using the model {p(c ∗ t) θ(t) λ(c)}.

Parameter Moment estimate
p1M 0.074
p1F 0.011
p2M 0.008
p2F 0.020
λM 0.323
λF 0.677
θ1 0.994
θ2 0.083
N 215,113
NM 69,385
NF 145,728

A.2.5 Optimal Allocation of Sampling Effort

Optimal allocation of the sample sizes for a given cost for partial stratification in two-sample
capture-recapture experiments with two categories in the population is discussed in Chapter
2.3.3 using Mille Lacs walleye Data 2013.

Optimal allocation of sample sizes and sub-sample sizes produced by the numerical methods
for the given costs are n1 = 8, 929, n∗

1 = 8, 908, n2 = 8, 359 and n∗
2 = 1, 412. At these optimal

values SE(N̂) is 13,657

A conditional contour plot for standard error of N̂ is given in Figure A.9 when the n∗
1 and n∗

2
are fixed at the optimal values. Figure A.10 shows the conditional contour plot for standard
error of N̂ when the n1 and n2 are fixed at the optimal values. These contour plots show
that many solutions are possible for optimal allocation.

The following packages were used for numerical optimization in R programing language
(R Development Core Team, 2016). General-purpose optimization with L-BSGS-B method
(Byrd, Lu, Nocedal, & Zhu, 1995) was used for numerical optimization. Simulated annealing
method with GenSA package (Xiang, Gubian, Suomela, & Hoeng, 2013) can also be used
for optimization of the conditional likelihood. Rsolnp package (Ghalanos & Theussl, 2015)
was used for general nonlinear optimization with constraints.
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Figure A.9: Conditional contour plot for the standard error of N̂ when n∗
1 and n∗

2 are fixed
at the optimal values. ‘×’ represents the current allocation (n1 = 6, 741 and n2 = 3, 409
) and ‘o’ represents the optimal allocation (n1 = 8, 929 and n2 = 8, 908 ). Note that the
current allocation falls outside the graph on the left side.

Figure A.10: Conditional contour plot for the standard error of N̂ when n1 and n2 are fixed
at the optimal values.

A.2.6 Precision of the Estimates when Additional Information is Avail-
able

We compare the standard errors (Table A.5) of the estimates for the parameters under two
models using the Mille Lacs Lake walleye data to see how well the precision of the estimate
of population abundance can be improved in the presence of additional information. Let the
first model be {p(c ∗ t) θ(t)λ(c)} and the second model be {p(c ∗ t) θ(t)λ(MLE)}. The first
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model is the best fitted model to the walleye data under the MLE method and the second
model can be considered as the model where the sex ratio is known and fixed at the MLE
values obtained from the first model. Therefore λM is fixed at 0.323 (i.e. λF is 0.677) for
the second model.

Table A.5: Comparison of the precision of the estimates of two models; the first model is
the best model { p(c ∗ t) θ(t) λ(c)} and the second model { p(c ∗ t) θ(t) λ(MLE)} where the
sex ratios are fixed at the MLE values obtained from the best model

Parameter SE - best model SE - second model
{ p(c ∗ t) θ(t) λ(c)} { p(c ∗ t) θ(t) λ(MLE)}

p1M 0.015 0.010
p1F 0.002 0.001
p2M 0.001 0.001
p2F 0.004 0.003
λM 0.060 -
λF 0.060 -
θ1 0.001 0.001
θ2 0.005 0.005
N 27,032 26,103
NM 13,335 8,431
NF 24,771 17,672

A.3 Bayesian Analysis

A.3.1 Bayesian Analysis Model Comparison Table

Table A.6 shows the DIC values and related information for six different models using two
methods as described in Chapter 2.4.1.

A.3.2 Bayesian p-value Scatter Plots

Bayesian p-value plots are given in Figure A.11 using discrepancy functions: deviance statis-
tic and Freeman Tukey statistic.
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Figure A.11: Bayesian p-value scatter plots for the first four models according to DIC
criteria as in Table A.6 using the discrepancy functions (a) Deviance Statistic and (b)
Freeman Tukey Statistic (FT). For each of the model, 6000 samples from the posterior (3
chains each with 2000) were considered.

A.3.3 Posterior Summary Values

Results produced by the MCMC Metropolis-Hasting simulations for the best fitted model
{p(c ∗ t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)} are given in Table A.7.
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Table A.7: Numerical output of the posterior summary values for the best fitted model
{p(c ∗ t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)}. n.eff is a rough measure of the effective
sample size for each parameter. Rhat is the potential scale reduction factor.

Parameter mean sd 2.5% 97.5% Rhat n.eff
beta[1] -2.428 0.169 -2.752 -2.077 1.0 170
beta[2] -4.358 0.147 -4.650 -4.072 1.0 6000
beta[3] -4.773 0.139 -5.047 -4.505 1.0 630
beta[4] -3.761 0.150 -4.061 -3.467 1.0 2100
beta[5] -0.688 0.188 -1.055 -0.326 1.0 350
beta[6] 4.988 0.148 4.709 5.286 1.0 6000
beta[7] -2.396 0.063 -2.522 -2.274 1.0 6000
beta[8] 12.159 0.117 11.931 12.394 1.0 530
p1M 0.082 0.013 0.059 0.111 1.0 170
p1F 0.013 0.002 0.009 0.016 1.0 6000
p2M 0.008 0.001 0.006 0.011 1.0 630
p2F 0.023 0.003 0.017 0.030 1.0 2100
λM 0.336 0.042 0.258 0.419 1.0 340
λF 0.664 0.042 0.580 0.742 1.0 350
θ1 0.993 0.001 0.991 0.995 1.0 6000
θ2 0.083 0.005 0.074 0.093 1.0 6000
N 192,229 22,923 151,969 241,445 1.0 530
NM 64,327 9,990 46,250 85,524 1.0 170
NF 127,902 18,631 96,027 167,791 1.0 6000

Parameters beta[1] to beta[7] are in logit scale and beta[8] is in log scale. Parameters beta[1]to beta[4]
correspond to capture probabilities (p1M , p1F , p2M and p2F ), beta[5] corresponds to category proportion
(λM ), beta[6] and beta[7] correspond to θ1 and θ2, and beta[8] corresponds to population abundance (N).

A.3.4 Posterior Distributions for Capture Probabilities, Category Pro-
portions and Sub-Sample Proportions

Figure A.12 gives the posterior distribution of the capture probabilities p1M , p1F , p2M and
p2F . Figure A.13 and Figure A.14 give the posterior distributions of the category proportions
and the sub-sample proportions.

97



Figure A.12: Posterior distributions for capture probabilities using a sample of
6000 (3 chains each with 2000) from the posterior for the best model {p(c ∗
t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)}. Vertical bars are the 95% credible intervals.

Figure A.13: Posterior distributions for category proportions (λM and λF ) using a sam-
ple of 6000 (3 chains each with 2000) from the posterior for the best model {p(c ∗
t)(0, 0.25) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)}. Vertical bars are the 95% credible intervals.
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Figure A.14: Posterior distributions for sub-sample proportions (θ1 and θ2) using a sam-
ple of 6000 (3 chains each with 2000) from the posterior for the best model {p(c ∗
t)(0, 0.3) θ(t)(0.7, 1)(0, 0.3) λ(c)(20, 40)}. Vertical bars are the 95% credible intervals.

A.4 Analysis with Individual Covariates

A.4.1 Summary of Distribution of Lengths of Walleyes

The summary distribution of length of Mille Lacs Lake walleyes captured in both sample
occasions is given in Figure A.15. More males were captured than females at the first sample
occasion and more females were captured than males at the second sample occasion. Sub-
sample size was much larger at the first sample occasion compared to the second occasion.
Females tended to be larger than males.
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Figure A.15: Summary of distribution of lengths of walleyes in the sample. M, F and U in
the x-axis denote male, female and not identify the sex along with they captured in time
1 (first sample occasion) or time 2 (second sample occasion). Dots spread though each box
plot represent the actual data points.

A.4.2 Model Selection

Seven different models were fitted to walleye data (Table A.8). Note that the last two models
do not have the individual covariate length. These two are the same models given in Table
2.2 in Chapter 2. According to the AICc criteria, the best model for the walleye data is the
model {p(length ∗ category ∗ time+ length2 ∗ category ∗ time), θ(t), λ(c)}.

Model specification with the individual covariate length is similar to models specified in the
MLE method described in Chapter 2.2.1 except for the capture probabilities. Because we
consider a logistic regression model for the capture probabilities that depends on a capture
formula, we specify the capture formula in the model specification. Capture formula in the
best fitted model was given as p(length ∗ category ∗ time+ length2 ∗ category ∗ time). Then
the capture probabilities for each individual i for each category C at time t can be found
as follows.

logit(ptCi) = log

(
ptCi

1− ptCi

)
= β0+β1 (lengthi)+β2 (category)+β3 (time)+β4 (lengthi)2+

β5 (lengthi)(category) + β6 (lengthi)(time) + β7 (category)(time)+
β8 (category)(lengthi)2 + β9 (time)(lengthi)2+
β10 (lengthi)(category)(time) + β11 (category)(time)(lengthi)2

(A.1)
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A.4.3 Parameter Estimation

The estimates for the parameters and their standard errors using the best model {p(length∗
category ∗ time + length2 ∗ category ∗ time), θ(t), λ(c)} for the walleye data are shown in
Table A.9. Estimates for β0, β1, ..., β11 are in logit scale. All the other estimates are in regular
scale. We use Equation A.1 in Appendix A.4 to calculate the estimated capture probability
for each individual.

We use the values 1 and 0 for category ‘M’ and ‘F’ (for males and females) and the values
0 and 1 for ‘time 1’ and ‘time 2’ respectively with the standardized length to reduce the
correlation between length and length2 in Equation A.1 in Appendix A.4 when calculating
the estimated individual capture probabilities (Table A.9).

The last two models in Table A.9 do not have the individual covariate length. For these
models, estimated capture probabilities for all the individuals for a certain category at a
certain time are the same. These two models are the same models given in Table 2.2 in
Chapter 2.3. The estimates for the parameters for these two models under the analysis with
covariates gave the same results that we found in Chapter 2.3. However the methods used
were different. Having similar results for the same models using different methods shows
that the methods used in the analysis with individual covariates are reliable.

Table A.9: MLEs using the model {p(length ∗ category ∗ time + length2 ∗ category ∗
time), θ(t), λ(c)}.

Parameter MLE SE
β0 ≡ p : (Intercept) -4.660 0.2532
β1 ≡ p : length 0.307 0.0564
β2 ≡ p : category_M 2.608 0.3510
β3 ≡ p : time_T2 0.659 0.0583
β4 ≡ p : length2 -0.037 0.0135
β5 ≡ p : length : category_M -0.519 0.0160
β6 ≡ p : length : time_T2 -0.136 0.0174
β7 ≡ p : category_M : time_T2 -3.118 0.2610
β8 ≡ p : category_M : length2 -0.059 0.0046
β9 ≡ p : time_T2 : length2 0.013 0.0039
β10 ≡ p : length : category_M : time_T2 0.310 0.0619
β11 ≡ p : category_M : time_T2 : length2 0.031 0.0185
λM 0.293 0.068
λF 0.707 0.068
θ1 0.993 0.001
θ2 0.083 0.005
NM 81,833 25,398
NF 197,397 44,625
N 279,230 57,034

Values related to β’s are in logit scale and all the other values in regular scale
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Appendix B

Supplementary Materials for
Chapter 3: Study of k-Sample
Capture-Recapture Experiments
under Partial Stratification on
Closed Population

B.1 Goodness of Fit using Parametric Bootstrap Method

One of the method to assess the fitted model is to use the parametric bootstrap goodness of
fit plots in the study of k-Sample capture-recapture experiments under partial stratification
with loss on capture allowed. We considered both deviance statistic and Tukey statistic
with 1000 bootstrap sample to create goodness of fit plots. Bootstrap goodness of fit plots
for the best four models using deviance statistics and Tukey statistic according to the AICc
criteria in Table 3.3 in Chapter 3 are given in Figure B.1 and Figure B.2. The observed
deviance statistic and the observed Tukey statistic for the data using the given models and
the corresponding p-values show that the model {p(c ∗ t) θ(t) ν(t) λ(c)} which is the best
model according to the AICc criteria, fit the data well .
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Figure B.1: Parametric bootstrap goodness of fit plots using deviance statistic with 1000
bootstrap samples. The vertical dashed lines indicates the observed deviance statistic using
the given model for the data in Table 3.2 in Chapter 3.

Figure B.2: Parametric bootstrap goodness of fit plots using Tukey statistic with 1000
bootstrap samples. The vertical dashed lines indicates the observed Tukey statistic using
the given model for the data in Table 3.2 in Chapter 3.
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B.2 Simulation Study

Simulation study was conducted to test the MLE and Bayesian methods discussed in Chap-
ter 3. We simulated 1,000 samples for 3-sample capture-recapture study with two categories
in the population (M,F ) using partial stratification and allowing loss on capture at each
sample time. Histogram of the estimates of the parameters for simulated samples under the
MLE method using the best fitted model {p(c ∗ t) θ(t) ν(t) λ(c)} are given in Figure B.3.
Estimates of the parameters using the particular data set given in Table 3.2 in Chapter 3
that was used for analysis, are marked in vertical dashed lines in these histograms.

Figure B.3: Histogram of the estimates of the parameters ptC , λC , θt, νt and N where
t = 1, 2, 3 and C = {M,F} for 1000 simulated data sets using the MLE best fitted model
{p(c∗t) θ(t) ν(t) λ(c)}. Vertical solid lines indicate the true parameter values given in Table
3.5 in Chapter 3. Vertical dashed lines indicate the estimates under MLE method in Table
3.4 in Chapter 3 calculated from simulated data in Table 3.2 in Chapter 3.

B.3 Bayesian Analysis

Table B.1 shows the the deviance information criterion (DIC) for Bayesian model selection
procedure. Samples from the posterior distribution for each of the given model were obtained
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by MCMC simulations using the Metropolis-Hasting method. We considered 6,000 samples
(3 chains each with 2,000) from the posterior from post-burn sample after thinning by the
factor of 50.

Trace plots of all the beta parameters for the best model cording to DIC criteria are given
in Figure B.4.

Table B.2 shows the results produced by the MCMC Metropolis-Hasting simulations for the
best fitted model {p(c ∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1)λ(c)(30, 10)}.

Figure B.4: Trace plots for all the beta parameters using a sample of 6000 (3 chains
each with 2000) observations from the posterior distribution for the best fitted model
{p(c ∗ t)(0, 0.1) θ(t)(0, 1) ν(0, 0.1)λ(c)(30, 10)}. beta[1] to beta[6] corresponds to capture
probabilities (p1M , p1F , p2M , p2F p3M and p3F ). beta[7] corresponds to category proportion
(λM ). beta[8] to beta[10] corresponds to sub-sample proportions (θ1, θ2 and θ3). beta[11]
to beta[13] corresponds to loss on capture proportions (ν1, ν2 and ν3). beta[14] corresponds
to population abundance (N). Values in the y-axis are in logit form except for the beta[14]
which is in log form.
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Appendix C

Supplementary Materials for
Chapter 4: Integrated Population
Modeling of Chinook Salmon with
Capture-Recapture, Snorkel, Dead
Recovery and Radio Telemetry
Surveys

C.1 Burman River Chinook salmon data summaries in 2012

Figure C.1: Capture-recapture data summaries for marked male and female Chinook at the
stopover pool.
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Figure C.2: Snorkel survey data summaries for unmarked, marked, and radio tagged Chi-
nook.

Figure C.3: Carcass survey data summaries for male and female unmarked, marked, and
radio tagged Chinook.
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Figure C.4: Capture-recapture data summaries for radio tagged male and female Chinook
at the stopover pool.

Figure C.5: Radio tagged male and female Chinook transition from stopover pool to the
spawning area and available at the stopover pool at each day.
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Figure C.6: Radio tagged male and female Chinook alive and die in the spawning area at
each day.
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