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Abstract

Partial hand amputation forms more than 90% of all the upper limb amputations. To im-

prove the quality of life for partial hand amputees different prosthesis options, including

externally-powered prosthesis, have been investigated. This work is exploring Force Myo-

graphy (FMG) as a technique for regressing grasping movement accompanied by wrist

position variations. This study can lay the groundwork for a future investigation of FMG

as a technique for controlling externally-powered prostheses continuously. Ten able-bodied

participants performed three hand movements while their wrist was fixed in one of the six

predefined positions. Two approaches were examined for estimating grasping: (i) one regres-

sion model, trained on data from all wrist positions and hand movements; (ii) a classifier

that identified the wrist position followed by a separate regression model for each wrist

position. Both approaches presented similar performance while the first approach was more

than two times faster. The results indicate the potential of FMG to regress grasping move-

ment, accompanied by wrist position variations.

Keywords: Force Myography; Random forest; Continuous grasping predication; Partial

hand prosthesis; Finger movement prediction
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Chapter 1

Introduction

3.6 million people are expected to live with an amputation by 2050 [1]. Historical data

show that approximately 35% of amputations are related to the upper extremity [1]. The

upper limb amputation can be categorized into two categories based on the level of the

amputation. An amputation above or below the elbow is defined as a major upper-limb

loss. The minor upper-limb loss or partial hand amputation is defined as amputation of

digits, or hands. The majority of the upper limb amputations (i.e. over 90%) are partial

hand amputations [1]. Partial hand amputation, can impose a notable influence on a person’s

life. It can have an adverse effect on their self-image, can cause loss of job and emotional

distress [2]. Epidemiological studies show that the number of partial hand amputations per

year is one every 18,000-20,000 residents [3]. A 2018 report indicates that there were 209,053

hospital visits specifically related to hand and digit injuries between 2002 and 2010, and

5000 work-related finger amputations in 2010 in the United States alone [4].

Although the minor upper-limb amputation is a common injury (due to the vulnera-

bility of the fingers), the research in the field of partial hand amputation has moderately

progressed compared to the research in major upper limb amputation filed [5, 3]. One of

the main reasons is the high variability of the amputation level and shape, which can be

unique to the individual [5, 6].

Partial hand amputation can lead to losing the functionality of the upper limb dras-

tically. We use our hands for a variety of tasks in our daily routine. Amputation of all

the fingers and thumb through Metacarpophalangeal (MCP) joints results in 54% impair-

ment rating of the body as a whole, while it results in 90% impairment of the upper limb
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[7]. Amputation of the thumb through MCP joints results in 40% impairment rate of the

hand, 36% impairment of the upper extremity, and 22% impairment of the body [7]. The

impairment rate emphasizes the effect of the partial hand amputation on the functionality

of the body. One solution to resolve some of the problems regarding the amputation is to

fit partial hand amputees with a prosthesis [3]. Often partial hand amputees are not able

to go back to the same job after amputation, and based on their job they may not find a

prosthesis useful [8]. This points out the importance of providing a functional prosthesis

for individuals with partial hand amputations. The prosthesis options for partial hand am-

putees can be categorized as the passive or active prosthesis. Figure 1.1 shows a diagram

of different categories of partial prosthetic hands. The passive prosthesis is either used for

cosmetic appearance, or as prosthetic tools. The cosmetic prosthesis tries to resemble the

skin color and look of the real hand (Figure 1.1.a). The prosthetic tools can be designed for

different activities, such as hammering a nail, playing an instrument, or playing different

sport (Figure 1.1.b)[9]. The active prosthesis can be classified into body-powered partial

hand prosthesis and externally-powered partial hand prosthesis. The body-powered partial

hands can use the shoulder, wrist, finger residuals or remaining fingers to control the pros-

thesis, depending on the level of the amputation. Using shoulder for controlling partial hand

prosthesis is not as common since it does not look natural and it needs complicated shoulder

movement for controlling (Figure 1.1.c). The wrist-powered prosthesis is more suitable for

users who lost all the fingers without any finger residuals that can control the prosthesis

(Figure 1.1.d). The drawback of wrist-powered prostheses is that often all the fingers are

controlled together, and this limits the user to open and close grasps. The finger-powered

prostheses are suitable for the users who lost a portion of the finger and have at least the

metacarpophalangeal joints (MCP) attached (Figure 1.1.e). These prostheses use the finger

residual to control the prosthesis [10].

The externally-powered partial hand prostheses, use biosignals from the user to control

the hand [11]. Biosignal can be defined as any continuous signal that is recorded from a living

being. The commercially available devices often use the signal from the muscles. Currently,

there are two externally-powered partial hand prosthesis available in the market (Figure

2
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Figure 1.1: a. Cosmetic prosthesis b. Prosthetic tools c. Shoulder powered prosthesis d.
Wrist powered prosthesis e. Finger powered prosthesis f. i-digit by touch bionics g. VIN-
CENTpartial by Vincent Systems 1

1.1.f and Figure 1.1.g). The i-digit from touch bionics by Ossur 2 and VINCENTpartial

1 a & b. https://www.armdynamics.com/our-care/finger-and-partial-hand-prosthetic-options;
c. http://www.hosmer.com;
d. http://www.x-finger.com;
e. http://www.npdevices.com
f. https://www.touchbionics.com;
g. https://vincentsystems.de/en

2https://www.touchbionics.com
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from Vincent systems3. The i-digit uses the surface Electromyography (sEMG) from the

user’s wrist to control the hand. The VINCENTpartial prosthesis uses sEMG, touch pads,

bend sensors or a combination of them to control the hand. Both of the products use

pattern recognition approach to control their device. In the pattern recognition approach,

the biosignal from the user is mapped to a set of specific pre-programmed hand gestures.

With proper sensor placement and training, the user can control the hand to shape one of

the pre-programmed hand gestures. Although this pattern recognition approach can achieve

a high classification accuracy, it limits the user to some specific hand gestures [12].

It is essential to keep in mind that each of the prostheses options have their pros and

cons. The rehabilitation team can provide an optimized solution for the amputee with careful

considerations of the amputee’s needs. An individual may need to use a combination of the

options to achieve satisfaction [11].

Regarding the externally powered prosthesis, the limitations about the number of the

grasps that an individual can perform motivated us to investigate Force Myography (FMG)

for continuous hand movement prediction. This can potentially lead to continuous finger

movement control of the prosthesis. FMG is defined as tracking the volumetric changes

in a muscle associated with the muscles contraction or relaxation during the functional

movement of the limb [13].

In partial hand amputees with a functional wrist, the intention to perform a hand grasp

(either with remaining digits or to control a prosthesis) is accompanied with wrist movement.

The forearm and wrist include the tendons and muscles that control both wrist and digits.

The biosignal from the forearm and wrist muscles and tendons carry information from

the movement of both wrist and digits. As mentioned earlier, the commercially available

externally-powered prosthesis uses the biosignal from the user’s forearm and wrist to control

the prosthesis. If the control system of the prosthesis is trained on a specific wrist position,

the movement of the wrist during the prosthesis usage can have an adverse effect on the

control system’s performance [14, 15].

3https://vincentsystems.de/en
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The effect of the wrist movement on the biosignal provided the second motivation of

this work. Therefore, the effect of the wrist movement during grasping movement prediction

using the FMG signal was explored.

1.1 Objectives and hypothesis

In the present work, inspired by the limitations mentioned in the currently available partial

hand prosthesis, the following objectives were established (as this is a preliminary research

able-bodied participants were used for data collection):

Objective 1. Explore different regression models for continuous hand movement prediction

and different classification models for wrist position classification using FMG signal. In

addition, validate the usage of FMG signal for continuous hand movement prediction

Objective 2. Investigate the effect of the wrist position on the prediction and the possi-

bility of reducing the number of the wrist positions during training

The fundamental hypothesis of this work is that the FMG signal can predict continuous

hand movements, in the presence of wrist position variation.

It is important to remind that although the study has not been tested on the amputees,

the study of the signal from healthy individuals can provide the groundwork for a further

study on the amputees in future research.

1.2 Thesis structure

The remainder of the thesis is structured as follows:

• In Chapter 2, first an overview of the anatomy of the hand and wrist is provided. The

anatomy of the limb can help to identify a data collection location of the limb that

provides valuable information on the fingers and wrist movement. In addition to that,

the related works in the field of the externally powered-prosthesis control and effect

of the wrist movement on the biosignal are reviewed in this chapter. The presented

review helps to identify the machine learning algorithms to explore to meet objective

1.
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• Chapter 3 provides information and examples on the machine learning algorithms that

have been used with FMG before. This includes linear classification, linear regression,

Support Vector Machine, and Neural Network. In additional to conventional machine

learning algorithms, Random Forest (RF) is introduced in this chapter. The explained

machine learning algorithms will be explored later on, to cover objective 1.

• The setup and protocol of the experiment are provided in Chapter 4. More specifically,

the design of the data collection band, experimental protocol, data collection software,

selected grasp types and wrist positions, and processing of the hand motion data are

covered in this chapter. The setup and protocol are designed to collect data which can

be analyzed toward covering objective 1 and objective 2.

• Chapter 5 explains the analysis of the motion data, and FMG data to cover objec-

tive 1. In this chapter different machine learning algorithms are explored for both

regression and classification. The exploration and comparison between different ma-

chine learning algorithms help to identify the proper algorithm, for the continuous

hand movement prediction in this work. The result of comparison helps to validate

the possibility of using FMG signal for hand movement regression in different wrist

positions.

• Chapter 6 covers objective 2. The chapter investigates the effect of wrist position on

the FMG data. Moreover, the result of this chapter can identify whether it’s possible

to reduce the time and size of the training data collection.

• Chapter 7 presents a conclusion of finding and outlines how each objective was met.

In addition, it covers suggestions for future investigations.

6



Chapter 2

Background

In this chapter, a brief background about the wrist, and forearm anatomy and a litera-

ture review of the existing methods for finger movement estimation and continuous hand

movement prediction is presented. The literature review presented in this chapter helps to

identify different regression models and hand movements that have been used, especially

with FMG signal, for continuous hand movement prediction. The review presented in 2.2.1

can provide information to recognize which classification and regression models should be

explored to meet objective 1.

2.1 Wrist, and forearm anatomy

Figure 2.1 indicates the bones and joints of the hand. Based on the information presented

in the figure, the finger joints will be referred to as DIP, PIP, and MCP, and the joints of

the thumb will be referred to as IP and MCP throughout the manuscript.

Figure 2.2 indicates the muscles and tendons in the forearm and wrist. Based on the

location of the muscles and tendons relative to the skin, they can be categorized as Super-

ficial or Deep. Superficial muscles are near the skin surface, deep muscles are further from

the skin surface and near the internal center of the limb [16].

The muscles controlling the wrist and digits are listed in Table 2.1 [16]. These muscles are

responsible for the wrist, finger, and thumb movements. These movements include Flexion,

Extension, Abduction, and Adduction. Flexion is bending or decreasing the angle between

bones or parts of the body, like bending the elbow joint. An extension is the movement

opposite to flexion and is the straightening of the joints of the body. Abduction means

7



Figure 2.1: The bones and joints of hand [17]

moving a part of the body away from the middle, like moving the upper limb away from

the body. Adduction is the opposite of abduction [16]. As the table indicates, all of the

wrist-controlling muscles are superficial, all of the thumb-controlling muscles are deep, and

half of the finger controlling muscles are superficial, the other half are located deep under

the surface of the skin.

As Figure 2.2 indicates, by moving toward the wrist, some of the finger controlling

and thumb controlling muscles become closer to the skin surface. For instance, the Exten-

sor Pollicis Longus (EPL) muscle, which is responsible for extending the MCP joints, is

surrounded by Extensor Carpi Ulnaris (ECU) and Extensor Pollicis Brevis (EPB) in the

mid-forearm, while it is closer to the skin surface near the wrist. The Flexor Pollicis Longus

(FPL) muscle, which is responsible for flexing the thumb, is enveloped by Flexor Digito-

rum Superficial (FDS) and Flexor Digitorum Profundus (FDP), near the wrist it is closer

to the skin surface; the Extensor Indicis Proprius (EIP) muscle, responsible for extending

the index finger, starts below the mid-forearm. As a result, its function can be measured

better near the wrist. Since the fingers and thumb-controlling muscles are closer to the skin

8



Table 2.1: The wrist and finger controlling muscles

Superficial Deep
Muscle Action Muscle Action

W
ri
st

C
on

tr
ol
lin

g Flexor Carpi Radialis
(FCR) wrist flexion and abduction

The wrist control does not have any
deep muscles

Palmaris Longus
(PL) flexion of wrist

Flexor Carpi Ulnaris
(FCU)

flexion and adduction
of the wrist

Extensor Carpi Radialis
Longues
(ECRL)

extension and abduction
of the wrist

Extensor Carpi Radialis
Brevis
(ECRB)

extension and abduction
of the wrist

Extensor Carpi Ulnaris
(ECU)

extension and adduction
of the wrist

F
in
ge
r
C
on

tr
ol
lin

g

Flexor Digitorum
Superficial
(FDS)

flexing PIP joints
Flexor Digitorum
Profundus
(FDP)

flexing Distal phalanges

Extensor Digitorum
Communis
(EDC)

extending fingers at MCP
and interphalangeals joints

Flexor Pollicis Longus
(FPL) flexing the thumb

Extensor Digiti Minimi
(EDM)

extending the little finger
at MCP and
interphalangeals joints

Abductor Pollicis
Longus
(APL)

abducting and extending
thumb at CMC joint

Extensor Pollicis Brevis
(EPB)

extending thumb at
CMC joint

Extensor Pollicis Longus
(EPL)

extending MCP and
interphalangeal joints

Extensor Indicis Proprius
(EIP) Extending index finger

surface near the wrist, this location was selected to collect biosignals for predicting finger

movements.

2.2 Related works

2.2.1 Biosignals for prosthesis control

To improve the performance of the partial hand prosthesis, researchers have investigated dif-

ferent non-invasive signals for continuous finger movement estimation. These signal include

Ultrasound Imaging, Optical Myography, surface Electromyography, and Force Myography.
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(a) (b)

Figure 2.2: Forearm and wrist muscles [17]

Ultrasound Imaging

Ultrasound (US) imaging is a non-invasive and common tool for diagnostic purposes. Since

the US imaging is accurate, safe, and available in most hospitals, it is a good candidate for

human-computer interface, and it can be potentially used for prosthesis control.

Castellini et al. [18] used US imaging to predict the angle of the MCP joints of the

fingers and adduction and abduction of the thumb. They showed a linear relationship be-

tween spacial first order features extracted from the US images and the finger movements.

Using a linear regression, they were able to achieve a Normalized Root Mean Square Er-

ror (NRMSE) value of 1.86% on average. They also implemented a motion compensation

method to reduce the effect of the participant’s small movements. However, extreme move-

ments of the participant or transducer would defect the signal and had a negative effect on

the performance.

10



In another study Sierra González and Castellini [19] estimated the continuous force ap-

plied by the fingers and thumb, using US imaging. They showed there is a linear relationship

between the applied force and the features extracted from the US images. The authors used

the maximum and minimum force that the fingers can apply for training their algorithm.

While testing the algorithm, the range of the force that the fingers can apply was used. The

results showed that it is possible to predict the continuous finger force with an NRMSE less

than 10%. They also tested the system in an online setup and were able to get an NRMSE

less or equal to 10% for all the fingers.

Sikdar et al. [20] used US imaging to classify the movement of each finger. They were able

to achieve a classification accuracy of more than 95% using able-bodied participants. The

authors also showed there is a correlation between the speed of the digits and the changes

in the echogenicity of the US. The echogenicity of the tissue refers to the tissue’s ability

to bounce back US signal. The differences in the echogenicity of different tissues make the

US image look black, gray or white, with white meaning the highest echogenicity and black

means the lowest [21]. The correlation between the speed of the digits and echogenicity of

the US image shows the possibility of using US imaging for estimating the speed of the digit

movements.

In addition to using US imaging for continuous estimation of finger movements and

force, several researchers have used this imaging method for hand gesture classification

[22, 23, 24]. Although using US images as a control strategy has shown a good classification

accuracy, its use as a portable device has limitations. The movement of the US probe can

have a negative effect on the performance, and the probe needs to be connected to an on-site

computer. These limitations would restrict its application as a real-time control strategy

for externally-powered prostheses.

Optical Myography

Optical Myography (OMG) is a relatively new biosignal. OMG uses a camera to track

changes caused by muscle movements on the skin surface.

Nissler et al. [25] used a standard webcam along with visual feedback markers on the

participant’s forearm to predict the continuous movements of the fingers. They trained the

11



system on the data collected during full flexion and rest state of the finger and tested it

on the participant’s range of motion. They were able to predict finger movements with

an NRMSE of 0.13 to 0.2. Their work indicated the possibility of using OMG to estimate

continuous finger movements.

In another study, Wu et al. [26] used colored tape and yarn pieces to mark the partici-

pant’s forearm. They used a camera to track the changes on the participant’s forearm due

to different hand gestures. Wu et al. [26] indicated that there is a relationship between hand

gestures and the optical map of the participant’s forearm.

The OMG signal is a new signal and has practical limitations. As the studies that were

done so far show, to collect a reliable signal, markers should be used on the participant’s

forearm. The use of the camera can cause problems regarding the portability of the system.

In addition, the camera-based system is sensitive to lighting and occlusion, which can have

an adverse effect on the system’s performance.

surface Electromyography

Surface Electromyography (sEMG) is the most common biosignal to control prosthesis hands

and partial hand prostheses. sEMG measures the electrical activity of the muscles and has

been studied by several researchers to provide continuous control of the prosthesis hand for

amputees.

Smith et al. [27] used sEMG to estimate the angle of MCP joints of fingers and thumb,

while the wrist and elbow are in a fixed position. They used the artificial neural network

as their regression model and were able to achieve an overall average correlation of deter-

mination (R2) of 0.7423. They also show that the average R2 value improves for each angle

during the segment of the time series that the finger is the primary mover. The R2 value,

in this case, is 0.8468 on average. As a result, they suggest that performing a classification

before the regression to identify the primary moving finger can improve prediction results.

Ngeo et al. [28] utilized sEMG along with Neural Network regression to predict the MCP,

PIP and the DIP joints of fingers and thumb, which creates 14 angles in total. Running

the experiment on one able-bodied subject, they were able to reach an R2 value as high as

0.92 for Index finger’s MCP joint. They took one step further and combined random finger

12



movement with their test data. A 5-fold cross validation analysis resulted in above 0.8 R2

value for MCP joints, while PIP and DIP did not perform as well.

Pan et al. [29] predicted PIP and MCP finger joint angles while they keep the subject’s

upper limb in a fixed position using sEMG signal and state-space model. They were able to

get an average of 0.824 R2 predicting the angles of thumb, index, middle and ring fingers.

Although the studies mentioned above were able to achieve a high R2 value, none of the

experiment setups included variations regarding wrist and elbow angle.

As a result, in a follow-up work, Pan et al. [30], conducted data in different wrist positions

from the middle finger of 6 able-bodied participants and index finger of 2 partial-hand

amputees. They also adopted a two-step machine learning algorithm, where first a linear

classifier identifies the wrist position, and then a suitable regression model is applied to the

data to predict the joint angle value. They were able to get an R2 value of about 0.8 on

average, which proves the feasibility of using sEMG signal to predict fingers’ continuous

movements in the presence of wrist positions variations.

Although the sEMG signal has been extensively studied by researchers [27, 28, 29, 30],

it has some disadvantages that can limit its practicality. To record the sEMG signal, skin

preparation is necessary; the signal is sensitive to the users sweating; also, electrical noise

has a negative effect on the sEMG signal [31]. In short, the sEMG signal is unstable due

to environmental factors and user-based factors, such as sweating. These disadvantages

resulted in marginal progress despite extensive research on the signal [32].

Force Myography

FMG is defined as tracking the volumetric changes in a muscle associated with the muscles

contraction or relaxation during the functional movement of the limb [33]. Since in this

work FMG was used as the myosignal, this signal will be explained in more details.

FMG is also known as residual kinetic imaging (RKI) [34]. The usage of the FMG signal

has become more popular in the past decay. Phillips and Craelius [34] used a silicon sleeve

to track the changes in the forearm shape, corresponding to different finger movements with

two transradial amputee participants. The sleeve tracked the changes of the residual limb,

using air cushions. The air cushions were used to track the changes in the residual limb

13



when the participants attempt to move their missing fingers. Their result indicates that, as

the participants attempt to move different fingers, the movement of the muscles produce

different patterns on the sleeve. They conclude that the FMG pattern on the residual limb

can be used to determine which finger the participant is trying to move.

In a complementary research Phillips [35], tested air cushions and force sensing resistor

(FSR) to classify hand gestures and movements. FSRs are polymer thick film (PTF) devices

that show a decrease in resistance by increasing the applied force on their surface. The results

suggested that, since the air cushions are fragile and likely to leak, FSRs have an advantage

over them, and are a better sensor to record FMG.

Wininger et al. [33] used an array of 14 FSRs on the participant’s forearm to predict

the grip force applied by the participant continuously. Nine healthy subjects participated

in their experiment. After analyzing the FMG data, the authors were able to achieve a

mean cross-correlation of 0.89 between the FMG signal and applied grip force. The result

indicated the signal’s potential to estimate the grip force continuously.

Since then, several researchers have investigated the FMG signal’s performance for hand

gestures, finger movement, and wrist movement classification, in both amputee and non-

amputee individuals [36, 37, 38, 39]. In addition to that, the performance of the signal for

estimation of the force applied by the fingers and applied force and torque of the wrist have

been investigated [40, 41, 42].

Regarding the classification Cho et al. [38], used FMG signal collected from the residual

and intact limb of four transradial amputees to classify 6-11 different hand gestures. They

compare the classification accuracy between the signal collected from the residual limb and

the intact limb. Their investigation indicates that the residual limb has a lower accuracy

during the classification, due to the degraded muscle tone. However, they were able to

classify six hand gestures with a good accuracy in the residual limb. Further investigation

revealed that when they subdivided the grips into the opposed thumb and non-opposed

thumb modes, they were able to improve the accuracy further. Although the classification

result looked promising, the signal variations with different elbow angles had not been

considered in this study, and the elbow was kept in a fixed position.
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Fougner et al. [43] demonstrated that when the classification system, using sEMG signal,

is trained based on the data collected in a specific static position, for example keeping the

elbow angle in 90◦, it will not perform well during testing in different limb positions. The

same problem exists for the hand gesture classification using FMG signal [44].

To overcome the aforementioned challenge Radmand et al. [44] introduced a high-density

FMG. They were able to classify hand and wrist motions with a low classification error. They

suggested to include data from eight different static positions in the training dataset. These

positions were defined as specific locations in 3D space in front of the participant to cover

a person’s workspace and ensure proper performance with limb position variation. Their

work resulted in classifying hand and wrist gestures in 3D space with a high classification

accuracy.

Considering the continuous prediction, Castellini and Ravindra [40] used a cuff which

was equipped with 10 FSRs, on the forearm of ten able-bodied subjects, to estimate the

force applied by each finger and the rotation of thumb on a force sensor. They were able to

estimate the force with about 1.5N error, while the force inserted by the fingers is in the

range of 0 - 15N.

As FMG signal demonstrates promising results for hand and wrist classification, Kad-

khodayan et al. [45] used the signal for continuous finger movement prediction to develop a

prediction strategy for continuous finger movement. In a static setup, Kadkhodayan et al.

[45] recorded the relative displacement of the tip of the index and middle finger and thumb

with respect to a reference point on the hand, during tree hand movements. The result of

ten-fold cross-validation using an epsilon support vector regression indicates an average R2

of 0.96.

During the data collection, Kadkhodayan et al. [45] asked the participants to keep their

wrist and elbow in a fixed position. In partial hand amputees with an intact and functional

wrist, the finger movement is accompanied with wrist movement which can have a negative

effect on the system’s performance [30]. Different wrist positions are considered in the

present study. The FMG signal is analyzed to determine whether the same effect of the

different wrist positioning in sEMG can be observed in FMG signal or not.
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Among the researches that so far covered FMG signal, three machine learning algorithms

were more common, namely Linear classification and regression, Support Vector algorithm,

and Neural Network algorithm. To cover objective 1, these three conventional algorithms

will be tested on the FMG signal. In addition to the conventional algorithms Random Forest

is suggested to be used by the author. It will be explained in the chapter 3 in more details

that why this new algorithm can be a good alternative to the commonly used algorithms.

2.2.2 Wrist location variation and the effect on the signal

In designing of partial hand prosthesis for individuals with a functional wrist, it is essential

to consider both accurate performance and the individual’s ability to use their wrist [14]. It

was mentioned earlier that the forearm and wrist include muscles that are responsible for

both finger movement and wrist movement.

Adewuyi et al. [5] trained a pattern recognition system using sEMG on neutral wrist

position to classify three hand gestures, and tested it in different wrist positions. In the case

of training and testing on the neutral wrist position, they were able to achieve a classification

error about 3%. When they tested the same system on different static wrist positions, the

error increased to 12%. The authors also trained the system with the data collected in

different wrist positions and tested it on different wrist position, and the error rate was

decreased to about 4%. Their work indicated the effect of the wrist position variation on the

system performance, and the necessity of including different wrist positions in the training

phase.

In a follow-up work Adewuyi et al. [14] included partial hand amputees in their study

and used four hand gestures. In agreement with their previous work, their work supported

the importance to train on different wrist positions rather than just one wrist position. The

authors also mention that it is important to reduce the number of wrist positions during

the training to avoid fatigue for the user.

In addition to these works Pan et al. [30] trained their system on different static wrist

positions to compensate for wrist movement. To the best of our knowledge, the effect of wrist

position variation on the FMG signal was not investigated before, and it will be considered

in the present work.
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2.3 Summary

Different non-invasive myosignals for predicting continuous finger movement were explained

in this chapter. These myosignals include US, OMG, sEMG, and FMG.

One of the limitations of US and OMG signals as real-time and portable control strate-

gies is that they need sizable equipment to be recorded precisely. The US imaging technique

needs a probe that should be connected to a computer for data collection. The probe needs

to be placed with specific consideration to be able to record muscle movements and func-

tions. The US probe may move during the use, and the movement can have a negative effect

on the signal. These limitations can affect its performance as a prosthesis control strategy.

When recording OMG signal, as it is a camera-based signal, it is sensitive to lightning,

and occlusions may distort the image. The camera needs to be placed precisely to have

the forearm in the field of view. In addition, researchers so far have been using markers on

the skin to determine the movement of the muscles. The limitations mentioned above can

prevent the use of the system as a prosthesis controlling technology.

sEMG technique is the most frequently used technique for controlling prosthesis devices,

due to its non-invasiveness and demonstrated ability for hand classification. However, this

technique can pose some disadvantages such as sensitivity to electrical noise and users’

sweating [31].

As a result, FMG has been investigated as a cost-effective alternative to sEMG. The

FMG technique can overcome the difficulties regarding the user and the environment. The

electrode placement for FMG signal collection does not need any skin preparation, and the

signal is not sensitive to sweating or electrical noise.

Toward providing a control strategy, in addition to the biosignal selection, the effect of

the wrist movements on the biosignal should be considered.

In the end, the advantages of FMG signal has motivated us to investigate its ability

to provide a proportional control for partial hand prostheses. Moreover, the importance

of wrist movement motivated us to investigate its effect on the FMG signal performance

during grasping movement estimation.

17



To the best of author’s knowledge and as presented in this chapter, previous researches

on FMG signal did not include continuous finger movements in different wrist position.

Since sEMG is a more established signal, there are studies which consider wrist positions

with sEMG signal. These studies suggest that there is a need to do a classification first

to identify the wrist position and define different models for different wrist positions. In

chapter 5 the same approach is tested on the FMG signal, as well as an approach suggested

by the author. The comparison between the two approaches help to identify the proper

approach toward the goal of this study.
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Chapter 3

Machine Learning Algorithms

In this chapter, an overview of different machine learning algorithms that have been previ-

ously used in the literature on the FMG signal for classification and regression are explained.

Also, Random Forest is introduced as a non-conventional machine learning algorithm. The

presented information in this chapter can help to cover objective 1. In the examples and

explanations, the target value for the algorithm is denoted as Y , the sample points are

denoted as x, and the number of sample points is N . Each sample points consists of M fea-

tures. The feature vectors are denoted as f1, f2, ..., fM . The features included in the sample

point xi are noted as fi1, fi2, ..., fiM .

3.1 Linear classification and regression

The linear regression and classification have been used on FMG data for continuous finger

force prediction and hand gesture classification [31, 33, 38, 40]. A linear combination of the

features is used to create the linear regression model.

Y =
M∑
i=1

αifi + α0 (3.1)

In the Formula 3.1 αi is the weight of each feature in the model and fi denotes each

feature. M indicates the number of features. In the case of the regression, the output of

the model is a continuous variable. Figure 3.1 illustrates an example of the linear regression

method.

For multi-class classification, a Y value is defined for each class:
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Figure 3.1: The example of the performance of the linear regression

Yk =
M∑
i=1

αikfi (3.2)

In the formula 3.2 k indicates the index of the class. For a K-class problem we have

k ∈ 1, ..,K. To determine the class that a new point belongs to, the Yk for each class is

calculated, the point belongs to class k, if Yk > Yj for all j 6= k [46]. Figure 3.2 shows an

example of a linear classifier. The fisheriris dataset in MATLAB 2017b is used as the data

set to illustrate the performance.

Linear regression and classification are computationally efficient [31]. They can perform

well, where the target value has a linear relationship to the presented features, or in a

classification case, the two classes are linearly separable. Although in some cases a linear

relationship cannot be established between the features and targeted value. In those cases,

other algorithms can be used.
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Figure 3.2: The example of the performance of the linear Classifier

3.2 Support vector machine

In addition to linear regression and classification, the Support Vector Machine (SVM) al-

gorithm has been used in the literature for classification and regression [45, 41, 47].

In SVM classification, similar to the linear classification, the algorithm is trying to find a

line (in a two dimension problem), or hyperplane that separates the classes from each other.

In a linear classification, all the training data points are involved in finding the separation

line. In contrast, in an SVM classifier, only a subset of data is involved in finding this line.

The subset data, are the data points that lie in a defined margin. The margin is defined to

be “the smallest distance between the decision boundary and any of the samples” [46]. The

points in the margin that are used to determine the boundaries are called Support Vectors

(SVs).

In addition to the SVs, the SVM algorithm uses Kernel trick. By using Kernel functions,

the input data are transformed to the kernel function’s space, to find a linear relationship
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Figure 3.3: The example of the performance of the SVM Classifier

between the input value and the target value. Different functions can be used as the kernel

function. One of the kernel functions that is commonly used is the Gaussian kernel.

K(fi, fj) = e−
‖fi−fj‖

2

2σ2 (3.3)

Formula 3.3 indicates the calculation of the Gaussian kernel. fi and fj are different

feature vectors, σ is the Gaussian kernel parameter and needs to be determined by the

user. After applying the kernel function on the input, instead of using fi and fj for training

K(fi, fj) will be used for training. As a result, the relationship between the target and

sample points will be:

Y ≈ K(x)⇒ Y ≈ K(f1, f2, ..., fM ) (3.4)

Figure 3.3 indicates the performance of a SVM classifier. The data is the same as the data

used in Figure 3.2. The black line indicates the separation boundary. The points marked

with black triangle indicate the points as the Support Vectors.
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Figure 3.4: The example of the performance of the Support Vector regression

For regression, the same approach is used. The support vectors in the case of a regression,

are contributing to the creation of the model. Figure 3.4 illustrates an example of the

Support Vector Regression (SVR). The data used is the same as Figure 3.1. Since the

number of data points is small, all of them have been used as support vectors to estimate the

curve. It can be seen in the figure that the curve is over-fitting. Using the SVR algorithm on

a small dataset would cause over-fitting, which can reduce the accuracy of the performance

on a new dataset.

The SVM algorithm can be a proper approach to predict the non-linear relationship, as

it can use different kernels on the input data. In addition, since it uses the support vectors,

and not the whole data set, the effect of the outlier data will be minimized. While using the

SVM algorithm, one should keep in mind some considerations. The SVM algorithm can be

computationally expensive and time-consuming, as the user needs to optimize the value of

the hyperparameters, which may require multiple running. SVM is also extremely sensitive

to the selection of the kernel function and its hyperparameters [48]. The parameters should

be selected carefully to ensure good performance from the algorithm.
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3.3 Neural network

Another regression method that has been used in the literature for estimating continuous

force from FMG signal is Neural Networks regression (NNR) [42]. A Neural Network consists

of an input layer, an output layer, and some hidden layers. Figure 3.5 indicates an example

of a Neural Network (NN) structure. Each layer of the NN consists of several nodes. The

nodes of the input layer are the features constructing each sample. All the features can

be used as the input for the network. The output of each layer will be multiplied by a

weight value and used as the input for the next layer. Each layer has a specific activation

function, that gets the input and produces the output of that specific layer. The output layer

calculates the target value. Figure 3.6 shows an example of a neural network regression. The

estimated curve does not have high accuracy, as the training set only includes 13 points.
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Another simple example of the Neural Network performance is as follows:

H1(z) = z

H2(z) = e
−z2

2

H1(x) = f1 × w(1)
11 + f1 × w(1)

12 + ...+ fm × w(1)
MZ = W (1).x

S = W (2).H1(x)

H2(S) = e
−S2

2

Y = W (3).H2(S)

Y = W (3).e
−(W (2).(W (1).x))2

2

(3.5)

The NN in Formula 3.5 has 2 hidden layers. Each layer has an activation function. The

first layer uses a Linear function, and the second layer uses an exponential function as the

activation function. Layers can have a variety of activation functions. The output layer can

get an activation function as well. In the presented example the output layer is a linear

function. Formula 3.5 shows how the NN calculates the output for a data point.

The number of nodes in each layer and the number of layers need to be optimized, in

training an NN. In addition, the activation function of each layer can need a parameter

optimization. For example, if a Gaussian function is used as an activation function in a

layer, the value of “σ” needs to be optimized and chosen carefully.

The neural network can perform well when the relationship between features and the

target value is non-linear, and it may need a notable amount of input data, depending on

the number of the weights it needs to find. Similar to SVM, NN has different parameters

to optimize (number of nodes, number of layers, hidden layers’ hyperparameters), which is

computationally expensive, and time-consuming 1.

3.4 Random Forest

Random forest (RF) algorithm has potential advantages over conventional machine learning

algorithms. Some of the advantages are as follows. The RF algorithm is robust to overfitting;

1https://www.cs.cmu.edu/ schneide/tut5/node28.html#tabcomparison
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Figure 3.6: The example of the performance of the Neural Network regression

it has only two parameters to optimize (the number of variables in the random subset at

each node to split and the number of trees in the forest), while it is not very sensitive to

these parameters [49, 50]. The advantages of the RF algorithm can make it a potential

alternative to the conventional algorithms, for the goal of this study.

Random Forest is an ensemble of un-pruned trees. Consider a dataset that has N data

points, and each data point is constructed from M features. In the random forest algorithm

developed by Breiman [49], to construct each tree a random subset of the samples including

N ′ data points is selected. In a standard tree each node is split based on all M features,

but in the algorithm developed by Breiman [49], each node is divided using the best guess

among a random subset of the features. So instead of using allM feature to make a decision

at each node, M ′ features are used to make a decision. The prediction of a new sample is

made by aggregating (the majority of votes for classification and averaging for regression)

the prediction of the whole forest.

For example, consider the two-class problem presented earlier. Both linear classifier and

SVM classifiers were using the data to define a separation boundary. In the Random forest

algorithm, the data is used to define different sub-regions for each class. Figure 3.7 illustrates

the regions defined using the RF. The RF model is a forest of trees constructed from the
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Figure 3.7: An example of the Random Forest performance

features to classify the data. The RF model in this example consists of 100 tresses. To

classify a new data point, the features of the data point will follow the tree structures to

find the proper class. This will be done for all trees, and the majority of votes will determine

the class of the point.

To solve a continuous problem the same approach is used for regression. To solve the

regression problem for a new data point the features will follow the trees. The average result

of all the trees shows the result corresponding to the data point. Figure 3.8 illustrates an

example of the performance of the random forest regression. It is important to keep in mind

that the number of features provided and the number of the data points are small, as a

result, the performance may not be good. Figure 3.9 indicates nine of the trees used for

the regression. As an example consider we want to get the output value for the input of

X = 45.5, using a model including only the trees illustrated in Figure 3.9. The point will

go through the trees in Figure 3.9 a-i, and it will result in 77.9, 85.07143, 81.7125, 105.125,

76.94286, 83.81429, 93.68333, 99.3625, and 98.6625. The forest results in 89.1416 on average,

which would be the final result of the prediction.
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Figure 3.8: The example of the performance of the Random Forest regression
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In this research, the random forest package of Matlab (introduced in R2009a) was used.

The number of trees was set to 100. Matlab’s default was used for the number of random

features to use for splitting at each node (M ′), which was the square root of the number of

features for classification (M ′ =
√
M) and one-third of the number of features for regression

(M ′ = M
3 ). Matlab’s default was also used to determine the size of the random subset of

the data (N ′) to construct each tree, which was the same as the size of the training dataset

(N ′ = N). In our case, we have 18 sensors which provided 18 channels; thus four random

features were used for classification and six random features were used for splitting at each

node for regression.

3.5 Summary

Different machine learning methods have been used for classification and regression, using

the FMG signal. In this chapter three of the most common algorithms were explained. In

addition to the three common machine learning algorithms, Random Forest is introduced

and explained, as a non-conventional machine learning algorithm for regression and classi-

fication using FMG signal. Each algorithm has its advantages and disadvantages. Based on

the requirements, one would prefer one over the other.

Later on to cover objective 1 all the mentioned machine learning algorithm will be

used to regress and classify the FMG signal. As it was mentioned in chapter 2, the common

approach to do finger and hand movement regression or classification in different wrist

positions, is to use a classifier first to determine the wrist position that hand is in. To

test the common approach for FMG data three classification methods, Linear Discriminate

Analysis, Support Vector Machine, and Random Forest had been investigated and compared

in the present work. In addition, four regression methods, Linear Regression, Support Vector

Regression, Neural Network Regression, and Random Forest are explored and compared.

The comparison between classifiers and regressors covers objective 1. The method and

results of the comparison are covered in chapter 5.

The next chapter will cover the Experimental material and methods.
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Chapter 4

Experimental Setup and Protocol

This chapter will provide insights into the used experimental protocol to collect the data

to experiment the finger movement prediction using the FMG signal. The experimental

protocol and setup were designed to include hand movement data from different wrist

positions. In the following first an overview of setup and protocol is provided, which outlines

the relationship between the objectives and the protocol and setup. In the second section, the

hardware design is provided which includes the design of the FMG band data collection,

and a custom-made brace to control the movement of the participant’s wrist. Then the

experimental protocol is explained in detail. After, the software that was used to collect

synchronized data from the FMG data collection band and the motion capture system (true

value of the finger movements) is explained. The selected grasp types and wrist positions,

and processing of the hand motion data are explained subsequently.

4.1 Setup and protocol overview

Toward the goal of the project, the protocol was designed to collect data from different

hand movements in different wrist positions. Each part of the setup and protocol will be

explained in detail in the following sections. This section provides an overview of how the

setup and protocol are designed to cover objective 1 and objective 2.

The first step is recording the FMG data. It was explained in section 2.1 that the proper

placement of the band is near the wrist as the changes of digit controlling muscles and

tendons are more visible on that specific location. The circumference of the limb near the

wrist is smaller compared to the forearm. The circumference was a motivation to use small
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size sensors to have a higher resolution. The collected FMG data are used to explore different

regression models and classification models (objective 1, part 1 and part 2). Moreover, the

data is used to validate the use of signal and investigate the effect of the movement on

the signal (objective 1 part 3 and objective 2). To cover part 3 of objective 1 and the

objective 2, it is desired to eliminate unwanted movements and restrict the wrist to specific

positions as the first step to validate the usage of FMG with different wrist positions and to

investigate the effect of the wrist position. To do so, a brace was designed and made to keep

the participant’s wrist in each specific position. Section 4.2 includes detailed information

about the FMG data collection band and the brace.

The next section explains the experimental protocol. The experimental protocol was

designed to cover continuous hand movements in different wrist positions. Objective 1

part 1, requires data from the continuous movement of the hand to use as the true value

for regression. A motion capture system was used to track the 3D location of the fingers

in the space. For recording the information of the wrist position, to use in a classification

problem later, the position of the wrist was recorded for each data file. The name of each

data file included the name of the position that wrist was in. The position information can

specifically help to cover objective 1, part 2. Moreover, as the experiment includes different

wrist positions, the analysis of the collected data can help to cover objective 1 part 3, and

objective 2

Section 4.4 describes the data collection software setup. The data collection software

was setup based on the need to collect synchronized data from the motion capture system

and the FMG band. A program in C# was coded to collect FMG data points and their

corresponding 3D location data at the same time. The data is later analyzed to cover both

objectives.

In the end, section 4.5 and section 4.6 explain the selection of the hand grasps and wrist

positions as well as the selection of a measure of the hand movement.
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4.2 Hardware design

As it was mentioned in section 2.2.1, different ways to measure the FMG signal have been

investigated. Using FSR sensors to measure the FMG signal has shown to be a reliable way

to measure the signal and they have been the most common sensors used to measure the

FMG signal. Having this in mind, FSRs have been used in this research as well.

4.2.1 The FMG data collection band

Throughout literature different designs of the FMG data collection band has been used

[13, 40, 51, 52]. All different designs include an array of Force Sensing Resistors. The number

of sensors and the shape and placement of the band is different from one research to the

other, based on the application and requirements. In this research as the small movements of

the muscles and tendons near the wrist were of great interest, and to increase the resolution

of the measurement, small FSR sensors were selected. An array of 18 Force Sensing Resistors

(FSR R© 400, Short, Interlink Electronics, Westlake Village, CA) were placed in a flexible

band, cut from 2mm thick foam. FSRs are polymer thick film (PTF) devices that show a

decrease in resistance by increasing the applied force on their surface. This specific model

can be activated with 0.2N force, and its sensitivity range is up to 20N [53]. Figure 4.1.a

shows a close view of a FSR. As the FSRs are flexible devices, by wrapping the band around

the participant’s wrist, each FSR will bend. To stop the FSRs from bending, each FSR was

supported with a piece of 1.5mm thick acrylic sheet which was cut to the FSR’s exact shape

and dimensions. To concentrate the pressure from the wrist on the FSR’s sensing area a

piece of 1.5mm thick foam was placed on each FSR.

The sensors were placed on the flexible band 4mm apart from each other. Figure 4.1.b

illustrates the FMG data collection band. As mentioned in the user guide [54] to have a

force reading the sensor was connected to a resistor in a voltage divider circuit. The value

of output voltage read from the resistor (VOUT in Figure 4.1.c) had been used as a repre-

sentative of the applied pressure. The output voltage has shown to be acceptable to capture

the FMG signal [55]. Figure 4.2 illustrates the circuitry of the band. An Arduino Pro Mini

microprocessor was used to read the value of VOUT. The Arduino is powered by an ATmega
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Figure 4.1: a. The configuration of hard backing and foam on the FSR b. The FMG data
collection band c. The FSR circuitry. VOUT is recorded with the microprocessor

328. The D.C. power should be either 3.3V or 5V. In this work, the microprocessor was used

with a 5V D.C. power. The Pro Mini board can connect to up to eight analog pins. To read

the analog output from 18 FSRs in the band an analog multiplexer (Analog/Digital MUX

Breakout - CD74HC4067, Texas Instruments, Dallas, TX) was used. The microprocessor

was coded to read all the sensors every 0.066 seconds. The microprocessor was connected

to an on-site computer with a USB cable, to record the data.

The band was placed on the upper limb above the head of Ulna bone. The buckle of the

band was kept on the Radius bone. As it was explained in section 2.1 the reasoning behind

this placement is that the muscles and tendons that control hand digits are mostly deep

muscles. The nature of FMG is to pick up the effect of limb volume changes, from muscle

and tendon movements, on the skin surface. On the forearm, moving from the elbow to the

wrist, the digit controlling muscles get closer to the skin surface, and the changes would be

more localized for the FMG band. It is worth mentioning that these changes are visible on

forearm belly muscle as well, but they are more localized near the wrist. Since the changes

regarding the digit movements were of great interest in this research this specific placement

was selected.
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Figure 4.2: The circuit design of the band1

Figure 4.3: Participant’s hand placement in the brace to eliminate undesirable movement

4.2.2 The brace

One of the goals of this study is to investigate the effect of the different static wrist positions.

For this matter, it is essential to keep the positioning fixed, during collecting data for each

wrist positions. To eliminate any other unwanted movement the participants’ hand and

forearm were fixed in a brace. Figure 4.3 illustrates the brace and hand placement in the

brace. To maintain the participants’ comfort pieces of the polystyrene foam were used as

supports for forearm, wrist, and hand in the brace. The brace includes a joint under the

wrist. For each wrist position, the nut and screw of the wrist joint were unlocked. Then the

participant was asked to move their hand to the specific position. The nut and screw were

locked after hand positioning.

1Photos of breakout boards: https://www.sparkfun.com; https://www.amazon.com
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4.3 Experimental protocol

After designing the band to collect FMG signal and the brace to control the participants’

wrist, the protocol was designed. Having the objectives in mind, the protocol was designed

to include hand movements in different wrist positions. Toward the goal of the project

different regression models for continuous hand movement need to be compared. As a result,

the experiment included a precise motion capture system to track and store the finger

movements data in real time. To be able to compare different classification models on the

data, the data files from different wrist positions were labeled with the wrist position’s

name.

The band placement was kept uniform among the participants. It was placed on the

upper limb above the head of Ulna bone. The buckle of the band was kept on the Radius

bone. The participants sat behind a desk with an adjustable height. The height of the desk

and their chair was adjusted in a way that participants could rest their elbow on the table.

Their hand was placed in the brace. With this consideration, the elbow was kept at a relaxed

angle and wrist was fixed at a specific angle during each data collection session. The data

collection from each participant was performed in one session. Participants did not need to

come back for follow up sessions.

To track the finger movements a motion capture system (Qualisys AB, Gothenburg,

Sweden) was used. The system consists of eight cameras, fifteen markers, and the motion

capture software which is called QTM. The cameras use short infrared flashes to illuminate

the markers. QTM software was used to calibrate the system prior to the data collection with

each participant. The qualisys 110 mm carbon calibration kit was used for calibration of the

system (Figure 4.4). For calibration, the calibration set model, and the exact measurement

of the calibration wand were entered in the QTM software. After selecting the calibration

set, the 2D image of each camera was checked to make sure no external objects were adding

noise to the cameras measurement. Cameras should be placed in a way that they do not see

each other’s face; otherwise, the infrared flashes from one camera can add noise to the other

camera. Any reflective objects that could add noise to the cameras’ image were removed

35



from the cameras’ field of view. Then the desired field of view was swept with the calibration

wand, while the calibration reference was placed on the data collection table.

The markers were placed on the participants’ hand, wrist and forearm (Figure 4.5). On

the index and middle finger, markers were placed on fingertips, PIP joint, and MCP joint.

On the thumb, the markers were placed in the thumb’s tip, IP joint, and MCP joint. On

the wrist, the marker was placed on the Radiocarpal joint. On the forearm, the markers

were placed on the Radius bone in line with the wrist marker and between Ulna and Radius

perpendicular to the Radius’s marker. Two markers were placed on the little and ring fingers’

tip as well.

Each marker on the participant’s hand should be visible to at least three cameras during

data collection, for the QTM software to track the position of the marker in 3D space.

Figure 4.6 shows the camera placement and the participant. Cameras were placed around

the participant, to cover approximately 250◦ of the area around them. This placement will

guarantee that all the markers are at least visible to three cameras, during data collection.

The data collected from the markers using the cameras were used to create a 3D model

of the hand, digits, and forearm to track their movements. Figure 4.7 illustrates the 3D

model constructed with the QTM software, using the motion capture data. The sampling

frequency of the motion capture system was set to 100Hz. The sampling rate of the FMG

band was set to 15Hz. This sampling frequency was sufficient to track finger movements

in this study [45]. A minimum of 5Hz sampling frequency is necessary for the FMG data

collection from the upper limb muscles [55].

4.4 Data Collection Software Setup

The QTM software can send real-time data on a TCP/IP protocol, on a local IP number

[56]. The data packets include all the valuable information from the tracking system, for

each frame, in addition to the frame numbers. The information from the tracking system

is used as the true value of the movement. As a result, it is important to collect the FMG

data and motion data in a synchronized manner. The TCP/IP connection protocol was

used to collect synchronized data from the tracking system and the FMG band, to use in
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Figure 4.4: Carbon black,110mm calibration set for Qualisys tracking system

Figure 4.5: Band and marker placement on the participant’s hand

Figure 4.6: The camera placement around the subject

off-line processing. To collect data from the FMG band and the motion capture system

at the same time a program in C# was coded. Figure 4.8 shows a simplified diagram of

the data collection program. The program consisted of two threads. The threads are the
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Figure 4.7: The constracted 3D model using motion capture data

main thread and the background thread. The TCP connection was monitored in the main

thread, and the serial connection was monitored in the background thread. Whenever the

background thread received a data point from the serial port, it read the corresponding

TCP data packet from the main thread. From the desired data packet the frame number

was extracted. The frame number and the serial port data are recorded and saved as a text

file.

At the end of the data collection from each wrist position, the video from the motion

capture system was saved and exported as a Matlab file using the QTM software. The

exported file includes the complete information from the video, which included the 3D loca-

tion of each marker in each frame as well as marker’s name. This exported data along with

the recorded frame number with the C# program were used to get the 3D location of the

markers corresponding to each FMG band’s data point. The frame number corresponding

to each FMG data point was noted. The exported Matlab file was scan to find the desired

frame numbers and the markers’ location data of those frames were extracted.

4.5 Grasp Types and Wrist Positions

To investigate the effect of the continuous hand movements on the FMG three hand grasps

were selected. In an attempt to estimate the continuous hand movement Kadkhodayan

et al. [45] selected three grasp types, as a subcategory from Cutkosky’s grasp taxonomy
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Figure 4.8: A simplified diagram of the data collection program
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Figure 4.9: Snap shots of the hand’s motion. a-c. Opposed thumb/index finger grip d-f.
Opposed thumb/two finger grip g-i. Heavy wrap/large diameter

[57]. To build upon the work of Kadkhodayan et al. [45] the same grasp types were selected,

and the investigation of the effect of the wrist movement variations was added. The three

grasps are opposed Thumb-Index Finger grip, opposed Thumb-two Finger grip, and Heavy

wrap-Large Diameter. Figure 4.9 shows the snapshots of the grasp types during flexing and

extending fingers. The first two hand movements are precision grasps which mainly are

used for manipulating a small object with fingertips. The third grasp is a power grasp and

is mainly used for grasping large cylindrical objects. For simplicity the grasps were called

“Index Finger-Thumb”, “Two Fingers-Thumb” and “Large Diameter” grasp, to continue.
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Since three-finger robotic hands and prosthetic hands are commonly used [58, 59, 60],

the movement of the Index finger, Middle finger, and Thumb were studied in this work.

The participants did the grasps repeatedly, which provided data from three dynamic hand

movements.

In addition to the hand movements, we looked at the effect of the position of the wrist

on the FMG. This can provide data to cover the last two parts of objective 1 and the

objective 2. To do this six static wrist positions were used to collect data. These positions

included keeping the wrist in Extension, Flexion, Neutral, Pronation, Radial deviation, and

Ulnar deviation. This study is a feasibility study regarding the investigation of the effect of

the wrist position on the FMG signal and is a first step toward removing the wrist position

effect. Thus, only the six static wrist positions following the work of Pan et al. [30] were

included in this study, and wrist transition between the static positions was not considered.

As the motion capture system was not able to see the markers on the fingers during the

hand movements in Supination wrist position, this position was not included in the study.

Figure 4.10 illustrates the wrist positions. The mentioned grasp types and wrist positions

were demonstrated for the participants. After fixing their elbow and wrist position, they

were asked to flex and extend their fingers and Thumb as if they were grasping objects of

different sizes. The participants did not hold or squeeze any object. The effect of applying

force on an object or surface is not investigated in this study since it is a feasibility study

on the wrist movement effect on the signal. The participants were asked to do each grasp

for 10 seconds. As there are three hand movements this adds up to 30 seconds in total.

The participants repeat the hand movements 30 times. Since the sampling frequency of

the band was set to 15Hz, the repetitions provided approximately 13500 data point for

each wrist position. The dataset for each data collection session nearly included 81000 data

points. Participants were asked if they need a rest every ten minutes. In addition, there

was a mandatory rest halfway through the experiment for fifteen minutes. There were no

limitations on the speed, and participants performed the motion at their natural speed.

With the considerations mentioned above, the data collection session for each participant,

including setup, rest between repetitions, and recording data, was approximately 3 hours
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long. It is worth mentioning that the fatigue has a lower influence on FMG signal than

sEMG signal [37]. The collected data were saved for further processing in an offline setting.

4.6 Motion Data Processing

To investigate the FMG data and the motion of the hand movement, it is important to define

a measure of the hand movement. In the partial prostheses hands usually the individual

control of each finger joint is not provided, and the hand does not have the same kinematic of

the real hand. As a result, if the finger joints are predicted, to control a prosthesis they need

to be converted to the kinematics of the prosthesis to be able to control it. This motivated

us to define a measure of the grasping movements. Kadkhodayan et al. [45] used the distance

between the index fingertip and a reference point on the hand and the middle fingertip and
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the reference point on the hand. This measurement can depend on the participant’s body

measurements. The distance for a tall person can be more from this distance for a short

person. That motivated us to use a measurement that does not depend on the participant’s

body size. The angle between the index finger and thumb, and middle finger and thumb

were selected (Figure 4.11).

The collected marker location data were used to calculate three vectors. The first one

was defined as the vector starting from the thumb’s MCP joint and ends at thumb’s tip

(VMT). The second vector starts at thumb’s MCP and ends at index finger’s tip (VMI). The

last vector starts at thumb’s MCP and ends at middle finger’s tip (VMM). These vectors

were used to calculate the angle between the thumb and index finger (θTI), and the angle

between the thumb and the middle finger (θTM ). Figure 4.11 illustrates the angle between

the middle finger and thumb and index finger and thumb. Formula 4.1 and formula 4.2 show

the calculation of the angle for index finger and thumb, and middle finger and thumb.

θTI = tan−1( |
~VMT × ~VMI |
~VMT .~VMI

) (4.1)

θTM = tan−1( |
~VMT × ~VMM |
~VMT .~VMM

) (4.2)

The changes in the value of θTI and θTM were used as the measures of grasping motion

for training and testing a regression model, and the FMG data was used as the regression

model’s input. Considering the six wrist positions and three hand movements there are 18

different states for θTI . As the middle finger is not moving in Index Finger-Thumb grasp,

the data from this movement is not included in θTM ’s data set. This provides 12 states for

the investigation of θTM .

4.7 Summary

The chapter presented the experimental protocol and setup. The setup and protocol were

designed to provide data, which can be analyzed to cover both objectives.

As FSRs had shown to be a reliable sensor for collecting FMG signal, an FMG data

collection band was designed and made using 18 FSRs. The band was connected to a
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Figure 4.11: a. The angle between middle finger and thumb b. The angle between index
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computer and sent the data to the computer over a serial connection. A motion capture

system, including eight cameras and fifteen markers, was set up to track the movements

of the hand and fingers. The motion capture system sent the data to the computer over a

TCP connection. A costume program was coded in C# to collect synchronized data from

the motion capture system and the FMG data collection band.

One of the goals of the study is to investigate the effect of static wrist position variation.

Six wrist positions were selected to collect the data. To keep the participants’ wrist in each

wrist position and control the experiment a brace was designed and made. The participant’s

hand was fixed in each of the wrist positions and the data from the finger movements were

recorded.

The experimental protocol was designed to investigate the effect of the wrist position

on the signal while the fingers are moving. The movement of two fingers and thumb were

considered. Three hand movements were selected. The participants were asked to flex and

extend their fingers, in the specific hand movements, while their wrist was fixed in one of

the six predefined wrist positions. This provides three dynamic hand movements and six

static wrist positions.

The data collected from the band and the motion capture system was recorded and

saved for further processing. The angle between thumb and index finger (θTI) and the angle

between thumb and middle finger (θTM ), were selected and defined as measures of hand
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movement. In further investigations and to train and test the machine learning algorithms,

the FMG data was used as the input of the system and the angle value was used as the

output of the system. The next chapter will go over the data processing and data analysis

methods to cover objective 1.
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Chapter 5

Feasibility of grasping estimation in
presence of wrist position variation

This chapter covers the data analysis methods, results, and discussion to cover objective

1. To predict the continuous movement, two approaches are studied. The first approach is

suggested by the author, while the other one follows the common practice for estimation

of hand movements in different wrist positions, which is using a classifier first to determine

the wrist position.

5.1 Data analysis

For predicting grasp movements two approaches were explored and compared. The ap-

proaches are One-Step Regression and Two-Step Regression. The changes in the value of

θTI and θTM were used as the target variable in the training and testing phases, and the

FMG data was used as the predictor variable. All data processing and analysis were done in

an offline setting. The tests were performed on a server running Cenots ver 6.9 equipped with

four twelve-core (2 threads per core) Intel(R) Xeon(R) processors (E7-4860 v2 @ 2.60GHz)

and 1000 GB RAM. To have a fair comparison between different models and approaches,

all programs were run with a single core.

5.1.1 One-Step Regression

In the first approach, One-Step Regression, a single regression model was used for training

the model and testing it, regardless of the hand movement or the position of the wrist.

Both training and testing datasets included data from all static wrist positions and dynamic
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Figure 5.1: The structure of One-Step Regression

hand movements. Four regression models, namely LR, SVR, NNR, and RF regression were

trained, tested and compared to identify which one performs better toward the goal of this

study. The data for each angle was studied independently. Figure 5.1 shows the structure

of the One-Step Regression approach.

5.1.2 Two-Step Regression

Previous works on sEMG signal have shown that the movement of the wrist degrades the

signal and there is a need to define separate models for different wrist positions [30, 5]. Pan

et al. [30] indicated when sEMG is used with different models for different wrist positions, it

is possible to estimate the continuous finger movements. The two-step regression approach

was designed with an inspiration of their work. Comparing this approach and the one-step

regression approach can indicate whether FMG needs different models for different wrist

position, similar to sEMG. In addition, by including the two approaches we can roughly

compare sEMG and FMG for the same application.

This approach consisted of a six-class classifier and six regression models corresponding

to six wrist positions for each angle. At the first step, the data points belonging to each

wrist position were gathered together. For each group, a regression model was trained. Then

a classification model was trained to classify the wrist positions. To test a new data point,

first, the classifier found the wrist position that the point belonged to, then based on the

predicted wrist position the corresponding regression model was selected and used to predict

the angle. Figure 5.2 illustrates the structure of the Two-Step Regression approach.

To choose the appropriate classification method for the second approach three classifi-

cation methods were explored. As LDA and SVM with a Gaussian kernel have been used in

the literature to classify wrist and hand movements using FMG [47, 39, 31], these two clas-
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Figure 5.2: The structure of Two-Step Regression

sifiers were tested. In addition to those algorithms RF [49, 50] is introduced for classification

using the FMG signal.

The result from the two approaches can indicate whether it is possible to use FMG

signal for hand movement regression in different wrist positions.

5.1.3 Outcome measures

Each of the approaches was investigated separately for θTI and θTM . The data from each

subject was analyzed independently. The data set includes thirty repetitions of each hand

movement in each wrist position. A cross-repetition method was used for evaluating the

performance. In a cross-repetition method, the data collected from a set of repetitions are

left out as the testing dataset and were not used for the model optimization. To shape

training and testing data set, for each approach, six repetitions out of thirty repetitions

were randomly selected, without replacement and set out for testing and other twenty-four

repetitions were used for training. This testing and training set definition means 20% of the
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repetitions were used for testing and 80% for training. This was done five times, to make

sure that each repetition has been in the test set at least once. The result is reported as

an average among repetitions and participants. The coefficient of determination (R2), the

percentage root mean square error (RMSE%), the average training time, and the estimated

prediction time for a new data point were measured as ways to evaluate the performance

of the modeling.

R2 = 1−

N∑
i=1

(yi − yi′)2

N∑
i=1

(yi − ȳ)2
(5.1)

RMSE% =

√
1
N

N∑
i=1

(yi − yi′)2

ymax − ymin
× 100 (5.2)

Formula 5.1 shows the calculation of R2, and Formula 5.2 shows the calculation of

RMSE% value. The expected value is shown with y, y′ shows the predicted value, ȳ indi-

cates the average of y in the test set and N indicates the number of data points in the test

set. To measure the estimated prediction time for a new data point, the prediction time

for the testing phase was measured and divided by the number of data points in the test

dataset.

Concerning the Two-Step Regression approach, it is important to keep in mind that

the evaluation measurements were calculated using the final output, which is the predicted

value of θ.

The data set was scanned. If an angle data point was missing, due to the data corrup-

tion, the corresponding FMG data was ignored and the data point was removed. No other

prepossessing was done on the FMG signal and the raw FMG data was used for classifica-

tion and regression. The proposed algorithms were tested on θTM and θTI independently.

Train and test data sets were the same in the one-step regression and two-step regression.

The same sets were also used for analyzing the effect of reducing the size of the training

dataset.
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5.2 Results

Ten able-bodied subjects, six males and four females, age 23-41 participated in this study.

The experiment received ethics approval from Simon Fraser University, and participants

gave their written informed consent. The comparison between two approaches helps to

identify the appropriate approach, among two for estimating continuous hand movement.

Moreover, it helps to investigate the feasibility of using FMG for continuous hand movement

prediction.

5.2.1 One-Step Regression

Table 5.1 shows the results for θTI . The R2
θTI

values for LR, SVR, NNR and RF were 0.694,

0.868, 0.813 and 0.872 respectively. The R2
θTI

value indicated that RF performed slightly

better than SVR, and NNR, while it significantly outperformed LR. The RF algorithm was

about four times faster than SVR and more than 49 times faster than NNR during the

training phase. The RF algorithm is also significantly faster than SVR and NNR to predict

the output for a new data point.

Table 5.2 indicates the results for θTM . The R2
θTM

values for LR, SVR, NNR and RF

were 0.873, 0.941, 0.911 and 0.941 respectively. Looking at the result of θTM regression,

it showed the similarity between SVR and RF, while RF was over two times faster than

SVR during the training, and more than seven times faster during testing. RF also performs

slightly better than NNR, and the NNR is about 33 times slower than the RF algorithm in

both training and testing. The result confirms that the RF algorithm is a good alternative

to the other three conventional algorithms for this research.

Figure 5.3 illustrates an example of predicting θTM using one-step regression approach

with RF regression algorithm. Using RF regressionR2 value of 0.872 and 0.941 were obtained

for θTI and θTM respectively.

5.2.2 Two-Step Regression

Based on the result of the first approach, RF was selected as the regression model. Table

5.3 indicates the result of the classifiers comparison. The accuracy of 85.01%, 95.55%, and

95.76% were obtained for LDA, SVM, and RF on average. RF algorithm was able to do the
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Table 5.1: Regression algorithms comparison for θTI , One-Step Regression approach

R2 RMSE% Training Time
(Minutes)

Estimated prediction
Time (ms) for
Each Sample point

LR 0.6945 ± 0.07 14.59 ± 1.71% 0.011 ± 0.012 0.0006
SVR 0.8680 ± 0.03 9.55 ± 1.07% 6.172 ± 0.946 1.097
NNR 0.8129 ± 0.06 11.29 ± 1.51% 72.925 ± 7.40 3.730
RF 0.8718 ± 0.03 9.40 ± 1.05% 1.487 ± 0.14 0.076

Table 5.2: Regression algorithms comparison for θTM , One-Step Regression

R2 RMSE% Training Time
(Minutes)

Estimated prediction
Time (ms) for
Each Sample point

LR 0.8734 ± 0.05 8.98 ± 1.27% 0.008 ± 0.01 0.0006
SVR 0.9415 ± 0.02 6.12 ± 0.83% 2.35 ± 0.45 0.585
NNR 0.9110 ± 0.03 7.53 ± 0.97% 32.00 ± 3.38 2.449
RF 0.9411 ± 0.02 6.13 ± 0.84% 0.95 ± 0.08 0.076

classification marginally better than SVM, while it was 1.5 times faster, and it outperforms

the LDA classifier. The result and training time confirm that RF algorithm can perform as

an alternative to LDA and SVM to classify wrist position using FMG signal.

Figure 5.4 illustrates the RF algorithm’s confusion matrix. The confusion matrix indi-

cates that the Pronation and Radial wrist positions are more likely to be miss-classified as

each other compared to the other wrist positions. This miss-classification can be a result of

the small deviation angle during the Radial deviation, which was an average of 18◦ for the

participants.

Table 5.4 indicates the average results of the second approach. The R2
θTI

= 0.874 and

R2
θTM

= 0.942 were obtained. Figure 5.5 shows a sample of the target and predicted value

using the two-step regression approach. The training and testing dataset were the same as

Figure 5.3.

Figure 5.6 shows the average R2 of two-step regression in six static wrist positions. The

data were grouped into the wrist positions based on the result of the classifier.
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Figure 5.3: Predicted value with random forest regression and real value comparison, using
One-Step Regression, for θTM ,subject #10, repetition #19,large diameter grasp, in prona-
tion wrist position

The similarity in the average R2
θTI

and R2
θTM

from the two approaches indicate the

potential of equivalency of the two approaches. Two one-sided t-test (TOST) [61] to test

the equivalence was run on the R2
θTI

and R2
θTM

to compare the two approaches. The value of

the level of significance was set to 0.05 (α = 0.05), the lower limit of the equivalence interval

was set to -0.015 and the upper limit of the equivalence interval was set to 0.015. The null

hypothesis was set as: (µR2
one−step

−µR2
two−step

) > 0.015 or (µR2
one−step

−µR2
two−step

) < −0.015,

and the alternative hypothesis was set as: −0.015 < (µR2
one−step

− µR2
two−step

) < 0.015.

The test resulted in p < α for both R2
θTI

and R2
θTM

, which rejects the null hypothesis.

Furthermore, the confidence interval of the difference falls entirely inside the equivalence
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Table 5.3: Classification algorithms comparison for classifying six wrist positions

Accuracy Sensitivity Specificity Time (Second)

LDA 85.01 ± 9.55% 90.65 ± 11.06% 97.87 ± 3.22% 0.10 ± 0.07
SVM 95.55 ± 4.41% 97.46 ± 4.71% 99.52 ± 0.78% 58.82 ± 33.26
RF 95.76 ± 4.37% 97.42 ± 4.48% 99.45 ± 0.92% 38.77 ± 3.91

Table 5.4: The results of Two-Step Regression approach

Classification
Accuracy R2 RMSE% Training Time

(Minutes)

Estimated prediction
Time (ms) for
Each Sample point

θTI 95.76 ± 4.38% 0.8744 ± 0.03 9.31 ± 1.07% 2.498 ± 0.179 68.174
θTM 96.45 ± 3.91% 0.9424 ± 0.02 6.06 ± 0.87% 1.665 ± 0.117 52.682

limits. This indicates the results from the two approaches are equivalent and they are not

different from each other.

The result indicates that the second approach had a similar performance to the first

approach while it was more than 1.5 times slower than the one-step regression approach

in training phase and significantly slower during the prediction of a new data point. The

results suggest that one regression model for each angle (θTI and θTM ) can predict the

angle value in the presence of variations of the position of the wrist. Subsequently, the first

approach was selected to investigate the effect of the wrist position variation in chapter 6.

5.3 Discussion

The FMG signal was investigated for continuous hand movements estimation, with ten able-

bodied participants. Concerning the goal of the study, two different methods were explored.

The first was using a regression algorithm to predict the grasping movements; and the

second was using a classification prior to the regression algorithm and six regression models

corresponding to the wrist positions. The angle between Index finger and Thumb (θTI) and

Middle finger and Thumb (θTM ) were selected as the measures of the grasping movement.

Based on the presented result the two approaches had similar performance. The simi-

larity between the two approaches can show that if enough information from different wrist

positions is provided for the regressing model, it would be able to do the hand movement
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The confusion matrix of RF algorithm
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Figure 5.4: The confusion matrix of RF algorithm

estimation with a good accuracy. The second approach is slower than the first approach,

during both training and prediction phases. The time difference can come from the com-

plexity of the model. In the first approach, only two regression models need to be trained

whereas in two-step regression approach a classifier and 12 regression models need to be

trained. To predict the output of a new data point with one-step regression, the data point

only goes through a regression model. However, in two-step regression, first, the data point

goes through a classifier and then a regression model. One regression model for the θTI

angle and a regression model for θTM were able to estimate the continuous hand movement

with an average R2 of 0.906 and RMSE% of 7.77%. Pan et al. [30] were able to predict

continuous finger movement in static wrist positions using sEMG with an average R2 about

0.8. They used a switching regime approach and trained different regression models for

different wrist positions. In addition, Pan et al. [30] estimates the testing time for a new

data point to be 53.011ms. Our work shows that FMG can predict a new data point in

approximately 0.076 ms during the first approach. The present study implies that the FMG

signal demonstrates comparable performance to sEMG in the same application, while there
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Figure 5.5: Predicted value with random forest regression and real value comparison, using
Two-Step Regression, for θTM ,subject #10, repetition #19,large diameter grasp, in prona-
tion wrist position

is no need to have different models for different wrist positions, as long as the data from

different wrist positions are provided during the training.

With respect to one step regression, the RF algorithm was able to have comparable

results to SVR, and NNR while it was faster. The training time of the SVR and NNR algo-

rithm is sensitive to hyper-parameter optimization process. The NN package of MATLAB

was used, which need one parameter to be optimized. The parameter is the value of bias

in the Radial Basis Neural Network structure of the first layer. Using SVR, the value of

the kernel scale was optimized. However, RF algorithm is not sensitive to optimization of

the hyper-parameters [49, 50]. The default values of training in MATLAB were used, thus

the training time was shorter. In addition to that, the time of the training using the RF
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Figure 5.6: The average R2 of two-step regression in six static wrist positions

algorithm was not sensitive to the size of the dataset. As mentioned in “Motion Data Pro-

cessing” θTM included 12 states and θTI included 18 states. The time of the training using

the RF algorithm was 1.49 and 0.95 minutes for θTI and θTM respectively, and the training

time of SVR algorithm was 6.17 and 2.35 for the angles respectively. This training time

indicated that in the RF algorithm by increasing the size of the dataset the training time

did not increase drastically. The training time using SVR algorithm for θTI is over 2.5 times

more than the training time for θTM with fewer data points. Regarding the NNR algorithm,

the training time of the θTI is about twice the training time of θTM . The training times

indicated the sensitivity of the SVR and NNR models to the size of the training dataset.

The result for θTM dataset also indicates that the RF regression was a good alternative for

the other commonly used regression models for the goal of this paper.

The results indicated, independent of the approach, θTI has a lower R2 and higher

RMSE% than θTM . This result can be justified by looking at the hand movements that are

included in the dataset for each angle. As it was mentioned before, since the Middle finger

is not moving in the Index Finger-Thumb movement, this movement is not included in the
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dataset of θTM . The Index Finger-Thumb movement is more challenging to predict than

the other two hand movements. The FMG band is placed on the forearm near the wrist. In

this specific location, the finger controlling and wrist controlling tendons and muscles are

passing. These tendons and muscles are responsible for the movements of the fingers, thumb,

and wrist. The following muscles or tendons connected to them are passing under the band:

The Flexor Carpi Radialis, Palmaris Longus, Flexor Carpi Ulnaris, Extensor Carpi Radialis

Brevis, and Extensor Carpi Ulnaris which are responsible for controlling the wrist; Flexor

Digitorum Superficial, Extensor Digitorum Communis, and Flexor Digitorum Profundus

that are responsible for controlling the fingers; Extensor Digiti Minimi which is responsible

for controlling the little finger; Extensor Indicis Proprius that is responsible for extending

the index finger; Abductor Pollicis Longus and Extensor Pollicis Brevis that are responsible

for controlling the thumb.

In a fixed wrist position, which minimizes the effect of the wrist-controlling tendons and

muscles on the sensors, the finger-controlling and thumb-controlling tendons and muscles

have the most effect on the changes of the sensors’ reading and the signal. This means

the changes in the sensors’ readings on the band are mostly caused by these tendons and

muscles.

Keeping three hand movements in mind, in the index finger-thumb movement only index

and thumb were moving. This means only the tendons and muscles that are responsible for

controlling the thumb and Index fingers were affecting the signal. While in two finger-thumb

movements the tendons and muscles responsible for moving middle finger were influencing

the signal as well. In the large diameter grip, all the fingers were moving, and there were

more changes in each sensor’s reading in this movement. Every one of the sensors in the

band can provide information for the machine learning algorithm. Since in the two-finger

thumb movement and large diameter grip more sensors are influenced, more information

is provided for the machine learning algorithm. This results in a better performance in

estimating the angle in these two hand movements. Despite the facts mentioned above, it

is worth noticing that both methods were able to estimate θTI with an R2 more than 0.8.
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5.4 Summary

The data collected from the motion capture system was used to calculate the angle between

index finger and thumb (θTI) and middle finger and thumb (θTM ). The angles were used as

the target value for the machine learning algorithms.

To predict the grasping movement using FMG data two approaches were investigated.

The first approach was to use one regression model to estimate the angle, without consider-

ing the wrist position or the grasp type. Four regression algorithms were investigated to find

the suitable regression algorithm for estimating the hand movement continuously, in this

work. The investigation of different regression models covers the first part of the objective

1. The second approach included a classifier to classify the wrist positions and six regression

models corresponding to each wrist position. The regression model was selected based on

the result of the first approach and three classifiers were compared to get the best classifier

among three to classify six wrist positions. The comparison between the classifiers covers

the second part of the objective 1. The two approaches were compared together for the

goal of the study. The result of each approach validated the possibility of using FMG signal

for hand movement regression in different wrist positions, hence it covers the last part of

objective 1.

The first approach, One-Step regression, was able to get R2 values of 0.8718 and 0.9411

for θTI and θTM , respectively using an RF regression algorithm. The second approach,

Two-Step regression, was able to get an R2 values of 0.8744 and 0.9424 for θTI and θTM ,

respectively, while it was more than two times slower than the first approach during the

training phase and significantly slower in testing. While the two approaches had similar

R2 values, the training and testing time were motivations to select the first approach to

estimate the continuous hand movements, in this study. A rough comparison between the

result from the first approach with the result of the similar work using sEMG, indicated

that FMG has a comparable performance to sEMG, while it can be faster in testing a new

data point.

In addition, the output measures of the system indicated that the system can predict

the value of θTM more accurate than θTI . Looking at the hand movements included in the
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dataset of each angle, and the hand anatomy presented in section 2.1, we can see that this

difference is a result of the number of the sensors that are affected by tendons and muscles

during each hand movement. It is worth noting that the calculated R2
θTI

is greater than 0.8

in all cases.

The next chapter will cover the data analysis, results and discussions to cover objective

2.
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Chapter 6

Investigation of the effect of wrist
movement in prediction

Chapter 5 validated the usage of FMG signal for continuous hand movement prediction. The

results and discussions presented in the previous chapter led the author to select the one-

step regression approach to estimate the hand movement in presence of the wrist position

variations. The results of the first approach are selected to investigate the effect of the wrist

position variations of the estimation. The presented data analysis, results, and discussion

here cover objective 2.

6.1 Data analysis

To fit an amputee person with a prosthesis device the person goes through a set of practice

and training sessions with their rehabilitation team. The training sessions for externally

powered prostheses include training a prediction model to control the device. Previous

researches have shown that for partial hand amputees it is important to include data from

different wrist positions in the training process [5, 30, 14]. Moreover, to have a comfortable

process it is desirable to spend less time setting up the device. To reduce the time of the

training process for the prediction model, without ignoring the effect of the wrist position

two questions were answered: i) is it possible to only include one wrist position in the

training process using FMG? ii) If it is necessary to include more than one wrist position,

can we train on less than six wrist positions without a significant effect on results?
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Figure 6.1: Including one wrist position in training phase and including all in testing

The effect of the variation of the wrist positioning on the performance of the model was

investigated. The investigation was done to determine if it is possible to train on a fixed

wrist position and predict the hand movement in different wrist positions. In addition to

that, the minimum number of wrist positions that need to be included in the training phase

was examined. The identification of the minimum number of wrist positions that should

be included in the training data set helps to reduce the training data collection time. The

same server computer as in chapter 5 is used to run the tests.

6.1.1 Analysis of the Effect of the Wrist Position Variation

As it was mention in section 2.2.2, the movement of the wrist can affect the performance of

the prediction. To analyze how the wrist position affects the performance first, data from

one wrist position was included in the training phase, while data from all six positions were

included in the testing set. Each wrist position was used in the training phase at least once

(figure 6.1). The result of this part can confirm whether it is necessary to train on different

wrist positions or not. Then data from six positions were included in both the training and

testing phase. One-way ANOVA and Tukey HSD test for post-hoc analysis were used to

compare including six wrist positions, and including just one of the wrist positions in the

training dataset.

After that, the possibility of including less than six positions in the training phase, and

the inclusion of all six positions in the testing phase was investigated. To do this the data

of one or a set of wrist positions were left out of the training dataset, while their data were
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included in the testing dataset. The reasoning behind it was if for instance, the data in the

Neutral wrist position was similar to the data in the Pronation wrist position, it would be

possible to include just the data from one of those wrist positions in training data while

including both of them in the testing phase.

Five cases were considered. In each case, one, two, three, four or five static wrist posi-

tions were removed from the training set, while their data was included in the test dataset.

In case of removing two to five wrist positions, all combinations of removing wrist positions

from the training data were considered. For instance, in case of removing two wrist posi-

tions, 15 combinations needed to be considered. Considering all combinations provides 62

different options in total. The performance of each option was calculated and compared to

the performance of the system when all six positions were used for the training phase. One-

way ANOVA and Tukey HSD test were used to determine which combinations do not have

a statistically significant difference with including all six positions in the training dataset.

In all statistical analysis a confidence interval of 95% was considered (α = 0.05). The

statistical significance test was run on θTI and θTM independently. For each angle, the

statistic tests were run on two outcome measures, namely coefficient of determination (R2),

and the percentage root mean square error (RMSE%). The combinations that did not

demonstrate a statistically significant difference with including six wrist positions in the

training test were identified for each angle, and each outcome measure. The identified com-

binations that were overlapped between two angles, and within the two outcome measures,

were selected as the combinations that can be used instead of including all wrist positions,

without influencing the performance of the prediction.

6.2 Results

The resulted R2 and RMSE% values from the one-step regression approach are selected

for this investigation. Each angle is investigated independently.
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6.2.1 Analysis of the Effect of the Wrist Position Variation

All the possible combinations of removing one or more wrist positions from the training

dataset were explored. Each combination was compared to the case of including all the

wrist positions in the training dataset.

Table 6.1 and figure 6.2 indicate the result of including only one wrist position in the

training dataset. As the result indicates training on only one wrist position can notably

decrease the R2 value and increase the RMSE%. In all cases for both θTI and θTM the

statistical analysis for R2 and RMSE% resulted in, p � α. The resulted p-value means

we cannot conclude that there were no statistically significant differences between including

all six positions in the training dataset or just including one wrist position. The result can

confirm that including more than one wrist position in the training dataset is necessary, to

predict continuous hand movement in the presence of wrist position variations.

After that by comparing all the different options for removing wrist positions from the

training dataset (the result of different options are provided in A.1), the positions that

can be removed, without significant influence on the prediction result are found. In case of

removing one of the wrist positions from the training dataset, four options resulted in a

p-value of more than 0.05. The p > 0.05 indicates that by removing any of these four wrist

positions, no statistically significant difference can be established between the calculated R2

and RMSE% with the values calculated with including all the six positions in the training

dataset. Table 6.2 and figure 6.3 present the result of the wrist positions that need to be

included in the training dataset and their corresponding R2 and RMSE% value. The results

indicated that the Extension, Pronation, Radial, or Ulnar wrist position can be removed

from the training dataset. The full result of the statistical analysis of each angle, with R2

and RMSE%, is provided in Appendix A.2, which is the pair-wise comparison between all

the 62 combinations and including all six wrist position in the training dataset. In addition,

a sample of the FMG signal in different hand movements and wrist positions is provided in

the Appendix. Appendix A.3 indicates that despite notable differences between some wrist

positions in a hand movement, for example, Extension and Pronation wrist positions, there

are similarities in others, like Pronation and Ulnar deviation.
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Table 6.1: The result of including one wrist position in the training dataset

Included Wrist positions
in training dataset

θTI θTM

R2 RMSE% R2 RMSE%

Extension, Flexion , Neutral,
Pronation, Radial , Ulnar 0.872 ± 0.034 9.402 ± 1.052 % 0.941 ± 0.021 6.133 ± 0.843 %

Extension 0.412 ± 0.230 19.90 ± 2.79 % 0.566 ± 0.304 15.740 ± 4.460 %
Flexion 0.553 ± 0.345 22.64 ± 4.16 % 0.436 ± 0.339 18.359 ± 4.007 %
Neutral 0.550 ± 0.214 20.70 ± 3.50 % 0.593 ± 0.163 16.067 ± 2.818 %
Pronation 0.372 ± 0.160 17.56 ± 2.73 % 0.700 ± 0.170 13.533 ± 2.924 %
Radial 0.231 ± 0.157 17.45 ± 2.60 % 0.631 ± 0.203 15.027 ± 3.305 %
Ulnar 0.412 ± 0.277 18.10 ± 3.66 % 0.641 ± 0.277 14.120 ± 3.550 %

Results:
Include only one wrist position in training

24Figure 6.2: The result of including one wrist position in the training dataset

Table 6.2: The minimum number of the wrist positions that need to be included in the
training dataset

Included Wrist position
in training dataset

θTI θTM

R2 RMSE% R2 RMSE%

Extension, Flexion , Neutral,
Pronation, Radial , Ulnar 0.872 ± 0.034 9.402 ± 1.052 % 0.941 ± 0.021 6.133 ± 0.843 %

Flexion , Neutral, Pronation,
Radial , Ulnar 0.821 ± 0.056 11.072 ± 1.375 % 0.901 ± 0.051 7.810 ± 1.575 %

Extension, Flexion , Neutral,
Radial , Ulnar 0.842 ± 0.046 10.432 ± 1.362 % 0.927 ± 0.034 6.748 ± 1.221 %

Extension, Flexion , Neutral,
Pronation, Ulnar 0.845 ± 0.046 10.320 ± 1.343 % 0.925 ± 0.039 6.797 ± 1.187 %

Extension, Flexion , Neutral,
Pronation, Radial 0.832 ± 0.051 10.722 ±1.238 % 0.919 ± 0.039 7.239 ± 1.070 %
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Result
Including minimum number of wrist position

26Figure 6.3: The minimum number of the wrist positions that need to be included in the
training dataset

6.3 Discussion

By considering the effect of the wrist position variation, the study demonstrated a more

comprehensive approach compared to the work of Kadkhodayan et al. [45] and took one step

closer to a practical case. Adewuyi et al. [5] investigate the possibility of training the system

on one wrist position and use it with variations in the position of the wrist, using sEMG

signal. Their result indicated that the variation of the wrist position could have a negative

effect on the performance of the model. Our result shows that the same effect can be observed

in the FMG signal. If the system was only trained on one wrist positioning, it was not able

to predict the continuous hand movement accompanied with wrist position variation with

an average R2 more than 0.6. The resulted R2 value emphasizes the importance of including

more than one wrist positions in the training data set.

Our further investigations revealed that it is possible to include five wrist positions in

the training dataset and include all six positions in the testing phase. In other words, it is

possible to remove Extension, Pronation, Radial, or Ulnar wrist position from the training

dataset, without any statistically significant effect on the performance of the model. This

provides four options for the training dataset, that include five wrist positions instead of six

wrist positions (Table 6.2, row 2-5). In the present study, data collection from each wrist

position was approximately 20 minutes long. Thus, by training on five wrist position instead

of six, the data collection process reduces by 20 minutes. This shows that the FMG signal
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has the potential to have a shorter setup time for a prosthesis device, without ignoring the

effect of the wrist position variation on the signal.

The Tukey HSD test was run to do a pairwise analysis of the four options, which provided

six combinations. The results showed p > 0.05 in all six combinations. The p-value indicated

no statistically significant differences could be established between the four options. The

statistical test does not necessarily mean that they have equivalent performance. However,

it indicates that FMG has the potential to use any of alternative four options without

degrading the performance of the system.

6.4 Summary

After identifying the proper methods for estimating the continuous hand movements, the

effect of the wrist position variations was investigated. At first, the possibility of training

the system on only one wrist position was investigated. The result demonstrated that it is

not possible to estimate the grasping movement in different wrist positions if only one wrist

position is included in the training phase, irrespective of the included wrist position.

Then one or more wrist positions were removed from the training data set while their

data was included in the testing data set. This helped to investigate the possibility of

reducing the number of wrist positions during training. The result indicated that it is

possible to remove one wrist position (Extension, Pronation, Radial, or Ulnar wrist position)

from training data while all wrist positions are included in testing data, with no statistically

significant effect on the calculated R2 and RMSE% result.

The outcomes and discussion of this chapter covered the investigation of the effect of

the wrist position variation on the prediction and possibility of reducing the number of the

wrist positions during training, thus it covers objective 2. Next chapter will summarize

and conclude the remarks and results of the project. In addition to that, the suggestions

for future works are presented in the next chapter.
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Chapter 7

Conclusion

This chapter summarizes the findings and the objective of the thesis. Moreover, the sugges-

tion to continue the work in the future are presented in this chapter.

7.1 Conclusion

In this study, the FMG signal was introduced and explored to provide continuous hand

movement prediction toward controlling partial hand prosthesis. With having the impor-

tance of the effect of the wrist movement on the performance of the grasping movement

prediction in mind, the effect of the wrist movement on the FMG signals performance dur-

ing predicting continuous hand movement was explored. To the author’s best knowledge

this is the first work that considers the effect of the wrist movement on the performance of

the FMG during continuous hand movement prediction.

Objective 1 of this work was to explore different regression models for continuous hand

movement prediction, and different classification models for wrist position classification

using the FMG signal. In addition, validate the usage of FMG signal for continuous hand

movement prediction. To cover this objective two approaches were defined and examined for

predicting continuous hand movement in the presence of different wrist positioning. The first

approach was to use one regression model for grasping movement prediction, irrespective

of hand movements and wrist positions. During the second approach, with an inspiration

from the literature on sEMG signal, first, a classifier determined the wrist position that

participant was in and after that, a regression model, trained for that wrist position, was

used to predict the measures of the grasping movement. The two approaches had a similar
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performance, while the first approach was significantly faster than the second approach. This

indicates one regression model with adequate training data was able to predict the grasping

movement, with an average R2 of 0.906, while it was able to predict the angle for a new data

point in less than 1 ms. The exploration of different regression models revealed that between

the four regression models tested on the data, SVR and RF had similar performance, while

RF was faster during both training and testing. In comparison between different classifiers,

the accuracy of different algorithms shows that the six wrist positions are distinguishable,

and all three presented classifiers had an accuracy higher than 80%. The training time of

the RF algorithm makes it a good alternative for this classification. The experiment with

the one-step regression and two-step regression can validate the usage of FMG signal for

continuous hand movement prediction. The testing of the two approaches showed that in

contrast with sEMG, which literature shows it needs a classifier prior to the estimation,

the FMG signal can estimate the continuous movement with one regression model for each

angle. Moreover, FMG signal with an RF regression model has the potential to do the

prediction in a real-time setting.

Objective 2 of the thesis was to investigate the effect of the wrist position on the

prediction and the possibility of reducing the number of wrist positions during training.

The effect of the variations in the wrist position was investigated in chapter 6. The result

concluded that by including only one wrist position in the training dataset, it is not possible

to estimate the hand movement in different wrist positions. The same effect was observed in

prediction with sEMG signal before [5]. It is necessary to include at least five wrist positions

(Extension, Pronation, Radial, or Ulnar wrist position can be removed, table 6.2) in the

training dataset to be able to predict continuous hand movement in different wrist positions.

In short, the presented study indicates the potential of FMG signal to be used as a control

technology to provide continuous hand movement control for partial hand amputees.

7.2 Future Studies

As this work was a feasibility study, the data from each participant was collected in one

session. Thus, the repeatability of the results during different sessions has not been investi-
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gated, and it needs to be studied in future works. It is expected to have a repeatable result

if the sensor placement between sessions is kept uniform. This can be achieved by designing

a device that guides the user to put it back on similar to previous sessions. Future works

can investigate the possibility of improving the performance by adding feature extraction

from the FMG signal and studying different machine learning approaches for regression.

Additionally, more hand movements, as well as random hand movements, can be included

in the study as the number of the hand movements covered in this study were limited to

three. To continue the work in the future, it is essential to test the ability of the signal to

perform grasping movement regression, while the wrist is not constrained to specific angles

and include a continuous wrist movement estimation in the algorithm if it is needed. It is

also necessary to test the signal to control a simulated hand or a robotic hand gripper in

real-time. In addition, the effect of the FMG band placement on the limb as well as the

effect of the user’s fatigue on the performance of the system should be investigated. Also,

the effect of object handling, the resistance from holding and squeezing an object, and the

drift of signal during long hours of using should be investigated. At last, it is important to

test the result of the study with partial hand amputee participants and test the potential

and limitations of the signal and the algorithm.
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Appendix A

A.1 Removing different wrist positions from training data
set

This section will provide the results of removing different wrist positions. Each table provides
the average results of the removing wrist positions among participants and repetitions.
Tables A.1 and A.2 indicate the results of removing one wrist position from the training
data set. Tables A.3 and A.4 indicate the results of removing two wrist positions from the
training data set. Tables A.5 and A.6 indicate the results of removing three wrist positions
from the training data set. Tables A.7 and A.8 indicate the results of removing four wrist
positions from the training data set. Tables A.9 and A.10 indicate the results of removing
five wrist positions from the training data set.

Table A.1: The result of removing one wrist positions from training data, θTI

Removed Wrist Position R2 RMSE%

Extension 0.8209 ± 0.0564 11.07 ± 1.37%
Flexion 0.8002 ± 0.0662 11.69 ± 1.82%
Neutral 0.7940 ± 0.0603 11.93 ± 1.65%
Pronation 0.8418 ± 0.0460 10.43 ± 1.36%
Radial 0.8450 ± 0.0465 10.32 ± 1.34%
Ulnar 0.8325 ± 0.0513 10.72 ± 1.24%

A.2 Full Results of the statistical analyses of the Effect of
the Wrist Position variation

Each option for removing one or more wrist positions is identified with a group number.
The case of including all wrist positions in the training data set is identified as "group 1".
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Table A.2: The result of removing one wrist positions from training data, θTM

Removed Wrist Position R2 RMSE%

Extension 0.9014 ± 0.0511 7.81 ± 1.57%
Flexion 0.8955 ± 0.038 8.19 ± 1.11%
Neutral 0.8736 ± 0.0676 8.85 ± 2.22%
Pronation 0.9274 ± 0.0337 6.75 ± 1.22%
Radial 0.9254 ± 0.0394 6.80 ± 1.19%
Ulnar 0.9158 ± 0.0387 7.24 ± 1.07%

Figures A.1 - A.4 indicate the pairwise comparison of the different options for training data
set. The figures can indicate the overlapping options. We can not establish any statistically
significant difference between the options that have an overlapping interval. Table A.11
indicates the removed wrist positions and their group id.

A.3 Snap Shot of Hand Movement Signal in Different Wrist
Positions

This section a sample of the FMG signal in different hand movements and wrist positions.
The graphs from top to bottom show the opposed Thumb-Index finger grip, opposed Thumb-
Two finger grip, and oppose Heavy Wrap. The sections of the graphs that are number as
1-6 indicate the Extension wrist position, Flexion wrist position, Neutral wrist position,
Pronation wrist position, Radial wrist position and Ulnar wrist position. Different colors on
the graph indicate the different sensor values.
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Table A.3: The result of removing two wrist positions from training data, θTI

Removed Wrist Positions R2 RMSE%

Extension and Flexion 0.7506 ± 0.08 13.10 ± 2.07%
Extension and Neutral 0.6914 ± 0.11 14.46 ± 2.24%
Extension and Pronation 0.7882 ± 0.08 12.00 ± 1.89%
Extension and Radial 0.7957 ± 0.07 11.82 ± 1.58%
Extension and Ulnar 0.7603 ± 0.09 12.77 ± 1.98%
Flexion and Neutral 0.7270 ± 0.08 13.75 ± 1.90%
Flexion and Pronation 0.7803 ± 0.07 12.27 ± 1.86%
Flexion and Radial 0.7638 ± 0.09 12.64 ± 2.10%
Flexion and Ulnar 0.7621 ± 0.08 12.73 ± 1.90%
Neutral and Pronation 0.7605 ± 0.06 12.88 ± 1.63%
Neutral and Radial 0.7671 ± 0.07 12.69 ± 1.76%
Neutral and Ulnar 0.7565 ± 0.07 12.96 ± 1.64%
Pronation and Radial 0.7696 ± 0.09 12.51 ± 2.43%
Pronation and Ulnar 0.7868 ± 0.06 12.13 ± 1.39%
Radial and Ulnar 0.8012 ± 0.07 11.66 ± 1.64%
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Table A.4: The result of removing two wrist positions from training data, θTM

Removed Wrist Positions R2 RMSE%

Extension and Flexion 0.8571 ± 0.06 9.52 ± 1.69%
Extension and Neutral 0.7910 ± 0.12 11.36 ± 2.40%
Extension and Pronation 0.8816 ± 0.07 8.44 ± 2.07%
Extension and Radial 0.8867 ± 0.06 8.35 ± 1.68%
Extension and Ulnar 0.8533 ± 0.09 9.42 ± 2.26%
Flexion and Neutral 0.8527 ± 0.06 9.71 ± 1.86%
Flexion and Pronation 0.8815 ± 0.05 8.66 ± 1.38%
Flexion and Radial 0.8776 ± 0.05 8.82 ± 1.31%
Flexion and Ulnar 0.8714 ± 0.06 8.95 ± 1.34%
Neutral and Pronation 0.8595 ± 0.07 9.35 ± 2.16%
Neutral and Radial 0.8614 ± 0.08 9.23 ± 2.30%
Neutral and Ulnar 0.8457 ± 0.08 9.80 ± 2.0%
Pronation and Radial 0.8764 ± 0.08 8.58 ± 2.46%
Pronation and Ulnar 0.8983 ± 0.05 7.96 ± 1.23%
Radial and Ulnar 0.8979 ± 0.06 7.90 ± 1.43%
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Table A.5: The result of removing three wrist positions from training data, θTI

Removed Wrist Positions R2 RMSE%

Extension and Flexion and Neutral 0.6328 ± 0.13 15.85 ± 2.49%
Extension and Flexion and Pronation 0.7252 ± 0.09 13.76 ± 2.11%
Extension and Flexion and Radial 0.7125 ± 0.10 14.00 ± 2.22%
Extension and Flexion and Ulnar 0.7002 ± 0.10 14.33 ± 2.30%
Extension and Neutral and Pronation 0.6526 ± 0.13 15.33 ± 2.48%
Extension and Neutral and Radial 0.6650 ± 0.12 15.08 ± 2.34%
Extension and Neutral and Ulnar 0.6163 ± 0.16 16.06 ± 2.78%
Extension and Pronation and Radial 0.7216 ± 0.12 13.71 ± 2.65%
Extension and Pronation and Ulnar 0.7090 ± 0.10 14.12 ± 2.18%
Extension and Radial and Ulnar 0.7313 ± 0.10 13.52 ± 2.32%
Flexion and Neutral and Pronation 0.7075 ± 0.08 14.22 ± 2.00%
Flexion and Neutral and Radial 0.6904 ± 0.10 14.58 ± 2.11%
Flexion and Neutral and Ulnar 0.6910 ± 0.09 14.58 ± 1.98%
Flexion and Pronation and Radial 0.7103 ± 0.10 14.05 ± 2.37%
Flexion and Pronation and Ulnar 0.7277 ± 0.09 13.65 ± 1.98%
Flexion and Radial and Ulnar 0.7301 ± 0.10 13.55 ± 2.06%
Neutral and Pronation and Radial 0.6939 ± 0.10 14.53 ± 2.24%
Neutral and Pronation and Ulnar 0.7098 ± 0.07 14.19 ± 1.60 %
Neutral and Radial and Ulnar 0.7290 ± 0.08 13.68 ± 1.79%
Pronation and Radial and Ulnar 0.5342 ± 0.21 17.60 ± 3.55%
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Table A.6: The result of removing three wrist positions from training data, θTM

Removed Wrist Positions R2 RMSE%

Extension and Flexion and Neutral 0.7591 ± 0.15 12.07 ± 2.70%
Extension and Flexion and Pronation 0.8408 ± 0.07 9.98 ± 1.91%
Extension and Flexion and Radial 0.8394 ± 0.07 10.09 ± 1.72%
Extension and Flexion and Ulnar 0.8084 ± 0.08 10.99 ± 1.88%
Extension and Neutral and Pronation 0.7672 ± 0.13 11.95 ± 2.53%
Extension and Neutral and Radial 0.7789 ± 0.12 11.71 ± 2.38%
Extension and Neutral and Ulnar 0.6988 ± 0.19 13.43 ± 3.68%
Extension and Pronation and Radial 0.8455 ± 0.09 9.67 ± 2.28%
Extension and Pronation and Ulnar 0.8289 ± 0.10 10.19 ± 2.36%
Extension and Radial and Ulnar 0.8363 ± 0.10 9.94 ± 2.41%
Flexion and Neutral and Pronation 0.8337 ± 0.06 10.32 ± 1.84%
Flexion and Neutral and Radial 0.8359 ± 0.07 10.21 ± 1.95%
Flexion and Neutral and Ulnar 0.8283 ± 0.07 10.42 ± 1.85%
Flexion and Pronation and Radial 0.8205 ± 0.09 10.60 ± 2.32%
Flexion and Pronation and Ulnar 0.8541 ± 0.08 9.51 ± 1.55%
Flexion and Radial and Ulnar 0.8513 ± 0.08 9.62 ± 1.57%
Neutral and Pronation and Radial 0.8161 ± 0.12 10.54 ± 2.71%
Neutral and Pronation and Ulnar 0.8310 ± 0.07 10.36 ± 1.72%
Neutral and Radial and Ulnar 0.8316 ± 0.09 10.19 ± 2.18%
Pronation and Radial and Ulnar 0.7021 ± 0.22 12.94 ± 4.20%
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Table A.7: The result of removing four wrist positions from training data, θTI

Removed Wrist Positions R2 RMSE%

Extension and Flexion and Neutral and Pronation 0.6068 ± 0.15 16.33 ± 2.65%
Extension and Flexion and Neutral and Radial 0.5947 ± 0.15 16.62 ± 2.79%
Extension and Flexion and Neutral and Ulnar 0.5857 ± 0.15 16.80 ± 2.57%
Extension and Flexion and Pronation and Radial 0.6540 ± 0.12 15.38 ± 2.46%
Extension and Flexion and Pronation and Ulnar 0.6591 ± 0.11 15.32 ± 2.40%
Extension and Flexion and Radial and Ulnar 0.6686 ± 0.11 15.08 ± 2.41%
Extension and Neutral and Pronation and Radial 0.5967 ± 0.15 16.59 ± 2.68%
Extension and Neutral and Pronation and Ulnar 0.5445 ± 0.20 17.47 ± 3.29%
Extension and Neutral and Radial and Ulnar 0.5855 ± 0.16 16.75 ± 2.85%
Extension and Pronation and Radial and Ulnar 0.4303 ± 0.26 19.52 ± 4.12%
Flexion and Neutral and Pronation and Radial 0.6337 ± 0.13 15.82 ± 2.51%
Flexion and Neutral and Pronation and Ulnar 0.6568 ± 0.11 15.36 ± 2.15%
Flexion and Neutral and Radial and Ulnar 0.6637 ± 0.10 15.21 ± 2.10%
Flexion and Pronation and Radial and Ulnar 0.4862 ± 0.20 18.59 ± 2.92%
Neutral and Pronation and Radial and Ulnar 0.4582 ± 0.20 19.19 ± 3.01%

Table A.8: The result of removing four wrist positions from training data, θTM

Removed Wrist Positions R2 RMSE%

Extension and Flexion and Neutral and Pronation 0.7172 ± 0.18 12.99 ± 2.88%
Extension and Flexion and Neutral and Radial 0.7551 ± 0.12 12.33 ± 2.50%
Extension and Flexion and Neutral and Ulnar 0.6937 ± 0.19 13.61 ± 3.12%
Extension and Flexion and Pronation and Radial 0.7809 ± 0.10 11.73 ± 2.31%
Extension and Flexion and Pronation and Ulnar 0.7869 ± 0.09 11.61 ± 1.93%
Extension and Flexion and Radial and Ulnar 0.7889 ± 0.09 11.54 ± 2.05%
Extension and Neutral and Pronation and Radial 0.7413 ± 0.16 12.55 ± 2.64%
Extension and Neutral and Pronation and Ulnar 0.6459 ± 0.23 14.57 ± 4.03%
Extension and Neutral and Radial and Ulnar 0.6866 ± 0.20 13.76 ± 3.65%
Extension and Pronation and Radial and Ulnar 0.6494 ± 0.17 14.63 ± 3.08%
Flexion and Neutral and Pronation and Radial 0.7805 ± 0.11 11.71 ± 2.43%
Flexion and Neutral and Pronation and Ulnar 0.8045 ± 0.08 11.10 ± 1.94%
Flexion and Neutral and Radial and Ulnar 0.8113 ± 0.09 10.87 ± 2.03%
Flexion and Pronation and Radial and Ulnar 0.6243 ± 0.27 14.65 ± 4.21%
Neutral and Pronation and Radial and Ulnar 0.6518 ± 0.22 14.40 ± 3.27%
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Table A.9: The result of removing five wrist positions from training data, θTI

Removed Wrist Positions R2 RMSE%

Extension and Flexion and Neutral and Pronation and Radial 0.5022 ± 0.28 18.10 ± 3.66%
Extension and Flexion and Neutral and Pronation and Radial 0.5534 ± 0.16 17.45 ± 2.60%
Extension and Flexion and Neutral and Radial and Ulnar 0.5501 ± 0.16 17.56 ± 2.73%
Extension and Flexion and Pronation and Radial and Ulnar 0.3724 ± 0.21 20.70 ± 3.50%
Extension and Neutral and Pronation and Radial and Ulnar 0.2308 ± 0.34 22.64 ± 4.16%
Flexion and Neutral and Pronation and Radial and Ulnar 0.4106 ± 0.23 19.90 ± 2.79%

Table A.10: The result of removing five wrist positions from training data, θTM

Removed Wrist Positions R2 RMSE%

Extension and Flexion and Neutral and Pronation and Radial 0.6409 + 0.28 14.42 + 3.55%
Extension and Flexion and Neutral and Pronation and Radial 0.6311 + 0.20 15.03 + 3.30%
Extension and Flexion and Neutral and Radial and Ulnar 0.7003 + 0.17 13.53 + 2.92%
Extension and Flexion and Pronation and Radial and Ulnar 0.5931 + 0.16 16.07 + 2.82%
Extension and Neutral and Pronation and Radial and Ulnar 0.4356 + 0.34 18.36 + 4.01%
Flexion and Neutral and Pronation and Radial and Ulnar 0.5660 + 0.30 15.74 + 4.46%
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Multiple comparison of means, using R2, angle between Index finger and Thumb

Figure A.1: The multiple comparison of mean, using R2, θTI
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Figure A.2: The multiple comparison of mean, using RMSE%, θTI
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Figure A.3: The multiple comparison of mean, using R2, θTM
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Figure A.4: The multiple comparison of mean, using RMSE%, θTM
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Table A.11: Removed wrist positions and their group id

group id removed wrist
positions group id removed wrist

positions group id removed wrist
positions

1 None 22 Radial, Ulnar 43 Extension, Flexion,
Neutral, Pronation

2 Extension 23 Extension, Flexion,
Neutral 44 Extension, Flexion,

Neutral, Radial

3 Flexion 24 Extension, Flexion,
Pronation 45 Extension, Flexion,

Neutral, Ulnar

4 Neutral 25 Extension, Flexion,
Radial 46 Extension, Flexion,

Pronation, Radial

5 Pronation 26 Extension, Flexion,
Ulnar 47 Extension, Flexion,

Pronation, Ulnar

6 Radial 27 Extension, Neutral,
Pronation 48 Extension, Flexion,

Radial, Ulnar

7 Ulnar 28 Extension, Neutral,
Radial 49 Extension, Neutral,

Pronation, Radial

8 Extension, Flexion 29 Extension, Neutral,
Ulnar 50 Extension, Neutral,

Pronation, Ulnar

9 Extension, Neutral 30 Extension, Pronation,
Radial 51 Extension, Neutral,

Radial, Ulnar

10 Extension, Pronation 31 Extension, Pronation,
Ulnar 52 Extension, Pronation,

Radial, Ulnar

11 Extension, Radial 32 Extension, Radial,
Ulnar 53 Flexion, Neutral,

Pronation, Radial

12 Extension, Ulnar 33 Flexion, Neutral,
Pronation 54 Flexion, Neutral,

Pronation, Ulnar

13 Flexion, Neutral 34 Flexion, Neutral,
Radial 55 Flexion, Neutral,

Radial, Ulnar

14 Flexion, Pronation 35 Flexion, Neutral,
Ulnar 56 Flexion, Pronation,

Radial, Ulnar

15 Flexion, Radial 36 Flexion, Pronation,
Radial 57 Neutral, Pronation,

Radial, Ulnar

16 Flexion, Ulnar 37 Flexion, Pronation,
Ulnar 58 Extension, Flexion,

Neutral, Pronation

17 Neutral, Pronation 38 Flexion, Radial,
Ulnar 59 Extension, Flexion,

Neutral, Pronation

18 Neutral, Radial 39 Neutral, Pronation,
Radial 60

Extension, Flexion,
Neutral, Radial,
Ulnar

19 Neutral, Ulnar 40 Neutral, Pronation,
Ulnar 61

Extension, Flexion,
Pronation, Radial,
Ulnar

20 Pronation, Radial 41 Neutral, Radial,
Ulnar 62

Extension, Neutral,
Pronation, Radial,
Ulnar

21 Pronation, Ulnar 42 Pronation, Radial,
Ulnar 63

Flexion, Neutral,
Pronation, Radial,
Ulnar
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Figure A.5: Comparison between the FMG signal in different wrist positions
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