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Abstract

Contextuality is a feature differentiating between classical and quantum physics. It is an-
ticipated that it may become an important resource for quantum computing and quantum
information processing. Contextuality was asserted by the Kochen-Specker (KS) theorem.
We study parity proofs of the KS theorem. Although many parity proofs exist, only finitely
many of them have been discovered in any real or complex space of fixed dimension.

We study a special family of chordal ring graphs. We construct orthonormal representations
of their line graphs in four-dimensional real spaces. Our construction takes advantage of the
high degree of symmetry present in the special class of chordal rings that we use. In this
way we find, for the first time, an infinite family of KS sets in a fixed dimension.

Keywords: Kochen-Specker Theorem; Chordal Ring Graph; Orthonormal Representation;
Quantum Information Theory
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Chapter 1

Introduction

Quantum information theory relies on results from quantum mechanics. Contextuality is
accepted by some as a feature of quantum mechanics. A proof of contextuality shows that
the outcome of measuring an observable variable relies on its measurement context, and
thus could not have existed before the measurement was made.

The Kochen-Specker (KS) Theorem is an important result in quantum physics demon-
strating quantum contextuality. The phenomenon of contextuality is still under discussion
among quantum physicists. We focus only on presenting the mathematical tools and struc-
tures which may be used in this argument. One such tool that is of interest as a combinatorial
concept also provides proof of the KS Theorem. A common proof of the KS Theorem can be
shown with a parity argument, which relies on the existence of a so-called KS set [15, 14].
It is worth noting that the parity proofs are possible only in even dimensions, though KS
sets in odd dimensions do exist. The original KS set, presented in [12], requires 117 vec-
tors contained in 132 bases over R3. Since this discovery, many simpler KS sets have been
discovered. This includes a KS set discovered by Lisonek with 21 vectors and 7 bases [15],
another with 18 vectors and 9 bases [3] and large finite families of KS sets (like those in [21]
and [20]). Some of the previously discovered KS sets have been implemented in experiments.
The KS set with 21 vectors and 7 bases published in [15] was immediately implemented
in that same year [5]. Both papers were published in 2014, so shortly after a new KS set
was discovered combinatorially, it was implemented for quantum information experiments.
We aim to construct KS sets combinatorially and leave the experimental implementation
to those knowledgeable in the topic.

With the amount of growth that the field of quantum computing has experienced in
recent years, there has been a lot of time spent finding new and simpler KS sets. KS sets
over R3 have been largely researched and the prospect of discovering new KS sets in R3

appears quite hopeless. Hence we decided to focus on discovering new KS sets in R4. Our
target was to construct an infinite family of KS sets in R4, something that has not previously
been done in fixed dimension. To build our KS sets, we focused on a certain type of vertex
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transitive graph whose orthonormal representation satisfies the requirements of a parity
proof of the KS Theorem.

In this thesis, we begin by introducing necessary definitions and background. In Chapter
2 we review relevant concepts and results in graph theory, linear algebra, abstract algebra
and complex numbers. We define orthonormal representations and further discuss KS sets.
In Chapter 3 we outline the properties of our combinatorial model which we base our
construction on. Chapter 4 is where we present our construction for an infinite family of
KS sets in R4. This computer-free construction is proven rigorously and stands alone from
numerical calculations which we discuss in Chapter 5. This last chapter reviews our process
of discovery and is largely experimental. Before we started any analysis, we were able to
collect a large data set which convinced us that a general construction was possible. We
explain how we collected numerical data and we show how this data led us to the results
given in Chapter 4. We include the details of the discovery process because we believe
aspects of our approach may be applicable to other problems.
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Chapter 2

Background

This chapter presents a review of necessary definitions and useful results for the rest of
the thesis. We will discuss definitions in graph theory, abstract and linear algebra, com-
plex numbers, group representations and orthonormal representations. We also state the
requirements for a parity proof of the Kochen-Specker Theorem and define a KS set.

2.1 Graph Theory

Definition 2.1.1. Let V be a finite set of vertices and E a set of unordered pairs of distinct
vertices in V , also called edges. A graph G is the pair G = (V,E). If the pairs of vertices
are ordered, then we refer to the edges as arcs.

Remark 2.1.2. For the following definitions, assume that G is a graph with vertex set V
and edge set E (sometimes denoted V (G) and E(G), respectively).

Definition 2.1.3. Two distinct vertices x, y ∈ V are adjacent in G if and only if {x, y} ∈ E.

Definition 2.1.4. A vertex x ∈ V is incident to an edge e ∈ E in G if and only if e = {x, y}
for some vertex y ∈ V such that x 6= y.

Definition 2.1.5. The graph complement of G is the graph G = (V,E) where E is the set
of all edges between distinct vertices of V that are not in E.

Definition 2.1.6. The line graph of G, denoted L(G), is the graph with vertex set E in
which two edges in G are adjacent as vertices in L(G) if and only if they are incident as
edges in G.

Definition 2.1.7. The degree of a vertex x ∈ V is the number of edges in G incident
with x.

Definition 2.1.8. G is called k-regular if every vertex of G has degree k.

Lemma 2.1.9. If G is a k-regular graph, then L(G) is 2(k − 1)-regular.

3



...
...(k − 1) (k − 1)

Figure 2.1: An edge in a k-regular graph.

Proof. Assume G is a k-regular graph. Then both endpoints of every edge of G are incident
with exactly k − 1 other edges in G (see Figure 2.1 below). Therefore each edge in G is
incident with exactly 2(k − 1) distinct edges. Thus each vertex of the line graph L(G) is
adjacent to exactly 2(k − 1) distinct vertices. It immediately follows that L(G) is 2(k − 1)-
regular.

Definition 2.1.10. A clique in G is a set of mutually adjacent vertices in V . A maximal
clique of G is a clique which is not properly contained within any other clique of G.

Definition 2.1.11. Let U be a subset of V such that no two vertices of U are adjacent
in G. Then U is an independent set of G. The independence number of G is the cardinality
of a largest independent set, denoted α(G).

Definition 2.1.12. A fractional vertex packing of G is a mapping w : V → R≥0 such that

∑
x∈C

w(x) ≤ 1

for every clique C in G. The value

∑
x∈V

w(x)

is called the weight of the fractional vertex packing w.

Definition 2.1.13. The maximum weight of any fractional vertex packing of G is called
the fractional packing number of G and is denoted α∗(G).

Definition 2.1.14. An automorphism of G is a permutation of V that preserves adjacency
for all pairs of vertices in V .

Definition 2.1.15. If for every x, y ∈ V there exists an automorphism φ : V → V such
that φ(x) = y, then G is called vertex transitive.

Definition 2.1.16. If for every pair of edges {x1, y1}, {x2, y2} ∈ E there exists an auto-
morphism φ : V → V such that

{φ(x1), φ(y1)} = {x2, y2}

4



then G is called edge transitive.

Definition 2.1.17. If for every pair of arcs (x1, y1), (x2, y2) ∈ E there exists an automor-
phism φ : V → V such that

(φ(x1), φ(y1)) = (x2, y2)

then G is called arc transitive.

2.2 Abstract Algebra

The following section is a survey material needed in this thesis. For further results, please
refer to [8].

Definition 2.2.1. Let G be a set and · is a mapping from G×G to G. Then (G, ·) is called
a group if it satisfies the following four axioms.

• If g1, g2 ∈ G, then g1 · g2 ∈ G.

• For all g1, g2, g3 ∈ G we have (g1 · g2) · g3 = g1 · (g2 · g3).

• There exists an identity element e ∈ G such that for all g ∈ G we have g ·e = e ·g = g.

• For every g ∈ G, there exists an element g−1 (called the inverse of g) such that
g · g−1 = g−1 · g = e.

Remark 2.2.2. If the operation is clear from context, we will write g1 · g2 as g1g2.

Definition 2.2.3. Let A,B,C be sets and let f : A→ B and g : B → C be two functions.
The composition g ◦ f is the mapping from A to C defined by (g ◦ f)(a) = g(f(a)) for all a
in A.

Definition 2.2.4. For a graph G, the group of all automorphisms of G under the operation
of function composition is called the automorphism group of G, denoted Aut(G).

For the remainder of this section, we will assume that if (G, ·) is a group, we denote it
simply by G.

Definition 2.2.5. Let (G, ·) and (H, ∗) be groups. If φ : G → H is a bijection such that
φ(x · y) = φ(x) ∗ φ(y), for all x, y ∈ G, then φ is an isomorphism.

Definition 2.2.6. Let G and H be groups. The direct product of G and H is the group
G × H whose elements are pairs (g, h) for g ∈ G, h ∈ H, and whose group operation is
defined by

(g, h)
(
g′, h′

)
=
(
gg′, hh′

)
for all g′ ∈ G, h′ ∈ H.

5



Definition 2.2.7. Let G be a group and H ⊆ G. If H is a group with the same operation
as G, then we say that H is a subgroup of G.

Definition 2.2.8. Let G be a group. If g1g2 = g2g1, for every g1, g2 ∈ G, then G is called
an abelian group.

Definition 2.2.9. Let F be a set of elements. If (F,+) is an abelian group with additive
identity 0, (F\{0}, ·) is an abelian group with multiplicative identity and multiplication
distributes over addition, then (F,+, ·) is called a field.

2.3 Linear Algebra

The following section is a survey of material needed in this thesis. For further results, please
refer to [13].

Remark 2.3.1. We will assume throughout this thesis that all vectors are column vectors.

Definition 2.3.2. The norm of a vector v = (v1, . . . , vn) ∈ Rn is

||v|| =
√
v2

1 + . . .+ v2
n.

Definition 2.3.3. Let n be a positive integer and A be an n× n matrix. If v is a non-zero
vector of dimension n such that

Av = λv

for some scalar λ, then we call v an eigenvector of A. Additionally, λ is the eigenvalue of
A corresponding to v.

Definition 2.3.4. Let G = (V,E) be a graph such that V = {x1, . . . , xn}. The adjacency
matrix of G is the n × n matrix A such that Ai,j = 1 if and only if {xi, xj} ∈ E, and 0
otherwise, for 1 ≤ i, j ≤ n.

Since by definition an adjacency matrix is real and symmetric, it follows that all eigen-
values of any adjacency matrix are real numbers. For the remainder of this thesis, the
eigenvalues of a graph will be taken as the eigenvalues of the graph’s adjacency matrix. As
well, we will always write them in non-increasing order, λ1 ≥ . . . ≥ λn.

Definition 2.3.5. Let G = (V,E) be a graph such that V = {x1, . . . , xn}, E = {e1, . . . , em}.
The incidence matrix of G is the n ×m matrix B such that Bi,j = 1 if and only if xi is
incident to ej, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Lemma 2.3.6 (Lemma 8.6.22 of [24]). Let G be a k-regular graph. Then the eigenvalue of
G with the largest absolute value is k.
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Lemma 2.3.7 (Lemma 8.5.1 of [9]). Let G be a k-regular graph on n vertices with eigen-
values k, λ2, . . . , λn (from Lemma 2.3.6). Then G and its complement G have the same
eigenvectors, and the corresponding eigenvalues of G are n − k − 1,−1 − λ2, . . . ,−1 − λn,
respectively.

Definition 2.3.8. Let u, v be vectors in Rd. The dot product of u and v is given as u · v =
uT v.

Definition 2.3.9. Two vectors u, v in Rd are orthogonal if u · v = 0.

Definition 2.3.10. The Gram matrix of a set of vectors {v1, . . . , vn} is the n × n matrix
A whose elements are given by Aij = vi · vj, for 1 ≤ i, j ≤ n.

Definition 2.3.11. Let M be a square matrix. Then M is called an orthogonal matrix if
and only if MMT = I.

Proposition 2.3.12. If M is an orthogonal matrix then MTM = I and MT = M−1.

Proof. Assume M is an orthogonal matrix, so that MMT = I. By elementary properties of
inverse matrices, we see that MT = M−1. Then by multiplying on the right hand side by
M we have MTM = M−1M , hence MTM = I.

Proposition 2.3.13. The product of two orthogonal matrices is an orthogonal matrix.

Proof. Let M,N be orthogonal matrices of the same dimension. Then we have

(MN) (MN)T = MNNTMT = MMT = I.

Proposition 2.3.14. Linear transformations defined by orthogonal matrices preserve dot
products between vectors.

Proof. Let n be a positive integer and let M be an n × n orthogonal matrix. If u, v are
n-dimensional vectors, then we have

(Mu) · (Mv) = (Mu)T (Mv) = uTMTMv = uT v = u · v.

Definition 2.3.15. Let M be an n×m matrix for positive integers n,m. If N is a matrix
then the Kronecker (or tensor) product of M and N is defined as

M ⊗N =


M1,1N . . . M1,mN

... . . . ...
Mn,1N . . . Mn,mN

 .
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Proposition 2.3.16 ([10]). Let M,N,P,Q be matrices and let α be a scalar. Assuming the
matrices MP ,NQ,M−1 and N−1 exist, the Kronecker product has the properties below.

(M ⊗N)(P ⊗Q) = (MP )⊗ (NQ) (2.1)

(M +N)⊗ P = M ⊗ P +N ⊗ P (2.2)

(M ⊗N)⊗O = M ⊗ (N ⊗O) (2.3)

(M ⊗N)−1 = M−1 ⊗N−1 (2.4)

(M ⊗N)T = MT ⊗NT (2.5)

Proposition 2.3.17. Let M and N be orthogonal matrices. Then M ⊗N is an orthogonal
matrix.

Proof. Assume that M,N are orthogonal matrices. Then using Proposition 2.3.16,

(M ⊗N) (M ⊗N)T = (M ⊗N)
(
MT ⊗NT

)
=
(
MMT

)
⊗
(
NNT

)
= I ⊗ I = I.

Proposition 2.3.18. Let M and N be matrices such that u and v are eigenvectors of M
and N , with corresponding eigenvalues λ and µ, respectively. Then u⊗ v is an eigenvector
of M ⊗N with eigenvalue λµ.

Proof. Using (2.1), and regarding λ and µ as 1× 1 matrices,

(M ⊗N) (u⊗ v) = (Mu)⊗ (Nv) = (λu)⊗ (µv) = λµ (u⊗ v) .

2.4 Group Representation

Definition 2.4.1. Let K be a field and n be a positive integer. The group of all invertible
n × n matrices over the field K under matrix product is the general linear group denoted
GL(n,K).

Definition 2.4.2. Let G be a group, K be a field and n be a positive integer. Then a group
representation of G over K is a map ρ : G→ GL(n,K) such that ρ(g1g2) = ρ(g1)ρ(g2) for
all g1, g2 ∈ G.

Definition 2.4.3. Let G be a group, K be a field and n be a positive integer. A group
representation ρ : G → GL(n,K) of G is called orthogonal if the representation ρ(g) of g
is an orthogonal matrix for all g ∈ G.

8



Proposition 2.4.4. Let K be a field and n,m be positive integers. For groups G and H,
let ρG and ρH be orthogonal group representations of G and H in GL(n,K) and GL(m,K),
respectively. Then the map ρG×H given by

ρG×H(g, h) = ρG(g)⊗ ρH(h) (2.6)

is an orthogonal group representation of G×H in GL(mn,K), for all g ∈ G and h ∈ H.

Proof. Let (g1, h1), (g2, h2) ∈ G×H. By equation (2.1) we have

ρG×H(g1, h1)ρG×H(g2, h2) = (ρG(g1)⊗ ρH(h1)) (ρG(g2)⊗ ρH(h2))

= (ρG(g1)ρG(g2))⊗ (ρH(h1)ρH(h2)) .

Since ρG and ρH are group representations, we know that ρG(g1)ρG(g2) = ρG(g1g2) and
ρH(h1)ρH(h2) = ρH(h1h2). Therefore we have

ρG×H(g1, h1)ρG×H(g2, h2) = ρG(g1g2)⊗ ρH(h1h2).

Lastly, from (2.6) we get

ρG×H(g1, h1)ρG×H(g2, h2) = ρG×H(g1g2, h1h2)

and therefore ρG×H is a group representation of G × H in GL(nm,K). Also, since ρG(g)
and ρH(h) are orthogonal matrices, for all g ∈ G and h ∈ H we have that ρG×H(g, h)
is an orthogonal matrix by Proposition 2.3.17. Therefore, ρG×H is an orthogonal group
representation in GL(nm,K).

2.5 Complex Numbers

Let i =
√
−1. We first state a well known formula.

Theorem 2.5.1 (Euler’s Formula). For any real number x, we have the following relation-
ship.

cosx+ i sin x = exi.

Using Euler’s formula, any z ∈ C can be written in any of the three forms below.

z = a+ bi = |z| cos θ + i|z| sin θ = |z|eθi (2.7)

where |z| =
√
a2 + b2 for a, b ∈ R and θ ∈ (−π, π]. We will switch between these forms as

necessary.

9



Definition 2.5.2. Let a, b ∈ R and z = a + bi. The complex conjugate of z is given by
z = a− bi.

Definition 2.5.3. For a complex number z = |z|eθi where θ ∈ (−π, π], the argument (or
phase) of z is θ and is denoted arg(z).

Remark 2.5.4. For z = |z| cos θ + i|z| sin θ, its complex conjugate is

z = |z| cos θ − i|z| sin θ = |z| cos(−θ) + i|z| sin(−θ).

From this we can see that arg(z) = − arg(z), unless arg(z) = π. Additionally for any
z1, z2 ∈ C, we have arg(z1z2) = arg(z1) + arg(z2).

Definition 2.5.5. Let a, b ∈ R and z = a + bi. The real part of z is <(z) = a and the
imaginary part is =(z) = b.

Notice that for a complex number z, we can compute the real and imaginary parts as
follows

<(z) = 1
2(z + z̄), =(z) = i

2(z̄ − z). (2.8)

Definition 2.5.6. Let ζ be an element of C and n be a positive integer. Then ζ is an
nth root of unity if ζn = 1. Additionally, ζ is a primitive nth root of unity if ζk 6= 1 for
1 ≤ k < n and ζn = 1. We denote ζn = e

2πi
n and note that ζn is a primitive nth root of

unity.

Remark 2.5.7. For integers n and k, we can write

ζkn = e
2πki
n = cos 2πk

n
+ i sin 2πk

n
.

Definition 2.5.8. Let n be a positive integer and let A be an n×n matrix. The Hermitian
(or conjugate) transpose of A, denoted A∗, is defined in terms of its elements by

(A∗)ij = Aji

for 1 ≤ i, j ≤ n.

Remark 2.5.9. Notice that if A is a real matrix, then A∗ = AT .

2.6 Orthonormal Representation

In 1979, László Lovász published a paper titled “On the Shannon Capacity of a Graph” [17].
He introduced his discovery of an upper bound for the Shannon capacity of a graph, an
important value in the field of information theory. In the same paper, Lovász also discussed
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orthonormal representations of a graph. At several places in his recent book draft [16],
Lovász points at the connections between the symmetries of a graph and symmetries of
its orthonormal representations. Chapter 19 of [16] exposes further interesting connection
between orthonormal representations and quantum physics, including also a discussion of
the hidden variable theories in quantum physics.

Definition 2.6.1. Let d be a positive integer. A d-dimensional orthonormal representation
(henceforth referred to as an OR) of a graph G = (V,E) is a mapping f : V → Rd such that
for each x ∈ V we have ||f(x)|| = 1 and if {x, y} ∈ E then f(x) and f(y) are orthogonal
vectors.

Lovász defined the following two results relating to an OR of a graph.

Definition 2.6.2. Let d be a positive integer and let (u1, . . . , un) ⊆ Rd be an OR of a graph.
The value of an OR is given by

min
h

[
max

1≤i≤n

(
1

(hTui)2

)]
(2.9)

where h ∈ Rd ranges over all unit vectors.

Definition 2.6.3. Let G be a graph. The Lovász theta number of G is the minimum value
over all ORs of G, denoted ϑ(G).

Lovász defines an OR of a graph to be a set of unit vectors where orthogonal vectors
exactly correspond to non-adjacent vertices, [16] and [17]. Our definition of an OR is the
complement definition to that of Lovász. We make this choice because the graph that is
the subject of our study (which we will define in Chapter 3) is 6-regular. This implies that
its complement graph is (n − 7)-regular where n is the number of vertices in the graph.
Using our definition, each vector of an OR must be orthogonal to only 6 others, rather than
n− 7. We anticipate that some of the symmetries of the graph will be reflected in any OR,
and this is our initial Ansatz as well. If we can find an infinite family of graphs who admit
ORs in R4 which are KS sets, then we will have an infinite family of KS sets in R4. While
searching for such a family, it is important that all of the vectors in the OR are distinct.

Definition 2.6.4. Let G be a graph. An OR (u1, . . . , un) of G is said to be a faithful
representation of G if ui 6= ±uj for all i 6= j.

Though most of these definitions come directly from Lovász, Definition 2.6.4 does not.
This additional definition s common in quantum information literature.

Now we will review what structures are necessary within an OR so that it induces a KS
set.
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2.7 Kochen-Specker Set

The Kochen-Specker (KS) Theorem diverges from the Einstein’s hidden variables model for
quantum mechanics, Section 19.3 of [16]. We state the theorem below.

Theorem 2.7.1 (Kochen-Specker [12]). In Hilbert spaces of dimension d ≥ 3, quantum
mechanics cannot be described by any non-contextual hidden variable model.

The concept of contextuality does not exist in classical physics and states that the
measurement of an observable depends on the context of other observables being jointly
measured. It is thought to be a useful resource for quantum information theory, quantum
processing, and hence, quantum computing. In fact, a recent paper in Nature journal em-
phasized the potential importance of contexuality to quantum information processing [11].
We will focus solely on the combinatorial tools that have practical applications. As we have
mentioned earlier, the Kochen-Specker Theorem can be proven using a parity proof. One
way to construct a parity proof of the KS Theorem is by constructing so-called KS sets.

Definition 2.7.2 ([14, 15]). The pair (V,B) is a Kochen-Specker set (henceforth called a
KS set) in Rd (or Cd) if the following conditions are met.

• V is a finite set of vectors in Rd (or Cd).

• B = (B0, . . . , Bk−1) where k is odd, and for all i = 0, . . . , k − 1 we have that Bi is an
orthogonal basis of Rd and Bi ⊂ V.

• For each v ∈ V the number of indices i such that v ∈ Bi is even.

Remark 2.7.3. The proof of Theorem 2.7.1, encoded in Definition 2.7.2, is based on a
parity argument. We call any KS set as defined in Definition 2.7.2 a parity proof of the
Kochen-Specker theorem.

These sets of vectors are important objects in quantum mechanics and some have been
implemented in experimental settings [14]. Even though KS sets exist in Cd, we will primarily
be considering KS sets over the real numbers in this thesis. Discovering KS sets in low
dimensions is of interest as it may help to simplify practical experiments. The following
result proves that d = 4 is the smallest dimension where a KS set can exist.

Proposition 2.7.4. In a parity proof of the Kochen-Specker Theorem, the dimension d of
the vectors must be even.

Proof. Let (V,B) be a KS set in Rd. We know that k, the number of orthogonal bases in B,
must be odd. Notice that |Bi| = d for each orthogonal basis Bi in Rd (or Cd). Therefore, the
k bases each contain d vectors, which yields a total of kd not necessarily distinct vectors.
Since we require each v to be in an even number of bases of B, each vector v must appear
an even number of times in the kd vectors mentioned above. Since k is odd, we conclude
that d must be even.

12



Now we discuss the result which immediately follows.

Corollary 2.7.5. The smallest dimension d where parity proofs are possible is d = 4.

Proof. By Theorem 2.7.1, the KS Theorem only holds when d ≥ 3. From Proposition 2.7.4
we know that d must be even. Hence, d ≥ 4.

Many well-known KS sets occur in dimension 4 [3, 15, 21, 20]. Though there are many
KS sets in R4, only finitely many of them are known at the time of writing this thesis. Since
four is the smallest dimension which can support a KS set, it may be useful to discover more
of them. Our goal was to find an infinite family of KS sets in R4. In [20], Pavičić presents
his discovery of so called "master sets" which consist of KS sets with similar structures.
Using exhaustive search algorithms and relating the structures of any discovered sets to
those previously found, Pavičić was able to generate many distinct KS sets in R4. However,
this study of master sets in four dimensional space still yielded only a finite number of KS
sets. The master sets are sporadic and hence we are assured an infinite family of KS sets
would not be contained in the master sets.

13



Chapter 3

Chordal Ring Graph

The chordal ring graph is a cycle graph with n vertices, and chords connecting vertices
through the middle of the ring, defined by a parameter c. It is a popular structure often
used when implementing local networks of computers. We discuss the structure of this
graph in the first section. For some parameters c, the chordal ring can be highly symmetric.
Since it is so symmetric, the automorphisms of the chordal ring act transitively on the
vertices and edges. As we have mentioned, our goal was to find a graph whose orthonormal
representations satisfy the conditions of a Kochen-Specker set in R4. We show that for
certain parameters n and c, the line graph of the chordal ring admits an OR in R4, and
thus is a KS set in R4. Lastly, we define the dihedral group and relate the automorphisms
of the chordal ring to a product of two dihedral groups. Using this result, we are able to
define linear transformations which act on the ORs of the chordal ring in a similar way to
the automorphisms. This link is integral to our main construction of KS sets.

3.1 Structure of the Chordal Ring

Definition 3.1.1. Let n, c be positive integers such that 1 < c < n − 1. The chordal ring
graph, denoted CRn,c, is the graph with vertex set Zn such that two vertices x, y are adjacent
if and only if (x− y) (mod n) ∈ {±1,±c}.

The chordal ring graph CRn,c is a cycle of length n made up of ring edges and inner
chord edges determined by c. The chordal ring graph can be obtained as the undirected
graph corresponding to a Cayley graph [25]. The Cayley graph of a group G and a generating
subset H of G is the directed graph where the vertices are the elements of G and there exists
an edge {g, h} if gh−1 ∈ H, for g, h ∈ G. All Cayley graphs are vertex transitive and in fact,
for graphs with small order, most vertex transitive graphs are Cayley graphs as seen on
page 737 of [22]. Vertex transitivity is a desired characteristic of our graph because, under
this condition, the associated physical experiments become simpler and computing our OR
also becomes simpler. Vertex transitive graphs are highly symmetric and we aimed to use

14



the symmetries of the graph to construct an OR. For this reason, the chordal ring graph
was very attractive to us.

Remark 3.1.2. We will label the vertices of CRn,c in counter-clockwise, increasing order
starting with vertex v0 as in Figure 3.2. The edge labelled ei has endpoints vi, v(i+1) mod n

and the edge labelled ei+n has endpoints vi, v(i+c) mod n, for 0 ≤ i ≤ n− 1.

Example 3.1.3. An example of the vertex and edge labelling of CRn,c, in Figure 3.1.

v0

vn−1

vn−2

vn−3v3

v2

v1
en−1

en−2

en−3e2

e1

e0

e2n−1

e2n−2

e2n−3

en

en+1

en+2

Figure 3.1: The vertex and edge labelling of CRn,c.

Example 3.1.4. Let n = 15 and c = 4, then CR15,4 is given in Figure 3.2.

0 14

13

12

11

10

9
87

6

5

4

3

2

1

Figure 3.2: CR15,4.

Proposition 3.1.5. Let n, c be integers such that 1 < c < n − 1. If c = n
2 , then CRn,c is

3-regular. Otherwise, CRn,c is 4-regular.

Proof. The proof follows from the definition of CRn,c.
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Not every n and c will yield a graph whose line graph admits an orthonormal represen-
tation in R4. We found that certain choices of c, for each value of n, have advantages when
proving an OR is a KS set. Therefore we will introduce some additional requirements for n
and c. We require that n be an odd integer that is not a prime power, and c must satisfy

c2 ≡ 1 (mod n). (3.1)

We will explain the condition where n must be odd later in the thesis. For now, assume
that n is odd. Notice that c = ±1 mod n will satisfy equation (3.1), but we do not allow
these solutions because by definition of the chordal ring, 1 < c < n− 1. Therefore, we need
to find an n for which a non-trivial solution c for equation (3.1) exists. When n is an odd
prime power, the only solutions to (3.1) are the trivial solutions.

Proposition 3.1.6. Let p be an odd prime and q a positive integer. Then the equation
c2 ≡ 1 (mod pq) has exactly two solutions, namely c = ±1 mod pq.

Proof. Let c be an integer such that 1 ≤ c < pq. We have

c2 − 1 = kpq

for some integer k. We can factor the left hand side to get

(c+ 1)(c− 1) = kpq.

This means that either pq divides c+ 1 or c− 1, or the powers of p are shared between c+ 1
and c − 1. If p|c + 1 and p|c − 1, then p| gcd(c + 1, c − 1) = 2. This contradicts the initial
assumption that p is odd. So we must be in the case where pq divides one of c+ 1 or c− 1.
Assume first that pq|c+ 1, then we have

c+ 1 = k1p
q

for some integer k1. This implies that c ≡ −1 (mod pq). Now assume that pq|c− 1, then we
have

c− 1 = k2p
q

for some integer k2. This implies that c ≡ 1 (mod pq), which is also a solution to (3.1).
Therefore, for any odd prime p and integer q > 0, the equation c2 ≡ 1 (mod pq) has exactly
two solutions, specifically c = ±1 mod pq.

Thus we require n to be the product of two coprime positive odd integers. For the rest
of this thesis assume that n = pq for coprime, odd integers p, q > 1. Below we show that
this choice of n yields non-trivial roots to equation (3.1).
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Theorem 3.1.7 (Chinese Remainder Theorem, [23]). Suppose m1,m2, . . . ,mr are pairwise
relatively prime positive integers, and suppose a1, . . . , ar are integers. Then the system of r
congruences x ≡ ai (mod mi) (1 ≤ i ≤ r) has a unique solution moduloM = m1·m2·. . .·mr,
given by

x =
r∑
i=1

aiMiyi mod M,

where Mi = M/mi and yi = M−1
i mod mi, for 1 ≤ i ≤ r.

Corollary 3.1.8. Let n = pq for coprime, odd integers p, q > 1. Then the equation c2 ≡ 1
(mod n) from (3.1) has at least two non-trivial solutions.

Proof. Let c be a solution to equation (3.1). If c ≡ ±1 (mod n) then c ≡ ±1 (mod p)
and c ≡ ∓1 (mod q), taking the top or bottom sign consistently. These are the trivial
solutions, so we will only consider the other possible solutions to c2 ≡ 1 (mod n). Let c ≡ 1
(mod p) and c ≡ −1 (mod q). Using Theorem 3.1.7, we know that there must exist a unique
solution to c ≡ A (mod n), for some A. Notice that by squaring both equations, we get
c2 ≡ 1 modulo p and modulo q. This implies c2 ≡ 1 (mod n). Therefore, A ≡ 1 (mod n)
and we have found a non-trivial solution to equation (3.1). The other non-trivial solution
results from switching the values so that c ≡ −1 (mod p) and c ≡ 1 (mod q).

Remark 3.1.9. Notice that the non-trivial solutions to c2 ≡ 1 (mod n) are of the form
c ≡ ±1 (mod p) and c ≡ ∓1 (mod q). For the remainder of this thesis we will assume,
without loss of generality, that the value of c is achieved from choosing c ≡ 1 (mod p)
and c ≡ −1 (mod q). We can do this because the assignments of p, q are arbitrary. This
assumption is made to simplify calculations in our construction.

Now that we have shown our choice of n yields non-trivial solutions to equation (3.1),
we can assume 1 < c < n − 1. Using such a non-trivial solution c as a parameter in the
chordal ring graph simplifies our proofs and calculations for the remainder of the thesis.

Corollary 3.1.10. Let n = pq for coprime, odd integers p, q > 1. Then

Zn ∼= Zp × Zq.

Proof. Let φ be the map from Zn to Zp × Zq defined by

φ(x) = (x mod p, x mod q)
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for x ∈ Zn. Since p, q are coprime and n = pq, by Theorem 3.1.7, this map is bijective. Now
let x, y ∈ Zn. Then we have

φ(x+Zn y) = φ(x) +Zn φ(y)

=
(
x mod p, x mod q

)
+Zn

(
y mod q, y mod q

)
=
(
(x mod p) +Zp (y mod p), (x mod q) +Zq (y mod q)

)
.

Therefore, φ is an isomorphism and Zn ∼= Zp × Zq.

3.2 The Line Graph of the Chordal Ring

An orthonormal representation of CRn,c in R4 will not directly yield a KS set. To achieve
this we must consider the line graph of the chordal ring, L(CRn,c). Definition 2.7.2 specifies
three conditions that must be met by a KS set in R4. They are

• V is a finite set of vectors in Rd.

• B = (B0, . . . , Bk−1) where k is odd, and for all i = 0, . . . , k − 1 we have that Bi is an
orthogonal basis of Rd and Bi ⊂ V.

• For each v ∈ V the number of i such that v ∈ Bi is even.

We will now show that an OR of the line graph of CRn,c induces a KS set.

Theorem 3.2.1. Let n = pq for coprime, odd integers p, q > 1. A 4-dimensional orthonor-
mal representation of L(CRn,c) is a Kochen-Specker set in R4.

Proof. Suppose V is an OR of L(CRn,c) in R4. Since CRn,c is 4-regular by Proposition
3.1.5, each vertex xi in CRn,c corresponds to a clique Ci of size 4 in L(CRn,c). By our
definition of an OR, these cliques Ci correspond to a basis Bi in R4. Since the number n
of vertices of CRn,c is odd, then there are an odd number of these orthogonal bases in R4.
So let B = (B0, . . . , Bn−1). Lastly, because each edge of CRn,c is incident with exactly two
vertices, xi and xj , in CRn,c, each vertex of L(CRn,c) is contained in exactly two cliques,
Ci and Cj , of L(CRn,c). Therefore each vector in an OR of L(CRn,c) is contained in exactly
two bases from B. Since each vector is in an even number of bases in B, we have satisfied
all three of the above requirements of a KS set.

Therefore, when n = pq for coprime, odd integers p, q > 1 and c satisfying c2 ≡ 1
(mod n), any 4-dimensional OR of L(CRn,c) satisfies the conditions necessary to be a KS
set in R4. Implicitly, the remaining challenge is then to construct an OR of L(CRn,c) in R4.
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3.3 Automorphism Group of the Chordal Ring and Its Line
Graph

As we have said above, the chordal ring graph is a widely used structure in networking and
graph theory because of its symmetries and connectivity. Let n = pq for p, q > 1 coprime,
odd integers and c such that c2 ≡ 1 (mod n) and 1 < c < n − 1. We will soon see how
this choice of c simplifies calculations. Recall that we assumed c ≡ 1 (mod p) and c ≡ −1
(mod q). To illustrate how symmetric CRn,c is, we first find some automorphisms of the
chordal ring. Recall that by Definition 3.1.1, the vertex set of CRn,c is Zn.

Theorem 3.3.1. Let n = pq for coprime, odd integers p, q > 1 and let c be an integer
such that c2 ≡ 1 (mod n). Let s, t ∈ Z2, d ∈ Zn and φ be the map from V (CRn,c) to itself,
defined by

φ(x) = (−1)sctx+ d mod n. (3.2)

Then φ is an automorphism of CRn,c.

Proof. Notice that by definition, c is coprime to n and hence so is (−1)sct. Therefore, φ
defined above is a bijection. If we show that φ preserves adjacency between vertices of CRn,c,
then φ is a homomorphism and therefore an automorphism. Let x, y be adjacent vertices in
CRn,c. Hence we know (x− y) ∈ {±1,±c}. By applying φ to both vertices, we get

φ(x) = (−1)sctx+ d mod n

φ(y) = (−1)scty + d mod n.

To show φ preserves adjacency, we need to show that φ(x)−φ(y) ∈ {±1,±c} (mod n). We
have

φ(x)− φ(y) = (−1)sct(x− y) mod n.

Since x− y ∈ {±1,±c} and c2 ≡ 1 (mod n), we have that

(−1)sct(x− y) ∈ {±1,±c} (mod n).

Therefore φ is an automorphism of CRn,c.

Now let us examine further the map φ defined above. If s, t = 0, then we get the map
φ(x) = x + d mod n, which yields rotational symmetry as d varies over Zn. If s = 1 and
d, t = 0, then we get φ(x) = −x mod n, which yields reflectional symmetry in the graph.
Lastly, if t = 1 and d, s = 0, the map becomes φ(x) = cx mod n. This form of φ results in a
switching of ring edges and chords. We will look at some example images under these maps.
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Example 3.3.2. Let d, x ∈ Zn and s = t = 0. Then we have φ(x) = x+d mod n which will
represent a cyclic shift by d. If d = 3, the image of CR15,4 is the resulting graph in Figure
3.3.
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Figure 3.3: The image of CR15,4 under φ with s, t = 0 and d = 3.

Example 3.3.3. Let x ∈ Zn, s = 1 and t = d = 0. Then we have φ(x) = −x mod n. In
Figure 3.4 we see the image of CR15,4 under φ, which reflects the vertices about the vertical
line passing through the vertex labelled 0.
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Figure 3.4: The image of CR15,4 under φ with d, t = 0 and s = 1.

Example 3.3.4. Let x ∈ Zn, d = s = 0 and t = 1. Then φ(x) = cx mod n sends each ring
edge to a distinct chord edge and vice versa. The image of CR15,4 under φ is the graph in
Figure 3.5.

Now that we have defined multiple automorphisms of CRn,c, we state the following
result.
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Figure 3.5: The image of CR15,4 under φ with d, s = 0 and t = 1.

Theorem 3.3.5. Let n = pq for coprime, odd integers p, q > 1 and let c be such that c2 ≡ 1
(mod n). Let

A = {φ : φ(x) = (−1)sctx+ d (mod n)} (3.3)

be the set of automorphisms such that s, t ∈ Z2, d ∈ Zn. Then A is a subgroup of Aut(CRn,c).

Proof. By Theorem 3.3 in [8], since A is a finite subset of the automorphism group of CRn,c,
we need only show that A is closed under the group operation, which in our case is func-
tion composition given in Definition 2.2.3. Now let φ1, φ2 ∈ A with associated parameters
s1, t1, d1 and s2, t2, d2. For x ∈ V we have

φ1(φ2(x)) = (−1)s1+s2ct1+t2x+ d1 + (−1)s1ct1d2 (mod n). (3.4)

The mapping in (3.4) is in A because d1 + (−1)s1ct1d2 ∈ Zn.

We will not attempt to prove that A = Aut(CRn,c), although numerical calculations
suggest that this is the case. This will be further explained in Theorem 3.5.11 and in the
remarks immediately preceding it.

Corollary 3.3.6. Let n = pq for coprime, odd integers p, q > 1 and let c be an integer such
that c2 ≡ 1 (mod n). Then |Aut(CRn,c)| ≥ 4n.

Proof. By Theorem 3.3.5, A ⊆Aut(CRn,c). The rest of the proof follows from the number
of choices we have for s, t and d (since s, t ∈ Z2 and d ∈ Zn).

Remember that we are utilizing the symmetries of L(CRn,c) and not CRn,c. So our actual
goal is to study the automorphism group of the line graph. To achieve this, we consider the
automorphisms of CRn,c induced on the line graph. In 1932, Whitney proved that all edge
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permutations on finite, connected graphs are induced by graph automorphisms, with four
exceptions.

Theorem 3.3.7 ([25]). Let G and G′ be connected graphs and σ be an injective function
from E(G) to E(G′). Then σ is induced by an isomorphism of G onto G′ if and only if σ
preserves stars, where a star is any set of edges incident with a single vertex of G, with four
exceptions.

Let G′ = G = CRn,c, which is a connected graph. The four pairs of graphs which do
not follow the result are stated in [25], of which only three are such that G = G′. These
three graphs are K4, K3 with a single pendant vertex and the diamond graph (a K4 with
one edge removed, seen in [7]). It is easy to see that CRn,c is not isomorphic to any of
these three graphs, for all n and c defined above. We choose the vertex isomorphism to be
φ, as in (3.2), which we proved is an automorphism in Theorem 3.3.1. Since by definition,
automorphisms preserve adjacency for every pair of vertices, φ must preserve stars. So φ
induces an isomorphism from the edges of CRn,c to itself. Therefore, φ actually induces an
automorphism on the edges.

Corollary 3.3.8. Let n = pq for coprime, odd integers p, q > 1. Then Aut(CRn,c) =
Aut(L(CRn,c)).

Proof. This follows directly from Theorem 3.3.7.

Naturally, we assume the automorphism induced on the edges of CRn,c by some vertex
automorphism φ ∈ A is the map ψ : E(CRn,c)→ E(CRn,c) defined by

ψ({x1, x2}) = {φ(x1), φ(x2)} (3.5)

where {x1, x2} is any edge in CRn,c. This implies that the subgroup A of the automorphism
group of CRn,c induces a subset of the automorphism group of L(CRn,c). In fact, it induces
a subgroup of Aut(L(CRn,c)).

Theorem 3.3.9. Let n = pq for coprime, odd integers p, q > 1 and let c satisfy c2 ≡ 1
(mod n). Let A be the subgroup of the automorphism group of CRn,c defined in Theo-
rem 3.3.5. Let AL be the set of automorphisms of the form in (3.5) which act on L(CRn,c).
Then AL is a subgroup of the automorphism group of L(CRn,c).

Proof. Again, we need to show that AL is closed under function composition. Let ψ1, ψ2 ∈
AL and {x1, x2} be an edge in CRn,c. Then we have

ψ1(ψ2({x1, x2})) = {φ1(φ2(x1)), φ1(φ2(x2))}.

Since φ1, φ2 ∈ A, we conclude that AL is a subgroup of Aut(L(CRn,c)).

22



Now that we have defined groups of automorphisms of CRn,c and L(CRn,c), we can
begin studying the symmetries that follow.

3.4 Vertex and Arc Transitivity of the Chordal Ring

As we have mentioned earlier, a vertex transitive graph containes structures that benefit
quantum information theory, [1, 2, 4]. Our initial Ansatz was that some of the symmetries of
a graph are mirrored in an orthonormal representation. Therefore, having a vertex transitive
graph is an attractive characteristic for this thesis and the quantum theory applications.
We now consider the transitivity of the chordal ring and its line graph induced by A.

Theorem 3.4.1. Let n = pq for coprime, odd integers p, q > 1. If c such that c2 ≡ 1
(mod n), then CRn,c is vertex transitive.

Proof. The proof follows directly from the cyclic symmetry of CRn,c. Let x, y be two arbi-
trary vertices of CRn,c. It is sufficient to show there exists an automorphism φ such that
φ(x) = y for every pair of vertices x, y. If we choose φ as above with s, t = 0 and d to be
the difference of the two vertices, d ≡ y − x (mod n), then we have

φ(x) = x+ (y − x) mod n

= y mod n

Thus CRn,c is vertex transitive.

Even though CRn,c is undirected, we can replace each edge {x, y} of the graph with two
oppositely directed arcs, (x, y) and (y, x), for x, y ∈ V . Having the ability to send an arc to
all other arcs in a graph is a much stronger result than being able to do the same with the
edges.

Theorem 3.4.2. Let n = pq for coprime, odd integers p, q > 1. If c such that c2 ≡ 1
(mod n), then CRn,c is arc transitive.

Proof. Let φ1 and φ2 be automorphisms in A such that

φ1(x) = k1x+ d1 (mod n)

φ2(x) = k2x+ d2 (mod n)

for k1, k2, d1, d2 ∈ Zn. Consider the arc (0, 1). Notice that

φ1(0) = φ2(0) =⇒ d1 = d2

φ1(1) = φ2(1) =⇒ k1 = k2
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and φ1 = φ2. Therefore, each element of A gives a distinct image of (0, 1). Now notice
that there are 2n edges in CRn,c, which can be replaced with 4n arcs. As well there are 4n
automorphisms in the group A. Then for any arc (x, y), there exists a map φ ∈ A such that
φ : (0, 1)→ (x, y).

We want to show that there exists an automorphism φ that sends (x1, y1) to (x2, y2),
for any two arcs (x1, y1), (x2, y2) in CRn,c. Since we showed that there exists a map which
sends (0, 1) to an arbitrary arc of a graph, we can assume there exist φ1, φ2 ∈ A such that

(φ1(0), φ1(1)) = (x1, y1)

(φ2(0), φ2(1)) = (x2, y2).

Therefore, if we let φ = φ2 ◦ φ−1
1 then

φ : (x1, y1)→ (φ(x1), φ(y1)) = (φ2 ◦ φ−1
1 (x1), φ2 ◦ φ−1

1 (y1)) = (x2, y2).

So we have found a map φ ∈ A which sends any arc (x1, y1) to any arc (x2, y2) in CRn,c.

Corollary 3.4.3. Let n = pq for coprime, odd integers p, q > 1. If c is an integer such that
c2 ≡ 1 (mod n), then CRn,c is edge transitive.

Proof. This follows directly from Theorem 3.4.2.

Theorem 3.4.4. Let n = pq for coprime, odd integers p, q > 1. If c is an integer such that
c2 ≡ 1 (mod n), then L(CRn,c) is vertex transitive.

Proof. The vertex transitivity of L(CRn,c) aligns with the edge transitivity of CRn,c from
Corollary 3.4.3 and Theorem 3.3.7.

Now that we have studied the symmetries of the graphs, it would be useful to be able
to translate them to symmetries in the ORs, as has been our goal. The following section
discusses our method to express the symmetries of the graph in an OR.

3.5 The Dihedral Group

In this section we will define the dihedral group. We will use this structure’s natural sym-
metry to relate the automorphisms of CRn,c to linear transformations which act on ORs of
L(CRn,c).

Definition 3.5.1. The dihedral group is the group denoted Dn with identity e and gener-
ators R and S subject to Rn = S2 = e and SRS = R−1. To emphasize the value of n, we
write the generators of Dn as Rn,Sn.

Remark 3.5.2. Notice that SRS = R−1 is equivalent to SR = R−1S.
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Each element of Dn can be written as product of the generators Rn and Sn, as R`nSjn.
We say that an element of Dn is in canonical form when 0 ≤ ` < n and j ∈ {0, 1}.

Proposition 3.5.3. Let Dn be the dihedral group. Then |Dn| = 2n.

Proof. This follows from the fact that there are 2n canonically formed elements in Dn, all
of which are distinct.

Proposition 3.5.4. The product of two elements of Dn, in canonical form, is given by(
RiSj

) (
RsSt

)
= Ri+(−1)jsSj+t.

Proof. Let i, j, s, t be integers such that 0 ≤ i, s < n and 0 ≤ j, t ≤ 1. If j = 0, then we get(
RiSj

) (
RsSt

)
= Ri+sSt.

If j = 1, then, using the equivalence from Remark 3.5.2, we get(
RiSj

) (
RsSt

)
= Ri−sS1+t.

Since j = 0, 1, we can combine both cases to get(
RiSj

) (
RsSt

)
= Ri+(−1)jsSj+t.

It is well known that the group of symmetries of the regular n-gon in R2, centred at the
origin with one of its nodes on the horizontal axis, is isomorphic to the dihedral group Dn.
Here, R would be a rotation by 2π

n and S a reflection about the horizontal axis. It can be
easily checked that ρ : Dn → GL(2,R) is a group representation where the images of the
generators of Dn are

ρ(Rn) = Rn,k = 1
2

(
ζkn + ζ−kn −i(ζkn − ζ−kn )
−i(ζkn − ζ−kn ) ζkn + ζ−kn

)
=
(

cos 2πk
n − sin 2πk

n

sin 2πk
n cos 2πk

n

)
(3.6)

and

ρ(Sn) = Sn =
(

1 0
0 −1

)
. (3.7)

Recall ζn = e2πi/n denotes a primitive n-th root of unity in C and k is a fixed integer.

Remark 3.5.5. In general, by definition, ρ is a homomorphism for any fixed k. When
gcd(n, k) 6= 1, there will be fewer images of the elements of Dn under ρ. Since in the rest
of the thesis we are interested in bijective representations, we will assume that n and k are
coprime.
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This is important for the main result later in this chapter. Since all elements of the
dihedral group can be written as a product of its generators and the group representation
ρ is a homomorphism, all elements of the group can be written as a product of the matrix
representations of the generators. Explicitly we can represent elements R`Sj ∈ Dn as

ρ(R`nSjn) = R`n,kS
j
n (3.8)

for integers `, j. We will now discuss some results regarding matrices Rn,k, Sn.

Proposition 3.5.6. For integers n, k, the matrices

Rn,k =
(

cos 2πk
n − sin 2πk

n

sin 2πk
n cos 2πk

n

)
, Sn =

(
1 0
0 −1

)

are orthogonal matrices.

Proof. Notice that STn = Sn. Then we have SnSTn = S2
n = I and Sn is orthogonal. For Rn,k

we have

Rn,kR
T
n,k =

(
cos 2πk

n − sin 2πk
n

sin 2πk
n cos 2πk

n

)(
cos 2πk

n sin 2πk
n

− sin 2πk
n cos 2πk

n

)

=
(

cos2 2πk
n + sin2 2πk

n 0
0 cos2 2πk

n + sin2 2πk
n

)
= I.

Remark 3.5.7. Since Rn,k is orthogonal, RTn,k = R−1
n,k.

Theorem 3.5.8. Let ρ be the group representation of Dn defined by

ρ(R`nSjn) = R`n,kS
j
n

where R`nSjn ∈ Dn. Then ρ is an orthogonal group representation.

Proof. From Proposition 3.5.6, we know that the matrices in equations (3.6) and (3.7) are
orthogonal matrices. Also from Proposition 2.3.13, we know any product of Rn,k and Sn is
an orthogonal matrix. Then by Definition 2.4.3, ρ is an orthogonal group representation.

Proposition 3.5.9. Rn,k has eigenvalues ζkn, ζ−kn with corresponding eigenvectors
(

1
−i

)

and
(

1
i

)
, respectively.
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Proof. The proof is shown directly.

Rn,k

(
1
−i

)
= 1

2

(
ζkn + ζ−kn i(ζkn − ζ−kn )
−i(ζkn − ζ−kn ) ζkn + ζ−kn

)(
1
−i

)

= 1
2

(
ζkn + ζ−kn + ζkn − ζ−kn

−i(ζkn − ζ−kn )− i(ζkn + ζ−kn )

)

= 1
2

(
2ζkn
−2iζkn

)
= ζkn

(
1
−i

)

Rn,k

(
1
i

)
= 1

2

(
ζkn + ζ−kn i(ζkn − ζ−kn )
−i(ζkn − ζ−kn ) ζkn + ζ−kn

)(
1
i

)

= 1
2

(
ζkn + ζ−kn − ζkn + ζ−kn

−i(ζkn − ζ−kn ) + i(ζkn + ζ−kn )

)

= 1
2

(
2ζ−kn
2iζ−kn

)
= ζ−kn

(
1
i

)

Corollary 3.5.10. For any ` ∈ Z, the eigenvalues of R`n,k are ζk`n , ζ−k`n and corresponding

eigenvectors are
(

1
−i

)
and

(
1
i

)
.

Proof. From Proposition 3.5.9 we know that

Rn,k

(
1
±i

)
= ζ∓kn

(
1
±i

)
.

By induction, we reach the result

R`n,k

(
1
±i

)
= ζ∓k`n

(
1
±i

)
.

Using the computational algebra system Magma [18], we computed the automorphism
groups of CRn,c for small admissible values (15, 21, 33, 35, . . .) of n and c2 ≡ 1 (mod n). In
all cases, we observe that the automorphism group is isomorphic to Dp ×Dq where n = pq

for coprime p, q > 1. Theorem 3.5.11 is the basis of our conjecture, mentioned earlier, that
the group A from Theorem 3.3.5 is the full automorphism group of CRn,c.

Theorem 3.5.11. Let n = pq where p, q > 1 are coprime, odd integers and c an integer
such that c2 ≡ 1 (mod n). Let A be the subgroup of the automorphism group of CRn,c, from
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Theorem 3.3.5, and let Dp and Dq be dihedral groups of order 2p and 2q respectively. Then

A ∼= Dp ×Dq. (3.9)

Proof. Recall that for any φ ∈ A, we have

φ : x 7→ (−1)sctx+ d mod n (3.10)

where s, t ∈ Z2 and x, d ∈ Zn. Let Φ : A → Dp ×Dq be the map given by

Φ(φ) =
(
R(−1)sd
p Ssp ,R(−1)s+td

q Ss+tq

)
. (3.11)

We aim to show that Φ is an isomorphism. To show this, we need to prove that Φ(φ1)Φ(φ2) =
Φ(φ2 ◦ φ1), for any φ1, φ2 ∈ A, and that Φ is a bijection.

First, we compute the product of Φ(φ1) and Φ(φ2).

Φ(φ1)Φ(φ2) =
(
R(−1)s1d1
p Ss1

p ,R(−1)s1+t1d1
q Ss1+t1

q

) (
R(−1)s2d2
p Ss2

p ,R(−1)s2+t2d2
q Ss2+t2

q

)
Using Proposition 3.5.4, we have

Φ(φ1)Φ(φ2) =
((
R(−1)s1 d1

p Ss1
p

)(
R(−1)s2 d2

p Ss2
p

)
,
(
R(−1)s1+t1 d1

q Ss1+t1
p

)(
R(−1)s2+t2 d2

q Ss2+t2
q

))
=
(
R(−1)s1 d1+(−1)s1 (−1)s2 d2

p Ss1+s2
p ,R(−1)s1+t1 d1+(−1)s1+t1 (−1)s2+t2 d2

q Ss1+s2+t1+t2
q

)
=
(
R(−1)s1 (d1+(−1)s2 d2)

p Ss1+s2
p ,R(−1)s1+t1 (d1+(−1)s2+t2 d2)

q Ss1+s2+t1+t2
q

)
. (3.12)

Next, we compute the composition of the two maps using Definition 2.2.3.

(φ2 ◦ φ1) (x) = (−1)s1+s2ct1+t2x+ (−1)s2ct2d1 + d2 (mod n)

Then we apply the map Φ to the composition of the two automorphisms.

Φ(φ2 ◦ φ1) =
(
R(−1)s1+s2 [(−1)s1 ct1 d2+d1]

p Ss1+s2
p ,R(−1)s1+s2+t1+t2 [(−1)s1 ct1 d2+d1]

q Ss1+s2+t1+t2
q

)
=
(
R(−1)s2 ct1 d2+(−1)s1+s2 d1

p Ss1+s2
p ,R(−1)s2+t1+t2 ct1 d2+(−1)s1+s2+t1+t2 d1

q Ss1+s2+t1+t2
q

)
(3.13)

Recall that we assumed c ≡ 1 (mod p) and c ≡ −1 (mod q) in Remark 3.1.9. Since c ≡ 1
(mod p), cu ≡ 1u (mod p) for any value of u. From the definition of Rp, this gives us
Rcup = Rp. Similarly, c ≡ −1 (mod q) implies Rcuq = R(−1)u

q . Therefore we can further
simplify (3.13) to

Φ(φ2 ◦ φ1) =
(
R(−1)s1 d1+(−1)s1+s2 d2

p Ss1+s2
p ,R(−1)t2 (−1)s1+t1+t2 d1+(−1)s1+s2+t1+t2 d2

q Ss1+s2+t1+t2
q

)
=
(
R(−1)s1 (d1+(−1)s2 d2)

p Ss1+s2
p ,R(−1)s1+t1 (d1+(−1)s2+t2 d2)

q Ss1+s2+t1+t2
q

)
. (3.14)
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By observation, we can see (3.12) is equal to (3.14) and we have shown that

Φ(φ2 ◦ φ1) = Φ(φ1)Φ(φ2).

Now we show Φ is injective. Let φ1, φ2 be as above. Assume that the images of φ1 and
φ2 are equal under Φ.

Φ(φ1) = Φ(φ2)(
R(−1)s1d1
p Ss1

p ,R(−1)s1+t1d1
q Ss1+t1

q

)
=
(
R(−1)s2d2
p Ss2

p ,R(−1)s2+t2d2
q Ss2+t2

q

)
.

Then, considering the exponents on Sp, we conclude that s1 = s2. It then follows that
d1 = d2 and t1 = t2. Thus, Φ is injective. Since |A| = |Dp ×Dq|, we conclude that Φ is a
bijection, and therefore an isomorphism and A ∼= Dp ×Dq.

Now that we have related the automorphisms of CRn,c to the dihedral groups, remember
that we defined a group representation ρ of the dihedral group, given in (3.6) and (3.7) and
showed it is an orthogonal group representation in GL(2,R) in Theorem 3.5.8. We can
conclude that there exists an orthogonal group representation of Dp ×Dq in GL(4, R) by
Proposition 2.4.4. A representation of an element of Dp × Dq in GL(4,R) is given by the
product of the representation of an element in Dp and the representation of an element
in Dq. If (R`pp Sjpp ,R`qq Sjqq ) ∈ Dp × Dq, then by Proposition 2.4.4 and equation (3.8), a
representation of this element is given by

ρDp×Dq

(
R`pp Sjpp ,R`qq Sjqq

)
= R

`p
p,kp

Sjpp ⊗R
`q
q,kq

Sjqq . (3.15)

Since Rp,kp , Sp, Rq,kq , Sq are orthogonal matrices, Proposition 2.3.17 tells us that R`pp,kpS
jp
p ⊗

R
`q
q,kq

S
jq
q is also an orthogonal matrix. Therefore, the representation in (3.15) is a 4 × 4

real valued matrix which preserves dot products by Proposition 2.3.14. Lastly, since each
automorphism in A has a unique image in Dp ×Dq by Theorem 3.5.11, we have mirrored
the symmetries of the chordal ring in a 4-dimensional OR of L(CRn,c).

To recapitulate this chapter, we compile all of the main results to describe the targeted
relationship between the automorphisms of L(CRn,c) and the corresponding linear transfor-
mations which act on the ORs of L(CRn,c) in R4. Using a subgroup A of the automorphism
group of CRn,c, consisting of φ(x) = (−1)sctx + d, for x, d ∈ Zn and s, t ∈ {0, 1}, we were
able to show that L(CRn,c) is vertex transitive. Therefore, we can send any vertex of the
line graph to any other vertex. Once we knew this, we found an isomorphism which re-
lates the rotational symmetry of the chordal ring to a product of elements of two dihedral
groups. Combining these two concepts, we showed in Theorem 3.5.11 that there is a unique
automorphism for each representation of the elements of the direct product of two dihedral
groups.
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Chapter 4

Computer-Free Construction

It is natural to anticipate that some of the symmetries of a graph will be reflected in any
of its OR. Agreeing with our initial Ansatz, as well as the main result from the previous
chapter, we present a construction of an OR of L(CRn,c) in R4. This, together with Theorem
3.2.1, provides a KS set in R4. Since we have defined an infinite family of such graphs, we
arrive at our goal of constructing an infinite family of KS sets in R4. Our method reduces the
number of free variables needed to construct an OR of L(CRn,c) from 8n (2n vectors in R4)
to 8 (just 2 vectors in R4) by exploiting the rotational symmetry of the chordal ring. The
construction and proofs were done definitively without the use of numerical experiments.
It was, however, motivated by numerical data. In the following chapter, we discuss the
construction’s derivation and the computational results which acted as motivation.

Let n = pq for coprime, odd integers p and q. Let c be an integer where 1 < c < n− 1
and c2 ≡ 1 (mod n). Let A be the subgroup of Aut(CRn,c) given in Theorem 3.5.11. In the
previous section, we showed the existence of an isomorphism from A to the product of two
dihedral groups Dp and Dq. Though there are many symmetries available to us, we choose
to use only rotational symmetry in our construction because it is the simplest symmetry to
use.

Suppose σ is a map from edges of CRn,c to the vectors of an OR in R4. Let a and b

be vectors of an OR of L(CRn,c) corresponding to edges e0 and en in CRn,c, seen below in
Figure 4.1. As we mentioned above, the chordal ring graph has two types of edges, chords
and ring edges. The rotational symmetry has two orbits within the edges of CRn,c. All ring
edges comprise one orbit and the chords make up the other. Using just the cyclic symmetry
of the chordal ring, we are able to send e0 to all other ring edges and en to all other chord
edges. We use automorphisms of the form

φ(x) = x+ d mod n, (4.1)

where d ∈ Zn, to rotate the edges about the graph. Notice that because there is no c in this
φ, there will not be a switch between chords and ring edges. Even though we proved earlier
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v0
vn−1v1

vn−cvc

en−1e0

e2n−cen

Figure 4.1: Edges incident with v0 in CRn,c.

that CRn,c and L(CRn,c) are vertex transitive, we are only using some of the automorphisms
of A. However, the few we do use still act transitively on the vertices of CRn,c, which can be
seen in the proof of Theorem 3.4.1. Remember the map Φ, which sends automorphisms of
CRn,c to dihedral group elements, given in the proof of Theorem 3.5.11. When it is applied
to the automorphisms of the form in (4.1) we get

Φ(φ) =
(
Rdp,Rdq

)
. (4.2)

The linear transformations that act on the vectors a, b are the representations of the dihedral
group elements in (4.2) under ρ from equation (3.6). Explicitly they yield

ρDp×Dq(Φ(φ)) = Rdp,kp ⊗R
d
q,kq (4.3)

where kp, kq are coprime to p, q > 1, respectively. By applying maps of this form to a and
b, we will show how to generate a set of 2n vectors in R4 which preserve the structure of
L(CRn,c). To confirm that this set of vectors is an OR of L(CRn,c), we need to check that
all adjacent vertices of L(CRn,c) correspond to orthogonal vectors in the set.

We have mentioned earlier that each degree 4 vertex of CRn,c induces a clique of size
four in L(CRn,c). From our assumed labelling, made in Remark 3.1.2, any vertex vi in CRn,c
is adjacent to vertices vi+1, vi−1, vi+c and vi−c where all subscripts are modulo n. Consider
the vertex v0, in Figure 4.1, whose set of incident edges in CRn,c is {e0, en−1, en, e2n−c}. The
vectors corresponding to these edges must make up a mutually orthogonal set of size four.
Hence we require that the dot product of every pair of the vectors corresponding to these
edges evaluates to zero. We will now derive the vectors of the two edges on the right of Figure
4.2 in terms of a and b. Using the main result from the last chapter, Theorem 3.5.11, as well
as the representation from equation (4.3), we are able to use the linear transformations to
transform the vectors a and b to all other vectors in the OR. We next find the rotational
automorphisms which map e0 to en−1 and en to e2n−c. Rotating e0 to en−1 amounts to
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v0
vn−1v1

vn−cvc

(
R−1
p,kp
⊗R−1

q,kq

)
a

a

(
R−1
p,kp
⊗Rq,kq

)
bb

Figure 4.2: Vectors representing edges incident with v0 in CRn,c.

sending {v0, v1} to {vn−1, v0}. By applying the automorphism φ from equation (4.1) where
d = n− 1, to e0 we have

{0, 1} φ→ {φ(0), φ(1)} = {n− 1, 1 + n− 1} ≡ {n− 1, 0} (mod n)

which corresponds to {vn−1, v0} = en−1. Using the group representation from (4.3), the
linear transformation which will send a to a vector corresponding to en−1 is given by

ρ(Φ(φ)) = Rn−1
p,kp
⊗Rn−1

q,kq
= R−1

p,kp
⊗R−1

q,kq
.

Similarly, since e2n−c = {v0, vn−c} is a chord, we must find a map which sends en to e2n−c.
We let d = −c so that φ will send en = {v0, vc} to

{0, c} φ→ {φ(0), φ(c)} = {−c, c− c} ≡ {n− c, 0} (mod n)

which corresponds to {vn−c, v0} = e2n−c. Again using the representation in equation (4.3),
the linear transformation which maps b to the vector corresponding to e2n−c is

ρ(Φ(φ)) = R−cp,kp ⊗R
−c
q,kq

= R−1
p,kp
⊗Rq,kq

since we assumed without loss of generality that c ≡ 1 (mod p) and c ≡ −1 (mod q) from
Remark 3.1.9. Since these are the linear maps needed to send a, b to the correct vectors, we
have that

σ(en−1) =
(
R−1
p,kp
⊗R−1

q,kq

)
a, σ(e2n−c) =

(
R−1
p,kp
⊗Rq,kq

)
b.

Now that we have the vectors corresponding to e0, en−1, en and e2n−c (see Figures 4.1 and
4.2), we can consider the dot products of these vectors.
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Notice that we evaluate the dot product of vectors u and Mv as uTMv. By taking the
dot product of each pair, we get the following six equations which must be satisfied to
guarantee that our constructed set of vectors is indeed an OR of L(CRn,c).

(i) aT b = 0

(ii) aT
(
R−1
p,kp
⊗R−1

q,kq

)
a = 0

(iii) bT
(
R−1
p,kp
⊗Rq,kq

)
b = 0

(iv) aT
(
R−1
p,kp
⊗Rq,kq

)
b = 0

(v)
((
R−1
p,kp
⊗R−1

q,kq

)
a
)T

b = 0

(vi)
((
R−1
p,kp
⊗R−1

q,kq

)
a
)T (

R−1
p,kp
⊗Rq,kq

)
b = 0

Notice that even though the exponents on these matrices do not appear equal, this is because
we can reduce ` modulo p and q, for Rp,kp and Rq,kq , respectively. We can get ` from any pair
of exponents in the dot products using Theorem 3.1.7 since p and q are coprime. Though
these equations are derived from a single vertex of CRn,c using the rotational symmetry of
the graph, we are able to construct the same equations for every vector of the CRn,c.

4.1 The Main Construction

In this section, we will present our construction and show that the set of vectors we obtain
is in fact an OR of L(CRn,c) and hence a KS set. We also discuss some characteristics of
the resulting OR.

Theorem 4.1.1. Let n = pq for coprime, odd integers p, q such that p, q > 1 and let

a =


(1− C) cos 2πkq

q

(1− C) sin 2πkq
q

−(1 + C) sin 2πkq
q

(1 + C) cos 2πkq
q

 , b =


C + 1

0
0

C − 1

 (4.4)

where

C =

√√√√√−cos
(
2π
(
kp
p −

kq
q

))
cos

(
2π
(
kp
p + kq

q

)) (4.5)
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and kp, kq are chosen according to

kx =


⌈
x

4

⌉
, x ≡ 3 (mod 4)⌊

x

4

⌋
, x ≡ 1 (mod 4)

(4.6)

where b c is the floor function and d e is the ceiling function. Let

S = {ai : 0 ≤ i < n} ∪ {bi : 0 ≤ i < n} (4.7)

where

ai =
(
Rp,kp ⊗Rq,kq

)i
· a

bi =
(
Rp,kp ⊗Rq,kq

)i
· b.

Then S is an orthonormal representation of L(CRn,c) in R4.

Proof. We will show in Theorem 4.1.4 that our choice of kp and kq implies that C is real,
and hence, S is a set of real vectors. For now assume this to be true. The six dot products
we wish to show evaluate to zero are stated below.

(i) aT b = 0

(ii) aT
(
R−1
p,kp
⊗R−1

q,kq

)
a = 0

(iii) bT
(
R−1
p,kp
⊗Rq,kq

)
b = 0

(iv) aT
(
R−1
p,kp
⊗Rq,kq

)
b = 0

(v)
((
R−1
p,kp
⊗R−1

q,kq

)
a
)T

b = 0

(vi)
((
R−1
p,kp
⊗R−1

q,kq

)
a
)T (

R−1
p,kp
⊗Rq,kq

)
b = 0

We can simplify the dot product in (v) by expanding the transposed term.

((
R−1
p,kp
⊗R−1

q,kq

)
a
)T

b = aT
(
R−1
p,kp
⊗R−1

q,kq

)T
b.

Using (2.5) and the fact that R−1
n,kn

= RTn,kn from Remark 3.5.7, this simplifies to

aT
(
R−1
p,kp
⊗R−1

q,kq

)T
b = aT

((
R−1
p,kp

)T
⊗
(
R−1
q,kq

)T)
b = aT

(
Rp,kp ⊗Rq,kq

)
b = 0.
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Similarly, we simplify the dot product of (vi) to

((
R−1
p,kp
⊗R−1

q,kq

)
a
)T (

R−1
p,kp
⊗Rq,kq

)
b = aT

(
R−1
p,kp
⊗R−1

q,kq

)T (
R−1
p,kp
⊗Rq,kq

)
b

= aT
(
Rp,kp ⊗Rq,kq

) (
R−1
p,kp
⊗Rq,kq

)
b.

Using equation (2.1), we further simplify this to

aT
(
Rp,kp ⊗Rq,kq

) (
R−1
p,kp
⊗Rq,kq

)
b = aT

(
I ⊗R2

q,kq

)
b.

Additionally, notice that I ⊗ I = I, so aT b can be written as aT (I ⊗ I)b. Therefore, we may
restate all six equations in a uniform way.

(i) aT (I ⊗ I) b = 0

(ii) aT
(
R−1
p,kp
⊗R−1

q,kq

)
a = 0

(iii) bT
(
R−1
p,kp
⊗Rq,kq

)
b = 0

(iv) aT
(
R−1
p,kp
⊗Rq,kq

)
b = 0

(v) aT
(
Rp,kp ⊗Rq,kq

)
b = 0

(vi) aT
(
I ⊗R2

q,kq

)
b = 0

We will be referring to the equations in this form for the rest of the thesis.
Remember that R`n,k is the rotation matrix given by

R`n,k =
(

cos 2π`k
n − sin 2π`k

n

sin 2π`k
n cos 2π`k

n

)

where ` is an integer. For all equations but the first, we must calculate the Kronecker
product of the two rotation matrices R`pp,kp and R`qq,kq . Notice that for any pair of exponents
of the rotation matrices in equations (ii) through (vi), we can find an ` using Theorem 3.1.7
such that the product can be represented as

(
Rp,kp ⊗Rq,kq

)`
. Additionally we will use the

following trigonometric identities in the simplifications below.

sin2 θ + cos2 θ = 1 (4.8)

cos(θ + (2m+ 1)π) = − cos θ

sin(θ + (2m+ 1)π) = − sin θ (4.9)

cos(θ1 ∓ θ2) = cos θ1 cos θ2 ± sin θ1 sin θ2

sin(θ1 ± θ2) = sin θ1 cos θ2 ± cos θ1 sin θ2 (4.10)

where m ∈ Z. We will now show each equation, from (i) to (vi), is satisfied.
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Case 1 (Equation (i)). We will confirm that the first dot product evaluates to zero.

aT b = (1 + C)(1− C) cos 2πkq
q

+ (1 + C)(−1 + C) cos 2πkq
q

=
(
(1− C2)− (1− C2)

)
cos 2πkq

q
= 0

Case 2 (Equation (ii)). We will confirm that the second dot product evaluates to zero.

aT
(
R−1
p,kp
⊗R−1

q,kq

)
a =

= aT


cos 2πkp

p cos 2πkq
q cos 2πkp

p sin 2πkq
q sin 2πkp

p cos 2πkq
q sin 2πkp

p sin 2πkq
q

− cos 2πkp
p sin 2πkq

q cos 2πkp
p cos 2πkq

q − sin 2πkp
p sin 2πkq

q sin 2πkp
p cos 2πkq

q

− sin 2πkp
p cos 2πkq

q − sin 2πkp
p sin 2πkq

q cos 2πkp
p cos 2πkq

q cos 2πkp
p sin 2πkq

q

sin 2πkp
p sin 2πkq

q − sin 2πkp
p cos 2πkq

q − cos 2πkp
p sin 2πkq

q cos 2πkp
p cos 2πkq

q

 a

= aT


−(C − 1) cos 2πkp

p cos2 2πkq
q − (C − 1) cos 2πkp

p sin2 2πkq
q

(C + 1) sin 2πkp
p sin2 2πkq

q + (C + 1) sin 2πkp
p cos2 2πkq

q

(C − 1) sin 2πkp
p cos2 2πkq

q + (C − 1) sin 2πkp
p sin2 2πkq

q

(C + 1) cos 2πkp
p sin2 2πkq

q + (C + 1) cos 2πkp
p cos2 2πkq

q


All of the elements of the vector above can be factored and simplified using (4.8).

aT
(
R−1
p,kp
⊗Rq,kq

)
a = aT


−(C − 1) cos 2πkp

p

(
cos2 2πkq

q + sin2 2πkq
q

)
(C + 1) sin 2πkp

p

(
sin2 2πkq

q + cos2 2πkq
q

)
(C − 1) sin 2πkp

p

(
cos2 2πkq

q + sin2 2πkq
q

)
(C + 1) cos 2πkp

p

(
sin2 2πkq

q + cos2 2πkq
q

)



= aT


−(C − 1) cos 2πkp

p

(C + 1) sin 2πkp
p

(C − 1) sin 2πkp
p

(C + 1) cos 2πkp
p


Lastly, we multiply the remaining two vectors to get the following.

aT
(
R−1
p,kp
⊗Rq,kq

)
a = −(C − 1)2 cos 2πkp

p
cos 2πkq

q
+ (1− C2) sin 2πkp

p
sin 2πkq

q

+ (1− C2) sin 2πkp
p

sin 2πkq
q

+ (C + 1)2 cos 2πkp
p

cos 2πkq
q

= 2C2
(

cos 2πkp
p

cos 2πkq
q
− sin 2πkp

p
sin 2πkq

q

)
+ 2

(
cos 2πkp

p
cos 2πkq

q
+ sin 2πkp

p
sin 2πkq

q

)
= 2C2 cos

(2πkp
p

+ 2πkq
q

)
+ 2 cos

(2πkp
p
− 2πkq

q

)
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By substituting in the value of C, we see that this equation is verified.

aT
(
R−1
p,kp
⊗Rq,kq

)
a = −2

cos
(

2πkp
p −

2πkq
q

)
cos

(
2πkp
p + 2πkq

q

) cos
(2πkp

p
+ 2πkq

q

)
+ 2 cos

(2πkp
p
− 2πkq

q

)

= −2 cos
(2πkp

p
− 2πkq

q

)
+ 2 cos

(2πkp
p
− 2πkq

q

)
= 0

Case 3 (Equation (iii)). We will confirm that the third dot product evaluates to zero.

bT
(
R−1
p,kp
⊗Rq,kq

)
b =

= bT


cos 2πkp

p cos 2πkq
q − cos 2πkp

p sin 2πkq
q sin 2πkp

p cos 2πkq
q − sin 2πkp

p sin 2πkq
q

cos 2πkp
p sin 2πkq

q cos 2πkp
p cos 2πkq

q sin 2πkp
p sin 2πkq

q sin 2πkp
p cos 2πkq

q

− sin 2πkp
p cos 2πkq

q sin 2πkp
p sin 2πkq

q cos 2πkp
p cos 2πkq

q − cos 2πkp
p sin 2πkq

q

− sin 2πkp
p sin 2πkq

q − sin 2πkp
p cos 2πkq

q cos 2πkp
p sin 2πkq

q cos 2πkp
p cos 2πkq

q

 b

= bT


(C + 1) cos 2πkp

p cos 2πkq
q − (C − 1) sin 2πkp

p sin 2πkq
q

(C + 1) cos 2πkp
p sin 2πkq

q + (C − 1) sin 2πkp
p cos 2πkq

q

−(C + 1) sin 2πkp
p cos 2πkq

q − (C − 1) cos 2πkp
p sin 2πkq

q

−(C + 1) sin 2πkp
p sin 2πkq

q + (C − 1) cos 2πkp
p cos 2πkq

q


By multiplying on the left hand side by bT , we get the following.

bT
(
R−1
p,kp
⊗Rq,kq

)
b = (C + 1)2 cos 2πkp

p
cos 2πkq

q
− (C2 − 1) sin 2πkp

p
sin 2πkq

q

− (C2 − 1) sin 2πkp
p

sin 2πkq
q

+ (C − 1)2 cos 2πkp
p

cos 2πkq
q

= 2C2
(

cos 2πkp
p

cos 2πkq
q
− sin 2πkp

p
sin 2πkq

q

)
+ 2

(
cos 2πkp

p
cos 2πkq

q
+ sin 2πkp

p
sin 2πkq

q

)
= 2C2 cos

(2πkp
p

+ 2πkq
q

)
+ 2 cos

(2πkp
p
− 2πkq

q

)
Again, we expand this by substituting the value of C and the dot product evaluates to zero.

bT
(
R−1
p,kp
⊗Rq,kq

)
b = −2

cos
(

2πkp
p −

2πkq
q

)
cos

(
2πkp
p + 2πkq

q

) cos
(2πkp

p
+ 2πkq

q

)
+ 2 cos

(2πkp
p
− 2πkq

q

)

= −2 cos
(2πkp

p
− 2πkq

q

)
+ 2 cos

(2πkp
p
− 2πkq

q

)
= 0

Case 4 (Equation (iv)). We will confirm that the fourth dot product evaluates to zero.
Notice that since the matrix in (iv) is the same as in (iii), we do not need to recalculate
it. We are also multiplying by the same vector on the right hand side so we do not need to
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calculate this step either. Therefore, we can start with

aT
(
R−1
p,kp
⊗Rq,kq

)
b = aT


(C + 1) cos 2πkp

p cos 2πkq
q − (C − 1) sin 2πkp

p sin 2πkq
q

(C + 1) cos 2πkp
p sin 2πkq

q + (C − 1) sin 2πkp
p cos 2πkq

q

−(C + 1) sin 2πkp
p cos 2πkq

q − (C − 1) cos 2πkp
p sin 2πkq

q

−(C + 1) sin 2πkp
p sin 2πkq

q + (C − 1) cos 2πkp
p cos 2πkq

q

 .

From here we can immediately take the dot product of the two vectors.

aT
(
R−1
p,kp
⊗Rq,kq

)
b = (C + 1)− (C − 1) cos 2πkp

p
cos2 2πkq

q
− (C − 1) cos 2πkp

p
sin2 2πkq

q

+ (C − 1)(C + 1) cos 2πkp
p

sin2 2πkq
q

+ (C + 1) cos 2πkp
p

cos2 2πkq
q

= −(C2 − 1) cos 2πkp
p

cos2 2πkq
q
− (C2 − 1) cos 2πkp

p
sin2 2πkq

q

+ (C2 − 1) cos 2πkp
p

sin2 2πkq
q

+ (C2 − 1) cos 2πkp
p

cos2 2πkq
q

= 0

Case 5 (Equation (v)). We will confirm that the fifth dot product evaluates to zero.

aT
(
Rp,kp ⊗Rq,kq

)
b =

= aT


cos 2πkp

p cos 2πkq
q − cos 2πkp

p sin 2πkq
q − sin 2πkp

p cos 2πkq
q sin 2πkp

p sin 2πkq
q

cos 2πkp
p sin 2πkq

q cos 2πkp
p cos 2πkq

q − sin 2πkp
p sin 2πkq

q − sin 2πkp
p cos 2πkq

q

sin 2πkp
p cos 2πkq

q − sin 2πkp
p sin 2πkq

q cos 2πkp
p cos 2πkq

q − cos 2πkp
p sin 2πkq

q

sin 2πkp
p sin 2πkq

q sin 2πkp
p cos 2πkq

q cos 2πkp
p sin 2πkq

q cos 2πkp
p cos 2πkq

q

 b

= aT


(C + 1) cos 2πkp

p cos 2πkq
q + (C − 1) sin 2πkp

p sin 2πkq
q

(C + 1) cos 2πkp
p sin 2πkq

q − (C − 1) sin 2πkp
p cos 2πkq

q

(C + 1) sin 2πkp
p cos 2πkq

q − (C − 1) cos 2πkp
p sin 2πkq

q

(C + 1) sin 2πkp
p sin 2πkq

q + (C − 1) cos 2πkp
p cos 2πkq

q


By multiplying on the left hand side by aT , we get the following.

aT
(
Rp,kp

⊗Rq,kq

)
b = (C + 1)

(
−(C − 1) cos 2πkp

p
cos2 2πkq

q
− (C − 1) cos 2πkp

p
sin2 2πkq

q

)
+ (C − 1)

(
(C + 1) cos 2πkp

p
sin2 2πkq

q
+ (C + 1) cos 2πkp

p
cos2 2πkq

q

)
= −(C2 − 1) cos 2πkp

p
cos2 2πkq

q
− (C2 − 1) cos 2πkp

p
sin2 2πkq

q

+ (C2 − 1) cos 2πkp

p
sin2 2πkq

q
+ (C2 − 1) cos 2πkp

p
cos2 2πkq

q
= 0
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Case 6 (Equation (vi)). Lastly will confirm that the sixth dot product evaluates to zero.

aT
(
I ⊗R2

q,kq

)
b =

= aT


2 cos2 2πkq

q − 1 − cos 2πkq
q sin 2πkq

q 0 0
cos 2πkq

q sin 2πkq
q 2 cos2 2πkq

q − 1 0 0
0 0 2 cos2 2πkq

q − 1 − cos 2πkq
q sin 2πkq

q

0 0 cos 2πkq
q sin 2πkq

q 2 cos2 2πkq
q − 1

 b

By multiplying on the right hand side by b, we can simplify this to

aT
(
I ⊗R2

q,kq

)
b = aT


(C + 1)

(
2 cos2 2πkq

q − 1
)

2(C + 1) cos 2πkq
q sin 2πkq

q

−2(C + 1) cos 2πkq
q sin 2πkq

q

(C − 1)
(
2 cos2 2πkq

q − 1
)

 .

By taking the dot product of the two remaining vectors, we have

aT
(
I ⊗R2

q,kq

)
b = (C + 1)

(
−(C − 1) cos 2πkq

q

(
2 cos2 2πkq

q
− 1
)
− 2(C − 1) cos 2πkq

q
sin2 2πkq

q

)
+ (C − 1)

(
2(C + 1) cos 2πkq

q
sin2 2πkq

q
+ (C + 1) cos 2πkq

q

(
2 cos2 2πkq

q
− 1
))

= −2(C2 − 1) cos3 2πkq

q
+ (C2 − 1) cos 2πkq

q
− 2(C2 − 1) cos 2πkq

q
sin2 2πkq

q

+ 2(C2 − 1) cos3 2πkq

q
− (C2 − 1) cos 2πkq

q
+ 2(C2 − 1) cos 2πkq

q
sin2 2πkq

q
= 0.

Since all six equations evaluate to zero for all coprime, odd integers p, q > 1, we can
conclude that the set S as above in equation (4.7) is in fact an OR of L(CRn,c) in R4.

Remark 4.1.2. The previous proof illustrates our original process of discovering an OR
of L(CRn,c), which is further detailed in Chapter 5. We did not take advantage of all sym-
metries of the chordal ring in this proof method. Due to the rotational symmetry that was
used, our proofs contain a lot of trigonometric functions. Originally, we used the above proof
because of the discovery process. It was also very simple to verify the proofs using Maple.
Checking that we were on the right track was very simple because of this. There exists an
alternate condensed proof, that follows this remark, which takes advantage of some of the ad-
ditional symmetries of our graph and involves no trigonometric functions. For illustration,
we show one of the six cases in the condensed form.

Proof. [Equation (iv)] Notice that we can write vector a as

a =
(

1− c
0

)
⊗Rq,kq

(
1
0

)
+
(

0
1 + c

)
⊗Rq,kq

(
0
1

)
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and vector b as

b =
(
c+ 1

0

)
⊗
(

1
0

)
+
(

0
c− 1

)
⊗
(

0
1

)
.

Then the dot product in (iv) becomes

aT
(
R−1
p,kp
⊗Rq,kq

)
b =

=
[(

1− c 0
)
⊗
(
1 0

)
R−1
q,kq

+
(
0 1 + c

)
⊗
(
0 1

)
R−1
q,kq

] [
R−1
p,kp
⊗Rq,kq

]
b

=
[ [(

1− c 0
)
⊗
(
1 0

)
R−1
q,kq

] [
R−1
p,kp
⊗Rq,kq

]
+

[(
0 1 + c

)
⊗
(
0 1

)
R−1
q,kq

] [
R−1
p,kp
⊗Rq,kq

] ]
b

=
[(

1− c 0
)
R−1
p,kp
⊗
(
1 0

)
R−1
q,kq

Rq,kq +
(
0 1 + c

)
R−1
p,kp
⊗
(
0 1

)
R−1
q,kq

Rq,kq

]
b

=
[(

1− c 0
)
R−1
p,kp
⊗
(
1 0

)
+
(
0 1 + c

)
R−1
p,kp
⊗
(
0 1

)]
b

= (1− c)
(
R−1
p,kp

)
1,1

(c+ 1) + (1 + c)
(
R−1
p,kp

)
2,2

(c− 1)

= (1− c2)
(
R−1
p,kp

)
1,1
− (1− c2)

(
R−1
p,kp

)
2,2

= 0

since
(
R−1
p,kp

)
1,1

=
(
R−1
p,kp

)
2,2

.

Now that we have an OR of L(CRn,c) in R4 for any acceptable n and c, we can extend
the result to KS sets.

Theorem 4.1.3. Let n > 1 be an odd integer and assume that n is not a prime power.
Then there exists a KS set with 2n vectors and n bases in R4.

Proof. Since n is not a prime power, we can factor it into two coprime factors, let these
be p and q. Hence, there exists an integer c such that 1 < c < n − 1 and c2 ≡ 1 (mod n),
by Corollary 3.1.8. By Theorem 4.1.1, we can construct an OR of L(CRn,c) in R4 with 2n
vectors. Secondly, by Theorem 3.2.1 we know that an OR of L(CRn,c) in R4 is also a KS
set in R4 with n orthogonal bases. Therefore, we have constructed a KS set of 2n vectors
and n bases in R4, for any n as above.

We will now show that our choices of kp, kq above result in a real valued C.

Theorem 4.1.4. Let C be defined as in (4.5) and let p, q > 1 be coprime, odd integers. If
kp and kq are chosen as

kx =


⌈
x

4

⌉
, x ≡ 3 (mod 4)⌊

x

4

⌋
, x ≡ 1 (mod 4)
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then C is a real number.

Proof. Notice that when x ≡ 1 (mod 4), we have⌊
x

4

⌋
= x− 1

4 (4.11)

and when x ≡ 3 (mod 4) that ⌈
x

4

⌉
= x+ 1

4 . (4.12)

Let p, q > 1 be coprime, odd integers and let kp, kq be as above. We mentioned earlier that
we require kp, kq to be coprime to p, q respectively. Before we prove that C will be real for
these choices, we will first prove that this choice satisfies the coprime requirement.

Notice that kx = x±1
4 for any odd integer x. Assume for a contradiction that gcd(x, kx) >

1. Therefore there exists a prime r which divides both x and kx. Then we know r|x and
r|x ± 1, which is a contradiction. Hence by our choice of kx, gcd(x, kx) = 1 for any odd,
positive integer x.

Now, recall that

C =

√√√√√−cos
(
2π
(
kp
p −

kq
q

))
cos

(
2π
(
kp
p + kq

q

)) .
We will show that the above choice of kp and kq imply C is real. Consider that for any p, q
odd integers, we have

kp
p

+ kq
q

=
p±1

4
p

+
q±1

4
q

= 1
2 ±

p+ q

4pq .

Also, we know that p+q
pq < 1, for p, q > 1. This implies that p+q

4pq <
1
4 for p, q > 1 which gives

us the following inequality

1
2 −

1
4 <

kp
p

+ kq
q
<

1
2 + 1

4

from which we get

1
4 <

kp
p

+ kq
q
<

3
4 . (4.13)

Similarly, we have

kp
p
− kq

q
=

p±1
4
p
−

q±1
4
1 = ±q − p4pq .
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If p < q then q−p
pq < 1 and q−p

4pq <
1
4 . If p > q, we can switch the values of p and q and the

statement still holds. Taking both branches gives a similar inequality to the one in (4.13).

−1
4 <

kp
p
− kq

q
<

1
4 (4.14)

If we multiply both inequalities from lines (4.13) and (4.14) by 2π, we get

π

2 < 2π
(
kp
p

+ kq
q

)
<

3π
2 , −π2 < 2π

(
kp
p
− kq

q

)
<
π

2 .

This immediately tells us that

cos
(

2π
(
kp
p

+ kq
q

))
< 0, cos

(
2π
(
kp
p
− kq

q

))
> 0

for our choices of kp, kq. Combining these two cosines, we know that their quotient will
always be a negative number.

cos
(
2π
(
kp
p −

kq
q

))
cos

(
2π
(
kp
p + kq

q

)) < 0

From the definition of C, this C will always be real.

Thus, our construction creates an infinite family of KS sets in R4. The last two results
of this chapter pertain to additional orthogonalities which resulted from our construction.
The extra orthogonalities are not an issue because, by Definition 2.6.4, the ORs are still
faithful.

Theorem 4.1.5. Let p, q > 1 be coprime, odd integers, kp, kq be integers coprime to p, q
respectively and let S be the vector set defined above in equation (4.7). Every vector in the
set S is orthogonal to at least p+ q + 1 other vectors in S.

Proof. We will aim to show that there are at least p+ q+ 1 vectors orthogonal to each of a
and b from Theorem 4.1.1. Then by rotating a and b, we are able to confirm that all vectors
of S are orthogonal to at least p + q + 1 vectors since the rotational matrix is orthogonal.
Below is the general form of a vector corresponding to a chord.(

R`p,kp ⊗R
`
q,kq

)
b
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We will consider the dot product of all such vectors with a to determine for what values `
they are orthogonal. We have that

aT
(
R`p,kp ⊗R

`
q,kq

)
b =

= aT


cos 2π`kp

p
cos 2π`kq

q
cos 2π`kp

p
sin 2π`kq

q
sin 2π`kp

p
cos 2π`kq

q
sin 2π`kp

p
sin 2π`kq

q

− cos 2π`kp
p

sin 2π`kq
q

cos 2π`kp
p

cos 2π`kq
q

− sin 2π`kp
p

sin 2π`kq
q

sin 2π`kp
p

cos 2π`kq
q

− sin 2π`kp
p

cos 2π`kq
q
− sin 2π`kp

p
sin 2π`kq

q
cos 2π`kp

p
cos 2π`kq

q
cos 2π`kp

p
sin 2π`kq

q

sin 2π`kp
p

sin 2π`kq
q

− sin 2π`kp
p

cos 2π`kq
q
− cos 2π`kp

p
sin 2π`kq

q
cos 2π`kp

p
cos 2π`kq

q

 b

= aT


(C + 1) cos 2π`kp

p cos 2π`kq
q + (C − 1) sin 2π`kp

p sin 2π`kq
q

(C + 1) cos 2π`kp
p sin 2π`kq

q − (C − 1) sin 2π`kp
p cos 2π`kq

q

(C + 1) sin 2π`kp
p cos 2π`kq

q − (C − 1) cos 2π`kp
p sin 2π`kq

q

(C + 1) sin 2π`kp
p sin 2π`kq

q + (C − 1) cos 2π`kp
p cos 2π`kq

q

 .

Again we expand this to get that

aT
(
R`p,kp ⊗R

`
q,kq

)
b =

= −(C + 1)(C − 1) cos 2π`kp
p

cos 2π`kq
q

cos 2πkq
q
− (C − 1)2 sin 2π`kp

p
sin 2π`kq

q
cos 2πkq

q

− (C + 1)(C − 1) cos 2π`kp
p

sin 2π`kq
q

sin 2πkq
q

+ (C − 1)2 sin 2π`kp
p

cos 2π`kq
q

sin 2πkq
q

+ (C + 1)(C − 1) cos 2π`kp
p

sin 2π`kq
q

sin 2πkq
q
− (C + 1)2 sin 2π`kp

p
cos 2π`kq

q
sin 2πkq

q

+ (C + 1)(C − 1) cos 2π`kp
p

cos 2π`kq
q

cos 2πkq
q

+ (C + 1)2 sin 2π`kp
p

sin 2π`kq
q

cos 2πkq
q

.

Half of the terms above cancel and are left with the following.

aT
(
R`p,kp ⊗R

`
q,kq

)
b =

(
(C + 1)2 − (C − 1)2

)
sin 2π`kp

p
sin 2π`kq

q
cos 2πkq

q

+
(
−(C + 1)2 + (C − 1)2

)
sin 2π`kp

p
cos 2π`kq

q
sin 2πkq

q

= 4C sin 2π`kp
p

(
sin 2π`kq

q
cos 2πkq

q
− cos 2π`kq

q
sin 2πkq

q

)
= 4C sin 2π`kp

p
sin 2πkq(`− 1)

q

We already know that C 6= 0 for all integers kp, kq and coprime, odd integers p, q > 1.
Therefore, for the dot product to evaluate to zero, either ` ≡ 0 (mod p) or ` ≡ 1 (mod q)
because gcd(kp, p) = gcd(kq, q) = 1. If ` is divisible by p, there are q distinct vectors
orthogonal to a. When ` − 1 is divisible by q, there are p distinct vectors orthogonal to
a. However, one vector is counted in both cases, namely

(
I2 ⊗Rq,kq

)
b. Hence, there are

p + q − 1 distinct vectors corresponding to chords orthogonal to a. Together with the two
ring edges, there are at least p+ q + 1 distinct vectors in S orthogonal to a.
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Now when considering b, remember that the transpose operation preserves the dot prod-
uct. Therefore we can see that(

aT
(
R`p,kp ⊗R

`
q,kq

)
b
)T

= bT
(
R−`p,kp ⊗R

−`
q,kq

)
a.

Therefore we know that there are the same number of vectors orthogonal to b as there are
orthogonal to a. Since each ring edge in CRn,c can be represented by

(
R`p,kp ⊗R

`
q,kq

)
a,

b is orthogonal to p + q − 1 distinct vectors corresponding to ring edges and two vectors
corresponding to chords.

Conjecture 4.1.6. Let p, q, kp, kq and S be as above. Every vector in S is orthogonal to
exactly p+ q + 1 distinct vectors in S.

When p ≈ q, p+q ≈ 2
√
n and the proportion of those pairs that are orthogonal is small.

The orthogonalities of the graph are sparse.
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Chapter 5

Discovery of the Main
Construction

We attempted to find ORs of the line graph of the chordal ring in R4 numerically for
different values of n and c. Using Maple’s continuous optimization package, we defined
an objective function which, when minimized, found an OR in R4. Even though this is a
discrete mathematics problem, using a continuous optimiser was very useful. This gave us
a lot of data to parse through, looking for common patterns which could hint towards a
computer-free construction. From these computed ORs of L(CRn,c), we found a general
form of the solution vectors a and b as given in Theorem 4.1.1. To find such solutions, we
transformed the dot products by utilizing the method of diagonalization on the product of
the two rotation matrices that appear in each dot product. Then, by finding solutions with
these easier dot products and transforming them back to the original vectors, we were able
to find the forms of a and b used in the main construction. Notice that we only considered
real solutions to these dot products (though in principle it would have been possible to
model the OR as complex vectors by representing a complex number in Maple as a pair of
real numbers). In the derivation below however, we must deal with complex matrices due
to the rotational matrices having complex eigenvalues and eigenvectors. Notice that the
previous chapter uses real vectors throughout, and so is self contained.

This chapter is an outline of the process which produced the discoveries reported above.
Some steps in this chapter are mathematically rigorous while others should be considered
as deliberate assumptions. All steps were checked against the numerical data that we had
collected in advance. For example, it was only later in the process that we learned of the
freedom of kp, kq and its importance when finding real solutions as opposed to complex
solutions. Lastly, we discuss the future of this project and possible future projects.
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5.1 Numerical Solutions

Let n = pq for coprime, odd integers p, q > 1 and let c be 1 < c < n − 1 and c2 ≡ 1
(mod n). The key to discovering ORs of L(CRn,c) numerically relied on minimizing the
objective function F : R8n → R, defined by

F
(
v0, . . . , v2n−1

)
=

n∑
i=1

(
||vi||2 − 1

)2
+

∑
{i,j}∈E

(
vi · vj

)2
, (5.1)

where vi ∈ R4 corresponds to the edge labelled ei in CRn,c and E is the edge set of the line
graph. Notice that the total number of unknowns is (4)(2n) = 8n. F takes in a set of 2n
general vectors and when it equals zero, two characteristics are forced: (1) all vectors are
unit vectors and (2) all adjacent vertices in L(CRn,c) correspond to orthogonal vectors in
the OR. By Definition 2.6.1, these are the only requirements for a set of vectors to be an
OR of a graph.

This function has the advantage of being a polynomial and it was very efficient to use
this in the optimizer. The first summation checks for unit length while the second checks
for the required orthogonalities. Notice that for any set of vectors, F is non-negative.

Proposition 5.1.1. Let n be any positive integer and F be defined as above in line (5.1).
If (v0, . . . , v2n−1) is any sequence of 2n vectors, then F

(
(v0, . . . , v2n−1)

)
≥ 0. For n an

odd and that is not a prime power and c where 1 < c < n − 1 and c2 ≡ 1 (mod n),
F
(
(v0, . . . , v2n−1)

)
= 0 if and only if (v0, . . . , v2n−1) is an OR of L(CRn,c).

Proof. F above is greater than or equal to zero since it is a sum of squares. Also by Definition
2.6.1, F

(
v0, . . . , v2n−1) = 0 if and only if all 2n vectors have length one and and the required

orthogonalities exist.

Therefore F is only minimized when the necessary characteristics for an OR of L(CRn,c)
in R4 exist in (v0, . . . , v2n−1). So we continue to minimize F using Maple’s optimizer. We
use Maple because of the ability to customize the precision of computations and the option
to define an initial point. Since these methods are prone to numerical inaccuracies, it is very
useful to be able to include "guard" digits where we do not care about losing precision. We
observe that only about the first half of the digits are correct in any numerical solution.
Therefore we focus on finding solutions with high precision to confirm that our results are
not coincidental. Our problem is special because we have no constraints, so any sequence of
real vectors is a feasible solution. We are able to find many different KS sets relatively quickly
with low levels of precision, roughly 1000 ORs for each small value (15, 21, 33, 35, . . .) of n.
However when raising the level of precision to confirm the KS sets are not coincidental,
the run time of the optimizer increases until we had code running for multiple days. To
work around the computational time issues, we utilize the second useful characteristic of
Maple’s optimization package. The optimizer allows the user to input a starting point. So
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once we find a solution that is sufficiently minimal, for a low number of digits, we raise the
precision and use the previous solution as a starting point for the next run of the optimizer.
If the new solution is not closer to zero than the less precise solution, we discard it and we
restart the optimizer with a new, random starting point. If this method continues to yield
local minimums which get closer to 0, then there must exist an OR of the graph. As well,
employing the optimizer this way reduces the run time by an enormous amount since we
are not running the optimizer from scratch each time. Still, our code had to minimize a
function involving 8n variables (2n vectors in R4) and was still very slow for large values of
n.

Once we have a possible KS set, we make sure to check that it is faithful. We do
this by computing the Gram matrix for the set of vectors and counting the number of
elements sufficiently close to ±1 and 0. If there are no parallel vectors, we say it is a faithful
representation and we accept it as an OR of L(CRn,c).

Our method gave us a lot of possible solutions, but it might have also been possible
to use a semi-definite optimizer. However, because of the positive results we obtained and
the beautiful support by Maple, we decided to stick with this process. By increasing the
precision, we were able to convince ourselves that we were on the right track and continued
to examine the data.

Our Ansatz was assuming our OR contained the symmetries of the chordal ring graph.
The first reason to use a highly symmetric graph is that vertex transitive graphs are very
popular for physicists working with contextuality. The second reason was the possibility
of reducing the number of variables. The whole goal of the computational work in this
chapter was to reduce the number of variables. As we have seen above, we were able to do
this by reducing from 8n variables to eight by using the rotational symmetry of L(CRn,c).
We altered the objective function to become F : R4 × R4 → R with only two inputs
(a, b) ∈ R4×R4 instead of a set of 2n vectors. For the objective function to evaluate to zero
(the optimal solution), the necessary orthogonalities must exist in the set of vectors. This is
where the six dot products from the main construction (Theorem 4.1.1) are derived from.
In the next section, we focus on finding simpler solutions to these six equations.

5.2 Analysis of the Computed Kochen-Specker Sets

After running the optimizer and analysing the roughly 1000 vector sequences we computed
for small n, we repeatedly found relationships of the form of the six dot products from
Theorem 4.1.1. For the set of vectors to be an OR of the line graph of the chordal ring, all
six dot products needed to evaluate to zero. These six equations are restated for reference.

(i) aT (I ⊗ I) b = 0

(ii) aT
(
R−1
p,kp
⊗R−1

q,kq

)
a = 0
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(iii) bT
(
R−1
p,kp
⊗Rq,kq

)
b = 0

(iv) aT
(
R−1
p,kp
⊗Rq,kq

)
b = 0

(v) aT
(
Rp,kp ⊗Rq,kq

)
b = 0

(vi) aT
(
I ⊗R2

q,kq

)
b = 0.

As we mentioned earlier, the symmetry of the chordal ring implies that if we find a solution
(a, b) to this set of equations, that we can generate an OR of L(CRn,c) in R4 and hence, a
KS set in R4. Using the numerical solutions (a, b) found from the optimizer, we looked for
patterns in the solutions to find any simplifications of the vectors a and b. The process to
find solutions to these dot products was not so simple and required trying multiple different
attacks. The first method we used was to transform these vectors using the diagonalization
of the product of the rotation matrices. This method allowed us to find suitable solutions
to easier equations, which we were able to transform back to the original vectors. While
studying the transformed vectors, we noticed that equations (ii) and (iii) were similar in that
they each involved only one vector, a or b. We examined the solutions to these equations
separately from the others. Both the symmetric and asymmetric dot products gave us
important simplifications resulting from all dot products. As well we also found useful
reductions in the number of variables which was the overall goal of this study. By the end
of this chapter, we will have derived a, b and C that we presented in the main construction,
Theorem 4.1.1.

Notice that each of the dot products (i) to (vi) above can be written in the following
form

γTMδ = 0 (5.2)

for γ and δ equalling a or b and M =
(
Rp,kp ⊗Rq,kq

)`
= R`p,kp ⊗R

`
q,kq

. Remember that we
can switch between the two forms of M by using Theorem 3.1.7 and reducing ` modulo p
and q. Each dot product above has a different value for `. We will denote the value of ` for
equation (e) as `(e). Since the Kronecker product of two square matrices is itself a square
matrix, we can decompose M to

M = PDP−1 (5.3)

where P is a matrix whose columns are eigenvectors ofM andD is the diagonal matrix of the
corresponding eigenvalues ofM . From Corollary 3.5.10 we know the eigenvectors and eigen-
values of R`(e)

p,kp
and R`(e)

q,kq
. Then, using Proposition 2.3.18, we can compute the eigenvectors,
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with corresponding eigenvalues, of
(
Rp,kp ⊗Rq,kq

)`(e) . Explicitly, M has eigenvalues

ζ
`(e)(kpq+kqp)
n , ζ

`(e)(kpq−kqp)
n , ζ

`(e)(−kpq+kqp)
n , ζ

`(e)(−kpq−kqp)
n (5.4)

with corresponding eigenvectors

(
1
−i

)
⊗
(

1
−i

)
=


1
−i
−i
−1

 ,
(

1
−i

)
⊗
(

1
i

)
=


1
i

−i
1

 ,

(
1
−i

)
⊗
(

1
i

)
=


1
−i
i

1

 ,
(

1
i

)
⊗
(

1
i

)
=


1
i

i

−1

 . (5.5)

Remark 5.2.1. For ease of discussion let

α = ζkpq+kqpn and β = ζkpq−kqpn . (5.6)

Since D will vary among the six dot products, we will denote the diagonal matrix in
terms of the equation being used. The diagonal matrix for equation (e) is denoted D(e).
Notice that every vector is an eigenvector of I, and so P remains constant over all six
equations if the order of the eigenvalues in each D(e) remain consistent. Now we can state
D(e) and P explicitly below.

D(e) =


α`(e) 0 0 0

0 β`(e) 0 0
0 0 β−`(e) 0
0 0 0 α−`(e)

 , P = 1
2


1 1 1 1
−i i −i i

−i −i i i

−1 1 1 −1


Notice that the eigenvalues α`(e) , β`(e) , β−`(e) and α−`(e) come in two inverse pairs for all six
dot products. Combining both results from (5.2) and (5.3) we have

γTPD(e)P
−1δ = 0. (5.7)

P was chosen specifically to have the following relationship.

Proposition 5.2.2. Let P be defined as above. Then P−1 = P ∗.

This can be easily computed. Recall that for any real vector γ, γT = γ∗. These two
facts allow us to simplify the general equation (5.7) and write all six dot products in the
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following form.

γ∗PD(e)P
∗δ = 0 (5.8)

where γ and δ are a or b. With the dot products now in this form, we are able to make a
transformation on the vectors which simplifies the equations and hopefully results in vectors
that are easier to work with. Let

A = P ∗a and B = P ∗b (5.9)

whose elements are denoted

A =


A1

A2

A3

A4

 , B =


B1

B2

B3

B4

 . (5.10)

With this transformation, the equations of the form in (5.2) can now be written as

Γ∗D(e)∆ = 0 (5.11)

where Γ and ∆ are either A or B. Notice that

A∗ = a∗P and B∗ = b∗P. (5.12)

This will allow us to write equation (5.8) in terms of only A,B and D(e). In the original
equations, expanding the dot products would result in 16 terms. Since D(e) is a diagonal
matrix for all six equations, we can expand all the dot products from (5.11) above to
linear equations with just four terms. Finding solutions to these equations becomes much
simpler than before the transformation. Afterwards, we will undo the linear map P ∗ to get
solutions in the original form, (a, b). We will now split up the equations into the symmetric
and asymmetric cases.

5.2.1 Symmetric Case

In this section we outline all variable reductions and requirements gained from the equations
(ii) and (iii), restated below.

(ii) aT
(
R−1
p,kp
⊗R−1

q,kq

)
a = 0→ A∗D(ii)A = 0

(iii) bT
(
R−1
p,kp
⊗Rq,kq

)
b = 0→ B∗D(iii)B = 0

The constant C is derived in this section, as well as a reduction from eight variables to four.
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Recall that α = ζ
kpq+kqp
n and β = ζ

kpq−kqp
n , from (5.6). We can read from the dot

products that `(ii) ≡ −1 (mod p), `(ii) ≡ −1 (mod q), `(iii) ≡ −1 (mod p) and `(iii) ≡ 1
(mod q). Therefore we can easily write D(ii) and D(iii) using Remark 5.6. With our assign-
ments of A and B stated in (5.9), we can expand the dot products in (ii) and (iii). Since
D(e) is a diagonal matrix, we get

A∗D(ii)A =
(
A1 A2 A3 A4

)

α−1 0 0 0

0 β−1 0 0
0 0 β 0
0 0 0 α




A1

A2

A3

A4



=
(
α−1A1 β−1A2 βA3 αA4

)

A1

A2

A3

A4


= |A1|2α−1 + |A2|2β−1 + |A3|2β + |A4|2α = 0. (5.13)

Similarly

B∗D(iii)B =
(
B1 B2 B3 B4

)

β 0 0 0
0 α 0 0
0 0 α−1 0
0 0 0 β−1




B1

B2

B3

B4



=
(
βB1 αB2 α−1B3 β−1B4

)

B1

B2

B3

B4


= |B1|2β + |B2|2α+ |B3|2α−1 + |B4|2β−1 = 0. (5.14)

Since A,B ∈ C4, we make sure that both the real and imaginary parts of (5.13) and (5.14)
evaluate to zero. Note that the real and imaginary parts of α, β are given by

<(α) = 1
2(α+ α−1) = <(α−1), =(α) = i

2(α−1 − α) = −=(α−1)

<(β) = 1
2(β + β−1) = <(β−1), =(β) = i

2(β−1 − β) = −=(β−1)

The real part of (5.13) is given by

(
|A1|2 + |A4|2

)(1
2(α+ α−1)

)
+
(
|A2|2 + |A3|2

)(1
2(β + β−1)

)
= 0
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or simply (
|A1|2 + |A4|2

)
<(α) +

(
|A2|2 + |A3|2

)
<(β) = 0. (5.15)

Similarly, the real part of (5.14) is given by(
|B2|2 + |B3|2

)
<(α) +

(
|B1|2 + |B4|2

)
<(β) = 0. (5.16)

The imaginary parts of equations (5.13) and (5.14) are given by

(|A1|2 − |A4|2)=(α) + (|A2|2 − |A3|2)=(β) = 0 (5.17)

(|B2|2 − |B3|2)=(α) + (|B1|2 − |B4|2)=(β) = 0. (5.18)

Each of these must evaluate to zero. Given the large number of solutions (a, b) we computed,
after transforming them by P in (5.9), we were able to search for patterns in A,B. Within
all of the solutions we observed the following relationships.

A1 = A4, A2 = A3, B1 = B4, B2 = B3 (5.19)

This held for every pair of vectors A and B. This was very positive because the whole aim
of this exploration was to reduce the number of variables, and this cuts down the number
of variables from eight to four. For the rest of the derivation, we assume the relationships
in line (5.19) hold for A and B. This forces vectors A and B to have the form

A =


A1

A2

A2

A1

 , B =


B1

B2

B2

B1

 . (5.20)

Additionally, this implies |A1| = |A4|, |A2| = |A3|, |B1| = |B4| and |B2| = |B3|. This
assumption causes both imaginary parts (5.17) and (5.18) to evaluate to zero, while the
real parts (5.15) and (5.16) become

2
(
|A1|2<(α) + |A2|2<(β)

)
= 0

2
(
|B2|2<(α) + |B1|2<(β)

)
= 0.
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Using Euler’s formula, Theorem 2.5.1, and the fact that ` ≡ −1 (mod p), ` ≡ ±1 (mod q)
for both equations, the real part of α, β are given by

<(α) = cos
(

2π
(
kp
p
± kq

q

))
<(β) = cos

(
2π
(
kp
p
∓ kq

q

))
where we take the top or bottom sign consistently. By substituting this into (5.15) and
(5.16), we are left with

|A1|2 cos
(

2π
(
kp
p
± kq

q

))
+ |A2|2 cos

(
2π
(
kp
p
∓ kq

q

))
= 0 (5.21)

and

|B2|2 cos
(

2π
(
kp
p
± kq

q

))
+ |B1|2 cos

(
2π
(
kp
p
∓ kq

q

))
= 0. (5.22)

Again searching through the numerical solutions (a, b), we consistently noticed that

|A1| = |B2|, |B1| = |A2|. (5.23)

We assume this to be true for the remainder of the construction. This assumption, along
with the assumption in line (5.19), implies that

|A1| = |A4| = |B2| = |B3|, |B1| = |B4| = |A2| = |A3|. (5.24)

This also results in (5.21) and (5.22) being equivalent. Notice that since a and b are nonzero
vectors and P is an invertible matrix, A and B are non-zero vectors as well. Therefore, at
least one of |A1|, |B1| must be non-zero. If one of them is zero, then (5.21) would only hold
if the other was also zero. Therefore, |A1| and |B1| must be positive, real numbers.

Since all the equations are homogeneous, we have the ability to scale the variables. Let

C = |A1|
|A2|

(5.25)

so we can reduce the number of variables in this equation from two to one. Now we can
rewrite both equations (5.21) and (5.22) as a single equation.

C2 cos
(

2π
(
kp
p
± kq

q

))
+ cos

(
2π
(
kp
p
∓ kq

q

))
= 0 (5.26)
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Figure 5.1: The feasible region resulting in a real valued C.

Since |A1| and |B2| are positive, real numbers, C must also be a positive, real number.
Solving (5.26) for C yields the following formula

C =

√√√√√−cos
(
2π
(
kp
p ∓

kq
q

))
cos

(
2π
(
kp
p ±

kq
q

)) . (5.27)

We have already discussed what inequalities need to be satisfied by kp, kq so that C is real
in Theorem 4.1.4. By plotting the inequalities from (4.13) and (4.14) we get the feasible
region in Figure 5.1. In our construction, we chose kp and kq to follow

kx =


⌈
x

4

⌉
, x ≡ 3 (mod 4)⌊

x

4

⌋
, x ≡ 1 (mod 4)

which we showed yields a real valued C in Theorem 4.1.4. Notice that our choice always
results in kp, kq being within the section of the feasible region labelled D in Figure 5.1.
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To review the results from equations (ii) and (iii), we now have solutions

A =


A1

A2

A2

A1

 =


Cei·arg(A1)

ei·arg(A2)

e−i·arg(A2)

Ce−i·arg(A1)

 , B =


B1

B2

B2

B1

 =


ei·arg(B1)

Cei·arg(B2)

Ce−i·arg(B2)

e−i·arg(B1)

 (5.28)

and have derived

C =

√√√√√−cos
(
2π
(
kp
p ∓

kq
q

))
cos

(
2π
(
kp
p ±

kq
q

)) .
In the main construction, we took the top signs consistently. Now we will examine the other
four equations (i), (iv), (v) and (vi), which all contain both a and b.

5.2.2 Asymmetric Case

In this section we study the consequences resulting from equations (i), (iv), (v) and (vi),
which are reiterated below.

(i) aT (I ⊗ I) b = 0→ A∗D(i)B = 0

(iv) aT
(
R−1
p,kp
⊗Rq,kq

)
b = 0→ A∗D(iv)B = 0

(v) aT
(
Rp,kp ⊗Rq,kq

)
b = 0→ A∗D(v)B = 0

(vi) aT
(
I ⊗R2

q,kq

)
b = 0→ A∗D(vi)B = 0

Notice that `(i) ≡ 0 (mod p) and `(i) ≡ 0 (mod q), `(iv) ≡ −1 (mod p) and `(iv) ≡ 1
(mod q), `(v) ≡ 1 (mod p) and `(v) ≡ 1 (mod q), `(vi) ≡ 0 (mod p) and `(vi) ≡ −2 (mod q).
Let (e) be any of (i), (iv), (v) or (vi).

Remark 5.2.3. Notice that `(i) ≡ `(vi) (mod p) and `(iv) ≡ `(v) (mod q).

In this section, we will make our final reduction from four variables to two, a major
success that helps to simplify the construction presented in Chapter 4. Recall that we let
α = ζ

kpq+kqp
n and β = ζ

kpq−kqp
n . Let A,B be with the same assumptions above in (5.19) and

(5.24). Since D(e) is a diagonal matrix for each dot product, we can expand all equations to

A1B1α
`(e) +A2B2β

`(e) +A2B2β
−`(e) +A1B1α

−`(e) = 0.

This equation must hold for all four of the asymmetric dot products. By grouping like terms,
we rearrange to get

A1B1α
`(e) +A1B1α

−`(e) = −
(
A2B2β

`(e) +A2B2β
−`(e)

)
.
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Using the definition of a complex conjugate in Definition 2.5.2, we can see that this is
equivalent to

A1B1α
`(e) +A1B1α

`(e) = −
(
A2B2β

`(e) +A2B2β
`(e)
)
.

It follows, using our assumption in (5.24), that

<
(
A1B1α

`(e)
)

= −<
(
A2B2β

`(e)
)
. (5.29)

for equations (i), (iv), (v) and (vi). In Figure 5.2 we can see that, because both terms have

<

=

<(z)

z1

−<(z)

z2

z2

Figure 5.2: <(z1) = −<(z2) on the complex plane.

the same norm, (5.29) implies there are two possibilities for the value of arg
(
A2B2β

`(e)
)

within (−π, π]. Specifically, we can choose exactly one of the two branches in the following
equation.

arg
(
A1B1α

`(e)
)

= π ± arg(A2B2β
`(e)).

This is equivalent to

arg
(
A1B1α

`(e)
)

= ±arg
(
A2B2β

`(e)
)

+ (2m+ 1)π (5.30)

for some integer m. Due to the periodic nature of the argument we must include m. As we
will see shortly, m will cancel out prior to the final solutions and does not contribute to the
main construction. We utilize the rule regarding the complex argument from Remark 2.5.4
to expand equation (5.30). We get

− arg (A1) + arg (B1) + arg
(
α`(e)

)
= ±

(
− arg(A2) + arg(B2) + arg

(
β`(e)

))
+ (2m+ 1)π

The arguments of α`(e) and β`(e) are known and have the same form for each dot product.
Therefore we substitute these values into the above relationship and collect free variables
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on the left hand side. We are left with

± arg(A2)− arg(A1)∓ arg(B2) + arg(B1) =[
±
(
kp
p

+ kq
q

)
−
(
kp
p
− kq

q

)]
2π`(e) + (2m+ 1)π (5.31)

where the top or bottom sign is taken consistently. We require that one branch of (5.31)
be satisfied for each of the four asymmetric equations. In Remark (5.2.3), we noticed that
there were two values of `(e)’s in common between two pairs of the four asymmetric dot
products. We will therefore consider `(i), `(v) and choose the signs which do not contradict
one another. Hence we can get the following two equations in terms of the arguments.

− arg(A2)− arg(A1) + arg(B2) + arg(B1) = (2m+ 1)π (5.32)

arg(A2)− arg(A1)− arg(B2) + arg(B1) = 4πkq
q

+ (2m+ 1)π (5.33)

Even though we did not show that these values of `(e) satisfy all four equations, we will
assume that this holds because the resulting simplifications survive the rigorous proofs in
Chapter 4.

Taking the sum of the two equations (5.32) and (5.33) give us

−2 arg(A1) + 2 arg(B1) =
(2kq
q

+ (2m+ 1)
)

2π.

We can solve this equation for arg(A1) in terms of arg(B1), which is reducing the number
of variables from four to three.

arg(A1) = arg(B1)−
(2kq
q

+ 2m+ 1
)
π. (5.34)

Taking the difference of (5.32) and (5.33) gives us a relation involving arg(A2) and arg(B2).
We can solve for arg(A2) and reduce the number of variables from three to two.

−2 arg(A2) + 2 arg(B2) = −4πkq
q

.

Then we have the following equation for arg(A2) in terms of arg(B2).

arg(A2) = arg(B2) + 2πkq
q

(5.35)

For any values arg(B1) and arg(B2), with fixed p, qkp, kq and m, we can calculate arg(A1)
and arg(A2). By combining this reduction with the assumptions above, seen in (5.19) and
(5.23), we have much simpler vectors A and B. By inputting equations (5.34) and (5.35)
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into (5.28), we get

A =



Ce
i

(
arg(B1)−

(
2kq
q

+1
)
π

)
e
i

(
arg(B2)+ 2πkq

q

)
e
−i
(

arg(B2)+ 2πkq
q

)
Ce
−i
(

arg(B1)−
(

2kq
q

+1
)
π

)


, B =


ei·arg(B1)

Cei·arg(B2)

Ce−i·arg(B2)

e−i·arg(B1)

 . (5.36)

Using the roughly 1000 ORs for small values of n (n = 15, 21, 33, 35, . . .), we plotted the val-
ues of arg(B1) against arg(B2). At this point, we found no other relationships to simplify the
solutions A and B. Therefore we conjecture that the solutions have two free variables. This
may be due to the fact that there are two independent rotation matrices in the Kronecker
product. Recall that our linear transformations are in R4×4. One of the rotation matrices
acts on the first two dimensions and the second matrix acts on the last two dimensions.
Then by taking the product of the two, we achieve a projection in four dimensions. This
seems to explain why it is a system with 2 free variables. Regardless, we found no further
relationship between arg(B1) and arg(B2). Therefore, we will now begin to undo all of the
transformations and simplifications we made. By stepping backwards along this process,
we will be able to define vectors A and B in terms of only two free variables, arg(B1)
and arg(B2). Then we will undo the linear transformation by P ∗ to arrive at the original
solutions (a, b), which will now be simplified down from eight variables to just two.

To undo the map P which was applied to a and b in (5.9), we use the relations a = PA

and b = PB. By expanding and reducing the vector components, we get the general form
of a and b.

a =



<
(
Ce

i

(
arg(B1)−

(
2kq
q

+1
)
π

))
+ <

(
e
i

(
arg(B2)+ 2πkq

q

))

−=
(
Ce

i

(
arg(B1)−

(
2kq
q

+1
)
π

))
+ =

(
e
i

(
arg(B2)+ 2πkq

q

))

−=
(
Ce

i

(
arg(B1)−

(
2kq
q

+1
)
π

))
−=

(
e
i

(
arg(B2)+ 2πkq

q

))

−<
(
Ce

i

(
arg(B1)−

(
2kq
q

+1
)
π

))
+ <

(
e
i

(
arg(B2)+ 2πkq

q

))


(5.37)

b =


<
(
Cei(arg(B1)

)
+ <

(
ei(arg(B2)

)
−=

(
Cei(arg(B1)

)
+ =

(
ei(arg(B2)

)
−=

(
Cei(arg(B1)

)
−=

(
ei(arg(B2)

)
<
(
Cei(arg(B1)

)
−<

(
ei(arg(B2)

)

 (5.38)
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Before we continue our simplification, notice that even though the elements of A,B and P
are in general complex values, a and b will be real vectors as long as C is real. If we expand
the real and imaginary parts of the vectors in (5.37) and (5.38), we get

a =


C cos

(
arg(B1)−

(
2kq
q + 1

)
π
)

+ cos
(
arg(B2) + 2πkq

q

)
−C sin

(
arg(B1)−

(
2kq
q + 1

)
π
)

+ sin
(
arg(B2) + 2πkq

q

)
−C sin

(
arg(B1)−

(
2kq
q + 1

)
π
)
− sin

(
arg(B2) + 2πkq

q

)
−C cos

(
arg(B1)−

(
2kq
q + 1

)
π
)

+ cos
(
arg(B2) + 2πkq

q

)

 (5.39)

b =


C cos(arg(B1)) + cos(arg(B2))
−C sin(arg(B1)) + sin(arg(B2))
−C sin(arg(B1))− sin(arg(B2))
C cos(arg(B1))− cos(arg(B2))

 . (5.40)

Since we have freedom for the values of arg(B1) and arg(B2), we can arbitrarily choose
them both to be zero. This might not be the best choice for our free variables, but it
seems to simplify the vectors. Another choice could possibly result in simpler proofs of the
construction in Chapter 4. For now we let arg(B1) = arg(B2) = 0. After simplifying, we are
left with vectors which we used in our main construction in Theorem 4.1.1.

a =


(1− C) cos

(
2πkq
q

)
(1− C) sin

(
2πkq
q

)
−(1 + C) sin

(
2πkq
q

)
(1 + C) cos

(
2πkq
q

)

 , b =


C + 1

0
0

C − 1

 (5.41)

Notice that using all of these simplifications from the numerical data, we have reduced the
number of variables in the model of KS sets from 8n variables to two complex arguments.
This is an amazing result considering that when we began to develop the construction we
were dealing with a varying number of variables, and now we need only a constant number
of variables for any value n. Since we could not find any further relationships between
the variables, this is where we stopped simplifying and brought the vectors into the main
construction. Even though we based many of our reductions on numerical data, we have
shown in Chapter 4 that the construction stands alone. We wanted to present the exact
process we took to discover the computer-free construction.

5.3 Outlook

During the early days of our research, we applied some methods which were not used in the
Kochen-Specker proofs outlined above. They may, however, provide further information and
enticement for further research. Hence, in this section we will present the other approaches
and some additional discoveries. A second method which we considered but did not use, is
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based on semidefinite programming formulation of the ORs. This work was done in parallel
early in the research. We chose to use the continuous optimization formulation for our
work as it seemed to be much easier to use and was better supported for high precision
computations in the software available to us. We studied the Lovász ϑ value for our graphs.
We also discuss some possible future projects which may be of interest to the reader.

5.3.1 Semidefinite Programming

This was another direction we began looking into, but it was not pursued to the same
extent as the numerical method outlined above. In the beginning we considered multiple
approaches to construct a KS set. We decided that the best approach was to collect lots of
data of some kind and rigorously analyse it for patterns. We started on both methods, and
to get more understanding of the ORs we did some research to see how the ORs of the line
graph would behave [17].

Theorem 8 from [17] says that if a graph G is vertex transitive, then ϑ(G)ϑ
(
G
)

=
|V (G)|. Since our graph G = L(CRn,c) is vertex transitive by Theorem 3.4.4, this holds for
our graph. Lovász was also able to relate the theta number of a graph to the eigenvalues of
its adjacency matrix. Theorem 6 of [17] shows that ϑ(G) is bounded by a function of the
largest and smallest eigenvalues of G. Lastly, Theorem 11 of [17] says that if G admits an
OR in dimension d, then the theta number of G is bounded above by 4. We were able to
prove that ϑ

(
G
)

= 4 and ϑ (G) = n
2 . We proved the theta number of G by examining the

eigenvalues of G and applying Theorem 6 of to bound the value above and Theorem 11 to
bound it below. The theta value of G was proved by defining the primal and dual linear
programming problems and finding optimal solutions that were equal.

We were also able to prove that, for our graph G = L(CRn,c), that several of the bounds
on ϑ (G) and ϑ

(
G
)
in [17] are tight. Consider Lemma 3 and Theorem 10 from [17] which

relate ϑ(G) to the independence number, Definition 2.1.11, and fractional packing number,
Definition 2.1.13, respectively. Using the fact that L(CRn,c) contains maximal cliques of
size 4, we were able to show that α∗

(
G
)

= 4. Also, by relating the primal and dual linear
programming solutions, we were able to show that α (G) = n

2 . Since these are exactly the
theta numbers for these graphs which we mentioned above, these bounds are tight.

Since we observed that several inequalities in the Lovász paper [17] are tight for our
family of graphs, this gives encouragement for studying these chordal ring graphs in the
context of the semidefinite programming because apparently there exist some features which
may assist in finding the ORs.

Our results about ϑ were motivated by our computations using a semidefinite program
in Sage which computes the Lovász Theta number of a graph in polynomial time, from [19].
When we generated these values for graphs L(CRn,c) for varying values of n and c, we saw
that the numerical data agreed with the results above. However there arose possible issues
with the precision of these results. Since Sage is a Python based language, the precision
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of the numerical calculations relies on the hardware of the computer being used at that
time. Therefore, we were not able to work with the same level of precision as we had with
Maple. Consider the multiple assumptions we made which were based entirely on the data
computed with Maple. Numerical data found in this way will lose about half of its precision.
If we were not able to increase the precision, we would be making these assumptions on
a very small number of digits. By increasing the digits, were able to differentiate a true
result from a coincidental result. Thus, with just the hardware precision, any conjectures
we made on the data computed with Sage would have been made on between 5-10 digits of
precision. Though they were not sufficient conditions, they were necessary. If we had failed
these necessary conditions, we would have known to stop our other numerical method. We
looked into this as a safeguard from spending time on something which led nowhere.

In the next section, we briefly discuss some future projects which stemmed from our
work in this thesis. Hopefully these quick explanations of possible research will motivate a
reader.

5.3.2 Future Research

There is a possibility that our choices of arg(B1) and arg(B2) being zero was not the simplest
solution. This may depend on the particular measure of simplicity. The different choices of
these arguments might lead to a simpler solution set (a, b) or simpler proofs of Theorem
4.1.1.

Recall that we presented a simplified form of the proofs for Theorem 4.1.1. Seeing that
this alternate proof is possible, it would be interesting to try and unify the original proofs
to fewer than six cases. This would not make any substantial difference to the result. We
are expecting to submit our results to a journal shortly and this is a goal for that paper.

When we began this thesis, we set out to find an infinite family of KS sets in a fixed
dimension. Not only were we able to find such a family of KS sets, but our family exists in
the smallest possible dimension.
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Appendix A

Code

A.1 Optimizer

A sample of our Maple code implementing the objective function (5.1) and numerical search
for ORs.

edges := [ seq( { (i mod v) + 1, ( (i + 1) mod v) + 1 } , i = 0..v-1 ),
seq( { (i mod v) + 1, ( (i + c) mod v) + 1 } , i = 0..v-1 ) ]:

orthp := select( p -> ( nops( edges[p[1]] intersect edges[p[2]] ) > 0 ),
[ seq(seq([i,j],j=i+1..nops(edges)),i=1..nops(edges)) ] ):

objf := add( ( add( (v||j||i)^2 , i=1..d ) - 1 )^2 , j=1..n ) +
add( ( dp( V[p[1]], V[p[2]] ) )^2 , p=orthp ):

ip:= initialpoint = { seq( va =r()/M, va=indets(objf) ) }:

Digits := 10:
while Digits < 100 do

Val := 100:
while not(is(Val<10^(-floor(Digits*(1/3))))) do

opt := Minimize(objf, {}, ip, iterationlimit=10^5):
Val := opt[1]:
if Val>(10^(-floor(Digits*(1/3)))) then

ip := initialpoint = { seq( va =r()/M, va=indets(objf) ) }:
fi:

od:
ip := initialpoint = opt[2]:
Digits := Digits+10

od:
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