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Abstract

For any smooth variety X, there exists an associated vector space of first-order deformations.
This vector space can be interpreted using sheaf cohomology; it is the first cohomology group
H'(X,Tx) where Ty is the tangent sheaf. One can ask when it is possible to “combine” two
first-order deformations. The cup product takes elements of H'(X,Tx) x H*(X,Tx) and
maps to the obstruction space H*(X,Tx), and the vanishing of the cup product tells us
precisely when this is possible. In this thesis we give a combinatorial description of the cup
product (on the level of Cech cohomology) when X is a smooth, complete toric variety with
an associated fan . We also give an example of a smooth, complete toric 3-fold for which

the cup product is nonvanishing.

Keywords: cup product, toric geometry, tangent sheaf, Cech cohomology, Euler sequence,

deformation theory
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Chapter 1

Introduction

1.1 Background and Motivation

Algebraic geometry is an expansive field of study in mathematics, which began as the study
of solutions sets of systems of polynomial equations. Often we refer to these sets as varieties.
The aim of toric geometry is to study those solution sets which also exhibit a combinatorial
structure. By combinatorial we mean the solution sets correspond in some way to certain
objects in discrete mathematics. Essentially, a variety is toric if it contains the algebraic torus
as a dense open subset. There are many connections between toric geometry and polyhedra,
combinatorics, and commutative algebra, which make this area particularly amenable to
study. In this thesis we leverage these connections to give a combinatorial description of the
cup product.

If X is a variety, then one may be interested in deformations of X. Roughly speaking,
solution sets to polynomial systems can be deformed be varying the coefficients of the
defining equations. The cup product provides information regarding when two first-order
deformations can be combined. Specifically, we are interested in the vanishing of the cup
product when X is a smooth, complete, toric variety. In this thesis we give conditions for
when the cup product vanishes, and we provide an explicit example (in the form of a fan
corresponding to a toric 3-fold) of when the cup product is nonzero, in Section 7.4.

For a smooth, complete toric variety X, isomorphism classes of first-order deformations
are in correspondence with elements of the cohomology group H'(X, Tx) [Ser07, §1.2.9].
This cohomology group has a concrete description as a vector space by [Ilt11], and we
use this fact throughout. The cohomology group H?(X,Tx) (called the obstruction space)
describes the obstructions to lifting first-order deformations to higher order. This also has
the structure of a vector space, which we describe in Chapter 5. The cup product can be
thought of as a map of vector spaces, which combines two first-order deformations, and

produces an element in the obstruction space:

— Hl(X,Tx) X HI(X,T)() — H2(X,Tx).



The primary tool we use to describe these vector spaces is Cech cohomology. The Cech
description gives us the ability to make explicit computations in these cohomology groups.
The explicit nature of this representation allows us to describe a smooth, complete toric
3-fold for which the cup product does not vanish.

This thesis is structured as follows: in Chapter 2 we begin with a cursory introduction to
the basics of algebraic geometry, introducing the relevant objects for this thesis — warieties,
divisors, sheaves, and the tangent sheaf. This serves as background for Chapter 3, where we
develop the language of toric geometry. This includes objects such as cones and fans, torus
invariant divisors, and sheaves associated to divisors. Chapter 4 covers sheaf cohomology,
where we define Cech cohomology and the cup product. In Chapter 5 we detail the isomorphism
which allows us to view H'(X,Tx) as a direct sum of simpler spaces (via cohomology of
boundary divisors). Chapter 6 outlines the combinatorial description of both H'(X, Tx) and
H?(X,Tx), and finally Chapter 7 contains the main results of the thesis.

1.2 Overview

The goal is to describe the cup product on X, when X is a smooth, complete, toric variety.
As we mentioned, the cup product is a map taking two elements of H'(X, 7x) and producing
an element of H2(X, Tx) which we denote by

- HI(X,T)() X HI(X, Tx) — H2(X,Tx).

The first step is to use the fact that there is a decomposition in cohomology of HP(X, Tx),
given by the character lattice of the torus. Let M be said character lattice, so that we have

the grading

HP(X,Tx) = @ HP(X,Tx)u.

ueM

Given this grading of HP(X, Tx), it is sufficient to compute the cup product
~ Hl(Xv TX)U X Hl(Xv TX)u’ — Hz(Xa TX)u+u’

for all pairs u,u’ € M instead. In fact we will see later that we need only consider pairs u, u’
which satisfy conditions relating to the combinatorics of smooth, complete, toric varieties.

Next we use a result of [I1t11] which gives a description of the cohomology groups
HY X, Tx)u~=V  and  HYX,Tx)w =V’

where V and V' are combinatorially described vector spaces relating to connected components

of certain graphs. We extend this result via Theorem 6.9 to conclude that the cohomology



group H2(X, Tx )utw is isomorphic to another combinatorially described vector space W.
The goal of this thesis is to describe the cup product in terms of these vector spaces. That is,

we characterize the cup product by describing the dashed arrow in the following diagram.

HY (X, Toc)u % HY(X, T )ur 220 H2(X T )y

To describe a map of vector spaces in practice, one gives the map in terms of what it does to
basis elements. There is no canonical basis for V or V', so instead we describe the map on
elements of a spanning set. We give a set of spanning elements for V' and V' in Section 6.2.
Next, for an arbitrary pair of spanning elements, we trace through the isomorphism on the left
and apply the cup product. This gives a Cech representative of the image in H?(X, Tx )yt
The main difficulty is then to “lift” the representative for the element in H?(X, 7x)ysw to
a representative of the element in W. It turns out that this cup product image is actually a
sum of two elements. However, by an argument in Chapter 7 we may consider the summands
separately, which simplifies things somewhat. Finally, we lift the summands in Theorem 7.4

and Theorem 7.7. This gives us the combinatorial description that we were hoping for!



Chapter 2

Algebraic Geometry

In this chapter we cover a few of the concepts in algebraic geometry that are essential for
this thesis. We start at the beginning with affine varieties, then work up to sheaves and
divisors. For a gentle introduction to affine varieties (and the Nullstellensatz) see [CLO07] by
Cox, Little, and O’Shea, particularly the first two chapters. For a more advanced treatment

of the topics in this chapter, and for divisors, sheaves, etc., see the excellent [Harl3].

2.1 Affine Varieties

We begin with the basic geometric object in algebraic geometry, the affine variety. Let k
be an algebraically closed field of characteristic 0, and k[x] = k[z1,...,z,] be the ring of
polynomials in n variables over k. The main objects of study in algebraic geometry are

solutions to systems of the form

hi(@) == fi(x) =0,

for a set of polynomials { f;} C k[z]. Observe that if a point p € k" satisfies f;(p) = f;(p) =0
for some f;, f; € k[x], then f;(p)+ f;(p) = 0 as well. Similarly, g(p) fi(p) = 0 for any g € k[x].
So instead of considering solutions to systems of polynomials, we can instead look at solutions
for the ideal I C k[x] generated by the polynomials of the aforementioned system. Since
Hilbert’s basis theorem implies that I is finitely generated, we need only look at the generators

of I, which is a finite list. These solutions sets are what we call an affine variety.

Definition 2.1. Let I C k[x] be an ideal. Then
V(I)={pek™| f(p)=0forall fel}

is an affine variety.

Example 2.2. Consider the polynomial zy — 2% € Clx,y,2]. Then V (zy — 2?) has real

picture:



Instead of starting with a system of polynomials and obtaining an affine variety, we can go
in the “other direction”. Starting with an affine variety V C k", one can produce an ideal

I C k[z]. This is done by considering all polynomials which vanish on V:
IV)={f€k[x]| f(p)=0forall pe V}.

This idea is used to define the most important algebraic object associated to V', it’s coordinate

ring.

Definition 2.3. Let V' C k" be an affine variety. Then the coordinate ring of V is
k[V] = k[z]/I(V).

This association gives us the ability to “read off” facts about V' by examining the coordinate
ring k[V] instead. For instance, V' is irreducible (cannot be written as a union of non-empty
varieties) if and only k[V] is an integral domain, and two affine varieties are isomorphic if
and only if their coordinate rings are isomorphic.

This is the classical way of approaching affine varieties. However the description we use
for toric varieties requires an alternate definition. For this we will need to know what the

spectrum of a ring is.

Definition 2.4. Let R be a commutative ring with unity. Then the spectrum of (and

maximal spectrum) of R is

Spec R = {I C R| I a prime ideal}, and Specm R = {I C R | I a maximal ideal}.



Hilbert’s Nullstellensatz [CLOO07, §4] tells us that maximal ideals in k[x] are of the form
m=(T1 —ay,...,Ty — Qy).

It follows that maximal ideals are in one-to-one correspondence with points in V' (send ideals

of the form (z; — a;) to the points (a1, ...,a,)), so one can write V' as V = Specm(k[V]).

Example 2.5. Let R = C|z] be the ring of polynomials in one variable x. C is algebraically
closed, so maximal ideals of C[x] are of the form (z — a) for a € C. Each of these correspond
uniquely to the point a € C, so that Specm R is identified with the complex line. Similarly
if R = Cl[z1,...,z,], Specm R can be identified with C".

There are many important properties that an affine variety can possess, and one of the most
important for this thesis is that of normality. Being normal is key in our discussion of toric
varieties. A toric variety being normal is what allows us to use the “nice” combinatorial
description via cones and fans. For an integral domain R with field of fractions K, we say
that R is normal if R is integrally closed in K. That is, every element k& € K that is a root
of a monic polynomial f € R[z] is actually an element of R. We use this to define when an

affine variety is normal.

Definition 2.6. An irreducible affine variety X is normal if its coordinate ring k[X] is

normal.

Finally, in our upcoming exposition on sheaves we require the notion of open and closed
subsets of a variety X C k™. That is, we need to describe the topology of an affine variety.
When k = C there are two usual choices, the natural choice being the topology induced
from the usual Euclidean topology on C™. The other is called the Zariski topology. In this
topology, a subset V C X is closed when V is a variety in k™. The open sets are then the
complements of closed sets. Now that we have the notion of topology on a variety, it is a

good time to define when an affine variety is reducible or irreducible.

Definition 2.7. An affine variety X is reducible if there exist two closed proper subsets
V1, Vo € X such that

X=ViuW.

If there is no such representation, then X is irreducible.

We will use the notion of dimension later on when introducing divisors on varieties.
Since we have just talked about the topology of a variety, it is the natural time to define

dimension. In fact, we will define dimension for any topological space.



Definition 2.8. Let X be a topological space. The dimension of X is the supremum of

integers n such that there exists a chain of distinct closed irreducible subsets
XoCcXjC---CX,CX.

Example 2.9. Let X = C with the Zariski topology. Then the only closed, irreducible
subsets of X are individual points z € C and the whole space itself. Thus the dimension of

C is 1, as expected.
Finally, we will need to know what a morphism of affine varieties is.

Definition 2.10. Let X,Y be two affine varieties. A map f: X — Y is a morphism when
it has the form

f:(flv"'7fM)

where the f; lie in k[X].

‘We now move on to sheaves on varieties.

2.2 Sheaves

A sheaf F on a variety X is a tool which organizes and tracks local data on X. It is a way of
making precise the notion of translating between local data and global data; the idea being
that if your local data agrees on overlapping open sets, then you can “glue” the data to get
something global. By local, we mean for every open set U C X there is an associated object
F(U). Elements of F(U) are referred to as sections over U. These objects F(U) can be
any object as long as they satisfy the sheaf axioms. Here we define what a sheaf of abelian
groups is, but this definition can be extended to other objects in a natural way. We will also

discuss sheaves of rings and modules later in the thesis.

Definition 2.11. A sheaf of abelian groups F on a topological space X is a collection
of abelian groups F(U) and restriction maps resyy : F(U) — F(V) for every inclusion of
open sets W C V C U C X, such that the following are satisfied:

1. (Restriction maps) For every inclusion of open sets W C V C U C X, we have

resy,w o Iesyy = resy,w,

where resy,y = idg@y. If V. C U and the superset is clear via context, then we may

also write s|y for s € F(U).

2. (Locality) If {U;}icr is an open cover of an open set U C X and if s,t € F(U) are
sections over U which agree on every U; then s = t. That is, if resyy, (s) = resyy, (t)
for all 7 € I, then s = t.



3. (Gluing) If {U;}ier is an open cover of an open set U C X, and if s; € F(U;) satisfy
resy,, uinu, (8i) = resu; uinu; (85)

for all 4, € I, then there is a section s € F(U) such that resyy,(s) = s; for all 4.
To illustrate this idea, we give the quintessential example of a sheaf.

Example 2.12. Let X C C” be a variety endowed with the Zariski topology, and for any
open set U C X let

C(U)={f:U — C| f is continuous}, C(0) = 0.

This C is the sheaf of continuous functions on X. It is clear the restriction maps are given
by restricting the domain of the continuous function. Both the locality and gluing condition

follow from the fact that continuity is a locally defined property.
For the next example we need to know what localization is.

Definition 2.13. Let R be a commutative ring, and f € R. Set S = {f* | k € N}. Then
the localization of R at f, denoted Ry, is the set

{:|r€Rands€5’},

modulo the equivalence relation

r

—~ — <= u(rs' —r's) = 0 for some u € S.
s s

Remark 2.14. One extends this definition of localization at elements f to localization at

ideals m by replacing S in the definition with R\ m.

Example 2.15. Let X = V(5) be an irreducible affine variety. The structure sheaf on
X is defined on open subsets U C X by

zelU
where m, C R is the maximal ideal corresponding to the point x, and Ry, is the localization
of R at m,. Here the intersection is viewed as taking place in the field of fractions of R
(which is okay since we assume R is an integral domain). We can also think of elements of

Ox (U) as rational functions defined on a neighbourhood containing the point x.

Remark 2.16. For a sheaf 7 on X and for a subset U C X, one may consider the
restriction of the sheaf F to U. This is denoted by F|y, and is defined on opens V' C U by
Flu(V) = F(V). See the end of [Har13, II.1] for details.

8



It is also useful to know what morphisms between sheaves are, as they are key to defining a

dual sheaf. This is relevant as later on the tangent sheaf is defined in terms of a dual sheaf.

Definition 2.17. If 7 and G are sheaves on X, a morphism of sheaves ¢: F — G
consists of a collection of morphisms ¢y : F(U) — G(U) for every open set U, such that for

every inclusion of open sets V' C U the following diagram commutes:

F(U) —— G(U)

[I‘GS U,v [I‘ES U,v

F(V) —2— G(V)

We move on, for now, to a more general class of varieties.

2.3 Abstract Varieties

While affine varieties are the basic objects in algebraic geometry, we are interested in more
general objects. To this end we introduce the notion of an abstract variety. For more details
on abstract varieties, see [CLS11, §3.0] and [Har13, II.4].

The abstractness means that the variety does not come equipped with an embedding
into some ambient space. So in some sense this definition captures more of the intrinsic
nature of varieties. Additionally, since we are interested in smooth, complete toric varieties
arising from a fan, this definition is exactly what is needed to construct a variety from the
combinatorial data in the fan.

The essential idea is to "glue together* some collection of affine varieties. So let I be
an index set, and {V;};er some finite collection of affine varieties such that for all pairs
(i,7) € I? we have Zariski open sets Vj; C V; and isomorphisms g;;: Vj; — V;; which satisfy

L. gij = gj_l-l
2. 9ji(Vji N Vi) = Vij NV for all 4, j, k, and gg; = grj © gjs on Vi N V.

Then set Y to be the disjoint union of the {V;}, and define the equivalence relation ~ on Y’
by

r~y < z€V;,yeV, for some i,j, with g;;(z) = y.

Let X =Y/ ~ be the quotient space defined by the equivalence relation ~. Observe that X
is covered by images of the affine varieties V;, each with their own structure sheaf Oy;. The
gluing isomorphisms ensure that the variety structure on intersections V; N'Vj is preserved.

This induces a sheaf Ox on X, which restricts to Oy, on the image of V; in X.

9



Definition 2.18. The quotient space X = Y/ ~, together with the sheaf Oy, is an abstract

variety.

We note here that an abstract variety is locally affine. To see this, for any ¢ € I set
Ui ={z € X | z € V;}. Then the map from V; — U; defined by x +— Z is a homeomorphism.

Since V; was assumed to be affine, so is Uj;.

Example 2.19. Set V; = Spec C[z,y], and V5 = Spec C|z, w]. Then take Va; = Spec C[z, y],
and Vis = Spec C|z, w],,. Transition maps gi2 and go1 are induced by the k-algebra homo-

morphisms
g>2kl: (C[z,w]w — C[$7y]y 9T27: C[xvy]y — C[va]wv
1
Zi= =, X = —,
Yy w
w — TY, Y = Zw.

This variety may be recognized as the blowup of C? at the origin.

2.4 Divisors

For more about divisors on a variety, see [CLS11, §4.0] and [Har13, I1.6]. Let X be a variety.
If the goal is to understand X completely, we might want to understand all subvarieties of
X as well. It turns out that studying codimension-1 subvarieties of X reveals much about
the geometry of X itself. We call the irreducible codimension-1 subvarieties prime divisors,
which leads to an invariant of X, called the divisor class group. In our case we care about
divisors since, in the toric case, we can use them to give a nice decomposition in cohomology

of the tangent sheaf.

Definition 2.20. Let D C X be an irreducible codimension-1 subvariety. We call D a

prime divisor on X.

Example 2.21. If X is a smooth irreducible plane curve, prime divisors consist of the

points of X.

Definition 2.22. The free abelian group generated by prime divisors of X is denoted by
Div(X), and elements of Div(X) are called Weil divisors.

Remark 2.23. This means that a Weil divisor D on X is a formal sum
D=>a;-D; a;€Z,
i
where only finitely many a; are nonzero and D; are prime divisors on X.

10



Remark 2.24. In fact there are two kinds of divisors that are usually considered, Weil divi-
sors and Cartier divisors. Since we are considering the smooth case, there is an isomorphism
between the group of Weil divisors and the group of Cartier divisors. Hence for the sake of
length we only mention Weil divisors here. The idea behind Cartier divisors is that locally,

they are given by rational functions. For details see [CLS11, §4.0]

2.5 Tangent Sheaf

We first introduce the tangent sheaf Ty as the dual of the cotangent sheaf QY. The notion
of dual sheaf requires a few more definitions. Many of the important sheaves in this thesis

are of a specific type.

Definition 2.25. Let X be a variety with structure sheaf Ox, and let F be a sheaf on X.
Then F is a sheaf of Ox-modules when for U C X the object F(U) is an Ox (U)-module.
Further, when V' C U the restriction maps F(U) — F(V') are compatible with the restriction
maps Ox(U) = Ox (V).

Definition 2.26. Let 7, G be sheaves of Ox-modules. A morphism of sheaves of Ox-
modules is a morhpism of the underlying sheaves of abelien groups ¢: F — G such that for
all U C X, the map ¢y: F(U) — G(U) is a homomorphism of Ox (U)-modules. We denote
by Homp, (F,G) is the set of all such morphisms.

Definition 2.27. Let F and G be sheaves of Ox-modules on a variety X. Define the sheaf
of local morphisms 720, (F,G) on open sets U C X by

Hem oy (F,G)(U) = Homo, (Flu, G|v)-

So sections over U consist of morphisms of sheaves restricted to U. At first glace it is not
immediately obvious that this satisfies the sheaf axioms, but one can show that the locality

and gluing conditions hold. As a side-note, this sheaf is also known as “sheaf hom”.
Next, we need to know how to take the dual of a sheaf of Ox-modules.

Definition 2.28. Let F be a sheaf of Ox-modules on an affine variety X. Then the dual
sheaf of F, denoted by FV, is defined by

FY = Horm oy (F,Ox).

The cotangent sheaf is defined using the module of Kdhler differentials.

Definition 2.29. The module of Kéhler differentials, denoted by Qo ()¢, is the
Ox (U)-module generated by the symbols df for f € Ox(U), where the Leibniz rule is
satisfied:

11



1. d(ef + g) = cdf +dg for all c € C and f,g € Ox(U).
2. d(fg) = fdg + gdf for all f,g € Ox(U).

We can create a sheaf using the modules by specifying what the sections over affine open

sets are.

Definition 2.30. The cotangent sheaf Qk on a variety X is a sheaf of Ox-modules,
defined on affine open sets U C X by

Q% (U) = Qo wy/c-
Definition 2.31. The tangent sheaf Tx on a variety X is the dual sheaf
Tx = (%)Y = Homo, (0%, Ox).

Duality preserves the coherent property, so Tx is a coherent sheaf.
This definition is rather unwieldy, so in fact we use an alternate definition in terms of

derivations.
Definition 2.32. Let R be a C-algebra and M an R-module. A C-derivation is a C-linear

map §: R — M which satisfies

6(fg) =4d(f)g+ folg)

for all f,g € R.
Now we know what a derivation is, we can make the following remark.

Remark 2.33. Let R be a C-algebra and M an R-module. The module Qg /¢ of Kéhler
differentials, together with the C-derivation d: R — Qpg/,c given by f +— df, satisfies the
following universal property. For any R-module M, and for any C-derivation d': R — M

there is a unique R-module homomorphism f making the following diagram commute:

QR/(C fffff > M
dT d'=fod
B

In fact this can be taken to be the defining property of Qg /c. See e.g. [Harl3, §IL.8].

We now let & = C. Denote the set of all C-derivations R — M by Derc (R, M). To define
a sheaf on X, we specify what the sections of an open affine subset look like. If U ~ Spec R is
an affine open subset of a variety X, then set Tx(U) = Derc(R, R). Later on when working

with the tangent sheaf, this is the way we are thinking of sections over open sets.

12



2.5.1 Lie Bracket

If we are going to use the derivations interpretation of the tangent sheaf, then one needs to
be able to multiply derivations in order to have a ring structure. In this section we describe
how that multiplication works.

Multiplication of two derivations f,g is given by the Lie bracket [ , |, defined by
[f,g9] = fog—go f. This definition preserves the property of being a derivation. Namely,

for some h we have

h)ofog+ho(d(f)eg+ fod(h))—d(h)ogo f—h(d(g)ef+god(f)),
h)o[f, gl +hod([f, g])-

Since the Leibniz rule is satisfied, this is indeed a derivation.

2.6 Coherent and Quasicoherent Sheaves

When we wish to describe sheaf cohomology, the main tool we use is Cech cohomology. When
the sheaves are particularly nice, Cech cohomology groups are isomorphic to the cohomology
groups given by the general definition [Har13, §I11.4.5]. In this section we make precise what

we mean by “nice”.

Definition 2.34. Let R be a commutative ring, and M an R-module. The localization of
M at f € Ris denoted M. This is an Ry-module satisfying the same equivalence relation

as for localizing rings, together with the module structure for M.

We now introduce a new sheaf, which we denote by M. Since it is enough to specify a
sheaf on a basis of open sets (see Lemma 2.1 in [Per07, II1.2] for example), we define M on

distinguished open subsets (which form a basis for the topology on our variety).

Definition 2.35. Let R be a commutative ring and M an R-module. The sheaf associated
to M on Spec R is denoted by M, and defined on distinguished open sets U ¢ = Spec R by

M(Uy) = M;.

Definition 2.36. A sheaf F of Ox-modules on a variety X is quasicoherent if there is
an affine open cover {U; = Spec R;} of X, such that for each i there is an R;-module M;
with ]:‘Ul ~ Mz

A sheaf is coherent if, in addition, each M; is finitely generated. Every relevant sheaf in this

thesis is quasicoherent.
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Theorem 2.37. The cotangent sheaf Q_lx is a coherent sheaf.
Proof. Follows from [Harl3, §I1.8.15]. O

For every quasicoherent sheaf F it is possible to find a “good cover”, for which each piece
has vanishing higher cohomology. See e.g. Chapter 4. That is to say an open cover {U;}; of
X is “good” when any finite intersection U = N;U; satisfies HP(U, F|y) = 0 for all p > 0.
See, for example, 4.11 in [Har13, II1.4]. This implies that Cech cohomology is sufficient to

compute the cohomology groups we are interested in.

14



Chapter 3

Toric (Geometry

In this chapter we will give an overview of toric varieties, and the reasons why they are an
appealing object of study. For more details, see the excellent book [CLS11]. We will begin
by providing a definition.

Definition 3.1. An n-dimensional variety X is toric if the algebraic torus (C*)™ C X is

dense in X, and the natural action of the torus on itself extends to all of X.

Example 3.2. Let X C C* be the variety defined by the vanishing of zy — zw. X is

3-dimensional, and has the torus
(C*)? = {(21, 32, 23, 117273 ') | 3; € C*}

as a dense open subset.

Restricting our attention to the class of toric varieties yields several benefits. Compared to a
general abstract variety, a toric variety is easier to understand, compute examples of, and
provides a fertile testing ground in algebraic geometry. For these reasons, toric varieties are
a well studied class of objects. In this thesis we restrict ourselves to toric varieties which are
normal, as these are precisely the ones which allow for a combinatorial description via a fan.
This description is what allows to compute concrete examples of abstract notions, in our
case this is the cup product map.

While the dense open subset characterization of toric varieties is important, there is
another description which allows us to work explicitly. Normal toric varieties admit a
description via objects in a rational vector space, whose dimension is that of the algebraic
torus embedded in X. These objects are called cones, which can be arranged in a collection
called a fan. Cones correspond to affine toric varieties, while fans correspond to more general
toric varieties.

As we will see, information about the variety X is encoded in the combinatorics of the
fan. This encoding allows us to make explicit computations, helpful when providing an

example of the nonvanishing of the cup product. We will begin with affine toric varieties.
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3.1 Affine Toric Varieties

We will assume the ground field is C, although most of what follows would be fine if we only
assumed a ground field which is algebraically closed. We have seen already that a variety
V is the set of common zeroes of a collection of polynomials {f1,..., fs} C Clz1,...,x,].
In what follows we give a way to construct affine toric varieties via combinatorics, rather
than the embedded torus idea. We follow closely the notation found in [CLS11]. That means,

among other things, that we use the following definition for lattice.
Definition 3.3. A lattice is a free abelian group of finite rank.

This means that a lattice N of rank n is isomorphic to Z", by sending the n generators of
N to the standard basis vectors of Z™. Thus for the rest of this thesis, N is a lattice of rank

n, with a corresponding dual lattice M. For us, M is the character lattice of the torus.
Definition 3.4. A character of a torus 7' is a map x: T — C*.
Example 3.5. Let T'= (C*)" and m = (mq,...,my) € Z". Then x™: T — C* defined by

(t1y ..o tp) s B g

is a character. In fact, all characters arise in this manner, so M = Hom(7T,C*) ~ Z".
The dual to the character lattice is the lattice of one-parameter subgroups.

Definition 3.6. Let ' = (C*)". A one-parameter subgroup of 7" is a morphism A: C* —

T that is a group homomorphism.

Example 3.7. For u = (uq,...,uy,) € Z" there is a one-parameter subgroup A*: C* — (C*)"
given by

tioy (B9, 1),

In fact, all one-parameter subgroups arise in this manner, so N = Hom(C*,T') ~ Z.

We let (-,-}: N x M — Q be the natural bilinear pairing. The associated Q-vector spaces
are denoted Ng = N ®Q and Mg = M ®Q. With this in mind, we describe how to construct

an affine toric variety from combinatorial data in the lattice N. The basic “building blocks

are cones.

Definition 3.8. A convex polyhedral cone o C Ny is the set of all positive combinations

of a finite set of lattice points V' = {v1,...,vs} € N. Explicitly,
o = Cone(V) = {A\v1 + ...+ Asvs | A > 0} C Ng.

We say that o is generated by {v1,...,vs}. From now on when we say “cone”, we mean a

convex polyhedral cone.
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Example 3.9. Let e; be the standard basis vectors for Q3 and set
V = {ei, ez e3 €1+ e —es}.

Then Cone(V') C Ng looks like

e +ey—es3

Given a cone o C Ng, there is a naturally occurring cone in the dual space, called the dual

cone.

Definition 3.10. For a cone o, the dual cone ¥ C My consists of all elements of the

dual vector space Mg which pair non-negatively with every element of o. Explicitly,
o' ={me Mg | (z,m) >0 forall z € o} .

On can show that (see [CLS11, §1.2.4] for instance) (¢¥)" = o, and that ¢" is a cone in

Mg. Now, fix m € Mg and consider the following two sets:
H ={z € Ng | (z,m) >0} and H,, ={z € Ng | (z,m) =0}

Definition 3.11. We call H,, a supporting hyperplane of a cone o if 0 C H,},.

Example 3.12. Continuing our previous example, set m = (0,1,0) € Mg. Then H,, is a
supporting hyperplane for Cone(V).
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One of the important properties of a cone is the notion of a face, defined using supporting

hyperplanes.
Definition 3.13. We say that 7 is a face of a cone ¢ C Ng if 7 = H,;, N o for some m € V.

Example 3.14. In our continuing example, a face of ¢ can be obtained by setting m =
(0,1,0) € Mg. For this choice of m, the supporting hyperplane lies on the zz-axis. Thus by
intersecting with ¢ we get the indicated red region 7, which is a face of o.

€3

el +ex—e3

We are now ready to construct the affine variety U, associated to a cone o C Ng. For
technical reasons, one constructs U, via the corresponding dual cone under the pairing (-, -).
For a cone o € Ny, consider the intersection ¢¥ N M of the dual cone with the lattice
M. This gives an affine semigroup S, (which is finitely generated by Gordan’s Lemma, see

[CLS11, §1.2.17]). From this semigroup, one constructs the semigroup algebra

mESo'

C[Ss] = { Z emX™ | em € C, and all but finitely many ¢, are 0} ,

with multiplication induced by x™ - x™ = y™". Now we set U, = Spec C[S,]. This is an
affine toric variety by [CLS11, §1.1.14].

We can use these affine toric varieties to construct more general toric varieties, which
arise by “gluing together” affine toric varieties U,. In fact, one can simply glue the cones o

together. This creates an object called a fan, usually denoted by 3.
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3.2 Toric Varieties

In this section we describe the combinatorial aspect of toric varieties, which allows us to

give nice descriptions of several geometric properties. We begin by defining what a fan is.
Definition 3.15. A fan ¥ in Ng is a finite collection of cones satisfying two properties:
(a) X is closed under taking faces. For all o € X, every face of o lies in X.

(b) Compatibility condition. For all o, 7 € X, the intersection o N7 is a face of both o and 7.

A fan ¥ lives in the vector space Ng, and the support of ¥ is

Supp(X) = U o C Ng.
oex

Example 3.16. Consider the lattice points v1 = (1,0), v2 = (0,1), and v3 = (—1,—1), and
let p; be the ray generated by wv;. From the v; we can specify the cones

o1 = Cone(vy, v2), o9 = Cone(ve, v3), o3 = Cone(vy, v3).

The set ¥ = {01, 02,03, p1,p2, p3,(0,0)} is a fan in Ng. The fan ¥ looks like:

A

v

In fact this is the fan for the projective plane P2 which has support Supp(X) = Q2.

It is often convenient to refer to cones of 3 of a specific dimension, especially the

one-dimensional cones.
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Definition 3.17. The set of k-dimensional cones of a fan 3 is denoted by (k). The elements
of ¥(1) are called rays of X.

For any fan 3 € Ng one can construct a toric variety X by first constructing U, for each
o € X, then by gluing the U, together along intersections (the details of which can be found
in [CLS11, §3.1]). This works due to property (b) in the definition of a fan. If o and 7 are
cones of a fan ¥, then ¢ N 7 is again a cone, and has associated affine variety U,n,. There
are natural inclusions U,n, C U, and U,n, C U,. Hence we can glue U, and U, along the
common open subset U,n,. The point of this is to say that the set {U, | o € ¥} forms an
affine open cover of X. Since an inclusion of cones corresponds to an inclusion of open sets,
we can restrict our attention to mazimal cones of 3. Now we turn our attention to the

notion of completeness.

Definition 3.18. A fan ¥ in Ng is complete when
Supp(X) = Nog.

Example 3.19. The fan X for P? is complete, since Supp(¥) is all of Ng.

By [CLS11, §3.4.6] a toric variety X is complete precisely when the fan ¥ is complete (note
this is yet another example of properties of toric varieties being encoded in the information
of the fan). In brief, completeness of a variety is the algebraic analogue of compactness as
a topological space. More precisely, a variety X is complete when for every variety Z, the
projection map X x Z — Z is closed in the Zariski topology.

Throughout this thesis we assume X (and therefore X)) is complete, so it suffices to

consider n-dimensional cones for our open cover. We denote this affine open cover by
U={U,|oe€X(n)}.

It is also useful to be able to talk about those elements of the lattice N which generate

the rays of X.

Definition 3.20. For each ray p € ¥(1) there is an associated semigroup p N N. Since p is a
ray, pM N has a unique generator, which we denote by v,. This is called the ray generator

for p.

Observe that for any cone o, the set of ray generators {v, | p € o(1)} is a set of generators
for o as a cone. That is, we can specify cones just by giving their ray generators.

One of most appealing reasons to study toric geometry is the fact that important
properties of the variety X can be “read off” of the data of the fan 3. We have seen already
that completeness is one such property, and now we will see that smoothness is another. As
with most properties of a fan X, smoothness is defined in terms of the cones of X. That is, X

is smooth when each cone of X is smooth. But when are cones smooth?
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Definition 3.21. A cone o C Ny generated by {v, | p € 0(1)} is smooth when the set
{v, | p € o(1)} is a subset of some Z-basis of N.

Example 3.22. For example, consider the the cones o1 and o9 in N = Q2.

g2

PN
~
PN
Y
~

g g

The cone o7 is generated by (1,0) and (1,1). These form a Z-basis for our lattice, so o is
smooth by definition. However, the ray generators for o9 are (1,0) and (1,2). These cannot
form part of a basis since, for example, the lattice point (1,1) cannot be expressed as a
Z-linear combination of (1,0) and (1, 2).

Having the definition of smoothness for cones now allows us to define smoothness for

fans in the natural way.
Definition 3.23. A fan Y is smooth when every cone ¢ € ¥ is smooth.

There is another nice theorem relating the smoothness of the fan to the smoothness of the

associated toric variety.

Theorem 3.24 ([CLS11)). Let X be a toric variety with associated fan X. Then X is smooth

as a variety if and only if 2 is a smooth fan.

3.3 Torus Invariant Divisors

One of the nice properties of smooth toric varieties is the decomposition in cohomology of
the tangent sheaf, in terms of certain sheaves soon to be described. These sheaves arise from
torus invariant divisors. Recall that a divisor D on a variety X is a finite Z-combination
of codimension-1 subvarieties (prime divisors). We briefly explain how the torus invariant
prime divisors are found.

Let X be a toric variety of dimension n with associated fan Y. First, recall that for a

cone o € X we have an associated affine open U,. In fact, the points in U, are in one-to-one
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correspondence with semigroup homomorphisms ¢V N M = S, — C [CLS11, §1.3.1]. Let
Yo € U, be the point corresponding to the semigroup homomorphism S, — C defined by

1 ifmecotnM,
m +—
0 otherwise.

Then the torus orbit associated to the cone o is given by
O(U) - TN * Yo

where Ty denotes the torus. Then [CLS11, §3.2.6] tells us that if the dimension of o is k,
then the dimension of O(o) is n — k.

When k = 1, taking the closure gives an irreducible codimension one subvariety, which is
exactly the definition of a prime divisor. Thus, for any ray p € ¥(1) we have a torus-invariant
prime divisor, denoted D,. In fact any torus invariant divisor D on X can represented as a

sum

D= > a,D,  a,€ZL
pEX(1)

See [CLS11, §4.1] for details.

3.4 Sheaves Associated to Divisors

Later on in Theorem 5.2 we see that for toric varieties, there is a decomposition in cohomology
for the tangent sheaf Tx in terms of the sheaves Ox(D,). These sheaves Ox(D,) are
associated to the torus invariant boundary divisor D,. In this section we briefly cover the
association between the divisor and the sheaf. For the details of this association see [CLS11,
§4]. These sheaves are what allow us to decompose the cohomology for the tangent sheaf 7x
as a direct sum. Recall that a variety X has an associated sheaf Ox called the structure
sheaf. Over an open subset U C X, the set Ox(U) consists of those rational functions of X
which are defined everywhere on U. The sheaf of a divisor is closely related to Ox.

First we will describe principal divisors. These are divisors which arise from elements of

C(X)*. The idea is to generalize the notion of order of vanishing at a point.

Example 3.25. Consider the set of rational functions in one variable z, denoted by C(x).
Elements f € C(z) are of the form f(x) = %. A natural question is, how does f behave at

points o € C? Since C[z] is a unique factorization domain, it is possible to factor out all

copies of (x — ) from both h(x) and g(z). This means that f can be written uniquely as




for some ho(z) and go(x). Then the value of n is the order of vanishing of f at the point .

In the example, the variety we are considering was just C, and the prime divisors of C are
just the points a. Now, for a variety X and prime divisor D, we generalize by constructing
a function (called a wvaluation) vp: C(X)* — Z for any prime divisor D. Then the order of
vanishing of f along D is the integer vp(f). We can use this valuation to construct a Weil
divisor for every f € C(X)* by setting div(f) = > p vp(f)D. Now we're ready to describe
what the sections of Ox (D) look like over an open set U.

Definition 3.26. The sheaf of a Weil divisor D on a toric variety X is defined on open
subsets U C X by

Ox(D)(U) = {f € C(X)" | div(f) + Dly = 0} U{0}.

The sum div(f) + D is done componentwise, and the condition div(f) + D > 0 means that

all coefficients are greater or equal to 0.

We note here that Ox (D) is a coherent sheaf of Ox modules [CLS11, §4.0.27]. In particular,
this allows us to use Cech cohomology to represent H(X,Ox(D,)),. We now move on to

the central tool used in this thesis, Cech cohomology.
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Chapter 4

Sheat Cohomology

For an expanded treatment of sheaf cohomology, see [Har13, II1.1,2] or [CLS11, §9.0] for a
short primer. We have defined earlier in Section 2.2 what a sheaf is. Now we define some

notions essential for defining sheaf cohomology.

Definition 4.1. A sheaf F is injective when for any sheaf homomorphisms a: H — F
and 3: ‘H — G there exists a sheaf homomorphism 6: G — F making the following diagram

commute:
]I’
r ~
oﬂ \\\9
0 n—" g

Every sheaf F of abelian groups has an injective resolution (see e.g. [Har13, II1.1])
0 F o L dy

which is denoted by F'*. Considering the global sections of this resolution gives a complex of

abelian groups
DX, F*): I(X, F) L rx, 7Y Lo, £ S

Here, the term complex means that the maps d* satisfy d* o d'~! = 0.

Definition 4.2. Let F be a sheaf of abelian groups, with 0 — F — F*® an injective
resolution. Then the p-th cohomology group of F with respect to a topological space X

1S
HP(X,F) = kerd?/imdP~!.

Note that the cohomology groups might seem to depend on the choice of injective resolution
— in fact it can be shown that they are independent of choice of resolution. Different choices

of resolution give isomorphic cohomology groups, see e.g. [Har13, IIL.1].
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Remark 4.3. We often need to compute the cohomology of a sheaf F of rings or Ox-
modules. In these cases we consider F as a sheaf of abelian groups instead, and compute

cohomology by applying Definition 4.2.

While this definition is powerful and general, it is often impractical to calculate cohomol-
ogy groups this way. Fortunately, there is a tool which can compute cohomology groups in

many nice cases (including the cases we are interested in).

4.1 Cech Cohomology

We now describe the main tool used in this thesis, Cech cohomology, named after the
mathematician Eduard Cech (1892-1960). See [Har13, §I11.4], [CLS11, §9.0], or [Bos12, §7.6]
for more details. Let F be a sheaf of abelian groups on a variety X. The idea is to cover
X with open sets {U; };er and compute sections of F over all the U;, as well as all possible

intersections. So suppose that X has an open cover U = {U,};cs, and set

Uig,.siy = Uig N ... N Uj

-
Then for a sheaf 7 on X we have the following definition.

Definition 4.4. The group of Cech p-cochains on U with values in F is

U, F)= ] FUi,.iy)-

Note that the product runs over all possible choices for indices. That is, there are (p + 1)!
multiplicands in the product. Now to turn these Cech groups into a complex we need a

differential, or coboundary, map.
Definition 4.5. The p-th Cech differential d”: CP(U, F) — CPt1 (U, F) is defined by
p+1
k
(dpa)io,~~~,ip+1 = Z(fl) Qi1 ‘Uio ,,,,, ipy1”
k=0

Here, i means omit the index 4.

One can verify that dP™! o dP = 0, so that
~0 %0 4 A1 ', 2 a?
C*U,F):0-CUF)—CUF)—CUF)— -

is a complex, called the Cech complex. Once we have C"(U,]—"), we can then take the

cohomology of this complex.
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Definition 4.6. For a sheaf F and cover U, the p-th Cech cohomology group is
HPU, F) = HP(C*(U, F)) = ker dP/ im dP~*.

Observe that HO(U, F) = kerd’. If (a;)ics is an element of CO(U, F) then d(a;)i; = 0
implies a; = a; on the intersection U; N U;. Since the global sections F(X) are exactly those
elements which satisfy this rule, it follows that H(U, F) = F(X) = H(X, F).

This equality doesn’t necessarily hold for p > 0, but when F and U/ are sufficiently nice

we do get isomorphic cohomology groups, as we see in the following theorem.

Theorem 4.7. Let U be an affine open cover of a variety X, and let F be a quasicoherent
sheaf on X. Then HP(U,F) ~ HP(X, F).

Proof. See the proof in [Harl3, §I11.4.5]. O

Since we are always taking the natural open affine cover {U,},ex, and the sheaves Tx and
Ox(D,) are coherent (and hence quasicoherent), this theorem tells us we may freely use
Cech cohomology to describe the cohomology groups we are interested in.

While we are mainly interested in the sheaf cohomology of a smooth complete toric variety,
our combinatorial description of H'(X, 7x) and H?(X, Tx) relies on singular cohomology
groups HP(Z,C) where Z is a topological space. In our situation the topological space Z
is locally contractible, which allows us to use sheaf cohomology instead. For each open set
U C Z,let F(U) = C. This defines a presheaf F on Z, whose sheafification is the constant
sheaf. By [Brel2, §II1.1], the sheaf cohomology of this constant sheaf is the same as the
singular cohomology. Note that the constant sheaf is not coherent, so 4.7 doesn’t apply.
However we can still use Cech cohomology to compute these groups, since we will be using a

cover where all intersections are locally contractible. See e.g. [God58, §11.5.2].

4.2 Alternating and Ordered Cech Cohomology

While the definition of singular Cech p-cochains is natural (in the sense that there is no
choice involved with the indices), it is unwieldy to work with, as the number of summands in
the group CP (U, F) grows factorially in p. This, along with other reasons, make it attractive
to look for other definitions for Cech cochains and complexes, which preserve the cohomology.

To this end, we have the following definition.

Definition 4.8. The group of alternating Cech p-cochains on I/ with values in F is

CP (U, F) = CPU, F),
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and consists of those p-cochains a which satisfy

0 if 49, ...,17, are not pairwise distinct,
Qig,..ipy = (4.1)

sgn(m) - Qi (0)srsin(p) for any ™ € Sp41.
Here S)41 is the group of permutations on p + 1 symbols.

Using the same definition for the differential on Cech p-cochains, we obtain the complex

Vglt (U, F) of alternating Cech p-cochains. Looking at the cohomology groups, we obtain
Hy (U, F) = HY(C, (U, F)).

If an ordering < on the indices I is fixed, then we can define another important Cech

complex.

Definition 4.9. The group of ordered Cech p-cochains on U with values in F is

CPUF) = P FU,.,)

10<...<ip

Again we obtain the cohomology group
Hy g (U, F) = HP(Coa(U. F)).

This definition is useful when computing explicit examples of cohomology groups.

One can check that HE, (U, F) ~ H? (U, F) by c: C& U, F) — C%(U, F), where
0 if i; = 1), for some i # k,
C<S>i0 . /L‘p = ep - .
SEN(0)Si, ) iom I o) < 1 <lo(p)-
Less straightforward is the fact that Iji’glt (U, F) is isomorphic to H?(U, F).

Theorem 4.10. Let U be an affine open cover of a variety X. Then for all p > 0, the
inclusion v: é;lt(u,F) — é"(L[,F) induces isomorphisms of cohomology groups

oY, (U, F) ~ H (U, F).

Proof. See the full proof in [Bos12, §7.6]. The idea is to show that ¢ is a homotopy equivalence
by producing a complex homomorphism ¢: C'® Uu,Fr) — vglt (U, F) such that g o is the
identity on Vglt (U, F) and i o g is homotopic to the identity on CV"(U , F). This implies that
the cohomology groups of C*® (U, F) and é;lt (U, F) are isomorphic, and that the induced

map on cohomology from ¢ is an isomorphism.
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The standard choice for ¢ used by Bosch is described by 7,: CP(U, F) — é;’lt(u , F)

where

0 if 4g,...,17, are not pairwise distinct,

Ap(9)ior..ip = {

Sgn(”)giw(o),...,iﬂ(p) otherwise.

Here 7 is the permutation in Sp11 satisfying i) < ... <ir(, (once an ordering has been

fixed on the indices i;). We alter the choice of ¢ by using the following morphism instead:

1

A 0 if 4g, ... ,p are not pairwise distinct,
ap(g)i()a---fip = '
(+1)! ZweSpH Sgﬂ(ﬁ)giw(ow__.%(p) otherwise.

(4.2)

This gives a morphism of complexes ¢': C*(U, F) — C*(U, F). To see that ¢ is a morphism

of complexes, we have to check that for each p the following diagram commutes:

Cru, F) —E— CrrYUY, F)

J&P [‘S‘er

U, F) —F— Ch (U, F)
That is, we need to show that @41 0d? = dP o &p. Let g € CP(U, F) be contained in one
summand. Without loss of generality, say g € F(Uj, N---NUj,). We may assume that there
are no repeated indices (else both &,41 0 dP(g) = dP o G,(g) = 0). Now let i, ..., i, be a set
of nonrepeating indices. For each 0 < ¢ < p+ 1 there is a unique permutation o € Sp42 such
that o(¢) = ¢ and

-~

(jOv s 7jp) = (iO'(O)? coes Ty 7ia(p+1))' (43)

Now computing the image for g we see that on the one hand we have

p+1
P (@9, s = S (- Dfa(g)
k=0

10yeeyiforeonsipt1’

pt1 L1
=Dy 3 sl

" mESp41
(—1)°

— TESI] sgn(a)gjo,m,jp.

i7'r(0)7"'77"k7"'7’i7'r(p+1) ’

The last equality follows from (4.3), and the fact that g was assumed to lie in one summand.
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On the other hand we have

1
Gps1 (AP(9))ig i = © D sen(mdP(9)i )i
P (p+2)‘7T€Sp+2
1 p+1 N
- | Z Sgn(ﬂ-) Z(_l) g“rr 7"'7:\7"'7'7&' ’
(P+2)! &, = i (0)estm (k) (p 1)

Observe that for each 0 < k < p + 1, there is exactly one permutation m € Sp42 such that
(k) = ¢ and

~

(jo, P ,jp) == (iw(o), P ,’L'g, PR 7,L'7r(p+1))'

In fact the sign of this m € Sp42 is the same as the sign of o as in (4.3). Thus the factor of

(p+ 2) cancels in the denominator and we are left with

(—1)¢
p+ 1)lsen(o)gjo,...jp

)

dp"rl (dp(g))ig,...,ip+1 = (

as desired. This plus linearity proves that the maps &, yield a morphism of complexes.
Now, one checks that ¢’ maps elements of CP(U, F) to alternating cochains in C’glt Uu,Fr).
Then it is clear that ¢ is identity when restricted to C’glt (U, F). The only thing left to check
is that ¢’ is homotopic to the identity. Since ag — id is the zero map (now g is a map on
the indices as in [Bos12, §7.6.1]), one can construct homotopies h,, by following the proof in
Bosch. O

We will use this ¢’ when translating the cup product (which is typically defined in terms of
the Cech complex C*(U, F)) to the alternating Cech complex.

4.3 Cup Product

Let U = {U; }ier be an open cover of a variety X, and F a sheaf of rings on X. Then one

can form the abelian group

CU,F)=Pcru, F).

p=>0

Definition 4.11. The cup product! on C*(U, F) is defined via the linear extension of

maps

CP(U,F) x CUU,F) = CPMU,F), (o, B) o — B,
!See the exercises of [Bos12, §7.6] for example.

29



where

,,,,,,,,,,

(a ~ IB)’iO7---7ip+q = aiOa---vip‘UiO ip+q ' Bipv---aip+q‘Ui0 ip+q :

This cup product induces a ring structure on H*(U, F) = D,>0 HP(U, F). Since Ty is a

sheaf of rings, the cup product induces a map
—: HY(X, Tx) x HY(X, Tx) — H*(X, Tx).

While the cup product is defined on the Cech group C* (U, F), it is actually more convenient
to have a description on the level of the alternating Cech complex instead. To do this, take
the map defined after Theorem 4.10 and compose with the cup product map. This yields a

new cup product map
" CP (U, F) x CL (U, F) — CHH U, F)

where

" 1
(04 ~ 5)i07...,z‘p+q = m Z (a ~ 5)w(io),...,n(z‘p+q)~

" TESptq+1

This is the cup product map we are going to be using, and we are interested in the case
when p = ¢ = 1. We emphasize that here, multiplication is given by the Lie bracket [, ],

but may write this more simply by juxtaposition later.

Theorem 4.12. Let X be a smooth, complete toric variety with associated fan 3. The cup

product map
HY(X,Tx) x HY(X,Tx) — H*(X,Tx)

on the level of alternating Cech cocycles is given by (ayr) X (bya) = (Corvy), where

1
Cory = 6 ([O/O'T7 bT'y] + [a"70'7 bO’T] + [aT’ya b’ya] - [a7'07 ba”y] - [aa'ya b'yT] - [a/’)/7'7 bTJ])a

and (ay,) € H' (U, Tx) is indexed by the cones 0,7 € B, and (bya) € H' (U, Tx) is indexed
by the cones v, € X.

Proof. Let U = {U, | 0 € ¥(n)} be our usual affine open cover of X, and let (ay-) and (byq)

be Cech cocycles as above. Then under the cup product map we obtain the cocycle

(agrbrs) € HA(U, Tx),
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where the o, 7,7 are indexing cones for C2(U, Tx). Applying the isomorphism from (4.2)
gives the cocycle above.
O
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Chapter 5

Dualized Euler Sequence

One of the key steps in giving a combinatorial interpretation of the cup product map is the
decomposition in cohomology of the tangent sheaf into a direct sum of sheaves associated
to boundary divisors. For a smooth, complete, toric variety X with associated fan >, this

section covers the isomorphisms

HP(X,Tx) ~ @ HP(X,0x(D,))
peX(1)

for p > 0. We then describe the isomorphism in cohomology on the Cech level. For more

details see [CLS11, §8.1].

5.1 Euler Sequence

In section 2.2, we defined the cotangent sheaf QY on X, as well as the tangent sheaf Tx.

We have the following theorem, which is key in obtaining the isomorphisms we desire.

Theorem 5.1. [Jac94] Let X be a smooth, complete toric variety associated to the fan 3.

Then there is an exact sequence

0 Q% - P Ox(—D,) - Pic(X) ®z Ox — 0.
peX(1)

One may see this as the toric generalization of the Euler sequence of P™
0= Qbn — Opn(—=1)"" = Opn — 0,

found in [Har13]. The fan for P" is determined by the ray generators {eg, e1, ..., e,}, where
e1,...,e, are the standard basis vectors for Q" and ey = — > ;" ;. So there are n + 1
boundary divisors, which accounts for the power of n + 1. Since the class group for P” is
one dimensional, these divisors are linearly equivalent. For convenience we may just write

Opn(—1).
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We now turn our attention to the cohomology of the dualized Euler sequence in the case

when X is a smooth, complete toric variety.

5.2 Cohomology of the Tangent Sheaf

This decomposition in cohomology for the tangent sheaf is due to Jaczewski in 1994.

Theorem 5.2. [Jac9j] Let X be a smooth, complete toric variety arising from a fan X,
with boundary divisors {D, | p € £(1)}. Then for p > 1 we have

@ Hp(Xv OX(DP)) = Hp(Xa TX)
pEX(1)

as M-graded groups.

Proof. Dualizing the sequence found in Theorem 5.1 gives the sequence

0—>(PiC( )®ZOX @ OX —)Tx—>0
pEX(1)

Note that Pic(X) is a finite abelian group, so that (Pic(X)®z Ox)" is a direct sum of copies
of Ox. Setting F = (Pic(X) ®z Ox)Y we obtain a long exact sequence in cohomology

0—HYX,F) = @ H(X,0x(D,)) = H'(X,Tx) —
pEX(1)
HY(X,F)—» P H'(X,0x(D,)) — H'(X,Tx) —
pPEX(1)

Using the fact that cohomology commutes with direct sums [Har13, I11.2.9.1] and that higher
cohomology (p > 0) of Ox vanishes [Ful93, §3.5] gives the result. O

In order to explicitly describe the cup product map, we need a concrete description of the
isomorphism between @ ,cx 1) HY(X,0(D,))y and H*(X, Tx). That description comes in
the next theorem. Before stating the theorem, we first need a lemma encoding an important

fact about divisor sheaves.

Lemma 5.3. The sheaf Ox(—D,) is isomorphic to Ox(D,)" = Homo, (Ox(D,), Ox) via
the isomorphism ™ — [x¥ = x™TV].

Proof. First note that for Cartier divisors D and E the sheaf Ox (D) ® Ox(F) is isomorphic
to Ox (D + E). For an open set U, define a sheaf homomorphism by sending simple tensors
f ®gto fg. In fact this is an isomorphism when Ox (D)(U) is trivial. It is well known that

such an isomorphism induces an isomorphism
Ox(E> ~ %M?ZOX(OX(D), Ox(D + E))
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Now set £ = —D so that Ox (D) ® Ox(—D) ~ Ox. It follows that
Ox(—D) = #omo,(0Ox(D,),0x) = Ox(D)".

O]

We now have a brief aside to discuss a particular kind of derivation, important in the
next theorem. In the description of the cup product, we are required to multiply certain
derivations of the form 9(p, u)(x™) = (v,, m)x“"™. More precisely, we have the following

definition.

Definition 5.4. Fix a ray p € ¥(1) and a weight u € M. Then let 9(p, u) be a derivation
on characters be defined by

u+m

X" = (vp, u)x
We now record the product of two of these derivations in the following lemma.

Lemma 5.5. Fiz rays p,p’ € (1) and weights u,u’ € M. Then for the derivations d(p, u)
and O(p',u’) the Lie bracket is given by

[(p. 1), ()] = (0, ) u+ ') = (0, u)p, u + ).

Proof. The derivation [0(p,u),d(p’,u’)] can be specified by where it maps characters x™.

Straightforward computations reveal that

[D(p,u), 0(p', )| (X™) = Dp,u) 0 D(p,u')(X™) = B, u')Dp, u) (X™),
= (<Up/, m) <’vp7 ’LL/> + <’Up’, m) ('Upa m>)xu+u’+m

— (VM) (W, u) + (0, m) (v, M) T,

Cancelling terms in this expression gives the result. O

We now describe how to map cocycles via the isomorphism given by the FEuler sequence.

Theorem 5.6. Let @ cx) HY(X,0x(D,))y have Cech representation Drex) H' (U, Ox(Dp))u,
(as a subquotient of @ ez ) @Bores H(Uyr, Ox(D,))u) and let HY(X, Tx )y have the Cech
representation H'(U, Tx )u (as a subquotient of Do res HY(Usr, Tx )u). Then a Cech repre-
sentative ( éﬁ))xu € B ez HY\(U, Ox(Dp))u is mapped to

> (f2)d(p,u) € H(U, Tx )

peX(1)
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Proof. This comes from dualizing the sequence

0— 0%k - @ Ox(-D,) — Pic(X) ®z Ox — 0.
pEX(1)

found in Theorem 5.1. The required isomorphism is the map

0: P HY(X,0(D,)) — H' (X, Tx).
pEX(1)

To describe this, we need to know what the original map

: Q% » P o(-D,)
pEX(1)

was, then dualize. From the proof of [CLS11, §8.1.6] we have the following commutative

square, excised from a larger diagram:

O, —— 2 L MO0y

) !

® Ox(-D,) —— @ Ox
pEX(1) pEX(1)

The map «: Q}( — M ® Ox is natural, it is given by
a(dx™) =me X",

where x™ is a character of the torus. Similarly, v: @,ex1) Ox(—=D,) = @,pex1)Ox is also
natural: the sections of Ox(—D,)(U) are those elements of Ox (U) which vanish on Supp D,
by [CLS11, §4.0.28], so ~ is just the inclusion.

The map f: M ® Ox — @,0x is more interesting. It is defined by (see [CLS11, §4.1.3])

B(m®Xw): Z <Up7m>Xw-

peEX(1)

Since the square commutes, it must be the case that 7o ® = S o« (or if we view v as the
inclusion map, ® = o «). So if we restrict to the summand indexed by the ray p in the

image, we have

P(dx™) = (vp, m)x™.
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After dualizing, we obtain the map
ONE Hom(OX(—Dp), OX) — HOII](Q)(, Ox),

which is given by precomposition. That is, ®* is defined by

O*(f) = fo 0.

Now we use the fact that Ox(D,) and S0, (Ox(—D,),Ox) are isomorphic via the
isomorphism

X" e ).

Putting this all together we conclude that for the ray p, the map Ox — Tx is given by

w w

=X e [x e

= <UP> ’LU)X

a(p,m)

X" X

So our map ¢ that we were interested in,

p: P H'(X,0x(=D,)) = H'(X, Tx),
pEX(1)

is given by ¢(x™) = 9(p, m) when restricted to the summand corresponding to the ray p.
Each of these d(p, m) are actually derivations living in H'(X, Ty )m, since H*(X, Tx) carries
an M-grading. Therefore for each m € M, the overall map will be given by the sum over
p € X(1) of the d(p, m). O
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Chapter 6

Cohomology of Boundary Divisors

6.1 Combinatorial Description

We rely heavily on the fact that the dual lattice M gives a grading of the Cech complex,
which allows us to decompose cohomology groups as a direct sum over elements in M. We
can use this grading, as well as a combinatorial description of each graded piece to calculate
cohomology.

In this thesis, we are always taking the open cover Y = {U, | o € ¥(n)}, i.e. the collection
of affine opens corresponding to n-dimensional cones. Since we assume X is complete (and
thus Supp(X) = Ng), this collection covers X. Recall that for a torus-invariant divisor
D =3 ,ex1)apDp on X, the alternating Cech complex C’:lt (U, Ox) is the subgroup of

CPU,0x(D)= P H'Us,N---NU,,, Ox(D))

00,...,0pEL(N)

whose elements satisfy condition (4.1). Now, by [CLS11, §4.3.3] we may write

H(Usy N+ NUsy,,0x(D)) = P HUsy N+ N Us,, Ox(D))u
ueM

where

C-x* (v,,u) > —a,forallpeogn---Noy,(l
HO(Ugoﬂ"'ﬂUap,OX(D))u: X < P > P p 0 p( )
0 otherwise.

This is a grading of the Cech complex, and induces a natural decomposition in cohomology:

ueM
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Theorem 6.1. [CLS11] The Cech complex C’glt is graded by the dual lattice M. That is for

a torus invariant divisor D =3 51y apD, we have

meM
where
C-x™ (v,,m)> —a, for all p € o(1),
HOW,. Ox (D), = X" (vp,m) p f p€o(l)
0 otherwise.
Proof. See [CLS11, §9.1]. O

We now define the combinatorial object which encodes information about H'(X, Ox(D,))y.

Definition 6.2. Fix a ray p € ¥(1), and a weight u € M. Then define the graph I',(u) as
follows. The vertices of I',(u) are ray generators v, such that 7 # p and (v-,u) < 0. The

edges of I'j(u) are pairs of ray generators that lie in a common cone of X.

Theorem 6.3. [Ilt11] For a smooth, complete toric variety X, we have H (X, Ox (D)), =0
if (vp,u) # —1. Otherwise

dim H'(X,0x(D,))y = max{0,dim H°(T',(u),C) — 1}.

We now describe how to calculate HP(X,O(D,)), for p > 0, using a different combi-
natorial object &%, . When p = 1, we have the following equality involving the so called
P

reduced cohomology (see Definition 6.8)
dim H’(T'y(u),C) — 1 = dim A°(&}, ,,C),

so this result extends [I1t11]. Before stating our theorem we need a few definitions.
Definition 6.4. Let D = }_ 51y a,D, be a torus invariant divisor and let w € M. Then
define the set Vp, C Ng as

VDu = U Conv (v, | 7 € 0(1) and (v, u) < —ay,).
oeX

We also need to define a similar but subtly different object. This require the notion of a

support function.

Definition 6.5. Let ¥ be a fan in Ng and D =} cx ) a,D, a torus invariant Cartier
divisor. Define the support function ¢p: Supp(X) — Q on ray generators by

¢p(vp) = —ay,
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then extending linearly on each cone.

This means that ¢p is a piecewise linear function on Supp(X). By this we mean ¢p is linear

on each cone o € Y.

Definition 6.6. With the same setup as the previously, we define V[S)'fgp C Supp(X) as
Vi = {v € Supp(X) | (v,u) < ¢p(v)}.
We are assuming that 3 is smooth, hence ¢ € ¥ is smooth by definition. Thus the ray

generators are part of a Z-basis of N. It follows that ¢p is unique.

Definition 6.7. we denote by 611)?# the p-skeleton of Vp ,. That is, 6%,1& is the union of

polyhedra of Vp, whose dimension is less than or equal to p.

In order to streamline notation, and avoid the special case when p = 0, we use the notion of

reduced cohomology. Essentially we are just wrapping the special case into the definition.

Definition 6.8. Let Z be a topological space. The reduced cohomology for Z with

coefficients in C is

H7(Z,C) = {HP(Z’ ©r=t

HY(Z,C) p=0.
Here, H%(Z,C) is defined as the cokernel of the map f*: C = H({pt},C) — H°(Z,C),
which is induced by the continuous map of topological spaces f: Z — {pt}.

After some careful thought, one realizes that this means H%(Z,C) = 0 if and only if Z is

path-connected. We now have the terminology to state the theorem.

Theorem 6.9. Let X be a smooth complete toric variety, and D = D, a torus invariant

boundary divisor of X. Then for p > 0 we have

0 Zf <Up>u> 7& _17

dim H?(X,Ox (D)), = ~
dim HP~! (G%,u, (C) otherwise.

Proof. Suppose that (v,,u) # —1, and p > 1. Since X is smooth, the divisor D is Cartier.

Thus by [CLS11,§9.1.3] we have the following isomorphisms in cohomology:
HP(X,0x(D))y ~ HP N (VPP C) ~ HP~H(Vp 4, C).

The condition (v,,u) # —1 simplifies the definition of Vp , to

Vou = U Conv(v; | 7 € (1) and (v,,u) < 0).
oY
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But observe, this is equivalent to taking the trivial divisor D = 0. It then follows that
H?(X,0(D))y ~ H” 1 (V'PP, C).
Now observe that if D = 0, the support function ¢p is the zero function. Therefore
Vou? = {v € Supp(2) | (v,u) <0},

which is clearly contractible. Since the i-th cohomology of a contractible space is 0 for ¢ > 1,
it follows that H?(X,Ox (D)), = 0. If instead we had p = 1, then

H'Y(X,0x(D)), ~ H'(V3TP,C) =0,

. S .
since VPP is path connected.

Suppose instead that (v,,u) = —1 and p > 1. Again we have isomorphisms
HP(X,0x(D))y ~ H? Y (Vp,, C).

If p > 1, the reduced cohomology ﬁp_l(VDM C) is just Hp_l(VDM C). Since Vp, is a union
of polyhedra, and our Cech covering is sufficiently fine, we may use simplicial cohomology
(see [Hat02, §2.27] for instance). Computing the i-th cohomology group of Vp,, is the same
as computing the i-cohomology group of the (i + 1)-skeleton of Vp 4, hence the result follows
in this case as well.

Finally if p = 1, then we need to consider H O(VDM, C), the dimension of which is one

less than the number of connected components of Vp ,. By replacing each conjugand
Conv(v; | 7 € (1) and (v,,u) < 0)

of Vp ,, with its 1-skeleton we do not change the connectivity of the set. This gives us exactly

GIDU, so we are done. ]

6.2 Cech Description of Spanning Elements

In the process of computing the cup product, we require an explicit description of the map

v P HUT,w),C)— P HYX,0x(Dp))u, (6.1)

(vp,u)=—1 peEX(1)

with respect to the Cech representation. Since I',(u) is a graph, we can label its components

as C = {c1,...,cs}. The zeroth cohomology for this graph counts the connected components,
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SO

H(T,(u),C) ~ @(C = C*.

ceC

The zeroth reduced cohomology is a quotient of the above, so a spanning set of H (T (u),C)
can be obtained from a spanning set of H°(I',(u),C) in the natural way.

An obvious choice for a spanning set of H°(I',(u), C) is given by elements

1 on the component c,
0 otherwise.

Viewing these in H O(T")(u), C) instead yields the spanning set we desire. Similarly, the graph
I'y(u') has components D = {dy,...,d,}. So elements ez,u, (defined similarly as above)
span HO(T s (u'),C).

All the isomorphisms in cohomology are being represented on the level of Cech cocycles,
so we have to interpret these spanning sets as Cech cocycles as well. The Cech cohomology
groups are a direct sum which ranges over cones in . To specify an element, one must give

a value in C for each cone in . Thus, for any o € X let

if if
epul0) = {1 tone#d, and eg/#/(a) = {1 fond#0, (6.2)

0 otherwise. 0 otherwise.

d

Since {e}; , }cec and {€f; ,, }4ep are spanning sets, it follows that the Cech representations form

a spanning set for their respective Cech cohomology groups. Now we have this representation,
we can apply the isomorphism H%(I',(u),C) — HY(X,Ox(D,))u.

C

Lemma 6.10. Let ef (o) be the Cech representation of the element €

set for H(T,(u),C). Then under the isomorphism

in the spanning

HO(Ty(u),C) = HY(X,Ox(Dp))u,

c

6u(0) is mapped to the Cech representative

€
¢hu(0) = €5 (T) € Hiy (U, Ox(Dy))u,

where C (U, Ox(D,)). is indexed by the cones o,T.

Proof. The following argument is adapted from the proof of Theorem 9.1.3 in [CLS11]. For

each o € ¥, consider the exact sequence

0— H°(U,,0x(D,))y — C — H°(T,(u) No,C) — 0.
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By the definition of I'y(u), it is clear that I',(u) N o is connected when it is nonempty.
Therefore, H°(I',(u) N o,C) = C whenever I',(u) No # 0. Note that if T',(u) N o # 0, there
is a ray p' # p € o(1) such that (v,,u) < 0. Since

H(Uy, Ox(Dp))u = C
whenever (v,,u) > 0 for all p’ € o(1), this means we have the sequence
0—->0—-C—C—0,

which is exact. However if T'y(u) No = 0, then for all p’ # p € o(1) we have (v,,u) > 0. But

since ¥ is complete, it follows that (v,,u) > 0, so that we have the sequence
0—-C—-C—0—0,

which is also exact.
Now for v = (09,...,0p) € YPHl et Us, =Uso,N---NU,,, and o, = 09 N -+ - N0y Since
taking the direct sum of exact sequences preserves exactness, we can construct the exact

sequence

0> @ H'U,,.0x(Dp)u— P C— P HIyu)no,,C)—0.

»ygEP-H 'YEEP‘H fyezp-!—l

by taking the direct sum over all v € ¥P*!. Recognizing that Deswi HO(U(777 Ox(Dp))u is

the group of p-th Cech cochains, we write

0= CPU,0x(Dy))u—~ P CT— P H'(T,(w)Noy,C)— 0.

yESPHL NESPHI

where U is the canonical open affine cover of X given by {U, | ¢ € ¥}.
Since C (U,O0x(D,))y is a cochain complex, it comes equipped with a differential. The
other terms of the sequence can be endowed with Cech-like differentials d% and df,, in order

to obtain complexes B® and D* fitting into the exact sequence of complexes
0— C*(U,0x(D,))y — B* — D* — 0.
This gives rise to the induced long exact sequence in cohomology

0— HY(C*(U,0x(D,))u) — H*(B*) — H*(D*) — H'(C*U,Ox(D,)).) — H*(B®*) —
(6.3)

as in [Har13, §II1.1]. In this case our map ¢ in (6.1) is the connecting homomorphism from
HO(B*) through to H'(C*(U, Ox(Dp))u). Using the theory of Kozsul complexes [CLSI11,
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§9.1.3], one can show that the complex B® has the following simple cohomology:

C ifp=0,
H?(B®) =
0 otherwise.
Thus by focusing our attention to the beginning of (6.3) we obtain the exact sequence

0— HY(C*U,0x(D,))u) — H(B®*) = C — HY(C*(U,Ox(D,))u) — 0.

Let d” denote the differential for the complex C*(U, Ox(D,)),. The map we want is found

by considering the diagram

0 ——— C'%U,0x(D,))u B DO 0
0 d dj,

0 ——— C'U,0x(D,))u B! D! 0
! dj dj,

0 ——— C*U,0x(D,))u B? D? 0

The connecting homomorphism is a map ker d% — ker d* which vanishes on im d°. To obtain
this map, pick f € ker d%, and lift to f € B° (which exists since the top row is exact). Now
let y = d%( f) be the image of f under d%. Then since the middle row is exact, this lifts to
some § € C*(U, Ox(D,))y. The only map that isn’t the identity map is df, which is the
Cech differential. Let (f,) be the Cech representation of f so that

(f») € @ H(Tp(u) No,C).

oceY

Then the Cech representation of the image of f is

(fr — f2) € C* U, Ox(Dp))u = P H(Usr, Ox(Dp))u.

o,TEY

Since C*(U, Ox(D,))y is a complex, and (f, — f-) is an element of imd% it follows that
(f» — fr) is an element of ker d'. A standard diagram chase shows that this image is unique
modulo im d°. O
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Chapter 7

Main Theorems

This chapter covers the main results of this thesis: Theorem 7.4 which details the first lift,
and Theorem 7.7 which completes the second lift to the combinatorial description. We now
recall what the overall goal is. Our goal is to describe the map in the top level of Figure

7.1, indicated by the dashed arrow. To this end, we have taken Cech representations of

@ HTpw),C)x & H(TyW),C) > @ H'(Vputw,C)
(vpu)=—1 (vy,u)=-1 (vrutu’)y=—1
Lemma 6.10
@ H'(X,0D,)ux @ H'(X,0Dy))u ® H*(X,0(Dr))usw
peX(1) prex(l) T€X(1)
Theorem 5.6

cup product

Hl(XaTX)uXHl(XaTX)u’ H2(XaTX)u+u’

Figure 7.1: Diagram of overall picture.

elements of a spanning set for both H(T',(u), C), and H(T (u’), C), and used Lemma 6.10
and Theorem 5.6 to consider their image in H'(X,Tx), x H*(X,Tx).. in this section
we continue tracing through the diagram, first applying the cup product, then lifting to
H?*(X,0x(D;))ytw (for some ray 7 € %(1)), then lifting again to H'(Vp_ yyu, C).

7.1 Applying the Cup Product

We are interested in describing the map

HY(X,Tx) x HYX,Tx) = H*(X, Tx)
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on the combinatorial level. The first step is to leverage the grading by M. By applying
Theorem 5.2 and using the fact that each H'(X,Ox(D,)) is graded by M, we see that it

suffices to consider
HYNX, Tx )u x H' (X, Tx)w = H*(X, TX )usw

for each pair of weights (u,u’) € M x M. Note the image lies in the degree u + u’ piece of
H?(X,Tx), as the multiplication map for Tx is given by the Lie bracket. Now we apply
Theorem 6.3 to conclude that

HY (X, Tx)u~ € H(T,(u),C),

(vp,u)=—1
and

(X, Tx)w~ €@ H'T,W)C).
(v u)=-1

Therefore we can restrict our attention to the rays p and p’ in each respective direct sum (for
which (v, u) = (v, u') = —1), and compute the image for spanning sets of H°(I',(u), C) and
H°(T y(u'),C). Note that we are choosing p # ¢/, since if we have (v,,u) = (v, u') = —1,
then it is impossible for either of v, or v, to pair to —1 with u + «’. This is because
Corollary 7.5 tells us exactly which summands the cup product is concentrated in. We have
described what these sets are in (6.2), and we can now describe the image of these elements

in Hglt U TX ) utu-

Lemma 7.1. Let €5, (o) and €g/7u/ (') be as in (6.2). Then under the cup product map the

pair (¢5,,(0) x e, ,1(a")) is mapped to the Cech representative hory - ((vp, ' )O(p',u +u') —

(v, u)0(p,u+u')) in H2, (U, Tx ) utur, where

and églt(u, Tx )usw 15 indexed by the cones o, T, and 7.

Proof. By Lemma 6.10 the image of (ezju(U)Xed (")) in ﬁl(U,OX(Dp))uxﬁl(u,OX(D’p))u,

! !
pu

is given by

(€6,u(0) = eu(r)) X (e u(0') = € (7))
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Apply Theorem 5.6 to conclude that the image of (ez’u (o) — € (T)) X (ed/ w(0) —ed (T/)>
in ﬁl(uv TX)U X ﬁl(ua TX)U’ is

(€6,u(0) = e5.u(7)) Dlp,w) x (e i (0”) = e (7)) D' 0.
Finally, after applying Theorem 4.12 and Lemma 5.5 we have
hory * ((vp, w)0(p", u+ ') — (v, u)0(p,u+u')) € H* (U, TX )utr
where hqr4 is as above. This comes from the fact that in Theorem 4.12, we are setting

Uor = e;,u(a) - EZVU(T) and byt = eiu(a') - eﬁ’u(T').

O

Now the goal is to determine how this cocycle “lifts” to a Cech 2-cocycle for the direct sum

of boundary divisor sheaves, via the Euler sequence.

7.2 First Lifting

As before, fix rays p,p’ € X(1) and weights u,u € M such that (v,,u) = (vy,u/) = —1.
Let z € C4.(U, Tx)urw be a Cech representative for the image of (efu(o) x ez,vu,(a’))
as in Lemma 7.1. By Theorem 5.2 the representative z can be lifted to a representative
zZe @Tez(l)églt (U, Ox(D7))y+w under the isomorphism given by the Euler sequence. Note
that z arises as the image of sections related to the rays p and p’. Naturally, one hopes that
z lies in only those summands corresponding to p and p’ as well. In fact we will show that if

Z is not equivalent to zero, it is concentrated in exactly one of
Cglt U, 0x(Dp))u+w or Cglt U, Ox(Dy))utu-

As in Lemma 7.1, let

so that z is given by

(20m) = oy - ({15, 0)(p ) = (0, ).+ )
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Now we want to lift z. We know the isomorphism HP(X, Tx) ~ ©qex)HP (X, Ox(Da))

from Theorem 5.2 guarantees the existence of a representative

ZUT’y S @ 1t u OX ))quu’
aeX(1)

which maps to z,-~. For ease of calculation, we will lift each summand separately. This is

okay, since each summand of z,., is regular, which we prove in the next lemma.

Lemma 7.2. Let o, 7,7 be cones in . Then hor(v,, w)O(p', u+u") and hory(vy, u')0(p, u+

u') are reqular sections of Tx over Ugrn.

Proof. We first show that hgry (v, v/ )0(p', u + ') and hgry(v,, u')0(p, u + u’) are regular
sections of Tx over Usr. Since (z5r+) is the image of the cup product map, it is a regular
section of Tx over Uy, . Therefore, showing that either summand of (2,7~) is regular proves
the other is as well. So without loss of generality we will show that hgry(v,, u/)O(p/, u + u')
is regular.

Recall 9(p',u + u') is defined by

O(p s u+u)(X™) = (v, m)x" T,

To prove hyr (v, u)d(p', u+u') is regular on Uy, we must show that for all m € (eN7TN7y)Y

either
ho‘r'y (Upa Ul>6(p,a U+ ul)(Xm) =0

or, u+u'+m € (cN7TN~)Y. Recall from the definition of duality for cones that the condition
u+u +m € (cN7TN7y)V is equivalent to

(ve,u+u' +m) >0, for all rays e € o N T N(1). (7.2)

Observe (v, u) is constant with respect to o, 7, and 7. Therefore we may assume that
(vp, ') # 0, as the zero section is automatically regular. We also assume that m is such that
(vy,m) # 0 for the same reason. Finally, assume that h,r, 7# 0. Observe that instead of

writing hgr as in (7.1), we could instead write

hory = 5 (€00() (€.0(0) = €5.u(7) + €l (7)(€5.0(0) — 5,4()

b (7)) ):
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- edge v.v, exists by definition

vertex exists if
(Ve,u) <0

Figure 7.2: Depiction of the graph I ,(u) with component c in red.

From these two descriptions, it is clear that when hs., # 0 it is not the case that

or

G/C)M(J) - 6;7u(7') - egc),u(’}/) =1L

Due to the symmetry in the descriptions of hs;4 it is enough to consider the following two
cases. That is, our cases will involve conditions on ef ,. We could have chosen the conditions

d
on €y

(6 C
In the first case, assume exactly one of e, (o), ¢, ,(7), or e

but up to sign the arguments work out the same due to the symmetry in hqr.

C

6. (7) is nonzero. Up to

cyclic permutations of o, 7 and -y, suppose that
e (o) =1, €S, (1) =0, eS.(v)=0. (7.3)

S0 hgry reduces to

(6 () — ().

Without loss of generality and to keep hsr, nonzero, we may assume that ez,,u,(T) =1 and
eg,m,('y) = 0. To check the condition in (7.2), suppose € € o N7 N (1) is neither p nor p'.
If (ve,u) < 0, by definition v, is a vertex of the graph I',(u). By (7.3), we know there is
aray a € cNo(l) such that (vy,u) < 0. If € = a then ¢N 7 # O (since € € 7(1)) which
contradicts (7.3). But if € # a by Definition 6.2 of the graph I',(u), we have v,v, as an edge
of I'y(u). See Figure 7.2 for a visualization. Thus v, lies in the component ¢, so that cN7 # 0,
which again contradicts (7.3). So it must be the case that (ve,u) > 0. One uses a similar
argument involving the graph I'y(u’) and the component d to conclude that (v, ') > 0.

Since m € (o NTN~)Y, it is automatic that (ve, m) > 0. Putting this together we see that
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when € # p, p’ we have
(Ve,u+u' +m) > 0.

Now if e = p € o N7 N~7(1), by assumption (ve,u) = —1. Again, it is automatic that
(ve,m) > 0. So it is enough to show (v, u') > 0. We have assumed that (v, u') # 0, so
that hgry # 0. If (v, u’) < 0 then v, is a vertex of I'y(u). By (7.3), we know there is a ray
o' € dN7(1) such that (vy,u’) <0.If &/ =€, then the vertex v, lies in the component d,
and € € y(1), so that d N+ # (). However this contradicts our assumption in (7.3). But if
€ # o/ by definition 6.2 of the graph I',(u’), we have vyve as an edge of 'y (u'). This also
leads to the contradiction d N~y # (. Therefore if € = p we have

(Ve,u +u' +m) > 0.

Finally, if e = p’ € o N 7N 7(1), we have by assumption that (v, u') = —1. Again, it is
automatic that (v., m) > 0. Additionally (v., m) # 0 (to make h,,~ nonzero), which means
(ve,m) > 0. Now if (ve,u) < 0, we have that v, is a vertex of I',(u). By (7.3), we know there
is aray a € cNo(1) such that (vy,u) < 0. If & = p’ =€, then v, is in component ¢, forcing
cN 7 # 0, a contradiction. Otherwise we form the edge v, v, so that v, is in component c,

forcing ¢ N 7 # (), a contradiction. So when € = p’, we have
<Ue,u+u'+m> > 0.

Putting this all together we see that in the first case, we have a regular section.

C

Cc C
In the second case, we assume exactly two of e}, (7), €, (7), or €,

(y) are nonzero.

So up to cyclic permutation of o, 7 and -, suppose that

ul@) =1, e (1)=1 €.,(y)=0.

One can use similar arguments as in case one to show that in this case we have a regular

section as well. O

We also need the following lemma, the proof of which is based on the ideas in Lemma 7.2.

Lemma 7.3. Let 0,7, be cones of the fan X. Then hor (v, ') X"t and hormy (v, w)x "+

are reqular sections over Usry for Ox (D) and Ox(D,) respectively.

Proof. We will show that hgr~(v,,u) x“t% is regular for O x (D), the argument to show

Rory (U, u) YUt is regular is almost identical. Recall from Theorem 6.1 that

C- X"t (vg,u4 ') > —a, for all o € o N7 NA(1),

HO(UoTw Ox (Dp’))u+u’ =
0 otherwise.
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Therefore to show Ry (v,, u') X"+ is regular, we need to show that hyr(v,,u’) # 0 implies
(Va,u+u') > —aq for all « € 0 N7 N~. Here we have that ay =1 and a, = 0 for all rays
a # p'. We now follow a similar argument as in the proof of the previous lemma. We may
assume that (v,,u’) # 0, which means that (v,,u) = 0. Again, there are two cases if hyry
is nonzero.

In the first case we have (up to cyclic permutation), that

S0 hgry reduces to
L a d
5 (epl7ul (’7—) — €p/7u/ (’y)) .

Without loss of generality and to keep hsr, nonzero, we may assume that ezw,(T) =1 and

eg,?u, (7) = 0. Now we wish to show that for all @ € c N7 N~(1), we have
(Va, u + ') > —ag.
If o = p/, then since (v,,u) = 0 we have
(Va,u+ ) = (vy,u+u) = (vy,u) —1=-1.
So we have (v,,u+ ') > —1, as desired. If a = p, then
(Va,u+u') = (vy,u+u) = =1+ (v,,u').

If (vy,u) <0, then v, is a vertex of the graph I'y(u’). A similar argument as in the proof
of Lemma 7.2 shows that d N+y(1) # @, which contradicts our assumption that eg,m/ (v)=0.
Therefore it must be the case that (v,,u’) > 1 (since we assumed that (v,,u’) # 0). Thus,
(Va,u~+u') >0, as desired.

Now suppose « is neither p nor p'. If (v,,u) <0, then v, is a vertex of I'y(u). A similar
argument as in the proof of Lemma 7.2 shows that ¢ N 7(1) # 0, which contradicts our
assumption that ef ,(7) = 0. So it must be the case that (va,u) > 0. If (v,,u) <0, then
v, is a vertex of I'y(u'). A similar argument as in the proof of Lemma 7.2 shows that
dN~(1) # 0, which contradicts our assumption that ez,ﬂl (7) = 0. So, (vq,u') > 0. Putting
these together we see that (va,u + u) > 0, as desired. This completes the proof for the first

case.
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Cc

Cc C
In the second case, we assume exactly two of ef , (7), €, (7), or €f ,

(7) are nonzero.
So up to cyclic permutation of o, 7 and -, suppose that

ul@) =1, e (1)=1 €,(7)=0.

Similar arguments show that (v,,u) > 0, so that (v,,u + v') > 0, (va,u) > 0, and
(Vg,u) > 0. O

This lemma allows us to lift each summand separately. This is done by choosing a
representative in Ffazlt (U, Tx )u+w and showing that it maps to the desired cocycle.
Theorem 7.4. The Cech representative hyr(vp, u')O(p',u +u') € C2 (U, Tx )usw lifts to
the Cech representative hyr- (v, u/ )"t € 2, (U, Ox(Dy))u+w » while the representative
Ry (U, w)D(pyu + ') € CH U, Tx )urwr lifts to the representative by (vy, u)x*t* €
Cvglt W, OX(Dp))u+u'-

Proof. First we see that hyry(v,, v’ )x“T% lies in the kernel of the differential d?. Since

(v,,u') is constant, we compute d?(hy7). The definition of the Cech differential gives us

d2(h07'y) = SoTya € é3 (ua OX (Dp’)>u+u’ = @ HO(UJT’yav OX(Dp’))u+u’a

o,T,Y,EX

where 55744 is given by

SO'T’ya = h‘r'ya - ho'ya + ho‘ra - hO'T’y-

Expanding each summand yields the formula

_ef),u(o-) (ecpl’,u’ (’Y) - eg’,u’ (Oé)) - e;,u (7) (ezl’,u’ (a) - ecpl’,u’ (U)) - ez,u(a) (ez’,u’(o-) - ecpl’,u’ (’Y))

ez,u(a) (eﬁ’,u’ (T) - eg’,u/(a)) + eg,u (7—) (eg’,u/(a) - ez’,u’(a)) + ez,u (O[) (ez’,u’ (U) - ei)l’,u’(T))

—GZ’U(O') (e,col’,u’(T) - ezl’,u’ (7)) - ez,u (T) (eg’,u’ (7) - eg’,u’ (U)) - e,co,u (7) (e,col’,u’ (0) - ez’,u’ (T))) :

It is straightforward to verify the cancellation of each term. Therefore hyr~(v,, v’ >X“+“/ lies in
ker d?, which means it is indeed a cocycle. Further, Lemma 7.3 shows that hory (v, ') yut!
is regular. Finally, the argument in Theorem 5.6 shows local sections x“ are mapped to

u+u’

derivations 0(p,u). Applying this to the representative hyr~(v,, u')x gives the desired
cocycle.
A similar argument can be made for the representative hgry (v, u)0(p,u + u') which

completes the proof. ]

When we combine Theorem 7.4 with Theorem 6.9 we have the following corollary.
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Corollary 7.5. The cup product H(T ,(u),C) x HO(T (u'),C) — H*(X, Tx )utw s zero
unless exactly one of v, or vy pair with u+ ' to —1. Then the map is concentrated in the

summand corresponding to the ray which pairs to —1 with u + u’.

Proof. Recall that by Theorem 6.9, in order to have any cohomology in the summand
H?(X,0x(D7))usw, we must have (v,,u+u') = —1. We have chosen rays p, p’ and weights
u,u’ € M such that the pairings are

(vp,u) = —1 and (vy,u) =—1.
So observe that if both
(vp,utu)=-1 and (vy,u+u) =—1,
it must be the case that
(vp,u') = (vy,u) = 0.

However this forces the image g (v, u')3(p', utu')—(v,y, w)d(p, utu')) in HA, (U, T )usar
in Lemma 7.1 to be zero.

Further, if neither v, nor v, pair with u + «’ to —1, then there is no cohomology
in those summands. Therefore if the image is nonzero, it must be concentrated in either
H2,(U, Ox(Dp))u+w (corresponding to (v, u) = 0) or in H2,.(U, Ox(Dyr))u+w (correspond-
ing to (v,,u’) =0). O

7.3 Second Lifting

We now describe the final “lift”, which will complete our combinatorial description of the

cup product. First, we will need to define a collection of sets which cover Vp .

Definition 7.6. Fix a torus invariant divisor D on X and a weight m € M. Then define a

collection of closed sets which cover Vp ., by
Vom :={VpmNo|oeX}.

Note that we will use this closed cover to compute Cech cohomology. It is not true in general
that Cech cohomology with respect to a closed cover computes the correct cohomology,
but in this case it is allowable since higher cohomology vanishes on intersections. See e.g.
[CLOO07, C.1.3, §9.0.4] for more details (involving spectral sequences). We use this closed

cover in the following theorem.
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Theorem 7.7. Let hory be as in Lemma 7.1. Then the Cech representative
hory(Vp, UI)XUJH/ € éa%lt U, O0x(Dp))utw
lifts to the representative
bor(vp, ') € é;lt(VDp/,quu’? C),

where

otherwise.

- {; (ef),u(a)ez/,u,(T) — €6, (r)ed (a)) if Vi s NoNT 40,
0

Proof. To prove this we trace out the isomorphism explicitly, which arises from a diagram

chase. The diagram in question comes from the proof of Lemma 6.10, which we reproduce

here:
0 ——— CYU,0x(Dy))usur Bl — ¥ , D! 0
0 ——— C*U,O0x(Dy))utu B2 D? 0

The map ¢ is the inclusion when nonzero, so efw(a)eg,’u, (1) — e;’u(T)eg“u/(a) € B! maps to
ber under o. Applying dk (which is analogous to the Cech differential) then a straightforward

simplification reveals that

A (€, (0)el o (7) = €5, (Tl 1 (0) = higrsy.

This implies that hsry € Vglt U, OX(DDP/))quu/-
Since the bottom row is exact and the diagram commutes, we see that b,, lies in the

kernel of d}). Therefore b, is indeed a Cech cocycle, and by maps to h,r, under the
isomorphism Hl(VDP,7u+u/,C) ~ H*(X,0x(Dy))usu- O

7.4 Example: Obstructed Toric 3-fold

We will conclude by producing a toric 3-fold for which the cup product does not vanish.
To be precise we produce a complete fan ¥ C Ng =~ @3, and show that the cup product is

nonzero for certain choices of rays p and p’. To this end, let

u=(—1,0,0) and u' = (0,—1,0)
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be elements of the dual lattice M ~ Q3. Let {p1,...,po} C X(1) be rays with corresponding

ray generators

Vp, = (17070)7 Vpy, = (1707_1)a Vps = (1707 1)a
UP4 = (27 _1’0)7 vp5 = (1’ _170)7 vp6 = (1a ]-ao)a
Vp, = (0,1,-1), Vpg = (0,1,1), Vpg = (—=1,0,0).

Additionally in keeping with our notation, set p = p; and p’ = pg, so that
(vp,u) = —1 and (vy,u) =—1.

We can turn this data into a fan X by specifying the maximal cones. in this case there are

14 maximal cones:

01 = Cone(vpl,'va, v,04)7 02 = Cone(vm?vm’ vp7)’ 03 = Cone(vpuvpsvvm)a
04 = Cone(vmvvﬁs’ vps)7 05 = Cone(vpnvﬂsv vm)v 06 = Cone('vpnvpﬁvvps)a
o7 = Cone(vpzv Vpys vp5)7 08 = Cone('UPw Vo5, vpsa)v 09 = Cone(’vpz’v/??? vﬂg)v
a10 = Cone(vp,, Vp,, Vps), o11 = Cone(vpy, Vps, Vpy ), 012 = Cone(vpy, Vpg, Vpy ),
013 = Cone(vyg, Vp;, Vpg), 014 = Cone(vpg, Vpg, Vpg)-

One needs to verify that the fan ¥ is smooth and complete. Both can be verified by
constructing ¥ in Macaulay2 and running the commands isSmooth and isComplete, however
smoothness can also be checked “by hand”. This is done by checking each cone o; is
smooth, which means the ray generators form part of a Z-basis for the lattice N. If o; =
Cone(v;, , viy, iy ), then the ray generators form part of Z-basis if the determinant of

is 1. We leave these verifications to the reader.

Then one can construct the graphs I',(u) and T (u'), and verify that both H(T,(u),C)
and H (T, (u'),C) are nonzero. In fact both are isomorphic to C since both graphs consist
of two connected components, as illustrated in Figure 7.3 and Figure 7.4. Similarly, one can
look at Hl(VDP,

consisting of a cycle), as illustrated in Figure 7.5.

C) and see that it is also one-dimensional (one connected component

sutu’?

In fact, I',(u) has components {ci,ca} where ¢; has vertices {v,,,v,,,V,,, V) } and co
consists of a single vertex {v,,}. On the other hand, the graph I',(u’) has components

{d1,d>} where d; consists of a single vertex {v,} and dy consists of a single vertex {v,,}.
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Figure 7.3: The graph T',(u) as viewed in the half-space (x,u) < —1. Note the removal of the
vertex v,.

Figure 7.4: The graph T, (u') as viewed in the half-space (x,u') < —1. Note the removal of
Uy -

From this data and our description of the cup product, it is possible to verify the

C1
pu

small Macaulay?2 script to facilitate the computations, which is included in the appendix.

nonvanishing for the Cech representations €€, (o) and eff,l w(0). The author has written a
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Figure 7.5: The object Vp, yiu as viewed in the half-space (x,u' +u') < —1.
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Appendix A

Macaulay2 Example

Contact the author for the source files. To run the script, make sure header.m2 and
main-1.m2 are in the same directory, then run main-1.m2. See

http://www2.macaulay2.com/Macaulay2/

for more information about using Macaulay?2.

Note that this example is computed using the ordered Cech complex, so that the
description of the cup product differs from Chapter 7. This is accounted for by the different
choice of ¢, the homomorphisms of complexes found in Theorem 4.10.

A.1 header.m?2

printWidth = 0;——remove line wrapping

loadPackage "Polyhedra"
loadPackage "ToricVectorBundles"

— FUNCTIONS

printCones = (VECTOR, PAIRSOFCONES) —> (

— INPUT: VECTOR | A 91x1 matrix representing an element in C™1
— PAIRSOFCONES | A list whose elements are pairs of lists of
— | ray generators.

— OUTPUT: N/A

— COMMENTS:

— Takes a cocyle in C71 (represented as an element of C799) whose

— entries are indexed by pairs of cones, and for every nonzero entry,
— prints the pair of cones associated to the nonzero entry as well as

— the wvalue.
v := VECIOR; P := PAIRSOFCONES;

for i from 0 to #P—1 do(

if(v_(i,0) !'= 0) then(print(flatten (append(P_{i}, v_(i
: = ,0)))))
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entryInDiffMatrix0 = (PAIRSOFCONES, MAXIMALCONES) —> (

— INPUT: PAIRSOFCONES |

|
— MAXIMALCONES |
— |
— |
— OUTPUT: -1 |
_ 1 |
_ 0 |
— COMMENTS:

A list whose elements are {sig’, tau’}, where
sig’, tau’ are lists whose entries are indices
of ray generators (generating the respective
cone) .

A list whose elements are {sig}, where sig

is a list whose entries are indices of ray
generators that generate sigma.

If sig=sig’

If sig=tau’

Otherwise

— The Cech differential C°1 —> C™2 can be written as a 364x91 matrix,
— and this function computes the entries of that matrix.

m := MAXIMALCONES; p :=

PAIRSOFCONES;

if (m = p#0) then(return —1);
if (m = p#1) then(return 1);

return 0;

)

entryInDiffMatrix = (TRIPLESOFCONES, PAIRSOFCONES) —> (
— INPUT: TRIPLESOFCONES | A list whose elements are {sig, tau, gam},

— PAIRSOFCONES
—— OUTPUT: 1

— -1

— 1

— 0

—— COMMENTS:

| where sig, tau, gam are lists whose

| entries are indices of ray generators

| (generating the respective cone).

| A list whose elements are {sig’, tau’},
| where sig’, tau’ are lists whose entries
| are indices of ray generators (generating
| the respective cone).

| If sig=sig’ and tau=tau’

| If sig=sig’ and gam=tau’

| If tau=sig’ and gam=tau’

| Otherwise

— The Cech differential C°1 —> C™2 can be written as a 364x91 matrix,
— and this function computes the entries of that matrix.

t := TRIPLESOFCONES; p :=

i ((p#0 — t#0) and (p#l
if ((p#0 = t#0) and (p#l
if ((p#0 =

return 0;

)

PAIRSOFCONES;

t#1)) then(return 1);
t#2)) then(return —1);

t#1) and (p#l — t#2)) then(return 1);

entryInDiffMatrix2 = (QUADSOFCONES, TRIPLESOFCONES) —> (

— INPUT: QUADSOFCONES

— TRIPLESOFCONES | A list whose elements are {sig’

| A list whose elements are {sig, tau, gam,
| alp}, where sig, tau, gam, alp are lists
| whose entries are indices of ray gens

| (generating the respective cone).

, tau’,

| gam’}, where sig’, tau’, gam’ are lists
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| whose entries are indices of ray gens

| (generating the respective cone).

| If sig=sig’ and tau=tau’ and gam=gam’
— 1 | If sig=sig’ and tau=tau’ and alp=gam’

|

|

|

_ -1 If sig=sig’ and gam=tau’ and alp=gam’
_ 1 If tau=sig’ and gam=tau’ and alp=gam’
— 0 Otherwise

—— COMMENTS:

— The Cech differential C°2 —> C73 can be written as a 1001x364 matrix,
—— and this function computes the entries of that matrix.

t := TRIPLESOFCONES; q := QUADSOFCONES;

if ((q#0 = t#0) and (q#l = t#1) and (q#2 = t#2)) then(return —1);
if ((q#0 = t#0) and (q#l = t#1) and (q#3 = t#2)) then(return 1);
if ((q#0 = t#0) and (q#2 = t#1) and (q#3 = t#2)) then(return —1);
if ((q#l = t#0) and (q#2 = t#1) and (q#3 = t#2)) then(return 1);

return 0;

)

existsCohom3ForTopObj = (SIGMA, TAU, GAMMA, INDEXOFRHO, MATRIXOFRAYS) —>
=

— INPUT: SIGMA List of indices of ray generators that

determine a maximal dimensional cone SIGMA

in the fan.

|

|

|
— TAU | " .. TAU in the fan.
— GAMMA | " "' ... GAMMA in the fan.
— INDEXOFRHO | The index of the column of MATRIXOFRAYS
— | which specifies rho.
— MATRIXOFRAYS | A matrix whose columns represent the ray
— | generators of the fan.
— OUTPUT: 1 | If H0(V_D_rho \cap sig \cap tau
— | \cap gam,utu’, C) exists
— | (see CLS p402, ch 9.1)
— 0 | Otherwise.

sigma := SIGMA; tau := TAU; gam := GAMMA; rholndex := INDEXOFRHO;
matrixOfRays := MATRIXOFRAYS; v := {-1,-1,0};——this is utu’

temp = select (sigma, s—>member(s,tau));
commonRays = select (temp, s—>member(s,gam));

—sigma and tau have only trivial intersection , so no ray gen
if (length (commonRays) = 0) then(return 0)
else(——check condition for common rays
for s in commonRays do(
——compute the inner product (and convert vec to list)

temp = innerProduct (v, flatten entries matrixOfRays_s);
—different condition for rho
if (s = rholndex) then(if (temp < —1) then(return 1))

——every other ray has same condition
else (if (temp < 0) then(return 1))

E

return 0;——conditions not satisfied

)
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)

existsCohom2ForTopObj = (SIGMA, TAU, INDEXOFRHO, MATRIXOFRAYS) —> (

— INPUT: SIGMA

existsCohomlForTopObj =
INPUT: SIGMA

List of indices of ray generators that
determine a maximal dimensional cone SIGMA
in the fan.

|
|
|

TAU | " R TAU in the fan.

INDEXOFRHO | The index of the column of MATRIXOFRAYS
| which specifies rho.

MATRIXOFRAYS | A matrix whose columns represent the ray
| generators of the fan.

OUTPUT: 1 | If H0(V_D_rho \cap sig \cap tau,utu’, C)

| exists (see CLS p402, ch 9.1)

0 | Otherwise.

sigma := SIGMA; tau := TAU; rholndex := INDEXOFRHO;
matrixOfRays := MATRIXOFRAYS; v := {—-1,—-1,0};——this is utu’

commonRays = select (sigma, s—>member(s,tau));

—sigma and tau have only trivial intersection, so no ray gen

if (length (commonRays) = 0) then(return 0)
else(——check condition for common rays

)

for s in commonRays do(
——compute the inner product (and convert vec to list)

temp = innerProduct (v, flatten entries matrixOfRays_s);
——different condition for rho
if (s = rholndex) then(if (temp < —1) then(return 1))

——every other ray has same condition
else (if (temp < 0) then(return 1))
)

return 0;——conditions not satisfied

)

(SIGMA, INDEXOFRHO, MATRIXOFRAYS) —> (

| List of indices of ray generators that

| determine a maximal dimensional cone SIGMA
| in the fan.

|

|

|

|

|

|

INDEXOFRHO The index of the column of MATRIXOFRAYS which
specifies rho.
MATRIXOFRAYS | A matrix whose columns represent the ray
generators of the fan.
OUTPUT: 1 If H"0(V_D_rho \cap sig,utu’, C)
exists (see CLS p402, ch 9.1)
0 | Otherwise.

sigma := SIGMA; rholndex := INDEXOFRHO; matrixOfRays := MATRIXOFRAYS;

v := {-1,-1,0};——this is utu’

—check condition for common rays
for s in sigma do(

——compute the inner product (and convert vec to list)
temp = innerProduct (v, flatten entries matrixOfRays_s);
—different condition for rho
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if (s == rholndex) then(if (temp < —1) then(return 1))
—every other ray has same condition
else (if (temp < 0) then(return 1))
return 0;——conditions not satisfied

)

existsCohom2 = (SIGMA, TAU, INDEXOFRHO, MATRIXOFRAYS) —> (

INPUT: SIGMA | List of indices of ray generators that
determine a maximal dimensional cone SIGMA
in the fan.

|
|
TAU | " SR TAU in the fan.
INDEXOFRHO | The index of the column of MATRIXOFRAYS which
| specifies rho.
MATRIXOFRAYS | A matrix whose columns represent the ray
| generators of the fan.
OUTPUT: 1 | If H0(U_sigtau, O X(D_rho)) utu’
| exists (checks condition in CLS p399)
0 | Otherwise.

sigma := SIGMA; tau := TAU; rholndex := INDEXOFRHO;
matrixOfRays := MATRIXOFRAYS; v := {—1,—-1,0};——this is utu’

commonRays = select (sigma, s—>member(s,tau));

—trivial intersection
if (length (commonRays) = 0) then(return 1)
else(——check condition for common rays
for s in commonRays do(
——compute the inner product (and convert vec to list)

temp = innerProduct (v, flatten entries matrixOfRays_s);
—different condition for rho
if (s = rholndex) then(if (temp < —1) then (return 0))

——every other ray has same condition
else (if (temp < 0) then (return 0))
)
return 1;——all conditions are satisfied!
)
)

existsCohom3 = (SIGMA, TAU, GAMMA, INDEXOFRHO, MATRIXOFRAYS) —> (

INPUT: SIGMA | List of indices of ray generators that
determine a maximal dimensional cone SIGMA.
TAU " " - TAU.
GAMMA " " GAMMA.
INDEXOFRHO The index of the column of MATRIXOFRAYS

MATRIXOFRAYS | A matrix whose columns represent the ray
generators of the fan.
OUTPUT: 1 If H 0(U_sigtaugam, O X(D_rho))_ utu’

|
|
|
|
| which specifies rho.
|
|
|
|

exists (checks condition in CLS p399)
0 | Otherwise.
sig := SIGMA; tau := TAU; gam := GAMMA; rholndex := INDEXOFRHO;
matrixOfRays := MATRIXOFRAYS; v := {—1,—-1,0};——this is ufu’
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—find the rays common to both sigma and tau

temp = select (sig, s—>member(s,tau));

—find the rays common to sigma, tau, and gamma

commonRays = select (temp, s—>member (s, gam));

if (length (commonRays) = 0) then(return 1)——trivial intersection

else(——check condition for common rays
for s in commonRays do(
—compute the inner product (and convert vec to list)

temp = innerProduct (v, flatten entries matrixOfRays_s);
—different condition for rho
if (s = rholndex) then(if (temp < —1) then (return 0))

——every other ray has same condition
else(if (temp < 0) then (return 0))
)
return 1;——all conditions are satisfied!
)
)

existsCohomd = (SIGMA, TAU, GAMMA, ALPHA, INDEXOFRHO, MATRIXOFRAYS) —> (

INPUT: SIGMA | List of indices of ray generators that
determine a maximal dimensional cone SIGMA
in the fan.

TAU " " o TAU in the fan.
GAMMA " " . GAMMA in the fan.
ALHPA " " C. ALPHA in the fan.

specifies rho.

MATRIXOFRAYS | A matrix whose columns represent the ray
generators of the fan.
OUTPUT: 1 If H0(U_sigtaugam, O_X(D_rho))_utu’

|
|
|
|
INDEXOFRHO | The index of the column of MATRIXOFRAYS which
|
|
|
|
|

exists (checks condition in CLS p399)
0 | Otherwise.
sig := SIGMA; tau := TAU; gam := GAMMA; alp := ALPHA;
rholndex := INDEXOFRHO; matrixOfRays := MATRIXOFRAYS;
v := {-1,-1,0};——this is utu’

—find the rays common to both sigma and tau

templ = select (sig, s—>member(s,tau));

—find the rays common to sigma, tau, and gamma

temp?2 = select (templ, s—>member(s,gam)) ;

—find the rays common to sigma, tau, gamma, and alpha
commonRays = select (temp2, s—>member(s,alp));

if (length (commonRays) = 0) then(return 1)——trivial intersection
else(——check condition for common rays
for s in commonRays do(
—compute the inner product (and convert vec to list)

temp = innerProduct (v, flatten entries matrixOfRays_s);
——different condition for rho
if (s = rholndex) then(if (temp < —1) then (return 0))

——every other ray has same condition
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else (if (temp < 0) then (return 0))
)
return 1;——all conditions are satisfied!
)
)

innerProduct = (VECTORA, VECIORB) —> (
— INPUT: VECTORA | List of numbers representing a vector in Cn
— VECTORB | List of numbers representing a vector in C'n
— QOUTPUT: Euclidean inner product of the two vectors.

a := VECTORA; b := VECITORB; temp := 0;

if(#a = #b) then(
for i from 0 to #a — 1 do(temp = temp + a#i x b#i);
return temp;

)

else (print "Incompatible vector lengths.")

)

intersectsComponent = (SIGMA, COMPONENT) —> (
— INPUT: SIGMA List of indices of ray generators that determine
a maximal dimensional cone SIGMA in the fan.

|
|
— COMPONENT | List of indices of ray generators whose induced
— | subgraph is a component of Gamma_rho(u).
— OUTIPUT: 1 | If the cone SIGMA intersects COMPONENT.
— 0 | Otherwise.
— COMMENTS:

—— This is the implementation of the functions f_sig and g_sig.
sig := SIGMA; comp := COMPONENT;
—return 1 there is a ray in sigma that is also
—in the component of the graph
for s in sig do( if (member(s, comp)) then( return 1 ) );
return 0;——if we haven’t returned yet, then it must not intersect

)

h = (SIGMA, TAU, GAMMA, COMPONENTC, COMPONENTD) —> (

— INPUT: SIGMA | List of ray generators that
determine a maximal
dimensional cone SIGMA in

— the fan.

— TAU e TAU in the fan.
— GAMMA e GAMMA in the fan.
— COMPONENTC List of ray generators

— whose induced subgraph is
— COMPONENTD List of ray generators

whose induced subgraph is
a component of
Gamma_rho’(u’) .

Living in Cech
representation of
H™2(X, T X) uwtu’, then lift
to H2(X, O_X(D_rho))_utu’

\

\

\

\

\

\

\
— | a component of Gamma_rho(u).

|

\

\

— OUTPUT: (f_sig — f_tau)(g_tau — g gam) |

\

\

\
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sig := SIGMA; tau := TAU; gam := GAMMA; c¢ := COMPONENIC;
d := COMPONENTD;

return (intersectsComponent (sig, c¢) — intersectsComponent (tau, c))x*(
— intersectsComponent (tau, d) — intersectsComponent (gam, d));
)

s = (SIGMA, TAU, COMPONENTC, COMPONENID) —>(
— INPUT: SIGMA List of ray generators that
— determine a maximal dimensional

cone SIGMA in the fan.

—_ TAU " " TAU in the fan.
— COMPONENTC List of ray generators whose
— induced subgraph is a component
— COMPONENTD List of ray generators whose

induced subgraph is a component
of Gamma_rho’(u’) .

Living in Cech representation of
H™2(X,T X) utu’, then lift to
H™2(X, O X(D_rho))_utu’

|

|

|

|

|

|
— | of Gamma_ rho(u).

|

|

— OUTPUT: f_sig x (g_tau — g_sig) |

|

|

— COMMENTS:
— This computes a potential preimage for the nonzero cocycle (so that
— the cocyle is zero modulo the image)

sig := SIGMA; tau := TAU; c¢ := COMPONENIC; d := COMPONENTD;

return intersectsComponent (sig, c)#*(intersectsComponent (tau, d) —
— intersectsComponent (sig, d));
)

checkPreimage = (PREIMAGE, PAIRSOFCONES, INDEXOFRHO, MATRIXOFRAYS) —>(
— INPUT: PREIMAGE A 91x1 matrix, representing an element of
C71 viewed in CT91.

|

|
— PAIRSOFCONES | A list of lists of the form {A,B}, where A
— | and B are lists of ray generators specifying
— | maximal cones in the fan.
— INDEXOFRHO | The index of the column of MATRIXOFRAYS
— | which specifies rho.
— MATRIXOFRAYS | A matrix whose columns represent the ray
— | generators of the fan.
— OUTPUT: N/A
—— COMMENTS:

— This checks if elements of C”1 are allowable. That is, a vector
— cannot have a nonzero entry for a pair of cones sigma, tau
—— which make H™0(U_sigmatau, O _X(D_rho))_utu’ vanish. It prints the
— index for which this clash happens.
prelmage := PREIMAGE; P := PAIRSOFCONES, i := INDEXOFRHO;
M := MATRIXOFRAYS; j := 0;

for p in P do(
sig = p#0; tau = p#l;

temp = existsCohom?2 (sig, tau, i, M);
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if (temp != 1) then(if (prelmage_ (j,0) != 0) then(print j));
] =J+L
)

)
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A.2 main-1.m2

restart
load "header .m2"

— MAIN

—— Some useful constants.
u ={-1, 0, 0};
uPrime = { 0, —1, 0};
rho ={ 1, 0, 0};
rhoPrime = { 1, 1, 0};

—— Specify ray generators.
M = transpose(matrix({ rho, {1,0,—-1}, {1,0,1}
< rhoPrime, {0,1,-1}, {0,1,1}, {-1,0,0} }

’ {277170}7 {177170}7
));
— Specify all the maximal cones of the fan via ray generators.

rayGenerators = { {0,1,3}, {0,1,6}, {0,2,3}, {0,2,7}, {0,5,6}, {0,5,7},

< {1,3.,4}, {1,4,8}, {1,6,8}, {2,3,4}, {2,4,8}, {2,7,8}, {5.,6,8},
— {5,7,8} };

— Turn this data into actual cones for macaulay2.
coneList = apply(rayGenerators, u—>coneFromVData(M_u));

— Construct the fan.
F = fan(coneList)

—— The fan is complete.
isComplete (F)

— The fan is also smooth.
isSmooth (F)

— Sanity check, H'1 for T X is nonvanishing.
HH"1 tangentBundle (F)

— Determine the indices of each ray (index of rho is 1).
matrixOfRays = rays (F)

— Maximal cones of F specified by indices of rays.
maximalCones = faces (0, F);

— Specify connected components by indices of rays.

componentCl = {2,3,5,7};—— Cl1 for Gamma_rho(u).
componentC2 = {4};—— C2 for Gamma rho(u).
componentD1l = {8};—— D1 for Gamma_ rho’(u’).
componentD2 = {6};—— D2 for Gamma rho’(u’).
quadsOfCones = subsets (maximalCones, 4);
triplesOfCones = subsets (maximalCones, 3);
pairsOfCones = subsets(maximalCones, 2);
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— Compute the image of the cup product for Cl x DI.
hSigmaTauGammaClD1 = {};
for T in triplesOfCones do(hSigmaTauGammaClD1 = append (

< hSigmaTauGammaC1D1, h(T#0, T#1, T#2, componentCl, componentD1)))

— Compute the image of the cup product for Cl x D2.
hSigmaTauGammaC1D2 = {};
for T in triplesOfCones do(hSigmaTauGammaClD2 = append (

— hSigmaTauGammaC1D2, h(T#0, T#1, T#2, componentCl, componentD2)))

— Compute the image of the cup product for C2 x DI.
hSigmaTauGammaC2D1 = {};
for T in triplesOfCones do(hSigmaTauGammaC2D1 = append (

— hSigmaTauGammaC2D1, h(T#0, T#1, T#2, componentC2, componentD1)))

— Compute the image of the cup product for C2 x D2.
hSigmaTauGammaC2D2 = {};
for T in triplesOfCones do(hSigmaTauGammaC2D2 = append (

— hSigmaTauGammaC2D2, h(T#0, T#1, T#2, componentC2, componentD2)))

— Build the matrices DO, D1, D2 which encode the Cech differentials.
listOfRows = {};

for P in pairsOfCones do(

row P = {};
for M in maximalCones do(row_P = append(row_P, entryInDiffMatrix0 (P,
= M)));

list OfRows = append (listOfRows , row_P);
)

— Matrix encoding Cech differential map from C 0 to C71, viewed as C 14
— — C791.
D0 = sub(matrix (listOfRows), QQ);

— Matrix of generators for the kermel of D0: C14 — C791.
KDO = gens(ker(DO0));

listOfRows = {};
for T in triplesOfCones do(

row_T = {};

for P in pairsOfCones do(row_T = append(row_T, entryInDiffMatrix (T,
— P)));

list OfRows = append (listOfRows , row T);

)

— Matrix encoding Cech differential map from C™1 to C™2, viewed as C791
— —> C7364.
D1 = sub(matrix (listOfRows), QQ);

— Matrix of generators for the kermel of D1: CT91 — C™364.
KD1 = gens(ker(D1));

listOfRows = {};
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for Q in quadsOfCones do(

row_Q = {};

for T in triplesOfCones do(row_Q = append(row_Q, entryInDiffMatrix2 (
= Q, T))):

list OfRows = append (listOfRows , row_Q);

)

— Matrix encoding Cech differential map from C™2 —> C™3, viewed as C
— 7364 — CT1001.
D2 = sub(matrix (listOfRows), QQ);

— Matrix of generators for the kernel of D2: C7364 — C~1001.
KD2 = gens(ker(D2));

— Build matrices whose image is C7i (allowable)

m = {};

for P in pairsOfCones do(m = append(m, existsCohom?2 (P#0, P#1, 1,
— matrixOfRays)))

I1 = sub(diagonalMatrix (m), QQ);—— Matrix giving allowable elements of C
— 1.

b = {};

for T in triplesOfCones do(b = append (b, existsCohom3 (T#0, T#1, T#2, 1,
— matrixOfRays)))

I2 = sub(diagonalMatrix(b), QQ);—— Matrix giving allowable elements of C
— 2.

c = {};

for Q in quadsOfCones do(c = append(c, existsCohom4 (Q#0, Q#1, Q#2, Q#3,
— 1, matrixOfRays)))

I3 = sub(diagonalMatrix(c), QQ);—— Matrix giving allowable elements of C
— T2.

t = {};—— This is for the topological object

for P in pairsOfCones do(t = append(t, existsCohom2ForTopObj(P#0, P#1,
— 1, matrixOfRays)))

J1 = sub(diagonalMatrix (t), QQ);—— Matrix giving allowable elements of C
— 1.

t = {};—— This is for the topological object

for M in maximalCones do(t = append(t, existsCohomlForTopObj(M, 1,
— matrixOfRays)))

JO = sub(diagonalMatrix(t), QQ);—— Matrix giving allowable elements of C
— 1.

y = {};—— This is for the topological object
for T in triplesOfCones do(y = append(y, existsCohom3ForTopObj(T#0, T#1,
—  T#2, 1, matrixOfRays)))

J2 = sub(diagonalMatrix(y), QQ);—— Matrix giving allowable elements of C
— 1.
hSTGC1D1 = transpose (sub(matrix ({hSigmaTauGammaC1D1}), QQ));—— Potential

< mnonzero element in H"2, interpreted as an element of C™2.
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hSTGC1D1%I2— Check it is allowable.
hSTGC1D1%KD2— Check it lies in H™2.
hSTGC1D1%D1I1— Doesn’t lie in image.

hSTGC1D2 = transpose (sub(matrix ({hSigmaTauGammaC1D2}), QQ));—— Potential
< mnonzero element in H™ 2, interpreted as an element of C™2.

hSTGCID2%I2— Check it is allowable.

hSTGCID2ZKD2— Check it lies in H™2.

hSTGC1D2%D1I1— Doesn’t lie in image.

hSTGC2D1 = transpose (sub(matrix ({hSigmaTauGammaC2D1}), QQ));—— Potential
< mnonzero element in H™ 2, interpreted as an element of C™2.

hSTGC2D1%I2— Check it is allowable.

hSTGC2D1%KD2— Check it lies in H™2.

hSTGC2D1%D1I1— Doesn’t lie in image.

hSTGC2D2 = transpose (sub(matrix ({hSigmaTauGammaC2D2}), QQ));—— Potential
< mnonzero element in H™2, interpreted as an element of C™2.

hSTGC2D2%I2— Check it is allowable.

hSTGC2D2%KD2— Check it lies in H™2.

hSTGC2D2%D111— Doesn’t lie in image.

K = intersect (ker (I3«D2«I12), image 12);

I = image(I2«D1xI1);

C =K/I;

prune C —H"2(X, O(D)) is 1-dimensional, as expected.

K = intersect (ker (J2«D1xJ1), image J1);

I = image (J1+D0%J0) ;

C =K/I;

prune C— H™1(V,C) is l1-dimensional, as expected.

W = 12«D1xJ1;
vC1D1 = W\\hSTGC1D1;
printCones (vC1D1, pairsOfCones)

vC1D2 = W\\hSTGCID2;
printCones (vC1D2, pairsOfCones)

v02D1 = WA\hSTGC2D1;
printCones (vC2D1, pairsOfCones)

vC2D2 = W\\hSTGC2D2;
printCones (vC2D2, pairsOfCones)
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