
3D Visual-Inertial Odometry and Autonomous
Mobile Robot Exploration with Learned Map

Prediction
by

Rakesh Shrestha

B.E., Tribhuvan University, 2013

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Science

© Rakesh Shrestha 2018
SIMON FRASER UNIVERSITY

Fall 2018

Copyright in this work rests with the author. Please ensure that any reproduction or re-use
is done in accordance with the relevant national copyright legislation.



Approval

Name: Rakesh Shrestha

Degree: Master of Science (Computing Science)

Title: 3D Visual-Inertial Odometry and Autonomous Mobile
Robot Exploration with Learned Map Prediction

Examining Committee: Chair: Mo Chen
Assistant Professor

Ping Tan
Co-Senior Supervisor
Associate Professor

Richard Vaughan
Co-Senior Supervisor
Professor

Yasutaka Furukawa
External Examiner
Assistant Professor

Date Defended: December 12, 2018

ii



Abstract

2D and 3D scene reconstruction are important topics in the field of robotics and computer vision.

Mobile robots require a model of the environment to perform navigational tasks, and model acqui-

sition is a useful application in itself . This thesis presents a) A 3D odometry and mapping system

producing metric scale map and pose estimates using a minimal sensor-suite b) An autonomous

ground robot for 2D mapping of an unknown environment using learned map prediction.

The first application proposes a direct visual-inertial odometry method working with a monocular

camera. This system builds upon the state-of-the-art in direct vision-only odometry. It demonstrates

superior system robustness and camera tracking accuracy compared to the original method. Fur-

thermore, the system is able to produce a 3D map in metric scale, addressing the well known scale

ambiguity inherent in monocular SLAM systems.

The second application demonstrates an autonomous ground robot capable of exploring unknown

indoor environments for reconstructing their 2D maps. This method combines the strengths of tra-

ditional information-theoretic approaches towards solving this problem and more recent deep learn-

ing techniques. Specifically, it employs a state-of-the-art generative neural network to predict un-

known regions of a partially explored map, and uses the prediction to enhance the exploration in

an information-theoretic manner. The system is evaluated against traditional methods in simulation

using floor plans of real buildings and demonstrates advantage in terms of exploration efficiency.

We retain an advantage over end-to-end learned exploration methods in that the robot’s behavior is

easily explicable in terms of the predicted map.

Keywords: mobile robotics; computer vision; visual-inertial odometry; robotic exploration; ma-

chine learning
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Chapter 1

Introduction

Recent advancements in mobile robot technologies have brought robots into our day-to-day lives.

We see them vacuuming our homes, guiding us in museums, managing warehouse inventories, do-

ing aerial photography and more. One of the most crucial capabilities of a mobile robot is being

able to perceive and reason about the environment it inhabits via its sensory inputs. A fundamental

problem in robotic perception is building a world model, henceforth known as a ‘map’, for plan-

ning/executing robot trajectories, manipulating objects in the environment, and so forth.

Building maps in 3D is a well-studied problem in robotics and computer vision. Camera sen-

sors are suitable for this application as they are light, inexpensive, have small form factors and yet

provide a sizeable amount of information. A monocular camera is an especially appealing sensing

modality for robots with limited payload capacity and computational resources. Direct Methods

for Visual Odometry (VO) [2, 3, 4] allow for the recovery of 3D scene geometry from a single

camera directly using image intensities. However, the absolute scale cannot be recovered unless we

make strict assumptions about the environment. Another limitation of monocular 3D reconstruction

techniques is their inability to handle quick rotations.

One way to address this problem is by augmenting monocular camera with an Inertial Measure-

ment Unit (IMU). The key challenge in incorporating IMU information is the inherently noisy and

biased readings from these sensors. This thesis explores methods that address these issues, providing

a framework for integrating IMU information with visual information from a camera.

The second part of this thesis introduces a novel approach for autonomous exploration using

a ground robot for 2D mapping of an unknown environment. Autonomous exploration has been

widely studied using traditional geometric heuristics and information-theoretic reasoning. Recent

advances in deep learning have shown its potential applications to this problem as well [5, 6, 7].

Planning for autonomous exploration entails reasoning about parts of the environment that are

yet unexplored. Traditional information-theoretic methods and geometric heuristics-based methods

do not have any prior (or have a flat/non-informative prior) on the unknown regions. End-to-end

learnt robot behavior using deep learning does not explicitly model this reasoning about unknown

regions for planning exploration despite the enormous potential of generative deep learning net-

works to infer large amounts of unexplored regions. This thesis aims to integrate these two methods,
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exploiting the well-established and structured approach of traditional methods and the predictive

power of deep learning-based methods for superior exploration performance. This is the first work

to do so and is under review at the 2019 International Conference on Robotics and Automation

(ICRA).
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Chapter 2

Direct Visual-Inertial Odometry

Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM) are prominent re-

search topics in computer vision. VO refers to the process of incremental sensor motion estimation

and map building using a temporally local set of measurements. SLAM adds map reuse and loop

closure capability to prevent accumulation of error in the trajectory when the sensor is moving

in the same environment. They are indispensable components of many important applications like

robotics, autonomous vehicles, virtual/augmented reality, and 3D modeling.

Most VO/SLAM algorithms [8, 9] are based on feature detection and matching. In compari-

son, direct methods [2, 3, 4] do not rely on hand-crafted features. By minimizing a photometric

error defined directly on the raw pixel intensities, direct methods utilize the majority of pixels and

demonstrate advantages in scenes that are sparsely textured. Furthermore, direct methods recover a

dense/semi-dense map, which provides rich information about the environment for object detection

and manipulation.

On the other hand, it has been demonstrated that vision-only VO/SLAM is limited especially

with quick rotations, textureless environments, or sudden illumination changes. Sensor fusion with

an on-board Inertial Measurement Unit (IMU) has been proven to be effective in these scenarios [10,

8, 11]. An IMU module provides measurements of angular velocity (from the gyroscope sensor) and

linear acceleration (from the accelerometer), which despite being noisy and biased can be critical

to overcome short term failures of visual tracking. This integration has enormous practical value as

IMUs and cameras are part of most robot platforms (e.g. drones), smart phones and autonomous

vehicles.

Sensor fusion is particularly useful for direct methods as they require a good initial estimate of

the camera pose of the incoming frame. This is because they do not have explicit data-association

between consecutive frames, but aim to minimize a highly non-convex photometric error between

two frames to solve for camera pose and image point correspondences simultaneously. The widely

adopted constant velocity model [2, 3, 12] may not provide reliable initialization during aggressive

motions. Hence, the kinematic information provided by an IMU can significantly improve perfor-

mance.

3



Figure 2.1: The pipeline of the DSVIO.

Another advantage of integrating the inertial information is that we can recover the absolute

scale of the scene and motion of the sensor suite using a single camera in addition to an IMU.

This is particularly useful for robotics applications where the map is required for path planning or

manipulating objects in the environment.

Despite its usefulness, there are only a few works that integrate direct VO/SLAM algorithms

with IMU information. Usenko et al. [13] implement visual-inertial odometry using a stereo camera,

while only a monocular camera is available in many applications. Concha et al. [14] present a

direct monocular visual-inertial SLAM system. Their system does not account for many photometric

properties such as exposure time, lens vignetting, and non-linear response function of the camera.

Our system is built upon state-of-the-art direct method, the Direct Sparse Odometry (DSO) [2]

algorithm, which considers these photometric calibrations and has an online estimation of exposure

time. These features are important for direct methods as the tracking is based on direct photometric

measurements from the camera. [14] is also not evaluated on benchmark datasets for comparison.

This work integrates DSO [2], with inertial data using the IMU preintegration technique [15].

First, we initialize the visual-inertial system by aligning the tracking results from vision and IMU

respectively to obtain IMU biases, velocity and gravity direction. During the optimization-based

tracking, we formulate an objective function that combines the conventional photometric error in

DSO and a kinematic error, which enforces constraints from the IMU between nearby frames.

Figure 2.1 shows the pipeline of our system. After IMU initialization, our system integrates all

the IMU measurements between a newly arrived frame and the previous frame to get the predic-

tion of the sensor state. The prediction is used as an initial value for nonlinear optimization that

minimizes the photometric and kinematic error. When a new keyframe is created, the Bundle Ad-
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justment (BA) thread performs visual-inertial optimization over a sliding window of keyframes to

jointly optimize the vision and IMU errors.

Our experiment results demonstrate the robustness and accuracy of our system when compared

with the original vision-only odometry. To the best of our knowledge, our work is the first direct

monocular visual-inertial odometry system with online photometric calibration and extensive eval-

uations on publicly available benchmark sequences.

We note that following this work, VI-DSO [16] has been published with a similar system ar-

chitecture as ours. There are notable differences: VI-DSO does not have a strict IMU initialization

step but rather uses a rough initial estimate of scale, gravity direction and IMU biases which are

jointly optimized during the run-time with other state variables. Another difference is their dynamic

marginalization scheme which maintains several marginalization priors at the same time and resets

the prior to the one computed using only the recent constraints when a state moves too far from the

linearization point in the marginalization prior. Due to these differences, the work is able to estimate

trajectories with higher accuracy than our system.

2.1 Related work

A comprehensive review of visual SLAM algorithms is beyond the scope of this thesis. We refer to

a recent survey [17] for the interested audience. Here we briefly discuss some of the most relevant

works.

Feature-based vs Direct methods Feature-based methods track camera pose by minimizing the

reprojection error of point correspondences between manually designed features. Reprojection error

is computed by projecting a 3D point to the current frame and taking the Euclidean distance between

the projection and 2D point feature corresponding to the 3D point in the image. This has been a very

active research topic with some notable works like PTAM [18] and ORB-SLAM [9]. Because of the

sparse map representation, these methods are fast, and the explicit feature correspondence enhances

robustness to outliers. However, these methods discard most of the image details, which makes

their maps sparse and less visually appealing. Also, for textureless regions (like a uniformly colored

wall), there might not be enough feature points to maintain good tracking.

In contrast, direct methods like LSD-SLAM [3], DTAM [19] track camera pose by minimizing

the photometric error over a higher number of image pixels. This idea has also been applied to

depth cameras in DVO [20] and Elasticfusion [21] with impressive results. However, the objective

function in direct methods is highly non-convex and the convergence is often poor especially for

aggressive motion. Furthermore, since the data association is solved implicitly, direct methods are

more vulnerable to false associations caused by changing illumination, and photometric effects such

as lens vignetting and exposure time. Our work is built upon the state-of-the-art direct method that

take these issues into account and we increase its robustness by fusing it with IMU sensing.
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Filtering-based vs optimization-based method Earlier work on visual/visual-inertial state es-

timation has been dominated by filtering-based methods [22, 23, 24] where only the latest state

of the system is solved using the Extended Kalman Filter or its variants. MSCKF [22, 23] is a

popular EKF-based VIO system. More recent work that uses filtering approach are [24] and [25].

Optimization-based methods [18, 8, 9] formulate the SLAM problem as an energy minimization,

allowing re-linearization of the objective function after each step of the optimization, which avoids

the error from committing to a sub-optimal linearization point. The computation cost of the opti-

mization can be bounded by using a sliding window of frames whereby the states of the older frames

are marginalized out while still retaining information from them.

While the EKF has been shown to be equivalent to the commonly used Gauss-Newton algo-

rithm for non-linear optimization [26], the rigorous analysis by Strasdat et. al. [27] shows that

optimization-based methods give “the most accuracy per unit of computing time". Our method be-

longs to the optimization-based approach with both photometric and kinematic terms derived from

the visual and inertial sensor respectively.

Tightly-coupled vs loosely-coupled method Because of the complementary nature and ubiquity

of cameras and IMU sensors, much work [15, 10, 14] fuses IMU and vision data. The loosely-

coupled methods [28, 29] solve the vision and inertial modules independently and fuse their results

using a Kalman Filter. In comparison, tightly coupled methods like OKVIS [8], VINS [10], VI-

ORB [11] jointly estimate the sensors’ states, and demonstrate better robustness and accuracy. Our

method belongs to the tightly coupled category which integrate the visual and IMU constraints in a

single energy function for joint optimization.

2.2 State representation

We parameterize the state of each camera frame i by a vector x = {Ri, pi, vi, ai, bi, b
a
i , b

g
i }, where

Ri, pi and vi are the orientation, translation, and velocity of the IMU sensor with respect to the world

frame (or inertial frame, since here we ignore the self-rotation of Earth) at timestamp i. ai, bi are

photometric parameters which correct the affine illumination changes between frames. ba
i and bg

i are

the slowly varying accelerometer and gyroscope biases. The relative pose between camera and IMU

is known a priori. For a landmark l in the map , we parameterize it by its inverse depth and pixel

coordinate with respect to its unique host frame i (the frame where the landmark is first detected) ,

which is denoted as dl
i . Assuming the camera intrinsics are known, we can easily compute the 3D

position of each landmark from its inverse depth and pixel coordinates.

2.3 IMU Preintegration

The IMU sensor works at much higher frequency than a typical camera, producing multiple mea-

surements between two camera frames. For all IMU measurements at ∆t intervals between two
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consecutive frames at times i and j, we integrate all the IMU data to get the rough sensor states:

Rj = Ri

j−1∏
k=i

Exp((ωk)− bg
i )∆t

vj = vi + g∆tij +
j−1∑
k=i

∆Rk(ak − ba
i )∆t

pj = pi +
j−1∑
k=1

vk∆t+ 1
2g∆tij2 + 1

2

j−1∑
k=i

Rk(ak − ba
k)ï·Ż∆tï·İ2

(2.1)

where ak and ωk are accelerometer and gyroscope measurements at timestamp k respectively; ba,

bg are their respective biases. g is the gravity vector obtained during initialization (in Section 2.4).

Applying first order approximation for the biases and rearranging Equation (2.1) such that the

IMU measurements are separated from the pose and velocity of the sensor:

Rj = Ri∆RijExp(Jg
∆Rb

g
i )

vj = vi + g∆tij +Ri

(
∆vij + Jg

∆vb
g
i + Ja

∆vb
a
i

)
pj = pi + vi∆tij + 1

2g∆t2ij +Ri

(
∆pij + Jg

∆pb
g
i + Ja

∆pb
a
i

) (2.2)

Ja
(.) and Jg

(.) are Jacobians of the corresponding preintegrated measurement (.) = {∆R,∆v,∆p} [15]

with respect to the biases. ∆Rij , ∆vij and ∆pij are given by

∆Rij =
j−1∏
k=i

Exp((ωk)− bg
i )∆t

∆vij =
j−1∑
k=i

∆Rik(ak − ba
i )∆t

∆pij =
j−1∑
k=1

[
∆vik∆t+ 1

2∆Rik(ak − ba
k)
]

(2.3)

Note that the preintegration measurements except ∆R are not the actual physical increment (i.e

∆vij 6= vj − vi,∆pij 6= pj − pi).

Equation (2.1) and Equation (2.2) show that computing the physical increment in the velocity

vj−vi, rotationRjR
T
i and position pj−pi (and hence the constraints provided by the IMU between

time i and j) depends on Ri and vi. During the optimization, the estimated states are updated often

but preintegration measurements remain the same since they only depend on the integrated IMU

data. This avoids the need for reintegrating the IMU measurements after the state update in each

iteration of optimization to obtain new constraints on rotation, translation and velocity.

7



The IMU preintegration measurements and their Jacobians are obtained using the GTSAM li-

brary1 which implements the preintegrated technique proposed in [15].

2.4 IMU Initialization

Equations 2.1- 2.3 assume that the translations and velocities are in metric scale. Also, the gravity

vector and the IMU biases should be known. To initialize these parameters we run monocular visual

odometry for a short time and use the state estimates as ground truth with arbitrary scale (here we

assume that the state estimation in a short period of time is accurate enough and is drift-free). Then

we align these estimated up-to-scale states to metric-scale kinematic data from the IMU to obtain

the scale along with the gravity vector and the IMU biases.

We follow the IMU initialization process proposed in [11]. The initialization is done in four

steps as described below:

2.4.1 Gyroscope Bias

The gyroscope bias is estimated by minimizing relative rotations between two keyframes estimated

by DSO and by integration of angular velocity measurements from the gyroscope. We assume that

the biases do not change during the period of IMU initialization. This can be formulated as an

optimization with the error function:

r∆Rij
= Log

((
∆Rij(bg

i )Exp
(∂∆Rij

∂bg
δbg
))T

RT
i Rj

)
(2.4)

where Log maps R ∈ SO(3) rotation matrix group to minimal representation in so(3) and Exp

is the inverse mapping from so(3) to SO(3) [30]. For simplicity, we define so(3) as the 3D vector

group opposed to the actual 3x3 skew symmetric matrix representation. Ri and Rj are rotations of

keyframe at time i and j computed by DSO. The preintegrated measurement at current bias estimate

∆Rij(bg
i ) (Equation (2.3)) and its Jacobian with respect to the bias ∂∆Rij

∂bg are defined in [15].

We solve for the gyroscope bias by minimizing Equation (2.4) using the Gauss-Newton algo-

rithm.

2.4.2 Approximate scale and gravity direction estimation

Unlike the rotation, the positions obtained from vision-only DSO have an arbitrary scale. Moreover,

to obtain relative positions and velocities using IMU measurements, the direction of gravity with

respect to the current frame of reference (which in general is not the inertial frame) is required. The

1https://research.cc.gatech.edu/borg/gtsam/
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relation between the position estimates of the camera by DSO pW C and the positions of the body

(IMU) frame pW B in the arbitrary world frame W is:

pW B = spW C + RW CpCB (2.5)

where RW C is the camera orientation obtained from DSO and pCB is the known position of the

IMU with respect to the camera.

From Equation (2.5) and Equation (2.1), assuming zero accelerometer bias, we obtain:

spi+1
W C = spi

W C + vi
W B∆ti,i+1 + gW ∆ti,i+1

2

+ Ri
W B∆pi,i+1 +

(
Ri

W C −Ri+1
W C

)
pCB

(2.6)

where gW is the gravity vector in the world frame.

By using the relation in Equation (2.6) for three consecutive keyframes i, i + 1 and i + 2, we

can avoid solving for velocity of the keyframes and obtain s and gW given at-least 4 keyframes. We

refer our reader to [11] for the exact implementation of this system of linear equations.

2.4.3 Scale and gravity vector refinement, and accelerometer bias estimation

By enforcing the magnitude of the gravity vector gW to be G (standard value 9.8ms−2), the scale

and gravity direction can be refined. At this phase, the effect of accelerometer bias is also con-

sidered. Using first order approximation and assuming bias to be close to zero, the preintegrated

measurement is obtained as:

∆pi,i+1(ba) = ∆pi,i+1 + Ja
∆pij

ba (2.7)

where Ja
∆pij

is the Jacobian of the preintegrated measurement with respect to the accelerometer

bias.

Replacing the preintegrated measurement ∆pij in Equation (2.6) with the bias corrected one in

Equation (2.7) and assuming only a small perturbation in the gravity direction gW , we can obtain

refined scale/gravity direction and solve for accelerometer bias. We again refer our reader to [11]

for more details.

2.4.4 Keyframe Velocity Estimate

Substituting the computed accelerometer bias, scale and gravity direction in Equation (2.6), the

velocities of the keyframes vi
W B can be obtained.

After initialization, we update the scale of all camera poses and map points. The world frameW

is transformed such that the gravity direction lies along the vector [0, 0,−1]T (i.e. the world frame

is transformed to inertial frame).
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2.5 Model Formulation

2.5.1 Tracking

When a new frame is received, the tracking module is responsible for tracking its pose, velocity,

affine photometric parameters and IMU biases. Since we have already aligned the IMU states and

camera states in the IMU initialization, we use the increments obtained from Equation (2.2) to

propagate the sensor state from time i to i+ 1.

The difference between our method and earlier work on a direct monocular visual-inertial

SLAM system [14] is that we optimize both the state of the current frame and the previous frame for

tracking a new frame. This is required as the IMU energy depends on the previous frame’s state. [14]

optimizes only the current sensor state on account of computation cost, but we argue that for better

use of IMU information optimizing both states is necessary.

To eliminate the gauge freedom in the two pose optimization, we introduce a prior energy term

that penalizes deviation from the previous sensor state [11, 10]. The information matrix of the prior

error is obtained by marginalizing the state of previous frame. For consistency of error terms, we

use the "First Estimate Jacobians" [31, 8] by fixing the linearization point of the state of previous

frame.

Since we do not want the tracking thread to affect the running of the Local Bundle Adjustment

module Section 2.5.2, inspired by [11], the system uses two methods to perform tracking according

to the state of map update.

When the map has just been updated, then for the next incoming frame, we will only optimize

the state of the current frame. Given the set of pixels {P} on last keyframe Fk with inverse depth

Dk = {d1
k, d

2
k, ..., d

l
k}, we have the following objective function:

E(xi|Dk) = EP hotometric(xi|Dk) + EKinematic(xi) (2.8)

Here, EP hotometric(xi|Dk) is the photometric error of the pixel set {P} with respect to the

current frame. For more detail, we refer our readers to [2]. The kinematic error termEKinematic(xi)
is defined as:

EKinematic(xi) =
∥∥∥r∆R

T , r∆v
T , r∆p

T
∥∥∥2

Σimu

+∥∥∥bg
i − b

g
j

∥∥∥2

Σbgd
+
∥∥∥ba

i − ba
j

∥∥∥2

Σbad

(2.9)

where the residuals r. are defined as
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Figure 2.2: Illustration of factor graph of the tracking module. (a) When the map has not been up-
dated recently (i.e. last frame is not the last keyframe) (b) When the map has been updated recently.

r∆R = Log((∆RijExp(Jg
∆Rb

g
j )TRi

TRj))

r∆v = Ri(vj − vi − gw∆tij)− (∆vij + Jg
∆vb

g
j + Ja

∆vb
a
j )

r∆p = Ri(pj − pi − vi∆tij −
1
2gw∆tij2)

− (∆pij + Jg
∆pb

g
j + Ja

∆pb
a
j )

(2.10)

The information matrices Σimu,Σbgd,Σbad are obtained by the propagation of covariances of the

IMU measurements [15].

When there is no recent map update, we jointly optimize the incoming frame Fi and previous

frame Fi−1, similar to the one pose optimization above. We define the objective function as:

E(xi,xi−1|Dk) =EP hotometric(xi|Dk)

+ EKinematic(xi,xi−1) + Eprior(xi−1)
(2.11)

The definitions of the photometric term Ephotometric and the Kinematic term EKinematic are the

same as the previous case; the only difference is that we optimize both xi and xi−1. The prior term,

Eprior, is the difference of the current estimated state of the frame Fi−1 with its optimized state

during previous tracking. The information matrix of the prior term is computed by marginalizing

the frame Fi−2.

The factor graph of the tracking module in both of the cases are illustrated in Figure 2.2.
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Figure 2.3: The factor graph of Local Bundle Adjustment

Marginalization

Let xm denote the states to be marginalized and xr the remaining states. The joint distribution

P (xr,xm) is marginalized to obtain P (xr|xm) which can be used as a proxy for P (xr). Then we

can eliminate xm in later optimizations while still keeping the information from it in the form of

P (xr|xm). The distribution of our states is a Multivariate Gaussian expressed by the mean (the cur-

rent state estimate) and covariance matrices (inverse of Fisher information matrix/Hessian matrix).

Marginalization is performed using Schur Complement and is performed in a similar way to [2,

8].

2.5.2 Local Bundle Adjustment with IMU constraint

When inserting a new keyframe, all the keyframe states in the local window are optimized simul-

taneously by minimizing the photometric, kinematic and prior energy term (Equation (2.11)). Like

the Local BA in work [11], we perform BA with 17 states (rotation, translation, velocity, biases and

affine photometric parameters) after a new key frame has been created. Figure 2.3 shows our factor

graph in the local BA thread. Since the number of states in the local window should be limited

to bound the complexity of Bundle Adjustment, marginalization is used to eliminate the old states

and save the information from those states in the form of conditional distribution. All the remain-

ing states which have connection with the eliminated states will be constrained by this conditional

distribution. We call this constraint prior factor.

The keyframe is chosen for marginalization based on the visibility of map points and a distance

score with other keyframes in the window (refer to [2] for additional details). Hence the marginal-

ized keyframe is not always the oldest one and the temporal difference between two consecutive

12



Figure 2.4: Mean error with minimum and maximum error bars

keyframes in the local window might be very large. However, a large temporal difference between

consecutive keyframes weakens the IMU constraint because of accumulated noise in the time pe-

riod. Hence, we only add the IMU constraint for the pair of consecutive keyframes whose time

difference is no more than 0.5 seconds, and update the validity of the IMU factors in the local win-

dow after each new keyframe. The constraint from IMU preintegrated measurement will also be

used for the prior factor computation when the corresponding keyframe is marginalized.

2.6 Experiment

We evaluate our system on the EuRoC MAV dataset [32]. It contains 11 sequences with stereo

and inertial data recorded in 3 indoor environments: Machine Hall (MH), Vicon Room 1 (V1) and

Vicon Room 2 (V2). The evaluation metric is the Root Mean Squared Error (RMSE) of trajectory.

The scale of trajectory of the original DSO algorithm was aligned with ground truth using a 7

DOF Similarity Transform (Sim(3 )) alignment using the technique proposed in [33]. The trajectory

computed by our system was aligned with ground truth using a Euclidean alignment, i.e. rotation

and translation only, without the scale alignment. The parameter settings of the visual odometry

module in our system are the same as DSO.

13



Figure 2.5: Error Heat Map

2.6.1 Methodology

We run our visual-inertial odometry system on each sequence 10 times. In our experiment we only

use the sequences captured by the left camera, giving a total of 110 trials. In order to maintain

invariance to the CPU load and machine specifications, we do not enforce real-time constraints

on our system or the original DSO. We use the experimental results of the DSO that were made

available by the authors as supplementary material. For the evaluation of our system, we exclude

the beginning and end parts of each sequence (by the same amount as in DSO) on account of shaky

motion that is detrimental to the visual tracking.

2.6.2 Results

The mean RMSE trajectory errors for different environments can be seen in Figure 2.4 along with

error bars depicting the minimum and maximum errors among the 10 runs for each sequence. Ad-

ditionally, Figure 2.5 shows the error of all 110 trials in the form of a heat map.

Our system is more robust in the difficult sequences V1_03 and MH_04 where the original

implementation of DSO consistently failed. The time vs error plot in Figure 2.6 for the sequence

V1_03 shows that during sudden fast motion, our system is able to maintain tracking while the

original DSO implementation suffered significant drift. A sample image frame around the time

where DSO trajectory drifted is given in Figure 2.7. The image shows considerable motion blur due

to a sudden movement which makes the direct image alignment to solve relative camera motion

unreliable. Also, the motion prediction based on constant velocity assumption will not be a good
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Figure 2.6: Cumulative error curve of DSO
and our DSVIO

Figure 2.7: Image frame at the time around
50s in Figure 2.6 where the original DSO
suffers from significant drift while our sys-
tem is able to maintain tracking

initial seed for optimization due to which it will fail to converge to a good solution. Such motions, to

a certain degree, can be handled using inertial sensing as it gives better initialization and additional

constraints for the optimization.

Figure 2.8 and Figure 2.9 show the trajectory estimates and 3D reconstructions of the sequence

V1_03 by DSO and DSVIO respectively. Because the camera motion is very aggressive at certain

instances, the scale of the DSO trajectory is not consistent throughout the sequence while DSVIO

can usually handle these situation.

2.7 Conclusion and Future work

To summarize, we combine sparse direct visual odometry with IMU preintegration to create a reli-

able VIO system. By automatically aligning the IMU factor with vision structure, our system can

recover and preserve the metric scale of the scene very well. The kinematic information from IMU

we add for prediction and state optimization helps the system attain robustness to aggressive motion.

The addition of loop closure constraints can help maintain consistent pose estimates over longer

periods of time, which can be considered for future work. Also, since the IMU initialization result

highly depends on the accuracy of the trajectory from vision-only DSO, a more robust visual initial-

ization framework is still required. Another possibility is to have an initialization-free system which

optimizes the scale and gravity vector as part of its state variable as done by [16].
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Figure 2.8: Reconstructed map by DSO for
the sequence EuRoC MAV V1_03. Note the
change in scale of the map

Figure 2.9: Reconstructed map by DSVIO
for the sequence EuRoC MAV V1_03. The
scale of the map is consistent throughout the
trajectory
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Chapter 3

Learned Map Prediction for Enhanced
Mobile Robot Exploration

Modeling a previously-unknown environment is a canonical task in mobile robotics. The task of

planning and executing robot trajectories to create a world model (i.e. ‘map’), is known as ‘explo-

ration’. Autonomous exploration is a component of many real-world robotic applications, including

search and rescue [1], planetary exploration [34], visual inspection [35], 2D/3D reconstruction [36]

and mining [37]. The completeness and efficiency of exploration is important to facilitate these ap-

plications. Here we describe a novel exploration method that exploits learned priors over maps to

explore more efficiently than current methods.

Exploration is closely related to some well-known NP-complete problems, such as the art gallery

problem or the traveling salesman problem, with the important difference that the polygon to be cov-

ered or graph to be traversed is discovered dynamically and incrementally during run time. Previous

methods for autonomous exploration can be broadly classified into two categories: frontier-based

methods and information-theoretic methods. The frontier approach maximizes map coverage by

moving to new frontiers - regions on the boundary between free space and unexplored space [38].

Path cost and expected information gain (i.e. utility) are commonly used to determine the next fron-

tier to visit. The information-theoretic methods formulate the problem as map entropy minimiza-

tion, i.e., information gain with probabilistic map representation [39]. Hence, a good information

gain prediction plays a key role in both approaches.

Estimating information gain amounts to predicting sensor measurements in unseen regions of

the map. The general approach is to assume that the robot is faced with a map that is either some-

what typical for its application domain, or somewhat regular in itself, or both, so that partial views

of the map can afford useful predictions of the unseen parts. Methods for achieving this vary in

their advantages and limitations in map prediction and hence information gain estimation. While

this problem is not new, there has been recent interest and new ideas. Pimentel et al. [40] pro-

posed an elegantly simple heuristic whereby wall segments at frontiers are assumed to extend into

the unseen area when computing expected information gain. Cost-utility based exploration [41, 42]

simply estimates information gain by counting unknown cells within a predefined radius of a fron-
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Figure 3.1: Deep learning based map prediction for autonomous exploration. (a) Current in-
complete map. (b) Predicted map using the network trained over many previous maps. (c) Cost
transform for explored cells. Compared to Hector exploration [1], our method chose a more reward-
ing direction to explore due to a better estimate of information gain.

tier point. While these methods may work locally on simple floor-plans, they are unlikely to perform

well on more complicated floor-plans. Most recent information-theoretic methods [43, 44] predict

the information gain based on Gaussian Mixture Models [45] or Gaussian processes with Bayesian

inference, by one-step sensor look-ahead measurements using sensor likelihood prediction mod-

els [46, 47], which tacitly assume the unknown areas are always free. However, this assumption

does not hold in general, thus the final information gain estimation is often inaccurate.

We propose a data-driven approach that does not rely on explicit assumptions about the envi-

ronment, but instead learns regularities from examples. Specifically, we employ Variational Autoen-

coders (VAE) [48] to predict unknown map regions beyond frontiers. In our chosen indoor setting

this allows us to learn generalizations over many building floor plans to make informed decisions for

faster exploration of novel floor plans. As illustrated in Figure 3.1, using our VAE-based map predic-

tion, we estimate the potential areas that can be mapped from each frontier, which we demonstrate

can be more accurate and efficient than a single or multi-step lookahead in the sensor measurements.

Our system addresses the exploration problem in two steps: 1) predicting unknown regions to

identify navigation goals that maximize map coverage; 2) navigating to those goal positions using

well-established techniques. We employ deep learning to tackle the former in isolation, given the

recent success of deep generative neural network models [49, 48]. Navigation is a well-studied

problem in robotics where the traditional methods still outperform deep learning based methods [5,

6, 7]. By separating the problem into these two steps, we are able to utilize the strengths of both
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deep learning and traditional methods while also maintaining the comprehensibility of the overall

system pipeline.

3.1 Related Work

Frontier-based exploration methods are easy to understand and implement and work fairly well in

practice. These methods maintain a list of boundaries between explored and unexplored regions in

the partial map, known as ‘frontiers’. The robot iterates over choosing the currently most promising

frontier, planning and executing a path that drives through it while extending the map to eliminate

the frontier, until no frontiers remain. Yamauchi et al. [38] proposed a well-known Nearest-Frontier

Exploration method which always chooses the closest frontier as the next goal. Bourgault et al. [41]

proposed to use a cost-utility function based on expected information gain and path cost. There

are several extensions to this idea in [50, 42, 51, 52]. For efficient information gain computation,

Umari et al. [42] used an RRT tree for frontier detection and counted unknown cells surrounding a

frontier point within a predefined radius to estimate information gain. Ström et al. [51] presented a

method to match the area beyond the frontiers with the most similar map in a database, and com-

pute the expected information gain based on the retrieved match. Pimentel et al. [40] proposed a

simple heuristic map prediction by linearly extending the walls or turning the walls by 90 degrees

to compute expected information gain. While such simple local heuristic map completion and in-

formation gain computations can work well on simple floor-plans, we could hope to do better using

more sophisticated priors over maps.

The information-theoretic methods use information theory to minimize uncertainty of the map.

Several authors like [53, 54], suggest the use of information gain (also called mutual information in

some contexts) as a measure of the reduction of map uncertainty. In recent work, Vallvé et al. [55]

proposed to compute map and path information gain densely for the entire configuration space and

apply a grid-step gradient on the potential fields to directly optimize a path. Jadidi [43] proposed

a Gaussian Process (GP) based method to build an information field for the entire configuration

space, but the final decision-making is still based on a utility function that chooses a goal which

balances the path cost and expected information gain from frontiers extracted from the GP map. Bai

et al. [44] present a method to predict the information gain in the surrounding partial map of the

current robot pose based on a Gaussian process and Bayesian inference. Their method chooses the

point with the largest expected information gain as the goal for the next step. These methods, while

providing a new perspective on information gain estimation, often suppose unknown space as free

or suppose Gaussian distribution of occupancy probabilities which does not hold in real floor-plans,

thus the accuracy of the final information gain is limited.

Researchers have also proposed to use deep learning and reinforcement learning techniques

to solve the autonomous exploration problem. Bai [56] presented a supervised learning method

that chooses the next step which has a fixed distance to the robot and maximizes the expected
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Figure 3.2: System workflow.

information gain from 36 candidate actions. Lei et al. [57] proposed a reinforcement learning based

method aiming to avoid obstacles in exploration.

In contrast to these methods, we propose using deep learning to auto-complete unseen map

regions in geometric detail and use this filled-in map to measure expected information gain. We

then combine this prediction with different exploration strategies to improve exploration efficiency.

3.2 Problem Statement

Consider a nonholonomic wheeled robot equipped with a limited visibility laser range scanner,

which is operating in a bounded 2D environment E ⊂ R2. It incrementally builds an occupancy

grid representation Mt from the exploration of environment E, where t is the time step. The goal of

autonomous exploration is to plan a sequence of actions A by which the area of Mt is maximized

in every time step t. Here each action a ∈ A belongs to Lie Algebra [30] of special Euclidean

group SE(2). Due to the NP-hardness of this problem, we cannot obtain the optimal solution in

polynomial time, thus we relax it as a minimization of an immediate cost C which is a function of

path cost Cp, possibility of colliding with obstacles Co and expected information gain I to determine

the actions a ∈ A.

3.3 System Overview

Figure 3.2 shows the work-flow of the proposed method. Based on the current explored map Mt,

we first detect all the frontier points Ft, then classify them into clusters Fi
t ⊆ Ft using the DB-

SCAN algorithm [58], where i = 1, . . . , N . N is the number of clusters. Then we use the VAE

network to predict the occupancy of cells in the unseen regions beyond each frontier cluster Fi
t, to

obtain a predicted map M∗t . We then compute the information gain Ii
t for each frontier cluster Fi

t

using the predicted map M∗t , as input to the otherwise-standard Hector exploration [1] or cost-utility

exploration [42, 59] which generates a feasible path for the robot’s exploration.
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Figure 3.4: Network inputs generation. The upper image shows the current explored map with
frontiers marked in yellow. The lower row shows three inputs for the map completion network,
whose sizes are all 256×256 with a mask (prediction area) size of 80×80, centered in frontier
cluster centers. The network is trained to generate the true contents of the masked center region
given the input.
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3.4 Map Completion Network

Recently, generative networks have shown impressive performance in semantic inpainting and in-

ferring large missing regions in images with high accuracy [60, 61, 62]. Similar ideas have been

applied to predict missing parts of partial 2D maps [63, 64] where a local set of robot-centric sensor

measurements are used to infer a single missing observation.

We use the VAE network [48] for map completion because of its training/testing speed and the

ability to predict large unknown regions. Alternatives like Generative Adversarial Networks [49] are

too computationally demanding for online planning. [63, 64] use Deep Sum-Product Networks [65]

to get performance similar to GANs, but the prediction is limited to a narrow Field of View (FOV).

3.4.1 Dataset

We use the KTH dataset [66] (see Figure 3.3 for some examples) to generate partial maps and ground

truth for training the map completion network. The KTH dataset provides 165 floor plans with 6,248

rooms on the KTH campus. We manually cleaned some repeated floor plans and randomly split them

into training and testing sets with a proportion of 3:1. We use Hector exploration [1] to explore the

map and record a 256×256 region centered around each frontier cluster center. We encode obstacles,

free space, and unknown space into different color channels and append an 80×80 mask to specify

the region we want to predict. Figure 3.4 shows an example of a generated dataset for the proposed

network.

3.4.2 Network Structure

Figure 3.5 shows the architecture of our map prediction network. The encoder part of the network

learns to output a latent representation z in a lower dimensional space and the decoder reconstructs

the missing parts of the map using the compact latent representation.

Encoder: Our encoder is based on the ResNet architecture [67]. We use the ResNet architec-

ture on account of its demonstrated performance in the task of image classification on benchmark

datasets and short training time.

The encoder outputs a mean (µ) and a log variance log(σ) of the encoding of size 8×8×512.

The final encoding fed to the decoder network is sampled from the Gaussian distribution N (µ, σ).

We do not use fully connected layers as the number of parameters in the network explodes and they

did not yield a significant improvement in our results.

Decoder: The decoder network is essentially a mirror image of the encoder. While the encoder

reduces the size of the feature plane while increasing their number, the decoder does the opposite.

This is achieved by transposed convolution layers (also known as deconvolution layers) [68]. The

output from the decoder network is a probability map of obstacles, with pixel values in the range 0

to 1. We then apply a threshold of 0.5 to determine obstacles and free spaces.

The network weights are randomly initialized without pre-training, because our training data is

significantly different from standard benchmark datasets such as ImageNet [69].
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3.4.3 Network Loss Functions

Prediction Loss

The prediction task in our case can be viewed as a pixel-wise binary classification: for each pixel we

have to predict whether it is an obstacle (label 1) or free space (label 0). Hence, we choose Binary

Cross Entropy loss between the network output xn and its true label yn for pixel n. The loss for a

single pixel n is given as:

ln = −[yn · logxn + (1− yn) · log(1− xn)] (3.1)

The total loss of the prediction is the sum of all the pixel-wise losses for the masked 80×80 region,

Lprediction =
∑

ln. (3.2)

Kullback-Leibler (KL) Divergence Loss

The KL-divergence on the latent encoding is used as a loss function to penalize the divergence of

the encoding from a Standard Normal distribution The loss is given as:

Lkld = σ2 + µ2 − log(σ)− 1 (3.3)

The KL-divergence loss acts as a regularizer for the encoder by constraining the latent space. Please

refer to [48] for its formal justification.

The final loss is the weighted sum of the two losses Lprediction and Lkld from Equation (3.2)

and Equation (3.3).

Lfinal = γLprediction + (1− γ)Lkld (3.4)

where γ ∈ (0, 1) controls the relative importance of two losses. We use γ = 0.99 for training our

network.

3.5 Map completion augmented exploration

3.5.1 Information Gain Computation

For estimating the information gain we need to find the regions that can be immediately explored

from a frontier cluster, which is achieved by using the flood-fill algorithm. Starting from a frontier

point, a Depth First Search is performed to find all the connected pixels that are unknown in the

current map Mt, but are free according to the predicted map M∗t . Figure 3.6 illustrate the flood-fill

regions with and without map prediction.

The canonical definition of information gain for each frontier cluster Fi
t is:

Ii
t(M, xi) = H(M)−H(M|xi), (3.5)
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Figure 3.5: The architecture of our map prediction network. The input is a four-channel image
containing obstacles (red), free space (green), unknown space (gray) and a mask for prediction
region. The output is a single-channel image representing the probability of obstacles. We use a
threshold of 0.5 to binarize output into obstacle and free space.
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Figure 3.6: Comparison of flood-filled region without and with map prediction. Frontiers and flood-
filled regions are marked as yellow and blue respectively. (a) Current explored map. (b) and (c)
are flood-fill regions without and with map prediction. The information gain of the frontiers can be
truthfully reflected from the map prediction in (c).

where H(M) is the current entropy of the map at time t and H(M|xi) is the posterior entropy of the

predicted map with the new flood-filled map information xi. The Shannon’s entropy [70] over an

occupancy grid map M is defined as

H(M) = −
∑

j

p(mj) log p(mj) + (1− p(mj)) log(1− p(mj)), (3.6)

where p(mj) is the probability of the cell mj being occupied. An unknown cell mj in M decreases

the entropy by 1, since p(mj) = 0.5. In comparison, the known cells do not contribute to the

information gain. The information gain Ii
t is then equal to the number of unknown cells that will

become known which is in keeping with our flood-fill based method.
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3.5.2 Augmenting Exploration Planners

The expected information gain Ii
t from the proposed map prediction can be used to augment different

kinds of goal planners or path optimizers instead of just a specific method. Here we choose an

exploration transform [71] based planner known as Hector exploration planner [1] and cost-utility

function based planner [42, 41] as base methods, which are two representative methods for path

optimization and navigation goal planning respectively.

Augmented Hector Planner

Original Hector exploration [1] builds a costmap known as an exploration transform [71] which

assigns a cost to every explored free cell in the current map Mt. The cost has two parts, i.e. the path

cost to the nearest frontier point, and an obstacle cost to the nearest obstacle. Inspired by this idea,

we built our cost transform C(m) for the free cell m by additionally considering our information

gain estimate as follows:

C(m) = min
Fi

t⊆Ft

{
min
f∈Fi

t

Cp(f)− α
√

Ii
t

}
+ βCo, (3.7)

where Cp(f) is the path cost from cell m to frontier cell f , Ii
t is the information gain for frontier

cluster Fi
t, and Co is the collision cost of the cell m formulated as a thresholded distance to near-

est obstacle. α and β are the weights for information gain and collision cost respectively. Since

information gain is proportional to expected unmapped free areas (m2) while path cost is related to

length (m), we use the square root for information gain Ii
t to keep their units consistent. The square

root response function for information gain cost also helps to dampen the high information gain

estimates due to potential mispredictions. Note that the cost transform C(m) for each cell m can

be computed efficiently in an incremental way by propagating the costs starting from the frontier

points.

After evaluating our cost transform, we can plan a path from the current robot pose by following

the steepest gradient of the transform until it reaches a frontier point.

Augmented Cost-Utility Planner

The cost-utility exploration scheme [42, 41, 72] assigns a cost to each frontier point based on its

travel cost Cp(f): length of the shortest path to the frontier f , and utility (information gain), which

is
√

I(f) in our case.

C(f) = Cp(f)− λ
√

I(f) (3.8)

where I(f) = Ii
t for f ∈ Fi

t and λ is a weight to adjust relative importance between the cost and

the utility. The frontier with the minimum cost is then chosen to be the next navigation goal and

a global path planner (Dijkstra algorithm in our implementation) is used to generate a path to the

goal.
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3.6 Experiments

3.6.1 Experimental Setup

Simulation

The simulations for both dataset generation and evaluations were performed using the Stage simu-

lator [73] Pioneer P2-DX mobile robot and SICK LMS scanning laser rangefinder (LRF) models.

The FOV and range of the LRF were limited to 270° and 5m respectively with 512 samples. The

sensor update rate was 10 Hz in simulation time. The system is implemented in ROS [74].

The environment map is a 2D occupancy grid with a resolution of 0.1m per pixel. Map updates

are done by ray-casting range measurements for each laser range reading to label free and obstacle

cells. To allow fast dataset generation and evaluations, we use ground truth localization from the

simulation rather than running SLAM. Since we assume good localization/mapping and do not aim

to optimize the path for lower pose uncertainty [75], the use of ground truth localization is justified.

Baselines for Comparison

The comparison baselines we use for our evaluations are: Nearest Frontier Exploration (“near-

est_frontier") [38], Hector exploration planner (“original_hector") [1] and cost-utility exploration

(“original_cost_utility") [41].

The Hector exploration planner augmented with our information gain is referred to as “ig_hector"

and the cost-utility planner is “ig_cost_utility". As an upper bound we also compare the performance

of the Hector planner augmented by information gain from ground truth map (“ig_hector_gt"): the

impossible perfect oracle for map prediction. Note that the use of ground truth information gain does

not guarantee a perfect exploration as it is still a greedy heuristic that in general will not lead to a

globally optimal solution for the coverage of whole map. Thus, this provides a tight upper bound

for a well-informed local exploration method.

Configuration Settings

For fair comparison, we set the weights for information gain in “ig_hector” and “ig_cost_utility" the

same, viz. α = 3 (Equation (3.7)) and λ = 3 (Equation (3.8)), and we set β = 5 in Equation (3.7).

3.6.2 Map Completion Network Evaluation

Evaluation Metrics

Following prior authors [40, 44], we measure the average percentage of area coverage against explo-

ration time to evaluate exploration efficiency. We also report the average time and travel distances

taken to achieve 85% map coverage. This approach is similar to the one proposed in [40] where the

exploration is stopped after a fixed duration of time. This strategy allows us to ignore some minor
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Figure 3.7: Four map prediction results by the VAE network. In the first three columns, the topol-
ogy of the map is correctly predicted while the fourth column shows an incorrect but plausible
prediction.

unmapped corners to better reflect the exploration efficiency. Since the size of our maps vary, se-

lecting a constant time threshold will not lead to a fair comparison. Hence, we choose percentage of

area covered instead.

We present the results for 12 different maps from the testing dataset of the KTH floor-plans. For

each map and each method, we run 20 tests from different initial robot poses chosen at random and

evaluate their performance.

For training the map completion network, we first run 50 explorations using the original Hector

planner for each map in the training dataset and crop a 256×256 region around each frontier cluster.

This results in a training dataset of 1.5 million partial maps. Then we test the map prediction perfor-

mance on the testing maps with about 140,000 inputs. The network takes on average 5 milliseconds

with 1 millisecond standard deviation to predict one batch of frontiers (32 inputs) on an Nvidia

GTX980 GPU. We obtain overall map cell contents prediction accuracy of 92.5%; with precision

and recall for free space prediction of 95.0% and 96.3% respectively. The precision/recall for obsta-

cle predictions are 77.0% and 70.6% respectively. Some examples of our network’s predictions are
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Figure 3.8: Percentage map coverage against time for 4 floor plans. Results are averaged over 20
experiments.

shown in Figure 3.7. From these evaluations and Figure 3.7, we can see the proposed VAE network

can complete maps with high accuracy.

3.6.3 Analysis of Exploration Efficiency

Area Coverage Over Time

Figure 3.8 shows the percentage of total map coverage over exploration time. We compare our

“ig_hector" and “ig_cost_utility" methods with baselines as well as the Hector planner [1] aug-

mented by oracular information gain from ground truth maps (“ig_hector_gt"). The curves of Fig-

ure 3.8 show that the map-prediction augmented methods explore the map more quickly than the

baselines in the exploration process. All methods eventually converge to near-perfect coverage, but

the augmented methods do so earlier than the baselines. We notice that the nearest frontier planner

and original cost-utility methods show similar performance while the original Hector is slightly bet-

ter than the other two. In contrast, the proposed “ig_hector" perform much better, reaching nearly

the same exploration efficiency of the upper bound oracle-informed method.

The results suggest the VAE network has learned to predict unseen map areas well enough to

usefully improve exploration efficiency.
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Figure 3.9: For each method, we show the median task completion time and trajectory length for
12 different floor-plans, over 20 trials each with different initial robot pose. Smaller values indicate
better performance.
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Travel Distance and Time

Figures 3.9(a) and (c) show the median time taken and distance traveled to cover 85% of the total

area using different methods for the 12 test floor plans.

To assess the statistical significance of the difference between map completion time and distance

traveled for the baseline methods against our methods, we use Welch’s t-test [76]. We choose the

proposed “ig_hector" as our basis for comparison. A higher t-value implies a higher confidence

that baselines’ map completion times or traveled distances are longer than the proposed “ig_hector"

method. Figures 3.9(b) and (d) show the t-values for map completion times and travel distances of

all the tests in 12 floor-plans. The t-value corresponding to 95% confidence level is shown in the

graph as a dotted line.

Figures 3.9(a)–(d) show that the proposed methods “ig_hector’ and “ig_cost_utility" always

have lower map completion time and distance traveled compared to the baseline methods they were

based on viz. “original_hector" and “original_cost_utility" respectively. The measured performance

distribution of the enhanced methods are better, and differs with a large confidence interval, com-

pared to their baselines.

Our method “ig_cost_utility" has similar travel distance to “original_hector" in some of the

maps. This is likely explained by the superior performance of hector exploration compared to cost-

utility exploration canceling out the advantage of better predictions.

Overall, these experiments show that the map prediction from the proposed VAE network results

in a performance increase in travel time and distance traveled compared to previous methods in the

maps we tested.

3.7 Conclusion and Future Work

We described a VAE deep neural network that learns to predict unseen regions of building floor

plans. This model is used to enhance exploration performance by improving estimates used in path

planning, leading to increased efficiency. We suggest that the navigation behavior of our system

is more intelligible than that of end-to-end deep learning techniques as it splits the system into a

learned generative model with a map output that is easily interpreted by humans, within a well

known information-theoretic framework.

In future work, we aim to implement our system on real robots and evaluate its performance.

The work can be extended to 3D reconstruction rather than 2D, using ground or aerial robots. Fur-

thermore, we assume accurate localization and mapping so far. Removing this assumption and ac-

tively planning for efficient exploration and with good quality localization and mapping would be

an interesting extension.

Reproduction, code and data products

All code, data and models used in the experiments are available at https://git.io/fAX7k.

30

https://git.io/fAX7k


Chapter 4

Conclusion

Creating a map of an environment is an important ability in many robotic applications. Therefore,

in this thesis we explored a) A 3D odometry and mapping system producing metric scale maps and

pose estimates using a minimal sensor suite, and b) An autonomous ground robot for 2D mapping

of an unknown environment using learned map prediction.

The visual-inertial odometry system demonstrates superior robustness and camera tracking ac-

curacy compared with the original vision-only method. The system is able to produce 3D maps in

metric scale and can handle quick rotations, addressing the well-known limitations of monocular

odometry/SLAM systems

The autonomous exploration system successfully employs a state-of-the-art generative neural

network to predict unknown regions of a partially explored map, and uses the prediction to enhance

the exploration in an information-theoretic manner. Evaluation against traditional exploration meth-

ods in simulation using floor plans of real buildings demonstrates advantages in terms of exploration

efficiency, while still maintaining the explicability of the overall system.

The visual-inertial odometry system was implemented jointly by me and Ph.D. student Sicong

Tang from Simon Fraser University through pair programming. The work was closely supervised

by Professor Ping Tan along with helpful guidance from Professor Richard Vaughan.

The autonomous exploration system was implemented in collaboration with Ph.D. student Fei-

Peng Tian from Tianjin University, China while he was a visiting student at Simon Fraser University.

The original exploration pipeline development (simulation interfaces, real-time mapping, integra-

tion with hector exploration planner) and neural network design/implementation were performed by

me. Mr. Tian developed software modules for data collection, oversaw the dataset generation and

network training process along with implementation of baselines by modifying the existing pipeline.

This project was jointly supervised by Professor Richard Vaughan and Professor Ping Tan.

31



Bibliography

[1] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, U. Klingauf, and O. von Stryk, “Hector open
source modules for autonomous mapping and navigation with rescue robots,” in RoboCup
2013: Robot World Cup XVII, Berlin, Heidelberg, 2014, pp. 624–631.

[2] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” in IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 40, no. 3. IEEE, 2018, pp. 611–625.

[3] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular SLAM,” in
European Conference on Computer Vision. Springer, 2014, pp. 834–849.

[4] J. Engel, J. Stückler, and D. Cremers, “Large-scale direct SLAM with stereo cameras,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 1935–1942.

[5] J. Oh, V. Chockalingam, S. Singh, and H. Lee, “Control of Memory, Active Perception, and
Action in Minecraft,” in Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48. JMLR.org, 2016, pp. 2790–2799.

[6] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman, “Deep successor reinforcement
learning,” arXiv preprint arXiv:1606.02396, 2016.

[7] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu et al., “Learning to navigate in complex environments,” arXiv
preprint arXiv:1611.03673, 2016.

[8] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual–
inertial odometry using nonlinear optimization,” in The International Journal of Robotics Re-
search, vol. 34, no. 3. SAGE Publications Sage UK: London, England, 2015, pp. 314–334.

[9] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and accurate
monocular SLAM system,” in IEEE Transactions on Robotics, vol. 31, no. 5. IEEE Robotics
and Automation Society, 2015, pp. 1147–1163.

[10] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile monocular visual-inertial state
estimator,” in IEEE Transactions on Robotics, vol. 34, no. 4. IEEE, 2018, pp. 1004–1020.

[11] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular SLAM with map reuse,” in IEEE
Robotics and Automation Letters, vol. 2, no. 2. IEEE, 2017, pp. 796–803.

[12] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual odom-
etry,” in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014,
pp. 15–22.

32



[13] V. Usenko, J. Engel, J. Stückler, and D. Cremers, “Direct visual-inertial odometry with stereo
cameras,” in IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 1885–1892.

[14] A. Concha, G. Loianno, V. Kumar, and J. Civera, “Visual-inertial direct SLAM,” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE, May 2016, pp. 1331–
1338.

[15] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU Preintegration on Manifold
for Efficient Visual-Inertial Maximum-a-Posteriori Estimation,” in Proceedings of Robotics:
Science and Systems, 2015. [Online]. Available: http://doi.org/10.15607/RSS.2015.XI.006

[16] L. von Stumberg, V. Usenko, and D. Cremers, “Direct Sparse Visual-Inertial Odometry using
Dynamic Marginalization,” in International Conference on Robotics and Automation (ICRA).
IEEE, 2018.

[17] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J.
Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the
robust-perception age,” in IEEE Transactions on Robotics, vol. 32, no. 6. IEEE, 2016, pp.
1309–1332.

[18] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” in IEEE
and ACM International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2007,
pp. 225–234.

[19] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and mapping
in real-time,” in IEEE International Conference on Computer Vision (ICCV). IEEE, 2011,
pp. 2320–2327.

[20] C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-D cameras,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2013, pp. 2100–
2106.

[21] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S. Leutenegger, “Elasticfusion:
Real-time dense SLAM and light source estimation,” in The International Journal of Robotics
Research, vol. 35, no. 14. SAGE Publications Sage UK: London, England, 2016, pp. 1697–
1716.

[22] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman filter for vision-aided
inertial navigation,” in IEEE International conference on Robotics and automation. IEEE,
2007, pp. 3565–3572.

[23] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based visual-inertial odometry,” in
The International Journal of Robotics Research, vol. 32, no. 6. SAGE Publications Sage UK:
London, England, 2013, pp. 690–711.

[24] K. Wu, A. Ahmed, G. A. Georgiou, and S. I. Roumeliotis, “A Square Root Inverse Filter
for Efficient Vision-aided Inertial Navigation on Mobile Devices.” in Robotics: Science and
Systems. MIT Press Journals, 2015.

33

http://doi.org/10.15607/RSS.2015.XI.006


[25] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odometry using a
direct EKF-based approach,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2015, pp. 298–304.

[26] B. M. Bell and F. W. Cathey, “The iterated Kalman filter update as a Gauss-Newton method,”
in IEEE Transactions on Automatic Control, vol. 38, no. 2. IEEE, 1993, pp. 294–297.

[27] H. Strasdat, J. Montiel, and A. J. Davison, “Real-time monocular SLAM: Why filter?” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2010, pp. 2657–2664.

[28] K. Konolige, M. Agrawal, and J. Sola, “Large-scale visual odometry for rough terrain,” in
Robotics research. Springer, 2010, pp. 201–212.

[29] P. Gemeiner, P. Einramhof, and M. Vincze, “Simultaneous motion and structure estimation by
fusion of inertial and vision data,” in The International Journal of Robotics Research, vol. 26,
no. 6. Sage Publications Sage UK: London, England, 2007, pp. 591–605.

[30] W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry,
ser. Pure Appl. Math. Academic Press, 1986, vol. 120. [Online]. Available: https:
//cds.cern.ch/record/107707

[31] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “A first-estimates jacobian ekf for improv-
ing slam consistency,” in Experimental Robotics, O. Khatib, V. Kumar, and G. J. Pappas, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 373–382.

[32] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Sieg-
wart, “The EuRoC micro aerial vehicle datasets,” in The International Journal of Robotics
Research, vol. 35, no. 10. SAGE Publications Sage UK: London, England, 2016, pp. 1157–
1163.

[33] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-Squares Fitting of Two 3-D Point Sets,” in
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 5. IEEE,
1987, pp. 698–700.

[34] K. Otsu, A.-A. Agha-Mohammadi, and M. Paton, “Where to Look? Predictive Perception with
Applications to Planetary Exploration,” in IEEE Robotics and Automation Letters, vol. 3, no. 2.
IEEE, 2018, pp. 635–642.

[35] A. Ahrary, A. A. Nassiraei, and M. Ishikawa, “A study of an autonomous mobile robot for a
sewer inspection system,” in Artificial Life and Robotics, vol. 11, no. 1. Springer, 2007, pp.
23–27.

[36] D. Klimentjew, M. Arli, and J. Zhang, “3D scene reconstruction based on a moving 2D laser
range finder for service-robots,” in IEEE International Conference on Robotics and Biomimet-
ics (ROBIO). IEEE, 2009, pp. 1129–1134.

[37] T. Neumann, A. Ferrein, S. Kallweit, and I. Scholl, “Towards a mobile mapping robot
for underground mines,” in Proceedings of the PRASA, RobMech and AfLaI Int. Joint
Symposium, Cape Town, South Africa, 2014. [Online]. Available: www.prasa.org/proceedings/
2014/prasa2014-48.pdf

34

https://cds.cern.ch/record/107707
https://cds.cern.ch/record/107707
www.prasa.org/proceedings/2014/prasa2014-48.pdf
www.prasa.org/proceedings/2014/prasa2014-48.pdf


[38] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in IEEE International
Symposium on Computational Intelligence in Robotics and Automation. IEEE, 1997, pp.
146–151.

[39] A. Elfes, in Using occupancy grids for mobile robot perception and navigation, vol. 22, no. 6.
IEEE, June 1989, pp. 46–57.

[40] J. M. Pimentel, M. S. Alvim, M. F. Campos, and D. G. Macharet, “Information-driven
rapidly-exploring random tree for efficient environment exploration,” in J. Intell. Robotics
Syst., vol. 91, no. 2. Norwell, MA, USA: Kluwer Academic Publishers, Aug. 2018, pp.
313–331. [Online]. Available: https://doi.org/10.1007/s10846-017-0709-0

[41] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F. Durrant-Whyte,
“Information based adaptive robotic exploration,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), vol. 1. IEEE, 2002, pp. 540–545.

[42] H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration based on multiple rapidly-
exploring randomized trees,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, Sept 2017, pp. 1396–1402.

[43] M. G. Jadidi, J. V. Miro, and G. Dissanayake, “Mutual information-based exploration on con-
tinuous occupancy maps,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2015, pp. 6086–6092.

[44] S. Bai, J. Wang, F. Chen, and B. Englot, “Information-theoretic exploration with Bayesian op-
timization,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 1816–1822.

[45] P. Pfaff, C. Plagemann, and W. Burgard, “Gaussian mixture models for probabilistic localiza-
tion,” in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2008,
pp. 467–472.

[46] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile robots in dynamic
environments,” Journal of artificial intelligence research, vol. 11, pp. 391–427, 1999.
[Online]. Available: https://doi.org/10.1613/jair.616

[47] S. Thrun, “A probabilistic on-line mapping algorithm for teams of mobile robots,” in The
International Journal of Robotics Research, vol. 20, no. 5. SAGE Publications, 2001, pp.
335–363.

[48] D. P. Kingma and M. Welling, “Auto-encoding Variational Bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[49] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep con-
volutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[50] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based exploration using
Rao-Blackwellized particle filters.” in Robotics: Science and Systems (RSS), vol. 2,
2005, pp. 65–72. [Online]. Available: http://www.informatik.uni-freiburg.de/~stachnis/pdf/
burgard05snowbird.pdf

35

https://doi.org/10.1007/s10846-017-0709-0
https://doi.org/10.1613/jair.616
http://www.informatik.uni-freiburg.de/~stachnis/pdf/burgard05snowbird.pdf
http://www.informatik.uni-freiburg.de/~stachnis/pdf/burgard05snowbird.pdf


[51] D. P. Ström, I. Bogoslavskyi, and C. Stachniss, “Robust exploration and homing for au-
tonomous robots,” in Robotics and Autonomous Systems, vol. 90. North-Holland Publishing
Co., 2017, pp. 125–135.

[52] D. P. Ström, F. Nenci, and C. Stachniss, “Predictive exploration considering previously mapped
environments,” in IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 2761–2766.

[53] A. Elfes, “Robot navigation: Integrating perception, environmental constraints and task execu-
tion within a probabilistic framework,” in Reasoning with Uncertainty in Robotics. Springer
Berlin Heidelberg, 1996, pp. 91–130.

[54] P. Whaite and F. P. Ferrie, “Autonomous exploration: Driven by uncertainty,” in IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 19, no. 3. IEEE, 1997, pp. 193–205.

[55] J. Vallvé and J. Andrade-Cetto, “Potential information fields for mobile robot exploration,” in
Robotics and Autonomous Systems, vol. 69. Elsevier, 2015, pp. 68–79.

[56] S. Bai, F. Chen, and B. Englot, “Toward autonomous mapping and exploration for mobile
robots through deep supervised learning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 2379–2384.

[57] T. Lei and L. Ming, “A robot exploration strategy based on Q-learning network,” in IEEE
International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2016, pp.
57–62.

[58] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “Density-based spatial clustering of applications
with noise,” in International Conference on Knowledge Discovery and Data Mining, vol. 240.
AAAI Press, 1996.

[59] H. H. González-Baños and J.-C. Latombe, “Navigation strategies for exploring indoor
environments,” in The International Journal of Robotics Research, vol. 21, no. 10-11.
Thousand Oaks, CA, USA: Sage Publications, Inc., 2002, pp. 829–848. [Online]. Available:
https://doi.org/10.1177/0278364902021010834

[60] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally consistent image completion,”
in ACM Transactions on Graphics, vol. 36, no. 4. ACM, 2017, p. 107.

[61] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative Image Inpainting with
Contextual Attention,” arXiv preprint arXiv:1801.07892, 2018.

[62] R. A. Yeh, C. Chen, T.-Y. Lim, A. G. Schwing, M. Hasegawa-Johnson, and M. N. Do, “Seman-
tic Image Inpainting with Deep Generative Models.” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), vol. 2, no. 3. IEEE, 2017, p. 4.

[63] A. Pronobis and R. P. Rao, “Learning deep generative spatial models for mobile robots,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017,
pp. 755–762.

[64] A. Pronobis, F. Riccio, and R. P. Rao, “Deep spatial affordance hierarchy: Spatial knowledge
representation for planning in large-scale environments,” in International Conference on Au-
tomated Planning and Scheduling Workshop. AAAI Press, 2017.

36

https://doi.org/10.1177/0278364902021010834


[65] H. Poon and P. Domingos, “Sum-product networks: A new deep architecture,” in IEEE Inter-
national Conference on Computer Vision Workshops (ICCVW). IEEE, 2011, pp. 689–690.

[66] A. Aydemir, P. Jensfelt, and J. Folkesson, “What can we learn from 38,000 rooms? Reasoning
about unexplored space in indoor environments,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 4675–4682.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016.

[68] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional networks,” in IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2010.

[69] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recog-
nition Challenge,” in International Journal of Computer Vision, vol. 115, no. 3. Springer,
2015, pp. 211–252.

[70] C. E. Shannon, “A mathematical theory of communication,” in The Bell System Technical
Journal, vol. 27, no. 3. Nokia Bell Labs, July 1948, pp. 379–423.

[71] S. Wirth and J. Pellenz, “Exploration transform: A stable exploring algorithm for robots in res-
cue environments,” in IEEE International Workshop on Safety, Security and Rescue Robotics.
IEEE, 2007, pp. 1–5.

[72] M. Juliá, A. Gil, and O. Reinoso, “A comparison of path planning strategies for autonomous
exploration and mapping of unknown environments,” in Autonomous Robots, vol. 33, no. 4.
Springer, 2012, pp. 427–444.

[73] R. Vaughan, “Massively multi-robot simulation in stage,” in Swarm intelligence, vol. 2, no.
2-4. Springer, 2008, pp. 189–208.

[74] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS:
an open-source Robot Operating System,” in ICRA workshop on open source software, 2009.
[Online]. Available: http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf

[75] H. Carrillo, I. Reid, and J. A. Castellanos, “On the comparison of uncertainty criteria for active
SLAM,” in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2012,
pp. 2080–2087.

[76] B. L. Welch, “The generalization of student’s’ problem when several different population vari-
ances are involved,” in Biometrika, vol. 34, no. 1/2. JSTOR, 1947, pp. 28–35.

37

http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Direct Visual-Inertial Odometry
	Related work
	State representation
	IMU Preintegration
	IMU Initialization
	Gyroscope Bias
	Approximate scale and gravity direction estimation
	Scale and gravity vector refinement, and accelerometer bias estimation
	Keyframe Velocity Estimate

	Model Formulation
	Tracking
	Local Bundle Adjustment with IMU constraint

	Experiment
	Methodology
	Results

	Conclusion and Future work

	Learned Map Prediction for Enhanced Mobile Robot Exploration
	Related Work
	Problem Statement
	System Overview
	Map Completion Network
	Dataset
	Network Structure
	Network Loss Functions

	Map completion augmented exploration
	Information Gain Computation
	Augmenting Exploration Planners

	Experiments
	Experimental Setup
	Map Completion Network Evaluation
	Analysis of Exploration Efficiency

	Conclusion and Future Work

	Conclusion
	Bibliography

