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Abstract

2D and 3D scene reconstruction are important topics in the field of robotics and computer vision.
Mobile robots require a model of the environment to perform navigational tasks, and model acqui-
sition is a useful application in itself . This thesis presents a) A 3D odometry and mapping system
producing metric scale map and pose estimates using a minimal sensor-suite b) An autonomous

ground robot for 2D mapping of an unknown environment using learned map prediction.

The first application proposes a direct visual-inertial odometry method working with a monocular
camera. This system builds upon the state-of-the-art in direct vision-only odometry. It demonstrates
superior system robustness and camera tracking accuracy compared to the original method. Fur-
thermore, the system is able to produce a 3D map in metric scale, addressing the well known scale

ambiguity inherent in monocular SLAM systems.

The second application demonstrates an autonomous ground robot capable of exploring unknown
indoor environments for reconstructing their 2D maps. This method combines the strengths of tra-
ditional information-theoretic approaches towards solving this problem and more recent deep learn-
ing techniques. Specifically, it employs a state-of-the-art generative neural network to predict un-
known regions of a partially explored map, and uses the prediction to enhance the exploration in
an information-theoretic manner. The system is evaluated against traditional methods in simulation
using floor plans of real buildings and demonstrates advantage in terms of exploration efficiency.
We retain an advantage over end-to-end learned exploration methods in that the robot’s behavior is

easily explicable in terms of the predicted map.

Keywords: mobile robotics; computer vision; visual-inertial odometry; robotic exploration; ma-

chine learning
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Chapter 1

Introduction

Recent advancements in mobile robot technologies have brought robots into our day-to-day lives.
We see them vacuuming our homes, guiding us in museums, managing warehouse inventories, do-
ing aerial photography and more. One of the most crucial capabilities of a mobile robot is being
able to perceive and reason about the environment it inhabits via its sensory inputs. A fundamental
problem in robotic perception is building a world model, henceforth known as a ‘map’, for plan-
ning/executing robot trajectories, manipulating objects in the environment, and so forth.

Building maps in 3D is a well-studied problem in robotics and computer vision. Camera sen-
sors are suitable for this application as they are light, inexpensive, have small form factors and yet
provide a sizeable amount of information. A monocular camera is an especially appealing sensing
modality for robots with limited payload capacity and computational resources. Direct Methods
for Visual Odometry (VO) [2, 3, 4] allow for the recovery of 3D scene geometry from a single
camera directly using image intensities. However, the absolute scale cannot be recovered unless we
make strict assumptions about the environment. Another limitation of monocular 3D reconstruction
techniques is their inability to handle quick rotations.

One way to address this problem is by augmenting monocular camera with an Inertial Measure-
ment Unit (IMU). The key challenge in incorporating IMU information is the inherently noisy and
biased readings from these sensors. This thesis explores methods that address these issues, providing
a framework for integrating IMU information with visual information from a camera.

The second part of this thesis introduces a novel approach for autonomous exploration using
a ground robot for 2D mapping of an unknown environment. Autonomous exploration has been
widely studied using traditional geometric heuristics and information-theoretic reasoning. Recent
advances in deep learning have shown its potential applications to this problem as well [5, 6, 7].

Planning for autonomous exploration entails reasoning about parts of the environment that are
yet unexplored. Traditional information-theoretic methods and geometric heuristics-based methods
do not have any prior (or have a flat/non-informative prior) on the unknown regions. End-to-end
learnt robot behavior using deep learning does not explicitly model this reasoning about unknown
regions for planning exploration despite the enormous potential of generative deep learning net-

works to infer large amounts of unexplored regions. This thesis aims to integrate these two methods,



exploiting the well-established and structured approach of traditional methods and the predictive
power of deep learning-based methods for superior exploration performance. This is the first work

to do so and is under review at the 2019 International Conference on Robotics and Automation
(ICRA).



Chapter 2

Direct Visual-Inertial Odometry

Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM) are prominent re-
search topics in computer vision. VO refers to the process of incremental sensor motion estimation
and map building using a temporally local set of measurements. SLAM adds map reuse and loop
closure capability to prevent accumulation of error in the trajectory when the sensor is moving
in the same environment. They are indispensable components of many important applications like
robotics, autonomous vehicles, virtual/augmented reality, and 3D modeling.

Most VO/SLAM algorithms [8, 9] are based on feature detection and matching. In compari-
son, direct methods [2, 3, 4] do not rely on hand-crafted features. By minimizing a photometric
error defined directly on the raw pixel intensities, direct methods utilize the majority of pixels and
demonstrate advantages in scenes that are sparsely textured. Furthermore, direct methods recover a
dense/semi-dense map, which provides rich information about the environment for object detection
and manipulation.

On the other hand, it has been demonstrated that vision-only VO/SLAM is limited especially
with quick rotations, textureless environments, or sudden illumination changes. Sensor fusion with
an on-board Inertial Measurement Unit (IMU) has been proven to be effective in these scenarios [10,
8, 11]. An IMU module provides measurements of angular velocity (from the gyroscope sensor) and
linear acceleration (from the accelerometer), which despite being noisy and biased can be critical
to overcome short term failures of visual tracking. This integration has enormous practical value as
IMUs and cameras are part of most robot platforms (e.g. drones), smart phones and autonomous
vehicles.

Sensor fusion is particularly useful for direct methods as they require a good initial estimate of
the camera pose of the incoming frame. This is because they do not have explicit data-association
between consecutive frames, but aim to minimize a highly non-convex photometric error between
two frames to solve for camera pose and image point correspondences simultaneously. The widely
adopted constant velocity model [2, 3, 12] may not provide reliable initialization during aggressive
motions. Hence, the kinematic information provided by an IMU can significantly improve perfor-

mance.
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Figure 2.1: The pipeline of the DSVIO.

Another advantage of integrating the inertial information is that we can recover the absolute
scale of the scene and motion of the sensor suite using a single camera in addition to an IMU.
This is particularly useful for robotics applications where the map is required for path planning or
manipulating objects in the environment.

Despite its usefulness, there are only a few works that integrate direct VO/SLAM algorithms
with IMU information. Usenko et al. [13] implement visual-inertial odometry using a stereo camera,
while only a monocular camera is available in many applications. Concha et al. [14] present a
direct monocular visual-inertial SLAM system. Their system does not account for many photometric
properties such as exposure time, lens vignetting, and non-linear response function of the camera.
Our system is built upon state-of-the-art direct method, the Direct Sparse Odometry (DSO) [2]
algorithm, which considers these photometric calibrations and has an online estimation of exposure
time. These features are important for direct methods as the tracking is based on direct photometric
measurements from the camera. [14] is also not evaluated on benchmark datasets for comparison.

This work integrates DSO [2], with inertial data using the IMU preintegration technique [15].
First, we initialize the visual-inertial system by aligning the tracking results from vision and IMU
respectively to obtain IMU biases, velocity and gravity direction. During the optimization-based
tracking, we formulate an objective function that combines the conventional photometric error in
DSO and a kinematic error, which enforces constraints from the IMU between nearby frames.

Figure 2.1 shows the pipeline of our system. After IMU initialization, our system integrates all
the IMU measurements between a newly arrived frame and the previous frame to get the predic-
tion of the sensor state. The prediction is used as an initial value for nonlinear optimization that

minimizes the photometric and kinematic error. When a new keyframe is created, the Bundle Ad-



justment (BA) thread performs visual-inertial optimization over a sliding window of keyframes to
jointly optimize the vision and IMU errors.

Our experiment results demonstrate the robustness and accuracy of our system when compared
with the original vision-only odometry. To the best of our knowledge, our work is the first direct
monocular visual-inertial odometry system with online photometric calibration and extensive eval-
uations on publicly available benchmark sequences.

We note that following this work, VI-DSO [16] has been published with a similar system ar-
chitecture as ours. There are notable differences: VI-DSO does not have a strict IMU initialization
step but rather uses a rough initial estimate of scale, gravity direction and IMU biases which are
jointly optimized during the run-time with other state variables. Another difference is their dynamic
marginalization scheme which maintains several marginalization priors at the same time and resets
the prior to the one computed using only the recent constraints when a state moves too far from the
linearization point in the marginalization prior. Due to these differences, the work is able to estimate

trajectories with higher accuracy than our system.

2.1 Related work

A comprehensive review of visual SLAM algorithms is beyond the scope of this thesis. We refer to
a recent survey [17] for the interested audience. Here we briefly discuss some of the most relevant

works.

Feature-based vs Direct methods Feature-based methods track camera pose by minimizing the
reprojection error of point correspondences between manually designed features. Reprojection error
is computed by projecting a 3D point to the current frame and taking the Euclidean distance between
the projection and 2D point feature corresponding to the 3D point in the image. This has been a very
active research topic with some notable works like PTAM [18] and ORB-SLAM [9]. Because of the
sparse map representation, these methods are fast, and the explicit feature correspondence enhances
robustness to outliers. However, these methods discard most of the image details, which makes
their maps sparse and less visually appealing. Also, for textureless regions (like a uniformly colored
wall), there might not be enough feature points to maintain good tracking.

In contrast, direct methods like LSD-SLAM [3], DTAM [19] track camera pose by minimizing
the photometric error over a higher number of image pixels. This idea has also been applied to
depth cameras in DVO [20] and Elasticfusion [21] with impressive results. However, the objective
function in direct methods is highly non-convex and the convergence is often poor especially for
aggressive motion. Furthermore, since the data association is solved implicitly, direct methods are
more vulnerable to false associations caused by changing illumination, and photometric effects such
as lens vignetting and exposure time. Our work is built upon the state-of-the-art direct method that

take these issues into account and we increase its robustness by fusing it with IMU sensing.



Filtering-based vs optimization-based method Earlier work on visual/visual-inertial state es-
timation has been dominated by filtering-based methods [22, 23, 24] where only the latest state
of the system is solved using the Extended Kalman Filter or its variants. MSCKF [22, 23] is a
popular EKF-based VIO system. More recent work that uses filtering approach are [24] and [25].
Optimization-based methods [18, 8, 9] formulate the SLAM problem as an energy minimization,
allowing re-linearization of the objective function after each step of the optimization, which avoids
the error from committing to a sub-optimal linearization point. The computation cost of the opti-
mization can be bounded by using a sliding window of frames whereby the states of the older frames
are marginalized out while still retaining information from them.

While the EKF has been shown to be equivalent to the commonly used Gauss-Newton algo-
rithm for non-linear optimization [26], the rigorous analysis by Strasdat et. al. [27] shows that
optimization-based methods give “the most accuracy per unit of computing time". Our method be-
longs to the optimization-based approach with both photometric and kinematic terms derived from

the visual and inertial sensor respectively.

Tightly-coupled vs loosely-coupled method Because of the complementary nature and ubiquity
of cameras and IMU sensors, much work [15, 10, 14] fuses IMU and vision data. The loosely-
coupled methods [28, 29] solve the vision and inertial modules independently and fuse their results
using a Kalman Filter. In comparison, tightly coupled methods like OKVIS [8], VINS [10], VI-
ORB [11] jointly estimate the sensors’ states, and demonstrate better robustness and accuracy. Our
method belongs to the tightly coupled category which integrate the visual and IMU constraints in a

single energy function for joint optimization.

2.2 State representation

We parameterize the state of each camera frame i by a vector x = {R;, p;, v;, a;, b;, b, b7 }, where
R;, p; and v; are the orientation, translation, and velocity of the IMU sensor with respect to the world
frame (or inertial frame, since here we ignore the self-rotation of Earth) at timestamp i. a;, b; are
photometric parameters which correct the affine illumination changes between frames. b¢ and b are
the slowly varying accelerometer and gyroscope biases. The relative pose between camera and IMU
is known a priori. For a landmark [ in the map , we parameterize it by its inverse depth and pixel
coordinate with respect to its unique host frame ¢ (the frame where the landmark is first detected) ,
which is denoted as dé . Assuming the camera intrinsics are known, we can easily compute the 3D

position of each landmark from its inverse depth and pixel coordinates.

2.3 IMU Preintegration

The IMU sensor works at much higher frequency than a typical camera, producing multiple mea-

surements between two camera frames. For all IMU measurements at At intervals between two



consecutive frames at times ¢ and j, we integrate all the IMU data to get the rough sensor states:

j-1
Rj = R; [[ Exp((wr) — bf) At
k=i
j—1
vj =v; + gAtij + Z ARy (ay — b?)At 2.1
k=i

j—1 j—1
1 1 . .
pj=pi+ Y vt + §gAtij2 +5 > Ry(ay, — b)i - ZAt - 12
k=1 k=t
where aj;, and wy, are accelerometer and gyroscope measurements at timestamp k respectively; b,
b, are their respective biases. g is the gravity vector obtained during initialization (in Section 2.4).
Applying first order approximation for the biases and rearranging Equation (2.1) such that the

IMU measurements are separated from the pose and velocity of the sensor:

Rj = RiARijExp(JgRbg)
V; = U; + gAtZ-j + RZ' (AUU + ‘]vag + ngbg) (2‘2)

1
pj = pi+ vildti; + SgAL + R, (Apij + b0 + J&,07)

Jg) and Jg ) are Jacobians of the corresponding preintegrated measurement (.) = {AR, Av, Ap} [15]
with respect to the biases. AR;;, Av;; and Ap;; are given by

j—1
ARij = [[ Exp((wr) — b)) At
k=i
j—1
Avij == Z Ale(ak - b?)At (23)
k=i
j_l 1
Apij = Z [Avikﬁt + iARik(ak — bi)}
k=1

Note that the preintegration measurements except AR are not the actual physical increment (i.e
Avjj # vj — vi, Apij # pj — pi)-

Equation (2.1) and Equation (2.2) show that computing the physical increment in the velocity
v; —v;, Totation I?; RZ-T and position p; — p; (and hence the constraints provided by the IMU between
time ¢ and j) depends on R; and v;. During the optimization, the estimated states are updated often
but preintegration measurements remain the same since they only depend on the integrated IMU
data. This avoids the need for reintegrating the IMU measurements after the state update in each

iteration of optimization to obtain new constraints on rotation, translation and velocity.



The IMU preintegration measurements and their Jacobians are obtained using the GTSAM li-

brary! which implements the preintegrated technique proposed in [15].

2.4 IMU Initialization

Equations 2.1- 2.3 assume that the translations and velocities are in metric scale. Also, the gravity
vector and the IMU biases should be known. To initialize these parameters we run monocular visual
odometry for a short time and use the state estimates as ground truth with arbitrary scale (here we
assume that the state estimation in a short period of time is accurate enough and is drift-free). Then
we align these estimated up-to-scale states to metric-scale kinematic data from the IMU to obtain
the scale along with the gravity vector and the IMU biases.

We follow the IMU initialization process proposed in [11]. The initialization is done in four

steps as described below:

2.4.1 Gyroscope Bias

The gyroscope bias is estimated by minimizing relative rotations between two keyframes estimated
by DSO and by integration of angular velocity measurements from the gyroscope. We assume that
the biases do not change during the period of IMU initialization. This can be formulated as an

optimization with the error function:

OAR;; r .

ran,; = Log ((ARij(bf)Exp(abgdbg)) R Rj> (2.4)
where Log maps R € SO(3) rotation matrix group to minimal representation in so(3) and Exp
is the inverse mapping from so(3) to SO(3) [30]. For simplicity, we define so(3) as the 3D vector
group opposed to the actual 3x3 skew symmetric matrix representation. I; and I?; are rotations of
keyframe at time i and j computed by DSO. The preintegrated measurement at current bias estimate
AR;; (bf ) (Equation (2.3)) and its Jacobian with respect to the bias ngl?j are defined in [15].

We solve for the gyroscope bias by minimizing Equation (2.4) using the Gauss-Newton algo-

rithm.

2.4.2 Approximate scale and gravity direction estimation

Unlike the rotation, the positions obtained from vision-only DSO have an arbitrary scale. Moreover,
to obtain relative positions and velocities using IMU measurements, the direction of gravity with

respect to the current frame of reference (which in general is not the inertial frame) is required. The

"https://research.cc.gatech.edu/borg/gtsam/



relation between the position estimates of the camera by DSO py ¢ and the positions of the body

(IMU) frame pyy g in the arbitrary world frame W is:

pwB = spwc + RwePea (2.5)

where Ryy ¢ is the camera orientation obtained from DSO and pcp is the known position of the
IMU with respect to the camera.

From Equation (2.5) and Equation (2.1), assuming zero accelerometer bias, we obtain:

Spwlc = splyo + VippAtiit1 + gw At i1’

i i i+1 (2.6)
+ Ry pApiit1 + (Riye — Ryjo)pes

where gyy is the gravity vector in the world frame.
By using the relation in Equation (2.6) for three consecutive keyframes 4, 7 + 1 and ¢ + 2, we
can avoid solving for velocity of the keyframes and obtain s and gy given at-least 4 keyframes. We

refer our reader to [11] for the exact implementation of this system of linear equations.

2.4.3 Scale and gravity vector refinement, and accelerometer bias estimation

By enforcing the magnitude of the gravity vector gy to be G (standard value 9.8m.s~?2), the scale
and gravity direction can be refined. At this phase, the effect of accelerometer bias is also con-
sidered. Using first order approximation and assuming bias to be close to zero, the preintegrated

measurement is obtained as:

Api,i+1(b?) = Apii+1 + JAp,, b* (2.7

where J aApij is the Jacobian of the preintegrated measurement with respect to the accelerometer
bias.

Replacing the preintegrated measurement Ap;; in Equation (2.6) with the bias corrected one in
Equation (2.7) and assuming only a small perturbation in the gravity direction gy, we can obtain
refined scale/gravity direction and solve for accelerometer bias. We again refer our reader to [11]

for more details.

2.4.4 Keyframe Velocity Estimate

Substituting the computed accelerometer bias, scale and gravity direction in Equation (2.6), the
velocities of the keyframes vi;, ; can be obtained.

After initialization, we update the scale of all camera poses and map points. The world frame W
is transformed such that the gravity direction lies along the vector [0,0, —1]7 (i.e. the world frame

is transformed to inertial frame).



2.5 Model Formulation

2.5.1 Tracking

When a new frame is received, the tracking module is responsible for tracking its pose, velocity,
affine photometric parameters and IMU biases. Since we have already aligned the IMU states and
camera states in the IMU initialization, we use the increments obtained from Equation (2.2) to
propagate the sensor state from time i to ¢ + 1.

The difference between our method and earlier work on a direct monocular visual-inertial
SLAM system [14] is that we optimize both the state of the current frame and the previous frame for
tracking a new frame. This is required as the IMU energy depends on the previous frame’s state. [14]
optimizes only the current sensor state on account of computation cost, but we argue that for better
use of IMU information optimizing both states is necessary.

To eliminate the gauge freedom in the two pose optimization, we introduce a prior energy term
that penalizes deviation from the previous sensor state [11, 10]. The information matrix of the prior
error is obtained by marginalizing the state of previous frame. For consistency of error terms, we
use the "First Estimate Jacobians" [31, 8] by fixing the linearization point of the state of previous
frame.

Since we do not want the tracking thread to affect the running of the Local Bundle Adjustment
module Section 2.5.2, inspired by [11], the system uses two methods to perform tracking according
to the state of map update.

When the map has just been updated, then for the next incoming frame, we will only optimize
the state of the current frame. Given the set of pixels { P} on last keyframe F}, with inverse depth

Dy = {dk, d%, cee di;}, we have the following objective function:
E(Xi|Dk) = EPhotometric(Xi|Dk) + EKmematic(Xi) (2.8)

Here, Eppotometric(Xi| D) is the photometric error of the pixel set { P} with respect to the
current frame. For more detail, we refer our readers to [2]. The kinematic error term Exinematic(X;)

is defined as:

2
T T T
EKinematic(Xi) = HTAR yTAv T Ap ‘ +
E75777,71,
, . 2.9)
g bg a a
62 =83 gy + o2 =5
Shgd Shad

where the residuals . are defined as

10
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Figure 2.2: Illustration of factor graph of the tracking module. (a) When the map has not been up-
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FAR = Log((ARijExp(JZRbg)TRiTRj))

TAy = RZ("UJ — U — gwAtZ]) - (AU’L] + ngb? + ngb?)
1 , (2.10)
rap = Ri(pj — pi — vilAty; — ) Julrti;”)

— (Apij + Jipbg + Jgpb?)

The information matrices iy, Xipgd, 2bad are obtained by the propagation of covariances of the
IMU measurements [15].
When there is no recent map update, we jointly optimize the incoming frame F; and previous

frame F;_1, similar to the one pose optimization above. We define the objective function as:

E(Xia Xj-1 ‘Dk) :EPhotometric(Xi |Dk)

(2.11)
+ EKinematic(Xia Xifl) + Eprior (Xifl)

The definitions of the photometric term Eppotometric and the Kinematic term E'cinematic are the
same as the previous case; the only difference is that we optimize both x; and x;_7. The prior term,
Eyior, 1s the difference of the current estimated state of the frame F;_; with its optimized state
during previous tracking. The information matrix of the prior term is computed by marginalizing
the frame F;_o.

The factor graph of the tracking module in both of the cases are illustrated in Figure 2.2.
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Figure 2.3: The factor graph of Local Bundle Adjustment

Marginalization

Let x,, denote the states to be marginalized and x, the remaining states. The joint distribution
P(xy,Xm) is marginalized to obtain P(X,|Xm,) which can be used as a proxy for P(x,). Then we
can eliminate xy, in later optimizations while still keeping the information from it in the form of
P(xy|xm). The distribution of our states is a Multivariate Gaussian expressed by the mean (the cur-
rent state estimate) and covariance matrices (inverse of Fisher information matrix/Hessian matrix).

Marginalization is performed using Schur Complement and is performed in a similar way to [2,
81.

2.5.2 Local Bundle Adjustment with IMU constraint

When inserting a new keyframe, all the keyframe states in the local window are optimized simul-
taneously by minimizing the photometric, kinematic and prior energy term (Equation (2.11)). Like
the Local BA in work [11], we perform BA with 17 states (rotation, translation, velocity, biases and
affine photometric parameters) after a new key frame has been created. Figure 2.3 shows our factor
graph in the local BA thread. Since the number of states in the local window should be limited
to bound the complexity of Bundle Adjustment, marginalization is used to eliminate the old states
and save the information from those states in the form of conditional distribution. All the remain-
ing states which have connection with the eliminated states will be constrained by this conditional
distribution. We call this constraint prior factor.

The keyframe is chosen for marginalization based on the visibility of map points and a distance
score with other keyframes in the window (refer to [2] for additional details). Hence the marginal-

ized keyframe is not always the oldest one and the temporal difference between two consecutive
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Figure 2.4: Mean error with minimum and maximum error bars

keyframes in the local window might be very large. However, a large temporal difference between
consecutive keyframes weakens the IMU constraint because of accumulated noise in the time pe-
riod. Hence, we only add the IMU constraint for the pair of consecutive keyframes whose time
difference is no more than 0.5 seconds, and update the validity of the IMU factors in the local win-
dow after each new keyframe. The constraint from IMU preintegrated measurement will also be

used for the prior factor computation when the corresponding keyframe is marginalized.

2.6 Experiment

We evaluate our system on the EuRoC MAV dataset [32]. It contains 11 sequences with stereo
and inertial data recorded in 3 indoor environments: Machine Hall (MH), Vicon Room 1 (V1) and
Vicon Room 2 (V2). The evaluation metric is the Root Mean Squared Error (RMSE) of trajectory.
The scale of trajectory of the original DSO algorithm was aligned with ground truth using a 7
DOF Similarity Transform (Sim(3)) alignment using the technique proposed in [33]. The trajectory
computed by our system was aligned with ground truth using a Euclidean alignment, i.e. rotation
and translation only, without the scale alignment. The parameter settings of the visual odometry

module in our system are the same as DSO.
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2.6.1 Methodology

We run our visual-inertial odometry system on each sequence 10 times. In our experiment we only
use the sequences captured by the left camera, giving a total of 110 trials. In order to maintain
invariance to the CPU load and machine specifications, we do not enforce real-time constraints
on our system or the original DSO. We use the experimental results of the DSO that were made
available by the authors as supplementary material. For the evaluation of our system, we exclude
the beginning and end parts of each sequence (by the same amount as in DSO) on account of shaky

motion that is detrimental to the visual tracking.

2.6.2 Results

The mean RMSE trajectory errors for different environments can be seen in Figure 2.4 along with
error bars depicting the minimum and maximum errors among the 10 runs for each sequence. Ad-
ditionally, Figure 2.5 shows the error of all 110 trials in the form of a heat map.

Our system is more robust in the difficult sequences V1_03 and MH_04 where the original
implementation of DSO consistently failed. The time vs error plot in Figure 2.6 for the sequence
V1_03 shows that during sudden fast motion, our system is able to maintain tracking while the
original DSO implementation suffered significant drift. A sample image frame around the time
where DSO trajectory drifted is given in Figure 2.7. The image shows considerable motion blur due
to a sudden movement which makes the direct image alignment to solve relative camera motion

unreliable. Also, the motion prediction based on constant velocity assumption will not be a good
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initial seed for optimization due to which it will fail to converge to a good solution. Such motions, to
a certain degree, can be handled using inertial sensing as it gives better initialization and additional
constraints for the optimization.

Figure 2.8 and Figure 2.9 show the trajectory estimates and 3D reconstructions of the sequence
V1_03 by DSO and DSVIO respectively. Because the camera motion is very aggressive at certain
instances, the scale of the DSO trajectory is not consistent throughout the sequence while DSVIO

can usually handle these situation.

2.7 Conclusion and Future work

To summarize, we combine sparse direct visual odometry with IMU preintegration to create a reli-
able VIO system. By automatically aligning the IMU factor with vision structure, our system can
recover and preserve the metric scale of the scene very well. The kinematic information from IMU
we add for prediction and state optimization helps the system attain robustness to aggressive motion.

The addition of loop closure constraints can help maintain consistent pose estimates over longer
periods of time, which can be considered for future work. Also, since the IMU initialization result
highly depends on the accuracy of the trajectory from vision-only DSO, a more robust visual initial-
ization framework is still required. Another possibility is to have an initialization-free system which

optimizes the scale and gravity vector as part of its state variable as done by [16].
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Figure 2.8: Reconstructed map by DSO for
the sequence EuRoC MAV V1_03. Note the
change in scale of the map
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Figure 2.9: Reconstructed map by DSVIO
for the sequence EuRoC MAV V1_03. The
scale of the map is consistent throughout the
trajectory



Chapter 3

Learned Map Prediction for Enhanced
Mobile Robot Exploration

Modeling a previously-unknown environment is a canonical task in mobile robotics. The task of
planning and executing robot trajectories to create a world model (i.e. ‘map’), is known as ‘explo-
ration’. Autonomous exploration is a component of many real-world robotic applications, including
search and rescue [1], planetary exploration [34], visual inspection [35], 2D/3D reconstruction [36]
and mining [37]. The completeness and efficiency of exploration is important to facilitate these ap-
plications. Here we describe a novel exploration method that exploits learned priors over maps to
explore more efficiently than current methods.

Exploration is closely related to some well-known NP-complete problems, such as the art gallery
problem or the traveling salesman problem, with the important difference that the polygon to be cov-
ered or graph to be traversed is discovered dynamically and incrementally during run time. Previous
methods for autonomous exploration can be broadly classified into two categories: frontier-based
methods and information-theoretic methods. The frontier approach maximizes map coverage by
moving to new frontiers - regions on the boundary between free space and unexplored space [38].
Path cost and expected information gain (i.e. utility) are commonly used to determine the next fron-
tier to visit. The information-theoretic methods formulate the problem as map entropy minimiza-
tion, i.e., information gain with probabilistic map representation [39]. Hence, a good information
gain prediction plays a key role in both approaches.

Estimating information gain amounts to predicting sensor measurements in unseen regions of
the map. The general approach is to assume that the robot is faced with a map that is either some-
what typical for its application domain, or somewhat regular in itself, or both, so that partial views
of the map can afford useful predictions of the unseen parts. Methods for achieving this vary in
their advantages and limitations in map prediction and hence information gain estimation. While
this problem is not new, there has been recent interest and new ideas. Pimentel et al. [40] pro-
posed an elegantly simple heuristic whereby wall segments at frontiers are assumed to extend into
the unseen area when computing expected information gain. Cost-utility based exploration [41, 42]

simply estimates information gain by counting unknown cells within a predefined radius of a fron-
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Figure 3.1: Deep learning based map prediction for autonomous exploration. (a) Current in-
complete map. (b) Predicted map using the network trained over many previous maps. (c) Cost
transform for explored cells. Compared to Hector exploration [1], our method chose a more reward-
ing direction to explore due to a better estimate of information gain.

tier point. While these methods may work locally on simple floor-plans, they are unlikely to perform
well on more complicated floor-plans. Most recent information-theoretic methods [43, 44] predict
the information gain based on Gaussian Mixture Models [45] or Gaussian processes with Bayesian
inference, by one-step sensor look-ahead measurements using sensor likelihood prediction mod-
els [46, 47], which tacitly assume the unknown areas are always free. However, this assumption
does not hold in general, thus the final information gain estimation is often inaccurate.

We propose a data-driven approach that does not rely on explicit assumptions about the envi-
ronment, but instead learns regularities from examples. Specifically, we employ Variational Autoen-
coders (VAE) [48] to predict unknown map regions beyond frontiers. In our chosen indoor setting
this allows us to learn generalizations over many building floor plans to make informed decisions for
faster exploration of novel floor plans. As illustrated in Figure 3.1, using our VAE-based map predic-
tion, we estimate the potential areas that can be mapped from each frontier, which we demonstrate
can be more accurate and efficient than a single or multi-step lookahead in the sensor measurements.

Our system addresses the exploration problem in two steps: 1) predicting unknown regions to
identify navigation goals that maximize map coverage; 2) navigating to those goal positions using
well-established techniques. We employ deep learning to tackle the former in isolation, given the
recent success of deep generative neural network models [49, 48]. Navigation is a well-studied
problem in robotics where the traditional methods still outperform deep learning based methods [5,

6, 7]. By separating the problem into these two steps, we are able to utilize the strengths of both
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deep learning and traditional methods while also maintaining the comprehensibility of the overall

system pipeline.

3.1 Related Work

Frontier-based exploration methods are easy to understand and implement and work fairly well in
practice. These methods maintain a list of boundaries between explored and unexplored regions in
the partial map, known as ‘frontiers’. The robot iterates over choosing the currently most promising
frontier, planning and executing a path that drives through it while extending the map to eliminate
the frontier, until no frontiers remain. Yamauchi et al. [38] proposed a well-known Nearest-Frontier
Exploration method which always chooses the closest frontier as the next goal. Bourgault et al. [41]
proposed to use a cost-utility function based on expected information gain and path cost. There
are several extensions to this idea in [50, 42, 51, 52]. For efficient information gain computation,
Umari et al. [42] used an RRT tree for frontier detection and counted unknown cells surrounding a
frontier point within a predefined radius to estimate information gain. Strom et al. [51] presented a
method to match the area beyond the frontiers with the most similar map in a database, and com-
pute the expected information gain based on the retrieved match. Pimentel et al. [40] proposed a
simple heuristic map prediction by linearly extending the walls or turning the walls by 90 degrees
to compute expected information gain. While such simple local heuristic map completion and in-
formation gain computations can work well on simple floor-plans, we could hope to do better using
more sophisticated priors over maps.

The information-theoretic methods use information theory to minimize uncertainty of the map.
Several authors like [53, 54], suggest the use of information gain (also called mutual information in
some contexts) as a measure of the reduction of map uncertainty. In recent work, Vallvé et al. [55]
proposed to compute map and path information gain densely for the entire configuration space and
apply a grid-step gradient on the potential fields to directly optimize a path. Jadidi [43] proposed
a Gaussian Process (GP) based method to build an information field for the entire configuration
space, but the final decision-making is still based on a utility function that chooses a goal which
balances the path cost and expected information gain from frontiers extracted from the GP map. Bai
et al. [44] present a method to predict the information gain in the surrounding partial map of the
current robot pose based on a Gaussian process and Bayesian inference. Their method chooses the
point with the largest expected information gain as the goal for the next step. These methods, while
providing a new perspective on information gain estimation, often suppose unknown space as free
or suppose Gaussian distribution of occupancy probabilities which does not hold in real floor-plans,
thus the accuracy of the final information gain is limited.

Researchers have also proposed to use deep learning and reinforcement learning techniques
to solve the autonomous exploration problem. Bai [56] presented a supervised learning method

that chooses the next step which has a fixed distance to the robot and maximizes the expected
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Figure 3.2: System workflow.

information gain from 36 candidate actions. Lei et al. [57] proposed a reinforcement learning based
method aiming to avoid obstacles in exploration.

In contrast to these methods, we propose using deep learning to auto-complete unseen map
regions in geometric detail and use this filled-in map to measure expected information gain. We

then combine this prediction with different exploration strategies to improve exploration efficiency.

3.2 Problem Statement

Consider a nonholonomic wheeled robot equipped with a limited visibility laser range scanner,
which is operating in a bounded 2D environment £ C R2. It incrementally builds an occupancy
grid representation M; from the exploration of environment F, where ¢ is the time step. The goal of
autonomous exploration is to plan a sequence of actions .A by which the area of M; is maximized
in every time step t. Here each action a € A belongs to Lie Algebra [30] of special Euclidean
group SE(2). Due to the NP-hardness of this problem, we cannot obtain the optimal solution in
polynomial time, thus we relax it as a minimization of an immediate cost C which is a function of
path cost C,,, possibility of colliding with obstacles C, and expected information gain I to determine

the actions a € A.

3.3 System Overview

Figure 3.2 shows the work-flow of the proposed method. Based on the current explored map My,
we first detect all the frontier points F%, then classify them into clusters F' ff C F; using the DB-
SCAN algorithm [58], where ¢« = 1,...,N. N is the number of clusters. Then we use the VAE
network to predict the occupancy of cells in the unseen regions beyond each frontier cluster F, to
obtain a predicted map M;. We then compute the information gain I}/ for each frontier cluster F i
using the predicted map M7, as input to the otherwise-standard Hector exploration [1] or cost-utility

exploration [42, 59] which generates a feasible path for the robot’s exploration.
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Figure 3.3: Some floor-plan examples in KTH dataset.

Explored Map

Network Inputs

Figure 3.4: Network inputs generation. The upper image shows the current explored map with
frontiers marked in yellow. The lower row shows three inputs for the map completion network,
whose sizes are all 256x256 with a mask (prediction area) size of 80x80, centered in frontier
cluster centers. The network is trained to generate the true contents of the masked center region
given the input.
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3.4 Map Completion Network

Recently, generative networks have shown impressive performance in semantic inpainting and in-
ferring large missing regions in images with high accuracy [60, 61, 62]. Similar ideas have been
applied to predict missing parts of partial 2D maps [63, 64] where a local set of robot-centric sensor
measurements are used to infer a single missing observation.

We use the VAE network [48] for map completion because of its training/testing speed and the
ability to predict large unknown regions. Alternatives like Generative Adversarial Networks [49] are
too computationally demanding for online planning. [63, 64] use Deep Sum-Product Networks [65]

to get performance similar to GANSs, but the prediction is limited to a narrow Field of View (FOV).

3.4.1 Dataset

We use the KTH dataset [66] (see Figure 3.3 for some examples) to generate partial maps and ground
truth for training the map completion network. The KTH dataset provides 165 floor plans with 6,248
rooms on the KTH campus. We manually cleaned some repeated floor plans and randomly split them
into training and testing sets with a proportion of 3:1. We use Hector exploration [1] to explore the
map and record a 256 <256 region centered around each frontier cluster center. We encode obstacles,
free space, and unknown space into different color channels and append an 8080 mask to specify
the region we want to predict. Figure 3.4 shows an example of a generated dataset for the proposed

network.

3.4.2 Network Structure

Figure 3.5 shows the architecture of our map prediction network. The encoder part of the network
learns to output a latent representation 2 in a lower dimensional space and the decoder reconstructs
the missing parts of the map using the compact latent representation.

Encoder: Our encoder is based on the ResNet architecture [67]. We use the ResNet architec-
ture on account of its demonstrated performance in the task of image classification on benchmark
datasets and short training time.

The encoder outputs a mean () and a log variance log(o) of the encoding of size 8 x8x512.
The final encoding fed to the decoder network is sampled from the Gaussian distribution N (u, o).
We do not use fully connected layers as the number of parameters in the network explodes and they
did not yield a significant improvement in our results.

Decoder: The decoder network is essentially a mirror image of the encoder. While the encoder
reduces the size of the feature plane while increasing their number, the decoder does the opposite.
This is achieved by transposed convolution layers (also known as deconvolution layers) [68]. The
output from the decoder network is a probability map of obstacles, with pixel values in the range 0
to 1. We then apply a threshold of 0.5 to determine obstacles and free spaces.

The network weights are randomly initialized without pre-training, because our training data is

significantly different from standard benchmark datasets such as ImageNet [69].
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3.4.3 Network Loss Functions

Prediction Loss

The prediction task in our case can be viewed as a pixel-wise binary classification: for each pixel we
have to predict whether it is an obstacle (label 1) or free space (label 0). Hence, we choose Binary
Cross Entropy loss between the network output z,, and its true label y,, for pixel n. The loss for a

single pixel n is given as:
ln = —[yn - logzn + (1 — yn) - log(1 — xy)] (3.1)

The total loss of the prediction is the sum of all the pixel-wise losses for the masked 80x 80 region,

Lprediction = Z In- (3.2)

Kullback-Leibler (KL) Divergence Loss

The KL-divergence on the latent encoding is used as a loss function to penalize the divergence of

the encoding from a Standard Normal distribution The loss is given as:
Lya = 0> + p* — log(o) — 1 (3.3)

The KL-divergence loss acts as a regularizer for the encoder by constraining the latent space. Please
refer to [48] for its formal justification.
The final loss is the weighted sum of the two losses Ly ediction and Ly;q from Equation (3.2)
and Equation (3.3).
Lfinal = vLprediction + (1 = 7) Liq 3.4)

where v € (0, 1) controls the relative importance of two losses. We use v = 0.99 for training our

network.

3.5 Map completion augmented exploration

3.5.1 Information Gain Computation

For estimating the information gain we need to find the regions that can be immediately explored
from a frontier cluster, which is achieved by using the flood-fill algorithm. Starting from a frontier
point, a Depth First Search is performed to find all the connected pixels that are unknown in the
current map My, but are free according to the predicted map M;. Figure 3.6 illustrate the flood-fill
regions with and without map prediction.

The canonical definition of information gain for each frontier cluster F: is:

I,(M, z;) = HM) — H(M|z;), (3.5)
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Figure 3.5: The architecture of our map prediction network. The input is a four-channel image
containing obstacles (red), free space (green), unknown space (gray) and a mask for prediction
region. The output is a single-channel image representing the probability of obstacles. We use a
threshold of 0.5 to binarize output into obstacle and free space.

=

Figure 3.6: Comparison of flood-filled region without and with map prediction. Frontiers and flood-
filled regions are marked as yellow and blue respectively. (a) Current explored map. (b) and (c)
are flood-fill regions without and with map prediction. The information gain of the frontiers can be
truthfully reflected from the map prediction in (c).

where H(M) is the current entropy of the map at time ¢ and H(M|x;) is the posterior entropy of the
predicted map with the new flood-filled map information z;. The Shannon’s entropy [70] over an

occupancy grid map M is defined as

H(M) =~ _ p(m;)logp(m;) + (1 — p(m;)) log(1 — p(my)), (3.6)
J

where p(m;) is the probability of the cell m; being occupied. An unknown cell m; in M decreases
the entropy by 1, since p(m;) = 0.5. In comparison, the known cells do not contribute to the
information gain. The information gain If; is then equal to the number of unknown cells that will
become known which is in keeping with our flood-fill based method.
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3.5.2 Augmenting Exploration Planners

The expected information gain I: from the proposed map prediction can be used to augment different
kinds of goal planners or path optimizers instead of just a specific method. Here we choose an
exploration transform [71] based planner known as Hector exploration planner [1] and cost-utility
function based planner [42, 41] as base methods, which are two representative methods for path

optimization and navigation goal planning respectively.

Augmented Hector Planner

Original Hector exploration [1] builds a costmap known as an exploration transform [71] which
assigns a cost to every explored free cell in the current map M,. The cost has two parts, i.e. the path
cost to the nearest frontier point, and an obstacle cost to the nearest obstacle. Inspired by this idea,
we built our cost transform C(m) for the free cell m by additionally considering our information

gain estimate as follows:

C(m) = min {min Cp() —a\/fi} + BCo, (3.7)
FiCF: | feF]

where C,,(f) is the path cost from cell m to frontier cell £, I, is the information gain for frontier
cluster F;, and C,, is the collision cost of the cell m formulated as a thresholded distance to near-
est obstacle. « and /3 are the weights for information gain and collision cost respectively. Since
information gain is proportional to expected unmapped free areas (m?) while path cost is related to
length (m), we use the square root for information gain Iff to keep their units consistent. The square
root response function for information gain cost also helps to dampen the high information gain
estimates due to potential mispredictions. Note that the cost transform C(m) for each cell m can
be computed efficiently in an incremental way by propagating the costs starting from the frontier
points.

After evaluating our cost transform, we can plan a path from the current robot pose by following

the steepest gradient of the transform until it reaches a frontier point.

Augmented Cost-Utility Planner

The cost-utility exploration scheme [42, 41, 72] assigns a cost to each frontier point based on its
travel cost C,,( f): length of the shortest path to the frontier f, and utility (information gain), which

is /I(f) in our case.

C(f) = Cp(f) = MWI(S) (3.8)

where I(f) = I for f € F} and \ is a weight to adjust relative importance between the cost and
the utility. The frontier with the minimum cost is then chosen to be the next navigation goal and
a global path planner (Dijkstra algorithm in our implementation) is used to generate a path to the

goal.
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3.6 Experiments

3.6.1 Experimental Setup

Simulation

The simulations for both dataset generation and evaluations were performed using the Stage simu-
lator [73] Pioneer P2-DX mobile robot and SICK LMS scanning laser rangefinder (LRF) models.
The FOV and range of the LRF were limited to 270° and 5m respectively with 512 samples. The
sensor update rate was 10 Hz in simulation time. The system is implemented in ROS [74].

The environment map is a 2D occupancy grid with a resolution of 0.1m per pixel. Map updates
are done by ray-casting range measurements for each laser range reading to label free and obstacle
cells. To allow fast dataset generation and evaluations, we use ground truth localization from the
simulation rather than running SLAM. Since we assume good localization/mapping and do not aim

to optimize the path for lower pose uncertainty [75], the use of ground truth localization is justified.

Baselines for Comparison

The comparison baselines we use for our evaluations are: Nearest Frontier Exploration (“near-
est_frontier") [38], Hector exploration planner (“original_hector") [1] and cost-utility exploration
(“original_cost_utility") [41].

The Hector exploration planner augmented with our information gain is referred to as “ig_hector"
and the cost-utility planner is “ig_cost_utility". As an upper bound we also compare the performance
of the Hector planner augmented by information gain from ground truth map (“ig_hector_gt"): the
impossible perfect oracle for map prediction. Note that the use of ground truth information gain does
not guarantee a perfect exploration as it is still a greedy heuristic that in general will not lead to a
globally optimal solution for the coverage of whole map. Thus, this provides a tight upper bound

for a well-informed local exploration method.

Configuration Settings
For fair comparison, we set the weights for information gain in “ig_hector” and “ig_cost_utility" the

same, viz. & = 3 (Equation (3.7)) and A = 3 (Equation (3.8)), and we set 5 = 5 in Equation (3.7).

3.6.2 Map Completion Network Evaluation

Evaluation Metrics
Following prior authors [40, 44], we measure the average percentage of area coverage against explo-
ration time to evaluate exploration efficiency. We also report the average time and travel distances

taken to achieve 85% map coverage. This approach is similar to the one proposed in [40] where the

exploration is stopped after a fixed duration of time. This strategy allows us to ignore some minor
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Figure 3.7: Four map prediction results by the VAE network. In the first three columns, the topol-
ogy of the map is correctly predicted while the fourth column shows an incorrect but plausible
prediction.

unmapped corners to better reflect the exploration efficiency. Since the size of our maps vary, se-
lecting a constant time threshold will not lead to a fair comparison. Hence, we choose percentage of
area covered instead.

We present the results for 12 different maps from the testing dataset of the KTH floor-plans. For
each map and each method, we run 20 tests from different initial robot poses chosen at random and
evaluate their performance.

For training the map completion network, we first run 50 explorations using the original Hector
planner for each map in the training dataset and crop a 256 X256 region around each frontier cluster.
This results in a training dataset of 1.5 million partial maps. Then we test the map prediction perfor-
mance on the testing maps with about 140,000 inputs. The network takes on average 5 milliseconds
with 1 millisecond standard deviation to predict one batch of frontiers (32 inputs) on an Nvidia
GTX980 GPU. We obtain overall map cell contents prediction accuracy of 92.5%; with precision
and recall for free space prediction of 95.0% and 96.3% respectively. The precision/recall for obsta-

cle predictions are 77.0% and 70.6% respectively. Some examples of our network’s predictions are
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Figure 3.8: Percentage map coverage against time for 4 floor plans. Results are averaged over 20
experiments.

shown in Figure 3.7. From these evaluations and Figure 3.7, we can see the proposed VAE network

can complete maps with high accuracy.

3.6.3 Analysis of Exploration Efficiency

Area Coverage Over Time

Figure 3.8 shows the percentage of total map coverage over exploration time. We compare our
“ig_hector" and “ig_cost_utility" methods with baselines as well as the Hector planner [1] aug-
mented by oracular information gain from ground truth maps (“ig_hector_gt"). The curves of Fig-
ure 3.8 show that the map-prediction augmented methods explore the map more quickly than the
baselines in the exploration process. All methods eventually converge to near-perfect coverage, but
the augmented methods do so earlier than the baselines. We notice that the nearest frontier planner
and original cost-utility methods show similar performance while the original Hector is slightly bet-
ter than the other two. In contrast, the proposed “ig_hector" perform much better, reaching nearly
the same exploration efficiency of the upper bound oracle-informed method.

The results suggest the VAE network has learned to predict unseen map areas well enough to

usefully improve exploration efficiency.
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Figure 3.9: For each method, we show the median task completion time and trajectory length for
12 different floor-plans, over 20 trials each with different initial robot pose. Smaller values indicate
better performance.
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Travel Distance and Time

Figures 3.9(a) and (c) show the median time taken and distance traveled to cover 85% of the total
area using different methods for the 12 test floor plans.

To assess the statistical significance of the difference between map completion time and distance
traveled for the baseline methods against our methods, we use Welch’s t-test [76]. We choose the
proposed “ig_hector" as our basis for comparison. A higher t-value implies a higher confidence
that baselines’ map completion times or traveled distances are longer than the proposed “ig_hector"
method. Figures 3.9(b) and (d) show the t-values for map completion times and travel distances of
all the tests in 12 floor-plans. The t-value corresponding to 95% confidence level is shown in the
graph as a dotted line.

Figures 3.9(a)—(d) show that the proposed methods “ig_hector’ and “ig_cost_utility" always
have lower map completion time and distance traveled compared to the baseline methods they were
based on viz. “original_hector" and “original_cost_utility" respectively. The measured performance
distribution of the enhanced methods are better, and differs with a large confidence interval, com-
pared to their baselines.

Our method “ig_cost_utility" has similar travel distance to “original_hector" in some of the
maps. This is likely explained by the superior performance of hector exploration compared to cost-
utility exploration canceling out the advantage of better predictions.

Overall, these experiments show that the map prediction from the proposed VAE network results
in a performance increase in travel time and distance traveled compared to previous methods in the

maps we tested.

3.7 Conclusion and Future Work

We described a VAE deep neural network that learns to predict unseen regions of building floor
plans. This model is used to enhance exploration performance by improving estimates used in path
planning, leading to increased efficiency. We suggest that the navigation behavior of our system
is more intelligible than that of end-to-end deep learning techniques as it splits the system into a
learned generative model with a map output that is easily interpreted by humans, within a well
known information-theoretic framework.

In future work, we aim to implement our system on real robots and evaluate its performance.
The work can be extended to 3D reconstruction rather than 2D, using ground or aerial robots. Fur-
thermore, we assume accurate localization and mapping so far. Removing this assumption and ac-
tively planning for efficient exploration and with good quality localization and mapping would be

an interesting extension.

Reproduction, code and data products

All code, data and models used in the experiments are available at https://git.io/fAX7k.
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Chapter 4

Conclusion

Creating a map of an environment is an important ability in many robotic applications. Therefore,
in this thesis we explored a) A 3D odometry and mapping system producing metric scale maps and
pose estimates using a minimal sensor suite, and b) An autonomous ground robot for 2D mapping
of an unknown environment using learned map prediction.

The visual-inertial odometry system demonstrates superior robustness and camera tracking ac-
curacy compared with the original vision-only method. The system is able to produce 3D maps in
metric scale and can handle quick rotations, addressing the well-known limitations of monocular
odometry/SLAM systems

The autonomous exploration system successfully employs a state-of-the-art generative neural
network to predict unknown regions of a partially explored map, and uses the prediction to enhance
the exploration in an information-theoretic manner. Evaluation against traditional exploration meth-
ods in simulation using floor plans of real buildings demonstrates advantages in terms of exploration
efficiency, while still maintaining the explicability of the overall system.

The visual-inertial odometry system was implemented jointly by me and Ph.D. student Sicong
Tang from Simon Fraser University through pair programming. The work was closely supervised
by Professor Ping Tan along with helpful guidance from Professor Richard Vaughan.

The autonomous exploration system was implemented in collaboration with Ph.D. student Fei-
Peng Tian from Tianjin University, China while he was a visiting student at Simon Fraser University.
The original exploration pipeline development (simulation interfaces, real-time mapping, integra-
tion with hector exploration planner) and neural network design/implementation were performed by
me. Mr. Tian developed software modules for data collection, oversaw the dataset generation and
network training process along with implementation of baselines by modifying the existing pipeline.
This project was jointly supervised by Professor Richard Vaughan and Professor Ping Tan.
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