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Abstract

Clear speech is a speaking style intended to improve the comprehension of the hearer, which
is usually due to the external noise, less ideal listening conditions, or the speaker is intended
to be more intelligible. Clear speech, which exhibits increased duration, pitch, amplitude,
and more exaggerated articulation, consumes more energy in order to improve the likelihood
of accurate communication. To strike a balance between the cost of clear speech and the
improvement it brings, we use game theory to model the phenomenon of clear speech. The
conventions that speakers and hearers use to communicate are considered as equilibria in
the communication game, and we need to make predictions of how the equilibria changes
under the different circumstances. How our models correspond to what is experimentally
observed, and what predictions are made for experimental results are discussed in the thesis.

In the basic model, we study the case where the speaker has to send one of two messages
equally likely in one-dimensional acoustic space. Next, we make a further discussion of the
basic model in a priori probability of the sent message, the number of messages, and the
conflicts between clearness and comprehensibility. The third contribution of this thesis is to
extend the one-dimensional acoustic space to two dimensions, by introducing uncontrastive
and contrastive features.

Keywords: game theory; communication; phonetics
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Chapter 1

Introduction

Game theory is the study of cooperation and conflict, which provides a structure to model
the situations where strategies of several agents are involved. The focus of this thesis is to
use game theory as a framework to analyze the difference between plain and clear speech
quantitatively. This chapter will give a brief overview over the concepts of game theory and
linguistics, and basic phonetics. We will introduce our motivation to establish the model in
the thesis, and provide the hypotheses in the model.

1.1 Game Theory and Linguistics

Game theory was first introduced as a field in its own by mathematicians von Neumann and
Morgenstern in their publication, Theory of Games and Economic Behavior, in 1944 [26]. In
the 1951, John Nash demonstrated that there was always an equilibrium point in any game
with a finite set of actions in his famous paper Non-Cooperative Games [27]. Since then,
game theory has been widely applied in war, politics, psychology, economics, sociology, and
biology, for it provides a mathematical model for the study of decision-making in a game
where players have conflicting or mutual interest and make their strategies based on other
players’. A social interactive decision situation is known as a game, and the decision maker
involved in the game is referred to as a player. Each player in the game is driven by a
well-formulated goal, which is formalized as the player’s payoff function. Each player has
a set of actions to select. After each individual action has been selected, payoff function
assigns to the corresponding outcome a payoff or utility to each player. The players aim
to optimize their own payoff by selecting actions from the possible strategy set. How to
determine among the actions in the strategy set is subject of game theory [11].

An interactive decision-making game distinguishes between two situations. In the first
situation, players are not able to make any binding agreements and each decision-maker acts
independently from all other decision-makers, which is known as non-cooperative game. The
second type of game is known as cooperative game, which allows players to write binding
contracts and multiple decision makers can act as a group [9, 25]. Evolutionary game theory
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describes game models in which players choose their strategies through a trail-and-error
process. The players learn over time that some strategies work better than others [33].

As a framework with internal consistency and mathematical foundations, game theory
becomes an efficient tool for modeling communication. In 2008, Gerhard Jäger demonstrated
a framework considering communication as a game in his paperApplications of Game Theory
in Linguistics [12]. Suppose there are two players in the communication game. One player,
sender S, has private information about some type or event t in some finite set of events T .
The other player, receiver R, does not know the knowledge about the event. Successfully
passing the information from S to R is in the interest of both players. A strategy for S
is to map from events set T to a set F containing finite number of signals, from which S
can transmit one signal. After observing a signal, R is able to make a guess about what
event S has sent. R can map F to T as a tactic. Coalitions are formed between S and R,
since a correct guess will give both players positive utility, otherwise they obtain nothing.
Therefore, both S and R need to create best strategies respectively in order to maximize
the possibility for R to hit a correct guess.

1.2 A Brief Introduction of Phonetics

Phonetics is a branch of linguistics dealing with the physical reality of speech sounds, where
the human sounds in general are studied without reference to their systemic role in a specific
language [5]. Phonetics can be divided into many areas, with the three main branches as
acoustic phonetics which focuses on the transmission of the speech, articulatory phonetics
studying the movements and actions of the speech organs in producing sounds, and auditory
phonetics concerning how listeners perceive the sounds.

Articulation is the work of speech organs to generate speech sounds. Manner of articula-
tion refers to the closure or constriction used when the sound is made. Place of articulation
means the area in the mouth where the closure and constriction occur. Based on these
two dimensions of articulation, namely place and manner, speech sounds can be classified
as vowels and consonants. From view point of phonetics [28, 4], a vowel is a central-oral
frictionless, voiced sound, produced with an open vocal tract. In different contexts, speakers
are able to adapt their speech styles. Vowels can be further segmented into different sounds
like /i : /, /e/, and so on, by various of phonetics features, mainly the first two formants
F1 and F2 [10]. The first formant frequency, known as F1, measures the vowel hight, which
is also the frequency of the lowest characteristic resonance of the vowel. While the second
formant, F2 is the feature of backness to measure the degree of lip rounding. Vowel space
is a two-dimensional area with respect to the first formant frequency F1 and the second
formant frequency F2. Pitch refers to the fundamental frequency of phonation, since the
perceived pitch has the similar range as the physical frequency of normal speech [10].
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Phonemes are the different sounds in a language [5]. For example, there are 20 vowels
and 24 consonants in English, which make up 44 sound phonemes shown in the Table 1.1
[5]. Some vowels are produced with greater muscle tension in the articulations than other
vowels [6]. We call the former vowels (e.g., /i/, /e/, /u/, /o/) as tense vowels and the latter
(e.g., /I/, /U/, /æ/) as lax vowels.

44 English Phonemes
Vowels Consonants

Phoneme Example Phoneme Example
/i:/ seat /si:t/ /p/ pull /pUl/
/I/ sit /sIt/ /b/ bull /bUl/
/e/ set /set/ /f/ ferry /’feri/
/æ/ cat /kæt/ /v/ very /’veri/
/A:/ match /mA:Ù/ /T/ think /TIŋk/
/6/ pot /p6t/ /ð/ then /ðen/
/U/ good /gUd/ /t/ take /teIk/
/O:/ port /pO:t/ /d/ day /deI/
/u:/ food /fu:d/ /z/ zoo /zu:/
/2/ much /m2tS/ /s/ sing /sIŋ/
/3:/ turn /t3:n/ /S/ show /S@U/
/@/ collect /k@’lekt/ /Z/ pleasure /’pleZ@/
/eI/ take /teIk/ /Ù/ cheap /Ùi:p/
/aI/ mine /maIn/ /dZ/ jail /dZeIl/
/OI/ oil /OIl/ /k/ case /keIs/
/@U/ no /n@U/ /g/ go /g@U/
/aU/ house /haUs/ /m/ my /maI/
/I@/ hear /hI@/ /n/ no /n@U/

/e@/ or /E@/ air /E@/ /ng/ sing /sIŋ/
/U@/ tour /tU@/ /l/ love /l2v/

/r/ round /raUnd/
/w/ well /wel/
/j/ young /j2ŋ/
/h/ house /haUs/

Table 1.1: 44 English Phonemes, including 20 vowels and 24 consonants [16]

1.3 Motivation

Clear speech is a style whose properties are modified with the intention of being more com-
prehensible, i.e. a more enunciated speaking manner involving a greater degree of speech
articulator movement which leads to corresponding changes in acoustic features [20]. Speak-
ers use clear speech in many contexts, including a noisy environment, when speaking to the
hearing impaired or language learners, or merely when the speaker wants to enhance in-
telligibility [29]. Two features of clear speech are found through experiments. In [17], the
experiments on 12 speakers who were producing clear speech in different contexts observe
that the clear speech is not identical in these different situations, but it shares some similar
features that differ from plain speech: longer duration, higher pitch, and increased ampli-
tude. Another important feature of clear speech was seen in [22] which indicates that in
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order to make distinguishing different phonemes easier for the listener, phonetic differences
between phonemes are exaggerated.

We observe numerous different effects in a variety of studies as the evidence of the two
features: the common features of clear speech in different contexts, and the exaggeration of
phonetic differences between phonemes in clear speech. In the presence of noise, the speakers
will alter their acoustic efforts during the communications in order to speak clearly, such
as increasing the vocal intensity, glottal spectral slope, formant structures, or fundamental
frequency. This natural phenomenon is known as Lombard effort [19]. For example, in [8]
the experiments and statistical analysis show that the Lombard effect is found in spectral
target, dynamic formant movement, especially second formant F2 as the speech intelligibil-
ity improvements in English vowels. The experiments in [31] also concluded that speakers
increased duration and average speech amplitude with the noise increase. There is a need
to establish a framework to study these effects in order to predict the differences between
clear and plain speech.

Many observed and predicted modifications in clear speech are in tension of each other,
which offers another reason to design a predictive theory and quantitative models of the
differences between clear and plain speech. This observation is documented in [20]. In the
study, clear and plain productions are compared with respect to three pairs of English tense-
lax vowels. The experiments reveal that though the difference between the tense and lax
vowel is more significant in clear speech than in the plain speech, the more extreme artic-
ulatory gesture in clear speech makes the vowel sound like some other one in plain speech,
which will confuse the receiver. Further study of how speakers resolve these contradictory
demands and what paradigms can be used to explore the issue will be needed.

1.4 Hypothesis

One main assumption in our model is that the speaker uses clear speech in order to enhance
the probability of transmitting the information correctly. In some cases, acoustic changes do
not help make the speech more intelligible. For example, speaking loudly and slowly does
not contribute to the understanding of a foreign language. However, the Lombard effect
still works in many cases [8, 19, 31]. In our model, we assume that the clear speech style is
developed to improve the quality of communication, and we apply this conjecture to predict
the clear speech styles.

Following [7] and [12] introduced in Section 1.1, we model the clear and plain speech
styles with the Game Theory by assuming a speaker and a hearer are engaged in a commu-
nication game that they can play over and over again. The speaker need to communicate
one of several distinct possible message to the listener. To transmit the message, the speaker
is able to to select a continuous-valued signal to emit. To make it easy for the receiver to
distinguish the various messages, the speaker will assign different values of signal to different
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messages. However, there is noise in the communication channel distorting the signal being
conveyed in the channel. Therefore, the receiver only gets a perturbed signal and needs to
apply a strategy to decode the received signal.

There are two important factors in our game. One is that the cost varies among different
signals. The other is that the possibility of transmission of the wrong message issues from
the presence of noise in the channel. As introduced in [22], H & H theory indicates that
the speaker needs to find a balance between the cost spent in the communication and the
probability to receive correct messages.

In our model, the space of messages T is discrete, as it is in the work of G. Jäger in [13].
According to the work in [1] and [14], we assume the signal of one message is continuous-
valued.

1.5 Chapter Summary

This thesis is organized as follows: in Chapter 2, we introduce our basic game theoretic
models to describe the communication game, the analytical solution to the basic model
under different conditions, and numerical results from MATLAB. In Chapter 3, we further
study the basic models based on three different conditions respectively: first, unequally
likely messages; second, four-messages rather than two; and third, different noise patterns.
In Chapter 4, we expand the basic model from a single phonetic variable to multiple phonetic
variables, and introduce the concepts of contrastive and uncontrastive features. Parts of the
Chapter 2, like Section 2.2, 2.3, and 2.4 are included in the paper [32].
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Chapter 2

Basic Game Theoretic Models of
Communication in Adverse
Conditions

2.1 Signal Detection Theory

Signal Detection Theory (SDT) is one of the most successful mathematical models in cog-
nitive science. It was developed in the early 1950s, and it provides the strategy to evaluate
the probability of making a mistake when you make one decision based on the phenomenon
observed [23]. For example, a doctor needs to interpret CT images and detect whether or
not there is a tumor. The tumor can be considered as a signal, and the task for the doctor
is to decide whether the signal is present. If the doctor diagnoses the sample as a tumor,
then there is a chance of making a mistake, while there will be a possibility of miss if the
sample is diagnosed as no tumor. In this case, the doctor has to decide between reporting a
tumor or not. Signal Detection Theory is widely applied in such uncertain or ambiguous sit-
uations where an individual must make decision whether or not some condition is present.
Although the basic decision is a simple alternative, such as diagnosing as tumor or not
tumor in the above example, the incomplete and random information makes the decision
difficult. There are always chances to make erroneous choice, no matter how intelligent the
decision maker is. We will introduce Signal Detection Theory, which was developed for this
type of task, to detect a weak signal occurring in a noisy environment, through the basic
detection experiment known as "Yes-No" Design [30].

In the basic detection experiment, the observer will face two kinds of signals. First, a
trial without any systematic component and only the random background environment is
presented, referred to as the Noise trials. Some signal is added to the Noise trial, which
forms the other trials, called signal plus noise trials, or, Signal trials. The observer will
receive evidence either from the Signal or Noise with uncertainty. The value received is a
random variable, denoted as XS for the signal trials and XN for the noise trial. Figure 2.1
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shows the density functions fN (x) and fS(x) of the two random variables. We define the
accumulative distribution functions of XN and XS as FN (x) and FS(x) respectively.

Figure 2.1: Sketched figure of the signal and noise probabilities distributed within a decision-
maker.

Suppose the observer who is trying to distinguish the Signal and the Noise, is fully aware
of the probability distribution of the two and has to set a response criterion c for decision
making, sketched in Figure 2.1. The observer reports "YES" when the amount of evidence
for the signal is larger than c and "NO" when it is smaller than c. Response YES to a Signal
is known as a hit, and the error where the observer reported YES when there is only Noise
is a false alarm. A miss is the case where NO has been reported when a Signal present, and
a correct rejection is to reply NO to a Noise. Each type of response can occur with each
type of trial, so the four possible outcomes are identified by name in Table 2.1.

The probability of a hit can be calculated as the area under the density function fS(x)
above the threshold c, which can be written as

PHit = P (YES|Signal)

= P (X > c|Signal)

= P (XS > c)

=
∫ +∞

c
fS(x)dx

= 1− FS(c).

(2.1)
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Similarly, the probability of false alarm can be represented as

PFalse = P (YES|Noise) = P (XN > c) =
∫ +∞

c
fN (x)dx = 1− FN (c). (2.2)

Response
Stimulus YES NO
Signal hit miss
Noise false alarm correct rejection

Table 2.1: Possible Outcomes on a Trial of a Yes-No Experiment.

2.2 Modelling Communication Game

Figure 2.2: A schematic showing our basic model. The speaker is required to communicate
one of two messages: a or b. They select signal values xa or xb which they transmit to the
hearer. Noise in the communication channel leads to the hearer receiving a perturbed signal
which they classify as either a or b based on the criterion c.

We present in this section the most basic version of our communication game model
between two agents, the speaker and the hearer. There are two messages for the speaker
to transfer to the hearer: either a or b. Each time the speaker can only convey one of the
two messages, so the speaker acts one of two types, sending message a or sending message
b. Which message the speaker has sent is not known to the hearer. The hearer must decide
which message the speaker has released based on the received signal, which means the hearer
has a choice between two actions: diagnose the received signal as message a and diagnose the
received signal as message b. We assume that the consequences of mistakenly transmitting
a for b are the same as for transmitting b for a.

In a hypothetical situation, we can imagine the speaker ordering a drink at a coffee shop,
with a meaning "coffee", and b meaning "tea", and each choice being made equally often.
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The choice will be expressed by the speaker via a continuous-valued variable, the value of
which is set by the speaker. Thus, if the speaker is to emit a tone for a given length of time,
they will be able to select the value assigned to each option - tea and coffee. In doing so,
noise will be added, during the process like the production, transmission or reception of the
tone, affecting the signal before it even reaches the hearer. The hearer therefore is tasked
to decipher an already-noisy signal in order to extract the speaker’s choice.

After the hearer gives an interpretation of the received signal, the corrective feedback
will be given to both of the players. We assume that the game is played over and over again
so that an optimal communication system is able to be developed. Both the speaker and
hearer want to maximize the utility, and their goal is the same. The game is cooperative,
then there is no confusion about which type of equilibrium should be reached since the two
players can be engaged in the game as a team [7]. The strategy for the speaker is to select
two values of the variable x, namely xa and xb, for the signals a and b respectively. Without
loss of generality, assume that xa < xb. Suppose the noise in the communication channel is
σn, where n a standard Gaussian random variable such that n ∼ N (0, 1), and σ is a noise
amplitude. Therefore, the hearer will perceive either y = xa +σn or y = xb +σn depending
on the message, a or b, the speaker sent. The received value y for the two messages obeys

xa + σn ∼ N (xa, σ) and xb + σn ∼ N (xb, σ).

Based on the heard signal y, the hearer has to make a decision which message has the
speaker sent. The hearer’s task is an example of the standard model in Signal Detection
Theory, introduced in Section 2.1. The receiver’s optimal choice is to fix a value c as the
criterion, and choose message a when y ≤ c and choose message b when y < c. In probability
measure, the probability that y = c is zero, so the case y = c can be classified as either
message a or message b. Following Section 2.1, the probability that the receiver hits the
correct message a can be represented as

P(correct|a) = P (y ≤ c)

= P (xa + σn ≤ c)

= P

(
n ≤ c− xa

σ

)
= F

(
c− xa
σ

)
,

(2.3)

where F is the cumulative distribution function of a standard normal random variable with
mean 0 and variance 1, as shown in Figure 2.3 and can be written as

F (x) =
∫ x

−∞

1√
2π
e−

t2
2 dt. (2.4)
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Similarly, the probability that the receiver hits the correct message b can be represented
as

P(correct|b) = P (xb + σn > c)

= 1− P (xb + σn ≤ c)

= 1− F
(
c− xb
σ

)
.

(2.5)

Since there is no cost for the receiver to select the decision boundary, the optimal value
of c will be the one that maximizes the probability of receiving the correct message. Since
each message is equally likely, we can express this probability as

P (xa, xb, c) = P(correct transmission)

= P(correct|a)P(a) + P(correct|b)P(b)

= 1
2F

(
c− xa
σ

)
+ 1

2

[
1− F

(
c− xb
σ

)]
.

(2.6)

Figure 2.3: F (x), the cumulative distribution function of a standard normal random variable.

If there are no penalty or cost for extreme x, the speaker will increase the gap between
the messages as much as possible, since the probability of success will increase to 1 as the
distance between xa and xb increases. In any realistic system there is either a finite range
of possibilities for x, or there is a disincentive for using large or small values of x. The idea
is that more extreme values of x require more effort, and the speaker will make less effort
unless there is sufficient benefit to making more effort [22].

The probability model of correctly receiving the signals and the idea of higher cost in
more exaggerated signals can be combined by defining a cost for emitting a signal that
depends on x, the phonetic variable of the signal. Suppose that the effort required to emit
signal x is kg(x) where g is defined as

g(x) = 1
x(1− x) , for 0 < x < 1 (2.7)
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and set g(x) = ∞ for x < 0 or x > 1, as shown in Figure 2.4. k, which is called the effort
parameter, is some positive constant we use to parameterize the overall effort in emitting a
signal and it can evaluate the difficulty to expend effort. We chose this form for g for three
reasons:

• The cost function (2.7) constrains only the sounds in the range (0, 1) to be emitted
and they all have positive cost;

• The cost for the more extreme sounds are higher which represents that they are more
difficult to emit;

• Effort is close to constant for signals within the middle of range.

Figure 2.4: g(x), the function describing the cost in our model of emitting a signal with a
given phonetic variable.

Since the game is cooperative, we now make a fairly strong assumption for the purposes
of simplicity: the speaker and the hearer have the same payoff function in the game. So they
are equally interested in the correct message being transmitted, and are equally interested
in the speaker’s effort being minimized. This is clearly not always a reasonable assumption,
and Chapter 4 will consider different models. Following this symmetric modelling choice,
we assume that the expected payoff to the speaker and the hearer in one round of the
communication game is

E(xa, xb, c) = P (xa, xb, c)−
k

2 (g(xa) + g(xb)) , (2.8)

that is, the probability of the message being correct minus the average cost to the speaker
of transmitting x.
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2.3 Optimizing the Payoff Function

We assume that the speaker and the hearer will choose the strategy that maximizes the
value of the payoff function shown as (2.8), which can be written as:

E(xa, xb, c) = P (xa, xb, c)−
k

2 (g(xa) + g(xb))

= 1
2F

(
c− xa
σ

)
+ 1

2

[
1− F

(
c− xb
σ

)]
− k

2

( 1
xa(1− xa)

+ 1
xb(1− xb)

)

= 1
2

∫ c−xa
σ

−∞

1√
2π
e−

t2
2 dt+ 1

2

[
1−

∫ c−xb
σ

−∞

1√
2π
e−

t2
2 dt

]

− k

2

( 1
xa(1− xa)

+ 1
xb(1− xb)

)
.

(2.9)

To maximize the payoff function (2.9) of variables xa, xb and c, the technique of partial
differentiation is used.

First, suppose xa and xb are fixed. The hearer tries to optimize his strategy based on
the given xa and xb. Taking the partial derivatives of (2.9) with respect to c yields

∂E

∂c
= 1

2σ

[
f

(
c− xa
σ

)
− f

(
c− xb
σ

)]
(2.10)

= 1
2σ

1√
2π

[
e−

(c−xa)2

2σ2 − e−
(c−xb)

2

2σ2

]
. (2.11)

where f is the probability density function of the standard Gaussian distribution.
By the symmetry of Gaussian distribution and the assumption xa < xb, we know that

c = xa+xb
2 is the only critical point of ∂E

∂c . When c < xa+xb
2 , a simple use of calculus shows

that Function 2.11 ∂E
∂c is positive, and negative when c > xa+xb

2 . The facts show that
whatever xa and xb are, the optimal value for the criterion is c = xa+xb

2 . So whatever the
speaker chooses for xa and xb, the hearer will always choose the mid point as the criterion
to gain the optimal payoff.

Define the equal gap ∆ = c − xa = xb − c. The basic models can be simplified as a
double-variable problem by plugging xa = c −∆ and xb = c + ∆ into the original model.
Moreover, F (∆

σ ) = 1 − F (−∆
σ ) due to the symmetry of probability density function of

normal distribution. The payoff function (2.9) can be rewritten as
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E(xa, xb, c) = 1
2F

(
c− xa
σ

)
+ 1

2

[
1− F

(
c− xb
σ

)]
− k

2

( 1
xa(1− xa)

+ 1
xb(1− xb)

)
= 1

2F
(∆
σ

)
+ 1

2

[
1− F

(−∆
σ

)]
− k

2

( 1
(c−∆)(1− c+ ∆) + 1

(c+ ∆)(1− c−∆)

)
= F

(∆
σ

)
− k

2

( 1
(c−∆)(1− c+ ∆) + 1

(c+ ∆)(1− c−∆)

)
.

(2.12)

For fixed gap ∆, to maximize the above Payoff function (2.12) with respect to c, only the
cost term 1

(c−∆)(1−c+∆) + 1
(c+∆)(1−c−∆) needs to be minimized. Notice that (c−∆)(1−c+∆)

and (c+∆)(1−c−∆) are positive since 0 < xa, xb < 1. According to the fact that arithmetic
mean is always larger than the harmonic mean, we have:

1
(c−∆)(1− c+ ∆) + 1

(c+ ∆)(1− c−∆) ≥
22

(c−∆)(1− c+ ∆) + (c+ ∆)(1− c−∆) ,

the equality holds if and only if (c−∆)(1− c+ ∆) = (c+ ∆)(1− c−∆), i.e. c = 1
2 .

The symmetry of g(x) about x = 1
2 also implies that the optimum will always have

xb − 1
2 = 1

2 − xa implying c = 1
2 .

Hence, we only need to maximize the function E(1
2 − ∆, 1

2 + ∆, 1
2) with respect to

0 ≤ ∆ < 1
2 to find the optimum of the original problem. If we assume the values for the

noise amplitude σ and the effort parameter k, the specific optimal values for ∆ can be solved
numerically.

2.4 Results for Basic Game Theoretic Models

This optimization problems is solved by MATLAB’s fminsearch routine. fminsearch was
chosen since our optimization problem is unconstrained and nonlinear. In this section, we
study how xa, xb and c depend on the noise amplitude σ and the effort parameter k using
our computed solutions to the optimization problem.

2.4.1 Dependence of the Optimum on Effort Parameter k

Fixing the value of noise amplitude σ as 0.05, we increase the effort parameter k from 0 to
1. Figure 2.5 left shows how xa, xb and c depend on k for a fixed value of σ = 0.05. We
see that as k goes to 0, xa and xb go to 1. The extreme values for xa and xb make sense,
since in this limit, there is no penalty for making the gestures as large as possible and larger
gap between xa and xb gives greater probability to recognize the correct signal. Likewise,
as k goes to infinity, xa and xb both go to 1

2 , the cheapest possible signal, since the cost of
emitting a signal becomes large compared to the benefit of accurate communication.
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Figure 2.5 right shows that as k increases from 0 to 1, the optimized payoff keeps
decreasing, since in the system it is getting harder to make effort.
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Figure 2.5: Optimum depending on effort parameter k. Left: The value of the optimal xa,
xb and c for varying k and σ = 0.05. Right: The value of the maximized payoff E(xa, xb, c)
for varying k and σ = 0.05.

2.4.2 Optimum Depending on Noise Amplitude σ

The case of fixed k and varying σ is more interesting. Figure 2.6 left shows how xa, xb and c
depend on σ for a fixed value of k = 0.05. For small values of σ, xa, xb go to 1

2 as σ goes to
zero as we might imagine. As when there is no noise, even the slightest difference between
xa and xb gives perfect communication, and setting both to 1

2 minimizes effort.
What happens as σ increases is less expected. Initially, as σ increases from 0, gestures

become more extreme in order to improve the probability of correct communication. This
is the standard clear speech effect, and is a key part of Lombard speech. The phenomenon
agrees with the effects in F2 in English vowels [8] and duration and amplitude in [31].

What is striking is the case that after the signals past a certain noise level the effect
reverses itself, and then become less extreme in our model. This occurs because, if the noise
is large enough, the probability of communication regardless of the signals used is so low
that it is no longer worth the effort to make the more extreme gestures that were worthwhile
for a lower level of noise. We know of no observations of this phenomena, but predict that
it will be observed for human subjects with sufficiently large amplitudes of noise. Indeed,
[29] observes speech amplitude increasing with a decreasing rate as noise level is increased,
and a reduction in amplitude may be observable if an even larger noise level is tried. A
similar phenomenon has been observed in domestic fowl [2]. The chickens studied varied
the frequency with which they repeated their calls in the presence of different amounts of
noise. It was observed that for lower levels of noise the birds increased call frequencies with
increasing noise, and it is conjectured that this is an adaption to improve the probability
of communication by expending more effort. However, interestingly the authors noted that
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Figure 2.6: Optimum depending on noise a amplitude σ. Left: The value of the optimal xa,
xb and c for varying σ and k = 0.05. Right: The value of the maximized payoff E(xa, xb, c)
for varying σ and k = 0.05.

after the noise was increased past a certain point, the birds decreased the frequency of their
calls, as would be predicted by our model.

Figure 2.6 right shows that as σ increases from 0 to 0.5, the optimized payoff keeps
decreasing, since the noise is increasing in the system.
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Chapter 3

Further Discussion of Basic Game
Theoretic Model

In this chapter, we will further discuss the basic game theoretic model in three aspects.
First, we study how making a message more frequent changes its signal compared to the
equally likely message model. Second, two more messages will be added to the basic model.
Third, we will study how the signals will change if some of players are not aware of the
noise level.

3.1 Different Probabilities for Different Messages

In Section 2.2, we make the assumption in the basic model that the two messages are
transmitted equally often. That is to say we have the equal a priori probability for message
a and b in (2.6): P(a) = 1

2 and P(b) = 1
2 . However, this is not at all necessary for our model.

In this section we will study how making a message more frequent changes the position of
its signal in phonetic space.

We assume that the message a is transmitted with the prior probability ρa and b with
ρb, where ρa + ρb = 1. Without loss of generality we assume that ρa < ρb. Hence, the
probability of receiving the correct message is

P (xa, xb, c) = P(correct|a)P(a) + P(correct|b)P(b)

= ρa · F
(
c− xa
σ

)
+ ρb ·

[
1− F

(
c− xb
σ

)]
,

(3.1)

and the cost of the communication is no longer the unweighted average of the costs of
two messages. Instead it is the average weighted by the probability of the two messages,
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expressed as k
(

ρa
xa(1−xa) + ρb

xb(1−xb)

)
. Hence, the payoff function is

E(xa, xb, c) = P (xa, xb, c)−
k

2 (g(xa) + g(xb))

= ρa · F
(
c− xa
σ

)
+ ρb ·

[
1− F

(
c− xb
σ

)]
− k

(
ρa

xa(1− xa)
+ ρb
xb(1− xb)

)
.

(3.2)

Define the distance between xa and c as ∆a and the distance between xb and c as ∆b.
Using the same technique as in Section 2.3, take the partial derivatives of Equation 3.2 with
respect to c yields

∂E

∂c
= ρa

σ
· f(c− xa

σ
)− ρb

σ
· f(c− xb

σ
).

= ρa
σ
e−

∆2
a

2σ2 − ρb
σ
e−

∆2
b

2σ2 .

(3.3)

If we set (3.3) to zero then we obtain

∆2
b −∆2

a = 2σ2 · ln ρb
ρa

> 0. (3.4)

Since we assume that 0 < xa ≤ xb < 1, to make ∆2
b −∆2

a > 0 we must have c < xa+xb
2 .

For any given xa, xb and noise amplitude σ, the optimal c is the one satisfying equation
(3.4). Fixing σ = 0.05 and k = 0.05, the curve of optimal ∆a and ∆b depending on ρa − ρb
is shown as the Figure 3.1. When the messages are equally likely sent, the optimal ∆a and
∆b are the same. We can see that if ρa < ρb then ∆a < ∆b, which makes sense since it is
worth it to share more space to the more frequent-sent message. In the following sections,
we study how xa, xb and c depend on the noise amplitude σ, the the effort parameter k
and the prior probability ρa for message a under the assumption that the messages are not
equally transmitted.

3.1.1 Optimum Depending on Effort Parameter k Given ρa = 0.2

We assume that the probability of the message a is 0.2 and then the probability of the
message b is 0.8. Fix the value of noise amplitude σ as 0.05, we increase the effort parameter
k from 0 to 1. Figure 3.2 top left shows how xa, xb and c depend on k for a fixed value of
σ = 0.05 and ρa = 0.2. Similar to the purple lines when the messages are equally likely, as
k goes to 0, xa and xb goes to 0 and 1 respectively; as k goes to infinity, xa and xb both
approach to c.

Moreover, we compare the case of ρa = 0.2 with the case of equally likely messages to
find that the fact ρa < ρb breaks the symmetry of the messages about 1

2 and also rules
out the invariance of the optimal strategy for the receiver. Just as the analytical solution
equation (3.4) shows, ∆a < ∆b when ρa < ρb. Yellow lines in Figure 3.2 top left demonstrates
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Figure 3.1: The optimal gap curve. The x-axis represents the difference between the a priori
probability of message b and message a, i.e. ρb − ρa. The red line represents the distance
between xa and c, and the blue line represents the distance between xb and c. When ρa = ρb,
∆a = ∆b which means the xa and xb are symmetric about c. When ρa > ρb, ∆a > ∆b.
When ρa < ρb, ∆a < ∆b.

that the bias of the prior probability pushes the optimal xa and xb toward the side of less
frequent message xa, which frees up more phonetic space and generates cheaper unit cost
for the more-frequently used message.

For the multiple pairs of (∆a,∆b) given by changing k using our computed solutions, we
plotted these numerical results to find that they agree with the analytical relation between
∆a and ∆b in Equation (3.4), shown as the top right subfigure in Figure 3.2.

Figure 3.2 bottom shows that as k increases from 0 to 1, the optimized payoff keeps
decreasing. The payoff for the case ρa = 0.2 is slightly greater than the case where ρa = 0.5.

3.1.2 Optimum Depending on Noise Amplitude σ Given ρa = 0.4

Let the probability of the message a be 0.4, and then the probability of the message b is
0.6. Fix the value of effort parameter k as 0.05, we increase the noise amplitude σ from 0 to
0.5. Yellow lines in Figure 3.3 top left show how xa, xb and c depend on σ for a fixed value
of σ = 0.05 and ρa = 0.2.

Similar to the purple lines when the messages are equally likely, as σ goes to 0, both xa
and xb goes to 1

2 ; as σ increases, xa and xb first separate away and then draw together after
a certain noise level. Compared to the game when messages are equally sent, when we set
ρa to 0.4 the receiver’s strategy biases one way to the message a which gives more space to
discriminant the potential message as message b, which agrees with (3.4) that as the noise
level σ increase, the optimal c makes ∆2

b −∆2
a increase.

Figure 3.3 right shows that as σ increases from 0 to 0.5, the optimized payoff keeps
decreasing.
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Figure 3.2: Optimum strategy and payoff depending on k given ρa = 0.2. Top Left: The
value of the optimal xa, xb and c for varying k and σ = 0.05. Top Right: The value of the
optimal xa, xb and c for varying σ and k = 0.05. Bottom: The value of the maximized payoff
E(xa, xb, c) for varying k and σ = 0.05.

3.1.3 Optimum Depending on ρa

Fixing noise amplitude σ to 0.05 and effort parameter k to 0.05, we increase the probability
for message a from 0.005 to 0.5. Figure 3.4 left shows how xa, xb and c depend on ρa for a
fixed value of σ = 0.05 and k = 0.05. As ρa increases, xa, xb and c increase. When ρ = 0.5,
c becomes 1

2 and xa and xb are symmetric about c.
Figure 3.4 right shows that as ρa increases from 0.005 to 0.5, the optimized payoff keeps

decreasing, which indicates that the payoff in the single-message game is greater than the
payoff in the two-message game.

3.2 Four-Message Model

The basic model in Chapter 2 can be extended to an arbitrary number of messages analo-
gously. In this section we just consider the case of four messages which are equally likely.
Suppose there are messages a, b, c and d in the message space, again corresponding to four

19



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

P
a

y
o

ff

Figure 3.3: Optimum strategy and payoff depending on σ given ρa = 0.4. Left: The value
of the optimal xa, xb and c for varying σ and k = 0.05. Right: The value of the maximized
payoff E(xa, xb, c) for varying σ and k.
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Figure 3.4: Optimum strategy and payoff depending on ρa given σ = 0.05 and k = 0.05.
Left: The value of the optimal xa, xb and c for varying ρa. Right: The value of the maximized
payoff E(xa, xb, c) for varying ρa.

distinct meanings. The strategy of the speaker is to choose signals xa < xb < xc < xd to
represent the four messages, and the strategy of the hearer is to fix values cab, cbc, and
ccd. When the hearer receives signal y = x + σn, they select message a if y ≤ cab, b if
cab < y < cbc, c if cbc < y < ccd, and d if y > ccd. The expressions for the probability of
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correct transmission are demonstrated in the following:

P (xa, xb, xc, xd, cab, cbc, ccd)

= P (correct transmission)

= P (correct|a)P(a) + P (correct|b)P(b) + P (correct|c)P(c) + P (correct|d)P(d)

= 1
4P (xa + σn ≤ cab) + 1

4P (cbc > xb + σn > cab) + 1
4P (ccd > xc + σn > cbc) + 1

4P (xd + σn > cab)

= 1
4

[
1− F

(
cab − xa

σ

)]
+ 1

4

[
F

(
cab − xb

σ

)
− F

(
cbc − xb

σ

)]
+ 1

4

[
F

(
cbc − xc

σ

)
− F

(
ccd − xc

σ

)]
+ 1

4F
(
ccd − xd

σ

)
,

(3.5)

Again the payoff function E(xa, xb, xc, xd, cab, cbc, ccd) is the the difference between the
probability of correct transmission and the expected cost, shown as Function (3.6):

E(xa, xb, xc, xd, cab, cbc, ccd) = P (xa, xb, xc, xd, cab, cbc, ccd)−
k

4 (g(xa) + g(xb) + g(xc) + g(xd)) .

(3.6)

Both speaker and hearer act to maximize the payoff function (3.6). Take the derivative
of E(xa, xb, xc, xd, cab, cbc, ccd) with respect to cab, we get:

∂E

∂cab
= 1

4σ
1√
2π

[
−e−

(cab−xa)2

2σ2 + e−
(cab−xb)

2

2σ2

]
. (3.7)

By the symmetry of Gaussian distribution and the assumption xa < xb, we know that
cab = xa+xb

2 is the only critical point of ∂E
∂c . When cab <

xa+xb
2 , a simple use of calculus

shows that ∂E
∂c is positive, and negative when cab >

xa+xb
2 . The facts show that whatever

xa and xb are, the optimal value for the criterion is cab = xa+xb
2 . So whatever the values

of xa, xb, xc, xd, cbc and ccd, the optimal choice for the hearer is to use criterion points
cab = (xa + xb)/2.

Similarly, taking the derivative of E(xa, xb, xc, xd, cab, cbc, ccd) w.r.t. cbc and ccd respec-
tively, we get:

∂E

∂cbc
= 1

4σ
1√
2π

[
−e−

(cab−xb)
2

2σ2 + e−
(cab−xc)2

2σ2

]
, (3.8)

∂E

∂ccd
= 1

4σ
1√
2π

[
−e−

(ccd−xc)2

2σ2 + e−
(ccd−xd)2

2σ2

]
. (3.9)
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Completely analogous to the optimization problem with respect to cab, whatever the
values of xa, xb, xc, xd, the optimal choice for the hearer is to use criterion points cbc =
(xb + xc)/2 and ccd = (xc + xd)/2.

We show in Figure 3.5 the results of the optimization for this case for a range of σ and
k. Similar to the two-message case, with both decreasing cost parameter k and increasing
but low noise level σ, the speaker uses more extreme signals to convey the same message. In
contrast to the two-message case though, where the hearer adopted the same strategy for
all values of k and σ, in the four-message case, the hearer must adjust the criterion points
cab and ccd in response to the change in the speaker’s strategy. As the dashed lines in Figure
3.5 show, when the speaker uses more extreme signals, the hearer must compensate.
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Figure 3.5: The four-signal model. Top Left: The value of the optimal xa, xb, xc,
xd(solidlines) and cab, cbc, ccd (dashed lines) for varying k and σ = 0.05. Top Right: The
value of the maximized payoff E(xa, xb, xc, xd, cab, cbc, ccd) for varying k and σ = 0.05. Bot-
tom Left: The value of the optimal xa, xb, xc, xd (solid lines) and cab, cbc, ccd (dashed
lines) for varying σ and k = 0.05. Bottom Right: The value of the maximized payoff
E(xa, xb, xc, xd, cab, cbc, ccd) for varying σ and k = 0.05.

From the figures, we note that the speaker uses a larger portion of the phonetic space in
the four-message game. This can be seen by comparing the range of x used for the signals
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for any particular k and σ, as in Figures 2.5, 2.6 and 3.5. For example, when k = 0.1 and
σ = 0.05, in the two-message case, the signals used range from about 0.4 to 0.6, whereas in
the four-message case they range from about 0.25 to 0.75. This agrees with the Theory of
Adaptive Dispersion [21], which postulates that the vowel space will become more dispersed
when there are more phonemes needed to fit into the space. One way to explain the effect
that the basic model in Chapter 2 has a smaller range of x than the four-message model
is to use the fact that the smaller range already provides sufficient contrast between two
messages and makes it possible for the receiver to recognize the message. When two more
messages are added, and the number of contrasts that needs to be made rises to three,
there is a need for expanding the phonetic space. But because more extreme signals x are
more expensive, and signals less than 0 or greater than 1 are impossible, the range cannot
be tripled. The net effect is that with more messages to transmit, the speaker expands the
phonetic space used, while decreasing the spacing between the signals for distinct messages.

3.3 Conflicts Between Clearness and Comprehensibility

In the two-message model, how to categorize the received signal mainly relies on how the
speaker maps the message to a continuous perceptual value, since the optimal strategy for
the receiver is always the mid point between two sent signals. As we can see in the Chapter
2, the speaker needs to modify their strategy with the rise of noise in order to maximize
payoff. But in this case the hearer does not need to make any adjustment to their strategy in
response to the speaker’s speech style, as shown by the flat dashed line labeled c in Figures
2.5, 2.6, which always keeps horizontal at 1

2 .
In the four-message model, we see from the dashed lines in Figure 3.5 that although the

hearer only needs to select the mid points as the decision boundary, the optimal strategy
for the hearer to distinguish the message pairs a and b, c and d is no longer a constant,
since the two adjacent signals are not necessarily to be symmetric about a horizontal line.
This implies that unlike the two-message model, the hearers in four-message model have to
adjust their strategy as well when k or σ is changed, in order to optimally respond to the
speaker’s change of strategy.

Similarly, in [24] the strategy for the hearer to categorize the speech is context dependent.
They interpret the signals according to the visual cues, like the speaker’s gender and the
judgements of speaker identity. In this section, we will discuss the situations where one of
the players are not aware of the noise.

In previous chapters we assume that the noise condition in the game is completely
clear to both speaker and hearer. There is another case where the information about the
communication environment is asymmetric to the players, which is a common problem
for our language users. In one case, the speaker was instructed to use clear speech, while
the hearer is not aware that the signal was sent under the clear speech style so that the
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hearer also does not know that the cue was exaggerated comparing to the plain one that
the speaker intended to send. The signal is considered to be sent using the plain style,
and will be interpreted using the criterion points for plain speech in the communication
environment with low noise. Hence, the clear speech signal sent from high noise may be
wrongly interpreted due to the incomplete information.

An example demonstrating this case well is the four-message model depending on σ

shown in Figure 3.5 bottom left. Fix k = 0.05, and let there be two modes for the noise,
where σ takes one of two values: σ1 = 0.01 or σ2 = 0.05. Suppose the speaker believes
σ = σ2 and intends to transmit message b and so utters a signal near y = 0.4. If the hearer
thinks σ = σ1, they will decode this as message a, which is the wrong message. The conflict
between the classification and the real transmission is that a plain b under σ1 has a similar
signal to a clear a under σ2, and so the hearer cannot tell them apart if they are not aware
of the noise condition so that they do not know whether a plain or clear style is being used.
Figure 3.6 demonstrates this case. If the receiver obtained a signal 0.4, the signal will be
categorized to message a given that it was sent under the noise amplitude σ = 0.01, and
message b for σ = 0.05.
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Figure 3.6: Optimum in four-message model depending on σ. When a signal with value 0.4
has been received, it would be classified as message a if the hearer thought the signal was
sent under σ = 0.01 and message b if σ = 0.05.

For example, the difference between tense and lax vowels in English [20] indicates that
if the listener does not know that the word was generated in clear speech, then the conflicts
may occur. The paper [20] explored three English tense-lax vowel pairs, /i-I/, /A-2/ and
/u-U/. The Fig 5 from [20] sketches the vowel space for the three pairs of tense-lax vowels
in clear and plain speech style from the experiment data. Comparing to lax vowels (e.g.,
/I/), tense vowel (e.g., /i/) are generated with more exaggerated articulatory movements,
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longer target position, longer duration, and involved in a larger vowel space. In spoken
English, though there are other important features to distinguish the tense and lax vowels
[15], the differences between tense and lax vowel mentioned above have been shown to be
perceptually significant. Imagine a speaker who wishes to be clearer in a lax vowel, then
the speaker will lengthen the vowel and perform more exaggerated articulatory movements.
If the listener does not know that the speaker was using a clear speech, there will be a
great chance for the hearer to mistakenly categorize the received word as the corresponding
tense counterparts. For a concrete example, a long "kid" might be difficult to distinguish
from a plain "keyed". There is a conflict between a non-phonemic speech clarity effect (i.e.
lengthening, more exaggerated gesture) and a phonemic contrast.

The similar phenomenon is also found in some animal communication systems. In [2],
when the noise in the background environment is rising, both human and monkeys will
increase the duration of their vocal. However, the improvement may not work for some
situations. For example, [18] describes a small African rodent called Parotomys brantsii
which uses duration of its call to represent the level of safety. When there are threats like
a snake or human, long-duration calls will be given; while a relatively shorter call indicates
the low-risk environment. We can conjecture, for these Brant’s whistling rats, it is not useful
to lengthen their calls in the presence of noise in order to make clearer, since extension of
length has specific meanings.

To further study the case where clear speech may cause confusion to the listener, we
assume that the speaker is aware of the noise amplitude σ, either 0.01 or 0.05, but the hearer
does not know σ and is capable of using only one set of criterion points for both noise levels.
What are the optional strategies for both players? One possibility is that the speaker insists
upon a fixed uttering strategy though the noise is in one of two levels of amplitude. The
second possibility is that the speaker thinks it is worth it to have two different sets of signals,
one for each level of noise, though the hearer has no information about noise level. Next,
our simulation will show that the predicted behaviour is a compromise between these two
simpler strategies.

We assume that there are three different cases for the speaker’s and hearer’s awareness
of the noise amplitude σ in our four-message model: both players share knowledge of noise,
only hearer knows the noise level, and only receiver is aware of noise level. The speaker
needs to communicate one of four equally-frequent possible messages, a, b, c, and d, each
of which occur with probability 1

4 , and the effort parameter k for a signal is 0.05. What
distinguishes this model from the four-message model in Section 3.2 is that in each trail
of the game σ takes the value of either σ1 = 0.01 or σ2 = 0.05 with probability 1

2 , rather
than a fixed noise level. Define the strategy for the speaker to transmit four message as
X = (xa, xb, xc, xd) and the strategy for the hearer to make decision based on the received
signal as C = (cab; cbc; ccd). To explore the predictions of our model for these contexts,
numerical optimization is computed shown as Figure 3.7. In the figure, we show the optimal
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strategies for the speaker and hearer in the four-message, two noise-level game, in each of
the three cases. The blue circles are signals xa, xb, xc, xd, and the red points cab, cbc, ccd
are criterion points. To better emphasize the comparison between the cases, we add lines
connecting corresponding signals and criterion points. The three cases and their optimal
strategies are shown as the following:

• Case i: Neither Oblivious. The value of noise amplitude σ in each trail is known
to both speaker and hearer. Since X(1) and C(1) only reply on σ1, and X(2) and C(2)

only reply on σ2, thus the strategies in the two cases are independent. Hence both
their strategies can be determined with respect to noise level. So we apply X(1) and
C(1) for noise level σ1 and X(2) and C(2) for noise level σ2 as in the previous section.
Equivalently, X(1), X(2), C(1), C(2) together maximize

1
2E(X(1), C(1), k, σ1) + 1

2E(X(2), C(2), k, σ2).

Leftmost in the Figure 3.7, we show the strategies for each level of noise when both
speaker and hearer are aware of the level of the noise. Since this case is simply the
combination of two cases from the four-message model in Section 3.2 but with distinct
noise levels, as we expect from the previous section, the speaker uses more extreme
signal values when the noise is greater, and the hearer is able to take this into account
in the setting of the criterion points. The payoff achieved in this case is 0.750.

• Case ii: Oblivious Hearer. The noise level σ is only known to the speaker. Speaker
has strategies X(1) given the noise level as σ1 and X(2) for σ2, but the hearer only
has C since the noise level is not known to the hearer. X(1), X(2) and C together
maximize

1
2E(X(1), C, k, σ1) + 1

2E(X(2), C, k, σ2).

In this case that only the speaker is aware of the level of the noise, the strategy for
σ1 = 0.01 and σ2 = 0.05 are shown as the the middle of the Figure 3.7. When the noise
level rise from 0.01 to 0.05, the speaker still emits more extreme signals, which is the
same tendency as in the Neither Oblivious case. However, this effect is relatively more
delicate: the range of the signals is greater than in the Neither Oblivious case when
the noise level is σ1, and the range of the signals is less than in the Neither Oblivious
case when the noise level is σ2. The fact that the noise level is not open to hearer
means the speaker cannot deploy this strategy to full effect. The payoff achieved is
now 0.741 which is lower than the optimal payoff in Neither Oblivious case, and hence
a cost is paid for the hearer’s ignorance.
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• Case iii: Both Oblivious. Neither the speaker nor the hearer know the value of σ
for each trail. On this case X and C are determined by maximizing

1
2F (X,C, k, σ1) + 1

2F (X,C, k, σ2).

Rightmost in Figure 3.7, we show the strategy of two noise levels when neither speaker
nor hearer is aware of the level in each trial. In this case where both players are
oblivious, the strategies for the speaker and hearer are close to the ones in the second
case (Oblivious Hearer) where σ = 0.05 and only the speaker knows the noise level. In
case ii (Oblivious Hearer) and case iii (Both Oblivious), we can see that the receiver
faces the same dilemma, the lack of information about noise level, and hence the
receiver has similar strategy in the two cases. More interesting is that although there
is a possible for noise amplitude to be 0.01 in some trials, the speaker in case iii still
chooses the similar strategy to the one in case ii when σ = 0.05. But in case iii the
additional exaggeration of the speaker in the trails where σ1 = 0.01 is a kind of waste.
This can be considered as that the players use a compromise of the strategies in the
other cases, leading to a payoff of 0.729, worse than either of the other two cases.
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Figure 3.7: The optimal strategies for the speaker and the hearer in the four-signal model
with two levels of noise. The condition is indicated along the x-axis. The y-axis indicates
the value of the signal used for each of the four message by the speaker (in blue), and the
three criterion points used by the hearer (in red).

Based on the results of this model, incomplete information of the hearer on whether a
clear speech style is being used to mute the difference between plain and clear speech. We
envision how to investigate this effect experimentally when the clear speech is needed. One
way is to vary the instructions, sometimes explaining that the intended hearer will be aware
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that the speech is clear, and sometimes not. The other way is to let both a speaker and
hearer study together, with noise of different levels being played on separate headphones.
Whether the speaker knows if the hearer has the same noise level or not can be manipulated,
allowing this effect to be investigated.
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Chapter 4

Multiple Phonetic Variables

In the previous chapters, we considered a communication game in which the speaker can vary
only one phonetic variable in the signal. In real speech a multitude of different dimensions of
a signal can be controlled. Our models can be expanded to handle more signal dimensions.
This will allow us to model and study the effects of variables like amplitude (i.e. loudness or
intensity) which are typically not used contrastively, as well as how speakers decide among
multiple variables which to use as a contrastive one. In this chapter, we study the model
with multiple phonetic variables.

4.1 Two Contrastive Features

Suppose we have two contrastive features x and y. We can imagine x and y as formants
F1 and F2. The speaker has one of two messages a and b to send equally often. Similar
to the basic model, the speaker’s strategy is to select two points in the 2D vowel space:
(x1, y1) and (x2, y2) for the signals a and b respectively. We assume that the original value
selected by the speaker is perturbed by a standard multivariate Gaussian noise n such that
n ∼ N([0, 0]T , I), where covariance matrix I is an identity matrix. The value that the hearer
will receive is either (x1, y1)T + σn and (x2, y2)T + σn, where σ is still a noise amplitude
which contributes equally to both components in the vowel space. The hearer receives the
values as

(x1, y1)T + σn ∼ N ([x1, y1]T , σI) and (x2, y2)T + σn ∼ N ([x2, y2]T , σI). (4.1)

The optimal choice for the hearer is to determine a curve in the 2D vowel space as the
decision boundary, which sketched as Figure 4.1. The decision boundary, referred to as c,
will separate the plane into two disjoint regions A and B. When the hearer receives signal
y which located in the area A, he selects message a, otherwise he selects b. The probability
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Figure 4.1: A schematic showing the communication game in two dimensions. The speaker
is required to communicate one of two messages: a and b. They select signal values (x1, y1)
and (x2, y2) which they transmit to the hearer. Noise in the communication channel leads to
the hearer receiving a perturbed signal in the 2D vowel space which they classify as either
a or b based on the decision boundary c.

that the receiver gets the correct message a can be written as

P (correct|a) = P
(
[x1, y1]T + σn ∈ A

)
=
∫ ∫

A
fa(x, y) dy dx

=
∫ ∫

A

1
2πe

− (x−x1)2+(y−y1)2
2 dy dx,

(4.2)

where (x2, y2)T + σn is the multivariate normal distribution with mean µ = (x2, y2)T ∈ R2

and covariance matrix Σ = I = [1, 0; 0, 1] ∈ R2×2, and its its probability density function
f(x, y) is given by

f(x, y) = f
(
~x = [x, y]T ;µ = [x1, y1]T ,Σ = [1, 0; 0, 1]

)
= 1

(2π)n/2|Σ|n/2
e−

1
2 (~x−µ)TΣ−1(~x−µ)

= 1
2πe

− (x−x1)2+(y−y1)2
2 .

(4.3)

Similarly, we have the probability that the receiver gets the correct message b as

P(correct|b) = P
(
[x2, y2]T + σn ∈ B

)
=
∫ ∫

B

1
2πe

− (x−x2)2+(y−y2)2
2 dy dx,

(4.4)
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together giving us the probability of receiving the correct message as:

P (x1, y1, x2, y2, c) = P(correct transmission)

= P (correct|a)P(a) + P (correct|b)P(b)

= 1
2

(∫ ∫
A
fa(x, y) dy dx+

∫ ∫
B
fb(x, y) dy dx

)
,

(4.5)

where fa(x, y) = 1
2πe
− (x−x1)2+(y−y1)2

2 and fb(x, y) = 1
2πe
− (x−x2)2+(y−y2)2

2 .
We define the cost function for one signal (x, y) in the 2D model as

g(x, y) = x2

m2 + y2

n2 ,
(4.6)

where 1
m represents the cost parameter for feature x and 1

n represents the cost parameter
for feature y. Therefore, the payoff function for the 2D model can be expressed as

E(x1, y1, x2, y2, c) = P (x1, y1, x2, y2, c)− (g(x1, y1) + g(x2, y2))

= 1
2

(∫ ∫
A
fa(x, y) dy dx+

∫ ∫
B
fb(x, y) dy dx

)
− 1

2

(
x2

1
m2 + y2

1
n2 + x2

2
m2 + y2

2
n2

)
.

(4.7)

4.1.1 Decision Boundary is the Mid-perpendicular of Two Messages

We define the mid-perpendicular of two points A and B as the perpendicular bisector to
segment AB as shown by the line m in Figure 4.2. In this subsection, we are going to prove
that the optimal decision boundary in our 2D model is the mid-perpendicular of the two
messages.

Figure 4.2: Mid-perpendicular of two points A and B
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When the speaker’s strategy is fixed, the cost of the messages is determined. In order to
maximize the payoff function (4.7), the probability of correct transmission (4.5) should be
maximized by the receiver’s optimal strategy. As the optimal receiver’s strategy will generate
distinct regions A and B, if fa(x0, y0) > fb(x0, y0) region A should contain the signal (x0, y0),
otherwise the signal will be classified into region B. Therefore, the intersection of fa(x, y)
and fb(x, y) on x − y plane will be the optimal decision boundary for the receiver. The
decision boundary

{
(x, y)| 1

2πe
− (x−x1)2+(y−y1)2

2 = 1
2πe
− (x−x2)2+(y−y2)2

2

}
can be proved to be

the mid-perpendicular of the two messages (x1, y1) and (x2, y2), shown as Figure 4.3
To obtain the same conclusion, we can also consider the task of the receiver as the

comparison of two probabilities, P (a|(x, y)) and P (b|(x, y)), where P (a|(x, y)) represents
the probability of a given signal (x, y) be classified into message a, and similarly P (b|(x, y))
as probability of being message b.

Based on the Bayes Theorem, we have P (a|(x, y)) and P (b|(x, y)) as

P (a|(x, y)) = P ((x, y)|a)P (a)
P ((x, y)) , (4.8)

P (b|(x, y)) = P ((x, y)|b)P (b)
P ((x, y)) , (4.9)

where P (a) = P (b) = 1
2 , P ((x, y)|a) = fa(x, y) and P ((x, y)|b) = fb(x, y). Therefore, to get

the optimal decision boundary, we only need to compare fa(x, y) and fb(x, y).
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Figure 4.3: Probability density functions of two signals. Suppose the noise in the 2D model
is a standard multivariate Gaussian random variable. The optimal decision boundary to
decode the received signals is the perpendicular bisector to segment the speaker’s strategies.
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4.1.2 Analysis of the Optimum

Without loss of generality, we can assume that y1 ≤ y2. First, suppose y1 6= y2. Based on the
speaker’s strategy (x1, y1) for message a and (x2, y2) for message b, The decision boundary
for hearer is the mid-perpendicular of (x1, y1) and (x2, y2):

y = −x1 − x2
y1 − y2

(x− x1 + x2
2 ) + y1 + y2

2 , (4.10)

which we simply refer as y = kx+ b.
Therefore, the payoff function (4.7) can be rewritten as

E =
∫ +∞

−∞

∫ kx+b

−∞

1
2πe

− (x−x1)2+(y−y1)2

2σ2 dy dx+
∫ +∞

−∞

∫ +∞

kx+b

1
2πe

− (x−x2)2+(y−y2)2

2σ2 dy dx

− 1
2( x

2
1

m2 + y2
1
n2 )− 1

2( x
2
2

m2 + y2
2
n2 )

=
∫ +∞

−∞

∫ a1x+b1

−∞

1
2πe

−x
2+y2

2 dy dx+
∫ +∞

−∞

∫ +∞

a2x+b2

1
2πe

−x
2+y2

2 dy dx

− 1
2( x

2
1

m2 + y2
1
n2 )− 1

2( x
2
2

m2 + y2
2
n2 )

= F ( b1√
1 + a2

1

) + F (− b2√
1 + a2

2

)− 1
2( x

2
1

m2 + y2
1
n2 )− 1

2( x
2
2

m2 + y2
2
n2 )

(4.11)

where a1, b1, a2 and b2 are

a1 = −x1 − x2
y1 − y2

,

b1 = (x1 − x2
y1 − y2

× x1 + x2
2 + y1 + y2

2 − y1 −
x1 − x2
y1 − y2

× x1)/σ,

a2 = −x1 − x2
y1 − y2

= a1,

b2 = (x1 − x2
y1 − y2

× x1 + x2
2 + y1 + y2

2 − y2 −
x1 − x2
y1 − y2

× x2)/σ = −b1.

When y1 = y2, payoff function (4.11) can be expressed as the following:

E =
∫ +∞

−∞

∫ x1

−∞

1
2πe

− (x−x1)2+(y−y1)2

2σ2 dx dy +
∫ +∞

−∞

∫ +∞

x2

1
2πe

− (x−x2)2+(y−y2)2

2σ2 dx dy

− 1
2( x

2
1

m2 + y2
1
n2 )− 1

2( x
2
2

m2 + y2
2
n2 )

= 2F ( |x2 − x1|
2σ )− 1

2( x
2
1

m2 + y2
1
n2 )− 1

2( x
2
2

m2 + y2
2
n2 ).

(4.12)

Now we are going to find the optimal messages are symmetric by the origin about first
showing that the probability of receiving the correct messages only relies on the distance
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between the two messages, and then proving that with a fixed distance the symmetric
messages will give the minimum cost.

• Given fixed distance between (x1, y1) and (x2, y2), the probability of receiving the
correct message is a constant.

Proof. When y1 < y2, based on the Function (4.11), the probability of receiving correct
messages can be written as

P (x1, y1, x2, y2) = F ( b1√
1 + a2

1

) + F (− b2√
1 + a2

2

)

= 2F ( b1√
1 + a2

1

)

= 2F (
(x1−x2
y1−y2

× x1+x2
2 + y1+y2

2 − y1 − x1−x2
y1−y2

× x1)/σ√
1 + (−x1−x2

y1−y2
)2

)

= 2F ( 1
2σ

√
(x1 − x2)2 + (y1 − y2)2),

(4.13)

which only depends on the distance between (x1, y1) and (x2, y2).

When y1 = y2, the probability is

P (x1, y1, x2, y2) = 2F ( |x2 − x1|
2σ )

= 2F ( 1
2σ

√
(x1 − x2)2 + (y1 − y2)2),

(4.14)

which also only depends on the distance between (x1, y1) and (x2, y2).

• With a fixed distance between (x1, y1) and (x2, y2), referred as 2d, the symmetric
messages about origin will give the minimum cost. More specific, when m = n, the
optimal messages are symmetric about the origin on a circle; whenm < n, the optimal
messages are (d, 0) and (−d, 0).

Proof. Assume that the distance between (x1, y1) and (x2, y2) is 2d, the midpoint of
(x1, y1) and (x2, y2) is (x0, y0), and the angle of the line connecting (x1, y1) and (x2, y2)
with the horizontal line is α. Then (x1, y1) and (x2, y2) can be written as

(x1, y1) = (x0 − d · cosα, y0 − d · sinα),

(x2, y2) = (x0 + d · cosα, y0 + d · sinα).

The optimization problem aiming to minimize the cost function C(x1, y1, x2, y2) =
1
2( x

2
1

m2 + y2
1
n2 ) + 1

2( x
2
2

m2 + y2
2
n2 ), given the distance of (x1, y1) and (x2, y2), can be written
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as the following:

min 1
2

(
x2

0 + d2 cos2 α

m2 + y2
0 + d2 sin2 α

n2

)
. (4.15)

Since (x0, y0), d and α are independent, moving (x0, y0) to the origin will minimize
4.15. We need to discuss the relation between m and n to further minimize cos2 α

m2 +
sin2 α
n2 , which can be rewritten as

1
m2 + sin2 α( 1

n2 −
1
m2 ) (4.16)

If m 6= n, without loss of generality we can assume that m < n, to minimize 4.16,
α = 0. That is to say, |x1| = |x2| = d, y1 = y2 = 0. Similarly, if m > n, then α = π

2
which means that the optimal locations for the messages will be |y1| = |y2| = d and
x1 = x2 = 0. When m = n, α can be any value, so the optimal (x1, y1) and (x2, y2)
are on a circle and symmetric by the origin.

From the above proof, we know that the optimum messages are symmetric about the
origin. Suppose message a is (x, y) and then message b is (−x,−y), based on the function
4.12 the payoff can be written as

E(x, y) = 2F ( 1
σ

√
x2 + y2)− ( x

2

m2 + y2

n2 ). (4.17)

We plot the payoff function and its vector field for both the case m = n and m 6= n in
Figure 4.4. From the plot, we can also tell that when m = n, the best speaker’s strategy sits
on a circle. When m 6= n, for example m > n in Figure 4.4 bottom, optimum message a can
be (x∗, 0) and message b can be (−x∗, 0), which maximize the payoff function. Meanwhile,
we notice that there are saddle points on the y − axis.

4.1.3 Numerical Optimization

Section 4.1.2 gives the analytical solutions for the cases wherem = n andm 6= n respectively.
In this section, we use MATLAB to calculate the numerical results for these two cases.

Equal Feature Effort Parameter 1
n = 1

m

Suppose 1
n = 1

m . As we can learn from Section 4.2.2, the optimum message would be
symmetric about the origin and on a circle, as demonstrated in the Figure 4.5.

Fixing the value of m at 3, we increase the noise amplitude σ from 0 to 1. The radius
of the circle will change with the increase of σ. Figure 4.6 top left shows how the optimal
radius depends on σ for a fixed value of m = n = 3. As σ goes to 0, the radius goes to 0;
as σ increases, the radius first increase to make more effort to raise the chance of receiving
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Figure 4.4: Payoff function in 2D constractive model. Top Left: The value of the payoff
function given m 6= n. Top Right: The value of vector field of the payoff function given
m 6= n. Bottom Left: The value of the payoff function given m = n. Bottom Right: The
value of vector field of the payoff function given m = n.

correct signals, and then decrease after passing some certain threshold since it is too noisy
to improve the communication. Figure 4.6 top right shows that as σ increases from 0 to 1,
the optimized payoff keeps decreasing.

We fix the value of σ at 0.05 and varym. Figure 4.6 bottom left shows how radius depend
on 1

m for a fixed value of σ = 0.05. 1
m is equivalent to the effort parameter k in the 1D

model, since smaller value of 1
m represents that it is less expensive to emit an exaggerated

signal. For small values of 1
m , as we might expect, the radius goes to infinity as 1

m goes
to zero. When 1

m goes to infinity, the radius goes to 0, since the cost if emitting a signal
becomes large compared to the benefit accurate communication. Figure 4.6 bottom right
shows that as 1

m increases from 0 to 1, the optimized payoff keeps decreasing.
The equal feature effort parameter model is analogous to the previous 1D model.
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Figure 4.5: Optimum strategies for speaker in 2D contrastive model, given m = n. For a
given communication environment (with noise level σ and effort parameter m and n fixed),
the optimum strategies for the speaker would be two points on a circle which are symmetric
about the origin. The radius of the circle is determined by the communication environment.

Unequal Feature Effort Parameter 1
n 6=

1
m

Suppose 1
n 6=

1
m . Without loss of generality, we can assume that 1

n < 1
m . From Section

4.2.2 we know that the more expensive features will be never used to distinguish the sig-
nals. Therefore, the speaker only makes effort with the cheaper feature. This case can be
considered as the 1D case.

Figure 4.7 illustrates the optimum in the 2D contrastive model. The solid line represents
the optimal positions of the speaker’s strategy with varying m. When m = n, the two
messages are located on any positions on the solid circle that are symmetric about the
origin. Increasing m, optimal (x1, y1) and (x2, y2) keeps symmetry about the origin, but
are constrained on the x-axis. As m increases, (x1, y1) moves towards the more negative
direction on the x− axis and conversely (x2, y2) moves towards the more positive direction
on the x − axis, which makes sense since as m increases it is more and more cheaper to
generate more exaggerated signals.

Fix the value of n as 2 and m as 3, the optimal strategy will be (−x, 0) and (x, 0). Figure
4.8 top left shows the optimal x with the change of σ from 0 to 1, and top right shows the
optimized payoff is reducing as σ is growing. Figure 4.8 bottom left shows the optimal x
with the change of m from 3 to +∞ with σ = 0.05, and bottom right shows the optimized
payoff is reducing as 1

m is growing. All these phenomenon are analogous to the 1D case.

4.2 Uncontrastive and Contrastive Features

According to [3], different languages have different acoustic cues to distinguish the words.
The paper conducted experiments on three languages, English, Mandarin and Russian. The
results reveals that the vowel quality is the strongest cue for all the three languages, and
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Figure 4.6: Numerical optimum of 2D constractive features model given m = n. Top Left:
The value of the optimal radius for varying σ given m = n = 3. Top Right: The value of
the maximized payoff for varying σ given m = n = 3. Bottom Left: The value of optimum
radius for varying m given σ = 0.05. Bottom Right: The value of the maximized payoff for
varying m given σ = 0.05.

pitch is the secondary cue for the Mandarin and English listeners. But pitch is not important
for Russian listeners. In one language, among various phonetic cues, some cues, like formant,
can be used to contrast different words when other cues, like duration, are not adequate
for contrast. To compare tense-lax vowels in English, spectral difference is the primary cues
and duration can serve as the secondary cue [20].

In one language, we can group its acoustic features into two: one kind of feature differs
between different signals which is contrastive, and the other can not be used to compare
different signals. We called the first kind of feature as contrastive feature and the second is
called uncontrastive feature.

Contrastive features have been studied in Section 4.1. For uncontrastive feature, take
volume as example, there are three properties for this kind of features:
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Figure 4.7: The optimal strategies for the speaker in 2D contrastive model given m ≥ n.
The solid line represents the optimal positions of the speaker’s strategy varying m. When
m = n, the two messages are located on any positions on the solid circle that are symmetric
about the origin. Increasing m, optimal (x1, y1) and (x2, y2) move in the opposite directions
on the x-axis to separate from each other.

• When an unconstrastive feature value is zero, the signal can not be recognized cor-
rectly. If the volume is set to zero, then the receiver can not hear the speaker which
makes the communication fail.

• When noise is increasing, to make the signal better received, the value of the uncon-
strastive feature will increase. For example, people usually speaks more loudly in a
noisy restaurant to have themselves more understandable. And the increase of the
noise in the restaurant will make the original volume less useful.

• The effect of uncontrastive feature is independent among different signals. For exam-
ple, varying the volume will not affect the contribution of duration in distinguishing
different signals.

We combine these ideas by defining a probability function to receive correct signal
according to uncontrastive feature x and the amplitude of noise σ as

P̃ (x, σ) = 1− e−
x
σ ,

which is sketched in Figure 4.9 with multiple values of σ.
We chose this form for P̃ because it means that

• It ranges between 0 and 1 and is positive, which can serve as a distribution function;

• As the feature value x increases, P̃ increases and goes to 1, satisfying the property
(2) of the uncontrastive features;
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Figure 4.8: Numerical optimum of 2D constractive features model given n < m. Top Left:
The value of the optimal x for varying σ given m = 3 and n = 2. Top Right: The value
of the maximized payoff for varying σ given m = 3 and n = 2. Bottom Left: The value of
optimum x for varying m from 3 to +∞ given σ = 0.05. Bottom Right: The value of the
maximized payoff for varying m from 3 to +∞ given σ = 0.05.

• As the feature value x is approaching 0, P̃ goes to 0, satisfying the property (1);

• Most of all, for fixed uncontrastive feature x, with the increase of the noise amplitude
σ the probability P̃ will decrease.

Now, we are going to study the game theoretic model with contrastive and uncontrastive
features. Suppose the contrastive feature is marked as y and standard Gaussian distributed
noise n will be added to the received the contrastive feature, which will be y+nσ. Suppose
the uncontrastive feature is component x. Suppose there are two messages in our game. The
speaker’s task is the same as before, but now it will call the two signals (x1, y1) and (x2, y2)
where x is uncontrastive feature and y is contrastive feature. The receiver needs to select a
value c to distinguish the received value of the contrastive feature.

In the 2D contrastive and uncontrastive model, we assume that the uncontrastive feature
takes the role of helping contrastive feature to more accurately transmit signals. The total
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Figure 4.9: P̃ = 1− e
x
σ , the function describing the probability of uncontrastive feature.

probability to get correct signal based on both contrastive feature and uncontrastive feature
can be the multiplication of the two probabilities. Based on the definition of probability
corresponding to the contrastive and uncontrastive feature in Function (2.3) and (4.18),
the probability to receive correct signals a and b can be defined as the product of the two
probabilities:

P (correct|a) = P (y1 + nσ ≤ c)P̃ (x1, σ)

= F

(
c− y1
σ

)(
1− e−

x1
σ

)
,

(4.18)

P (correct|b) = P (y2 + nσ > c)P̃ (x2, σ)

= F

(
−c− y2

σ

)(
1− e−

x2
σ

)
,

(4.19)

We assume that the contrastive feature y is more expensive than the uncontrastive
feature x. Therefore, for the signal (x, y), the cost function can be defined as

C(x, y) = x2

2 + y2. (4.20)
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The payoff function can be written as

E = P (correct|a) + P (correct|b)− C(x1, y1)− C(x2, y2)

= F

(
c− y1
σ

)(
1− e−

x1
σ

)
+ F

(
−c− y2

σ

)(
1− e−

x2
σ

)
−
[(

x2
1

2 + y2
1

)
+
(
x2

2
2 + y2

2

)]
(4.21)

Solve the optimization problem (4.21) using MATLAB with the change of noise ampli-
tude σ. We can see that Figure 4.10 shows the numerical results of the 2D contrastive and
uncontrastive features. As noise amplitude σ increases, uncontrastive feature x1 = x2 are
increasing, and meanwhile the two signals become more and more distinct in contrastive
feature y1 and y2. After a certain value of σ, both the uncontrastive and contrastive features
begin to decrease. Figure 4.10 right shows that the optimal payoff is decreasing with the
augment of noise.
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Figure 4.10: Optimum strategy in 2D model depending on σ. Left: Optimum for 2D model
with uncontrastive and contrastive feature. Right: Payoff depending on σ.
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Chapter 5

Conclusions

In this thesis, we have developed a method to model the communication between two players
in adverse conditions using game theoretic framework. In the basic model with one phonetic
variable and two messages needed to be sent, we show how the optimum strategies of speaker
and receiver vary with the change of noise and the cost of effort respectively. When noise
increases, the speaker will distinguish the two messages in order to make the receiver be
able to recognize the correct one. After a certain noise level, the speaker gives up make
efforts to distinguish the messages since the noise is large enough and it is not worthy to
make more effort. When it is more and more difficult to make effort, the sender will try
less harder to emit signals. These observations agree with the Lindblom’s H&H theory [22]
that the speaker has to strike a balance between the effort expended in transmitting the
messages and the probability that the receiver can get a correct message.

Moreover, we study how the a priori probability of the potential messages needed to
be sent affects the strategies of the players and the payoff in the game. We found that the
speaker will expend more effort on the message which is more frequently sent. The payoff
in the game with unequally likely sent messages is greater than the payoff in the game with
equally likely messages. When we further expand our two-message model to four-message,
the speaker’s strategies change depending on the noise level and effort parameter in the
similar way as the two-message model. The speaker in four-message game consumes more
phonetic space than the two-message model, which is in accordance with the Adaptive
Dispersion Theory [21].

We then consider a communication model which handles two phonetic variables. When
it is equally diffifcult to make effort on both of the two phonetic features, the messages will
locate on a circle and be symmetric about the center. If it is easier to exert energy on one
feature, then the speaker will not make any effort on the more expensive feature.

Finally, we define contrastive features as the ones which can be used to distinguish dif-
ferent messages, and the uncontrastive features can assist contrastive features to distinguish
signals but can not distinguish messages barely on themselves. When the noise is increasing,
the uncontrastive features of the two signals are identical and both are increasing, while
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the contrastive features of the two signals are keeping away from each other. Similarly to
the 1D case, when the noise passes a certain value, the two features of each signal begin to
decrease.
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