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Abstract

Online multimedia communication services such as Skype and Google Hangouts, are used
by millions of users every day. They have Service Level Agreements (SLAs) covering various
aspects like reliability, response times, and up-times. They provide acceptable quality on
average, but users occasionally suffer from reduced audio quality, dropped video streams,
and failed sessions. The cost of SLA violation is low customer satisfaction, fines, and even
loss of business. Service providers monitor the performance of their services, and take cor-
rective measures when failures are encountered. Current techniques for managing failures
and anomalies are reactive, do not adapt to dynamic changes, and require massive amounts
of data to create, train, and test the predictors. In addition, the accuracy of the these
methods is highly compromised by changes in the service environment and working con-
ditions. Furthermore, multimedia services are composed of complex software components
typically implemented as web services. Efficient coordination of web services is challenging
and expensive, due to their stateless nature and their constant change. We propose a new
approach to creating dynamic failure predictors for multimedia services in real-time and
keeping their accuracy high during run-time changes. We use synthetic transactions to gen-
erate current data about the service. The data is used in its ephemeral state to create, train,
test, and maintain accurate failure predictors. Next, we propose a proactive light-weight
approach for estimating the capacity of different components of the multimedia system,
and using the estimates in allocating resources to multimedia sessions in real time. Last, we
propose a simple and effective optimization to current web service transaction management
protocols.

We have implemented all the proposed methods for failure prediction, capacity estimation,
and web services coordination in a large-scale, commercial, multimedia system that pro-
cesses millions of sessions every day. Our empirical results show significant performance
gains across several metrics, including quality of the multimedia sessions, number of failed
sessions, accuracy of failure prediction, and false positive rates of the anomaly detectors.

Keywords: Real-time Failure Prediction; Quality of Service; Multimedia Services QoS;
Multimedia Capacity Planning; Real-time Transaction Control, Real-time Anomaly Detec-
tion.
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Chapter 1

Introduction

In this chapter, we introduce the problem space we are addressing in the multimedia com-
munication services. We provide a brief description of the use cases we focus on, the typical
problems facing these use cases, and we summarize the contributions of this research as well
as its organization.

1.1 Overview

Online services have Service Level Agreements (SLAs) covering various aspects of the service
such as reliability, response times, and up-times. For example, Amazon has a stated up-time
of 99.95% SLA, and 3Tera has a 99.999% availability SLA. The cost of not meeting these
SLAs is not only low customer satisfaction, but a heavy price tag due to fines and loss of
business. It is estimated that the annual downtime cost of IT systems in North America is
about $26.5 billion [1].

We focus on multimedia services, as a class of online services, where real-time Quality
of Service (QoS) has the most impact on the success of the service. Examples of online
multimedia services include Skype, Google Hangouts, and WhatsApp. An online multime-
dia service is composed of client applications and online cloud infrastructure deployed in
multiple data centers around the world, and it uses the Internet as the backbone for com-
munications, as illustrated in Figure 1.1. When a user calls another, a client application
initiates the session and invokes an online service endpoint in one of the data centers. This
endpoint manages the session by invoking many other sub-services, referred to as compo-
nents, including identity verification, call management, media adaptation, session routing,
experimentation, and advertising. Instances of these components are created and provi-
sioned on different data centers. The perceived quality of the session is directly impacted
by the performance of these components. Therefore, if we monitor these various compo-
nents in real-time to assess their current performance and predict any failures before they
happen, we can significantly improve the quality observed by users. This can be achieved
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Figure 1.1: High-level architecture of multimedia communication services.

by routing the sessions and multimedia content through the components and data centers
that currently have the highest performance and reliability.

The functions of large-scale multimedia communications services, such as user authen-
tication, telemetry, media encoder, dejitter, decoder, storage, and renderer are complex
and composed of many software components as illustrated in Figure 1.2. These functions
are implemented using various programming languages, run on different data centers, and
could be offered by different, internal or external, organizations. One common approach
to handle the complexity of large-scale multimedia systems is to design various functions
as web services that are accessed via standard protocols and interfaces such as RESTful
APIs [2]. To serve a request such as create a video conferencing session, the system needs
to construct and manage distributed transactions involving various web services, while en-
suring that resources are not wasted nor over-committed, consistency is always maintained,
and concurrent transactions do not interfere with each other. Web services are stateless in
nature, which makes handling distributed transactions across multiple web services complex
and expensive. This is exacerbated by the dynamic nature and continuous updates of web
services [3, 4, 5]. For example, new codecs can be added as new web services, which a mul-
timedia communication service needs to consider without breaking the client code calling
the multimedia system.

A key component in the QoS of multimedia services is managing failures in real-time.
A failure is an observed deviation of a component from its expected behavior [3]. For
example, consider some users having a video conference call using Skype, where they share
a presentation and exchange messages. Users expect the audio and video streams and
the shared presentation to work properly without failures such as intermittent audio, video
glitches, and lost slides. Failure management, a term we use to refer to all aspects of dealing
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with failures, plays a key role in the reliability of online multimedia communication services.
It includes service monitoring, failure prediction and detection, root-cause analysis, all the
way to failure handling and prevention. We focus on end-to-end (e2e) real-time service
health monitoring, failure prediction, and making real-time decisions about component
selection and routing paths to enhance the reliability and quality of interactive multimedia
communication services.

Current approaches for failure management in multimedia communication services, and
online services in general, are mostly reactive [6, 7]. For example, Hystrix of Netflix monitors
the system for failures in real-time. It has an excellent ability to capture failures and prevent
them from propagating and impacting the rest of the system. However, it captures the
failures after they happen and impact the system. The creation of a failure predictor is
complex and time consuming, and is not suitable for real-time management [8, 9]. The
same approaches are used for internal service capacity management. Capacity planning
and management are actually part of the e2e fault to failure management. Therefore,
the generation of failure predictors and capacity estimators take place before the run-time
lifecycle of the online service. The resulting predictors and capacity estimators are built
for certain service configurations and working conditions like the number and performance
of audio de-jitters and video transcoders. If these configurations change, the predictors
and capacity estimators may no longer be accurate. For example, a predictor and capacity
estimator could be designed for a video encoder that is able to encode N videos per minute
and it fails beyond that. If the administrator adds more resources to the encoder so that it
can handle 2 × N videos per minute, the predictor would likely continue to predict failure if
the number of videos per minute approaches N , not 2 × N , and the capacity management
system would not be able to route video calls effectively to these new services. In this
work, we call these predictors and capacity estimators static, because they do not adapt
to changes in the service functionality or the provisioned resources.

In addition, current approaches for online transactional completeness, correctness, and
efficiencies such as the protocols in [10, 11, 12], and their implementations in the OASIS

3



projects [13] for managing distributed transactions in web services are not efficient, can
lead to substantial waste of resources, and result in reduced multimedia session capacity
and quality. The inefficiency is mostly due to a limitation in current protocols that prevents
the system from selectively adding and removing individual web services in a distributed
transaction without incurring high overhead. To accommodate the dynamic and stateless-
ness nature of web services, current protocols may make the system include unnecessary
web services in each distributed transaction. Unnecessary web services for a transaction
are those that will not contribute to the successful execution of that transaction. Since
web services do not implement transaction rollback [13], the system must issue compensat-
ing transactions to reclaim the unused resources and maintain consistency. Compensating
transactions are difficult to implement and take long time in real scenarios [13], which result
in higher client latency, reduced multimedia session quality, and higher failure rates.

1.2 Thesis Contributions

In the following, we summarize the contributions of this thesis [2, 3, 14, 15]. The evaluation
of the thesis contributions is done on actual deployments of online services. The service
environment and evaluation setup are described in details in each of Chapters 3 through 6.

1.2.1 Real-time Online Service Failure Predictions

Creating online failure predictors, including data generation, data mining, predictive analy-
sis, training, testing, and deployment are complex, costly, and lengthy operations. Because
of that, these operations are done in the offline cycle of online services. To do these oper-
ations during the real-time portion of the service lifecycle requires these operations to be
focused, and done in a short amount of time. The accuracy of the resulting predictive mod-
els is highly compromised by changes that affect the environment and working conditions
of the predictor; hence, it is not sufficient to create failure predictors in real-time, but an
effort is needed to keep the predictor up to date with changes in the service in real-time.

Online service failure prediction faces the problems of collecting relevant data about
the current deployment of the service, building real-time correlations between the inputs,
system states, and outputs, and keeping the online failure predictor up to date with the
changes in the service. The state of the art approaches to addressing these problems rely
on gathering failure data from the logs of the service and building predictive models using
that data [7].

We present a new approach to creating dynamic failure predictors for online services
in real-time and keeping their accuracy high during the service’s run-time changes. We
use synthetic transactions during the run-time lifecycle to generate current data about the
service. This data is used in its ephemeral state to build, train, test, and maintain an
up-to-date failure predictor. We implemented the proposed approach in one of the large
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scale ad services run by Microsoft that processes billions of requests each month in six data
centers distributed in three continents. We show that the proposed predictor is able to
maintain failure prediction accuracy as high as 86% during online service changes, whereas
the accuracy of the state-of-the-art predictors may drop to less than 10%.

This work has been published in the IEEE INFOCOM conference (INFOCOM’15) [3].

1.2.2 Capacity Estimation for Multimedia Services

Building on the real-time failure prediction work for online multimedia communication
services, we address the problem of improving the QoS in multimedia services in real-
time. Similar to current failure prediction approach in current online service, capacity
planning for online multimedia services is done offline due to the high cost of its creation
and maintenance.

Online multimedia communication services go through many changes during their run-
time lifecycle that are hard to predict in advance. These changes cause the existing schemes
of the service capacity management, load balancing, and traffic routing to go out of date.
This results in many failures observed by customers that can be avoided if the service
capacity plans are maintained up to date with the latest changes in the service. The state
of the art approaches to multimedia service capacity management are reactive in nature,
and are built using log data that represent previous deployments of the services. In many
cases those logs are no longer relevant to the current service, which make the capacity
models created based on them irrelevant and ineffective [16].

To address the problem of enhancing the QoS of multimedia services in real-time, we
present a novel proactive approach for estimating the capacity of different components of the
system and for using this capacity estimation in allocating resources to multimedia sessions
in real time. The proposed approach is called Proactive QoS Manager. We implement
the proposed approach in one of the largest online multimedia communication services
in the world and evaluate its performance on more than 100 million audio, video, and
conferencing sessions. Our empirical results show that substantial quality improvements
can be achieved using our proactive approach, without changing the production code of the
service or imposing significant overheads. For example, in our experiments, the Proactive
QoS Manager reduced the number of failed sessions by up to 25% and improved the quality
(in terms of the Mean Opinion Score (MOS)) of the succeeded sessions by up to 12%. These
improvements are achieved for the well-engineered and highly-provisioned online service
examined in this work; we expect higher gains for other similar services.

This work has been published in the ACM Multimedia conference (MM’15) [14].

1.2.3 Dynamic Anomaly Detection in Multimedia Services

To complete the multimedia service reliability work, we address the problems facing mul-
timedia service input anomaly detection in real-time. Similar to multimedia service failure
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prediction, capacity estimation, and transaction web service coordination, multimedia ser-
vice input anomaly detection is usually done offline. In addition to the reactive nature of
this approach, the key problem with current anomaly detection and handling techniques
is that they have fixed reaction to anomalies and cannot adapt to service changes in real-
time. In current techniques, historic data from prior runs of the service are used to identify
anomalies in the service inputs like number of concurrent users, and system states such as
CPU utilization. These techniques do not evaluate the current impact of anomalies on the
service. They may raise alerts and take corrective measures on these anomalies even if the
anomalies do not cause SLA violations. Alerts and their corrective measures are expensive
from a system and engineering support perspectives, and should be raised only if needed.

Multimedia communication services utilize advanced protocols that can detect and iden-
tify anomalies in their inputs and system states. The problem with existing protocols is that
they do not identify nor study the impact of the anomalies on the system before alerting
and taking corrective measures when an anomaly is encountered. This results in many false
positives in the system. If the service provision changes, which happens often in modern
online services, anomaly detectors do not get updated in real-time. This may result in
higher rates of false positives and/or false negatives, and thus high waste in the service
resources. The state of the art approaches to managing anomalies focus on producing more
accurate anomaly detection protocols that favor recent observations and the their observed
periodicity, but they do not study the impact of the anomalies on the current deployment
of the service [17, 18].

We propose a dynamic approach for handling service input and system state anomalies
in multimedia services in real-time, by evaluating the impact of anomalies, independently
and associatively, on the service outputs. Our proposed approach alerts and takes corrective
measures if the detected anomalies result in SLA violations. We implement the proposed
approach in a Microsoft Skype Data Services, and we show that the proposed approach is
able to reduce the number of false positives in anomaly alerts by about 71%, reduce false
negatives by about 69%, enhance the accuracy of anomaly detection by about 31%, and
enhance the media sharing quality by about 14%. The recall in the data generated by the
synthetic transactions is 100%.

This work has been published in the ACM Multimedia Systems conference (MMSys’18)
[15].

1.2.4 Efficient Web Service Coordination for Multimedia Services

Efficient coordination of web services is challenging and expensive, due to the stateless
nature of web services, and because web services change over time. The existing protocols
implementing web service transactions are inefficient. They waste resources due to their
inability to selectively add/remove individual web services in transactions without incurring
high overhead that affects the quality of multimedia sessions.
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Online multimedia services tend to defensively include many web services in the trans-
action, even if some of those web services are not need in the transaction. This results in a
high number of unnecessary compensating transactions when failures are encountered. The
result is wasted resources and higher number of session failures. The state of the art efforts
attempt to mask the problem by optimizing existing protocols to make them faster and less
error prone [13].

To address the problem of efficient coordination of multimedia web services in real-time,
we propose a simple and effective optimization to current web service transaction manage-
ment protocols that allows individual web services to selectively participate in distributed
transactions they contribute to. We implemented the proposed approach in one of the
largest multimedia communication services in the world, and found that it enhances the
throughput of transactions by 36%, reduces failure rate by 35%, improves multimedia qual-
ity (Mean Opinion Score (MOS)) of succeeded transactions by 9%, and reduces the overall
time required by all transactions by 35%.

This work has been published in the ACM Network and Operating Systems Support for
Digital Audio and Video Workshop (NOSSDAV’16) [2].

1.3 Thesis Organization

The chapters of this thesis are organized as follows. In Chapter 2, we present a brief
background on online service reliability, and the classes of problems we address in this thesis.
In Chapter 3, we propose a dynamic approach for creating, training, and maintaining an
online service failure predictive model in real-time. In Chapter 4, we utilize the principles
we introduce in Chapter 3 to estimate the maximum capacity of online multimedia services
in real-time, and we build a capacity map that advises the service on the optimum load
distribution per service component to avoid online service failures. In Chapter 5, we study
the impact of anomalous multimedia service inputs and system states on the output of the
service. We build a map of impactful anomalous content that results in SLA violations. In
Chapter 6, we introduce the concept of dynamic online web service coordination to allow
the multimedia service components to selectively join online distributed transactions that
implement e2e scenarios like video calls. We conclude the thesis and discuss potential future
work in Chapter 7.

1.4 Summary

In this chapter, we introduced the quality of service (QoS) challenges facing online multi-
media communication services. We described a typical use case of multimedia services and
the potential points of failures in the e2e system. We summarized the problems facing each
aspect of online multimedia communication services and the state of the art approaches to
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addressing them. We pointed out the specific challenges we focus on in this thesis, and we
summarized our contributions.
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Chapter 2

Background

In this chapter, we present the basics of online services and their reliability, as well as
introduce the key state-of-the-art techniques, in research and industry, for addressing online
service reliability issues. This includes a brief introduction to the types of online and cloud
services, the classes of service reliability problems, and the key approaches to managing
failures in realtime.

2.1 Online Services

Online services refer to the class of software functionality that is provided and hosted
on the cloud. Online services cover almost all aspects of used software in today’s world.
Examples include multimedia communication services like Skype and WhatsApp, social
services like Facebook, YouTube, and Twitter, financial services like online banking and
credit card services, travel services like Expedia and Travelocity, academia services like
online universities, and Customer Relationship Management (CRM) services like SalesForce
and Mirosoft Dynamics. These services can be accessed directly using generic web browsers,
or through client software apps running as mobile, desktop, and/or web applications. These
access modes as well as the type of functionality provided by the online service, define to
the type of cloud computing used. Infrastructure As A Service (IaaS) offers services
like Virtual Machines as an abstraction of physical resources (e.g., computing devices and
storage). Sample providers include Oracle VM [19] and Microsoft Hyper-V [20]. These
providers offer computing machines like Windows 10 Server and Linux Ubuntu Server. The
goal of IaaS is to provide physical resources that can host operating systems and applications
without having users actually own nor manage any of the physical components.

Platform as a Service (PaaS) is another class of cloud services. The key offer in PaaS is
an abstraction of computing and development platforms; for example, the combination of
IaaS and operating system, programming language, and database server. Sample providers
include Amazon Web Services (AWS) [21] and Microsoft Azure [22]. They offer platforms
like Windows 10 server, Visual Studio 2015 Enterprise, and SQL Server 2016. The goal of
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PaaS is to enable developers to build software services without worrying about owning nor
maintaining the platform hosting the service.

The last cloud service we cover is Software as a Service (SaaS). The key offers in SaaS
include specialized software functionality like multimedia communications. The service is
hosted on the cloud, and provided on-demand. SaaS enables customers (enterprise and
consumer) to use/purchase services conveniently from any place where there is Internet
connectivity. Users call the SaaS functionality, and request the specialized service, like
making a call to another user. To provide a bit of motivation for the importance of the area
of SaaS, it is estimated that the sales of SaaS in north America will be in excess of $300
billion by end of 2018 and will continue to grow year after year, as reported by Gartner [23].
The estimated number of customers of social media alone, as a class of SaaS, is more than
2 billion users. SaaS provides an abstraction of specialized business processes like banking
system, retail shop, travel agency, and multimedia communication. Sample SaaS providers
include Skype, YouTube, Amazon, and Expedia.

In this thesis, we focus on SaaS, and take Multimedia Services like Skype and What-
sApp as representatives of this class of online services. A typical interactive multimedia
communication service includes client applications and an online cloud service deployed in
multiple data centers around the world, and it uses the Internet as the backbone for com-
munications. A high-level diagram of an interactive multimedia communication service is
depicted in Figure 1.1. When a user calls another user, the session is routed to the closest
data center. The session may be composed of audio, image, and video streams. Each data
center implements an instance of the multimedia communication service that is able to
handle all streams in a session. Each data center implements a service routing and selection
component. If the data center is able to handle the session, it routes all aspects of the
session to its internal components. If the data center is able to handle part of the session,
e.g., the audio but not the video stream, it routes the video stream to another data center.
Thus, a multimedia communication session may have all its streams going through the same
path from the source to the destination, or may have some of the streams of the session go
through different paths.

Before we end this section, we describe the most commonly used mechanisms in online
service communications, and call out the mechanism we will use throughout our research.
To call SaaS services, clients use one of the following Application Programming Interfaces
(APIs): (1) Remote Procedure Calls (RPCs), (2) Messages, or (3) Resource APIs.

In RPC APIs, clients, or applications running on end user devices, call the multimedia
services by executing a remote procedure over the HTTP protocol; for example a client
may call authentication services, pass encrypted user ids and passwords, and wait for a
procedure response indicating successful authentication and authorization. In Message
APIs, known as Document APIs, clients exchange messages with remote systems without
coupling to remote procedures, like RPC systems. Voice transcription from wearable de-
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vices is an example of this type of communication. The prominent technology in such a
transport mechanism is SOAP and XML, as well as WSDL and XSD. Lastly, in Resource
APIs, clients provide and consume objects managed by the remote service. For example, a
communication application makes a video sharing resource API call, to share a video with
another using similar client application. The prominent technology used in this stack is
REST APIs. REST is becoming the de facto technology in the majority of SaaS services.
We use REST APIs to call all services we work with.

2.2 Online Service Reliability Types

Online service reliability covers both functional and non-functional areas of the service.
Functional areas include the actual functionality of the service like buying a product online
and making a video call between users. The non-functional areas include all other aspects
of the service like availability, scale, and performance.

Functional reliability covers two main concerns: (1) Correctness and (2) Complete-
ness. For example, functional reliability ensures the multimedia video call between two
clients takes place correctly between the two intended clients. Service correctness and com-
pleteness are generally addressed through software quality assurance and testing. This
includes unit tests, build tests, stress tests, functionality tests, multithreading safety, con-
currency and access control, authentication and authorization, and debugging tools.

Non-Functional reliability covers three areas: (1) Availability (e.g., Uptime, Down-
time), (2) Scalability (e.g., Number of Users, Requests per Second), and (3) Performance
(e.g., Response Time, Video Quality). SaaS online service providers define Service Level
Agreements (SLAs) with their customers covering all aspects of non-functional reliability.
A typical SLA includes clauses like Service Availability with guaranteed uptime of 99.99%,
100 concurrent users, video quality of MOS 4+, lag time of up to 1 second, and response
time of up to 250ms. As an example, here is the service level agreement of Google’s G Suite
[24].

In this thesis, we focus on the non-functional reliability aspects of the service. The
importance of this area cannot be over stated. The implications of poor service reliability
are high fines, customer dissatisfaction, and potentially loss of business. It is estimated that
in North America alone, the cost of SaaS downtime is in order of tens of billions of dollars
annually [25].

2.3 Classes of Online Service Problems

Given our focus on the non-functional aspects of the service, we present the four classes of
problems in this area, as found in research and industry [6]:
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• Fault: A fault is a problem with a device that makes it behave unpredictably. A
fault can be temporal, transient, intermittent, or permanent. A bad hard disk is an
example of a fault.

• Error: An error is the direct consequence of a fault. Errors are the deviation from
the expected state. Errors can be detected or go undetected. Errors are usually
represented as error messages. For examples, attempting to access a faulty hard disk
results in a "hard disk not available" error message.

• Symptom: A symptom is the out-of-norm behavior of a system parameter. Symp-
toms are caused by errors. Symptom examples include disk save operation taking too
long.

• Failure: A failure is the deviation from the expected/correct service behavior and is
observed by the user or dependent systems. SLAs are provided to define what users
should see as a failure. SLAs are defined for the services output, not the internal
implementation or internal state of the service that is not observed or discoverable
by an end user. Examples of failures include video lag time more than one second or
video quality below MOS 4, if the SLA defined for lag time is sub-second and video
quality is MOS 4 and 5. In this work, failure is used to refer to these types of SLA
violations. In other words, the service itself could function correctly, but it violated
the SLA with its customers for any aspect of its non-functional reliability.

2.4 Failure Management

In a nutshell, the goal of every failure management system is to operate the service with no
failures. This is done by preventing, avoiding, and/or hiding failures from being observed by
the end users. The end user can be either a customer or a dependent system that consumes
the services.

Failure management includes service monitoring, anomaly detection, failure prediction,
and failure prevention through avoiding or hiding.

2.4.1 Service Monitoring

Service monitoring refers to the techniques used to quietly read the system state and activ-
ities. Service monitors compare the service input, system state, and service output values
they read with benchmark/reference values to determine SLA violations. The reference
values are found from previous runs of the service, or defined by the rules and SLAs of the
service.

Service monitoring provides situational awareness about the service, i.e., what is hap-
pening in the service and its components now. The service and its components are called
through their REST APIs to measure the system states like CPU and memory utilization,
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and service state like number of open sockets. Service monitoring can be used for all aspects
of service reliability, but it is most commonly used to monitor the symptoms which are the
side effects of uncharacteristic functionality of the service.

Many research threads stress the criticality of real-time monitoring of service compo-
nents. Pietrantuono et al. [3] argue that the ability to monitor a system at runtime and to
be able to give estimations about its dependability trend is key to implementing strategies
aiming at predicting, and thus proactively preventing system failures. Cotroneo et al. [14]
suggest the use of fault injection to make sure that no faults go undetected is a sound way of
monitoring. They consider this as a proactive approach and the goal is to improve produc-
tion log effectiveness. Salfner et al. [26] stress the need for monitoring as a key mechanism
to know what is happening in the service in real-time.

It is hard to achieve real-time monitoring. Many systems in research and industry are
classified as real-time even though they use logging and offline reporting. By using logs,
the process of finding failures and then taking actions requires at least hours if not days
[3]. Logs are complex and hard to mine, and it takes hours for the analysis and results of
the data to be available for use. Logs are voluminous and are not helpful in many cases
because of their large scale [8]. Preprocessing logs to get them to a stage where they are
usable in prediction models is tedious and expensive [8, 27].

A key problem with approaches using logging for monitoring is that they are reactive;
i.e., failures need to happen first before action is taken. Realizing that failure is the norm
in massive online service infrastructures, Hystrix of Netflix [7] aims at isolating points of
access to remote systems, services and 3rd party libraries, to stop the cascading of failures.
Salfner et al. [26] report that monitoring symptoms and failures is a simple operation, and
to be effective it cannot be built on heavy analysis and reporting work in logs, as that will
take them to the offline realm, hence the need for failures to occur to accurately report
them.

2.4.2 Anomaly Detection

Anomaly detection aims at identifying the service inputs that do not conform with the ex-
pected pattern, and finding the values of the service inputs, component working conditions,
and system states that deviate from the expected values. The expected values can be found
from prvious runs of the service or by the rules of the service [17]. For example, an ad in a
video call is expected to last a few seconds before it is registered as a billable impression.
If ad impressions are swapping at rates of more than one ad per second then that’s an
anomaly that indicates ad fraud, and warrants alerting and taking corrective measures such
as blocking the ad source.

Current approaches for anomaly detection range from mathematical and data-driven
machine learning approaches to system and implementation-based methodologies. Chan-
dola et al. [17] present a survey of the available anomaly detection techniques and their

13



applications. Anomaly detection based on machine learning techniques use either: (1) his-
toric data about the system at hand, or (2) rule-based approaches. The output of the state
of the art anomaly detection techniques used in online services is in the form of a set of
static boundary conditions on the service inputs and its system states [14]. Outliers in such
models are considered anomalies even if they do not result in any scenario failures. The key
issue with almost all machine learning approaches is their dependence on large amounts of
data to create, train, and test new models [14].

The use of system logs for anomaly detection entails high cost. The cost is associated
with preprocessing the data. The data preparation time is generally too high to make
these approaches suitable for real-time changes and updates [3]. The majority of anomaly
detection using machine learning approaches rely on service production logs to find the
ranges of service inputs and system working conditions that can be studied to identify the
outlier boundaries [17]. Data in logs may not be sufficient for mining, analysis, and anomaly
detection models [26]. The resulting anomaly detection models created based on logs from
prior runs may not accurately represent the current system at hand [14].

The reactive nature of using logs in anomaly detection is a problem. Even with online
system-monitoring-based approaches, like that used by Hystrix of Netflix, the monitoring
is still reactive, as the anomalies and failures need to happen and customers endure them
before they are controlled [7]. Leners et al. [28] use failure informers to improve availability
of distributed online systems; but these are reactive in a sense, as they are built using system
messages found in production logs from prior runs of the service, not from the current
service in real-time. System-based approaches for real-time service failure prediction [3],
and service capacity estimation [14] are used to address the problem of getting real-time
data that represent the current service, and they use that data to predict service failures
and SLA violations.

2.4.3 Failure Prediction

Failure prediction aims at anticipating or forecasting the occurrence of event values that
constitute an SLA violation; i.e., an output that deviates from the expected service output.
By predicting future failures before they happen, services can take actions to prevent them.
Failure prediction focuses on the service output events that constitutes an SLA violation,
like Time to Add Product to Cart, Ad Rendering Time, and Travel Ticket Booking Time,
and attempt to prevent them.

The majority of failure prediction techniques found in the state of the art literature
and industry applications are based on production logs, just like those techniques used
for anomaly detection and service monitoring. Data generation is mainly done through
execution of real transactions, and data collection is through writing the transaction and
its results to logs [8]. Li et al. [4] propose WebProphet and the use of parental dependency
graph to encapsulate web object dependencies to implement web page load predictions. The
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data generated and collected for WebProphet is done through service logs. Viswanathan
et al. [29] develop semantic framework for data analysis to enhance the performance of
networked systems, and logging is the mechanism of collecting data about the system.
We note that all efforts related to our work of failure prediction depend on some form of
logging for later analysis, and act on failures after they happen. Considerable effort is put
to enhance the performance of mining the logs [3].

Data mining and machine learning techniques used in creating failure predictors require
data to be in some structure [8]. Many efforts have focused on enhancements of production
logs by adding structure through the use of meaningful logging. Zheng et al. [30] suggest
event categorization and filtering of logs to overcome their lack of structure and lack of
usability for data mining. Xu et al. [8] attempt to identify problems with production logs
of distributed systems, and suggest methodologies to enhance the performance of mining
the logs by automatic matching of log statements. Cohen et al. [31] describe how failure
prediction models are built to identify and study the root-causes of failures. They propose
techniques to categorize the faulty execution results found in the logs, before building failure
prediction models based on them. They propose the use of indexing and clustering of system
histories to correlate with failures.

To perform root-cause analysis, failure predictors aim at analyzing the execution path
structures that lead to failures. This is done by using instrumentation data from online
servers to correlate bad performance and resource usage. Sambasivan et al. [32] implement
path tree comparisons, comparing and cross-correlating data from different sources in the
service, as means of predicting the paths that lead to failures. This effort is expensive and
hard from service logs.

2.5 Summary

In this chapter, we presented a brief background on online services, taking multimedia com-
munication services as the emblematic case study. We described the basics of online service
designs and models, the types of reliability challenges facing online services, the classes of
online service problems. We described online service failure management approaches and
summarized the key efforts found in each area. In the following chapters, we will focus on
each one of these failure management problems, and present our work to solve it.

The scope of this research is the real-time analysis and management of online service
failures. As such, it doesn’t cater for deeper or longer analysis of failure management. The
latter is part of the analysis and management done using the holistic data set from the
service logs. The real-time components of the failure management aim at identifying the
current and trending conditions that lead to SLA violations in specific scenarios of interest,
like video quality.
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Chapter 3

Real-time Failure Prediction in
Online Services

As described in Chapter 2, failure management addresses the areas of service monitoring,
failure prediction, and anomaly detection. In this chapter, we focus on failure prediction in
the run-time lifecycle of the service. We present the key approaches for failure prediction
in online services, discuss their shortcomings, and propose a new approach to addressing
these shortcomings.

3.1 Introduction

There are several approaches to create an online service failure predictor. These include
statistical methods like Bayesian, decision rules methods like decision-trees, artificial intelli-
gence methods like neural-networks, and cluster analysis methods like clustering algorithms
[33, 34]. The predictor generation entails: (1) generation of data about the system; including
its inputs, working environment, and outputs, (2) collection of this data into containers like
log files to be used later, (3) pre-processing and analysis of the data to exclude extraneous
data, and organize the remaining impactful data into usable data models like dimensional
models [35], (4) designing of prediction algorithm(s) and system(s), (5) training the pre-
dictor, (6) testing it, and (7) deploying it in production to be used in failure prediction in
the online services. These steps are lengthy, complex, and time consuming [8, 9]. Thus,
they usually take place before the run-time lifecycle of the online service. The resulting
predictor is built for certain system configurations and working conditions like the amount
of available resources and their performance characteristics, e.g., the number of routers and
their throughput, and the number of database systems and their sizes. If these configura-
tions change, the predictor may no longer be accurate. For example, the predictor could
be designed for a database system that meets its throughput SLA when it encounters up
to N concurrent requests per second, and it fails beyond that. If the system administrator
adds a performance enhancing database cluster to the database system where now it can
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handle up to 3 × N requests per second and still meets its throughput SLA requirements,
the predictor would likely continue to predict failure if the requests per second approaches
N not 3 × N . In this chapter, we call these predictors static predictors, because they do
not adapt to changes in the service functionality, the system resources, or other changes.

Furthermore, data mining techniques used to generate failure predictors require high
volumes of data to reach high prediction accuracy [8, 27, 34]. Current data mining tech-
niques de-emphasize the system under study, by treating it as a black box, and focus on its
inputs, outputs, and working conditions to build the failure predictor models. These char-
acteristics of current data mining techniques make them not suitable for real-time creation
and updates. Static predictors work well within environments that do not change often;
such as transportation systems like airplanes and navy ships, engineering systems like fac-
tories and assembly lines, and software systems like games. On the other hand, modern
online services lack such stability over time at many levels including functionality, designs
and implementations, and service hardware provisions to accommodate the changing user
requirements and loads over time. The ever-changing landscape of online services, coupled
with requirements such as continuous up-times, make the use of static failure predictors
challenging and less efficient.

We propose a new approach to failure prediction in online-services during their real-time
lifecycle that overcomes the problems noted above. Real-time refers to the runtime lifecycle
of the service, where the service is in production and is being used by real customers. We use
synthetic transactions during the service real-time lifecycle to generate current data about
the service. This data is used in its ephemeral state to build, train, test, and maintain an
up-to-date failure predictor. We evaluate the effectiveness of the proposed approach on a
large-scale enterprise backend ad service. The service handles over 4 billion ad requests a
month. We show that during the production phase where the service goes through changes,
our approach is able to maintain high prediction accuracy average of 86%, whereas the
prediction accuracy of current state-of-the-art predictors may drop to less than 10%. The
recall of the data generated by our synthetic transactions is 100%. Recall in this context
refers to the percentage of the generated data that is relevant and used. In contrast, the
recall in the production logs is less than 2%. In addition, we show that we can update
the predictor in real-time in less than 7 minutes; this includes generating data, creating
the predictor, training it, and testing it. On the other hand, building a failure predictor
using typical data mining techniques for the same service by using production logs requires
about 5 weeks of production running and logging, and it takes more than 17 hours of
pre-processing, training and testing.

The contributions of this chapter are (1) a novel approach to build real-time failure
predictors, (2) a light-weight data mining algorithm for failure predictors in online services,
and (3) the actual implementation and deployment of the proposed approach in a real online
service environment.
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3.2 Related Work

We summarize the current approaches for creating failure predictors based on production
logs. Then we discuss the need to have failure prediction in online services, and the key
efforts done there.

3.2.1 Handling Production Logs

Quite a few research efforts emphasize the problems encountered in building accurate data
mining models based on production logs. First, logs are complex and hard to mine [8].
Second, data in the logs may not be sufficient for data mining [8, 27]. Third, pre-processing
the logs to get them to a state where they are usable in prediction models is tedious and
expensive [8, 30]. Snyder et al. [27] argue that the insufficiency of log data causes problems
for mining them because data in the logs are extraneous, and it is hard to identify the
relevant pieces that are needed in the data mining process. Xu et al. [8] describe the
voluminous nature of data in production logs, and show that logs are not actually helpful
in many cases, because of their large volume. Chen et al. [36] study the application of
machine learning to logs of faulty executions to predict the root cause of failures. Their
Pinpoint model requests paths in the system to cluster performance behaviors, and identify
root causes of failures and anomalous performance. Pre-processing of system logs to prepare
them for analysis and mining is studied by Salfner et al. [26].

The research threads above describe the problems with production logs that make them
hard to work with, especially in real-time. They aim at alleviating some of the problems
and symptoms, but come short of reducing the cost of processing production logs to levels
that are suitable for real-time analysis and mining. These limitations show the need to
produce a real-time predictor that does not depend on production logs.

3.2.2 Online Service Failure Prediction

Data mining and machine learning techniques used in creating failure predictors require data
to be in some structure [33, 34]. Many efforts have focused on enhancements of production
logs by adding structure through the use of meaningful logging [37]. Zheng et al. [30]
suggest event categorization and filtering of logs to overcome their lack of structure and lack
of usability for data mining. Xu et al. [8] attempt to identify problems with production logs
of distributed systems, and suggest methodologies to enhance the performance of mining
the logs by automatic matching of log statements. Cohen et al. [31] describe how failure
prediction models are built to identify and study the root-causes of failures. They propose
techniques to categorize the faulty execution results found in the logs, before building
failure prediction models based on them. They propose the use of indexing and clustering
of system histories to correlate with failures. Leners et al. [28] propose an algorithm to
improve availability in distributed systems by using failure informers. The failure informer
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is a reporting service that is built based on mining and analyzing the system messages in
the logs.

In addition to root-cause analysis, failure predictors aim at analyzing the execution
path structures that lead to failures. This is done by using instrumentation data from
online servers to correlate bad performance and resource usage. Sambasivan et al. [32]
implement path tree comparisons as means of predicting the paths that lead to failures.
Realizing that failure is the norm in massive online service infrastructures, Hystrix of Netflix
[7] aims at isolating points of access to remote systems, services and 3rd party libraries,
to stop the cascading of failures. This adds resilience to services in distributed systems.
Hystrix uses real-time monitoring, and acts on failures after they are detected. A few
efforts attempt to build predictive models based on execution analysis by replaying the
debugging information in logs [37, 16, 26]. Li et al. [4] propose WebProphet and the use of
parental dependency graph to encapsulate web object dependencies to implement webpage
load predictions. Viswanathan et al. [29] develop semantic framework for data analysis to
enhance the performance of networked systems, and logging is the mechanism of collecting
data about the system.

We note that all efforts related to our work on failure prediction depend on some form of
logging for later analysis, and act on failures after they happen. Considerable effort is put
to enhance the performance of mining logs. Our approach has a key difference from existing
approaches to enhancing online service reliability. We use data in real-time, because the
cost of working with logs is too high for real-time processing.

3.3 Proposed Approach

Predictors are designed to anticipate the outcome of an event [33, 34]. In online services,
events represent a variety of measurable aspects and characteristics of the service, such as
the response time of the service, the availability of the service, and the number of packets
routed correctly in a given time. The dynamic data prediction approach we propose is usable
with any of these events. For the rest of the work, we use the term failure prediction
to indicate predicting when the outcome of an event does not meet its SLA. For example,
if the event of interest is response time, then failure prediction means predicting the cases
where the operation under study does not finish within the SLA.

We define two concepts: Local System and Scenario. Local System refers to the
stack of software, hardware, and operating system used to perform a specific functionality
in the online service. Scenario refers to the collaboration of the set of local systems used
to implement an end-to-end (e2e) user scenario. As an example, assume the online service
of interest is a retail service, where customers buy sports products. An example of e2e
scenario is finalizing an online purchase through a checkout process. Assume the event of
interest is response time. The response time SLA for the e2e transaction could be 300ms;
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the purchase process meets its SLA if it completes in less than 300ms, and fails otherwise.
Assume that the checkout process makes the following calls behind the scene: check cart
contents, check product availability, calculate total price, validate credit card, submit the
transaction, return to user, and update all related systems such as inventory, credit cards,
and logging systems. The collaboration of these local systems to implement the purchase
process represents the checkout scenario.

3.3.1 Testing in Production

Before we delve into the details of our approach, we describe Testing in production (TiP).
TiP is a set of software testing methodologies used to call the online service APIs just like
real users and other software components do. The testing calls are made regularly to all
components of the online service and the results are collected and verified to make sure the
e2e service is working properly [38, 39, 40]. Enterprise service providers such as Facebook,
Google, Microsoft and Yahoo use TiP to perform functional, stress and performance in
real-time [40]. The synthetic transactions used in TiP generate loads that are marked
with special moniker(s) so that they are distinguished from real transactions, and do not
interfere with the service destructively, or result in an incorrect state of the system like
product inventory reduction due to test purchases. Synthetic transactions in TiP do utilize
the service resources, and this puts an impact on the service. Service designers account
for such impact due to the importance of TiP; without it the service would be flying blind
[38, 40]. Figure 3.1 shows the relationship of a TiP system, the Failure Prediction System
in the figure, to the production system. The TiP system runs in parallel to the production
system and has access to the production system components. However, faults and failures
in the TiP system do not impact the production system.

We utilize TiP principles and infrastructures as the platform for our suggested approach.
No production code is instrumented to generate the data. Data is generated through TiP
synthetic transactions. This is an advantage of our approach, because we do not impact
the production code, and thus no extra testing is needed. Updates to the failure predictor
do not require production code update or redeployment. We use TiP to cover functional,
performance, and data failure modes.

3.3.2 Overview of the Proposed Dynamic Failure Predictor

Our proposed dynamic failure predictor is suitable for the dynamic nature of online services’
functionality, environments, and elasticity of their loads over time. It can be used for systems
with static environments as well, but it is superior in systems with dynamic situations. The
proposed approach can be summarized in the following steps:

• Step 1: Using synthetic transactions, local synthetic transactions (LSTs) and scenario
synthetic transactions (SSTs), to execute the local systems of the online service in a
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Figure 3.1: Interaction between proposed failure predictor and production system.

way that mimics user behavior, and constitute a complete e2e scenario such as a user
buying a product online.

• Step 2: Collecting the synthetic transactions inputs, local systems outputs, e2e sce-
nario outputs, and events of interest. This data is collected into in-memory constructs
with a predefined dimensional model [35].

• Step 3: Using the freshly collected data from running the synthetic transactions to cor-
relate the local systems inputs, local systems outputs, the output of the e2e scenario,
and the event of interest.

• Step 4: Building a real-time predictor from the collected data and the correlations
found in the previous steps, and training and testing it in real-time.

The failure predictor is used in production as long as it has high prediction accuracy.
We can measure its prediction accuracy since we know the output of the e2e scenario and
the output of the event of interest from running the synthetic transactions as well as real
transactions in real-time. If the accuracy of the predictor drops below a threshold for a
given period of time, we rebuild a new predictor, train it, and test it.

Figure 3.1 depicts the relationship between a production system and the failure pre-
diction system used to generate and maintain the predictor. The production system is
comprised of multiple local systems that constitute one e2e scenario. The failure predic-
tion system is an independent product that runs in the same environment where the online
service runs. It has access to the same resources as the production service, but is not part
of the online service code. Updates and re-deployments of the predictor code can be done
anytime without interfering with the service production system.
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3.3.3 Generating Real-time Synthetic Transactions

The transaction generator, in the failure prediction system in Figure 3.1, mimics the user
scenario by making all the local system calls that comprise the scenario. The system monitor
collects the responses of each LST, the event of interest, and other information about each
local system such as the number of running tasks, and the used resources in the system.

The algorithm we propose to generate synthetic transactions is as follows. The trans-
action generator makes LST calls using test loads, which are similar to real loads. The
real user behavior (loads and call distributions) are found from the logs of previous de-
ployments of the service, or from field/market studies about the service. For example, it
would be known based on what is found in previous production logs, or estimated from
market research, that the average customer of a retail online store buys 5-10 items a time,
and that the service gets around 500 concurrent users at peak times. So if local system 1
is an addProductToCart() function, the average expected products to add are 7, and the
average expected concurrent function calls are 100. Then the LSTs made by the predictor
transaction generator start with these loads, and progressively add more loads until the
failure causing loads are found. The test loads are executed on the current system, and so
generate current information that represents the current state of the system.

The LST calls are made at equidistant time series; once every N seconds. The value of
N is configurable, depending on the service, and it varies during execution time, increases
or decreases, depending on the state of the service. If the service is churning and failures are
happening more, then N is reduced to get a better pulse of the system. The event is captured
after each of these tests, and its value is compared to the result of the prediction. If the
accuracy of the predictor starts to drop, the tests are done at a higher rate to generate data
to build a new predictor. The set of tests performed every N seconds need not be exactly
like those of customer behavior. However, if the service at hand requires an exact replica
of the user behavior, then parts of previous production logs representing that behavior can
be replayed as suggested by [37, 16, 26].

3.3.4 Collecting the System Data

The system monitor collects the data generated by running the LSTs around the failure
points found by the transaction generator. The data is passed to the predictor configuration
cache, as shown in Figure 3.1. The data includes the current load and state of the system
like the number of tasks, and the used resources like CPU and memory utilization. The
data is collected and hosted in memory in an array with a dimensional model schema [35].
Dimensional modeling refers to a set of concepts and techniques used in data analysis which
provide insights into the cause-effect relationships between entities. Data is organized into
two sets, a set of measured or monitored data, called facts, and a set of parameters, called
dimensions that define, impact, and control the facts.
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Dimensions Fact
LST Tasks CPU Memory LST time SST time

1 53 19% 35% 23 191
2 53 17% 35% 17 191
3 53 18% 35% 31 191
4 53 11% 35% 19 191

Table 3.1: Sample of Local System Response Time SLA.

For this work, the fact is the event of interest that is to be predicted, such as response
time. The dimensions are the other sets of data that impact the event. The dimensions
are generated using the actual LSTs, and their values are found from the responses of each
local system, such as:

• The LST that is called: this allows us to know which test is run.

• The time that LST is called: the time stamp is what allows us to relate and study
the cause and effect in the system calls, i.e., at this time there are this many function
calls and this many tasks, which caused this response time.

• The number of tasks: processes or jobs in the system.

• The resource (CPU, compute servers, and memory) utilization: although
this may be seen as a measure, it plays the role of a dimension that impacts the event.

Table 1 presents a sample of such a dimensional model. Note that we use surrogate
keys [35] to represent non-measured and non-numeric values. A surrogate key is a unique
identifier of an entity; it can be an integer and it is not derived. This makes a table
with smaller footprint in memory, only integers are used, and enhances the performance of
operations done on it.

3.3.5 Design of the Real-time Predictor

The predictor trainer, in Figure 3.1, is the module that creates, trains, and tests the pro-
posed predictor. This happens on the test platform not the production platform. A predic-
tor, fundamentally, is a classification system [33, 34]. It defines and monitors boundaries
of working conditions that result in an event. It predicts the outcome of an event based on
the system working conditions and loads. Our proposed light-weight predictor defines the
independent variables of the local systems that impact the event of interest; the indepen-
dent variables are the ones that can be controlled. The independent variables we propose
to use are the number of active tasks, jobs and processes, in the system. We identify the
dependent variables that control the output of the event to be the resource utilization; the
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compute and memory resources. They are dependent on the independent variables, but
their values impact the event of interest.

Our classifier follows a logical expression model that defines the safe working boundary
conditions for each of these variables by their upper values. For example, the event of
interest would succeed if:

• Condition1:

– IndependentVariable11<L11

– ...

• Condition2:

– DependentVariable21<M21

– ...

• ConditionN:

– IndependentVariableN1<PN1

– ...

As an example, Condition1 may have two independent variables and their values that
cause failure as follows: concurrent-processes <15 and Number-of-routed-packets <100. At
the time of running the LSTs, the values of concurrent processes, active packets, LSTs
inputs, and event value are captured from the system. They are then fed to the predictor.
If the value of concurrent-processes is 13, and number of active packets is 95, the predictor
predicts that the operations over the coming period of time will be successful, but issues a
warning to the load-balancing-system to reduce the system loads as it is approaching failure
points. The prediction value (success in this case) is compared with the actual event values
that are captured from the system, ground truth, over the coming period of time. This
allows measuring the accuracy of the predictor as well as false positives and negatives. We
explain how to find the variable values that result in event failures in the next section.

3.3.6 Training and Testing the Predictor

Our approach uses synthetic transactions to execute the system by controlling the load to
produce failures. It captures the transactions inputs, the results from the transactions, the
event value, and the used loads. We can search for the classifier values that result in failures
in the captured data. This is an advantage of our approach, as the findings are based on
the ground truth.

The Real-Time Dynamic Failure Predictor (RTDFP) algorithm we devise, to find the
classifier values that result in failures, is as follows:
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1. Make a new set of LST calls with increasing intensity until the LSTs start to result
in violating the SLA of the event.

2. Test the system using LST calls with loads around the failure causing loads.

3. Capture the LST inputs, system states, independent and dependent variable values,
and event value into an array with a dimensional schema similar to Table 1.

4. Use search algorithm, e.g., A* search, to find the classifier values that correspond to
the event failures.

5. Store these values for each local system in an array with a schema similar to that
shown in Table 2. We call this table the Local System Predictor Configuration Table
(LSPCT).

6. Repeat these steps, 1 through 5, and capture T instances of Table 2 until the classi-
fier values reach a steady state; a good way to determine that is by using standard
deviation for the variable values. The system continues to be in change mode until
a steady state in these values is reached. The number of table instances, T , depends
on the system characteristics. Some systems reach a steady state faster than others,
and may require a low T value like 5 tables. Other systems with higher instability
characteristics may require more tables. It is up to the system designers to define T .
The T tables extracted from running sets of LST tests constitute a rolling window,
i.e., the T + 1 new LST tests will push out the results of the first LST run so that the
tables have the LST test sets 2 to T + 1.

When a steady state in the classifier values is reached, a new instance of Table 2 is
created by averaging the values found in the T tables created during the training steps.
This instance is called the predictor configuration table (PCT). These average values, in
the PCT, are the values of the classifier variables that result in failures.

To test the predictor, we run a new set of LSTs around the failure points and capture the
event value for each. We test the predictor accuracy by comparing its predictions against
the event value for each test. If the accuracy of the predictor meets the goal, it is ready for
use. If not, we repeat the training steps. When the predictor passes testing, the values in
the PCT are stored in the predictor configuration cache, and are used as the classifier values
that would predict failures in the system. Procedure 1 illustrates the RTDPF algorithm to
train the proposed predictor.

Note that other techniques, such as regression [33, 34], can be used to find the predictor
variable values that result in failure. However, we believe that searching the results of the
synthetic transactions has better results as the values are found based on the ground truth
coming fresh from the system.
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Procedure 1 RTDFP Algorithm
PREDICTOR TRAINER
1: function TrainPredictor
2: Counter = 0
3: T = NumberOfTables2 ◃ configured value
4: FailurePoints = FindEventFailurePoints()
5: while No-Steady-State-in-Classifier-Values do
6: RunTestsAroundFailurePoints();
7: Search for values that cause failure;
8: Store values into (Counter % T ) of Table2;
9: Compute steady-state-in-classifer-values;

10: Increment Counter;
11: end while
12: RunTestsAroundFailurePoints();
13: Test Classifier Values;
14: if ClassifierValueTest Succeeds then
15: PCT = Average Table2 T Instances;
16: end if
17: if ClassifierValueTest Fails then
18: TrainPredictor()
19: end if
20: end function
FIND EVENT FAILURE POINTS
1: function FindEventFailurePoints
2: while no-event-failures do
3: Increase LST loads
4: Run LST calls
5: Capture Event-Failure-Causing-Loads
6: end while
7: end function

TEST EVENT FAILURE POINTS
1: function RunTestsAroundFailurePoints
2: for each n% below Event-Failure-Causing-Loads to n% above Event-Failure-Causing-Loads

do
3: Run LST calls
4: Capture LST and system values into Table1
5: end for
6: end function

Local System Tasks CPU Memory
1 153 68% 73%
2 149 71% 68%
3 223 67% 71%
4 196 70% 72%

Table 3.2: Sample Configuration of Local System Predictor.
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The accuracy of the predictor is continuously monitored, by the system monitor in
Figure 3.1. If the predictor is successful at predicting the event, the predictor is kept. If
not, the system is tested until it reaches a steady state, before deciding to create a new
predictor. Note that during system changes, the old predictor is kept in use until the new
predictor is created. When a new predictor is created, the predictor trainer updates the
predictor configuration table, which updates the dynamic real-time predictor without any
impact on the service.

3.4 Evaluation

We validate our approach on a large-scale enterprise online ad service, used in Microsoft, that
works as an ad request arbitration unit. The high level diagram of the service is depicted in
Figure 3.2. The service is composed of the ad request facade, the ad request processor, the
targeting system, and the response validator. The service is a large distributed system, has
challenging requirements, and operates under strict SLA, making it an ideal environment for
the validation of the proposed technique. It is hosted in three continents; North America,
Europe, and Asia. It receives ad requests from applications running on mobile devices and
PCs. It processes each ad request, determines the source, PC or mobile, and attempts
to find targeting opportunities based on app categories, device types, user information if
available with user permission and consent to use, and client location. It then makes a
call that has the targeting information to an ad serving network. The ad serving network
identifies a suitable ad to be served to the application, and sends a response back to the
service. The service validates the ad response against rules about the user, the calling
application, ad type, and ad size, and returns the ad response to the calling application.
The response time SLA for serving an ad is 250ms; this is the event value we watch for.

3.4.1 Implementation and Setup

We implement the LSTs for the ad service local systems and measure the SST response time
for the ad request scenario. There are three local systems: ad request processor, targeting
system, and response validator. For our study, we use a local ad serving network, which
becomes the fourth local system.

The ad service gets an average of 4 billion ad requests a month. It is deployed in 6 data
centers, 3 continents with 2 data centers each. The setup we have is based on the model
shown in Figure 3.1. The transaction generator makes a call to each of the local systems
and controls the various aspects of the ad request, client type, ad type, location, and user
information. The transaction generator simulates ad request calls made by multiple clients,
by making simultaneous calls with different user agent information. It controls the load in
two ways: the number of ad requests made by each simulated client in a given time, and
the number of simultaneous ad requests representing multiple client calls. We implement a
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Figure 3.2: The online ad service used in the experiment.

predictor instrumentation that can make up to 10,000 concurrent ad requests. By design,
each user cannot request more than one ad every 30 seconds, this is a real requirement
to prevent ad fraud. The maximum load that can be generated by the failure prediction
system is 10,000 simultaneous ad requests every 30 seconds. This is more than 100x the
expected real load of the system; so it is a good stress test. Each ad request results in an
average of 0.5KB of data returned from the service, and this is what is captured by the
system monitor into a schema similar to that shown in Table 1. The prediction system is
implemented and is used for several months.

3.4.2 Data Collection

Responses to the LST calls and each local system state are collected for every LST call made
to the service. These values are stored in memory arrays with the schema of Table 1, in the
predictor configuration cache. In steady state, when the service is not going through any
changes that warrant a predictor update, which is determined if the predictor maintains
accuracy above threshold, the synthetic transactions are designed to run 100 concurrent
LSTs every minute. Each LST takes an average of 25ms to complete, so running 100 tests
every minute takes less than 3 seconds. Note that the LSTs are used for production testing
purposes as well as for predictor verification. If the prediction accuracy drops below a
threshold, we rebuild the predictor using the RTDFP algorithm. We use a high threshold of
80% accuracy, to ensure the online service maintains its failure SLA. We use the algorithms
described in Section 3 to collect new data, create a predictor, train it, and test it. We find
that it takes, on average, 3-5 minutes with 7,000 to 10,000 LSTs to generate enough failure
information to start the creation, training, and testing of the predictor. Each transaction
generates an average of 0.5KB of data, so the total data used in training is 5MB only. In
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contrast, the production log has an average of 88GB of data a day, and requires 5-6 weeks
worth of production running, as shown later in Table 3, to generate enough data that can
be used to create, train, and test the failure predictors.

Using synthetic transactions for no longer than 7 minutes we were able to generate
data, create, train, and test the proposed dynamic predictor and get to accuracy close to
86%. On the other hand, we find that the average real production failure rate is less than
1%. That is an average of less than 150 failures a minute in the whole data center which
has hundreds of servers. There is the fact that production failures do not actually happen
uniformly throughout the day. So from a test perspective, it can be hours, or even days,
before real failures are encountered.

3.4.3 Performance Metrics

We validate the effectiveness of our approach by measuring its ability to adapt to production
system changes, and still maintain high accuracy. We compare the performance characteris-
tics of the proposed predictor with four static predictors based on neural network, clustering,
Bayesian, and decision trees algorithms. We do not implement these predictors, we use com-
mercially available software that implement them. We choose these algorithms because of
their wide use [36, 31, 8, 32] and because they represent different approaches to data mining
and machine learning; they represent Artificial Intelligence, Clustering Analysis, Statistical
Methods, and Decision Rules respectively [33, 34, 41].

To assess the accuracy of the proposed dynamic predictor, we use the following metrics:

• False positives: a prediction is called a false positive when a transaction is predicted
to fail to meet the response time SLA, but the transaction meets the SLA time.

• False negatives: when a transaction is predicted to meet the response time SLA,
but the transaction fails to meet the SLA time.

• Accuracy: is the ability to predict the results of the new transactions correctly; i.e.,
the predictor’s ability to identify and exclude true errors. It is calculated as the ratio
of correct predictions, which is ’all predictions’ minus ’true errors’, divided by all
predictions.

3.4.4 Detecting Failures in Dynamic Environments

To test the predictors’ ability to adapt to real-time changes, we start with a baseline configu-
ration and configure/program the four commercial static predictors. The proposed dynamic
predictor is built during the experiment. The baseline configuration is a cluster of 10 com-
pute servers. Each compute server is a quad-core intel Xeon server with 12 gigabyte RAM.
We deploy the predictors into the test client. We run the synthetic transactions, LSTs, and
SST. We make the following changes: increase the available compute resources by 5 more
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Figure 3.3: Accuracy of proposed vs. current predictors in dynamic environments.

processing servers and wait for thirty minutes, and then increase by 5 more servers for a
total of 20 servers, and wait for 30 minutes. We drop the compute resources to 6 servers
and wait for thirty minutes, and then drop the servers to 3 and wait for 30 minutes. During
that period, we capture, every minute, the results of the LSTs and SST, event value, which
is response time for the tests, and predictions made by all predictors. The event value we
capture is the ground truth. We then measure the false positive rates, false negative rates,
and the accuracy of all predictors to determine how they react and adapt to production
system changes.

Figure 3.3 shows the accuracy of all predictors in dynamic environments over 2.5 hour
period. Figure 3.4 shows the false positives, and Figure 3.5 shows the false negatives for all
predictors. As expected, the current static predictors fail to adapt to the resource changes;
they drop in accuracy after the first configuration change, which is adding 5 processing
servers, and never regain their accuracy back. It is worth noting that after increasing
the compute resources above the baseline, it is the false positives that are responsible for
the drop in accuracy. In other words, many transactions are actually successful, but are
predicted to fail. While after reducing the compute resources below the baseline, it is the
false negatives that are responsible for the drop in accuracy. On the other hand, Figures 3.3
through 3.5 show that the proposed predictor is able to maintain high accuracy. It manages
to maintain the same average of false positives and false negatives post the compute resource
changes. On average, it takes the proposed predictor an average of 7 minutes to adapt to
the changes and reflect current state of the system.

The transient period, which is the period from the time we add or remove resources until
steady state in the proposed predictor is reached, is on average 7 minutes. That’s how long
it takes to update the proposed predictor. During the transient period, the current static
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Figure 3.4: FP of proposed vs. current predictors in dynamic environments.
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Figure 3.5: FN of proposed vs. current predictors in dynamic environments.

predictors and proposed dynamic predictor drop in accuracy. However, since the proposed
predictor was updated after each change, its accuracy during the transient period is far
better than the static ones, because their accuracy drop accumulates over time, as shown
in Figure 3.3.

3.4.5 Receiver Operating Characteristics of the Predictors

To compare the performance characteristics of the proposed dynamic predictor with the
four current static predictors that are created from real production logs we build a Re-
ceiver Operating Characteristic (ROC) curve for each predictor. The ROC curves show the
relationship between the specificity and sensitivity of the predictors. This is a standard
methodology for comparing predictor accuracy over a range of controlled input specificity.
The following metrics are used to generate the ROC curves:
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Figure 3.6: Predictors ROC Curves.

• True Positives: when a predictor correctly predicts a transaction to fail to meet the
SLA time.

• True Negatives: when a predictor correctly predicts a transaction to meet the SLA
time.

• True Negative Rate: is the ratio of true negatives to the sum of true negatives and
false positives. This is known as Specificity.

• Recall: is the ratio of true positives to the sum of true positives and false negatives.
This is known as Sensitivity.

Figure 3.6 shows the ROC curves of the predictors in their steady state, when the static
predictors are still relevant to the system; note that post system changes, it is no longer
possible nor meaningful to plot the ROC curves for the static predictors. The goal of this
comparison is to show that the proposed predictor has comparable and viable performance
characteristics to industry standard commercial predictors. The main advantage of the
proposed predictor is that it takes a fraction of the time to build, train and test in real-
time, whereas the static predictors require orders of magnitude more data and time to build,
train, and test. Table 3 shows a comparison between the predictors in terms of their data
generation and processing times, as well as data Recall.

The downside to the proposed predictor is that it requires high-level knowledge about the
system to be implemented as part of its testing whereas the static predictors do not require
that knowledge. We argue that this knowledge is already required by the system designers,
implementers, and testers who are the intended audience of our suggested approach.
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Predictor Generation Time Processing Time Data Recall
Proposed 3-5 Mins 2-4 Mins 100%
Bayesian 5 Weeks 21 Hrs 0.91%

Clustering 6 Weeks 18 Hrs 0.57%
Decision Trees 5 Weeks 19 Hrs 0.68%

Neural Network 5 Weeks 17 Hrs 0.97%

Table 3.3: Processing time and data needed by each predictor.

Figure 3.7: Performance of the proposed predictor over 3 months.

3.4.6 Performance Analysis over Long Period

Figure 3.7 shows the daily accuracy, false positives, and false negatives of running the pro-
posed predictor for more than three months. We note the stability and consistent behavior
of the predictor over that period of time.

3.4.7 Overheads

The overheads incurred by the proposed predictor fall into two categories: during steady
state, and during system changes. During steady state, which is a state where the predictor’s
accuracy is maintained above 80%, 100 tests are run every minute for an average of 2.5
seconds. Adding 2.5 seconds worth of production testing constitutes less than 5% impact
on each production server, which is low. The average real production requests per minute
made to each production server is 150 requests. Each request takes an average of 25ms.
So the impact on production servers is low. During system changes, when the prediction
accuracy starts to fluctuate and drop below 80%, we double the testing load. We run the
test every 30 seconds, which results in doubling the amount of time we use the system. We
use the system for 5-6 seconds every minute, which is still low. The fact that the LSTs
are part of the required production testing, and are used to accomplish other jobs than

33



the prediction maintenance, like testing the actual functionality of the local systems, makes
the investment less of an overhead. The test client servers are already dedicated to the
production testing functionality, and as such they are not considered an extra cost.

There is no production code overhead special to the predictor functionality. The mea-
surements we take, such as resource utilization and tasks measurements, are provided by
the operating system of the production local systems. These are taken at equidistant time
series, with or without our approach, as means of monitoring the health of production
servers.

3.5 Summary

In this chapter, we presented our first successful effort to utilize synthetic transactions
in TiP environments to generate fresh data about the current components of the online
service and use that data to build, train, and deploy a real-time failure predictor. The
proposed dynamic approach to creating and maintaining failure predictors for online services
in real-time showed superior ability to stay relevant and maintain high accuracy throughout
the real-time lifecycle of the online service. Using the proposed real-time dynamic failure
prediction (RTDFP) algorithm, we can regenerate an online service failure predictor post
system changes in a few minutes with a few megabytes of test generated data.

Current approaches to failure prediction are static and cannot keep up with the changes
that happen during the real-time lifecycle of online services. Static predictors require mas-
sive amounts of data to rebuild, which is not possible in real-time. Static predictors have
their strengths and areas of application; they do not require specific knowledge about the
system, and are successful in static environments and situations. Online services, however,
have dynamic situations that require them to change often.

The proposed approach, requires small amounts of data, in the order of mega bytes
(MB), and takes a few minutes to generate, train, test and deploy in production. To
evaluate the proposed approached, we deployed it on of Microsoft’s display ad services,
that is used by millions of users, and receives millions of transactions per second, and we
observed enhancements in all aspects of the predictor functionality.

The basics of this effort for generating real time data about the service components,
their inputs, system states, and service outputs will be the tool we utilize for our efforts in
studying multimedia service capacity estimations and the impact of anomaly detection on
multimedia service reliability.
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Chapter 4

Enhancing Multimedia Quality by
Real-time Service-Capacity
Estimation

In the previous chapter, we presented a dynamic approach for monitoring online services,
and building a real-time failure predictor. We used synthetic transactions in real-time to
generate current service data inputs and captured their induced system states as well as
their resulting service outputs. We built correlations between the service inputs, system
states, and service outputs that allow us to predict service output failures over time. We
were able to keep the failure predictor relevant by updating, training, testing, and deploying
it in real-time.

In this chapter, we build on that effort, especially the e2e real-time correlations between
service inputs, system states, and service output failures, and extend it with monitoring
and measuring the service component maximum capacities that do not result in SLA vi-
olations and failures. We focus on multimedia communication services, and extend the
mathematical model and correlations introduced in the previous chapter to include the cur-
rent available capacity of all service components in the dimensional space of the predictive
models. By continuously identify the maximum available capacity of the multimedia service
components, we create an up-to-date service-wide capacity plan, which enables the service
to dynamically construct the multimedia video and audio sessions using to the right com-
bination of service components over the available data centers. This dynamic capacity plan
helps maximize the number of active multimedia sessions, maximize the quality of each
session, and reduce SLA violations as much as possible.

4.1 Introduction

Interactive multimedia communication services such as Skype, Viber, Whatsapp, and Google
Hangout offer a wide variety of services including calling, media sharing, and conferencing
services. There are over 2 billion customers who use online communication and media shar-

35



ing services everyday [42]. A typical interactive multimedia communication service includes
client applications and an online cloud infrastructure deployed in multiple data centers
around the world, and it uses the Internet as the backbone for communications. When a
user calls another user, a client application initiates the session and invokes an online service
endpoint in one of the data centers. This end point manages the session by invoking many
other sub-services, referred to as components, including identity verification, call manage-
ment, media adaptation, session routing, experimentation, and advertising. Instances of
these components are created and provisioned on different data centers. The perceived
quality of session is directly impacted by the performance of these components. There-
fore, if we are able to monitor these various components in real-time to assess their current
performance and predict any failures before they happen, we can significantly improve the
quality observed by users, by routing the sessions and multimedia content through the com-
ponents and data centers that currently have the highest performance and reliability. As
defined in the previous chapter, a failure as an observed deviation of a service component
from its expected behavior.

We propose a novel approach to monitoring the health and improving the quality of in-
teractive multimedia communication services in real-time. Real-time refers to the runtime
lifecycle of the service, where the service is in production and being used by real customers.
We use synthetic transactions to monitor the service by exercising it like real customers,
generate current data about it, and then use this fresh data to create and maintain up-
to-date failure predictors for the service. The results of the synthetic transactions and the
failure predictors are used to make decisions, in real-time, on which services and which
paths to route audio and video sessions to.

We implement and evaluate the effectiveness of the proposed approach in a large inter-
active multimedia communication service in one of Microsoft’s Skype data services. The
service handles around 2.5 million transactions per second at peak time. We run our ex-
periments for 5 days in a test cluster that gets 1% of the traffic in a data center, and we
process more than 100 million audio, video, and conferencing sessions. Our results show
that our proactive approach not only substantially improves the quality of interactive mul-
timedia communication services, but it saves network and computing resources. This allows
the service to admit more sessions and/or allow current sessions to further improve their
quality by adding more streams.

The contributions of this chapter are as follows:

• Novel approach to proactively monitor the health and quality of interactive multimedia
communication services.

• Light weight algorithm for building dynamic failure predictors in online multimedia
communication services, and using these predictions to estimate the available capacity
of different components of the service.
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Figure 4.1: High-level architecture of multimedia communication services.

• Algorithm to provide service configuration and routing path recommendations in real-
time for the sessions in multimedia communication services.

• Insights and experiences from our actual implementation and deployment of the pro-
posed approach in a large online service.

4.2 Background and Related Work

In this section, we present a high level overview of interactive multimedia communication
services, describe how audio and video sessions are created, the points of failure we try to
address, and the current research methods that attempt to handle them.

4.2.1 Background

A high level diagram of an interactive multimedia communication service is depicted in Fig-
ure 4.1. When a user calls another user, the session is routed to the closest data center. The
session may be composed of audio, image, and video streams. Each data center implements
an instance of the multimedia communication service that is able to handle all streams in
a session. Each data center implements a service routing and selection component. If the
data center is able to handle the session, it routes all aspects of the session to its internal
components. If the data center is able to handle part of the session, e.g., the audio but
not the video stream, it routes the video stream to another data center. Thus, a multi-
media communication session may have all its streams going through the same path from
the source to the destination, or may have some of the streams of the session go through
different paths. An example is shown in Figure 4.1, where the audio from the source client
on the left is processed by DC1, and the video is processed by DC3.
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Figure 4.2: Components of MM service and Proactive QoS Manager.

Figure 4.2 provides a more detailed look at the components in each data center as well
as the components of the proposed approach, shown in the dotted rectangle. We describe
the proposed approach in the next section. For now, we describe the various components
in each data center, and how a session is created between two client applications. The ser-
vice has challenging requirements, and operates under strict SLAs. It receives multimedia
communication requests from applications running on mobile devices, Web, and PCs. It
processes each request, determines the source device, identifies ads and experimentation
configurations based on app categories, device types, user information if available with user
permission to use, and user location. It processes the media, and makes a call to the des-
tination client app with the target media, ads, and experimental parameters. Each of the
components in the multimedia communication service is comprised of many geo-located in-
stances so that the client call is routed to the most suitable, geo-location and performance
wise, data center. The service is composed mainly of Call Manager, Experimentation,
Ads Selection, Media Manager, and Telemetry components. The Media Manager estimates
the available compute and network resources to maximize the session quality. The Media
Manager enables image, audio, and video content to be transported from one endpoint to
another as part of a session using UDP or TCP. It implements audio and video encoding
and decoding, and packet loss compensation. The Ads Selection component finds relevant
ads for the session. The Experimentation component identifies sessions that are suitable
for new experiments like new app functionality and/or new color schemes. The Telemetry
component collects system performance indicators like available memory and compute re-
sources, as well as functionality measurements like the quality of a video in a multimedia
session and number of calls made per minute.
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When a user makes a call from an application, the Call Agent tries to connect to the
multimedia communication service. The Call Manager of the service handles the incoming
session request. It breaks down the multimedia session into its constituents (i.e., audio,
video, conferencing, ads, experiments) and tries to identify the best instances in the avail-
able data centers that are able to handle the multimedia session. Depending on the used
transport protocol (UDP vs TCP) the packets of the session are routed to the selected com-
ponents, and the connection is established between the two ends of the multimedia session.
During the session, the selected components and routing paths do not change.

As can be noted from this high-level description, the quality of the multimedia calling
experience has complex dependencies including the selection of components, the routing
paths to get to the destination, and the scale and performance characteristics of the Media
Manager. There is high demand on the Media Manager component, which may lead the
Media Manager to reduce the quality of multimedia streams to ensure that communication
sessions do not get dropped. So if we can, in real-time, continuously know the components
that have the highest available resources, the highest performance characteristics, and the
highest multimedia throughput quality as well as predict how these factors will change
over the coming short period of time, we can make component selection and path routing
decisions in real-time that will result in high quality multimedia communication sessions.

4.2.2 Related Work

Several works have tried to address the reduced quality stemming from contention in mul-
timedia communication services. For example, Trajkovska et al. [43] propose an algorithm
to join P2P and cloud computing to enhance the Quality of Service (QoS) of multimedia
streaming systems. They investigate cloud APIs with built-in functions that allow the au-
tomatic computation of QoS. This enables negotiating QoS parameters such as bandwidth,
jitter and latency. The work in [24] deals with the limitations caused by the platforms where
the multimedia streaming takes place. Tasaka et al. [44] study the feasibility of switching
between error concealment and frame skipping to enhance the Quality of Experiences (QoE).
This approach utilizes a tradeoff between the spatial and temporal quality that is caused by
error concealment and frame skipping. The algorithm they suggest switches between error
concealment to frame skipping depending on the nature of errors encountered in the video
output. Ito et al. [45] study the tradeoff between quality and latency in interactive audio
and video applications with the Internet being the medium of communications. They note
that the temporal structure of audio-video communication is disturbed by the delay jitter
of packets. They study the impact of de-jittering on latency, and the impact of improved
latency on quality, which is how the temporal structure is preserved. Through the adoption
of psychometric methods, they adjust the initial buffering to enhance latency and quality.

To study the impact of geographical distribution of multimedia services and distributed
peers, Rainer and Timmerer [46] suggest a self-organized distributed synchronization method
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for multimedia content. They adapt IDMS MPEG-DASH to synchronize multimedia play-
back among the geographically distributed peers. They introduce session management to
MPEG-DASH and propose a new distributed control scheme that negotiates a reference for
the playback time-stamp among participating peers in the multimedia session. The goal is
to improve synchronization, enhance quality, reduce jittering, and enhance latency [47].

A number of works have attempted to address video rendering problems in real-time. Li
et al. [48] propose a new rendering technique, LiveRender, that addresses the problems of
bandwidth optimization techniques like inter-frame compression and caching. They address
problems of latency and quality by introducing compression in graphics streaming. Shi et
al. [49] propose a video encoder to select a set of key frames in the video sequence which
uses a 3D image warping algorithm to interpolate non-key frames. This approach takes
advantage of the run-time graphics rendering contexts to enhance the performance of video
encoding.

The aforementioned approaches work on the limitation of the systems, and try to make
the best of available resources to enhance the multimedia communication experiences. These
schemes aim at controlling QoS, and managing latency and lack of quality. They come
short of addressing the actual cause of the problem, which is knowing the state of the
services, identifying the services and components that are not performing well, and/or will
not perform well in the coming period, and trying to avoid contention and congestion before
they happen. We propose a different approach to enhancing the quality in multimedia
communication services. We proactively and dynamically monitor the multimedia services
to get an insight into their state, and continuously know the best available components
where there is minimal contention and congestion, best quality, and least jitter and delay.

4.3 Proactive QoS Manager

We define three terms that we use in this chapter: Application, Service, and Platform.
Application refers to the software used by real customers to make calls. Service is the online
backend system that applications invoke to accomplish the required functionality such as
calling other parties and sharing media with them. A service may be comprised of one or
more online services. To avoid confusion, we refer to these other services as components of
the main service. Platform refers to the stack of software, hardware, and operating system
that is used to run the applications and services. For example an Apple iPhone is a client
platform, and Microsoft Azure is a service platform.

4.3.1 Overview

The proposed approach, denoted by Proactive QoS Manager in Figure 4.2, monitors the
health and QoS of multimedia communication services and predicts failures in real-time.
We use synthetic transactions to proactively and continuously test the services and plat-
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forms and generate current data about them. The data is used in its ephemeral state to:
(1) provide situational awareness about the whole service, (2) correlate failures between
applications, services, and platforms, and (3) build a failure prediction algorithm that pre-
dicts future failures. The data is used to keep the failure prediction system up-to-date with
the changes of the services and platforms. These three steps result in the ability to make
decisions about which components to use that result in the best possible multimedia session
experiences.

Before getting into the details of the proposed approach, we describe the Testing in Pro-
duction (TiP) concept, because our approach uses it. TiP entails software testing techniques
that utilize real production environments, while mitigating risks to end users [38, 39, 40].
Online service providers such as Facebook, Google, Microsoft, and Yahoo use TiP to per-
form functional, stress and performance testing in real-time [40]. Synthetic transactions are
used in TiP to generate testing loads, and they are marked with special moniker(s) so that
they are distinguished from real transactions. Synthetic Transactions should not interfere
with the service destructively, or result in an incorrect state of the service like product
inventory reduction due to test purchases. Synthetic transactions in TiP do use the com-
puting resources of the tested service. Service designers account for such an impact due to
the importance of TiP; without it the service would be flying blind [38, 40]. We add our
synthetic transactions for QoS management to the existing TiP transactions as described in
the next section. No code is instrumented in the production code of the service to generate
the data for our approach. This is an important advantage for our approach, because we do
not impact the production code, and thus no extra testing is needed. Updates to the service
monitoring and failure predictor do not require production code update or redeployment.

Figure 4.2 shows the high-level diagram of the multimedia communication service with
the proposed approach in the dotted rectangle. The proposed approach consists of four
components: (1) Proactive Monitor, (2) Capacity Estimator, (3) Component Selector, and
(4) Monitoring Data Repository. The first three components are implemented for each
service instance deployed in a single data center, and the Monitoring Data Repository is
centralized to all instances; i.e., one instance for the whole system. The Proactive Monitor
tests the individual components of the service as well as the whole service e2e. It collects
the test results and makes them available to the Capacity Estimator and the Component
Selector. The Capacity Estimator uses this data to implement a dynamic failure predictor
and to keep it up-to-date to handle any changes. It predicts the capacity of individual
components of the service and the loads at which the components will start to violate
their SLAs. The Component Selector collects the current status of the service and its
components from the Proactive Monitor, and the capacity limits that will result in SLA
violations for the coming monitoring period from the Capacity Estimator. It then creates a
Service Capacity Plan for the coming monitoring period. The plan contains the available
components in the service, their current state, and their projected capacity before SLA
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violations start to happen. It pushes this plan to the Monitoring Data Repository which
gets the service capacity plans from all service instances from all data centers. It combines
these plans into one Global Capacity Plan, and makes it available to each service instance
to pull through an API. The plans are updated regularly; the frequency of update depends
on the service at hand, typically this would range from 30 seconds to a few minutes. The
following subsections describe each of the elements of the proposed approach.

4.3.2 Proactive Monitor

The goal of the Proactive Monitor is to provide real-time insights into the state of the
multimedia communication service. We define two concepts: Local System and Scenario.
Local System refers to the stack of software, hardware, and operating system used to perform
a specific functionality in the online service. Scenario refers to the collaboration of the set
of local systems that are used to implement an e2e user scenario. As an example, assume a
multimedia communication service that allows users to invite other users to watch a video
together. The e2e scenario is the process of calling others and sharing videos with them.
Assume the event of interest is video quality. The video quality SLA for the e2e transaction
could be 4, i.e., good quality, using the Mean Opinion Score (MOS) [50]. The video sharing
process meets its SLA if the video MOS quality is 4 or 5, and fails otherwise. Assume
that the sharing service makes the following calls behind the scene: buffer and encode
video, transmit video, receive video, decode video, and de-jitter video. Each of these calls
represents a local system. The collaboration of these local systems to implement the video
sharing process represents the e2e scenario.

We define three levels of monitoring: (1) local system level, (2) scenario level, and (3)
platform level. The Proactive Monitor implements the first level by regularly performing
Local System synthetic transaction Tests (LSTs), to continuously monitor the health of each
local system. For example, this would be calling the video buffer and encode function and
passing it a video, and noting its output video and the time it took to perform the encoding.
The Proactive Monitor implements the scenario level of monitoring by performing an e2e
Scenario Synthetic Transaction Tests (SSTs) that implement the functionality provided to
customers, i.e., sharing a video between two clients. The SST test calls all the local sys-
tems that collaborate to perform the functionality, and notes the e2e output of the scenario.
These two sets of tests, the LSTs and SSTs, are used to monitor the individual local systems
and the e2e scenarios. The Proactive Monitor implements Platform Synthetic Transaction
Tests (PSTs) to collect performance indicators like CPU utilization, memory consumption,
and process count to correlate with the observed failures. We do not implement applica-
tion synthetic transactions, i.e., test calls to the applications, as applications are generally
installed on user devices and are mostly on metered networks. We use the default client
telemetry implemented on these devices that provide information about the application
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usage. We combine this information with the service and platform synthetic transaction
information to monitor the service e2e, and to generate failure prediction systems.

The Proactive Monitor makes LST and SST calls using test loads, which are similar to
real loads. The real user behavior, loads and call distributions, is found from logs of previous
deployments of the service, or from field/market studies about the service. For example, it
would be known, based on previous production logs and/or estimated from market research,
that the average user of a multimedia communication service shares a video of 60 seconds
with 2-5 friends at a time, and that the service gets around 1,000 concurrent users at peak
times. The SSTs made by the Proactive Monitor start with these loads, and progressively
add more loads until the failure causing loads are found. If the SLA of video quality is, say,
a minimum MOS value of 4, then any video quality of MOS value less than 4 is considered a
failure. The test loads are executed on the current service, thus they generate information
that represent the current state of the service and its performance characteristics. The
synthetic transactions are run for a short period of time, e.g., 5 seconds every couple of
minutes. Thus, they do not increase the load on the service considerably.

The LST, SST, and PST calls are made at equidistant time series; once every M seconds.
The value of M is configurable, depending on the service, and it varies during run time,
depending on the state of the service. If the service is churning and failures are happening
more, then M is reduced to get a better pulse of the service. The event, i.e., video quality, is
captured after each of these tests, and its value is compared to the result of the prediction.
If the accuracy of the predictor starts to drop, the tests are done at a higher rate to generate
data to build a new predictor.

The set of tests performed every M seconds need not be exactly like those of customer
behavior. However, if the service at hand requires an exact replica of the user behavior,
then parts of previous production logs representing real user behavior can be replayed as
suggested by [37, 16, 26].

4.3.3 Capacity Estimator

The Capacity Estimator tries to find the maximum capacity that the service and its com-
ponents can handle before SLA violations start to happen. It does so by predicting the
capacity at which failure starts to happen. It implements a dynamic failure predictor that
is able to cope with the service and component changes in real-time. The failure predictor
is an independent module that runs in the same environment where the online multime-
dia service runs. It is part of the TiP system. It has access to the same resources as the
production service, but is not part of the online service code. Updates and re-deployments
of the predictor code can be done anytime without interfering with the service production
system.

Failure predictors are designed to predict the outcome of an event [33, 34]. In multimedia
communication applications and services, events represent a variety of measurable aspects

43



of the service, such as the call quality, the response time of the service, and the availability
of the service. In this chapter, failure prediction means predicting when the outcome of an
event does not meet its SLA. For example, if the event of interest is multimedia quality, then
failure prediction means predicting the cases where the quality of the shared media drops
below the MOS value specified in the SLA. We need a dynamic failure predictor that can be
created and updated in real-time. We implement one of the latest failure predictors called
Real-Time Dynamic Failure Prediction (RTDFP) algorithm [3]; other predictors can be
used in our approach as well. We choose RTDFP because it can be created and maintained
in real-time in a short amount of time, and has high prediction accuracy. We customize
RTDFP for our Proactive QoS Management approach. The main steps of the Capacity
Estimator are summarized as follows:

• Step 1: Use the Proactive Monitor to exercise the service and generate current data
about it.

• Step 2: Collect, from the Proactive Monitor, the synthetic transactions and appli-
cations’ inputs, service and platform outputs, e2e scenario outputs, such as media
quality and response times, and events of interest. This data is collected into in-
memory constructs with a predefined dimensional model (explained below).

• Step 3: Build a real-time predictor, from the data collected from the applications,
services, and platforms and the events of interest.

• Step 4: Estimate the available capacity based on the outcomes from the failure pre-
dictor.

The data collected in Step 2 includes the current load and state of the service like the
number of videos to process, and the used resources like media processors and call de-
jitters. Service and platform related data such as memory utilization, number of processes,
and CPU utilization are collected. We describe in the evaluation section how we capture
such data in our experiments. The data is collected and hosted in memory in an array
with a dimensional model schema [35]. Dimensional modeling refers to a set of techniques
used in data analysis to provide insights into the cause-effect relationships between entities.
Data is organized into two sets, a set of measured or monitored data, called facts, and a set
of parameters, called dimensions that define and control the facts. For this chapter, the
fact is the event of interest that is to be predicted, such as media quality. The dimensions
are the other sets of data that impact the event, such as:

• The LST that is called: this allows us to know which test is run.

• The time that LST is called: the time stamp allows us to relate the cause and effect
in the service calls, i.e., at a specific time there were that many function calls and
tasks, which caused the observed response time.
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Dimensions Fact
LST Tasks Data center Component LST time Video Quality (MOS)

1 53 3 5 23 4
2 53 3 2 17 4
3 53 3 3 31 3
4 53 3 1 19 5

Table 4.1: Dimensional Model for the online Multimedia Service.

• The number of tasks: the number of media processing jobs in the service.

• The component: the specific component, like Ads Selection or Experimentation, in
the service instance.

• The data center: where the components are deployed; this could include more details
such as the deployment ID.

Table 4.1 represents a service QoS dimensional model. Note that we use surrogate
keys [35] to represent non-measured and non-numeric values. A surrogate key is a unique
identifier of an entity; it is an integer and it is not derived. This makes a table with
smaller footprint in memory, as only integers are used, and enhances the performance of
operations done on it. The map between the surrogate keys and the actual values is stored
in a local table that has the actual dimension values and the corresponding surrogate keys.
For example, the service instance in the US western data center maps to "Dim3 Service"
surrogate key value 3.

The collected data is used for two purposes. The first purpose is to feed the Monitoring
Data Repository to build reports and dashboards that represent the current state of the
service such as how many users are making multimedia calls in a given data center and the
average quality of shared media over time. This provides situational awareness about the
service on an ongoing basis. The other purpose that we use this data for is to generate a
real-time failure predictor, and maintain its accuracy over time (Step 3).

A predictor is a classification system [33, 34] that defines and monitors boundaries of
working conditions that result in an event success or failure. The event could be the MOS
quality. The working conditions are the independent and dependent variables that control
the outcome of the event. We use the load of each component as the independent variable,
and the CPU utilization as the dependent variable; because it is dependent on the load of
each component, yet it plays a key role in controlling the event outcome. We implement
a light-weight predictor based on RTDFP that uses the load and the CPU utilization of
each component as a logical expression model [3]. The logical expression model is a set of
conditions defining the safe component working-conditions that result in the success of the
event. We define the following model for the MOS value to be successful:
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• MOS Quality Condition for Success for Component N :

– Independent Variable for Component N <
IndependentV ariableMaxV alue found by the Proactive Monitor

– Dependent Variable For Component N <
DependentV ariableMaxV alue found by the Proactive Monitor

The Capacity Estimator (Step 4) gets the maximum values for the independent and
dependent variables that are found by the Proactive Monitor LST and SST tests, builds the
Service Capacity Plan for the coming monitoring period, and passes it to the Component
Selector. In other words, the Capacity Estimator utilizes the RTDFP failure prediction to
build the component capacity for the coming monitoring period that will not result in SLA
violations.

4.3.4 Component Selector

The Component Selector combines the current data about the service from the Proactive
Monitor with the projected capacity that the service and its components can handle from
the Capacity Estimator. Table 4.2 shows an example of this combined data that represents
the Service Capacity Plan for the coming monitoring period. The Component Selector
pushes Table 4.2 to the Monitoring Data Repository to be combined with similar data
about the components of the rest of the data centers. The Component Selector pulls the
Global Capacity Plan from the Monitoring Data Repository into a new instance of Table
4.2.

The Service and Global Capacity Plans are computed at the beginning of each monitor-
ing period. Each Component Selector reads these plans from the Monitoring Data Repos-
itory, and makes them available for its local service instance in its data center. The local
service reads the Global Capacity Plan from the Component Selector into an in-memory
array to make access to it fast and suitable for routing every session in real-time. When a
client invokes the local service, the local service finds the most suitable component to handle
the session from its in-memory copy of Table 4.2, and routes the session to it. Two factors
are used in determining the most suitable component: (1) geo-graphical location; the Data
Center dimension in Table 4.2 is used to find the closest component that can be used, so
locally first then the same region, and (2) the component that has the highest available
capacity; the Projected Extra Media Jobs fact in Table 4.2 provides this information. Once
a session is committed to a component, it remains there until completed. In other words,
session routing to components using the Global Capacity Plan affects new sessions only.
This prevents session oscillation between components.

As shown in Procedure 1, the Component Selector implements three functions: GetCur-
rentStateOfServices(), GenerateServiceCapacityPlan(), and GetGlobalCapacityPlan(). The
function GetCurrentStateOfServices() gets the current loads and status of each component
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Center Component Processing Jobs Avg MOS Projected Media Jobs
4 5 36 5 28
2 6 41 5 23
3 2 27 5 19
7 4 17 5 17

Table 4.2: Service Capacity Plan.

in the system from the Proactive Monitor. This function returns an instance of Table 4.1.
GenerateServiceCapacityPlan() uses the failure predictor to predict the loads that will re-
sult in SLA violations. These loads are used to determine the available capacities in the
components for the next monitoring period. The available capacities are combined with
the instance of Table 4.1 to produce an instance of Table 4.2, which is the Service Capacity
Plan. GetGlobalCapacityPlan() pushes the Service Capacity Plan to the Monitoring Data
Repository which gets all such plans from all Component Selectors. The Monitoring Data
Repository combines all these instances into the Global Capacity Plan. GetGlobalCapaci-
tyPlan() pulls the Global Capacity Plan from the Monitoring Data Repository and pushes
it to the service configurations so that the service can use it in routing sessions.

4.3.5 Monitoring Data Repository

The main function of the Monitoring Data Repository is to combine the local Service Ca-
pacity Plans into one Global Capacity Plan that represents the whole system, and to make
it available to all components to pull as needed. This is an important functionality that
prevents excessive communication between the Component Selectors of each data center
instance of the Proactive QoS Manager. With the Monitoring Data Repository, every Com-
ponent Selector computes the Service Capacity Plan, and communicates twice with the
Monitoring Data Repository. The first is to send its Service Capacity Plan, and the second
is to get the Global Capacity Plan. The Monitoring Data Repository gets all Capacity
Plans, merges them, and generates one Global Capacity Plan that represents the current
usage of all components as well as their projected capacities. The Monitoring Data Repos-
itory is implemented as a single instance. It is part of the TiP system, so it does not have
the high availability requirements that production systems have. In case it is down, each
Component Selector continues to use its own Service Capacity Plan until the Global Ca-
pacity Plan is built. The production service uses the suggested Proactive QoS Monitor as
a heuristic agent to enhance its component selection and routing functionality. The pro-
duction system is designed to survive and function well, even if the whole TiP system is
down.

47



Procedure 2 Component Selector Algorithm
COMPONENT SELECTION

function GetCurrentStateOfServices
Select Service, Component, ProcessingJobCount, AvgMOS

from Table 4.1
orderdescendingby AvgMOS
groupby Service and Component;

end function

function GenerateServiceCapacityPlan
GetCurrentStateOfServices();
Use RTDFP to get Predicted JobCount until failure;

MergeJoin Ordered list with Predicted JobCount until failure
orderdescendingby Service and Component;

Select Service, Component, ProcessingJogCount,
AvgMOS, JobCountUntilFailure
orderdescendingby AvgMOS and JobCountUntilFailure;

Populate Service Capacity Plan instance of Table 4.2;
end function

function GetGlobalCapacityPlan
Push Service Capacity Plan to Monitoring Data Repository;
Wait until Monitoring Data Repository builds Global Capacity Plan;
Pull Global Capacity Plan from Monitoring Data Repository;
Push Global Capacity Plan to local service Configurations component;
end function
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4.3.6 Evaluation

We implement the proposed approach in an operational online multimedia communication
service offered by Microsoft [51] and we present results from more than 100 million video
and audio sessions.

4.3.7 Implementation and Setup

We implement LSTs for four local systems: Call Manager, Experimentation, Ads Selection,
and Media Manager. The geo-distributed multimedia communication service processes an
average of 2.5 million requests per second at the peak. It is deployed in 8 data centers in 3
continents. LSTs are API calls to each of these components, with loads as explained in the
Proactive Monitor section. The setup we implement is based on the model shown in Figure
4.2. We use a small test cluster of 10 servers in the data center, which gets around 1% of
the data center traffic to run our experiments. Each server is a quad-core intel Xeon server
with 12 GB RAM. We implement a Proactive Monitor that makes LST, SST, and PST calls
to exercise each component and we capture the inputs to the LSTs and the outputs of the
Local systems. Similarly, we record the output of SSTs and PSTs. An SST is composed of
the LSTs that represent the scenario; so a session with audio and video is composed of Call
Manager, Experimentation, Ads Selection, and Media Manager LSTs with parameters that
specify the audio and video characteristics like length and encoding. We measure the SST
response time and quality of the multimedia session using a proprietary automated MOS
algorithm. PSTs are implemented in an infinite loop that reads CPU utilization, memory
utilization, and number of processes from the performance monitoring APIs of the operating
system of each component every 30 seconds.

The Proactive Monitor makes the calls to each of the local systems and controls the
various aspects of the multimedia communication request, including media type, media size,
location, and automated user information. The Proactive Monitor simulates multimedia
sessions made by multiple clients, by making simultaneous calls with different user agent
information. It controls the load in two ways: the number of media sessions made by each
simulated client in a given time, and the number of simultaneous media sessions representing
multiple client calls. The data is collected into in-memory arrays with a schema similar
to Table 4.1. The synthetic transactions are designed to run 100 concurrent LSTs every
minute. The accuracy of the predictor is measured by comparing its predictions with the
actual results and monitored event value from running LSTs and SSTs. Each LST set of
tests takes an average of 5 seconds to complete. The resulting data from the Proactive
Monitor synthetic transactions are collected by the Capacity Estimator and Component
Selector. The Capacity Estimator makes capacity estimates for the coming monitoring
period of one minute. The Component Selector builds the Service Capacity Plan every
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minute, and communicates with the Monitoring Data Repository to get the updated Global
Capacity Plan.

4.3.8 Performance Metrics

We study the quality of media during the multimedia session and the number of shared me-
dia streams, i.e., video, audio, and image. We use the following metrics in our experiments:

• Media Quality: the quality of media (audio, video, and image) that is shared be-
tween clients. We use MOS for this metric. We use a proprietary automated MOS
algorithm. Other automated MOS test software is commercially available, e.g., [52].
These automated MOS algorithms enable quality measurements in test environments,
where sessions are generated programmatically between test clients.

• Number of Failures: the number of sessions that failed to meet the required MOS
quality as specified by the service SLAs.

• Increase in Service Capacity: the number of additional sessions that the service
can handle. This value is found by the Capacity Estimator and using the Proactive
Monitor tests to verify its accuracy. We measure the service capacity, by finding
the loads that the service can handle until failure, with and without the proposed
approach.

• CPU Utilization: this reflects how much of the total available resources are freed up
due to better resource utilization and load balancing. We get this as part of running
the PSTs, through an operating system API call every 30 seconds. This is extracted
for each component.

• Overhead: We measure the CPU utilization of the service with and without the TiP
system, to find the overhead of TiP.

4.3.9 Results

The service we test our approach in has a high track record for meeting its strict SLAs; on
average and over a period of almost three years, the service is able to meet its multimedia
communication quality SLA more than 99.9% of the time. The service strives to do better,
as a 0.1% failure rate is still high and costs a lot of money for a service that manages 2.5
million transactions per second at peak. That’s 25,000 transactions per second at peak that
potentially did not meet SLA. To provide an idea of the monetary impact alone of such a
failure rate, note that the ads monetization for such a service runs at a rate higher than
$10 per a thousand ad impressions. That is, advertisers pay $10 for every 1,000 ads shown
to customers. So that’s an opportunity loss of minimally $250 per second, let alone the
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Figure 4.3: Failure reduction with proposed approach.

negative impact of the lower customer satisfaction, which can lead to losing customers to
competitors.

Our test cluster gets around 3,000 transactions per second at peak. We ran the exper-
iment for 5 days, and we divide the test time into two alternating parts: (1) the base or
reference part, where we run the traffic over the service without the proposed solution for
one hour, and (2) the updated service or optimized part, where we run the traffic over the
service with the proposed solution for another hour. We aggregate the results of our tests
at a granularity of 6 hours; i.e., each point in the graphs we show in this section represents
a 6-hour aggregation, unless otherwise mentioned. In each 6-hour period, 3 hours have the
results for the base service, and the other 3 hours have the results for the optimized service
with our Proactive QoS monitoring approach.

We processed more than 100 million sessions over the 5-day period. For each period of
6 hours, the average number of multimedia sessions we get is around 5 million, half of them
with our approach and the other half without it.

Number of Failures: We measure the number of failed sessions with and without our
approach, and we plot the results in Figure 4.3. As the figure shows, the average number of
failed sessions is around 19,000 failures without our approach. Using the proposed approach
to monitor, estimate capacity, predict failures, and route to components with higher capacity
and better performance, the failed sessions count drops to an average of 14,000. Therefore,
the proposed approach manages to drop the failed sessions by an average of 26%. The
average is fairly smooth because it is measured across a large period of 3 hours. The gain
from our approach is much higher during peak times, where resources are constrained.

Media Quality: We measure the media quality of the succeeded sessions. Our results
show that not only did the failed session count drop by an average of 26%, but the quality
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Figure 4.4: MOS increase from 4 to 5 over 5 days.

of the sessions that meet SLA have seen an improvement as well. Figure 4.4 shows that, on
average, around 12% of the sessions that used to meet SLA with MOS 4, are now meeting
their SLA with MOS 5, Excellent Quality. We study the MOS improvement from 4 to 5 in
more details over 12 hours, while alternating between using the service with and without
our approach every hour. We average the MOS measurement every 5 minutes. We see an
improvement of about the same average, around 12% as shown in Figure 4.5, that we see in
the 5 days experiment with 6 hour aggregation. This shows the stability and predictability
of the proposed approach over different time ranges and aggregation periods.

Increase in Service Capacity: The average available service capacity has seen an
improvement. This is the number of extra multimedia sessions the service can handle.
Because of the enhanced component selection, the service is seeing less bottlenecks and
delays, and so is able to handle more multimedia sessions. Figure 4.6 shows that the service
has an average of 17% session capacity increase over the 5 day experiment, and a maximum
of up to 21% increase can be achieved.

CPU Utilization: The service CPU utilization has seen a drop of an average of 10%
over the 5 day experiment, as shown in Figure 4.7. This is closely related to the increase
in service capacity. Because of the optimized component selection, the components are
observing better load distribution and so less congestion. The demand on their CPUs has
dropped by an average of 10%, which allows the components to handle more sessions, by
an average of 17%, with the same resources.

Overhead: we measure the overhead of the TiP system on the production system to
determine the cost of the proposed approach. We measure the service CPU utilization
with and without TiP. We find that the average service CPU impact caused by the whole
TiP system is around 3% over 5 days, as seen in Figure 4.8. This includes the proposed
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Figure 4.5: MOS increase from 4 to 5 over 6 hours.
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Figure 4.6: Increase in the available capacity.
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Figure 4.7: Reduction of CPU utilization.

Proactive QoS Manager approach as well as all other testing in production functionality.
All computations of our approach are done on the TiP system, not the production sys-
tem. The improved multimedia quality, reduced failures, enhanced service session capacity,
and reduced CPU usage are gains made by the proposed approach that make the overall
investment in the TiP system more than justified.

4.4 Summary

In this chapter, we presented a real-time approach to determine the maximum available
capacity of online multimedia service components before they start to fail and impact cus-
tomers. We dynamically monitored the health and quality of multimedia communication
services. We used synthetic transactions to monitor the service by exercising it like real
customers, generated current data about it, and then used that fresh data to create and
maintain up-to-date capacity plans and predictions of different components of the multime-
dia communication service. We then made component selection and routing path actions
in real-time to enhance the quality of multimedia sessions.

We evaluated the proposed approach in a production system, in one of Microsoft’s Skype
data services, and on average, the proposed approach increased the overall media sharing
quality by 12%, decreased the percentage of failures by 25%, reduced the CPU usage by
10%, and increased the session capacity in the service by 17%.
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Chapter 5

Dynamic Anomaly Detection in
Interactive Multimedia Services

In the last two chapters, we built real-time failure predictors for online services, and capacity
and traffic management plans by finding the maximum available capacities in multimedia
service components that would not result in SLA violations and failures. The next step for
us, in the continuum of understanding the impact of service inputs and system states on the
service outputs and SLA violations, is the study of the impact of anomalies on multimedia
service outputs and SLAs. An anomaly refers to values of the service inputs, component
working conditions, and system states that deviate from their expected range [17].

In this chapter, we attempt to understand the impact of anomalies in the multimedia
service inputs, working conditions, and system states on the service outputs. This allows us
to manage anomalies, improve the reliability and performance of multimedia services, and
reduce the observed SLA violations and failures. Working conditions refer to the activities
running on the service like number of active processes and number of open sockets. System
states refer to the service internal states like CPU and memory utilization.

5.1 Introduction

State of the art anomaly detectors follow a data-driven and mathematical models to de-
fine an anomaly [17, 18]. They analyze large amounts of historic data that represent the
service inputs and its working conditions, such as number of users and their active video
sessions, and the number of active processes and their CPU utilization. Using mathematical
modeling, current anomaly detectors find the expected values for these properties as well
as the outliers or anomalies [17, 41]. In the current approaches for handling anomalies,
service implementers generally raise alerts and request corrective measures when anomalies
are encountered, without considering the actual impact of anomalies on the service [3, 14].
Alerts are expensive from a system and engineering support perspectives, and should be
raised only if necessary [43].
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There are multiple key problems with this common theme in anomaly detection and
handling approaches, especially for interactive multimedia services. First, the use of historic
data to determine the impact of anomalies on the service, raise alerts, and request corrective
measures. In the case of multimedia services, the data comes from logs of prior runs
of the service [9]. That data may no longer reflect the current conditions of the service
accurately, as new services are continuously added to data centers, and storage and compute
provisions are updated through collaboration with other data centers. For example, if a
multimedia service expects no more than 100 participants in an online meeting, then having
110 participants is considered an anomaly that raises alerts, even if the service has enough
current capacity to handle the extra participants; so why raise alerts and take the cost hit
if that is not needed.

Another problem with state of the art anomaly detection and handling techniques is
that they are generally designed to monitor and alert on specific metrics of the system
independently; for example, number of processes or CPU utilization [3]. However, it is
rarely the case that a single metric can be correlated to multimedia SLA violations. Usually,
the output of the multimedia service, like multimedia quality, reduces below an acceptable
value under a few conditions together, like number of customers, number of concurrent video
sessions, and CPU utilization. So it is important to consider the association of metrics that
cause SLA violations.

Lastly, the cost of pre-processing previous logs to prepare them for anomaly detection
and impact analysis is substantial. The majority of multimedia transactions in production
service logs have the expected service inputs and working conditions, and succeed without
causing SLA violations [8, 27, 34]. Thus, the SLA violation rate is low, and so is the recall in
the data. Recall in this context refers to the percentage of data that is relevant and usable
in the analysis of anomalies. Having relevant and current data with high recall is more
important to the success of anomaly detection than advanced and deep algorithms [18].
Because of that, hundreds of gigabytes of log data over months are needed to find enough
relevant data for anomaly detection and analysis for multimedia services [27]. Using historic
data in generating analytical systems like data mining and predictive modeling works well
in environments that do not change often; such as transportation systems like airplanes and
ships. On the other hand, multimedia services lack such stability over time at many levels
including service hardware provisions. The ever-changing landscape of multimedia services,
coupled with requirements such as continuous up-times, make the use of historic data about
the service challenging and ineffective [3].

We propose a dynamic approach to the analysis of multimedia service anomalies. We
use synthetic transactions, explained in Section 3, to generate fresh and small, yet highly
relevant data about the current state of the service in near real-time. We employ machine
learning techniques to correlate the ranges of anomalous service inputs and its working
conditions with the service SLA violations. The anomalies themselves are found using
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current state of the art techniques. Our proposed approach identifies the impact of these
anomalies, independently and associatively, on the service and its ability to adhere to SLAs,
and recommends whether to raise alerts and invoke corrective measures. We consider service
inputs and working conditions anomalies worth alerting on if and only if they impact the
output of the service negatively and result in SLA violations.

We implemented the proposed approach in one of Microsoft’s Skype data services in the
application and services group, which handles millions of multimedia sessions per second.
We show that the proposed approach is able to reduce the number of false positives in
anomaly alerts by an average of 71%, reduce false negatives by 69%, enhance the accuracy
of anomaly detection by 31%, and enhance the media sharing quality by 14%. The recall
in the data generated by the synthetic transactions is 100%. In contrast, the recall in the
production logs is less than 2%. In addition, we show that we can update the anomaly
detector in near real-time in around 7 minutes. On the other hand, building a detector
model using current anomaly detection techniques for the same service by using production
logs requires around 7 weeks of production log data that takes several hours of pre-processing
before the data is usable.

The contributions of this chapter are (1) new approach for dynamic anomaly detection in
multimedia services in real-time, (2) machine learning method to correlate the multimedia
service inputs, working conditions, and system states with its outputs and their SLAs, and
(3) actual implementation and evaluation of the proposed approach in a real multimedia
communication service.

5.2 Related Work

Multimedia services are subject to conditions that impact their SLAs like data center faults
and anomalies in the service inputs and working conditions. The complexity and number of
components the service depends on exacerbate the impact of anomalies in any component.
Current approaches to anomaly detection range from mathematical and data driven machine
learning approaches to system-based methodologies. Chandola et al. [17] present a survey
of the available anomaly detection techniques and their applications.

Anomaly detection based on machine learning techniques use either historic data about
the system at hand, or rule-based approaches. The output of the current anomaly detection
techniques used in online multimedia services is in the form of a set of static boundary
conditions on the service inputs and its system states [14]. Outliers in such models are
considered anomalies even if they do not result in any SLA violations or failures like dropped
sessions. The key issue with almost all machine learning approaches is their dependence on
large amounts of data to create, train, and test new models [18, 17]. The data preparation
time is too high for real-time changes and updates [3]. In addition, these approaches rely on
service production logs to find the ranges of service inputs and system working conditions
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to identify the outlier boundaries and their impact on the service. Production Logs are
complex and hard to mine [8, 9]. Data in logs may not be sufficient for mining, analysis,
and anomaly detection models [27, 4]. Pre-processing the logs to prepare them for anomaly
detection models is hard and expensive [30]. Leners et al. [28] use service informers to
improve the availability of distributed services; these are built using system messages found
in production logs from prior runs of the service, not from the current service in real-time.
The resulting anomaly detection models created using logs from prior runs of services may
not accurately represent the current service [6, 32].

Even with online system-monitoring-based approaches, like Hystrix of Netflix [7], the
monitoring is still reactive, as the anomalies, faults, and failures need to happen and cus-
tomers endure them before they are controlled. Anomaly can manifest in many forms,
including in the process of synchronization of audio and video sessions. To study the im-
pact of geographical distribution of multimedia services and distributed peers, Rainer and
Timmerer [46] suggest a self-organized distributed synchronization method for multimedia
content. They adapt IDMS MPEG-DASH to synchronize multimedia playback among the
geographically distributed peers. They introduce session management to MPEG-DASH
and propose a new distributed control scheme that negotiates a reference for the playback
time-stamp among participating peers in the multimedia session [53, 54]. The goal is to
avoid synchronization and latency anomalies, enhance quality, and reduce jittering. Other
efforts attempted to provide DASH-based approaches to optimize video streaming [55, 56].
Trajkovska et al. [43] propose an algorithm to join P2P and cloud computing to enhance
the Quality of Service (QoS) of multimedia streaming systems. They investigate cloud APIs
with built-in functions that allow the automatic computation of QoS. This enables negotiat-
ing QoS parameters such as bandwidth, jitter and latency, and avoid wrong characterization
of state anomalies.

Many efforts attempted to study the impact of anomalies in video rendering in real-time.
Li et al. [48] propose a new rendering technique, LiveRender, that addresses the problems of
bandwidth optimization techniques like inter-frame compression and caching. They address
problems of latency and quality by introducing compression in graphics streaming. Shi et
al. [49] propose a video encoder to select a set of key frames in the video sequence. It uses
a 3D image warping algorithm to interpolate non-key frames that otherwise can increase
anomalies detected in the frames without true impact on the video session. This approach
takes advantage of the run-time graphics rendering contexts to enhance the performance
of video encoding. Tasaka et al. [44] study the feasibility of switching between error con-
cealment and frame skipping to enhance the Quality of Experiences (QoE). This approach
utilizes a tradeoff between the spatial and temporal quality that is caused by error conceal-
ment and frame skipping. The algorithm they suggest switches between error concealment
and frame skipping depending on the nature of errors encountered in the video output; this
technique avoids characterizing unimportant frames as anomalies.
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Our approach is different in multiple aspects. We focus on anomalies in service inputs
and system states that result in SLA violations. We find SLA violations as they happen
under synthetic transactions, not through failure prediction which can be inaccurate and
result in over and/or under-stating the anomalies in the system. We use machine learning
combined with multidimensional analysis to correlate the service anomalous inputs and
working conditions with the service outputs and SLA violations, and find the individual
and associative impacts of these parameters on the output of the service. We change the
reaction to anomalies based on their current impact on the service, not their historic impact.
We monitor the accuracy of the anomaly analysis model and regenerate it in near real-time
if it drops below acceptable accuracy.

5.3 Dynamic Anomaly Analysis

5.3.1 Overview

Multimedia services have complex inter-dependencies between their systems, like call man-
agers, encoders, de-jitters, renderers, decoders, and storage systems [46, 48]. The range
of issues that impact the quality of a multimedia session include computation capacity,
network bandwidth, as well as the varying customer load on the system. So it is almost
impossible to correlate an anomaly of one aspect of the system like CPU utilization, mem-
ory consumption, or user count with degradation of the multimedia service, like poor media
quality measured by MOS [44, 49]. The anomalies’ impact on the service is not consistent
throughout the day and the lifecycle of the service; for example, an anomaly of higher num-
ber of videos shared per session may result in SLA violations during peak hours, but may
have no impact at all during slow traffic. So it is not optimal to have the same reaction to
anomalies like raising alerts all the time, as done in the current anomaly detectors, because
alerts are expensive, and their impact is not constant.

We propose a novel approach, called Dynamic Anomaly Analysis (DAA), to analyze, in
real-time, the anomaly impact of the service input and working conditions that are found
in the trailing 30 days, on the multimedia service. We study the anomalies independently
and associatively, and classify their impact into three categories (1) Impactful, (2) Border-
line, and (3) Non-impactful. Impactful anomalies result in SLA violations. These warrant
alerting and managing as we describe later. Borderline are anomalies that do not result
in SLA violations, but impact the measure of interest in the service. DAA monitors bor-
derline anomalies closely without raising alerts, until they start to cause SLA violations.
Non-impactful anomalies do not have any negative impact on the measures of interest. For
example, if the expected shared videos in a multimedia session is one video per session,
then sharing two videos side by side is an anomaly. However, if sharing two videos side by
side doesn’t impact any measure of interest like media session quality, then this anomaly is
considered non-impactful, and DAA takes no actions on these anomalies.
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Figure 5.1: High-level architecture of multimedia communication services.

As shown in Figure 5.1, DAA is a Testing in Production (TiP) service to improve
the reliability of multimedia services. If DAA or TiP goes down, the service continues
to function properly. TiP is common practice in modern online services, especially in
interactive multimedia services [14], as without it the service is flying blind. DAA consists
of three main components: Data Generator, Anomaly Detection Model Generator,
and Anomaly Handler. The Data Generator creates synthetic transactions that replay
actual customer transactions that had anomalies in their inputs from the past 30 days,
rolling window, of the service deployment. The anomalous values, i.e., the outlier values of
service inputs like number of users and number of video sessions, are the values that are
found from the trailing 30 day window as encountered by the service. These values are
used in the synthetic transactions made by the data generator. By running these synthetic
transactions with anomalous inputs and loads, the Data Generator collects the current
reaction of the service under the current working conditions like CPU utilization, memory
consumption, and number of processes, as well as the service outputs like number of active
multimedia connections and their quality measured in MOS.

The Anomaly Detection Model Generator uses the measurements from the Data Gen-
erator to establish correlations between the anomalous service inputs, service working con-
ditions, and system states with the service output. The service output is represented by a
metric of interest like MOS for shared media quality, service response time, or communica-
tion lag time. The correlations are built using current data from the system. We leverage
concepts from the Association Rule Machine Learning algorithm that are able to determine
the level of independence of each input and working condition and their individual impact
on the output of the service, as well as the associative impact of multiple inputs and working
conditions. The Anomaly Handler uses the model and correlations generated by the Model
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Generator to identify the groups of anomalous inputs and working conditions that cause
SLA violations, classify the anomalies based on their impact, and raise alerts on Impactful
anomalies that result in SLA violations.

The following sub-sections detail the functionality of the Data Generator, Anomaly
Detection Model Generator, and Anomaly Handler.

5.3.2 Data Generator

The Data Generator is comprised of two components. The Synthetic Transaction Provider
(STP) and the service Item and Feature Evaluator (IFE). The STP makes Testing in Pro-
duction (TiP) API calls to each component of the service, and uses the anomalous service
input values that were found in the service in the trailing 30 days. The service is assumed
to have basic anomaly detection, as described in [17], and logs these anomalous values in a
database that is accessible by the STP. The STP uses these anomalous service input values
in the synthetic loads it generates; for example the number of users, number of sessions
created every minute, and the number of videos shared. The STP generates service calls
to each component, like the encoder, decoder, dejitter, renderer, and storage components,
and passes them the anomalous test loads, and collects their outputs into the Detector
Database, shown in Figure 5.1. The service output represents the current service reaction
to the anomalies in the service inputs. The data in the Detector Database is real time
data, that is generated currently from the system; the lifecycle of this data is in the order
of minutes to help monitor the service components. All components of DAA have access to
the Detector Database.

In addition to the component synthetic transactions, the STP makes scenario calls that
represent a true customer e2e transaction. For example, the STP emulates a video call of
certain length between two test nodes representing two customers, and shares an actual
video between them. Such a scenario call exercises the multimedia service components in a
way that mimics real user behavior, using anomalous inputs. The STP collects the results
and outputs of these tests into the Detector Database. Test loads to mimic user behavior
are generally acceptable to replicate the characteristics and metadata of user transactions.
However, if the service at hand requires an exact replica of the user behavior and loads, then
parts of previous production logs representing that behavior can be replayed as described
in [37, 26]. The STP makes operating system calls to collect system information such as
CPU utilization, memory consumption, and process counts. The STP runs the component
and scenario tests with progressively larger loads to generate actual SLA violations in the
tested service and its components. The combination of regular and anomalous inputs,
working conditions, and service outputs under low, medium, and high loads are collected
into the Detector Database.
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Before we describe the Item and Feature Evaluator (IFE) component, we present a
few concepts in real-time Dimensional Modeling [35] and Associative Rule based machine
learning techniques [57] as they relate to multimedia services:

• Feature: is an individual measurable property of a phenomenon or transaction. For
example, MOS representing the quality of a multimedia session, is a Feature. Users
of DAA provide the Features of interest, like MOS, as a configuration value of DAA.

• Item: is a property representing a transaction attribute; for example number of
users, number of processes, CPU utilization, and memory utilization are all trans-
action Items. Items map to dimensions in Dimensional Modeling. Itemset is the
group of Items in a transaction, and maps to Groups in Dimensional Modeling. This
allows the study of the root-cause analysis between the Items/dimensions and Fea-
tures/measures, i.e., which Item values caused which Feature values, as enabled by
Dimensional Modeling [35].

• Transaction: is the activity of interest, like a multimedia session.

• Support: is the frequency an Item is seen in the multimedia session under study.
Example: if an Item is shown 8 times in 10 transactions, the Support of that Item is
80%.

• Confidence: is the frequency that a deduction is found to be true in the multimedia
sessions of study. Example: if a deduction like MOS is below 4 every time CPU
utilization is above 77% is found to be true in 900 out of 10,000 transactions, the
Confidence in such a deduction is 90%. This data is found in the Detector Database,
and Confidence computation is a matter of counting the transactions and their content.
Users of DAA provide their required Confidence level as a configuration value of DAA.

• Lift: is the ratio between the Support of two Items in the set to the Support of both
Items in the set if they were independent. Users of DAA provide their required Lift as
a configuration value of DAA. The Lift for Item X and Item Y is given by: (Support
of Union of X and Y ) / (Support(X) * Support(Y ))

• Conviction: is the ratio of the expected frequency that Item X (e.g., CPU Utiliza-
tion) happens without Item Y (e.g., Memory Utilization) and causes the multimedia
session Feature of interest to happen (e.g., MOS = 5). It is given by: conv(X, Y ) =
((1 - Support(Y )) / (1 - Confidence(X, Y )))

After the data is generated by the STP, the IFE finds the Feature(s) in each multimedia
session in the database. The IFE then finds the Items; these are the remaining multimedia
session attributes excluding the Feature(s). It then computes the Support, Confidence, and
Lift of each Item in the Itemset of each multimedia session. If the computed values meet the

63



Procedure 3 Data Generation Algorithm
ANOMALY DETECTION DATA GENERATION
1: function GenerateAnomalyDetectionData
2: while (Confidence < ConfidenceConfiguration and Lift < LiftConfiguration do
3: STPGenerateData();
4: for each Multimedia Session; do
5: for each Items do
6: Compute Support, Confidence, and Lift;
7: end for
8: end for
9: end while

10: Collect Items, Features, Support, Confidence, Lift;
11: Populate CollectorDatabase with Anomaly Detection Data;
12: end function
SYNTHETIC TEST PROVIDER
1: function STPGenerateData
2: for each Low Service Loads to SLA-Violation-Causing Loads do
3: Run component level tests;
4: Run scenario level tests;
5: Run system level tests;
6: Capture test inputs, system states, component outputs and Store in DetectorDatabase;
7: end for
8: end function

configuration values for Confidence and Lift, data generation is complete. If the computed
Confidence and Lift for any Item are lower than the configured values, the IFE requests
more tests from the STP to provide more correlation data that can achieve the required
Confidence and Lift. The new STP tests use service input load values that were not used in
the previous tests, i.e., it extends the range of used inputs and their load values to ensure
that the newly generated data can generate new correlations. The previous inputs and
loads are stored in the Detector Database, and are updated after each test. The DAA Data
Generation algorithm is summarized in Procedure 1.

5.3.3 Anomaly Detection Model Generator

The multimedia session Features and Items and their correlations as computed by the
metrics of Support, Confidence, and Lift are determined by the DAA Data Generator, as
described in the previous subsection. The DAA Anomaly Detection Model Generator eval-
uates each Item in the multimedia session Itemset and their impact on the Features, and
computes the Conviction associated with each Item like number of users and their depen-
dent Items like CPU Utilization and Memory Utilization. The Conviction value between
two items determines how independent they are from each other. For example, a Convic-
tion between two Items like number of users and CPU utilization of 1.15 means that the
correlation between them and the quality of multimedia session is 85% more accurate than
the correlation between each of them alone with the quality of service. In other words,
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Procedure 4 Model Generation Algorithm
ANOMALY DETECTION MODEL GENERATION
1: function GenerateAnomalyDetectionModel
2: for each Feature in DetectorDatabase do
3: Group Transactions by Feature Value;
4: end for
5: for each Feature in DetectorDatabase do
6: for each Transaction per Feature Value do
7: Group each Transaction Item into Transaction Itemset;
8: end for
9: for each Item in Transaction Itemset do

10: Compute Conviction;
11: end for
12: end for
13: Generate Anomaly Detection Model (Table 5.1);
14: Publish Model to DetectorDatabase;
15: Publish Conviction of each Item in Transaction Itemset;
16: end function
ANOMALY HANDLER ALGORITHM
1: function RaiseAlerts
2: Define Anomaly-Based Alert Levels (1 to N);
3: Create a Mapping between Feature measurement and Alert Level;
4: for each Real-Transaction Anomalies that cause SLA violations do
5: Find the Alert Level Mapping to the Feature measurement
6: Raise the appropriate Alert Level
7: end for
8: end function

building an anomaly detector that would fire alerts based on values of one of these Items
alone without association with the other has an 85% chance of raising a false positive alert.
Users of DAA may configure it to consider items independently if the convection between
them is above 1.85 for example.

The Model Generator produces a set of tables of associate Items and their ranges that
correlate to a given Feature value like media quality MOS = 1, 2, 3, 4, and 5. Table
5.1 contains a sample correlation between the upper bound of number of users and CPU
utilization, given a Conviction configuration of 1.85 that results in MOS Feature values of
3, 4, and 5. Table 5.1 in practice is a high cardinality table, and can be Normalized into
multiple tables; each representing one Feature, or even one Feature value. Anomalous inputs
that cause SLA violations, like MOS 3 or less, are considered impactful and worth raising
alerts. Anomalous inputs that result in acceptable measurements of interest, like MOS 4,
are considered borderline anomalies that require monitoring but not alerting. Anomalous
inputs that do not impact the measurement of interest, like MOS 5, are ignored. The
Anomaly Detection Model Generator algorithm is summarized in Procedure 2.
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User-CPU Conviction User Limit CPU Limit Video Quality (MOS)
1.85 110 73% 3
1.85 123 61% 4
1.85 128 57% 5

Table 5.1: Anomaly detection model for the multimedia service.

5.3.4 Anomaly Handler

State of the art anomaly detectors are configured to raise alerts when anomalies are en-
countered [17]. This may result in high number of alerts, with high cost, as we show in the
evaluation section later. In DAA, the Anomaly Handler module identifies the anomalies
that warrant alerts, and fire alerts when anomalies in the real service inputs and working
conditions, i.e., in the Itemset, result in undesired Feature state like MOS 3 or below. DAA
users configure the Features to define the measurements of interest and the measurement
thresholds at which to fire alerts. Users of DAA configure Lift and Confidence of DAA to
define the associative dependence between the service inputs and working conditions, and
when to treat them practically independently, and the required level of confidence in the
data before firing alerts. By configuring DAA’s Features, Lift, and Confidence, users of
DAA decide which measurements they want to consider for firing alerts, and the thresholds
they consider to be harmful. Anomalies that do not result in harm, like SLA violations, are
ignored. This is summarized in the Anomaly Handler algorithm in Procedure 2.

Users of DAA may consider a multi-level alerting system based on the Feature values
they are monitoring. For example, if MOS is the Feature of interest, users of DAA may
define 3 levels of alerts like Critical for MOS value 1, High Severity for MOS value 2,
Medium Severity for MOS value 3. Such sub-classification of the Impactful anomalies is left
to the users of DAA to design and implement as they deem fit, which can reduce the cost
of handling alerts considerably.

5.3.5 Remarks and Practical Considerations

As explained in the Data Generator section, the computation of the ARL concepts of
Confidence, Lift, and Conviction use the value of Support. The computation of Support is
quite expensive, and many algorithms like Apriori, Eclat, and FP-growth have been designed
to make its computation efficient [18, 17]. State of the art anomaly detection models read
massive amounts of data from logs with very low recall, less than 2%, generate connected
data graphs, and leverage those algorithms to perform either breadth first search (Apriori),
depth first search (Eclat), multi-pass search algorithms (FP-growth) to count the Support
for a given feature. These are good optimizations that can make the Support computation
tractable. In our proposed approach, we do not need to use any of those search algorithms,
because we generate a small amount of data, in the order of mega bytes, as opposed to

66



peta bytes in the logs. The recall in the proposed approach is 100%. The resulting data
from the proposed approach is hosted in a dimensional model that lends itself naturally to
counting and grouping. This is an important practical advantage of our proposed approach,
that drops the machine learning data preparation time from the order of hours or days to
a few minutes as shown in the evaluation section. We believe this work is novel because
it is the first to combine: (1) synthetic transactions to generate data with high recall in
short time, order of seconds, (2) dimensional modeling to identify features and dimensional
schema impacting those features, and (3) association rule learning to create an accurate
and dynamic anomaly detector, which can be updated in the order of minutes, as opposed
to weeks for existing algorithms.

DAA combines machine learning techniques from the Associative Rules Learning (ARL)
algorithm and Dimensional Modeling concepts like Features and Groups. The choice of
ARL over other algorithms is made to leverage its ability to compute the inter-dependence
of parameters contributing to a transaction. Other algorithms are able to find correlations
equally well, but lack the ability to find the association between the parameters in the
transaction [18, 57]. We combine these techniques with near real-time Dimensional Modeling
by defining the transaction output as a monitored Feature, and the Items and Itemsets as
Dimensions. This approach and the resulting model are novel and of practical value, when
used to correlate the ranges of service inputs and working conditions, with the monitored
value of the multimedia service output like video session quality.

Synthetic transactions in TiP do utilize the service resources, and this impacts the
service. Service designers account for such an impact due to the importance of TiP [39, 38].
We utilize TiP principles and infrastructures as the platform for DAA. No production code
is instrumented to generate the data. Data is generated through TiP synthetic transactions.
The Data Generator is executed regularly as part of the TiP system. It collects component,
scenario, and system information that are used for generic TiP purposes. The Anomaly
Detection Model Generation, on the other hand, is the functionality that takes place on
demand, when the anomaly detection accuracy drops below the acceptable value.

5.4 Evaluation

We present the results of running DAA for one month in one of Microsoft’s Skype data
services, and exercising more than 400 million multimedia sessions.

5.4.1 Implementation and Setup

We implement synthetic transactions for four multimedia components: Call Manager, Media
Encoder, Media Renderer, and Media Storage, as shown in Figure 5.1. The considered geo-
distributed multimedia communication service processes over 3 million requests per second
at peak time. It is deployed in 8 data centers in 3 continents. We use a test cluster of
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10 servers in the data center, which gets around 1% of the data center traffic to run our
experiments. Each server is a quad-core Intel Xeon server with 12 GB RAM. The STP makes
component, scenario, and system calls, and we capture the service components inputs and
their outputs. Similarly, we record the outputs of sharing a video scenario. The TiP test
cluster we used received an average of 400 million transactions over the four weeks of the
experiment, with 3,000 transactions per second at peak. We find the results of the proposed
DAA approach from the TiP system, as we capture the test inputs, system states, and the
scenario outputs. We find the results of the current anomaly detector of the production
service from the system logs, that show the inputs that were considered an anomaly and
the resulting output based on that. The production service implements a detector based on
Neural Network machine learning. The 1% traffic in the test cluster is split equally between
the servers implementing the proposed and current approaches. The traffic split is done by
user to ensure continuity of activities received by each system; so 50% of the user base is
sent to each system. The results are found for each group and compared.

The STP makes the calls to each of the service components and controls the various
aspects of the multimedia request like media type and media size. We measure the quality
of the multimedia session using an automated MOS measurement algorithm. Automated
MOS measurement algorithms built using actual prior customer assignments that can detect
white noise, echo, and other problems are common in test environments that require real-
time assessment of media quality [14]. System calls to get system states are implemented
in an infinite loop that reads CPU utilization, memory utilization, and number of processes
from the performance monitoring APIs of the operating system of each server every 30
seconds. The STP makes simultaneous calls with different user agent information, and
controls the load in two ways: (1) number of media sessions made by each client in a given
time, and (2) number of simultaneous media sessions representing multiple client calls. The
data is collected and stored in the Detector Database with a schema similar to Table 5.1.

DAA can be used as a standalone anomaly detection system. It finds the anomalies and
logs them into the Detector Database. However, if the service at hand prefers to find its
own anomalies and leverage DAA for analyzing the impact of these anomalies, the service
needs to log the anomalies it finds into the Detector Database, so that DAA can use these
anomalous values in its synthetic transactions. In the case of our experiments, we used
the anomaly values found by the production service, and pulled them into the Detector
Database.

5.4.2 Performance Metrics

We study the quality of media sharing during the multimedia session and the number of
shared video and audio streams. We compare against the state of the art anomaly detection
implemented in the online service using Neural Network machine learning algorithm. The
Current anomaly detection used in the service is a Replicator Neural Network detector. It

68



has the classic three phases of: (1) input layer, (2) 5 hidden/internal staircase-like activation
layers, and (3) linear output layer. Having 5 internal layers technically classifies it as a
deep learning algorithm. The training cycle of the anomaly detector is implemented with
backpropagation (i.e. backward pass) for error reconstruction. Here, the error between
the actual outputs and the presumed/target outputs is computed, and back-propagated
to the hidden layers to update the weights matrix of the neural network neurons. As
expected, the training process is lengthy and requires high recall in the training data, which
is only guaranteed by large volumes of data from previous runs of the service. The Current
anomaly detector implements a preprocessing step, before the replicator neural network,
which utilizes a Holt-Winters algorithm for smoothing the time series data representing the
service inputs. This step favors fresh data and caters for the seasonality in the data. The
following are the metrics we use to assess the performance of DAA:

• False Positives (FP): the number of sessions that are considered to have anomaly
in their inputs and working conditions, yet did not result in SLA violations.

• False Negatives (FN): the number of sessions that are not considered to have
anomaly in their inputs and working conditions, yet resulted in SLA violations.

• True Positives (TP): the number of sessions that are considered to have anomaly
in their inputs and working conditions, and actually resulted in SLA violations.

• True Negatives (TN): the number of sessions that are not considered to have
anomaly in their inputs and working conditions, and did not result in SLA violations.

• Accuracy: the ratio of (true positives + true negatives) to the sum of (false positives,
false negatives, true positives, and true negatives).

• Recall: in the context of data retrieval from the source, recall refers to the percentage
of data that is usable in anomaly detection analysis. In the context of detection
analysis, recall is the ratio of (true positives) to the sum of (true positives and false
negatives). This the true positive rate, or sensitivity of the model.

• Precision: in the context of anomaly detection analysis, Precision is the ratio of
(true positives) to the sum of (true positives and false positives). This is the Positive
Predictive Value (PPV ) of the model.

• Time to Detect Model Changes: the time it took the Anomaly Detection Analysis
module to detect that the model is no longer accurately representing the current
system.

• Time to Update Anomaly Detection Model: the time it takes to create a new
Dynamic Anomaly Analysis (DAA) model after changes in the system.
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Anomaly Detector FP FN TP TN Recall Precision Accuracy
DAA 10.8 11.5 91.0 93.5 88.8 89.4 89.2

Current 35.2 36.6 50.6 53.4 58.1 58.9 59.2

Table 5.2: Summary of the results over the entire 4-week period.

• Number of Failures: the number of sessions that failed to meet the MOS quality
SLA due to inaccurate anomaly handling.

• Media Quality: the quality of media, audio and video, that is shared between clients;
it is measured in MOS.

• Overhead: the CPU utilization of the production service with and without the TiP
system.

5.4.3 Results

We measure each of the performance metrics described above for the state of the art ap-
proach in anomaly detection implemented in the service, we refer to it as Current, and
for DAA, and compare the results. First, we summarize the findings of the false posi-
tives/negatives, true positives/negatives, recall, precision, and accuracy for the four weeks
of the experiment in Table 5.2. The current system and its static way of reacting to anoma-
lies result in huge waste, in the form or false positives and negatives, and the accuracy suffers
accordingly. On the other hand, DAA finds the impact of the anomalies in near real-time
through synthetic transactions and only alerts if the anomalies result in SLA violations.
This reduces false positives and negatives, and enhances the accuracy.

The following figures have only one week of the results, with hourly aggregations of
data, to make them clearer. We observed a cyclical pattern daily and weekly, so there are
no lost insights by the omission of the remaining three weeks of experiment data from the
graphs. We show the detailed graphs for CPU utilization and number of users in the system
and analyze the impact of DAA on the performance metrics defined earlier. The proposed
DAA approach outperforms the current anomaly detector in all metrics.

Accuracy: In addition to Table 5.2, we detail the accuracy of DAA versus the current
detector for users service input and CPU system state, as they are the most impactful on the
output of the service. Figures 5.2 and 5.3 summarize the enhancements to CPU and user
anomaly detection accuracy. We show the details of accuracy as it provides insights into all
the remaining metrics; FP, FN, TP, and TN. Using a static boundary for CPU utilization
of 50%, which is what the production service had, results in hundreds of CPU violations per
hour that end up being raised as false positive alerts. Using DAA, the accuracy of anomaly
detection based on real-time monitoring went up from 59% to 89%. Using DAA, the CPU
boundary of safe functionality varied between 40% CPU utilization to 73% before anomalies
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Figure 5.2: Anomaly detection accuracy for CPU.

result in SLA violations. So to assume that we can raise or lower the static boundary, or
even use a deterministic cyclical model like sinusoidal to enhance the accuracy, or false
positives/negatives, is not true. It needs to be based on data from the current system.
Likewise, we see that the accuracy of user anomaly detection using DAA went up from 63%
on average to 90%. The memory consumption anomaly detection accuracy went up from
58% to 91%, and the number of sessions anomaly detection accuracy went up from 57% to
89%.

Recall: We compare the findings of data generation time, pre-processing time, and data
recall for DAA and the Current detector in Table 5.3. There is significant time saving in the
generation of the detector analysis model. Finding and capturing anomalies is an ongoing
process throughout the lifecycle of the service. The savings are in the analysis done on the
system and its reaction to anomalies. Using current approaches, data about the system
needs to be logged for real transactions and then processed and analyzed. Whereas using
DAA, we generate small, highly relevant, near real-time data about the current system,
not previous deployments of the service. The recall in the original production data, before
preparing it for detector model generation was around 2%. This is due to the fact that
production logs have a multitude of data describing all aspects of the service like user sign-
in/sign-out, authentication, payments, application usage, and other data. It took 22 hours
of processing and preparation for the log data to be usable in anomaly detection. DAA has
a recall of 100% due to using synthetic transactions that test the required components for
the media quality, and the data is usable directly without any pre-processing.

Time to Detect Model Changes: After system changes, like adding new compute
resources, it takes DAA at most one minute to detect that the anomaly analysis is no longer
accurate for the current system. DAA’s Anomaly Detector issues calls to the STP to run
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Figure 5.3: Anomaly detection accuracy for user.

Anomaly Detector Generation Time Processing Time Data Recall
DAA 5-7 Mins 2-4 Mins 100%

Current 7 Weeks 22 Hrs 2%

Table 5.3: Data generation and processing times.

more tests in such cases to verify its findings, before it attempts to create new analysis
models. We chose three different sets of component, system, and scenario tests to verify.
Each run for 5 seconds every 30 seconds. If the model is no longer accurate, we generate a
new model.

Time to Update Model: It takes 7-10 seconds to analyze the results of component
inputs, system states, and scenario outputs. If the results are close (variance less than 5%
in accuracy) from the three tests described earlier, we use the model built from the last
set of tests. If the results are not close, DAA assumes the system is still not stable, DAA
continues testing the system until it reaches a steady state. On average, it takes 5-7 minutes
to update the model. Updating the model usually happens around business day boundaries,
and if resources from other data centers are added. During the time of changes, DAA short-
circuits itself and lets the production service use its default production anomaly detection
service, to avoid introducing TiP-based failures into the production service. When DAA is
updated, it requests activation from the production service to perform its anomaly analysis
functionality.

Number of Failures: Figure 5.4 shows the number of session failures, quality below
MOS 4, caused by inaccurate anomaly reaction with and without DAA. On average, the
failures without DAA where around 0.082%. This translates to tens of media sessions failing
every hour (63 in 1% of the service traffic); that is thousands of sessions dropping from
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Figure 5.4: Session failures.

MOS 4 or 5, good/excellent quality, to below MOS 4, poor quality, in the data center every
hour. Using DAA, SLA violations dropped to around 0.051%. Thus, using DAA results
in thousands of customers every hour improving their MOS from poor to good/excellent
quality.

Media Quality: Figure 5.5 shows the impact of DAA on media quality enhancement
of successful sessions. Around 14% of media sessions have seen an increase from quality of
MOS 4, good quality, to MOS 5, excellent quality. DAA reduced the false negative rate
from 36.6% to 11.5%. These are inputs that were not supposed to cause SLA violations
in the service outputs, but ended up reducing media quality. DAA detected and marked
these inputs as anomalies, overriding the Current detector, so the highest safe range of user
count per server in a given time window was changed in real-time. This resulted in different
routing scheme of new users to other servers. Otherwise, these users would have been added
to the wrong server, overloading it, and resulting in compute resource contention and so
media quality drop.

Overhead: The overhead of the TiP system is measured by the online multimedia
service, continuously. The service measured the hourly average production service CPU
utilization with and without the whole TiP sytem, which includes DAA. The average service
CPU impact caused by the whole TiP system is around 2.8%. The improved multimedia
quality, reduced SLA violations, and reduction in false positives and negatives using DAA
make the overall investment in the TiP system well justified.

5.5 Summary

In this chapter, we presented a new approach that generates current data about the service
in real-time, and uses that data to analyze the impact of anomalies on the service. If the
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Figure 5.5: Media quality.

inputs and system states do not result in SLA violations, they are not considered anomalies
worth alerting on. Through implementation in a production system in one of Microsoft’s
Skype data services, and running the experiments for 4 weeks, we showed that using the
proposed approach reduces the amount of false positives in anomaly detection alerts by an
average of 71%, reduces false negatives by 69%, enhances the accuracy of anomaly detection
by 31%, and enhances the media sharing quality by 14%.

In contrast, current approaches for anomaly detection, analysis, and handling are static
and cannot keep up with the frequent changes that happen during the lifecycle of online
services. Our experimental results collected from a large-scale multimedia system show the
current approaches result in large waste in the system resources due to the high percentages
of false positives and negatives. Current approaches generate many unwarranted alerts that
have high maintenance and support cost. This results in poor confidence in the anomaly
detection and the alerts they generate.
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Chapter 6

Efficient Coordination of Web
Services in Large-scale Multimedia
Systems

In the previous chapters, we addressed the e2e reliability of online services covering failure
prediction, capacity estimation, and anomaly analysis. In this chapter, we address the
reliability of online service from a program design perspective. The services and functions of
multimedia services like media encoding and dejitter are implemented using a wide range of
programming languages. These service are usually run on more than one data center around
the world. A common approach for handling the complexity of large-scale multimedia
systems is to implement its functionality through web services. These web services are
called through standard platform-independent protocols such as RESTful APIs.

When a client requests a video conference session, the service constructs and manages a
distributed transactions that calls multiple web services. The transaction controller attempts
to prevent resources from being over-committed. The transaction controller is responsible
for the consistency of the transaction. Concurrent transactions cannot interfere with each
other, by design. Web services are generally stateless. This makes handling distributed
transactions built with web services expensive and complex. The dynamic nature of mul-
timedia services and their constant updates makes the problem harder to manage [3, 4, 5].
All changes and updates made to multimedia web services need to be done without breaking
existing client code that is using the multimedia system.

Our work in this chapter addresses the problem of dynamically creating multimedia
distributed transactions, and aims at reducing the SLA failures caused by over-committing
the service component resources to unnecessary transactions.

6.1 Introduction

The state-of-the-art approaches providing transaction control for distributed transactions
in web services are inefficient. They can result in considerable waste of available resources.
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This reduces capacity of multimedia session and impacts quality. The limitation in trans-
action control protocols that causes this inefficiency is the fact that they do not allow
participating web services to select which transactions to join. Current protocols force mul-
timedia services to include web services that are not required in some transactions in all
distributed transaction. Web services that are not required for the atomicity of a distributed
transaction should not be included in one. To make up for the lack of rollback support in
web services, multimedia services implement compensating transactions to release the over-
committed resources, and to maintain system consistency. Compensating transactions are
expensive, hard to implement, and require considerable effort and time in real scenarios
[13]. All that result in increased client latency, increased failures, and reduced multimedia
session quality.

We propose a simple, practical, and effective optimization to current distributed trans-
action management protocols used in web services. It allows individual web services to
selectively participate in distributed transactions that they contribute to their successful
completions, while fully supporting the dynamic updates of web services, and not requiring
any significant changes in the implementation of the web services or the systems using them.

Our implementation in a one Microsoft’s Skype data services shows that the proposed
optimization substantially reduces the number of web services that are defensively included
in distributed transactions, reduce the number of compensating transactions, improves the
efficiency of the systems using the web services, enhances the number of multimedia sessions
that can be created between users, and enhances the media quality of these media sessions.

The contributions of this work can be summarized as follows: we present an efficient
approach to dynamically select which web services to include in distributed transactions in
multimedia services. We implement and evaluate the effectiveness of the proposed approach
in one of the multimedia communication services used in Microsoft, that handles more than
one million sessions per second at peak time. We run the experiments for two weeks in a
test cluster that gets more than 200 million multimedia requests. The results show that the
proposed approach, on average, increases the throughput of transactions by 36%, reduces
failure rate by 35%, the multimedia quality (Mean Opinion Score (MOS)) of the succeeded
sessions by 9%, and reduces the overall time required by all transactions by 35%.

6.2 Related Work

Several previous works attempt to address the transaction coordination in distributed mul-
timedia services. For example, Ott et al. [58] address multimedia transaction coordination
in distributed services and note the lack of transport-level protocols designed to work in-
dependently, as well as inability to share information between multimedia flows without
coordinating data transport. They propose an open architecture for sharing network state
and transaction information between multimedia flows. Li et al. [59] describe the coor-
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dination required for en-route multimedia object caching in transcoding processes for tree
networks by requiring service transaction coordination between proxies on a single path or
at individual nodes.

Poellabauer et al. [60] argue that real-time and multimedia applications require trans-
action coordination of event for multimedia delivery mechanism, and note that the observed
low Quality of Service in multimedia services is due to lack of effective distributed transac-
tion coordination. Rainer and Timmerer [46] study the impact of geographical distribution
of multimedia services and distributed peers, and propose a self-organized distributed trans-
action synchronization method for multimedia content. They propose a new distributed
control scheme that negotiates a reference for the playback time-stamp among participat-
ing peers.

Lin et al. [48] study the problems of multimedia distributed transaction latency and their
impact on multimedia quality, and introduce compression in graphics streaming. Shatnawi
et al. [3] study the use of distributed synthetic transactions to monitor and predict failures
in multimedia services. They incorporate a model were all web services are considered part
of the transactions, with no ability to dynamically define the atomicity of transactions.
Riegen et al. [61] note that scenarios using distributed transactions in online web services
are generally controlled by the service client; the service client decides which web services
to include in a distributed transaction without any collaboration with the participating web
services.

We note that web service distributed transaction management concepts are based on
models built for distributed database systems [10, 11]. These models are inefficient for web
services. The OASIS projects [13] attempt to define standards for context, coordination,
and atomicity between disparate web services. Noting the high cost of transactions in web
services, our approach optimizes the selection process of which web services to include in a
transaction, builds on top of existing protocols, and adds an optimization communication
layer that allows the service client and participating web services to determine, together,
the web services that need to participate in a given transaction.

6.3 Proposed Optimization

We propose the idea of selective joining and defecting from distributed web transactions.
This improves the efficiency of distributed transaction protocols by allowing them to dy-
namically include web services in transactions with minimal overhead and no code changes.

6.3.1 Background

Multimedia services are typically implemented as the collaboration of multiple media web
services. The constituent media services may all be part of the same enterprise, or offered
through third party online services, such as Amazon Web Services (AWS) [62] for storage.
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Figure 6.1: Media Manager client and web services.

Figure 6.1 shows a high level diagram of an online multimedia service. Sharing a video
between two applications entails getting the user IDs and validating them. The Media
Manager Client uses IDAccountManager() that provides create(), read(), update(), delete(),
and validate() user accounts. Then the Media Manager Client downloads the video from
the source application, performs encoding and size optimization on it, caches the video
on the service to enhance the sharing experience and to allow for faster re-attempts in
case of delivery interruptions, and finally renders the video for showing at the destination
application.

The Media Manager Client uses the following services: MediaEncoding(), MediaDecod-
ing(), MediaStore(), MediaDejitter(), and MediaRender(). The Media Manager Client is
the component that controls which web services join transactions. Procedure 1 shows a
pseudo code example of how WS Coordination, AtomicTransaction, and BusinessActivity
are used in the Media Manager Client to create a transaction context, add web services to
it, and conclude the distributed transaction of sharing a video between two applications.
To keep the pseudo code simple, we only show how the Media Manager Client creates a
transaction context and include web services in it. We show in the following subsections,
how the code in Procedure 1 is optimized when we apply the proposed approach.

6.3.2 Overview

From the example in Section 3.1, there are four steps to implement a transaction. (1)
Create a transaction context, and register all required web services in it. (2) Execute all
web services in the transaction context. (3) Commit the the transaction. (4) Finalize
and close the transaction context. The proposed approach works during the first step; we
give the web services, e.g., Create, Update, Read, Delete, Encoder1, Encoder2, Storage1,
Decoder1, Decoder2, Storage2, Renderer1, Renderer2, and Renderer3 in the Media Manager
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Procedure 5 Share a video
1: function EncodeAndShareVideo
2: Create WS-CoordinationContext Context
3: Create an Activity ShareVideoActivity
4: Set Coordination Protocol /*e.g. Completion, VolatileTwoPhaseCommit, or DurableT-

woPhaseCommit*/
5: Set ShareVideoWebServices = Encoding, Storage, and Rendering
6: for each Web Service in ShareVideoWebServices do
7: Register Service in ShareVideoActivity
8: end for
9: Set Compensating Activity for each service in ShareVideoActivity

10: for each Web Service in Context do
11: Call Web Service
12: if Web Service Fails then
13: Set TransactionFailure = true
14: for each Web Service that succeeded do
15: Compensate for Web Service
16: end for
17: end if
18: end for
19: if TransactionFailure is not true then
20: for each Web Service in Context do
21: Commit Web Service
22: if Web Service Commit Failure then
23: Set TransactionFailure = true
24: for each Web Service that succeeded do
25: Compensate for Web Service
26: end for
27: end if
28: end for
29: end if
30: if TransactionFailure is not true then
31: Close Transaction Context
32: end if
33: end function
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example shown in Figure 6.1, the choice to join a transaction. The proposed approach uses
the existing web service REST APIs in its communications.

Before we explain the proposed approach, we define the software components that par-
ticipate in it:

• Service Client: the service that applications call to perform the multimedia com-
munication, like the Media Manager Client in Figure 6.1. It initiates the transaction
and controls its lifecycle and closure; either commit or rollback.

• Master Service: the service that has the registration information of all participating
web services and the data entities they create, update, and/or delete.

• Web Service: the participating web service that represents one atomic functionality
provided to the Service Client, like encoding a video.

In the proposed approach, the Service Client calls the Master Service to get information
about the web services it is going to call. This includes data entities, like user and video,
that the web services write, update, or delete. The Service Client uses this information
to make an initial assumption to include the web service in the transaction. The Service
Client may allow some web services to defect from the transaction if the web service does
not impact the transaction data entity, or to join the transaction if it does. This eliminates
the inclusion of web services in transactions where they are not needed. This results in
more media session capacity and better quality, due to less client latency, faster transaction
execution, and higher transaction success rate since fewer web services are included and
so less failure points. Less compensating transactions after roll-back in case of transaction
failures.

We propose two extra parameters in the methods of the web services that participate
in the proposed protocol: (1) a reference to the type of entities that are impacted by the
the transaction; e.g., user, video, and audio. (2) An enumeration value that represents
the mode of the transaction. The proposed protocol has three modes that control the web
service participation in the transaction:

• All-In: this is the most common mode in practice in current research and implemen-
tation of web service distributed transactions [61, 13]. All participating web services
are required to be part of all transactions. If any of them fails, the transaction fails.
In the call to the web service, the client passes a reference to the type of entities that
will be impacted by the transaction, and a transaction enumeration value of All-In
that forces the web service to join the transaction.

• Defection-Allowed: the Service Client makes the assumption that the web service is
required in the transaction, based on information acquired from the Master Service.
The Service Client includes the web service in the transaction in the first step of
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Figure 6.2: Summary of the proposed approach.

Trans-action Web Service Entity Web Service Inclusion Inclusion Mode
1 Encode-Video Video In Defection-Allowed
1 Store-Video Video In Defection-Allowed
1 Render-Video Video Out Defection-Allowed

Table 6.1: Transaction Participation Table (TPT) example.

creating the transaction context, but allows it to defect if it does not impact the data
entity at hand, like user. In the call to the web service, the Service Client passes
a reference to the type of entities that will be impacted by the transaction, and a
transaction enumeration value of Defection-Allowed. If the web service defects from
the transaction, it informs the Service Client through its return value.

• Join-Allowed: the Service Client makes the assumption that the web service is not
required in the transaction, it does not include it in the transaction context in the
initial call, but allows the web service to join the transaction if it impacts the entity
at hand. In the call to the web service, the client passes a reference to the type of
entities that will be impacted by the transaction, and a transaction enumeration value
of Join-Allowed. If the web service joins the transaction, it informs the Service Client
through its return value.

Figure 6.2 shows the new sequence of events for the example in Section 3.1 of sharing
a video between two applications. Note the impact of our approach on the first and sec-
ond steps: the Encode(), Store(), and Render() web services are initially included in the
transaction context, but are given the chance to defect from the atomic transaction. The
Render() web service defects from the transaction, and will be called by the Media Service
Client after the Encode() and Store() transaction is successful.

The following sub-sections describe how the Service Client, participating web services,
and Master Service implement the proposed protocol.
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6.3.3 Service Client Design

The Service Client maintains a Transaction Participation Table (TPT) for the transactions
it issues. The TPT has the issued transactions, the participating web services, the entities
involved, and the web service transaction inclusion mode. If the Service Client assumes
a web service is part of a transaction, but allows it to defect, and it defects, then the
Service Client updates its TPT to indicate the web service is not part of the transaction.
After all web services return from the transaction context creation, Step 1, the TPT is
updated to reflect the web services inclusion in the transaction. The Service Client then
monitors the success and failure of the web services participating in the transaction, and
closes the transaction when done, through commit or roll-back, just as it did without the
proposed approach. Note that we did not impact, update or change, the used coordination
protocol. If it is Completion, VolatileTwoPhaseCommit, or DurableTwoPhaseCommit, it
will proceed as it did; only now with just the right set of web services that need to be
included in the transaction. Table 6.1, provides an example of an updated TPT that
shows the inclusion/exclusion of EncodeVideo(), StoreVideo(), and RenderVideo() in the
transaction described in the example in Figure 6.2.

If the Service Client is in doubt about the need to include a web service in a transaction,
due to lack of information at the Master Service, the Service Client includes the web service
in the transaction using All-In, or Defection-Allowed modes. The Service Client algorithm
is summarized in the Distributed Transaction Federated Control (DTFC) algorithm shown
in the "DTFC Algorithm - Service Client" procedure.

6.3.4 Participating Web Service Design

Each participating web service registers with the Master Service; the registration process
is described in the "Master Service Design" section. The web service checks the available
entities in the Master Service Entity Table. If it impacts any existing entity, it adds itself
to the entity writers. If the web service impacts entities that are not registered with the
master, the web service adds these entities to the master Entity Table, and adds itself as
an entity writer.

Each web service adds two parameters to its APIs, the first is a reference to the en-
tities impacted by the Service Client call. The other parameter is the transaction control
enumeration described above. It is important to note that by requiring participating web
services to report the metadata of the entities they impact, we do not change the state-
lessness nature of the design and implementation of these web services; i.e. there is no
execution state maintained. The participating web services implement the Initialization,
JoinTransaction, and DefectTransaction functions as shown in the "DTFC Algorithm - Web
Service" procedure.
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Procedure 6 DTFC Algorithm - Service Client
SERVICE CLIENT ALGORITHMS START A TRANSACTION
1: function StartTransaction
2: Create the Transaction Context
3: Create Activity, Specify Protocol, and Register Services
4: Get Web Service Table from Master
5: Get Entity Table from Master
6: Include every web service in the transaction that impacts transaction entities, as found in

the Master Entity Table
7: Create TPT
8: Call all Web Services that are included in the transaction
9: for each Each Web Service Response do

10: Compare Returned WebService Inclusion Value with Initial Assumption in TPT
11: if Inclusion Value is Different then
12: Update TPT Inclusion Assumptions for Web Service
13: Update Transaction Service Registration
14: end if
15: end for
16: Wait for all Web Services to Finish or Timeout
17: if Any Web Service In Transaction Fails or Timeout then
18: Roll Back through Compensating Transaction
19: end if
20: if All Web Services Succeeded then
21: Commit Transactions
22: end if
23: Conclude Transaction and Close Transaction Context
24: end function
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Procedure 7 DTFC Algorithm - Web Service
WEB SERVICE ALGORITHMS INITIALIZE SELF WITH MASTER
1: function Initialization
2: Register Self with Master
3: Check Available Entities at Master
4: Add Self to Existing Entity Writers That Web Service Impacts
5: Add Entities that Web Service Impacts to Master if They Do Not Exist
6: end function

JOIN TRANSACTION
1: function JoinTransaction
2: Receive Call from Client to Create/Update/Delete Entity
3: if Transaction Join Value is not ALLIN then
4: if Transaction Join Value is JOINALLOWED then
5: if Web Service Impacts Entities then
6: Join Transaction
7: end if
8: end if
9: end if

10: end function
DEFECT TRANSACTION
1: function DefectTransaction
2: Receive Call from Client to Create/Update/Delete Entity
3: if Transaction Join Value is not ALLIN then
4: if Transaction Join Value is DEFECTIONALLOWED then
5: if Web Service Does Not Impact ENTITY then
6: Defect From Transaction
7: end if
8: end if
9: end if

10: end function
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6.3.5 Master Service Design

The Master Service maintains the following tables:

• Web Service Table: has all participating web services names, endpoints, hosting
data center, available methods, parameters, authors, readers, writers, and creation
date.

• Entity Table: has the entity name, ID, description, and web services that update
the entity. This table acts as an entity dictionary for the system.

To register, each web service pulls the entity table from the Master Service, updates the
table with its entity information, and pushes the updated table back to the Master Service.
The Master Service pings the web services regularly to ensure that they are still alive and
active. If a web service fails to respond to the Master Service pings after a given threshold,
the Master Service removes it from the Web Service Table and from the entity writers in
the Entity Table. The Entity Table is an ever-increasing list; there is no need to purge
it. Service Clients call the master to get the web service information and the entity lists
to allow them to make the right initial assumptions about web services inclusion in their
transactions.

6.4 Evaluation

We implemented the proposed approach in the multimedia communication service described
in the Background section. It is one of the largest services in the world, and deployed in 8
data centers in 3 continents with more than one million transactions per second at peak.
We implement the proposed approach on 6 web services in one data center. Service one, Ac-
count Management, manages user information and implements Create(), Read(), Update(),
and Delete() user. Service two, Encode Multimedia, manages multimedia information and
implements EncodeMultimedia() and VerifyMultimedia(). Service three, Compress Multi-
media, manages multimedia size before transmitting it on the wire. Service four, Dejitter
Multimedia, manages the de-jittering of audio and video content in live communications.
Service five, Decode Multimedia, decodes multimedia content after receiving it at the other
end of the communication channel. Service six, Multimedia Rendering, renders the video
frames before delivering them in a consumable format to the receiving application.

We run the experiments on a test cluster of 10 servers that get 1% of the data center
traffic. Each server is a quad-core intel Xeon server with 12 GB RAM. We deploy the current
approach on 5 servers, and deploy the proposed approach on the remaining 5 servers. We
implement the Service Client and the Master Service on a separate server. We route the
same traffic to both sets of services for two weeks, a total of 200 million multimedia requests,
and measure the metrics described below. The average number of distributed transactions
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generated within these requests is 27%, or around 53 million distributed transactions. The
remaining traffic is comprised of requests that do not require setting a transaction.

The metrics we use to evaluate the proposed approach are:

• Throughput: the number of transactions handled per second.

• Execution Time: the total time used by the system to finish all transactions.

• Efficiency: the total computation savings, measured by how many web services are
excluded from transactions, as a result of the proposed approach. Note that the
excluded web services may still be required as part of the service functionality, but
not as part of transactions. So failures in such web services result in re-running them,
but not in the rollback of other web services that are needed in transactions.

• Failure Rate: the transaction failure rate reduction due to only including web ser-
vices that are needed in each transaction.

• Media Quality: the quality of media (audio, video, and image) that is shared be-
tween clients, using MOS. We use a proprietary automated MOS algorithm. Au-
tomated MOS algorithms enable quality measurements in test environments, where
sessions are generated programmatically between test clients.

• Overhead: the extra calls incurred by querying participating web services about
their impact on the given transaction.

6.4.1 Results

Throughput: 53 million transactions ran over the two weeks of the experiment for a
total time of 41 hours and 47 minutes using the proposed approach, and 64 hours and
36 minutes using the current approach. The throughput of the proposed approach is 352
transactions/second, and the current approach is 227 transactions/second. The throughput
enhancement is 36%.

Execution Time: The execution time of the proposed approach (41 hours and 47
minutes) is 65% of the current approach (64 hours and 36 minutes). The reduction in
execution time is due to the reduced number of web services required per transaction,
which we explain in the efficiency section. If any of the web services that is no longer
included in a transaction fails, it will not require rolling back of the web services that were
included in any transaction. Figure 6.3 shows the daily transaction execution time using
the current and the proposed approaches. The enhanced execution time of the proposed
approach is 36% on average over the time period of the experiment.

Efficiency: The average number of web services included in transactions in the current
approach is 4.6, and in the proposed approach is 2.9. The proposed approach is 37%
more efficient in using web services in transactions. These web services would have been
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Figure 6.3: Transaction execution time.
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Figure 6.4: Web services per transaction.

otherwise included, unnecessarily and incorrectly, in the transactions. Figure 6.4 shows the
daily distribution of web services per transaction, for both approaches.

Failure Rate: From the service logs, the average transaction failure rate due to a web
service failure that is not required in the transaction is 17 failures per million transactions.
6 of these, on average, succeeded using the proposed approach since the web service failure
did not impact the transaction. The failure rate reduction is 6/17, or 35%, as shown in
Figure 6.5. The remaining 11 failures per million were caused by failures in web services
that were required in the transactions. We note that the comparison is not perfect, but
as close to fair as we possibly could execute it; we pass the same set of transactions to
two identical sets of servers implementing the two approaches. The number of web services
that fail on the two systems is very close; the difference is less than 2 failures per million
transactions.

The enhancements to Throughput and Execution Time of transactions mean more re-
sources are available to handle more media sessions. The reduction of Failure Rate of
transactions means the media sessions that would otherwise have failed and required to be
reattempted, are now succeeding.
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Figure 6.5: Transaction failure rate.
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Figure 6.6: MOS increase from 4 to 5 over 14 days.

Media Quality: The succeeded transactions have seen an improvement in their ob-
served media quality (MOS). Figure 6.6 shows that, on average 9% of the sessions that
used to meet SLA with good quality (MOS 4), are now meeting SLA with excellent quality
(MOS 5). We attribute this enhancement to less number of web services running as one
atomic operation, which means more available resources, less load per transaction, and so
higher quality.

Overhead: In Defection-Allowed and Join-Allowed modes, the Service Client makes a
call to each participating web service to determine its transaction inclusion. The number of
these calls and replies are the Service Client overhead. It is found from the average number
of web services per transaction without our approach, which is 4.6 calls and their replies. We
find the average overhead cost, from the service logs, to be around 0.2ms per transaction.
The highest overhead noted was around 0.8ms. The average transaction execution time
reduction due to reducing the number of web services in transactions from 4.6 to 2.9 is
around 1.6ms. So the average saving of the proposed approach outweighs the overhead of
the Service Client by an order of magnitude.
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6.5 Summary

In this chapter, we presented a novel approach to allow multimedia web services to selectively
join or defect from distributed transactions depending on their impact on the transactions.
This reduced the number of multimedia services included in each distributed transaction.
In contrast, current approaches to coordinate web service distributed transactions cause
client applications to include all possible web services in distributed transactions.This is
especially important in multimedia communication services as any waste, loss, or inefficiency
in managing resources result in poor multimedia communication quality, which leads to
customer dissatisfaction and loss of business.

We evaluated the proposed approach on one of Microsoft’s Skype data services, and
found that the dynamic coordinator led to enhancing the throughput of multimedia dis-
tributed transactions by 36%, and resulted in 9% media quality enhancements from MOS
4 to 5.
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Chapter 7

Conclusions and Future Work

In this chapter we summarize the findings of this thesis and discuss potential extensions to
this work.

7.1 Conclusions

We presented a comprehensive approach to online service reliability that covers the areas
of failure prediction, capacity estimation, dynamic anomaly detection, and web service
transaction coordination. We built and verified dynamic approaches to monitoring the
health and quality of multimedia communication services. We used synthetic transactions
to monitor the service by exercising it like real customers, generate current data about it,
and then used this fresh data to create and maintain the predictive models used in failure
prediction, capacity estimation, and anomaly detection of the different components of the
multimedia communication service.

Our proposed dynamic approach to creating and maintaining failure predictors for on-
line services in real-time shows superior ability to stay relevant and maintain high accuracy
throughout the real-time lifecycle of the online service. Using the proposed real-time dy-
namic failure prediction (RTDFP) algorithm, we can regenerate an online service failure
predictor post system changes in a few minutes with a few megabytes of test generated
data.

We utilized the failure predictor effort to test, in real-time, the multimedia service com-
ponents maximum capacity before failures are observed. Based on that, we were able to
build a real-time map of the multimedia component available capacities, and build compo-
nent selection and routing path actions in real-time to enhance the quality of multimedia
sessions. On average, the proposed approach increased the overall media sharing quality
by 12%, decreased the percentage of failures by 25%, reduced the CPU usage by 10%, and
increased the capacity of the service by 17%.

To overcome the problems of static identifications and definitions of anomalies in multi-
media services, we introduced a new approach that generates current data about anomalies
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in real-time, and used that data to analyze the impact of these anomalies on the service.
If the anomalous inputs and system states do not result in SLA violations, they are not
considered anomalies worth alerting on. Through implementation in a production system
and running experiments for 4 weeks, we showed that using the proposed approach reduces
the amount of false positives in anomaly detection alerts by an average of 71%, reduces false
negatives by an average of 69%, enhances the accuracy of anomaly detection by an average
of 31%, and enhances the media sharing quality by average of 14%.

We addressed the problem of online service coordination between the distributed web
services implementing the components of multimedia services. This is especially impor-
tant in multimedia communication services as any waste, loss, or inefficiency in managing
resources result in poor multimedia communication quality, and lead to customer dissatis-
faction and loss of business. We presented a novel approach to allow multimedia web services
to selectively join or defect from distributed transactions depending on their impact on the
transactions. This reduced the number of multimedia services included in each distributed
transaction, which led to enhancing the throughput of multimedia distributed transactions
by an average of 36%, and resulted in an average of 9% media quality enhancements from
MOS 4 to 5.

We demonstrated the use real-time synthetic transactions to monitor online services,
generate data representing the current state of the service components, correlate these
states and anomalous input with service SLA violations, and enhance the reliability of
online multimedia services as a good representative of SaaS service in real-time. This is in
contrast to current approaches in literature and industry, which are static and cannot keep
up with the changes that happen during the real-time lifecycle of online services. Monitoring
the services and waiting for real sessions to fail in order to gain insights into the state of
the service is a not an efficient solution.

Static predictive modeling covering failure prediction, anomaly detection, and web ser-
vice coordination require massive amounts of data to build. Once those models are built,
they are suitable for the service systems and working conditions they were built for and
based on. If the service systems, provisions, or working conditions change, the predictive
models built for them become inaccurate. This requires the process of gathering data, pre-
processing it, rebuilding the predictive models, testing them, and deploying them all over
again. Static predictive modeling has its strengths and areas of application; they do not
require specific knowledge about the system, and are successful in static environments and
situations. Online services, however, have dynamic situations that require them to change
often.

The generality of the approaches we used comes from the fact that they are system
approaches and do not rely on any specific multimedia technology or implementation. They
assume generic standard software abstractions for the services and their platforms through
RESTful APIs. Any other abstractions are also fine, like RPCs. The implementers do not
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need to know the internal details of the services at hand. Rather, they only need to know
how to call the service through RESTful APIs or standard RPC calls. This makes the
approaches usable with any online multimedia service or generic online service. In addition,
the approaches we used introduced the concepts of Local Systems and LSTs, Platforms and
PSTs, and Scenarios and SSTs. These concepts were implemented using a set of standalone
servers as well as in virtualized environments. The concepts are independent of the service
models like Platform as a Service (PaaS) and Software as a Service (SaaS). We explained
in chapters 3 through 6, that the contributions of this thesis are not limited to a specific
technology and/or implementation. Rather, it can be used in the future with new models like
SaaS or Software plus Service (S+S). The only thing that will change is how to implement
the LST, PST, and SST calls; and that’s expected.

In implementing the proposed approaches, we tried to have the setup for the validations
and experiments identical as much as possible for all experiments. The goal is to build on
previous work, and compare results meaningfully. It was challenging to maintain the same
environment setup, and the same usage and traffic load. This was a best effort to the extent
possible, and we believe that effort paid off in allowing us to weave a cohesive story for the
e2e effort.

7.2 Future Work

The work in this thesis can be extended in multiple directions. In Chapter 3, the failure
prediction effort we presented attempts to regenerate a failure predictor using linear pre-
dictive models with the shortest possible time to generate, train, and deploy. Advanced
predictive models such as ones built using deep learning can be explored to further improve
the accuracy of the predictor. An important aspect to consider is the time complexity of
such advanced models, as they need to run in real time.

In Chapter 4, we devised an algorithm to measure the maximum capacity that multi-
media service components can take before they start to violate their SLAs. We utilized the
principles we introduced for predictive failure analysis, and we reduced the time it takes
to update the capacity allocations and traffic routing schemes from the order of days to
order of minutes. Here too, more advanced predictive models may be utilized to analyze
the results of the components’ tests in real-time at a faster rate. Having faster analysis can
reduce the time to update capacity allocations and traffic routing schemes from the order
of minutes to the order of seconds. This can result in enhancing the communication quality
of hundreds of calls per hour, and result in that much more customer satisfaction.

In Chapter 5, we analyzed the impact of anomaly detection. Testing for failures around
anomalous input, in real-time, should become the norm for all SaaS providers. To help facili-
tate this, it would be of value to investigate creating real-time synthetic transaction libraries
that can be programmed to read anomalous inputs from standard published databases and
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make standard equidistant time calls to online services, read the output and compare against
expected outputs defined in the same databases. Another improvement here, is for SaaS
providers of specific types, e.g., credit card unions and travel agencies, to share their learn-
ing and identified anomalies through standard libraries and services so that these can be
used collectively to enhance the understanding and study of anomalies and their implica-
tions. This sharing of anomaly classifications and impact can potentially reduce the effort
and time needed by each service to do the same exercise on their own.

In Chapter 6, we introduced a novel approach for web service transaction coordina-
tion. We enabled each web service to actively participate in the decision to be included in
distributed transactions or not. The approach required slight modification of the service
REST APIs to enable the dynamic selection and assignment of a web service based on its
impact on the distributed transaction. The effort we did in this area, is probably the first
of its kind. We believe this area requires more research and emphasis, due to the waste
resulting from the defensive inclusions of all web services in distributed transactions. An
area of optimization may be through using a central web service management system that
can periodically ping each web service for its role in the defined transactions for the service.
This can cover the changes happening to both the web service as well as the transactions.
It would be important to investigate the ability to create a universal/global transaction
management services that allow different SaaS providers to share such knowledge between
them, to enable distributed transactions between enterprises like AWS, Microsoft Azure,
and others to optimize their collaboration.
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