
Applying Self-Attention Neural Networks for
Sentiment Analysis Classification and

Time-Series Regression Tasks
by

Artaches Ambartsoumian

B.Sc., Simon Fraser University, 2017

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Science

c© Artaches Ambartsoumian 2018
SIMON FRASER UNIVERSITY

Fall 2018

Copyright in this work rests with the author. Please ensure that any reproduction or re-use is
done in accordance with the relevant national copyright legislation.

Approval

Name: Artaches Ambartsoumian

Degree: Master of Science (Computing Science)

Title: Applying Self-Attention Neural Networks for Sentiment
Analysis Classification and Time-Series Regression Tasks

Examining Committee: Chair: Angelica Lim
Assistant Professor

Fred Popowich
Senior Supervisor
Professor

Anoop Sarkar
Supervisor
Professor

Jiannan Wang
External Examiner
Assistant Professor
School of Computing Science

Date Defended: November 26, 2018

ii

Abstract

Many machine learning tasks are structured as sequence modeling problems, predominantly dealing

with text and data with a time dimension. It is thus very important to have a model that is good at

capturing both short range and long range dependencies across sequence steps. Many approaches

have been used over the past few decades, with various neural network architectures becoming

the standard in recent years. The main neural network architecture types that have been applied

are recurrent neural networks (RNNs) and convolutional neural neworks (CNNs). In this work, we

explore a new type of neural network architecture, self-attention networks (SANs), by testing on

sequence modeling tasks of sentiment analysis classification and time-series regression. First we

perform a detailed comparison between simple SANs, RNNs, and CNNs on six sentiment analysis

datasets, where we demonstrate SANs achieving higher classification accuracy while having other

better model characteristics over RNNs such as faster training and inference times, lower number of

trainable parameters, and consuming less memory during training. Next we propose a more complex

self-attention based architecture called ESSAN and use it to achieve state-of-the-art (SOTA) results

on the Stanford Sentiment Treebank fine-grained sentiment analysis dataset. Finally, we apply our

ESSAN architectures for the regression task of multivariate time-series prediction. Our preliminary

results show that ESSAN once again achieves SOTA results, beating previous SOTA RNN with

attention architectures.

Keywords: Neural Networks, Self-Attention Networks, Sequence Modeling, Natural Language

Processing, Sentiment Analysis, Time Series Prediction

iii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my senior supervisor, Dr. Fred

Popowich, for all of his support throughout my degree. I am grateful for the freedom he patiently

provided to me to pursue all of my research interests, as well as the perfect amount of guidance that

kept me moving towards completing this thesis. I would also like to thank my supervisor, Dr. Anoop

Sarkar, and my thesis examiner, Jiannan Wang, for their valuable questions and feedback. Thanks

also to Angelica Lim for chairing my thesis defence.

Last but not least, I would like to thank my family and my partner, Daphne. Their constant

support, love, and encouragement helped me immensely throughout my studies.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Contribution . 2

1.2 Overview . 3

2 Background 5
2.1 Neural Networks Fundamentals . 5

2.2 Feed Forward Neural Networks . 6

2.3 Recurrent Neural Networks, Gated Cells, Bidirectional RNN 8

2.4 Encoder-Decoder Architecture, Attention Mechanism 11

2.5 CNNs as Alternatives to RNNs . 14

3 Self-Attention Networks 16
3.1 Self-Attention Mechanism . 16

3.2 Transformer Architecture . 17

3.2.1 Motivation . 17

3.2.2 Architecture . 18

3.3 Position Information Techniques . 20

4 Proposed Architectures & Implementation Details 23
4.1 Simple Self-Attention Network (SSAN) . 23

4.2 Extended SSAN (ESSAN) . 24

4.2.1 Masking . 25

v

5 Sentiment Analysis 28
5.1 Comparison of Building Blocks: SAN vs RNN vs CNN 29

5.1.1 Experiments . 29

5.1.2 Datasets Used . 29

5.1.3 Pre-Trained Word Embeddings . 31

5.1.4 Baselines Descriptions . 31

5.1.5 Self-Attention Architectures . 32

5.1.6 Analysis . 32

5.1.7 Model Characteristics . 33

5.1.8 Discussion . 35

5.2 SOTA Approach for SST Datasets . 35

5.2.1 SST Dataset Processing . 36

5.2.2 Experiments . 36

5.2.3 Results & Discussion . 37

5.2.4 Model Characteristics . 39

6 Time-Series Regression 40
6.1 Dataset Description . 40

6.2 Baselines . 41

6.3 Experiments . 42

6.4 Discussion . 43

7 Conclusion 45
7.1 Summary . 45

7.2 Future Work . 45

Bibliography 47

vi

List of Tables

Table 2.1 Shows the relationship between the number of sequence steps fed to the input

layer and the number of trainable weights for the first hidden layer. Each

sequence step is a 300 dimensional vector, the hidden layer dimension size is

also 300. 8

Table 2.2 Equations for calculating the hidden state of LSTM and GRU cells for se-

quence position t. ⊗ is the element-wise product operation, and σ is the

sigmoid function. 10

Table 3.1 from [Vaswani et al., 2017]: "Shows the maximum path lengths, per-layer

complexity and minimum number of sequential operations for different layer

types. n is the sequence length, d is the representation dimension, and k is the

kernel size of convolutions." . 18

Table 5.1 Details of hardware and software that were used for all experiments. 30

Table 5.2 Modified Table 2 from [Barnes et al., 2017]. Dataset statistics, embedding

coverage of dataset vocabularies, as well as splits for Train, Dev (Develop-

ment), and Test sets. The ‘Wiki’ embeddings are the 50, 100, 200, and 600

dimension used for experiments. 31

Table 5.3 Modified Table 3 from [Barnes et al., 2017]. The baseline results are taken

from [Barnes et al., 2017]; the self-attention models results are ours. Test

accuracy averages and standard deviations (in brackets) of 5 runs. Best model

for each dataset is given in bold . 34

Table 5.4 Neural networks architecture characteristics. A comparison of number of

learnable parameters, GPU VRAM usage (in megabytes) during training, as

well as training and inference times (in seconds). 35

Table 5.5 Hyper-parameters used by ESSAN for SST-fine and SST-binary datasets. . . 37

Table 5.6 Test accuracy of fine-grained sentiment analysis on SST datasets. The "Top"

columns contain the highest accuracy that each method reported. The "Avg"

columns report mean and standard deviation (in bracket) of 5 runs. 38

Table 5.7 ESSAN vs DiSAN comparison of number of learnable parameters, GPU

VRAM usage (in megabytes) during training, as well as training and inference

times (in seconds). 39

vii

Table 6.1 The driving series information for number of driving series and train/validation/test

splits for the SML 2010 dataset. 40

Table 6.2 MAE, MAPE, and RMSE metric equations. 42

Table 6.3 Hyper-parameters used by ESSAN for SML2010 dataset. 43

Table 6.4 Time series prediction metric results for the SML2010 dataset. The results are

mean and standard deviation of 10 runs for the three metrics: MAE, MAPE,

and RMSE. The best results for each metric are outlined in bold. For each

model(dmodel), the dimension of the encoder m and the decoder p is set to

m = p = dmodel = 64 or 128. 44

viii

List of Figures

Figure 2.1 A Single Neuron. 5

Figure 2.2 Feed-forward neural network example of processing a sequence. 7

Figure 2.3 Recurrent neural network example of processing a sequence. 9

Figure 2.4 Modified Figure 1 from [Sutskever et al., 2014]. Visualizes a seq2seq model

processing input "ABC" to produce output "WXYZ". The encoder LSTM1
network processes the input sequence to create a sequence representation

vector. The decoderLSTM2 network uses the encoder’s hidden state vector

as input to create an output sequence. 12

Figure 2.5 Figure 1 from [Bahdanau et al., 2014]. Visualizes the process of how a

bidirectional encoder-decoder architecture with attention generates the t-th

target sequence item from input sequence (x1, x2, ..., xT). 13

Figure 2.6 Figure 1 from [Kalchbrenner et al., 2016]. The architecture of ByteNet. A

demonstration of the process of translating from source (in red) to target

language (in blue). 1-D dilated convolutions are used for source sentence

encoding. 15

Figure 3.1 Figure 1 from [Vaswani et al., 2017]. Visualization of the Transformer

model architecture computation graph. 19

Figure 3.2 Figure 1 from [Shaw et al., 2018]. An example illustrating some of the

edge values that represent relative positions between sequence positions. A

clipping distance of k is chosen, where 2 <= k <= n− 4 is assumed. . . 22

Figure 4.1 SSAN Model Architecture . 24

Figure 4.2 Masking sequence after feed-forward layers example. 26

ix

Chapter 1

Introduction

Many machine learning problems perform sequence modeling because much of the real world data

is structured in a sequential manner. Common examples are any data that have a time component

(e.g. weather data, stock prices, audio signals), DNA sequences, as well as natural language in a

form of text. Many natural language processing (NLP) problems are structured to perform sequence

modeling. Sequence modeling is done for both classification and regression tasks, most commonly

for modeling sequential input data but sometimes also for generating a sequence as output.

The most common classification and regression problems involve having a single variable for

output. Such problems require the model used to learn a mapping function f from an input sequence

X = (x1, x2, ..., xt) to a variable y, where t is the input sequence length. In the case of classification,

y ∈ {c1, c2, ..., cn} is a discrete variable representing classes/categories, where n is the number

of possible classes. Some examples of such classification problems are sentiment analysis, spam

detection, and topic classification. In the case of regression, C ∈ R is a continuous variable. Some

examples of such regression problems are price prediction of assets like stocks or commodities,

and weather temperature forecasting. Tasks that require sequences for output also utilize sequence

modeling. In the case of image captioning, sequence modeling is only utilized for producing the

output textual caption and not the input image. Other tasks like machine translation utilize sequence

modeling for both processing the input source language sentence as well as generating the output

target language sentence, such problems are also known as "sequence to sequence" tasks.

An important attribute of sequence modeling is the ability to capture short-range and long-range

dependencies, that is model/capture relationships between sequence positions. Models need to be

good at capturing such dependencies in order to perform well when processing long sequences. This

is something many sequence modeling approaches struggle with [Bengio et al., 1994, Hochreiter,

2001], and thus is often the motivation behind newer models that have been proposed over the years

[Hochreiter and Schmidhuber, 1997, Bahdanau et al., 2014, Vaswani et al., 2017]. Modeling such

dependencies is important for both time-series prediction and NLP tasks like sentiment analysis.

Here is an example that demonstrates long and short range dependencies: "The movie plot line was

a bit dull, the theatre seats were uncomfortable, food choice was limited, but it had great visual

effects which made the overall experience fantastic." In this relatively long sentence, a short-range

1

dependency is that ‘uncomfortable’ refers to ‘seats’. A long-range dependency would be ‘had great

visual effects’ referring to ‘the movie’ at the beginning of the sentence. Both of these dependencies

are difficult to capture for many of the current neural network methods. Generally, the long-range

dependencies are the more difficult to capture. However, modeling short-range dependencies can

also be difficult, especially if they are mentioned in the beginning of a long sentence. This is because

models such as basic RNNs process the input sequentially, which causes them remember only the

last few words in the sentence.

Self-attention networks (SANs) are a new type of neural network architecture that have been

shown to be effective for various sequence to sequence problems, where capturing short and long-

range dependencies is important [Vaswani et al., 2017, Liu et al., 2018]. In this thesis, we focus

on applying SAN architectures for supervised sequence modeling problems. We explore various

SAN architectures and compare their attributes to previous RNN and CNN based neural network

architectures. We test on the two most popular types of supervised tasks, classification and regression.

We chose sentiment analysis for the classification task and time-series prediction for the regression

task. We chose these two problems because they both involve sequence modeling, extensive research

has been done for them with the current main approaches being neural network methods, as well as

our personal preference. Sentiment analysis is the process of determining the sentiment of a piece of

text, e.g. positive, negative, or neutral [Turney, 2002, Pang and Lee, 2008]. Time-series prediction is

the task of determining the future numerical value of interest based on historical values [Weigend,

2018], e.g. predicting the price of a company’s stock tomorrow based on the prices for the past few

weeks. If multiple time series features are used for input, the task is called multivariate time-series

prediction [Chakraborty et al., 1992, Qin et al., 2017].

1.1 Contribution

In this thesis, we propose and apply various self-attention networks for sentiment analysis and

time-series prediction. Our contributions are as follows:

• We compare how the self-attention building block performs compared to recurrence and convo-

lution. We demonstrate that our simple self-attention network (SSAN) architecture outperforms

simple recurrent networks (LSTM and BiLSTM) as well as simple CNN architecture on six

sentiment analysis datasets.

• We also demonstrate that self-attention networks have other better characteristics such as lower

memory consumption, lower number of trainable parameters, and faster training/inference

times than RNNs.

• Our proposed ESSAN architecture achieves state-of-the-art (SOTA) accuracy on the SST-fine

dataset, all while having better model characteristics (training and inference speed as well as

memory usage) compared to DiSAN[Shen et al., 2018a], the previous SOTA SAN architecture.

2

• Finally, we apply our ESSAN architecture for the time-series prediction regression task, and

show SOTA performance on one dataset, beating the previous SOTA RNN with attention

approaches.

1.2 Overview

In Chapter 2, we will cover the previous common approaches that were used for sequence modeling

problems. Primarily, we will discuss in depth the inner-workings of neural networks architectures

such as feed-forward neural networks (FFNNs), Recurrent Neural Networks (RNNs), RNNs with

attention mechanism, and Convolution Neural Networks (CNNs).

In Chapter 3, the Transformer [Vaswani et al., 2017] architecture and the motivation behind it

will be covered due to its influence on this research. The self-attention mechanism will be covered in

depth as well as the various ways of including input sequence positional information into SANs.

In Chapter 4, we will cover our proposed SAN architectures, the SSAN and ESSAN, that will be

used in the application Chapters 5 and 6.

Chapter 5 is split into two main parts. The first part covers our work done for [Ambartsoumian

and Popowich, 2018], where we demonstrate the benefits of the self-attention mechanism over the

recurrence and convolution counter-parts. In our paper, we extend the work of [Barnes et al., 2017] by

comparing our SSAN architecture to their LSTM, BiLSTM and CNN architectures on the exact same

six datasets. To minimize any process deviations, we use their open-source codebase and only change

the model as well as some minor batch-feeding methodology. We re-use their code for datasets

pre-processing, accuracy metric evaluation, as well as use the exact same word embeddings. We

demonstrate that SAN models have generally better accuracy across all six datasets than the RNN

and CNN models. Next, for all architectures we explore other model characteristics such as memory

consumption during training, number of trainable parameters, and train and inference times. Finally,

in this section we also explore various SAN architecture variations, specifically the methods of

incorporating sequence position information. We show that using Relative Position Representations

[Shaw et al., 2018] method performs the best for multiple SAN architectures on the same six datasets,

while having negligible effect on number of trainable parameters as well as training and inference

efficiency.

In the second part of Chapter 5, we apply our ESSAN architecture to achieving state-of-the-art

(SOTA) results on the SST-fine dataset, one of the more competitive sentiment analysis datasets. For

this work, we achieve better accuracy on the SST-fine dataset than the previous SOTA self-attention

network, DiSAN [Shen et al., 2018a], while having half the trainable parameters, consuming four

times less memory and having faster train and inference times.

In Chapter 6, we apply our ESSAN architectures on a completely different task, time-series

prediction. Here we show that SANs are also effective for regression problems that involve sequence

modeling. We use the SML2010 dataset from [Qin et al., 2017] and compare our results to their

3

models. We show an improvement over their Dual-Stage Recurrent Neural Network (DA-RNN) that

achieved the previous best result on this dataset.

Finally, in Chapter 7, we summarize the contributions of this thesis and talk about possible future

work.

4

Chapter 2

Background

In order to understand the motivation for this thesis, first some core neural network concepts as well

as history needs to be discussed. First, standard feed-forward neural networks will be introduced as

the concepts for these networks are the foundation for all neural network architectures. Next, we’ll

discuss the most common variant of neural networks used for sequence modeling, Recurrent Neural

Networks (RNNs) and its many variations. Finally, we’ll briefly cover Convolution Neural Networks

(CNNs), another popular architecture that traditionally has been used for image processing tasks, but

lately has been applied to sequence modeling in order to overcome some of RNN’s shortcomings.

Parts of this chapter are taken from our work for [Ambartsoumian and Popowich, 2018].

2.1 Neural Networks Fundamentals

Figure 2.1: A Single Neuron.

The foundation of neural networks is the concept of an artificial neuron, also called a perceptron,

with primary work dating back to [McCulloch and Pitts, 1943] and [Rosenblatt, 1958]. The neuron

is the building block of all neural network architectures. The operation of a neuron is simple and

can be described as follows: multiply all the input variable values by unique weights, then sum the

outputs of the previous step and add an optional bias value, finally apply a non-linear activation

function to create what is called a hidden state. Given a set of input features X = (x1, x2, ..., xn), a

set of weights W = (w1, w2, ..., wn), a bias value b, and an activation function f . The process of

5

calculating a hidden state h can be summarized by the following equations:

h = f(b+
n∑

i=1
xi ∗ wi) (2.1)

A neuron outputting a high value is regarded as the neuron "firing", which means it has detected

a pattern among the input that it’s trained to recognize. The output of one neuron is often the input

for another, which creates a network of neurons, hence "neural networks". The latter neurons will

be firing if a desired pattern among previous neurons is found, a process of detecting patterns in

patterns. The goal is to find values for weights w for each neuron, and the bias b, such that the final

output of the network, Ŷ , is as close as possible to the expected output, Y , for the task at hand. The

most common methods for optimizing a neural network’s trainable parameters is called gradient

descent. For the machine learning problem of interest, a differentiable cost function, also known as

loss function, C(Ŷ , Y) needs to be defined that measures how incorrect the output Ŷ of the network

is compared to expected output Y . For each training iteration on some training data, each weight

is updated as wnew
i = wi − η ∗∆wi, where ∆wi = ∂wi

∂C(Ŷ ,Y) is a partial derivative calculating how

much the weight contributed to the final cost, and η is the learning rate. An efficient algorithm for

calculating the partial derivatives for all weights in the network is back-propagation [Rumelhart

et al., 1986]. Back-propagation and its variants is the most common approach for computing weight

gradients for training.

2.2 Feed Forward Neural Networks

The simplest neural network is the feed-forward neural network (FFNN), also known as the multi-

layer perceptron. The input is fed into layers of neurons, often stacked layers where the output of one

layer is propagated to be the input of the next. An example of such a network is shown in Figure

2.2. This example shows 4 input features, (X1, X2, X3, X4), fed into a hidden layer of five neurons,

H = (H1, H2, H3, H4, H5), outputs of which are then fed into two output units (O1, O2). To keep

things simple, each Xi input demonstrates a single value, though in practice it is usually a vector of

numbers. The lines connecting the units are the weights, also referred to as synapses. The output

units are the same as neurons, except typically no non-linear activation function is applied. All parts

of this simple FFNN can be customized, such as the amount of input units, the number of hidden

layers, the number of neurons in each hidden layer, as well as the number of output units. This

customizability makes FFNNs a highly versatile model, capable of being applied to many machine

learning problems.

6

Figure 2.2: Feed-forward neural network example of processing a sequence.

The key for this architecture is that the input size is fixed and that information flows only in one

direction - that is, output of each layer is solely determined from the output of the previous layer.

This constraint makes inference and training calculations easy to implement by using basic linear

algebra operations. The hidden layer from the example in Figure 2.2 can be calculated using the

following formula:

H = f(b+X ∗W) (2.2)

where X ∈ R1×4, W ∈ R4×5, and H ∈ R1×5. The weighted sum operations for each hidden layer

neuron can computed with a single matrix multiply. Running such matrix and vector operations is

extremely fast on graphics processing units (GPUs).

If we let the input units X from Figure 2.2 be values for sequence steps of a sequence, the FFNN

can be applied for sequence modeling problems. However, there are major limitations when using

FFNNs for sequence modeling. First, the number of input feature units must be fixed as we train

the network. This forces us to make the input layer contain as many units as the largest sequence in

the training set requires. In practice it’s difficult to scale FFNNs to longer sequences, as the number

of weights for the first layer grows linearly with respect to the number of input sequence steps fed.

Second, the neural network is not aware of the order of the data. The input sequence can be shuffled,

which will not change the training behaviour of the network.

To demonstrate that FFNNs are impractical for long sequences, we provide a realistic example.

Suppose our sequence modeling problem contains 300 features for each sequence step and we set the

first hidden layer to be 300 neurons. Then the total number of weights for the first hidden layer will

be N = 300 ∗ T ∗ 300, where T is the number of sequence steps we feed into the input layer. We are

essentially adding 300 ∗ 300 more weights/synapses in order to be able to model sequences that are

7

one length longer. Table 2.1 shows this relationship. In our experience, an average sentence length for

various NLP problems is around 20 to 30 words, this would result in the first layer having between

1, 800, 000 and 2, 700, 000 learnable weights. However, we can’t go by average sentence length, we

need to our model to be able to process the longest sentence in the dataset. In our experience, the

longest sentences for many most datasets range between 60 to 120 words, requiring 5, 400, 000 to

10, 800, 000 weights. The choices for input dimension size per sequence-step and the hidden layer

size are reasonable, in fact we use these values for our SAN models for the sentiment analysis task.

However, five to ten million parameters is an absurd amount to simply process a sequence. The

results will be a model that will be slow to train due to large matrix multiplication as well as it will

require large amounts of memory. In order to cut down the number of weights, it is evident that

reusing weights for processing sequence steps is required, which is the motivation for the creation of

RNNs.

T N

5 450, 000
20 1, 800, 000
30 2, 700, 000
60 5, 400, 000
120 10, 800, 000

Table 2.1: Shows the relationship between the number of sequence steps fed to the input layer and
the number of trainable weights for the first hidden layer. Each sequence step is a 300 dimensional
vector, the hidden layer dimension size is also 300.

2.3 Recurrent Neural Networks, Gated Cells, Bidirectional RNN

Feed-forward neural networks are great function approximators that are commonly used when input

data is of fixed size. In the previous section, we have showed that feed-forward networks don’t

scale to large input sequences, this is where Recurrent Neural Networks (RNNs) come in. RNNs

were designed specifically for processing sequences, with initial work on being done in late 1980’s

[Werbos, 1988] and early 1990’s [Elman, 1990, Werbos, 1990, Williams and Zipser]. For the past

five years, RNN-based architectures have been the dominant approach for NLP tasks [Young et al.,

2017], with CNNs and fully-attentional models gaining popularity only in the past couple of years.

RNNs reuse trainable weights across sequence positions by processing the input sequence one

step at a time, for example one word of a sentence at a time. An RNN’s hidden state is updated as

each sequence step of the input is processed, unlike FFNN where the hidden state is calculated in a

single forward pass for the whole input sequence. The overall structure of the network is similar to

FFNNs, except that the hidden units are also conditioned on the previous states of the hidden layer

from processing previous sequence positions. Using the sequence problem definition from previous

8

section, the hidden state of standard RNN is computed like so:

hi = f(b+ hi−1 ∗W + xi ∗ U) (2.3)

where hi is the hidden state after processing the input sequence to to position i, xi is the data for

sequence position i, f(is the non-linear activation function (typically tanh), learnable parameters

are b ∈ RN , W ∈ RN×M , and U ∈ RM×M . Note that h0 needs to be initialized to zeroes (since no

data is yet processed). The standard RNN has two main sets of trainable parameters that are used for

processing each sequence position, the weights U that are used for processing the input sequence

position, and the weights W that are used for processing the previous hidden states. A demonstration

of how the example from previous section can be adapted to this architecture is illustrated in Figure

2.3.

The sequential processing on the input sequence decouples the number of trainable parameters in

the network from the input sequence length; this allows RNNs to be able to process sequences of

arbitrary size. To accommodate for the hidden state being the product of processing varied length

sequences, back-propagation through time (BPTT) [Werbos, 1990] was introduced as a variant of BP

to calculate the gradients required for training.

Figure 2.3: Recurrent neural network example of processing a sequence.

As with FFNNs, there are some critical downsides to the standard RNN architecture, which

inspired improved RNN architectures. The two main issues that affect standard RNNs in practice are

the vanishing and exploding gradient problems [Bengio et al., 1994, Pascanu et al., 2013]. Much

like very deep FFNNs, RNNs require long sequential matrix multiplications for their calculations.

Processing a sequence of length 10 with an RNN is similar computationally to computing the

forward pass for a 10 layer FFNN. In practice, calculating the gradients for one of the earlier weight

multiplications operations via BP or BPTT can lead to gradients for these weights to be minuscule,

9

LSTM GRU

ft = σ(Ufxt +Wfht−1 + bf)
it = σ(Uixt +Wiht−1 + bi)

ot = σ(Uoxt +Woht−1 + bo)
C̃t = tanh(Ucxt +Wcht−1 + bC)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t

ht = tanh(Ct)⊗ ot

zt = σ(Uzxt +Wzht−1 + bz)
rt = σ(Urxt +Wrht−1 + br)

h̃t = tanh(Uixt +Wi(rt ⊗ ht−1) + bh̃t
)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t

Table 2.2: Equations for calculating the hidden state of LSTM and GRU cells for sequence position t.
⊗ is the element-wise product operation, and σ is the sigmoid function.

and thus no learning happens, or be very large, in which case training becomes unstable and doesn’t

converge. In the case of very large ("exploding") gradients, a simple solution is to simply clip to

prevent them from getting to0 large [Pascanu et al., 2013]. The solutions for the vanishing gradient

problem are more complex and are often tied with RNN-based architecture’s ability to learn long-

range dependencies. The most popular solution that significantly helps with the vanishing gradient

problem is to use gated RNN cells such as LSTMs [Hochreiter and Schmidhuber, 1997] or GRUs

[Cho et al., 2014a]. In fact, these gated cells are so popular that they’ve become synonyms with RNN

as the architecture itself.

Gated RNN cell networks, like LSTMs and GRUs, allow the RNN’s hidden state to not be

updated when processing some sequence positions if the information is deemed not important to

include in the hidden state. Such filtering ability allows these networks to be much better at modeling

long-range dependencies. For example, if the first and last word of some sentence are the most

important for some task, we would like the final hidden state of the RNN to reflect that. In practice,

the hidden state of the standard RNN cell tends to incorporate the information from the most recently

processed sequence items, thus the standard RNNs would struggle to keep the information of the

first word of the sentence. Gated cells on the other hand have the ability let their hidden state be

composed only of the first and last words of the sentence; and in practice these networks can model

much longer sequences [Karpathy, 2015]. The equations for calculating the hidden state of LSTM

and GRU cells are detailed in Table 2.2.

The LSTM cell has two states that it tracks, the cell’s internal memory state Ct, and the output

hidden state ht. It has 3 gates ft, it, ot that are called the forget, input, and output gates respectively.

They are called gates as they output values between 0 and 1 (due to the sigmoid activation function),

which are then used in an element-wise multiplication operations to determine how much information

should flow through the respective gates. C̃t is the candidate cell memory state, and it’s computed in

the exact same way as the hidden state for the standard RNN cell. The forget ft and input it gates

are used to determine how to combine the old cell memory state Ct−1 with the new candidate cell

memory C̃t. Finally, the hidden state of the LSTM cell is determined by regulating how much of

the cell memory state to output, using the output ot gate. The hidden state ht is different from the

10

internal memory state Ct to allow the cell to hold internal memory that may not yet be relevant for

other parts of the network to see. For example, if there is a long-range dependency between the first

and last word of a sentence, the cell state Ct could contain the information from the first word of

the sentence and only let that information through to the hidden state ht when processing the last

word. This ability is what makes LSTMs much better at modeling long-range dependencies than the

standard RNN [Karpathy, 2015].

The GRU cell is a simple version of the LSTM cell and has been found to perform comparably

on various NLP tasks, while having fewer parameters[Chung et al., 2014]. The GRU cells doesn’t

have an internal memory state like the LSTM, and thus also doesn’t need an output gate to decide

what information to output.

The introduced gated cells are great at constructing hidden states that reflect the sequence

positions that have been processed. However, what if we require the hidden state at step t to also

reflect the subsequent positions? For example, processing a word in the middle of a sentence, it

would be desirable to construct a hidden state vector that not only represent the current word and how

it relates to all the previous words, but also how it relates to the rest of the words in the sentence. In

such cases, a bi-directional RNN can be used [Schuster and Paliwal, 1997]. The idea is quite simple,

we reverse the input sequence and use a second RNN network to process it, the hidden states of both

RNNs is then concatenated. Formally the process can be described by the following steps:

1. Use the first RNN, such as an LSTM, network to process input sequence (x1, x2, ..., xT) to

produce hidden states (h1, h2, ..., hT).

2. Use the second RNN network to process a reversed input sequence (xT , xT−1, ..., x1) to

produce hidden states (ĥT , ĥT−1, ..., ĥ1).

3. Concatenate the hidden states, position-wise, to create final hidden states

([h1, ĥT], [h2, ĥT−1], ..., [hT , ĥ1]).

The resulting hidden states now have the ability to reflect how any sequence position relates to the

entire sequence, and not just the previous positions. This approach has been successfully applied for

many tasks such as sentiment analysis [Zhou et al., 2016], neural machine translation [Bahdanau

et al., 2014], dependency parsing [Kiperwasser and Goldberg, 2016], and POS tagging [Plank et al.,

2016].

2.4 Encoder-Decoder Architecture, Attention Mechanism

The most common use case of the RNN cells discussed is for the encoder-decoder architecture that is

used for sequence to sequence (seq2seq) tasks [Cho et al., 2014a, Sutskever et al., 2014]. It is used

for such tasks as Neural Machine Translation (NMT) [Wu et al., 2016, Bahdanau et al., 2014, Luong

et al., 2015], text summarization [Nallapati et al., 2016, Rush et al., 2015], chatbots [Vinyals and

Le, 2015], and time-series prediction [Qin et al., 2017]. In this architecture, one RNN cell encodes

11

the input sequence, and the second RNN cell is used for producing the desired output sequence; a

visualization example of this process is provided in Figure 2.4.

Figure 2.4: Modified Figure 1 from [Sutskever et al., 2014]. Visualizes a seq2seq model processing
input "ABC" to produce output "WXYZ". The encoder LSTM1 network processes the input
sequence to create a sequence representation vector. The decoderLSTM2 network uses the encoder’s
hidden state vector as input to create an output sequence.

A critical detail of the Seq2Seq architecture is that the decoder is only given a single vector from

the encoder. It is the encoder’s job to create a fixed vector that incorporates all the information of the

input sequence that the decoder will require; in practice this is a bottleneck. One could increase the

hidden vector size to theoretically increase the expressive capacity of the hidden state, but there is a

limit to how much that is practical. To improve the standard encoder-decoder architecture, a new

mechanism was introduces, called attention, that allows the decoder to also consider the encoder

hidden states at every single sequence position.

The attention mechanism was introduced by [Bahdanau et al., 2014] to improve the standard RNN

encoder-decoder sequence-to-sequence architecture for NMT [Sutskever et al., 2014]. Since then,

it has been extensively used to improve various RNN and CNN architectures [Cheng et al., 2016a,

Kokkinos and Potamianos, 2017, Lu et al., 2016]. The attention mechanism has been an especially

popular modification for RNN-based architectures due to its ability to improve the modeling of long

range dependencies ([Daniluk et al., 2017, Zhou et al., 2018]).

Originally [Bahdanau et al., 2014] described attention as the process of computing a context

vector for the next decoder step that contains the most relevant information from all of the encoder

hidden states by performing a weighted sum on the encoder hidden states. How much each encoder

state contributes to the weighted average is determined by an alignment score between that encoder

state and previous hidden state of the decoder. A visualization of this process for a bidirectional

encoder-decoder can be seen in Figure 2.5.

12

Figure 2.5: Figure 1 from [Bahdanau et al., 2014]. Visualizes the process of how a bidirectional
encoder-decoder architecture with attention generates the t-th target sequence item from input
sequence (x1, x2, ..., xT).

More generally, we can consider the previous decoder state as the query vector, and the encoder

hidden states as key and value vectors. The output is a weighted average of the value vectors, where

the weights are determined by the compatibility function between the query and the keys. Note that

the keys and values can be different sets of vectors [Vaswani et al., 2017].

The above can be summarized by the following equations. Given a query q, values (v1, ..., vn),

and keys (k1, ..., kn) we compute output z:

z =
n∑

j=1
αj(vj) (2.4)

αj = exp score(kj , q)∑n
i=1 exp score(ki, q)

(2.5)

αj is computed using the softmax function where score(ki, q) is the compatibility score between ki

and q. Many compatibility functions, score(k, q), have been proposed:

13

Name Equation

Additive [Bahdanau et al., 2014] vT
a tanh(Wa[k, q])

General [Luong et al., 2015] kTWaq

Dot-Product [Luong et al., 2015] (k)T (q)

Scaled Dot-Product [Vaswani et al., 2017] (k)T (q)√
dk

where vT
a and Wa are learnable weight matrices and dk is the dimension of the key vectors. This

scaling is done to improve numerical stability as the dimension of keys, values, and queries grows

[Vaswani et al., 2017].

2.5 CNNs as Alternatives to RNNs

Another extremely popular neural network architecture is the convolutional neural network (CNN).

This is a variant of the FFNN that uses convolution operations to extract patterns from data that is

nearby. CNNs have originally gained popularity among machine learning problems that deal with

images such as image classification [LeCun et al., 1998, Krizhevsky et al., 2012, Simonyan and

Zisserman, 2014]. These networks use convolution operations that are good at extracting patterns in

the patches of the data they’re applied on.

The key point of interest for us is that recently there has been a trend in applying CNNs for

NLP tasks in order to create architectures that overcome some of the downsides of the standard

RNN based architectures. The motivation for this trend is very similar to the motivation for the

creation of Self-Attention Networks that are the focus of this thesis. CNN architectures like ByteNet

[Kalchbrenner et al., 2016] and WaveNet [van den Oord et al., 2016] have been applied on sequence

modeling tasks of character-level machine translation and text-to-speech respectively. Both models

achieved SOTA results on the tasks they were tested on, beating previous RNN-based architectures

such as Seq2Seq+Attention models; all while training much faster.

14

Figure 2.6: Figure 1 from [Kalchbrenner et al., 2016]. The architecture of ByteNet. A demonstration
of the process of translating from source (in red) to target language (in blue). 1-D dilated convolutions
are used for source sentence encoding.

15

Chapter 3

Self-Attention Networks

The focus of this thesis is a new type of neural network architecture, called self-attention networks,

that use the attention mechanism discussed in Chapter 2 as the basic building block. These networks

don’t have any recurrence like RNNs nor utilize convolutions like CNNs. Instead, these networks

apply the attention mechanism on the source input sequence directly, an operation that is called

self-attention. Parts of this chapter are taken from our work for [Ambartsoumian and Popowich,

2018].

The first fully-attentional architecture, called Transformer, was recently introduced by [Vaswani

et al., 2017], which utilized only the self-attention mechanism and feed-forward layers. The Trans-

former model achieved state-of-the-art performance on multiple machine translation datasets, without

having recurrence or convolution components. Since then, self-attention networks have been success-

fully applied to a variety of tasks, including: image classification [Parmar et al., 2018], generative

adversarial networks [Zhang et al., 2018], automatic speech recognition [Povey et al., 2017], text

summarization [Liu et al., 2018], semantic role labeling [Strubell et al., 2018], as well as natural

language inference and sentiment analysis [Shen et al., 2018a,b, Shen et al., 2018].

3.1 Self-Attention Mechanism

Self-attention [Lin et al., 2017], also known an intra-attention [Cheng et al., 2016b], is the process of

applying the attention mechanism discussed in Section 2.4 directly on the source sequence to produce

an output sequence of the same length. The attention mechanism is applied once for every sequence

position by creating the query, value, and key representations from the source sequence. As a result,

an input sequence X = (x1, x2, ..., xn) is transformed to a sequence Y = (y1, y2, ..., yn) where yi

incorporates the information of xi as well as how xi relates to all other positions in X . Formally:

yi =
n∑

j=1
αij(xjW

V) (3.1)

αij = eeij∑n
k=1 e

eik
(3.2)

16

eij = score(xiW
Q, xjW

K) (3.3)

eij = (xiW
Q)(xjW

K)T√
dy

(3.4)

where xi ∈ Rdx , yi ∈ Rdy , W v,W q,W k are learnable parameters, and score(·) is a compatibil-

ity/similarity function such as those discussed in Section 2.4. Equation 3.7 shows the computation

when scaled dot-product is chosen for the compatibility function. The query, key, and value represen-

tations for the attention calculations are created by the xiW
q, xjW

k, xjW
v operations.

If the scaled dot-product (or regular dot-product) similarity function is used, the attention

computations for the entire source sequence can be done in parallel by grouping the queries, keys,

and values in Q, K, V matrices:

Attention(Q,K, V) = softmax(QK
T

√
dk

)V (3.5)

This allows the similarity scores to be computed with just one big matrix multiply, which is much

faster than additive attention as that requires a feed-forward layer to be applied for every query-key

pair.

3.2 Transformer Architecture

The research in this thesis was primarily inspired by this architecture. The Transformer architecture

achieved impressive SOTA results for multiple machine translation datasets [Vaswani et al., 2017].

3.2.1 Motivation

The main motivation for the Transformer model was the compelling properties of the attention

mechanism over the properties of recurrence and convolution mechanisms. They have looked at

three properties for the recurrence, convolution, and self-attention layers. The first property is the

computation complexity for every layer, the second is how much computation can be parallelized by

a measure of the minimum number of sequential operations required to encoder/decode a sequence,

and the third is the maximum length path between long-range dependencies of any two sequence

positions. The last metric is particularly important as it demonstrates the amount of sequential

computation steps that are required for a sequence encoder to create a hidden vector representation

of the entire sequence, hence processing the two sequence positions that are the furthest apart. As

discussed in Chapter 2, generally the more computation steps a network has to do, the harder for it to

train due to increased number of calculations for the forward pass as well as for back-propagation

[Hochreiter, 2001]. Table 3.1 shows these complexity metrics for each layer type. In Table 3.1, n

is the sequence length (also the maximum path length as the first and last positions are the furthest

away), d is the dimension size for each sequence step, and k is the kernel size of convolutions.

17

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n2 · d) O(1) O(1)
Recurrent O(n · d2) O(n) O(n)
Convolutional O(k · n · d2) O(1) O(logk(n))

Table 3.1: from [Vaswani et al., 2017]: "Shows the maximum path lengths, per-layer complexity and
minimum number of sequential operations for different layer types. n is the sequence length, d is the
representation dimension, and k is the kernel size of convolutions."

The main takeaway is that self-attention take constant number, O(1), of sequential operations to

connect the first and last position of a sequence. As discussed in Chapter 2, a recurrent layer requires

O(n) to encode a sequence and standard CNNs require a stack of O(n/k) convolutional layers with

kernel width of size k.

3.2.2 Architecture

Transformer is an encoder-decoder model that was designed for NMT, a sequence to sequence

problem. Just like previous NMT encoder-decoder systems, the encoder processes the source language

sentence, and then the decoder uses the output of the encoder to construct a sentence in the target

language. Unlike RNNs, the encoder doesn’t produce a fixed length vector that represents the input

sequence. Instead, the encoder outputs a sequence of the same length as the input, except one that is

"transformed" by the encoder self-attention layers.

First, Transformer intakes input embeddings, such as pre-trained word embeddings, and adds

positional information to them in a form of fixed absolute positional encodings. This is an important

step as the self-attention mechanism doesn’t inherently model the ordering of the input sequence

(unlike RNNs and CNNs). We discuss positional encodings as well as other techniques of making

self-attention networks model positional information in Section 3.3.

Next, the input sequence is passed through N identical encoder layers, with each having two

sublayers of multi-head self-attention and feed-forward layers. Multi-head attention is discussed

in the next section. Transformer utilizes some of the new deep learning techniques that allow the

training of deeper models. Techniques such as residual connections [He et al., 2016] and layer

normalization [Ba et al., 2016]. These techniques have been developed to help deep models train

better. The residual connections also allow the positional encoding signal to propagate deeper through

the network. Each sub-layer is wrapped by these operations. Thus the output of each sublayer is

LayerNorm(x+ SubLayer(x), where SubLayer(x) is either multi-head or feed-forward layer.

Just as for RNN-based encoder-decoder architectures, the decoder is still auto-regressive; it uses

the previously generated words as input to generate the next word. Computationally, the decoder

layers are identical to the encoder layers except that it has a second multi-head attention layer that

attends over the encoder output. An important implementation detail about the decoder is that the

18

first multi-head attention layer needs to be masked to not allow information to attend to subsequent

positions. For example, when decoding output sequence yk, the input embeddings sequence for

the decoder should be [y1, y2, ..., yk−1, 0′s, 0′s, ..., 0′s] where 0′s are vectors of zeros with same

dimensionality as yi.

Figure 3.1: Figure 1 from [Vaswani et al., 2017]. Visualization of the Transformer model architecture
computation graph.

Multi-Head Attention

One of the key contributions of [Vaswani et al., 2017] is the introduction of the multi-head attention.

Instead of performing self-attention once for (Q,K,V) of dimension dmodel, multi-head performs

attention h times on projected (Q,K,V) matrices of dimension dmodel/h. For each head, the (Q,K,V)

19

matrices are uniquely projected to dimension dmodel/h and self-attention is performed to yield an

output of dimension dmodel/h. The outputs of each head are then concatenated, and once again

a linear projection layer is applied, resulting in an output of same dimensionality as performing

self-attention once on the original (Q,K,V) matrices. This process is described by the following

formulas:

MultiHead(Q,K, V) = Concat(head1, ...,headh)WO

where headi = Attention(QWQ
i ,KW

K
i , V W V

i)

where the projections are parameter matricesWQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈ Rdmodel×dv

and WO ∈ Rhdv×dmodel . The idea here is that different heads will learn to pay attention to different

features of the sequence. For example, [Vaswani et al., 2017] found that one of the attention heads

in the Transformer encoder appeared to have been performing anaphora resolution, the task of

determining what pronouns or nouns refer to.

3.3 Position Information Techniques

The attention mechanism is completely invariant to sequence ordering, thus self-attention networks

need a method to incorporate positional information. Three main techniques have been proposed to

solve this problem: adding sinusoidal positional encodings or learned positional encoding to input

embeddings, or using relative positional representations in the self-attention mechanism.

Sinusoidal Position Encoding

This method was proposed by [Vaswani et al., 2017] to be used for the Transformer model. Here,

positional encoding (PE) vectors are created using sine and cosine functions of different frequencies

and then are added to the input embeddings. Thus, the input embeddings and positional encodings

must have the same dimensionality of dmodel. The following sine and cosine functions are used:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the sentence position and i is the dimension. Using this approach, sentences longer than

those seen during training can still have positional information added. We will be referring to this

method as PE. The authors of this technique liked the simplicity of this method, as there are no

learnable parameters.

20

Learned Position Encoding

In a similar method, learned vectors of the same dimension size, that are also unique to each position

can be added to the input embeddings instead of sinusoidal positional encodings [Gehring et al.,

2017]. There are two downsides to this approach. First, this method cannot handle sentences that

are longer than the ones in the training set as no vectors are trained for those positions. Second, the

further position will likely not get trained as well if the training dataset has more short sentences

than longer ones. Vaswani et al. [2017] also reported that these perform identically to the positional

encoding approach.

Relative Position Representations

Relative Position Representations (RPR) was introduced by [Shaw et al., 2018] as a replacement of

positional encodings for the Transformer. Using this approach, the Transformer was able to perform

even better for NMT, further advancing SOTA for multiple datasets, while increasing training time

by only 7%. Out of the three discussed, we have found this approach to work best and we will be

referring to this method as RPR throughout this thesis.

For this method, the self-attention mechanism is modified to explicitly learn the relative positional

information between every two sequence positions. As a result, the input sequence is modeled as a

labeled, directed, fully-connected graph, where the edges of the graph represent relative distance

between sequence positions. A tunable parameter k is also introduced that limits the maximum

distance considered between two sequence positions. [Shaw et al., 2018] hypothesized that this will

allow the model to generalize to longer sequences at test time.

The distance between vectors xi and xj is modeled by vectors aV
ij , a

K
ij ∈ Rdy . Equations 3.1 and

3.7, the weighted sum operation and scaled dot-product compatibility function, are modified like so:

yi =
n∑

j=1
αij(xjW

V + aV
ij) (3.6)

eij =
(xiW

Q)(xjW
K + aK

ij)T√
dy

(3.7)

Intuitively, the weighted sum and compatibility function operations can now consider the modeled

distance between sequence positions. Furthermore, [Shaw et al., 2018] hypothesized that for many

tasks relative position information beyond a certain distance is not useful. Thus, the maximum

relative position considered is clipped to an absolute value k. Each aV
ij) and aK

ij now maps to:

aK
ij = wK

clip(j−i,k) (3.8)

aV
ij = wV

clip(j−i,k) (3.9)

clip(x, k) = max(−k,min(k, x)) (3.10)

21

The final learnable parameters arewK = (wK
−k, ..., w

K
k) andwV = (wV

−k, ..., w
V
k), wherewK

i , w
V
i ∈

Rdy .

An example of modeling relative position representations of maximum clipping distance k is

provided in Figure 3.2. The example demonstrates how aV
ij and aK

ij edge values are clipped by

mapping to vectors in wK and wV .

Figure 3.2: Figure 1 from [Shaw et al., 2018]. An example illustrating some of the edge values that
represent relative positions between sequence positions. A clipping distance of k is chosen, where
2 <= k <= n− 4 is assumed.

22

Chapter 4

Proposed Architectures &
Implementation Details

This chapter will introduce two self-attention network architectures called SSAN and ESSAN. SSAN

was developed for our work in [Ambartsoumian and Popowich, 2018], where the goal was to create

the simplest SAN architecture possible to then be compared to basic RNN and CNN architectures.

ESSAN is an extension of our SSAN architecture, where we re-introduce multi-head attention, use

L2-Regularization, and replace the mechanism that creates the sequence representation from the

output of the final self-attention layer. We use ESSAN in section 5.2 to achieve SOTA results on the

SST-fine sentiment analysis dataset, as well as in chapter 6 for time-series prediction.

4.1 Simple Self-Attention Network (SSAN)

This architecture was designed to be as simple as possible in order to compare it to simple RNN

and CNN architectures. SSAN, as seen in Figure 4.1, is basically a very stripped down version of

the Transformer encoder. It contains fewer feed-forward layers than Transformer and uses no multi-

head attention, residual connections, or layer normalization. The default configuration uses relative

position representations (RPR) for including positional information instead of positional encodings

(PE), this is because we have found PE to perform poorly on all of the, relatively small, datasets that

we tested throughout this thesis. Here are the justifications/intuition for the few feed-forward layers

in this architecture:

• Feed-forward layers are needed for creating Q, K, V matrices because otherwise the self-

attention layer will be calculating dot-product similarity scores on the exact same vectors.

• Feed-forward after the self-attention operation prepares each transformed sequence position for

the next self-attention layer, or to be used in the creation of the fixed sequence representation

vector.

• Feed-forward on the averaged vectors of the last self-attention layer is responsible for creating

the sequence representation.

23

For regularization, dropout is applied on the input embeddings EMBi, outputs of each self-

attention layer EMB′i, and the sentence representation vector. We tune the dropout keep probability

in chapters 5 and 6. We use the ReLU [Nair and Hinton, 2010] activation function as it’s the most

common one used for feed-forward networks. We also tried the sigmoid σ(x) = 1
1+e−x activation

function, which led to mostly similar performance.

Figure 4.1: SSAN Model Architecture

4.2 Extended SSAN (ESSAN)

In order to achieve SOTA results for the SST dataset in Chapter 5, the SSAN architecture had to

be slightly modified. We only needed to make the following four changes to get SOTA results for

sentiment analysis in Section 5.2 and time-series prediction in Chapter 6:

• Use multi-head attention from [Vaswani et al., 2017].

• Replace the method of creating the final fixed-size sequence representation vector from the

output of the last self-attention layer. We replace the averaging method from SSAN with an

attention-based weighted sum approach.

• Use L2-regularization.

• Use the Swish [Ramachandran et al., 2017] activation function.

We suspected that averaging the final vector representations is not ideal as not all sequence

positions should contribute equally to the final representation. We have tried multiple ways of

reducing the output vectors of the last self-attention layer into a single fixed-size vector to create

a representation for the input sentence/sequence. For SSAN, we did the simplest thing of simply

averaging the vectors. We also tried summing them, which yielded slightly worse results. Instead

24

of simply averaging or summing the output of the last self-attention layer, we thought a weighted

sum of these final representations would be more appropriate. To do this, we once again utilize the

attention mechanism. We construct a query vector q by passing the output of the last self-attention

layer through a feed-forward layer and averaging the resulting representations. We set the key and

value vectors to be the output of the last self-attention layer. Attention is performed to calculate a

weighted sum of the EMB′′ vectors, and the result is passed through a feed-forward layer to create

the final sequence representation. This process can be described with the following steps:

1. Create query vector q = Average([FFq(EMB′′_1), FFq(EMB′′_2), ..., FFq(EMB′′_N)])

2. Define keys and values as: keys = values = [EMB′′_1, EMB′′_2, ..., EMB′′_N]

3. SentenceRepresentation = FFsr(Attention(q, keys, values))

where FFq and FFsr are feed-forward layers. This technique was useful for the expanded SST

datasets that are used in chapter 5.2.

For this model we also utilized L2-regularization, also known as weight decay, to further regular-

ize the model and prevent over-fitting. This is a common technique in machine learning that aims to

reduce the model’s complexity by preventing the weights becoming too large. This is done by adding

a weight penalty to the cost function:

Cfinal(Ŷ , Y) = C(Ŷ , Y) + γ
1
n

n∑
i=1

w2
i (4.1)

where C(Ŷ , Y) is the cost function for network output Ŷ and expected output Y , wi is a learnable

weight in the network, and γ is the L2 regularization decay factor. The final cost function, shown in

equation 4.1, increases as the weights increase, thus penalizing the model for very large weights in

the network. To regularize this model, the dropout keep probability as well as the L2 regularization

decay factor γ need to be tuned.

For ESSAN we use the recently introduced Swish [Ramachandran et al., 2017] activation function

instead of the ReLU we used for SSAN. We chose Swish because we never saw any of our network

variations perform worse when switching from ReLU to Swish, while we did at times see performance

decrease going from Swish to ReLU.

4.2.1 Masking

Neural network models are most commonly trained in batches to speed up training. Some com-

plications in straightforward implementations arise when training self-attention networks. This is

because these models are often training on GPUs, and training from one example at a time results in

most time being spent moving data from main memory to GPU VRAM rather than performing the

calculations required for training.

When dealing with datasets containing sequences of varied length, such as sentences, the training

batches will most likely also contain sample sequences of varied length. The most straightforward

25

Figure 4.2: Masking sequence after feed-forward layers example.

implementation of dealing with this is to fix the sequence_length dimension to be the same as the

longest sequence in the dataset or the longest for the batch. Then for all the shorter sequences, we

simply pad them with trailing zeroes for the positions that don’t exist. This becomes problematic

because some of the operations in SANs will result those positions to become non-zeroes throughout

the computation graph. For instance, any feed-forward layers with biases will cause such a change as

demonstrated in Figure 4.2. This is problematic since this is a deviation from the theoretical model,

where the learnable parameters deeper in the network are affected by these invalid positions. To fix

this, we need to reset such invalid positions for each sentence after every feed-forward layer. We

achieve this by calculating a mask tensor from the input tensor that determines the valid positions

for each sequence. Then after every feed-forward layer, we simply do a point-wise multiplication

with the mask tensor to reset the invalid positions back to the zero vector. Figure 4.2 demonstrates

this entire process for a sequence X = (X1, X2, X3, X4) that goes through a feed-forward layer:

X̂ = F (X ∗WF F + bF F), where F is an activation function, and WF F , bF F are the learnable

parameters.

Most other implementations we’ve seen do not bother with this detail, but some do mitigate the

possible negative effect of this by having the sequence_length dimension be dynamically set per

batch and possibly grouping sequences of similar length. However, most do the easiest method of

fixing the maximum sequence length to be the same as the longest sequence in the dataset.

We’ve found that applying the sequence mask leads to slightly better performance. However, we

apply this method only for ESSAN and not SSAN. This is because we did not have the space required

26

in our paper [Ambartsoumian and Popowich, 2018] to describe this implementation detail. Thus, to

stick with our theme of keeping the SSAN description and implementation as simple as possible, we

chose not to apply the sequence mask. For ESSAN, we apply the sequence mask after every feed-

forward layer, which are the layers that create Q,K, V , EMB′′, and Sentence_Representation

tensors.

27

Chapter 5

Sentiment Analysis

Sentiment analysis, also know as opinion mining, deals with determining the opinion classification of

a piece of text. Most commonly the classification is whether the writer of a piece of text is expressing

a position or negative attitude towards a product or a topic of interest [Pang and Lee, 2008]. Having

more than two sentiment classes is called fine-grained sentiment analysis with the extra classes

representing intensities of positive/negative sentiment (e.g. very-positive) and/or the neutral class.

This field has seen much growth for the past two decades, with many applications and multiple

classifiers proposed [Mäntylä et al., 2018]. Sentiment analysis has been applied in areas such as

social media [Jansen et al., 2009], commerce [Jansen et al., 2009], and health care [Greaves et al.,

2013b] [Greaves et al., 2013a].

In the past few years, neural network approaches have consistently advanced the state-of-the-art

technologies for sentiment analysis and other natural language processing (NLP) tasks. For sentiment

analysis, the neural network approaches typically use pre-trained word embeddings such as word2vec

[Mikolov et al., 2013] or GloVe[Pennington et al., 2014] for input, which get processed by the model

to create a sentence representation that is finally used for a softmax classification output layer. The

main neural network architectures that have been applied for sentiment analysis are recurrent neural

networks(RNNs) [Tai et al., 2015] and convolutional neural networks (CNNs) [Kim, 2014b], with

RNNs being more popular of the two. For RNNs, typically gated cell variants such as long short-term

memory (LSTM) [Hochreiter and Schmidhuber, 1997], Bi-Directional LSTM (BiLSTM) [Schuster

and Paliwal, 1997], or gated recurrent unit (GRU) [Cho et al., 2014a] are used.

In this chapter, our goal is to accomplish two tasks: demonstrate that self-attention is a better

building block for sequence modeling (in the context of sentiment analysis) than recurrence and

convolutions, and achieve SOTA accuracy on the popular SST dataset using our proposed ESSAN

architecture.

In section 5.1 we present the work we have done for [Ambartsoumian and Popowich, 2018].

For this section, our goal is to explore the performance and characteristics of the self-attention,

recurrence, and convolution building blocks. Thus, only the most basic architectures for each

category are considered. We compare our proposed SSAN architecture to LSTM, BiLSTM, and CNN

architectures from [Barnes et al., 2017]. We compare the classification accuracy on six sentiment

28

analysis datasets as well as explore other architecture characteristics such as train and inference times,

number of trainable parameters, and VRAM consumption during training. In this section we also

explore the effectiveness of various techniques of incorporating positional information into SANs.

In section 5.2, we demonstrate that our proposed ESSAN architecture achieves SOTA accuracy

on the SST-fine, beating the previous SOTA SAN model called DiSAN [Shen et al., 2018a]. ESSAN

does this while having less trainable parameters and consuming much less VRAM during training

than DiSAN.

Parts of this chapter are taken from our work for [Ambartsoumian and Popowich, 2018].

5.1 Comparison of Building Blocks: SAN vs RNN vs CNN

In this section we demonstrate that self-attention is a better building block compared to recurrence

or convolutions for sentiment analysis classifiers. We extend the work of [Barnes et al., 2017] by

exploring the behaviour of various self-attention architectures, such as the proposed SSAN from

Chapter 4, on six datasets and making direct comparisons to their work. We set our baselines to be

their results for Lstm, BiLstm, and Cnn models, and used the same code for dataset pre-processing,

word embedding imports, and batch construction. Finally, we explore the effectiveness of SAN

architecture variations such as different techniques of incorporating positional information into the

network, using multi-head attention, and stacking self-attention layers. Our results suggest that

relative position representations is superior to positional encodings, as well as highlight the efficiency

of the stacking self-attention layers. Code for the work done in this section is open-sourced here 1.

5.1.1 Experiments

To reduce implementation deviations from previous work, we use the codebase from [Barnes et al.,

2017] and only replace the model and training process. We re-use the code for batch pre-processing

and batch construction for all datasets, accuracy evaluation, as well as use the same word embeddings2.

All neural network models use cross-entropy for the training loss.

All experiments and benchmarks were run with the same hardware and software versions. For

model implementations: LSTM, BiLSTM, and CNN baselines are implemented in Keras [Chollet

et al., 2015] with Tensorflow backend. All self-attention models are implemented in Tensorflow.

Details for software and hardware used are in Table 5.1.

5.1.2 Datasets Used

In order to determine if certain neural network building blocks are superior, we test on the six datasets

from [Barnes et al., 2017]. The macro-average accuracy is calculated to better understand how all the

1https://github.com/Artaches/SSAN-self-attention-sentiment-analysis-
classification

2https://github.com/jbarnesspain/sota_sentiment

29

https://github.com/Artaches/SSAN-self-attention-sentiment-analysis-classification
https://github.com/Artaches/SSAN-self-attention-sentiment-analysis-classification
https://github.com/jbarnesspain/sota_sentiment

Hardware Details Software Version
CPU Intel i7 5820k @ 3.3Ghz Tensorflow 1.7
RAM 32GB DDR4-2133 Keras 2.0.8

GPU
Nvidia GTX 1080

w/ 8GB GDDR5 VRAM

CUDA 9.1
CuDNN 5.1.5

OS Ubuntu 16.04.4 LTS

Table 5.1: Details of hardware and software that were used for all experiments.

architectures perform on datasets with different properties. The summary for dataset properties is in

Table 5.2.

The Stanford Sentiment Treebank (SST-fine) [Socher et al., 2013] deals with movie reviews,

containing five classes [very-negative, negative, neutral, positive, very-positive]. (SST-binary) is

constructed from the same data, except the neutral class sentences are removed, all negative classes

are grouped, and all positive classes are grouped. However, the SST-fine variant is the more popular

version, with some papers often not reporting results for the binary variant [Shen et al., 2018a]. For

the experiments in this section, the datasets are pre-processed to only contain sentence-level labels,

and none of the models reported in this work utilize the phrase-level labels that are also provided.

This is the most popular sentiment analysis dataset of the group, with many papers pushing its SOTA

results over the years [Zhou et al., 2016, Wang et al., 2016, Kokkinos and Potamianos, 2017, Shen

et al., 2018a].

The OpeNER dataset [Agerri et al., 2013] is a dataset of hotel reviews with four sentiment classes:

very negative, negative, positive, and very positive. This is the smallest dataset with the lowest

average sentence length.

The SenTube datasets [Uryupina et al., 2014] consist of YouTube comments with two sentiment

classes: positive and negative. The SenTube-A dataset contains comments that relate to automabiles,

while the SenTube-T contains comments relating to tablets. The datasets were constructed by

manually extracting comments with sentiment polarity towards a product, taken from commercial

videos for the product types. These datasets contain the longest average sentence length as well as

the longest maximum sentence length of all the datasets.

The SemEval Twitter dataset (SemEval) [Nakov et al., 2013] consists of tweets with three

classes: positive, negative, and neutral. This dataset was created for the SemEval 2013 shared task

B competition. An interesting fact for this dataset is that the SOTA result for the competition was

achieved by an SVM [Hearst, 1998] model, with an accuracy of around 69.5%. During our testing

for the results in Table 5.3, we often saw best models that achieved an accuracy of over 73%, with

many achieving 70% as the average accuracy. In our opinion, this demonstrates why neural network

approaches that utilize pre-trained word embeddings have become so popular in the past few years

for many NLP tasks.

30

Train Dev. Test
of

Classes

Average
Sent.

Length

Max
Sent.

Length

Vocab.
Size

Wiki
Emb.

Coverage

300D
Emb.

Coverage

SST-fine 8,544 1,101 2,210 5 19.53 57 19,500 94.4% 89.0%
SST-binary 6,920 872 1,821 2 19.67 57 17,539 95.0% 89.6%
OpeNER 2,780 186 743 4 4.28 23 2,447 94.2% 99.3%
SenTube-A 3,381 225 903 2 28.54 127 18,569 75.6% 74.5%
SenTube-T 4,997 333 1,334 2 28.73 121 20,276 70.4% 76.0%
SemEval 6,021 890 2,376 3 22.40 40 21,163 77.1% 99.8%

Table 5.2: Modified Table 2 from [Barnes et al., 2017]. Dataset statistics, embedding coverage
of dataset vocabularies, as well as splits for Train, Dev (Development), and Test sets. The ‘Wiki’
embeddings are the 50, 100, 200, and 600 dimension used for experiments.

5.1.3 Pre-Trained Word Embeddings

We use the exact same word embeddings as [Barnes et al., 2017]. They trained the 50, 100, 200,

and 600-dimensional word embeddings using the word2vec algorithm described in [Mikolov et al.,

2013] on a 2016 Wikipedia dump. In order to compare to previous work, they also used the publicly

available Google 300-dimensional word2vec embeddings 3, which are trained on a part of Google

News dataset. For all models, out-of-vocabulary words are initialized randomly from the uniform

distribution on the interval [-0.25 , 0.25]. Vocabulary coverage for each dataset & word embedding

pair can be seen in Table 5.2. The 300D google embeddings have better coverage than the Wikipedia

based ones on all datasets except SST-fine and SST-binary.

5.1.4 Baselines Descriptions

We take six classifiers from [Barnes et al., 2017] and use their published results as baselines. Two of

the methods are based on logistic regression, Bow and Ave, and 3 are neural network based, Lstm,

BiLstm, and Cnn.

The (Bow) baseline is a L2-regularized logistic regression trained on bag-of-words representation.

Each word is represented by a one-hot vector of size n = |V |, where |V | is the vocabulary size.

The (Ave) baseline is also a L2-regularized logistic regression classifier except trained on the

average of the 300-dimension word embeddings for each sentence.

The Lstm baseline, input word embeddings are passed into an LSTM layer. Then a 50-dimensional

feed-forward layer with ReLU activations is applied, followed by a softmax layer that produces the

classification output. Dropout [Srivastava et al., 2014] is applied to the input word embeddings for

regularization.

The BiLstm baseline is the same as Lstm, except that a second LSTM layer is used to process the

input word embeddings in the reverse order. The outputs of the two LSTM layers are concatenated

3https://code.google.com/archive/p/word2vec/

31

https://code.google.com/archive/p/word2vec/

and passed a feed-forward layer, following by the output softmax layer. Dropout is applied identically

as in Lstm. This modification improves the networks ability to capture long-range dependencies.

The final baseline is a simple Cnn network. The input sequence of n embeddings is reshaped to

an n×R dimensional matrix M , where R is the dimensionality of the embeddings. Convolutions

with filter size of [2,3,4] are applied to M , following by a pooling layer of length 2. As for Lstm

networks, a feed-forward layer is applied followed by an output softmax layer. Here, dropout is

applied to input embeddings as well as after the convolution layers.

The Lstm, BiLstm, and Cnn baselines are trained using ADAM [Kingma and Ba, 2014] with

cross-entropy loss and mini-batches of size 32. Hidden layer dimension, dropout amount, and the

number of training epochs are tuned on the validation set for each (model, input embedding, dataset)

combination.

5.1.5 Self-Attention Architectures

We use 1-Layer SSAN + RPR and 2-Layer SSAN + RPR to compare the self-attention mechanism to

the recurrence and convolution mechanisms in LSTM, BiLSTM, and CNN models. We compare these

models using all word embeddings sizes.

Next, we explore the performance of a modified Transformer Encoder described in Chapter 4.

We do this to determine if a more complex architecture that utilized multi-head attention is beneficial.

Finally, we compare the performance of using positional encodings (+PE) and relative positional

representations (+RPR) for the Transformer Encoder and 1-Layer-SSAN architectures. We also test

1-Layer SSAN without using any positional information techniques.

For the self-attention networks, we simplify the training process to tune only one parameter

and apply the same process to all models. Only the learning rate is tuned for every (model, input

embedding) pair. We fix the number of batches to train for to 100,000 and pick the model with

highest validation accuracy. Each batch is constructed by randomly sampling the training set. Model

dimensionality dmodel is fixed to being the same as the input word embeddings. Learning rate is tuned

based on the size of dmodel. For dmodel dimensions [50, 100, 200, 300, 600] we use learning rates

of [0.15, 0.125, 0.1, 0.1, 0.05] respectively, because the larger dmodel models tend to over-fit faster.

Dropout of 0.7 is applied to all models, and the ADADELTA [Zeiler, 2012] optimizer is used with

cross-entropy loss.

5.1.6 Analysis

Table 5.3 contains the summary of all the experimental results. For all neural network models we

report mean test accuracy of five runs as well as the standard deviations. Macro-Avg results are the

average accuracy of a model across all datasets. We focus our discussion on the Macro-Avg column

as it demonstrates the models general performance for sentiment analysis.

Our results show general better performance for self-attention networks in comparison to Lstm,

BiLstm and Cnn models. Using the same word embedding, all of the self-attention models receive

32

higher Macro-Avg accuracy than all baseline models. 1-Layer-SSAN+RPR models generally perform

the best for all (input embeddings, dataset) combinations, and getting top scores for five out of

six datasets. Transformer Encoder+RPR also performs comparatively well across all datasets, and

achieves top accuracy for the OpeNER dataset.

Using 2-Layer-SSAN+RPR does not yield better performance results compared to 1-Layer-

SSAN+RPR. We believe that one self-attention layer is sufficient as the datasets that we have tested

on were relatively small. This is reinforced by the results we see from Transformer Encoder + RPR

since it achieves similar accuracy as 2-Layer-SSAN+RPR and 1-Layer-SSAN+RPR while having

greater architectural complexity and more trainable parameters, see Table 5.4.

Using relative positional representations for 1-Layer-SSAN+RPR increases the Macro-Avg

accuracy by 2.8% compared to using positional encodings for 1-Layer-SSAN+PE, and by 0.9%

compared to using no positional information at all (1-Layer-SSAN). Interestingly enough, we observe

that using no positional information performs better than using positional encodings. This could be

attributed once again to small dataset size, as [Vaswani et al., 2017] successfully used positional

encodings for larger MT datasets.

Another observation is that SenTube dataset trials achieve a low accuracy despite having binary

classes. This is unexpected as generally with a low number of classes it is easier to train on the dataset

and achieve higher accuracy. We suspect that this is because SenTube contains longer sentences and

very low word embedding coverage. Despite this, SSANs perform relatively well on the SenTube-A

dataset, which suggests that they are superior at capturing long-range dependencies compared to

other models.

Smaller dmodel SSAN models perform worse for lower dimension input embeddings on SST-fine,

SST-binary and OpeNER datasets while still performing well on SenTube and SemEval. This is caused

by the limitations of our training process where we forced the network dmodel to be same as the

input word embeddings and use the same learning rate for all datasets. We found that working with

smaller dimensions of dmodel the learning rate needed to be tuned individually for some datasets. For

example, using a learning of 0.15 for 50D models would work well for SenTube and SemEval, but

would under-fit for SST-fine, SST-binary and OpeNER datasets. We decided to not modify the training

process for the smaller input embeddings in order to keep our training process simplified.

5.1.7 Model Characteristics

Here we compare training and test efficiency, memory consumption and number of trainable pa-

rameters for every model. For all models, we use the SST-fine dataset, hidden dimension size of

300, Google 300D embeddings, batch sizes of 32 for both training and inference, and the ADAM

optimizer [Kingma and Ba, 2014]. The Training Time test is the average time it takes every model to

train on 10 epochs of the SST-fine train set (2670 batches of size 32). The Inference Time test is the

average time it takes a model to produce predictions for the validation set 10 times (344 batches of

size 32). Table 5.4 contains the summary of model characteristics. The GPU VRAM usage is the

amount of GPU video memory that is used during training.

33

M
od

el

Dim
.

SST-fi
ne

SST-b
ina

ry

Ope
NER

Sen
Tub

e-A

Sen
Tub

e-T

Sem
Eva

l

M
ac

ro-
Avg

.

B
as

el
in

es

Bow 40.3 80.7 77.1 60.6 66.0 65.5 65.0

Ave 300 41.6 80.3 76.3 61.5 64.3 63.6 64.6

Lstm

50 43.3 (1.0) 80.5 (0.4) 81.1 (0.4) 58.9 (0.8) 63.4 (3.1) 63.9 (1.7) 65.2 (1.2)

100 44.1 (0.8) 79.5 (0.6) 82.4 (0.5) 58.9 (1.1) 63.1 (0.4) 67.3 (1.1) 65.9 (0.7)

200 44.1 (1.6) 80.9 (0.6) 82.0 (0.6) 58.6 (0.6) 65.2 (1.6) 66.8 (1.3) 66.3 (1.1)

300 45.3 (1.9) 81.7 (0.7) 82.3 (0.6) 57.4 (1.3) 63.6 (0.7) 67.6 (0.6) 66.3 (1.0)

600 44.5 (1.4) 83.1 (0.9) 81.2 (0.8) 57.4 (1.1) 65.7 (1.2) 67.5 (0.7) 66.5 (1.0)

BiLstm

50 43.6 (1.2) 82.9 (0.7) 79.2 (0.8) 59.5 (1.1) 65.6 (1.2) 64.3 (1.2) 65.9 (1.0)

100 43.8 (1.1) 79.8 (1.0) 82.4 (0.6) 58.6 (0.8) 66.4 (1.4) 65.2 (0.6) 66.0 (0.9)

200 44.0 (0.9) 80.1 (0.6) 81.7 (0.5) 58.9 (0.3) 63.3 (1.0) 66.4 (0.3) 65.7 (0.6)

300 45.6 (1.6) 82.6 (0.7) 82.5 (0.6) 59.3 (1.0) 66.2 (1.5) 65.1 (0.9) 66.9 (1.1)

600 43.2 (1.1) 83.0 (0.4) 81.5 (0.5) 59.2 (1.6) 66.4 (1.1) 68.5 (0.7) 66.9 (0.9)

CNN

50 39.9 (0.7) 81.7 (0.3) 80.0 (0.9) 55.2 (0.7) 57.4 (3.1) 65.7 (1.0) 63.3 (1.1)

100 40.1 (1.0) 81.6 (0.5) 79.5 (0.9) 56.0 (2.2) 61.5 (1.1) 64.2 (0.8) 63.8 (1.1)

200 39.1 (1.1) 80.7 (0.4) 79.8 (0.7) 56.3 (1.8) 64.1 (1.1) 65.3 (0.8) 64.2 (1.0)

300 39.8 (0.7) 81.3 (1.1) 80.3 (0.9) 57.3 (0.5) 62.1 (1.0) 63.5 (1.3) 64.0 (0.9)

600 40.7 (2.6) 82.7 (1.2) 79.2 (1.4) 56.6 (0.6) 61.3 (2.0) 65.9 (1.8) 64.4 (1.5)

Se
lf

-A
tte

nt
io

n
M

od
el

s

1-Layer
SSAN + RPR

50 42.8 (0.8) 79.6 (0.3) 78.6 (0.5) 64.1 (0.4) 67.0 (1.0) 67.1 (0.5) 66.5 (0.6)

100 44.6 (0.3) 82.3 (0.3) 81.6 (0.5) 61.6 (1.3) 68.6 (0.6) 68.6 (0.5) 67.9 (0.6)

200 45.4 (0.4) 83.1 (0.5) 82.3 (0.4) 62.2 (0.6) 68.4 (0.8) 70.5 (0.4) 68.6 (0.5)

300 48.1 (0.4) 84.2 (0.4) 83.8 (0.2) 62.5 (0.3) 68.4 (0.8) 72.2 (0.8) 69.9 (0.5)

600 47.7 (0.7) 83.6 (0.4) 83.1 (0.4) 62.0 (0.4) 68.8 (0.7) 70.5 (0.8) 69.2 (0.5)

2-Layer
SSAN + RPR

50 43.2 (0.9) 79.8 (0.2) 79.2 (0.6) 63.0 (1.3) 66.6 (0.5) 67.5 (0.7) 66.5 (0.7)

100 45.0 (0.4) 81.6 (0.9) 81.1 (0.4) 63.3 (0.7) 67.7 (0.5) 68.7 (0.4) 67.9 (0.5)

200 46.5 (0.7) 82.8 (0.5) 82.3 (0.6) 61.9 (1.2) 68.0 (0.8) 69.6 (0.8) 68.5 (0.8)

300 48.1 (0.8) 83.8 (0.9) 83.3 (0.9) 62.1 (0.8) 67.8 (1.0) 70.7 (0.5) 69.3 (0.8)

600 47.6 (0.5) 83.7 (0.4) 82.9 (0.5) 60.7 (1.4) 68.2 (0.7) 70.3 (0.3) 68.9 (0.6)

Transformer
Encoder + RPR 300 47.3 (0.4) 83.8 (0.4) 84.2 (0.5) 62.0 (1.4) 68.2 (N1.6) 72.0 (0.5) 69.6 (0.8)

Transformer
Encoder + PE 300 45.0 (0.7) 82.0 (0.6) 83.3 (0.7) 62.3 (2.4) 66.9 (0.8) 68.4 (0.8) 68.0 (1.0)

1-Layer
SSAN 300 47.2 (0.5) 83.9 (0.7) 83.6 (0.6) 62.1 (2.5) 68.7 (1.0) 70.2 (1.2) 69.3 (1.1)

1-Layer
SSAN + PE 300 45.0 (0.3) 82.9 (0.2) 80.7 (0.6) 62.6 (2.3) 67.8 (0.4) 69.1 (0.3) 68.0 (0.7)

Table 5.3: Modified Table 3 from [Barnes et al., 2017]. The baseline results are taken from [Barnes
et al., 2017]; the self-attention models results are ours. Test accuracy averages and standard deviations
(in brackets) of 5 runs. Best model for each dataset is given in bold .

Cnn has the lowest number of parameters but consumes the most GPU memory. It also has the

shortest training and inference time, which we attributed to the low number of parameters.

Using relative position representations compared to positional encoding for 1-Layer-SSAN

increases the number of trainable parameters by only 2.7%, training time by 11.2%, and inference

time by 4.7%. These findings are similar to what [Shaw et al., 2018] reported.

BiLSTM has double the number of parameters as well as near double training and inference

times compared to LSTM. This is reasonable due to the nature of the architecture being two LSTM

34

Model # of Parameters GPU VRAM Usage (MB)
Training
Time (s)

Inference Time
(s)

LSTM 722,705 419MB 235.9s 7.6s
BiLSTM 1,445,405 547MB 416.0s 12.7s
CNN 83,714 986MB 21.1s 0.85s
1-Layer SSAN + RPR 465,600 381MB 64.6s 8.9s
1-Layer SSAN + PE 453,000 381MB 58.1s 8.5s
2-Layer SSAN + RPR 839,400 509MB 70.3s 9.3s
Transformer + RPR 1,177,920 510MB 78.2s 9.7s

Table 5.4: Neural networks architecture characteristics. A comparison of number of learnable
parameters, GPU VRAM usage (in megabytes) during training, as well as training and inference
times (in seconds).

layers. Much like BiLSTM, going from 1-Layer-SSAN to 2-Layer-SSAN doubles the number of

trainable parameters. However, the training and inference times only increase by 20.1% and 9.4%

respectively. This demonstrates the efficiency of the self-attention mechanism due to it utilizing only

matrix multiply operations, for which GPUs are highly-optimized.

We also observe that self-attention models are faster to train than LSTM by about 3.4 times, and

5.9 times for BiLSTM. However, inference times are slower than LSTM by 15.5% and faster than

BiLSTM by 41%.

5.1.8 Discussion

In this section we focused on demonstrating that simple self-attention networks achieve better

accuracy on six datasets than simple RNN and CNN architectures, and in the process agruing that

self-attention is a superior mechanism. In our experiments, multiple SSAN networks performed

better than Cnn and Lstm models; Self-attention architecture resulted in higher accuracy than LSTMs

while having 35% fewer parameters and shorter training time by a factor of 3.5. Additionally, we

showed that SSANs achieved higher accuracy on the SenTube datasets, which suggests they are

also better at capturing long-term dependencies than RNNs and CNNs. Finally, we reported that

using relative positional representation is superior to both using positional encodings, as well as

not incorporating any positional information at all. Using relative positional representations for

self-attention architectures resulted in higher accuracy with negligible impact on model training and

inference efficiency.

5.2 SOTA Approach for SST Datasets

In this section we use our proposed ESSAN architecture from Chapter 4 to achieve SOTA accuracy

on the SST-fine dataset, beating the previous best SAN architecture called Directional Self-Attention

Network (DiSAN) [Shen et al., 2018a]. We use training methodology that is as close to DiSAN’s as

possible, using the same dataset pre-processing technique, same word embeddings, and the same

35

optimizer. We do this to make sure that ESSAN performs better due to architectural differences and

not the training methodology. We also perform an ablation study for the methods of creating the

final sequence representation from the output of the last self-attention layer. We demonstrate that

the attention-based approach that was proposed for ESSAN yields improvements over the averaging

method. Finally, just like we did for the previous section, we compare the performance and model

characteristics of ESSAN. Compared to DiSAN, ESSAN has half the parameters, trains twice as fast,

and uses four times less GPU memory during training.

5.2.1 SST Dataset Processing

Here we utilize all of the labels provided in SST, not just the sentence-level labels. We follow the

same methodology the DiSAN implementation 4, that is by simply treating every labeled sub-phrase

as a unique example, including sub-phrases of length 1. By doing this for the SST-fine dataset,

the dataset size jumps to 318,582 examples. The class distrubution of this dataset is as follows:

{class_1=8,245, class_2=34,362, class_3=219,788, class_4=44,194, class_5=11,993}, which is

318,582 training examples in total. There are now disproportionally more examples for class_3
because most sub-phrases are just single words and most of those are of neutral class. To balance out

the class distribution of this new dataset, we simply add the examples for other classes multiple times

by the following ratios [6, 4, 1, 4, 6]. This results in a dataset class distribution of: {class_1=44,010,

class_2=130,794, class_3=219,788, class_4=169,810, class_5=65,518}, which is 629,920 total

examples. Finally, to increase the number of longer sentences in the dataset, we also add the original

sentence-level examples 4 extra times, resulting in the final training dataset size of 672,640.

For SST-binary dataset we apply the same dataset pre-processing method. We then add examples

from the classes by multiples of [3, 2, 1, 2, 3], and the original sentence-level examples 2 extra times.

Then, the neutral class is dropped, and classes 1 and 2 as well as 4 and 5 are combined to create only

two classes, representing positive/negative sentiment. The final class distribution is: {class_1=92,367,

class_2=123,079}, which is 215,446 training examples in total.

5.2.2 Experiments

We compare the results of our ESSAN architecture to DiSAN, the previous reported SOTA self-

attention architecture on the SST-fine dataset [Shen et al., 2018a]. Just like Transformer and our

proposed architecture, DiSAN does not use any RNN and CNN components, and instead utilizes

only self-attention and feed-forward layers. The key points for this architecture are: when computing

attention for position xi it uses directional masks that distinguish which sequence positions came

before and after position xi, contains a multi-dimensional self-attention layer that performs feature-

wise attention. DiSAN achieved several SOTA results for SNLI [Bowman et al., 2015] and various

text classification datasets, including the SST-fine.

4https://github.com/taoshen58/DiSAN

36

https://github.com/taoshen58/DiSAN

For ESSAN, we mimic the training procedure of DiSAN as close as possible. Just as DiSAN,

AdaDelta(rho=0.95) is used for the optimizer. Word embeddings have a big effect on a model’s

performance, especially context-sensitive word embedding [Tai et al., 2015]. For this reason we make

sure to use the same word embeddings as DiSAN, the publicly available GloVe word embeddings 5.

The out-of-vocabulary words are initialized randomly from the uniform distribution on the interval

[-0.05 , 0.05]. Glorot initialization [Glorot and Bengio, 2010] is used for all weight matrices, and

biases are initialized to zeros.

For ESSAN we use the following hyper-parameters for training on SST-fine and SST-binary

datasets:

Dataset Layers Heads Learning Rate Dropout L2-Regularization

SST-fine 2 15 1 0.5 0.0075

SST-binary 2 20 2.5 0.4 0.0025

Table 5.5: Hyper-parameters used by ESSAN for SST-fine and SST-binary datasets.

Other ESSAN hyper-parameters that are used for both datasets are: RPR clipping of length 20,

Swish activation function [Ramachandran et al., 2017], dmodel dimension is 300, batch size is 128,

and total training steps = 100,000. The model with the best validation accuracy is chosen for each

run.

We also perform an ablation study for the attention-based method of creating the final sequence

representation vector. The ESSAN w/o AttnSeqRep is identical to ESSAN (same hyper-parameters)

except that it uses the averaging method from SSAN to create the final sequence representation

vector.

5.2.3 Results & Discussion

There is no standard way for reporting accuracy among previous works; most authors prefer to only

report the best result that they were able to achieve, but some do report mean and standard deviation

of usually 5 runs. Unfortunately this has led to some misleading citations among the publications. For

example, DiSAN [Shen et al., 2018a] reported only the top scores, with Tree-LSTM [Tai et al., 2015]

being stated to achieve 51.0%. However, in the original paper, 51% is actually the mean accuracy

reported; the top score was most likely higher than 51.5% (since the reported standard deviation is

0.5%).

For ESSAN, we report the best achieved accuracy as well as the mean and standard deviation

of 5 runs in Table 5.6. The runs are are done sequentially on the same machine, and are not chosen

5http://nlp.stanford.edu/data/glove.6B.zip

37

http://nlp.stanford.edu/data/glove.6B.zip

Model SST-fine Top SST-fine Avg SST-bin Top SST-bin Avg

MV-RNN [Socher et al., 2013] 44.4 - 82.9 -

RNTN [Socher et al., 2013] 45.7 - 85.4 -

Bi-LSTM [Li et al., 2015] - 49.9 (0.8) - 86.7 (0.5)

DCNN [Kalchbrenner et al., 2014] 48.5 - 86.8 -

Tree-LSTM [Tai et al., 2015] - 51.0 (0.5) - 88.0 (0.3)

CNN-non-static [Kim, 2014a] 48 - 87.2 -

CNN-Tensor [Lei et al., 2015] 51.2 - 88.6 -

NCSL [Teng et al., 2016] 51.1 - 89.2 -

LR-Bi-LSTM [Qian et al., 2017] 50.6 - - -

TreeBiGRU+Attn

[Kokkinos and Potamianos, 2017]
52.4 - 89.5 -

DiSAN [Shen et al., 2018a] 51.6 51.0 (0.7) - 87.8 (0.3) 6

Bi-BloSAN [Shen et al., 2018b] - 50.6 (0.5) - 87.4 (0.2)

ESSAN w/o AttnSeqRep (Ours) 51.4 50.5 (0.8) 87.9 87.0 (0.5)

ESSAN (Ours) 52.7 51.5 (0.8) 88.5 87.5 (0.6)

Table 5.6: Test accuracy of fine-grained sentiment analysis on SST datasets. The "Top" columns
contain the highest accuracy that each method reported. The "Avg" columns report mean and standard
deviation (in bracket) of 5 runs.

by us from a larger sample. The best achieved accuracy reported is from the 5 runs used for mean

and standard deviation. We believe reporting the results using this methodology reflects the true

performance of our models more accurately than reporting the best achieved accuracy from dozens

of runs.

In Table 5.6, we can see that overall ESSAN performs better than DiSAN on the SST-fine dataset

(2.0% higher average accuracy) but performs slightly worse on the SST-binary dataset(0.34% lower

average accuracy). ESSAN’s top score for SST-fine dataset is 2.53% higher than DiSANs.

The original DiSAN paper [Shen et al., 2018a] does not include any results for the SST-bin

dataset; the numbers we report are from their follow-up paper [Shen et al., 2018b] that introduced

Bi-BloSAN, a more efficient SAN architecture. Note that we couldn’t reproduce the numbers for

DiSAN and SST-bin dataset as no information for dataset pre-processing or model hyper parameters

were provided in any of the papers or their open-source implementation. The high variance of ESSAN

6This results was taken from [Shen et al., 2018b], a follow-up paper to DiSAN by the same authors.

38

Model # of Parameters GPU VRAM Usage (MB)
Training
Time (s)

Inference Time
(s)

ESSAN w/o AttnSeqRep 816,660 497MB 73.7s 10.2s
ESSAN 906,060 497MB 83.9s 11.4s
DiSAN 1,806,000 2289MB 161.8s 10.3s

Table 5.7: ESSAN vs DiSAN comparison of number of learnable parameters, GPU VRAM usage (in
megabytes) during training, as well as training and inference times (in seconds).

for SST-bin dataset as well as the relatively low accuracy compared to DiSAN could be caused by

the different dataset pre-processing methodology.

Finally, we can see that ESSAN attention-based method for creating the sequence representa-

tion vector from the output of the last self-attention layer is beneficial. This method yields better

performance than the averaging method used by ESSAN w/o AttnSeqRep model; 1.98% increase for

STT-fine and 0.58% increase for SST-bin datasets.

5.2.4 Model Characteristics

Just as we did for the previous section, here we explore the efficiency and other properties of ESSAN

and DiSAN architectures. We use the same procedure: dmodel = 300, GloVe 300D embeddings,

batch_size=32, ADAM optimizer. The Training Time test is the average time it takes every model to

train on 10 epochs of the SST-fine train set (2670 batches of size 32). The Inference Time test is the

average time it takes a model to produce predictions for the validation set 10 times (344 batches of

size 32).

From Table 5.4, we can see that ESSAN has more favourable model characteristics than DiSAN.

ESSAN has half as many trainable parameters, uses 4.6x less memory during training, and has 1.92x

faster training time. The efficiency differences between ESSAN and ESSAN w/o AttnSeqRep is minor,

at around 11% increase in trainable parameters, 14% increase in training time, and 12% increase in

inference time.

The directional masks that DiSAN utilizes causes its various efficiency metrics to grow quadrati-

cally with respect to dmodel. ESSAN on the other hand, is still essentially a simplified transformer

encoder, thus has similar efficiency benefits. The authors of DiSAN did follow up with a more

efficient architecture called Bi-BloSAN that has essentially the same efficiency as Transformer [Shen

et al., 2018b]. However, we can see in Table 5.6 that increase in efficiency comes at a significant

accuracy decrease, further expanding the accuracy gap between ESSAN for the SST-fine dataset.

39

Chapter 6

Time-Series Regression

In this section we apply our ESSAN architecture for a completely different problem, multivariate

time-series prediction. Time-series prediction is a regression problem of trying to predict a quantity

based on some input. In the case of input consisting of multiple variables, the problem is called

multivariate regression. A simple example of regression is trying to predict tomorrow’s price of a

company’s stock on some stock-market based on the closing prices for the past ten days. An example

of multivariate regression would be using not just closing prices, but also opening, high, low, and

quantity sold; thus 5 variables per day.

We show our preliminary results on one dataset, called SML2010, and demonstrate that our

ESSAN architecture achieved SOTA results for 3 different metrics, beating the previous best RNN-

based approaches. We directly compare our results to that of [Qin et al., 2017] by using their reported

results for various RNN architectures as baselines. For future work, we also plan to test ESSAN on

the second dataset from [Qin et al., 2017], called NASDAQ100. We omitted our preliminary results

for this dataset due to time constraints, and plan to finish our implementation for it as future work.

A NARX (nonlinear autoregressive exogenous) model aims to forecast the value of a target feature

at time t based on the historic values up to time t−1 as well as values for other features for up to time

t. Formally, NARX aims to learn the mapping function that computes: ŷt = F (y1, .., yt−1, x1, .., xt),

where yi ∈ R, xi ∈ Rn, and n is the number of other driving time-series features.

6.1 Dataset Description

Dataset Driving Series
Size

Train Validation Test

SML 2010 17 3,200 400 537

Table 6.1: The driving series information for number of driving series and train/validation/test splits
for the SML 2010 dataset.

40

The dataset we test on is the SML 2010 dataset [Zamora-Martínez et al., 2014], where the task is

forecasting indoor temperature. The data was collected from a monitor system mounted in a domestic

house. There is one categorical (day of the week) and 17 driving series that measure features like:

outdoor temperature, carbon dioxide levels in the rooms, room humidity, etc. The target series for

this dataset is the indoor room temperature of the house. The data was sampled every minute and

smoothed with 15 minute means, containing a total of 40 days of data, which is 4137 time steps. We

use the Train/Validation/Test splits of 3200/400/537, same as [Qin et al., 2017]. Table 6.1 summarizes

the description of this dataset.

We normalize the dataset by feature-scaling using the Min-Max method. For each feature, we

calculate the minimum and maximum values from the training set. Using these values, we normalize

the train/validation/test data splits to the range [0, 0.75]. This process for feature X is described by

the following equations:

Xmin = Minimum(TrainX) (6.1)

Xmax = Maximum(TrainX) (6.2)

X ′ = a+ (X −Xmin)(b− a)
Xmax −Xmin

(6.3)

where a=0, and b=0.75 in order to normalize in the range [0, 0.75]. For calculating the performance

metrics, we then de-normalize the output of our model X ′pred like so:

Xpred =
((X ′pred − a)(Xmax −Xmin))

b− a
+Xmin (6.4)

The metrics described in section 6.3 are calculated using the de-normalized output Xpred.

For DA-RNN, [Qin et al., 2017] normalizes each feature via standardization using the mean and

variance. For ESSAN, the standardization method at times caused worse performance as well as

made ESSAN more sensitive to hyper-parameter changes. We also tried our MinMax normalization

method for DA-RNN, but that also caused accuracy to decrease; we think it’s because they tuned

their model specifically for the standardization method. We don’t believe the different normalization

methods are a great advantage for any of the models.

6.2 Baselines

As mentioned in the introduction, the baseline results are taken directly from [Qin et al., 2017]. In

that work, they’ve created 4 baseline models that they use to compare to their DA-RNN architecture.

For baselines they tested one deterministic model called ARIMA [Asteriou and Hall, 2011], as

41

well as 3 RNN-based models: NARX RNN [Diaconescu, 2008], RNN encoder-decoder [Cho et al.,

2014b], and RNN encoder-decoder with attention [Bahdanau et al., 2014]. The current SOTA on the

SML2010 dataset is the DA-RNN architecture that was the main contribution in [Qin et al., 2017].

The ARIMA (AutoRegressive Integrated Moving Average) model is a generalization of the

ARMA model that is popular for non-stationary data [Asteriou and Hall, 2011]. This model generally

only uses the target driving series for making predictions.

Most of the RNN based approaches [Qin et al., 2017] tested have been already discussed in

chapter 2. NARX RNN [Diaconescu, 2008] is just a classic RNN encoder. The encoder-decoder [Cho

et al., 2014b] and attention RNN [Bahdanau et al., 2014] are the same architectures that were used

for NMT and discussed in section 2.4.

DA-RNN (Dual Attention RNN) [Qin et al., 2017] is an extension of the standard encoder-

decoder with attention. For this model, an input attention mechanism was introduced that filters the

input driving series for each encoder time-step. It uses the encoder hidden state at time t − 1 to

compute attention scores ai
t for each driving series feature xi

t at time t in order to compute filtered

driving series x̂i
t = ai

t × xi
t. This gives DA-RNN’s encoder the ability to filter the information from

input features for each input time step xi.

All of the encoder-decoder architectures above use the following process for feeding the input

data: the encoder is given n steps of the non-target 16 features to encode, and the decoder is fed the

n-1 steps of the target feature that is being predicted.

6.3 Experiments

Metric Equation

MAE 1
N

∑N
i=1 |targeti −Xi

pred|

MAPE 1
N

∑N
i=1 |

targeti−Xi
pred

targeti | × 100%

RMSE
√

1
N

∑N
i=1(targeti −Xi

pred)2

Table 6.2: MAE, MAPE, and RMSE metric equations.

We follow the same methodology as [Qin et al., 2017] in order to not introduce bias for our

models. We do 10 runs and report the mean and standard deviation for the mean absolute error

(MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE) metrics, for

which equations are provided in Table 6.2. MAE and RMSE are two scale-dependent metrics and

thus these values should not be compared for different datasets. MAPE on the other hand is a scale-

independent metric as it is a percentage and thus it can be used for comparing a model’s performance

on different datasets. Just like DA-RNN we use the ADAM optimizer with batch_size = 128, intake

42

10 time-steps of data, and train using the mean squared error (MSE) objective function:

MSE(Xpred, target) = 1
N

N∑
i=1

(targeti −Xi
pred)2 (6.5)

where N is the number of training samples in the batch. We test ESSAN with dmodel = 64 and 128;

the hyper-parameters used are in Table 6.3. The only thing we change is the amount of heads for

multi-head attention in order to preserve dhead. Just like DA-RNN, we also decay our learning rate

over time. Every 25000 iterations we reduce the learning rate an order of magnitude (.1). For each

run we train for 100,000 randomly sampled batches and take the model that got the lowest error cost

function value on the validation set as the best model.

The only substantial difference between ESSAN and RNN encoder-decoder based approaches

such as DA-RNN is the batch construction. ESSAN has only an encoder module, and thus all

of the features for all of the time-steps must be provided together; with the tensor shape being:

[batch_size=128, sequence_length=10, num_features=17]. However, the last time step for every

sequence cannot contain the value for the target feature which the model is trying to predict. We

simply set the value to be the same as the second last target feature value. We’ve also tried setting

this last value to arbitrary values such as 0,-5, and -99, but these approaches led to slightly worse

performance.

dmodel Layers Heads dhead L2_Reg l_rate dropout_keep
64 2 8 16 1× 10−5 0.0075 1
128 2 16 16 1× 10−5 0.0075 1

Table 6.3: Hyper-parameters used by ESSAN for SML2010 dataset.

Note that we set the dropout_keep value to 1. We’ve found that any amount of dropout on the

input features or self-attention layer lowers the performance. We hypothesize this is because of the

small dataset and because too few features are provided for input (unlike sentiment analysis where

300D embeddings were provided). Thus, we only use the l2-regularization as the primary model

regularizer.

6.4 Discussion

The time-series predictions results for all of the models discussed can be found in Table 6.4. We

report about 2% better metrics compared to the previous SOTA model, DA-RNN. This demonstrates

that our fully attention model is also good at sequence modeling for tasks other than NLP. [Qin et al.,

2017] showed that most of the performance boost for DA-RNN comes from the feature-wise input

attention that is used to filter the input features. We believe that the multi-head attention we use in

ESSAN performs a similar ‘feature filtering’ action, which would explain the on-par performance

with DA-RNN.

43

We did not formally test model efficiency and characteristics differences as we did for our work

for sentiment analysis in chapter 5. However, the number of parameters for ESSAN and DA-RNN

for Dmodel = 128 are 124,064 and 227,067 respectively. This is inline with our findings in section

5.1, and so we expect that the relationship to rest of the characteristics will be similar, with ESSAN

being faster to train and perform inference.

Models
SML2010 Dataset

MAE
(×10−2%)

MAPE
(×10−2%)

RMSE
(×10−2%)

Baselines
From

[Qin et al., 2017]

ARIMA [2011] 1.95 9.29 2.65
NARX RNN [2008] 1.79±0.07 8.64±0.29 2.34±0.08
Encoder-Decoder (64) [2014b] 2.59±0.07 12.1±0.34 3.37±0.07
Encoder-Decoder (128) [2014b] 1.91±0.02 9.00±0.10 2.52±0.04
Attenion RNN (64) [2014] 1.78±0.03 8.46±0.09 2.32±0.03
Attenion RNN (128) [2014] 1.77±0.02 8.45±0.09 2.33±0.03
DA-RNN (64) [2017] 1.53±0.01 7.31±0.05 2.02±0.01
DA-RNN (128) [2017] 1.50±0.01 7.14±0.07 1.97±0.01

Ours
ESSAN (64) 1.47±0.04 7.03±0.22 1.93±0.06
ESSAN (128) 1.48±0.05 7.06±0.28 1.95±0.08

Table 6.4: Time series prediction metric results for the SML2010 dataset. The results are mean and
standard deviation of 10 runs for the three metrics: MAE, MAPE, and RMSE. The best results for
each metric are outlined in bold. For each model(dmodel), the dimension of the encoder m and the
decoder p is set to m = p = dmodel = 64 or 128.

44

Chapter 7

Conclusion

7.1 Summary

In this thesis, we have applied various self-attention neural network architectures, some of which are

proposed by us, on sentiment analysis classification and time-series prediction regression problems.

We first demonstrated that self-attention is a better building block than recurrence and convolu-

tions by comparing our simple self-attention network (SSAN) with basic RNN LSTM and BiLSTM

architectures, as well as a simple convolutional network on six sentiment analysis datasets. We demon-

strated that our SSAN architectures performed better than other types of neural networks, all while

having more favourable model characteristics such as memory consumption and training/inference

times.

Next we proposed an extended SSAN architecture, called ESSAN, that achieved state-of-the-art

accuracy on the SST-fine dataset, beating DiSAN [Shen et al., 2018a], the previous best self-attention

architecture. Once again, we did that while having more favourable model characteristics such as

lower memory consumption, faster training/inference times, and fewer trainable parameters than

DiSAN.

Finally, we have applied our ESSAN self-attention architecture on the regression task of time-

series prediction, and showed better performance on one dataset than previous best technique, the

Dual-Attention RNN (DA-RNN) [Qin et al., 2017] architecture.

7.2 Future Work

We’ve showed evidence that self-attention networks have significant benefits over previous neural

network architectures for classification and regression tasks. However, there’s always room for

improvement and research to find better sequence modeling methods will continue most likely still

for some time.

We plan on testing our SSAN and ESSAN architectures on larger text classification datasets

such as Amazon product reviews (3.4m train, 640k test samples) [Zhang et al., 2015], IMDB movie

reviews (25k train, 25k test samples) [Maas et al., 2011], and SNLI language inference classification

45

(570k train samples) [Bowman et al., 2015]. We hypothesize that deeper (3+ SAN layers) ESSAN

architecture will be beneficial for datasets containing millions of training samples. In which case

similar to the Transformer model, modifying ESSAN to use techniques such as residual connections

[He et al., 2016] and layer normalization [Ba et al., 2016] might also be beneficial to help stabilize

the training.

We plan to try other methods of creating the final fixed sequence representation vector. Thus far

we have done averaging for SSAN and attention method for ESSAN. We plan to try other methods

such as max-pooling, feature-level attention such as done by DiSAN, and multi-head attention.

We are also interested in investigating which neural network architecture is better at handling

redundant or unimportant features. One of the benefits of DA-RNN and DiSAN is that their attention

mechanisms have the ability to perform attention at the feature level. It would be interesting to see

how the mentioned models, multi-head attention, as well as RNN and CNN mechanisms perform on

such data. We’ve created a big dataset of 259 features, derived from daily stock market price and

volume data. Most of the features in this dataset are technical indicators, such as moving averages,

constructed solely from daily Open, High, Low, Close and Volume features. Many of the features are

variations of the same technical indicator, thus there is high correlation between various features. In

the future, we plan to apply the mentioned models on this dataset to study how each model deals

with large amounts of highly correlated driving series.

Finally, due to the highly customizable nature of self-attention networks, we plan to continue

the search for the best architecture for sequence modeling tasks. We believe that SOTA results can

be achieved on many current datasets by simply finding appropriate combinations of the following

components and hyper-parameters: optimizer, dropout rates and locations, L2-regularization rate,

activation function, residual connections, layer normalization, learning rate and decay methods,

number of self-attention layers, number of heads used for multi-head attention, where to apply

feed-forward or projection layers and how deep they should be, etc. For further improvement, we also

plan to try ensembling methods for neural network methods, such as these: Checkpoint Ensembling

[Chen et al., 2017], Snapshot Ensembling [Huang et al., 2017], Fast Geometric Ensembling [Garipov

et al., 2018], Stochastic Weight Averaging [Izmailov et al., 2018].

46

References

Rodrigo Agerri, Montse Cuadros, Seán Gaines, and German Rigau. Opener: Open polar-
ity enhanced named entity recognition. Procesamiento del Lenguaje Natural, 51(0):215–
218, 2013. ISSN 1989-7553. URL http://journal.sepln.org/sepln/ojs/ojs/
index.php/pln/article/view/4891.

Artaches Ambartsoumian and Fred Popowich. Self-attention: A better building block for sentiment
analysis neural network classifiers. In Proceedings of the 9th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Media Analysis, Brussels, Belgium, November
2018. Association for Computational Linguistics.

Dimitros Asteriou and Stephen G Hall. Arima models and the box-jenkins methodology. Applied
Econometrics, 2(2):265–286, 2011.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv:1409.0473, 2014.

Jeremy Barnes, Roman Klinger, and Sabine Schulte im Walde. Assessing state-of-the-art sentiment
models on state-of-the-art sentiment datasets. In Proceedings of the 8th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and Social Media Analysis, Copenhagen, Denmark,
2017.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 2015.

Kanad Chakraborty, Kishan Mehrotra, Chilukuri K Mohan, and Sanjay Ranka. Forecasting the
behavior of multivariate time series using neural networks. Neural networks, 5(6):961–970,
1992.

Hugh Chen, Scott Lundberg, and Su-In Lee. Checkpoint ensembles: Ensemble methods from a
single training process. arXiv preprint arXiv:1710.03282, 2017.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machine
reading. CoRR, abs/1601.06733, 2016a. URL http://arxiv.org/abs/1601.06733.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machine
reading. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 551–561, Austin, Texas, November 2016b. Association for Computational
Linguistics. URL https://aclweb.org/anthology/D16-1053.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical

47

http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/4891
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/4891
http://arxiv.org/abs/1601.06733
https://aclweb.org/anthology/D16-1053

Methods in Natural Language Processing (EMNLP), pages 1724–1734. Association for Compu-
tational Linguistics, 2014a. doi: 10.3115/v1/D14-1179. URL http://www.aclweb.org/
anthology/D14-1179.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv:1406.1078, 2014b.

François Chollet et al. Keras. https://keras.io, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Michał Daniluk, Tim Rocktäschel, Johannes Welbl, and Sebastian Riedel. Frustratingly short
attention spans in neural language modeling. arXiv preprint arXiv:1702.04521, 2017.

Eugen Diaconescu. The use of NARX neural networks to predict chaotic time series. WSEA
Transactions on Computer Research, 3(3), 2008.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew Gordon Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. arXiv preprint arXiv:1802.10026,
2018.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256, 2010.

Felix Greaves, Daniel Ramirez-Cano, Christopher Millett, Ara Darzi, and Liam Donaldson. Harness-
ing the cloud of patient experience: using social media to detect poor quality healthcare. BMJ
Qual Saf, 22(3):251–255, 2013a.

Felix Greaves, Daniel Ramirez-Cano, Christopher Millett, Ara Darzi, and Liam Donaldson. Use
of sentiment analysis for capturing patient experience from free-text comments posted online.
Journal of medical Internet research, 15(11), 2013b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Marti A. Hearst. Support vector machines. IEEE Intelligent Systems, 13(4):18–28, July 1998. ISSN
1541-1672. doi: 10.1109/5254.708428. URL http://dx.doi.org/10.1109/5254.
708428.

Sepp Hochreiter. Gradient flow in recurrent nets : the difficulty of learning long-term dependencies.
A Field Guide to Dynamical Recurrent Neural Networks, pages 237–244, 2001. URL https:
//ci.nii.ac.jp/naid/10025777304/en/.

48

http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
https://keras.io
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.1109/5254.708428
https://ci.nii.ac.jp/naid/10025777304/en/
https://ci.nii.ac.jp/naid/10025777304/en/

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Bernard J Jansen, Mimi Zhang, Kate Sobel, and Abdur Chowdury. Twitter power: Tweets as elec-
tronic word of mouth. Journal of the American society for information science and technology,
60(11):2169–2188, 2009.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 655–665, Baltimore, Maryland, June 2014. As-
sociation for Computational Linguistics. URL http://www.aclweb.org/anthology/
P14-1062.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aäron van den Oord, Alex Graves, and Koray
Kavukcuoglu. Neural machine translation in linear time. CoRR, abs/1610.10099, 2016. URL
http://arxiv.org/abs/1610.10099.

Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks, May 2015. URL
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1746–1751, Doha, Qatar, October 2014a. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D14-1181.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–
1751. Association for Computational Linguistics, 2014b. doi: 10.3115/v1/D14-1181. URL
http://www.aclweb.org/anthology/D14-1181.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions of the Association for Computational Linguistics,
4:313–327, 2016. ISSN 2307-387X. URL https://transacl.org/ojs/index.php/
tacl/article/view/885.

Filippos Kokkinos and Alexandros Potamianos. Structural attention neural networks for improved
sentiment analysis. arXiv preprint arXiv:1701.01811, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

49

http://www.aclweb.org/anthology/P14-1062
http://www.aclweb.org/anthology/P14-1062
http://arxiv.org/abs/1610.10099
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.aclweb.org/anthology/D14-1181
http://www.aclweb.org/anthology/D14-1181
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Molding cnns for text: non-linear, non-consecutive
convolutions. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1565–1575. Association for Computational Linguistics, 2015. doi: 10.18653/
v1/D15-1180. URL http://www.aclweb.org/anthology/D15-1180.

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard Hovy. When are tree structures necessary for deep
learning of representations? In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 2304–2314. Association for Computational Linguistics,
2015. doi: 10.18653/v1/D15-1278. URL http://www.aclweb.org/anthology/D15-
1278.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130, 2017.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and
Noam Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint
arXiv:1801.10198, 2018.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-image co-attention for
visual question answering. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 289–297. Curran As-
sociates, Inc., 2016. URL http://papers.nips.cc/paper/6202-hierarchical-
question-image-co-attention-for-visual-question-answering.pdf.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pages 142–
150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P11-1015.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Mika V. Mäntylä, Daniel Graziotin, and Miikka Kuutila. The evolution of sentiment analysis—a
review of research topics, venues, and top cited papers. Computer Science Review, 27:16 –
32, 2018. ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2017.10.002. URL http:
//www.sciencedirect.com/science/article/pii/S1574013717300606.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages
807–814, 2010.

50

http://www.aclweb.org/anthology/D15-1180
http://www.aclweb.org/anthology/D15-1278
http://www.aclweb.org/anthology/D15-1278
http://papers.nips.cc/paper/6202-hierarchical-question-image-co-attention-for-visual-question-answering.pdf
http://papers.nips.cc/paper/6202-hierarchical-question-image-co-attention-for-visual-question-answering.pdf
http://www.aclweb.org/anthology/P11-1015
http://www.sciencedirect.com/science/article/pii/S1574013717300606
http://www.sciencedirect.com/science/article/pii/S1574013717300606

Preslav Nakov, Zornitsa Kozareva, Alan Ritter, Sara Rosenthal, Veselin Stoyanov, and Theresa
Wilson. Semeval-2013 task 2: Sentiment analysis in twitter, 2013.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. Ab-
stractive text summarization using sequence-to-sequence rnns and beyond. In Proceed-
ings of The 20th SIGNLL Conference on Computational Natural Language Learning, pages
280–290, Berlin, Germany, August 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/K16-1028.

Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2(1-2):
1–135, January 2008. ISSN 1554-0669. doi: 10.1561/1500000011. URL http://dx.doi.
org/10.1561/1500000011.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, and Alexander Ku.
Image transformer. arXiv preprint arXiv:1802.05751, 2018.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, pages 1310–1318, 2013.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–
1543, 2014. URL http://www.aclweb.org/anthology/D14-1162.

Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and auxiliary loss. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 412–418, Berlin, Germany, August 2016. Association for Computational Linguistics. URL
http://anthology.aclweb.org/P16-2067.

Daniel Povey, Hossein Hadian, Pegah Ghahremani, Ke Li, and Sanjeev Khudanpur. A time-restricted
self-attention layer for asr. 2017.

Qiao Qian, Minlie Huang, Jinhao Lei, and Xiaoyan Zhu. Linguistically regularized lstm for sentiment
classification. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1679–1689, Vancouver, Canada, July 2017. As-
sociation for Computational Linguistics. URL http://aclweb.org/anthology/P17-
1154.

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison W. Cottrell. A
dual-stage attention-based recurrent neural network for time series prediction. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages
2627–2633, 2017. doi: 10.24963/ijcai.2017/366. URL https://doi.org/10.24963/
ijcai.2017/366.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. CoRR,
abs/1710.05941, 2017. URL http://arxiv.org/abs/1710.05941.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(9):533–536, 1986.

51

http://www.aclweb.org/anthology/K16-1028
http://dx.doi.org/10.1561/1500000011
http://dx.doi.org/10.1561/1500000011
http://www.aclweb.org/anthology/D14-1162
http://anthology.aclweb.org/P16-2067
http://aclweb.org/anthology/P17-1154
http://aclweb.org/anthology/P17-1154
https://doi.org/10.24963/ijcai.2017/366
https://doi.org/10.24963/ijcai.2017/366
http://arxiv.org/abs/1710.05941

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. In EMNLP, 2015.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, 1997.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages
464–468, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N18-2074.

T. Shen, T. Zhou, G. Long, J. Jiang, and C. Zhang. Fast Directional Self-Attention Mechanism.
ArXiv e-prints, May 2018.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang. Disan: Direc-
tional self-attention network for rnn/cnn-free language understanding. In AAAI Conference on
Artificial Intelligence, 2018a.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. Bi-directional block
self-attention for fast and memory-efficient sequence modeling. CoRR, abs/1804.00857, 2018b.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642, 2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. Linguistically-
informed self-attention for semantic role labeling. CoRR, abs/1804.08199, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural net-
works. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 3104–3112. Curran As-
sociates, Inc., 2014. URL http://papers.nips.cc/paper/5346-sequence-to-
sequence-learning-with-neural-networks.pdf.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Zhiyang Teng, Duy Tin Vo, and Yue Zhang. Context-sensitive lexicon features for neural sentiment
analysis. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 1629–1638, Austin, Texas, November 2016. Association for Computational
Linguistics. URL https://aclweb.org/anthology/D16-1169.

52

http://www.aclweb.org/anthology/N18-2074
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://aclweb.org/anthology/D16-1169

Peter D Turney. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classifi-
cation of reviews. In Proceedings of the 40th annual meeting on association for computational
linguistics, pages 417–424. Association for Computational Linguistics, 2002.

Olga Uryupina, Barbara Plank, Aliaksei Severyn, Agata Rotondi, and Alessandro Moschitti. Sentube:
A corpus for sentiment analysis on youtube social media. In Proceedings of the Ninth Inter-
national Conference on Language Resources and Evaluation. European Language Resources
Association, 2014.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint arXiv:1506.05869, 2015.

Xingyou Wang, Weijie Jiang, and Zhiyong Luo. Combination of convolutional and recurrent neural
network for sentiment analysis of short texts. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers, pages 2428–2437,
2016.

Andreas S Weigend. Time series prediction: forecasting the future and understanding the past.
Routledge, 2018.

Paul J Werbos. Generalization of backpropagation with application to a recurrent gas market model.
Neural networks, 1(4):339–356, 1988.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Ronald J Williams and David Zipser. Gradient-based learning algorithms for recurrent networks and
their computational complexity. Backpropagation: Theory, architectures, and applications, 1:
433–486.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep learning
based natural language processing. arXiv preprint arXiv:1708.02709, 2017.

Fransisco Zamora-Martínez, Pablo Romeu, Pablo Botella-Rocamora, and Juan Pardo. On-line
learning of indoor temperature forecasting models towards energy efficiency. Energy and
Buildings, 83:162–172, 2014.

53

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in neural information processing systems, pages 649–657, 2015.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo Xu. Text classification
improved by integrating bidirectional lstm with two-dimensional max pooling. In Proceedings
of COLING 2016, the 26th International Conference on Computational Linguistics: Technical
Papers, pages 3485–3495, Osaka, Japan, December 2016. The COLING 2016 Organizing
Committee. URL http://aclweb.org/anthology/C16-1329.

Yi Zhou, Junying Zhou, Lu Liu, Jiangtao Feng, Haoyuan Peng, and Xiaoqing Zheng. Rnn-based
sequence-preserved attention for dependency parsing. 2018. URL https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/17176.

54

http://aclweb.org/anthology/C16-1329
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17176
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17176

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Contribution
	Overview

	Background
	Neural Networks Fundamentals
	Feed Forward Neural Networks
	Recurrent Neural Networks, Gated Cells, Bidirectional RNN
	Encoder-Decoder Architecture, Attention Mechanism
	CNNs as Alternatives to RNNs

	Self-Attention Networks
	Self-Attention Mechanism
	Transformer Architecture
	Motivation
	Architecture

	Position Information Techniques

	Proposed Architectures & Implementation Details
	Simple Self-Attention Network (SSAN)
	Extended SSAN (ESSAN)
	Masking

	Sentiment Analysis
	Comparison of Building Blocks: SAN vs RNN vs CNN
	Experiments
	Datasets Used
	Pre-Trained Word Embeddings
	Baselines Descriptions
	Self-Attention Architectures
	Analysis
	Model Characteristics
	Discussion

	SOTA Approach for SST Datasets
	SST Dataset Processing
	Experiments
	Results & Discussion
	Model Characteristics

	Time-Series Regression
	Dataset Description
	Baselines
	Experiments
	Discussion

	Conclusion
	Summary
	Future Work

	Bibliography

