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Abstract 

This thesis focuses on the development of a multi-functional capacitive proximity 

sensor to improve the worker safety during the industrial human-robot interactions. The 

sensor is to be mounted on the worker and used to maintain a safe distance between the 

worker and robot or the parts moved by the robot. The response of a capacitive proximity 

sensor is a function of the actual distance as well as the geometry of the approaching 

object. This uncertainty can lead to a wrong estimation of distance or possibly a missed 

detection. The proposed sensing system in this work aims to solve this issue. 

Three sensing capabilities, namely distance measurement, surface profile 

recognition, and parallel motion tracking are implemented in a single platform. These 

capabilities are achieved by a capacitive sensing element coupled to reprogrammable 

interface electronics. The sensing element features a 4×4 matrix of electrodes that can be 

reconfigured to different arrangements at run-time to obtain information on the desired 

parameters of interest (i.e., distance, shape, and trajectory). The control modules are 

mapped on a field programmable gate array while the capacitance generated by each 

configuration of electrodes is measured and quantized by a capacitance-to-digital chipset. 

Digital filters are used to pre-process the raw capacitive data in order to compensate for 

random walk and environmental interferences such as temperature and humidity 

variations. Statistical learning methodologies are applied to classify objects and calculate 

distance values. Quantitative regression models are built to seek out distance values while 

classification tools including K nearest neighbors, neural network, and support vector 

machine are employed to recognize the surface profiles.  

The performance of the sensing modalities is experimentally assessed with lab 

equipment as well as on an industrial robot. The system can detect objects and classify 

their geometries at distances up to about 20 cm with high accuracy. Three different surface 

profiles can be recognized by all the classifiers. Recognizing the shape of the object 

improved the regression models and reduced the close-distance measurement error by a 

factor of five compared to methods that did not take the geometry into account. The 

capability of tracking the parallel motion is demonstrated by combining the capacitive 

responses from different electrode connection configurations. The breakthroughs made 

through this work will make capacitive sensing a viable low-cost alternative to existing 

technologies for proximity detection in robotics and other fields. 
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Chapter 1.  
 
Introduction  

1.1.  Background 

Robots are used in increasing numbers in the workspace and in society in general. 

From the industrial perspective, specialized robots are critical components in a variety of 

fully automated manufacturing processes due to their high strength, high positional 

precision, repeatability, and durability. According to the statistics of industrial robot 

installation from International Federation of Robotics (IFR): the demand for industrial 

robots has accelerated considerably due to the ongoing trend toward automation and 

continued innovative technical improvements in industrial robots since 2010 [1]. In 2016, 

robot sales increased by 16% to 294,312 units, a new peak for the fourth year in a row. 

However, the author in [2] provides a comprehensive overview of emerging technologies 

in automotive assembly. Their results show that mass customization with the smaller lot 

sizes of the products requires high technological flexibility. So that the demands for 

increased adaptability, flexibility, and reusability of a manufacturing system are rising 

continuously [3]. In spite of significant advances in the field of industrial automation, 

human intelligence is far superior in terms of reasoning, comprehension, vision, and 

ingenuity. Robots and humans present complementary features for the development of 

manufacturing process. Recently, researchers propose various designs to cope with this 

by integrating both automated and human-based manufacturing processes together. 

Therefore, a robot-assisted but human guided manufacturing shows various advantages 

compared to full automation. Thus the close cooperation of human and machine is highly 

demanded [4]. 

Combining the positive points of both manual and automated work-cells enables 

new flexible systems and opens up new application scopes. One way to realize such a 

collaboration is Human-Robot Interaction (HRI). HRI is currently a very extensive and 

diverse research and design activity in both academia and industry. It is a field dedicated 

to understanding, designing, and evaluating robotic systems that are used by or with 

humans. In general, the interaction can be separated into two categories depending on 

whether the human and the robot are in close proximity to each other: remote interaction 
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and proximate interaction [5]. The human supervisory control of robots in the performance 

of routine tasks falls to the second category, the proximate interaction that may involve 

physical interactions. There is a huge variety of robots doing industrial tasks, and the 

performed tasks include handling of parts on manufacturing assembly lines, accessing 

and delivery of packages and components in working spaces [6]. The concept of robots 

collaborating with human workers in manufacturing processes dates back to 1999 [7], the 

collaboration can reduce ergonomic concerns while improving the productivity. The hybrid 

human-machine collaboration is a hot topic in multiple industrial applications, at the same 

time, more advanced collaborations are highly required.  

1.2. Motivation 

Popular notions of robotics have long foreseen humans and robots existing side 

by side, sharing the same work, and integrating to a greater whole. Since the appearance 

of the industrial robotics, a great deal of attention has been paid to the human workers’ 

safety because these robots usually have fairly large dimensions, are heavy and operate 

at high velocities. Therefore, collisions between humans and industrial robotic 

manipulators might be extremely dangerous for humans and they must be completely 

avoided. However, data on industrial robot-related fatalities indicate that safety is not a 

solved problem, especially because the human operators are by necessity physically close 

to the mechanical arm or vehicle [8]. Until today, there exists a notable lack in the 

“partnership” between humans and robotic manipulators: the machine “intelligence” is 

quite limited or even unavailable to enable a proper “co-operation” [9]. 

Robots are generally set up for an operation by the teach-and-repeat technique. 

In this mode, the trained programmer typically uses a control device to teach a robot its 

tasks manually. The study carried out in [10] indicates that many robot accidents do not 

occur under normal operating conditions, but during programming, maintenance, repair, 

testing, refinement, setup, or adjustment period. During these scenarios, human workers 

may temporarily be within the robot’s working envelope as shown in Figure 1.1 (a) where 

unintended operations might result in injuries. In the same study, the typical robotic 

accidents can be categorized into four groups: Impact or collision accidents that represent 

unpredicted movements or component malfunctions that result in physical contact 

accidents. Crushing and tapping accidents that an individual can be trapped or be 
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physically driven into and crushed by the equipment. Mechanical accidents meaning the 

breakdown of the robot or its components. And finally other potential accidents.  

 

                            (a)                                                                     (b) 

Figure 1.1. (a) Hazard happens when a human worker is within a robot’s working 
envelop. (b). Breakdown of 32 robotic accidents by types of injury 
[12]. 

The hazards of the robot to human can be expected with several variations include 

human errors, control errors, unauthorized accesses, mechanical failures, environmental 

sources, improper installations and issues in power systems. In fact, workers who are 

operating and maintaining automated machinery are at high risk of serious injuries. US 

statistics suggest that every year, there are more than 18,000 amputations are attributable 

to such close human-robot interactions [11]. A comprehensive report presented in [12] 

analyzed 32 accidents and provided an understanding of the most common reasons for 

the injuries. Pinch injury that accounts for 56% of the total injuries occurs when a robot 

traps a worker between itself and an object. Whereas impact injuries happen when a robot 

and a worker collide account for the rest 44% of the injuries. Moreover, this report revealed 

the most frequently injured human body parts as shown in Figure 1.1 (b). It is observed 

that fingers are subject to injuries the most in 36.3% of the reported accidents, followed 

by the hands that account for 21.2%. This directly corresponds to the way a person works 

in the proximity to a robot.  

Most of the early techniques to the safety problems are based on isolating the 

robots and the humans with physical barriers [13] which stop the robot immediately when 

crosses by a human. However, the segregation paradigm limits the flexibility of the tasks. 

In fact, this kind of solutions fails in cases where the human and the robot have to share 

the physical environment and the successful completion of a task depends on the 
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collaboration. These drawbacks have triggered the development of new safety standards 

that permit the coexistence of humans and robots in the same workspace under certain 

circumstances. The first solid step toward ensuring the safety of human workers in human-

robot interaction systems is proposed in the standard ISO 10218-1 and ISO 10218-2 [14] 

which were published in 2011. These documents provide supplemental and supporting 

information to the industrial robot safety standards. A new ISO 15066 [15] technical 

specification for collaborative robot system safety pushes the boundary of safe distance 

limits and allows people and robots working more closely together. These standardization 

efforts demonstrate the increasing interest of industries in human-robot collaboration. 

Plenty of approaches have been developed in previous research in order to 

implement safety in human-robot interaction systems. Up to now, collision detection and 

motion re-planning represent the best choice in collaborative workspaces to guarantee the 

safety. Collision avoidance is basically a set of procedures for rearranging the robot motion 

in the presence of dynamic obstacles, especially humans. Such procedures, therefore, 

involve both environmental monitoring and the control of the robot motion. More 

specifically, pre-collision planners employ sensing systems to monitor the adjacent area, 

and trigger the power brake of the robotic manipulators or modify their trajectories 

depending on the presence and features of the approaching object. 

In such an articulated scenario, our research narrows down to focus on how to 

safely monitor and track the position and movement of humans within a collaboration 

workspace. The aim of our proposed project is to develop a multi-functional capacitive 

proximity sensory system, to improve the safety of human-robot interactions in the 

automotive manufacturing environment. More specifically, characteristics ranging from 

reconstructing the surface profile of an approaching object to tracking the movement of a 

human worker are intended to be achieved in the single sensing system. In this way, the 

ambiguities of the approaching object can be reduced that a wrong distance estimation or 

possibly a missed detection can be eliminated. Ultimately, it is intended to integrate the 

sensor into worker garment along with the sensor that monitors the loads on worker 

bodies. 
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1.3. Organization of the thesis 

This thesis is divided into six chapters. Chapter 2 reviews the related work in the 

literature on approaches to human-robot interaction safety. An overview of principle 

properties of proximity sensors that are the critical components of the safety approaches 

is provided, followed by a detailed discussion of the capacitive-based proximity sensors. 

Recent works for pattern recognition are also presented. 

In Chapter 3, the theoretical basis on the electric field sensing is described. The 

proposed sensor structure is modeled with Finite Element methods (FEM). The design 

concerns and simulation results are provided, as well as a detailed explanation of the 

sensor’s working mode. 

Chapter 4 presents the involved data processing procedure to extract desired 

information from the sensing responses. The sensory system is described. Followed by 

the discussion of suitable statistical methodologies for each data processing stage 

including raw data pre-processing, distance estimation, and surface profile recognition.  

Chapter 5 details the final hardware implementation and the performance 

estimation. The experimental setups are described and the multiple sensing capabilities 

are experimentally assessed. The testing results, as well as the performance of the 

statistical learning methods, are provided.  

The final chapter overviews the main contributions of the thesis and provides 

concluding remarks about the proposed sensing system. Directions for future work are 

also outlined. 
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Chapter 2.  
 
Literature review  

This chapter overviews the existing works in solving the human-robot interaction 

safety issues. To begin, Section 2.1 reviews broadly the current strategies for improving 

the safety. Then the topics of the researches are narrowed down to the specific emphasis 

of this work: the proximity sensors and the capacitive-based sensors. In addition, the 

methodologies for the proposed sensing modalities are investigated. 

2.1. Human-robot interaction safety 

 

Figure 2.1. Classification of undesired contact scenarios during human-robot 
interaction [17]. 

Physical human-robot interaction and cooperation has become a topic of 

increasing importance and of major focus in the field of robotics. The primary requirement 

of the robot is it must in no case pose a threat to the human. However, over the years 

there have been many robot-related accidents, including fatal [16]. Management of risks 

for a human-robot shared working space involves in general very broad considerations. 

The five relevant physical contact scenarios that could potentially lead to human injury are 

summarized in [17]. They are differentiated to unconstrained impacts, clamping in the 

robot structure, constrained impacts, partially constrained impacts, and resulting 
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secondary impacts as depicted in Figure 2.1. During each of the collisions, various injury 

sources may be present, including fast blunt impacts, dynamic and quasi-static clamping, 

or cuts by sharp tools. 

In this line of research, a vast amount of solutions for realizing safe collaborative 

tasks have been explored in recent decades. As mentioned above, industrial safety 

standards focus on ensuring safety by isolating the humans from the robots so that are 

not directly applicable to human-robot interaction applications. The coexistence of robotic 

systems and humans in the same physical domain poses the fundamental problem of 

ensuring the safety for the users and the robots. One common method for achieving safety 

during human-robot interaction is through low-level control of robot motion [18]. Control 

methods for improving the safety are divisible into two main classes: pre-collision and 

post-collision. In this context, “collisions” are not limited to blunt impacts, but can also 

include any harmful forms of contacts. Pre-collision approaches are implemented before 

a physical collision occurs, either by preventing the contact from happening in the first 

place or by bounding the robot’s velocity or energy. On the contrary, if unpredicted 

contacts occur, post-collision control methods should be able to quickly detect the collision 

and minimize the harm to the human operator as well as the robot. 

Pre-collision control methods can also be referred as “prevention” methods, are 

techniques intended to ensure safety by monitoring the human, or the robot, or both so 

that the trajectory of the robot can be modified prior to incidence of collision. One common 

subset of the pre-collision approach is to set quantitative limitations to a robot so that it 

cannot pose any threat to a human even in the case of a physical collision. This can be 

achieved by effectively limiting the velocity of the robot: The relationship among impact 

mass, velocity, geometry, and medical observable soft-tissue injury is investigated by 

Haddadin et al. in [19]. Safety curves are developed for representing “safe” robot speed 

for a given configuration, mass, impact geometry, and impacted human body part. This 

insight is applied to design and control the velocity of the robot such that injury due to 

human-robot impacts is explicitly into account. Another approach is about planning the 

motion trajectory so that the safety constraints are satisfied [20]. The proposed planner 

limits jerk, acceleration and velocity in Cartesian space, and can be used online to 

establish visual and force control loop and to compute new trajectories in real time. 

Another energy-based control strategy is presented in [21]: Instead of planning the 

trajectories that require complex adjustments due to the changes in the position changes 
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in the environment, this approach bounds the dangerous behavior of the robot by tracking 

and limiting the total amount of energy stored within the system. Their proposed energy 

regulation control is implemented in a series elastic actuator prototype joint and is tested 

in both accidental collision and free motion. 

Collision avoidance is an attractive broad area of research to solve the human-

robot interaction safety issue, and several promising approaches have been proposed in 

the previous work. A projection-based safety system is proposed in [22] for ensuring hard 

safety in human-robot collaboration. The current joint positions and velocities of a robot 

are used to dynamically establish a safe space around the robot and display the safety 

zone on the surface via a projector. At any time, the robot is enclosed by a minimal safety 

space and enables the worker to utilize as much workspace as possible. A commonly 

used method in the field of collision avoidance is dynamic window approach which is 

originally proposed in [23], and then be modified as the field dynamic window in [24]. This 

strategy considers the obstacles near the trajectory by using the histogram grid 

representation of obstacles to eliminate the crashing probability. An effective mean of 

safeguarding against injury is to shut the robot system off depending on the safety 

distance between the robot and the human operator. In order to enhance the safety in 

human-robot interaction in industrial environments, the active control of robot based on 

sensors’ measurements represents a viable method. Najmaei et al. introduced a dynamic 

risk assessment method [25] which considers all effective factors in a collision. A risk index 

includes the physical factors as well as the direction of eye gaze and human body 

orientation is proposed in this work. Two sensory systems are designed for measuring 

these values. The safety is finally guaranteed by using the obtained values to evaluate the 

danger and plan the robotic systems. A similar solution involves using an onboard 

distributed distance sensor is presented in [26]. The sensor’s output is used as part of a 

newly conceived control strategy, aimed at improving the safety by means of assessing 

the level of danger induced by the robot. 

Another popular approach to collision prevention via multi-level robot control 

structure is the calculation of danger criteria and fields. An early attempt is developed by 

Khatib [27], it defines a field of repulsive vectors that guide the robot’s motion trajectory in 

response to dynamically changing environmental factors. Another real-time safety system 

capable of allowing safe human-robot interaction at low distances is proposed in [28]. This 

implementation turns a standard industrial robot into a human-safe platform without 
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requiring any robot hardware modifications such as special actuators or internal force 

sensors. By leveraging known robot joint angles and utilizing accurate human localization, 

a virtual representation of the workspace can be reconstructed to calculate the separation 

distances. The obtained distance information can be used to precisely control robot speed, 

allowing for safe HRI. 

The potential field approach can also be deployed as a component of integrated 

human safety frameworks. One such framework proposed in [29] is based on a hierarchy 

of consistent behaviors. The safety coexistence is achieved with a layered approach for 

coping with undesired contacts. Based on the explicit measures of danger during the 

human-robot interaction, Kulie [30] developed another planning and control strategy. The 

level of danger they estimated were factors influencing the impact force such as the 

effective robot inertia, the relative velocity, and the distance. It is a methodology that 

integrates sensor-based information into the medium and short-term safety strategies. 

Using a variety of strategies to prevent collisions can be an effective way to protect 

the human operators during the HRI. However, depending upon the complex factors 

including the type of the robot and the assigned task, strict collision avoidance is not 

always possible. As a result, some post-collision strategies are developed to detect a 

collision as it occurs and attempt to minimize the resulting damage. 

Detecting and interpreting contacts is a crucial task in physical human-robot 

interaction. Golz et al. work towards a way to discriminate between intended and 

unintended contact types [31]. The way to achieve this goal is by deriving a set of linear 

and non-linear features based on physical contact model insights and from observing real 

impact data that relies on proprioceptive sensation only. A non-linear support vector 

machine (SVM) is used as the classifier that is capable to perform the discrimination 

online. Improvements to reduce injury in collisions can also be realized through proper 

mechanical design [32]. In their work, a boundary layer argument sliding mode controller 

is used for position control with mitigated chattering while securing reasonable positioning 

performance. The safety of both humans and robots during the collisions is improved by 

the increased joint compliance.  

To address the safety and performance issues, a collision detection and control 

system based on the variable stiffness actuation device is developed in [33]. By using a 
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feedback linearization approach, the actuation capabilities of the device can be fully 

exploited under a mild condition on stiffness pre-loading. An end-user signal-based 

approach to collision detection and reaction is presented in [34] for an industrial 

manipulator having a closed control architecture without needing for additional sensors. 

The involved signals are those available to a generic end-user through the data interface 

provided by the manufacturer: joint velocity reference, joint position, and a signal related 

to the internal motor currents. Their method is implemented and tested on a KUKA robot 

using the robot sensor interface. 

In addition to the studies on detecting collisions and designing reaction plans, 

some other researchers come up with quantitative assessment of the effectiveness of the 

post-collision strategies. One example is described in [35]. Two different collision detection 

methods and several reaction strategies are presented and validated experimentally. A 

mechanical verification platform has been built to assess and compare these 

methodologies. It has been proved that these strategies are able to reduce the contact 

lower than the level that might cause danger to humans. Another efficient safety 

improvement method that has been assessed with the DLR-III lightweight manipulator arm 

is reported in [36]. A complete treatment of the post-collision phase from collision detection 

and identification to robot reaction strategies is proposed in this study. More specifically, 

they take the directional information on contact forces provided by identification scheme 

and employ it to drive the robot away from the human operator.  

Instead of simply moving the robot away or switching control methods to minimize 

the damage, some other works focus on making the robot be able to reason about the 

human’s collaborative intent and support the operator better during the interaction. One 

framework in [37] developed a physically interactive control scheme for a manipulator 

robot arm. The indicator used to control the robot’s behaviors is the different physical touch 

forces of the human. The intent of the human is estimated by observing the changes in 

control effort. After receiving the evaluated human intent, the robot is able to update its 

position reference accordingly. They also developed a switching scheme to make the 

robot go between the modes of pure impedance control with a fixed-position reference 

and the interactive control under human intent. When the human touches disappear, the 

robot goes back to the initial fixed position. 
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In summary, a variety of control-based attempts including pre-collision and post-

collision methods for facilitating safety human-robot interaction have been carried out by 

researchers. Rach of the above-mentioned methods requires different sensors and has 

unique benefits and drawbacks. Trade-offs generally exist in these approaches: the more 

intelligent safety behaviors a robot can perform, the more complex the implementation is. 

Overall, the control-based methods have been proven experimentally to be effective for 

safe human-robot interaction.  

2.2. Proximity sensors 

As discussed in the previous section, the highlighted approaches that modify a 

robot’s trajectories based on safety zones or separation distances have shown their 

superiority in practical applications. In these techniques, nonintrusive sensors for human 

localization and distance measurement are critical for real-world deployment. 

 Undoubtedly, one of the most necessary capabilities for the robots with the aim of 

having interactions with humans in their environment is docking. Video cameras are 

broadly used to provide details to the available information for decision making. Such a 

robot control strategy using the information provided by a video camera is reported in [38]. 

A pan video camera is designed together with a visual gaze algorithm that mimics the 

ability to live insects to control their direction of gaze and enable the fixation on a specific 

part of an environment. Computer vision processing techniques have to be involved in the 

proposed system in order to recognize an object of interest. Another collision detection 

approach proposed in [39] uses multiple cameras. They test collisions based on several 

stationary, calibrated video cameras, each supervising the entire three-dimensional space 

shared by unknown and known objects. They improved the basic image method in terms 

of classifying foreground pixels, exploiting epipolar line information, considering pixel sets 

in the collision detection, and automatically updating the reference image.  

Though being widely applied, video cameras often suffer from a limited field of 

view. In a dynamic working environment, the obstacles including human operators can 

obstruct the cameras’ view. If the cameras are placed at long distances, their performance 

will be limited due to the inevitable blind spots especially considering various approach 

angles between workers and the robots. Furthermore, real-time processing of video 

signals tends to be complicated and requires additional date from other sensor sources. 
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Another approach to achieve collision avoidance is using proximity sensors to measure 

the distances between robots and humans, and the measurement results are applied as 

the guidance for robot control.  

Table 2.1. Commercially available proximity sensors 

Type Company Model  Range(cm) Price 

Laser triangulation Banner Q4X [41] 2.5 – 30 $329 

Idec MX1A/B-B [42] 5 – 13 $875 

SunX HG-C1030 [43] 2.5 – 3.5 $345 

Optical reflection 
intensity 

SunX FX-301 [44] 0 – 110 $135 

SunX FX-411 [45] 0 – 150 $146 

Banner DF-G3 [46] 0 – 300 $227 

Infrared radiation Sharp GP2Y0A02YK0F [47] 15 – 150 $14.95 

Sharp GP2Y0A21YK [48] 10 – 80 $13.95 

Grove SEB39046P [49] 10 – 80 $13.9 

Ultrosonic time of 
flight 

Parallax 28015 [50] 2 – 3 $29.99 

Sick UM30 [51] 0 – 800 $275 

Omron E4E2 [52] 0 – 50 $802 

Inductive Sick IME12 [53] 0 – 0.4 $18.9 

Panasonic GX-8MU [54] 0 – 0.2 $93 

Schneider IP69K [55] 0 – 1.5 $60.8 

Capacitive Eaton E53 [56] 0 – 3.5 $232 

Autonics CR18-8AC [57] 0 – 0.8 $83.9 

Sick CQ35 [58] 0 – 2.5 $112 

If accurate distance measurements can be made from each point on the surface 

of the human to the robot, unexpected contacts can be avoided depending on the obtained 

information. However, there are no perfect sensors and no way to provide a complete 

coverage, so the key factor becomes the balance among the detection range, the cost, 
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and the quality of the sensor data. The available proximity sensing technologies generally 

utilize one of the five physical principles of operation: intensity of reflection, triangulation, 

time of flight, capacitance, and inductance [40]. A list of commercially available proximity 

sensors [41]–[58] is provided and compared in Table 2.1. The chart is divided horizontally 

into the sensing technologies, and vertically by company name, model name, detection 

range in terms of centimeters, and the price. Some general ideas about different sensor 

categories can be observed from this chart: Sensors based on optical reflection intensity, 

infrared radiation, and ultrasonic time of flight tend to be able to achieve longer proximity 

detection ranges. In terms of measuring short distances with high accuracy, the sensors 

prices become relatively high. 

Among those different categories of proximity sensors, the optical intensity of 

reflection sensors are one of the most widely available in the number of manufactures, the 

number of models, and the ranges of operation. The fundamental principle behind them 

is to measure the intensity of light reflected off an approaching object. The emitter and 

receiver optical fiber pairs are usually used to make optical sensors in a 2-D workspace. 

Design and construction of a 32-point optical fiber proximity sensor (OFPS) array mounted 

within a 36mm diameter robot finger has been presented in [59]. It provides a reliable 

detection for applications such as pre-contact velocity reduction and non-contact contour 

following. However, the small objects and dark or highly reflective objects will cause only 

small activation of the sensor and confuse it. In addition to the 2-D approach, a 3D optical 

proximity sensing panel for sensing a single object has been successfully built by Huang 

et al. in [60] and realized satisfactory accuracy by employing LED emitter arrays and photo 

detector (PD) arrays. This kind of sensors has several notable advantages including high 

resolution, high reliability, high sensor density, large detection range, and inherently robust 

design. Relative high cost and large size is another issue which makes it only acceptable 

for specialized applications such as an end-effector ranging device in the space shuttle 

manipulator system. 

Different from optical sensors, laser diode proximity sensors employ the 

dependence of the laser output on the distance between the laser emitter and the target, 

so that the distance can be detected by monitoring the power modulation of the laser 

without any external optical components [61]. Therefore, the advantages of compact 

package and flexibility of integration with other systems make laser sensors a promising 

solution for distance and displacement measurement with millimeter-scale precision. Fang 
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et al. demonstrated a laser diode position sensor in [62] for a near-field height control 

system. It can approach the surface of a spinning disk within several wavelengths’ range 

with a high accuracy up to nanometers. Their research offers an alternative method to 

achieve high-precision distance detection and can be applied in any field where nanoscale 

accuracy is required. Another low-cost multi-point laser distance sensor, based on a 

smartphone, that primarily working outdoors has been presented in [63]. The prototype of 

their proposed sensor combines a phone with an off-the-shelf line laser module so that it 

can achieve a 6 cm accuracy at 5 meters at outdoors environment. The major limitation of 

the utilization of laser is the safety to human’s eyes. Many laser types, visible or invisible, 

are not safe to eyes and require not to stare into the beam. Moreover, dirt or other foreign 

debris on sensors will affect accuracy, so frequent cleaning is required. These eye safety 

and stain sensitivity issues are the reasons prevent laser proximity sensors from being 

wide-spread in industrial robotic systems. 

Infrared radiation (IR) itself was unknown until early 1800’s when Herschel’s 

experiment with thermometer and prism was first reported. Detectors based on infrared 

radiation have been developed rapidly in the past few decades. The majority of IR sensors 

can be classified into two broad categories: photon sensors and thermal sensors. In photo 

sensors, radiation is absorbed within the material by interaction with electrons either 

bound to lattice atoms or to impurity atoms with free electrons [64]. A near-infrared 

proximity sensor array proposed in [65] can detect the position of a moving object at a 

distance of 10cm in real time. It is achieved by integrating a polymer light-emitting diode, 

a polymer photodetector, and an inorganic phosphor together. The second group of IR 

detector is thermal detector. They operate on the simple principle that, when heated by 

incoming IR radiation, their temperature increases and this temperature change is 

measured by temperature-dependent mechanisms such as resistance and pyroelectric 

voltage. By taking the advantage of modern MEMS technology, it becomes possible to 

achieve lower noise level through thermal isolation of sensors from on-chip heat sinks, 

obviating the need for cooling of sensor chips [66]. However, both the two types have 

shortcomings: Photon sensors are limited by generation-recombination noise arose from 

photon exchanges with radiation background. Thermal detectors are fundamentally limited 

by temperature fluctuation noise arising from radiant power exchange with a radiating 

background [67]. 
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An alternative technique for proximity sensing is using ultrasonic transmitters and 

receivers. Ultrasonic sensors radiate a short ultrasonic pulse generally in the 20 kHz to 

500 kHz, and this pulse bounces off a local object and the echo is detected, often by the 

same transducer. The time elapsed between the transmission and detection of the waves 

is used to measure the path covered by ultrasonic waves, and consequently, the reflecting 

surface distance. The maximum detectable distance depends on the power of the 

ultrasonic waves, the acoustic impedance of the propagation medium, the sensitivity of 

the receiver, and the reflectivity of the target. Moreover, the characteristics, which are to 

be tailored according to the specific application, of the measuring system have an effect 

on both maximum and minimum detectable target distances [68]. A 40 kHz nominal 

frequency ultrasonic sensor was developed for the monitoring system and respiration 

signals are measured using ultrasonic attenuation characteristics in [69]. The proposed 

sensor avoided the need to apply electrodes and to wire the subject to the monitor, and 

the measurement range can be extended to around 100cm. However, this system could 

not detect enough body motion information for monitoring of a subject with thick cloth or 

covers. The complementary features of reflecting behavior for ultrasonic waves and 

infrared radiations in the air makes it possible to fuse together the information they supply. 

Determining the properties of the surface of an object with an ultrasonic sensor and 

subsequently calculating the distance by using an infrared sensor is described in [70]. 

They experimentally verified that reliable distance measurements can be achieved by 

combining the two types of sensors. 

Another family of proximity sensors is inductive proximity sensors that are useful 

for precision measurement and inspection applications due to their ability to detect at close 

range. Inductive proximity sensors produce an oscillating radio frequency (RF) field at the 

sensor face. When metallic objects are brought into this field, the oscillating field is 

interrupted and the current in the sensing coil is altered. This change is detected by the 

detector circuit. Different types and sizes of detectors have their specific sensing range 

switch point so that metal target displacement and position detection is accurate and 

repeatable. A highly sensitive inductive proximity sensor microsystem based on a flat coil 

and a new electronic interface circuit is proposed in [71]. The coil is flat and realized with 

a low-cost technology. The technology, involves a negative laminated dry-film resist mold, 

is used for electroplated parts. Fabrication processes are totally CMOS compatible. The 

obvious advantages of this design are its simplicity, versatility, high sensitivity, a sub-
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micrometric threshold even with non-ideal coils, and no need for exciting alternating 

current supply. In [72], the micro sensor was designed as multi layers of micro planar spiral 

coils which were connected through a single point contact. To get a higher signal to noise 

ratio, the absolute value of the inductance needs to be larger, because a larger inductance 

variation induced by eddy current can be expected. Spiral coil configuration has been 

selected in this work due to its larger inductance density compared to planar coil 

structures. The strengths of inductive sensors are immune to adverse environmental 

conditions, high switching rate, and long operational life with virtually unlimited operating 

cycles. However, the weaknesses are also obvious: limited sensing range, detect only 

metallic objects, and may be affected by metal chips accumulating on sensor face. 

Quite similar to inductive detectors, magnetic sensors use a DC magnetic field 

generated by a permanent magnet instead of the AC field. Hall Effect, discovered by E. F. 

Hall in 1879, happens in a conductive sheet. With a linear current flowing in one axis, a 

linear field-dependent voltage in the other axis can be measured as the magnetic field is 

induced through the sheet. A drawback of commercially available Hall Effect device is the 

large and poorly controlled offset voltage which may be compensated by the use of AC 

coupling or signal calibration strategies. 

Among the different types of available proximity sensors, the small size, low cost, 

high sensitivity, and self-test capabilities make the capacitive-based detectors appealing 

for both academic research and industrial applications. Capacitive proximity sensors 

detect the target objects by measuring either the change in dielectric constant of the 

sensing volume or electric field shielding due to the presence of a human, metallic, or non-

metallic objects. The aim of this work is developing a capacitive-based sensing system for 

the human-robot interaction in the manufacturing environment, so a review on the previous 

works on capacitive proximity sensors is provided with a separate sector as follows. 

2.3. Capacitive proximity sensing  

The capacitive-based proximity sensor is one of the most commercial and viable 

solutions for improving the safety in human-robot interaction applications. It is capable to 

detect the presence of most obstacles with large coverage and accurately measure small 

gaps with fast response [73]. Capacitive proximity sensors can be divided into two 

categories based on whether or not the obstacle forms one plate of the sensor. One uses 
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the principle of a parallel-plate capacitor; this configuration consists of a single plate on 

the sensor itself and uses the obstacle to be measured as the second capacitor plate as 

shown in Figure 2.2 (a). Despite its simplicity, this parallel-plate type exhibits three major 

drawbacks: the object being measured has to be a conductor; the inverse distance-

capacitance relationship is highly nonlinear as depicted in Figure 2.2 (b); it is impossible 

to use this kind of sensors in applications when one part is inaccessible [74]. The other 

type of structure that based on fringe effects as shown in Figure 2.2 (c) has also been 

constantly studied. The first capacitive sensor of the second type was proposed by 

Noltingk in [75] at 1969. Two sensing structures were constructed, with one having two 

rectangular electrodes and one grounded metal screen in between, and the other having 

a circularly symmetrical system which made the sensor more robust. The achieved 

approximate linear ranges were provided: up to 24mm with the rectangular structure and 

6mm with the circular structure. However, there was no analytical formula for the 

optimization process at that time.  

 

Figure 2.2. Two types of the capacitive-based proximity sensors. (a) Parallel-
plate capacitor. (b) Typical response of the parallel-plate type of 
sensor. (c) Fringing effect capacitor. (d) Typical response with 
fringing effect sensor. 
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The capacitive proximity sensor used for safety applications should have long 

detection range and fast response in order to secure enough response time before 

colliding with ambient objects. The electrode field is used in [76] to provide a sense of 

“pre-touch”, with the range intermediate between vision and contact-based touch sensing. 

Then, a series of increasingly complex manipulators incorporating the capacitive sensor 

is presented in this work: The initial experiment is about simply avoiding a dynamic object. 

Next, a 1-D alignment task for grasping is described. Finally, the sensor is built into the 

fingers and the wrist of a manipulator so that these parts can be rotated. Their work is 

mainly about an effective pre-touch-based grasping. A similar work is presented in [77], a 

grasping system that is guided at short range by a capacitive proximity sensor. Multiple 

sensors are involved so that two different tasks can be achieved: The capability of 

performing human-to-robot and robot-to-human handoffs, including the use of the 

capacitive sensor to detect whether or not the human is also touching the object that the 

robot is holding. The ability to pick up standalone objects. 

Capacitive sensing approaches are widely applied for indoor localization, in which 

embedding large loading mode electrodes underneath floor tiles to determine where the 

user is standing is commonly required. A flexible and integrated capacitive sensing system 

that allows the detection of the presence of a human over distance is developed in [78] for 

indoor localization as well as fall detection. Their proposed system is based on sensing 

mats that can be placed under various types of floor covering. The mats can wirelessly 

transmit data to a central platform. However, this method is not viable for large empty 

spaces due to a limited maximum mat size and the fact that the sensor has to be placed 

at the border. One further step is taken by Sousa et al. [79], in which a method for user 

tracking and localization based on textile capacitive sensor arrays placed under the floor 

is introduced. A grid of capacitive sensor plates are placed under the floor for detecting 

and a small user-bound device equipped with an accelerometer is used for user 

identification.  

Alternatively, some passive capacitive sensing systems are designed for the 

application of estimating the human’s location. Platypus, proposed in [80], is the first 

system to localize and identify people remotely and passively. The sensing principle based 

on the body electric potential is changing naturally during walking and when interacting 

with the environment. The working procedure of the proposed system includes observing 

the ambient electric field to localize a person, reconstructing the body electric potential 
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change, and extracting a signature for identification. Dynamic time warping (DTW) is 

applied for classification, with the localization of events as time series. One limitation 

located in this work is that personal-specific model training is required and identification of 

user depends on wearing the same footwear. Another passive measurement of static 

electric field is presented earlier in [81] to infer the amount and type of body motion, 

gesture, and activity. The name of their approach is “Mirage”, and it uses non-body contact 

technique leveraging human-generated body charge. Human body introduces electric field 

distortions when performing motions and the electric field is measured through an 

electrode placed at a distance from the subject for extracting desired information.  

Capacitive sensors can also be used to infer a human’s pose often operate on the 

similar principles as the above-mentioned indoor localization systems. The active 

transmitting mode sensing is used in [82] for an unobtrusive recognition of human’s height 

and posture. The measurement method is based on the capacitive coupling of low-

frequency signals and a setup that is used to measure the capacitance between the 

human body and a hidden floor electrode. The system measures the distance from the 

floor to the tallest point of the body which generally is at the crown of the head to obtain 

the height information in pervasive and context-aware applications. On the contrary, the 

loading mode sensing technique is applied in [83] to achieve similar goals. The application 

of their proposed capacitive proximity sensor is using the whole expressivity of human 

body motion for interacting with intelligent environments.  

Wearable systems usually offer a more specialized way of recognizing postures or 

motions. Conductive textile patches can be used to measure the capacitance of the human 

body and can be used to reveal information about a broad range of activities. A flexible, 

textile capacitive sensor proposed in [84] can provide information that is complementary 

to motion sensors. Instead of measuring the electric field generated by human beings, 

active capacitive sensing is used in this work to generate the electric field and to measure 

the capacitance of the human body underneath the electrodes. Their designed sensor can 

be integrated into soft wristband, neckband, and socket to provide detailed information on 

complex user activities. A flexible capacitance type sensor that can detect an approaching 

human without contact is designed in [85] for the applications of maintaining and 

promoting health. Thin film can support impact-resistant and high from factor devices, it 

can be attached to a wide range of objects including wall, floor, carpet, bed, etc., such that 

they are unnoticeable. In their proposed work, the sensing electrodes are arranged at the 
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top and bottom surfaces of a polyethylene terephthalate film with simple duplex printing 

technique.  

Capacitive proximity sensing can be extended beyond surface interactions. It has 

been explored for 3D gesture interaction since the mid-1990s [86]. Most gesture 

recognition systems involve the usage of the shunt sensing mode which is able to provide 

more geometrical information per electrode than using other sensing modes. Early 

attempts include the compact Field Mice [87] and Lazy Fish [88] platform. The former 

approach measures the value of a component in an effective circuit diagram that 

summarizes all possible current pathways involving the body to be sensed and the sensing 

electrodes. An analytical model of the sensor response and a probabilistic framework are 

presented for inferring the geometrical information. The latter attempt of inferring 3D 

geometrical information is achieved by multiplexing the transmitters and receivers so that 

multiple “projections” can be measured. This platform was then evolved into the modular 

School-of-Fish [89] platform. 

More recent work investigated generic proximity sensing systems that sense 3D 

information to control other devices including computers, vehicles, automation systems, 

etc. One example is a multi-purpose capacitive proximity sensor input device [90] that 

allows modeling of devices based on advanced sensor units that involves data processing. 

A hand-tracking prototype based on an array of capacitive proximity sensors is modeled, 

and a method to integrate the complex pre-processing procedures is developed in this 

work. Towards interactive car interiors, the active armrest is developed in [91] in which a 

regular car armrest is equipped with a capacitive proximity sensor that combines limb 

detection and gesture recognition together. The sensor is designed for invisible integration 

into existing environments and can be used to create interactive surfaces in a car. In terms 

of interaction systems that are not directly apparent, a capacitive gesture recognition 

system “Rainbowfish” is developed in [92]. It combines a semi-transparent capacitive 

sensing surface with an LED array which is used to visually indicate possible gestural 

movements and provide feedback on the current interaction status. 

After a comprehensive review of the previous and ongoing research on capacitive 

proximity (electric field) sensing technology, it is notable that capacitive-based sensors 

have been widely used in a broad range of applications. Capacitive sensing has some 

unique features that provide benefits in particular applications: The generated electric field 
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propagates through any non-conductive material; the electrode plates can be integrated 

to various object unobtrusively; the energy consumption is small; they have a high 

versatility that is achieved by modifying the electrode’s geometry and electrical 

parameters.  

However, the design challenges for this type of sensors are also obvious. One of 

the largest technical obstacles to its development is the response of a capacitive sensor 

is a nonlinear function of the input such that extracting useful information from 

measurements is a difficult computational problem. Moreover, noise that adds random 

unwanted parts to the capacitive responses is a property of any capacitive sensing 

system. Environmental factors and drifts that subject to changes over time have a strong 

influence on the signals. Lastly, the inherent ambiguity of sensor readings is a prevalent 

problem to infer high-level information from raw measured data. More specifically, in terms 

of distance estimation, a small object that is close to the sensor most likely results in the 

same reading as an object with larger size but at an increased distance. In our design, we 

will take advantages of the above-mentioned merits of capacitive sensors, consider these 

issues thoroughly, and finally provide our solutions. 

2.4. Continuous tracking and classification methodologies 

Capacitive sensing inherently involves inferring information from measured data, 

either continuous (e.g. for estimating the human’s position), or discrete (e.g. for gesture 

recognition). 

Models that determine continuous properties are often physically motivated. Many 

models are based on pseudo-probability distributions that estimate the most probable 

system state. One such technique for interpretation of an array of capacitive sensors is 

proposed in [93] so that the information can be used for direct foreground interaction 

control and background control or context sensing. Bayesian approach is adopted in their 

work to explicitly model uncertainty. In addition, as the distributions evolve over time, 

Sequential Monte-Carlo techniques (particle filters, PFs) are involved. The usage of these 

techniques allows to cope with dynamic and noisy sensor inputs and to create systems 

whose level of autonomy increases as input ambiguity increases. This work has been 

extended by the same group of researchers [94] to be applied in real-time capacitive touch 

tracking. Again, a probabilistic model is built to estimate the pose effectively and give 
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appropriate uncertainty evaluations. Another approach is based on the Swiss-Cheese-

Algorithm which detects objects using elimination methods. An object recognition method 

extended from Swiss-Cheese is proposed in [95] for ubiquitous interfaces. The most likely 

configuration of body parts is determined based on the readings of many distributed 

capacitive proximity sensors. Moreover, a list of probabilities for object presence in each 

point in the space is obtained by the developed algorithm. The method is able to track 

existing and newly appearing objects in real time. 

An alternative approach to deal with the continuously 3D localization problems is 

explained in [96]. Their contribution is a thin and transparent design for capacitive sensing, 

allowing for 3D finger and hand tracking as well as in-air gestures on a mobile device. The 

regression method involved in their work is a random decision forest (RDF), which works 

as a black box. It is a machine learning method to approximate the complicated mapping 

problems in this work and yield fast and reliable results. 

Generally, the applications of capacitive proximity sensors involve more than one 

detected state, so classifiers are frequently used. One commonly used classifier is 

decision tree that can overcome the problem of conditional dependence of features. In 

practice, binary decision trees with threshold decision functions for a single feature are 

broadly used. One application is presented in [97], a mobile service with a smartwatch-

style system to promote high-fives in everyday workspace interactions. Decision tree is 

used to extract features and identify unique peaks from high-five. This methodology is also 

involved in home automation and environmental control applications through flexible 

textile-based capacitive sensor arrays [98]. Their proposed system is named as “Inviz”, a 

gesture recognition system to detect movements of paralysis patients. The signal 

processing procedure for gesture recognition combines feature extraction algorithms and 

machine learning techniques in a hierarchy of processing. Machine learning techniques 

such as nearest-neighbor, Bayesian inferences, and decision trees are in the highest tier 

of the signal processing hierarchy. The average accuracies of gesture recognition for 

these three algorithms are compared: the accuracies are comparable while the nearest 

neighbor classifier performs slightly better than the other two. Multiple learning algorithms 

are tried in determining contextual information from furniture using capacitive proximity 

sensors presented in [99]. In their work, Naïve Bayes classifier, decision tree, a Radial 

basis function (RBF) networks are used and their performance in terms of training and 
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testing precision is compared. Their conclusion is RBF network is a robust classifier that 

performs the best on the test data set for user posture classification tasks. 

Support Vector Machine (SVM) is an alternative category of classification 

methodologies that frequently applied in extracting information from sensing data. Laput 

et al. use SVM for touch recognition of un-instrumented, electrical and electromechanical 

objects [100]. Most everyday electrical and electromechanical objects emit a small amount 

of electromagnetic (EM) noise during their regular operation. This unique body-coupled 

EM signatures can be used to identify different objects and infer object states with SVM 

classifier. Across the 24 classes, SVM achieves an overall accuracy of 97.9% with the 

majority of the objects (18 out of 24) reach the accuracy of 100%. SVM is also used in 

capacitive fingerprinting [101], to explore user differentiation. The electrical properties of 

humans and their attire can be used to support user differentiation, the ability to tell users 

apart but not uniquely identify them, on touchscreens. For single finger touches, the SVM 

yields an all-pair average accuracy of 97.3%; while in distinguishing between users 

performing a variety of gestures, the achieved average accuracy is 97.8%. 

Multiple classification tools have been tried in [102] for a graspable user interface 

which is an intuitive way to manipulate 3D objects in a virtual environment. A spherical 

shaped device “Grip-Ball” that based upon capacitive multi-touch sensing is proposed in 

this paper. It is able to recognize five hand grip patterns so that intuitive accessing and 

manipulation of the virtual object can be performed. A minimum distance classifier (MDC), 

a naïve Bayes classifier (NBC), and a support vector machine (SVM) are involved for the 

grip-pattern recognition. Their achieved test accuracy are 98.2%, 98.8%, and 99.4% 

respectively. A similar hand grip pattern recognition interface is designed for handheld 

mobile devices [103]. It is based on the sensed signal from an array of capacitive touch 

sensors. The pattern recognition algorithms being used include naïve Bayes (NB) support 

vector machine (SVM). The authors verified that the SVM achieves higher cross-validation 

accuracies under different parameters’ values (higher than 90%) compared to NB 

classifier (76%). Moreover, typical confusion matrices of NB and SVM are also provided: 

SVM still performs much better than NB classifier in terms of the number of misclassified 

samples. 

In response to the demand of promoting the human-robot interaction safety in the 

workspace, an innovative technology is proposed to reduce the risks of injury for next-
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generation manufacturing. More specifically, the challenge is addressed by subdividing 

the problem in three distinct but complementary scenarios as described in Figure 2.3.  

In the first scenario, as shown in Figure 2.3 (a) when the distance between the 

robot and the worker is long (0.25m - 2m), the directional infrared sensor is involved to 

detect the presence of the human. Once the operator is detected to be within this range, 

the system starts to constantly monitor his/her movements, and detect the distance and 

direction of the worker from robotic components. This is particularly important when a 

machine is moving at high speed since sufficient deceleration time will be required, 

especially if the payload is supported with cables. 

When the worker and the robot are within a short distance from each other (shorter 

than 30cm), the scenario 2 (Figure 2.3 (b)), a capacitive sensor needs to be worn by the 

worker to detect the objects in his/her proximity. The specific requirement for this sensor 

is reliably estimates the distance between the object and the human. However, there is a 

technological challenge: estimate the distance accurately and eliminate the ambiguities 

brought by different objects’ shapes. This problem, to the best of our knowledge, has no 

reliable and un-expensive commercially available solution. 

 

Figure 2.3. Three sub-scenarios of the human-robot interaction and 
corresponding safety guard methods. (a) Directional infrared sensor 
to monitor the movements of the human when robot and human are 
relatively far from each other. (b) Capacitive proximity sensor 
accurately estimate the distance when they come closer. (c) The force 
is monitored by Smart Skin when human is in contact with the 
payload. This figure was created by Dr. Carlo Menon. 

In the last scenario that is described in Figure 2.3 (c), the human operator is in 

contact with the payload held by the robotic manipulator. In this case, the information used 
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to guarantee the safety is the force he/she exerting on the payload. The Smart Skin is 

used to monitor this force, and a force value approaching the threshold limit indicates a 

potentially hazardous situation. 

The focus of this work is the development of a high-performance capacitive 

proximity sensor that is used in the second scenario. It enables the detection of distance 

as well as classify the objects into distinct categories. 
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Chapter 3.  
 
Structure modeling  

The design of a multiple-electrode fringing electric field sensor relies on a good 

understanding of the fundamental principles and trade-offs. The purpose of this chapter is 

to highlight the critical aspects of the capacitive sensing theory and to illustrate the theory 

with numerical simulations. For different functionalities, the major goals of sensor design 

are different. For basic proximity detection, the longest linear detection range is with the 

highest design priority. Whereas for more complex applications, the optimum balance of 

sensitivity, resolution, and signal strength should be achieved.  

3.1. Capacitive sensing theory 

The general term Electric Field Sensing is used to refer to a family of non-contact 

measurements that be made with slowly varying electric fields [104]. Several of these 

measurements had been lumped together under the rubric of “capacitive sensing”, in 

which low-frequency voltage signal is applied to the transmit electrode, and displacement 

current flows from the transmitter to the other conductors (receivers) through the effective 

capacitors. 

 

Figure 3.1. Four different capacitive proximity detection modes. 

Conventionally, a capacitor is in the form of a parallel-plate, where the transmitter 

and receiver are placed opposite to each other in close proximity so that the electric field 

is distributed between them uniformly as shown in Figure 3.1 (a). For proximity sensors, 

the capacitance is dependent on the common plate area A over average plate spacing d 

assuming no fringing effects: 
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𝐶 = 𝜀0𝜀𝑟
𝐴

𝑑
              (3. 1) 

where ε0 is the permittivity of the vacuum, and εr is the relative permittivity of the material 

in between the two electrodes. However, its gap-capacitance relationship is highly 

nonlinear and the sensitivity drops significantly in the cases of larger spacing. These are 

the two major constraints prevent this type of capacitive sensors from being used in 

broader applications [105]. 

When the electrodes gradually open up, the electric field is no longer confined 

within the small region between the electrodes, but expands into a wider space and forms 

a fringe field. This structure provides a possibility to interrogate an object from only one 

side, which is particularly useful in the scenario of proximity sensing. Corresponding to the 

different current pathways, the measurements can be further divided into three modes: 

transmitter loading mode, transmit mode, and shunt mode [106] as depicted in Figure 3.1 

(b), (c), and (d).  

Transmitter loading mode is the original electric field sensing pathway, in which 

the current flowing from the transmitter is measured. The value of C1 in Figure 3.1(b), and 

thus the load on the transmitter, changes with the position of the object: when the object 

approaches the single transmitting electrode, the loading current increases. Despite its 

wide applications, the highly nonlinear capacitive responds and the strict restrictions on 

the material of the detectable object prevent it from becoming a promising candidate for 

this work. 

In transmit mode, the transmitter is coupled strongly to the conductive object, either 

by direct electrical connection or capacitive coupling through insulator [104], so the object 

is essentially at the potential of the transmitter. The electric field properties would, 

therefore, depend on the spacing from object to receiver: as the object approaches the 

receiver, the value of C2 in Figure 3.1 (c) increases, and the displacement current at 

receive electrode increases. This mode is most ubiquitously used in touch or floating touch 

sensing, not suitable for proximity sensing. 

Shunt mode is a three-terminal measurement: neither the transmitter nor the 

receiver is in contact with the object. In this regime, C0, C1, and C2 in Figure 3.1 (d) are of 

the same order of magnitude. When an object enters the electric field, C1 increases and 

C0 decreases, leading to a drop in received current: displacement current that had been 
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flowing to the receiver is shunted by the object to ground (hence the term shunt mode) 

[107]. There is a strong sense in which the shunt mode can offer more informative 

measurements: it is possible to create numerous virtual sensors while having a 

manageable number of electrodes, based on different transmitter-receiver configurations. 

With N ordinary capacitive sensors (loading mode), N capacitive values can be collected. 

These N numbers turn out to be the diagonal of the capacitance matrix for the system of 

electrodes. Whereas in shunt mode, one can get N(N-1) off-diagonal measurements that 

result in 1/2N(N-1) independent capacitive values due to the symmetrical capacitance 

matrix. Moreover, shunt mode measurements can also be used in combination with 

multiplexing methods allowing parallel accesses to multiple transmitters at the same time. 

With all these advantages, shunt mode within an electrode matrix is adopted as the basic 

architecture of this proposed capacitive proximity sensor.  

Real-world electric field sensing involves moving charges and AC voltage sources. 

For an accurate physical analysis, Maxwell’s equations relating electric and magnetic 

fields, charge density, and current density should be used. However, a simplified 

approximation that ignores magnetic fields always is possible without significant loss of 

accuracy [105]. The capacitive sensor applications are almost all small and work at a low 

frequency so that the time constant is much shorter than the circuit response time, and 

thus, the simplified versions of Maxwell’s equations can be applied. Systems in which this 

approximation is reasonable are defined as electroquasistatic. A given distribution of 

charge density ρ produces the electric field intensity E, and the magnetic field intensity H 

is approximated by zero as followings:  

𝛻 × 𝐸 =  −
𝜕

𝜕𝑡
𝜇0𝐻 ≈ 0              (3. 2) 

𝛻 × 𝐻 = 
𝜕

𝜕𝑡
𝜀0𝐸 + 𝐽 ≈ 0              (3. 3) 

𝛻 ∙  𝜀0𝐸 =  𝜌              (3. 4) 

𝛻 ∙  𝜇0𝐻 = 0              (3. 5) 

In which the magnetic permeability of vacuum, μ0, is a fundamental physical constant, 

defined as 4𝜋 × 10−7 𝑁/𝐴2. 

There are three types of solutions to the zeroth and first order Maxwell equations, 

which correspond to the three basic types of circuit components: capacitive, inductive, and 

resistive. For electric field proximity sensing, only the capacitive solutions are relevant. 
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The circuit definition of the capacitance is defined in Equation (3.6), in which a capacitance 

couples a current to the time derivative of a voltage. Associated with the zeroth-order 

electric field is a zeroth-order charge, and since the zeroth-order electric field can be 

represented by a scalar potential, this first-order current is coupled to the time derivative 

of the charge as shown also in (3.6). The static (zeroth-order) electric fields satisfy 

Laplace’s equation, and the charge on the conductor i due to the electric field is written as 

(3.7), where Si is the surface completely enclosing the conductor, E is the electric field 

vector normal to Si.  

The capacitance of conductor i due to another conductor j is the ratio between the 

induced charge on i and the voltage between j and a reference. Because of the linearity 

of all the equations involved, the total charge Qi is the sum of the separately induced 

charges as in (3.8). The off-diagonal term of the capacitance matrix Cij represents the 

mutual capacitance, and the diagonal self-capacitance term Cii represents the “loading” 

of the transmit electrode by the approaching object. The capacitance matrix is symmetrical 

that means Cij = Cji.  

𝐼 = 𝐶
𝑑𝑉

𝑑𝑡
= 

𝑑𝑄

𝑑𝑡
              (3. 6) 

𝑄𝑖 = −∮ 𝜀𝐸 ∙ 𝑑𝑆              (3. 7) 

𝑄𝑖 = ∑ 𝐶𝑖𝑗𝑉𝑗𝑗               (3. 8) 

At this point, it can be observed that by measuring the current received at the 

electrodes, the mutual capacitance can be derived by specifying Vj. However, there is a 

lack of insight into the operation of the sensor without knowing the theoretical solution for 

the mutual capacitance as a function of the device geometry and the distance between 

the sensor and the approaching object.  

 

Figure 3.2. Conformal mapping technique. (a) Coplanar structure. (b) Equivalent 
parallel structure. 
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To calculate the mutual capacitance, a conformal mapping technique can provide 

a good approximation [108]. It is based on Christoffel-Schwarz transformation, which 

makes it possible to transform the coplanar structure into the rectangular parallel structure 

as shown in Figure 3.2(a). In the analysis presented in [109], the electrode plates are 

assumed to have zero thickness and infinite conductivity; the plate spacing l is larger than 

the separation s so that the end effect can be avoided. The calculated mutual capacitance 

is given as: 

𝐶 = 
𝜀0𝜀𝑟

2
∙ 𝐹(𝑘);   𝐹(𝑘) =  

𝐾(𝑘′)

𝐾(𝑘)
;   𝑘 =  

𝑠

𝑙
;   𝑘′ = √1 − 𝑘2                (3. 9) 

where K(k) is the complete elliptic integral of the first kind, k is the modulus of the elliptic 

integral. F(k) can be expressed by the approximate formula (3.10), and the effects of 

different spacing and separation to F(k) are plotted in Figure 3.2(b). It can be found that 

the mutual capacitance is effectively determined by the sensor geometrical parameters s 

and l: reducing s or increasing l can result in larger capacitance value which means higher 

sensitivity, but a shorter linear range of measurement. It is also proven in [110] that 

separation s is the most dominant and influential parameter.  

𝐹(𝑘) =  
𝐾(𝑘′)

𝐾(𝑘)
= {

𝜋−1 Ln [2
1+(1−𝑘2)0.25

1−(1−𝑘2)0.25
]   𝑓𝑜𝑟 𝑘2 ≤ 0.5

𝜋 [Ln(2
1+𝑘0.5

1−𝑘0.5
)]
−1

    𝑓𝑜𝑟 𝑘2 ≥ 0.5

              (3. 10) 

In practical applications, electrodes are fabricated on the supporting substrate and 

the nearby object interferences the generated electric field. The cross-section view of a 

two-dimensional model for one electrode pair as shown in Figure 3.3(a): the two infinitely 

long flat conductors (A, B) are separated by a gap s and each has a width of w. The 

substrate thickness is p and its relative permittivity is εr, and d represents the distance 

between electrodes and the object. There exist two modes in which the two electrodes 

may be electrically excited: even mode and odd mode [111]. Even mode operation is 

achieved by driving the two conductors with the same time varying potential while the odd 

mode results from using a 180° phase shift between the excitation signals. For conductors 

with thickness much less than the width and relatively small substrate thickness 

(w>0.35p), the mutual capacitance per unit length can be expressed as the difference 

between the total even and odd mode capacitances from conductors to the object [112] 

as described in equation (3.11). The total even and odd mode capacitances are evaluated 

by Cohn in [113]: 
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𝐶𝑚𝑢𝑡𝑢𝑎𝑙(𝑠, 𝑑) =  
1

2
(𝐶𝑜𝑑𝑑 − 𝐶𝑒𝑣𝑒𝑛)              (3. 11) 

𝐶𝑜𝑑𝑑(𝑠, 𝑑) =  [
𝑠

𝑑
−
2

𝜋
ln [𝑠𝑖𝑛ℎ (

𝜋𝑠

2𝑑
)]] 𝜀0𝜀𝑟              (3. 12) 

𝐶𝑒𝑣𝑒𝑛(𝑠, 𝑑) = [ 
𝑠

𝑑
−
2

𝜋
ln [𝑐𝑜𝑠ℎ (

𝜋𝑠

2𝑑
)]] 𝜀0𝜀𝑟              (3. 13) 

By utilizing superposition of electric fields, the total mutual capacitance caused by 

the substrate and the nearby object can be expressed as the sum of both components: 

𝐶𝑚𝑢𝑡𝑢𝑎𝑙(𝑠, 𝑝, 𝑑) =  𝐶𝑙𝑜𝑤(𝑠, 𝑝) + 𝐶𝑢𝑝(𝑠, 𝑑)              (3. 14) 

𝐶𝑙𝑜𝑤(𝑠, 𝑝) =  
1

2
𝐶𝑚𝑢𝑡𝑢𝑎𝑙(𝑠, 2𝑝)              (3. 15) 

𝐶𝑢𝑝(𝑠, 𝑑) =  
1

2
𝐶𝑚𝑢𝑡𝑢𝑎𝑙(𝑠, 2𝑑)              (3. 16) 

This two-dimensional model can be used to investigate the relationships between 

the device geometry and its performance. In order to maximize the change in mutual 

capacitance due to the change in the distance to the object d, it is desired to minimize the 

substrate thickness p so that as much of the electric field on the back side can be shielded 

out as possible. It is predicted that the mutual capacitance responds monotonically to the 

changes in distance as shown in Figure 3.3(b) where the mutual capacitance as a function 

of d/s is plotted with a solid line. The device sensitivity, also known as the rate of 

capacitance change, vs. d/s is plotted in Figure 3.3(b) with the blue line, from which it can 

be observed that the greatest sensitivity happens when the distance is equal to the 

separation. Increasing the sensitivity by increasing separation will result in a reduction in 

the magnitude of the mutual capacitance as well as the dynamic range. So the device 

geometrical parameters should be determined to achieve best tradeoffs among various 

performance indexes. 

All the theoretical analyses are based on a large number of assumptions and strict 

boundary conditions, so they only point out the direction for improving the design of the 

sensing patterns. The responses on capacitance due to the approaching object may be 

affected a variety of factors that cannot be precisely expressed by any formula. 
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Figure 3.3. Two dimensional model for one electrode pair. (a) Cross section view 
of the model. (b) Mutual capacitance and model sensitivity vs. 
distance/gap (d/s). 

3.2. Structure modeling  

As mentioned in the last part, the analytical models are usually built based on some 

idealized assumptions [114]–[117] due to the inherently nonlinear characteristics of 

fringing electric field sensors. That limits their accuracy for real-world applications. The 

capacitive sensor design therefore relies highly on the numerical simulations. Among all 

the simulation methods, finite element methods (FEM) are extensively used for capacitive 

sensor modeling, optimization, and evaluation [118]–[120], especially when the precise 

theoretical model is hard to achieve. COMSOL Multiphysics® is an interactive environment 

that uses FEM to solve scientific and engineering problems [121]. Several modules are 

available for COMSOL, categorized according to the application areas, namely Electrical, 

Mechanical, Fluid, Chemical Multipurpose and Interfacing. In this study, electromagnetic 

fields in low-frequency applications are mainly involved, so the MEMS module belonging 

to the Electrical module is employed. The accuracy of the FEM simulation results depends 

on the model definition as well as mesh generation. When the model that properly 

reconstruct the real applications, COMSOL can generate results with high quality. 

Before diving into designing and modeling the sensor structure, it behooves us 

some time to clarify some figures of merit that is used to evaluate the performance. These 

figures of merit include penetration depth, measurement sensitivity, signal strength, and 

noise tolerance.  

Penetration depth is one of the most important parameters used to estimate the 

performance of a proximity sensor: it indicates how quickly the electrical field decays as 
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the distance increases. Though there is no explicit definition, one way to evaluate effective 

penetration depth is to measure the distance at which the capacitance difference to 

asymptotic (sample infinitely far from the sensor) value equals to 3% of the difference 

between the highest and the lowest values [122]. Penetration depth is roughly proportional 

to the spatial wavelength λ, which is the distance between the centerlines of neighboring 

electrode groups of the same type (e.g. transmitter or receiver).  

Measurement sensitivity is defined as the ratio between the change in sensor 

output and the change in the measured physical parameter (in this case is the distance) 

of the sample [123]. Because the electric field of the sensor is non-uniform, the 

measurement sensitivity is position dependent: sensitivity decreases exponentially with 

the increase of the distance. Sensitivity also depends on the area of the electrodes: for a 

fixed spatial wavelength, a greater electrode area generally means higher sensitivity. 

The principle of the capacitive sensor is based on fringing electric field, so the 

mutual capacitance between two adjacent electrodes is relatively small, that leads to low 

signal strength. The signal strength decays exponentially with its distance to the object. 

By integrating more electrodes into one single transmitter/receiver, the signal strength can 

be improved.  

The generated electric field is easily being interfered by approaching objects from 

undesired directions, and that will cause noise issues. Adding guard electrodes is an 

effective way to shield sensing electrodes from noises. The guard electrodes need to be 

carefully connected to avoid stray capacitances and to be positioned properly for optimal 

sensor performance. The guard electrodes can take the form of a guard ring surrounding 

the sensing electrodes, the guard plane underneath the sensing electrodes, or a 3D shield 

around the sensing area. The driven-guard technique presented in [124] can be used to 

reduce stray capacitances, where the guard electrodes are connected to the same 

excitation signals as the sensing electrode. 

3.2.1. Electrode structure based on rigid substrate 

Initially, the multi-functional coplanar capacitive sensor is intended to be fabricated 

on a rigid substrate. The scales of all the parameters for modeling are considered under 

the condition of using a rigid printed circuit board (PCB). The design issues include the 
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geometrical parameters of the electrodes, shielding strategies, the number of electrodes, 

and electrode connection patterns. To model and quantify the capacitive performance, the 

electrostatics model inside COMSOL 3D software package is employed to mesh the 

geometries and calculate the mutual capacitances. The basic simulation conditions are 

identical for all the studies: the thickness of the electrode is 0.1mm; the excitation voltage 

is 1V; the zero charge boundary condition is applied to the exterior air environment; the 

electrode material is copper. The simulation is electrostatic, which is adequate for the low 

operating frequency of this sensing system. 

Among all the design variables, electrode geometry is the dominant factor for the 

sensor performance. Therefore, modeling and selecting the most proper electrode size, 

shape, spacing, and separation is critical in order to meet the requirements.  

 

Figure 3.4. Investigation on different electrode shapes. (a) Electrode shape and 
dimension. (b) Simulated electric field and mutual capacitance 

In addition to the traditional design featuring square or round electrodes, two more 

electrode shapes namely fractal and hollow square are taken into consideration. 

Electrodes with the four different shapes have identical principle parameters (i.e. diameter 

or the outer side length) of 10 mm as shown in Figure 3.4 (a). The excitation voltage is 

applied to the left electrode, and the electric charge distributes throughout the electrode 

to minimize the Coulombic energy with the amount of charge set by the capacitance [125]. 

The geometric parameters contribution to capacitance includes effective area and 
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perimeter. The increase in the effective area causes a net effect of maximizing the mutual 

capacitance, an electrode with larger bounding perimeter holds more charges due to the 

fact that much of the charges reside on the bounding [126]. The charge distribution 

simulations (also shown in Figure 3.4 (a)) provide a physical explanation for why the hollow 

square electrode holds even more charge though with smaller effective area compared to 

the square electrode. Further analysis is conducted to evaluate the distribution of the 

electric field. Figure 3.4 (b) shows the simulation results of the spatial electric field 

distribution of each pair of electrodes. For all the electrode shapes, the magnitude of 

electric field strength becomes weak as the field goes up. The electric field strength needs 

to be sufficient in order to interact with approaching objects [127], that means the slower 

the electric field attenuates the longer detection distance the sensor could achieve. From 

the simulation results, the electric field generated by fractal electrode pair penetrates the 

highest into space, followed by the one generated by square electrodes. To achieve the 

best trade-offs among the charge storage, electric field strength, and manufacture 

complexity, the traditional square-shaped plate was chosen as the basic construction unit 

in this design.   

 

Figure 3.5. Mutual capacitance influenced by electrode separation and side 
length. (a) Relationship between separation s and side length l within 
one electrode pair. (b) Simulated mutual capacitance vs. separation.  

The number of electrodes depends on the complexity of the sensor itself as well 

as the number and complexity of the system variables to be solved for the sake of the 

target applications. Provided that the sensitivity is adequate, the desired information about 

distance and object geometrical properties can be extracted from the mutual capacitance 

between two electrodes within an electrode-array. The total number of independent two-

electrode measurements (M) can be expressed as M = N(N-1)/2, where N is the number 

of electrodes in the array [128]. There could be more measurements when taking multiple 
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electrodes alignments into consideration. In this work, a 4×4 electrode matrix yielding 16 

independent electrodes is selected as the basic configuration as it meets the functional 

requirements with an acceptable complexity at the same time. In the context of the 

applications where the designed sensor should be fitted on a piece of working garment, 

the electrode matrix area is restricted to 6.5×6.5 cm2. Consequently, the length of each 

sensing unit that composed of two electrodes should be limited to 2.5cm. A series of 

combinations contain different separation and electrode length values are studied. As 

demonstrated in Figure 3.5 (a), the separation s and electrode side length l are inversely 

correlating to each other. The mutual capacitance as a function of different separation 

values from 0.2cm to 1.5cm is plotted in Figure 3.5 (b), and it can be observed that the 

capacitance decreases as separation increases. However, the depth that the electric field 

penetrates to space is positively correlated to the separation, that causes the trade-off 

between penetration depth and electric field strength. In this work, the separation of 0.5cm 

that results in the side length of 1cm is selected as the basic scale. With these parameters, 

the obtained absolute capacitance value is on the large side and the penetration depth of 

the electric field generated by two neighboring electrodes does not decrease much. 

Moreover, the penetration depth can be adjusted by using electrodes from different 

locations in the matrix.  

 

Figure 3.6. Shielding effects. (a) With a grounded backplane. (b) Adding driven 
shield electrodes. 

As studied and shown in Figure 3.4 (b), the generated electric field penetrates to 

the space from both sides of the sensor, that may cause undesired detection from the 

back-side of the sensor. In addition, the capacitive measurements can be as low as 

femtofarads. At such low levels, the reduction of electrical noise through electromagnetic 
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shielding and output signal filtering become particularly important [129]. A grounded 

backplane deposited on the bottom side of the substrate is able to provide shielding from 

external perturbations, define ground potential, and predominantly confines the electric 

field to the upper half-space. However, with the adding of the backplane, a large portion 

of the electric field is concentrated in between the electrode and the backplane as shown 

in Figure 3.6 (a). Consequently, the mutual capacitance drops dramatically from 0.257pf 

to 0.0649pf given by the simulation. Another shielding element that is inserted between 

the electrode layer and backplane layer is used to neutralize the side effect of the ground 

shielding and optimize the sensitivity. The driven-shield technique, where the shield 

electrode is kept at the same voltage potential as its corresponding sensing electrode is 

proven to be effective in removing or reducing the stray capacitances [124]. The cross-

section view of the updated sensor unit structure and the simulated electric field 

distribution are shown in Figure 3.6 (b). In this simulation setup, the shield electrode has 

the same size as the sensing electrode. The mutual capacitance is slightly improved from 

0.0649pf (only with grounded backplane) to 0.0676pf (with both active shielding layer and 

the backplane).  

 

Figure 3.7. Mutual capacitance vs. different sizes of driven shield electrode.  

A further investigation about the active shielding electrode is about its size. A 

series of simulations have been performed with the side length of the active shielding 

electrode increasing from 1 cm to 1.45 cm. The mutual capacitance between two sensing 

electrodes as a function of the size of the active shielding electrode is plotted in Figure 

3.7. With the increase of the active shielding electrode’s size, the mutual capacitance 
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increases. Therefore, 1.45cm is used as the side length of the active shielding electrodes 

in this design. 

 

Figure 3.8. Electrode connection types. (a) Four different electrode group types. 
(b) Different spatial wavelengths generated by the four types. (c) 
Capacitive responses from the four connection types. 

The sensing performance of the array-structured proximity sensor typically 

depends on the geometrical parameters including the number and the arrangement of 

electrodes that forming the transmitter and the receiver. The optimal sensor parameters 

are achieved by proper selection among different electrode connection patterns. The 

excitation voltage source is applied to two group of selected electrodes that perform as 

the transmitter and the receiver. Figure 3.8 (a) illustrates the four connecting possibilities 

of the designed electrode matrix. In Figure 3.8 (b), the side view of the sensor showing 

how the electric field is formed between positive and negative terminals is given. It is seen 

that the penetration depths of electric field lines is different for different spatial wavelength 

λ that is defined as the distance between two consecutive electrodes of the same polarity 

[130]. The penetration depth can be increased by increasing this pitch length; however, 

the electric field strength generated at the neighboring electrodes will be weak. Type I 

represents the interdigital mode that is one of the most widely applied proximity sensing 
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structure. Type II only generates one electric field but with stronger strength [131]. Type 

III is selected as a promising candidate as it generates the largest spatial wavelength. 

Type IV is a symmetric structure that works similarly as a ring-shaped sensing pattern. 

These sensing possibilities would provide various responses that enable us to dig out the 

most suitable working patterns for different application scenarios.  

For FEM simulation setup: the sensor is composed of a sensing electrode array, 

an active shielding electrode array, and a grounded backplane. The same as the sensing 

electrode matrix, there are four different connection schemes within the active shielding 

array as each shielding electrode is driven by a buffer operational amplifier to stay in the 

same voltage as the sensing electrode immediately above. A copper plate with the size of 

7cm × 7cm × 0.01cm is used to mimic the approaching object. All these components are 

placed in an air box whose dimension is much larger than the sensor and the object. The 

box is employed to complete the simulation model: it acts as an electrically insulated 

space, where the charge at the infinity balances the internal charges. The vertical distance 

between the object and the sensor d varies from 0.5cm to 25cm for the study of proximity 

sensing performance. The capacitance between the formed transmitter and receiver pair 

as a function of the vertical distance for all the four connection types is plotted in Figure 

3.8 (c). In order to investigate the linear detection range and the effective penetration 

depth, the normalized capacitance as a function of vertical distance for all the four types 

is summarized to one plot as shown in Figure 3.9 (a). More specifically, given the 

maximum capacitive value Cmax and the lower bound Cmin for one set of measurement 

results, a normalized value is calculated by CN = (C-Cmin)/(Cmax-Cmin) to keep the values in 

the [0,1] range [132]. Penetration depth γ3% corresponds to the vertical distance d where 

the difference between the capacitance at this position C(d = γ3%) and the asymptotic 

capacitance C(d = ∞) equals to 3% of the difference between the highest and the lowest 

values of the capacitance [124]. The evaluation method is illustrated in equation (3.17) 

and Figure 3.9(b), where C(d = 0) represents the capacitance when the distance between 

the sensor and the object is minimum. The calculated penetration depths are listed in 

Figure 3.9 (a).   

𝐶(𝑑= ∞)−𝐶(𝑑= 𝛾3%)

𝐶(𝑑=∞)−𝐶(𝑑=0)
 × 100% = 3%              (3. 17) 
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Figure 3.9. Capacitive comparison among the four electrode connection types. 
(a) Normalized capacitance vs. vertical distance. (b) Explanation on 
penetration depth calculation. 

From the results shown in Figure 3.8 and Figure 3.9, the absolute capacitance 

obtained from type III is significantly less than the other three types. However, Type III 

offers a larger penetration depth that is essential in detect range. In the meantime, 

interdigital mode and ring-shaped structure can provide larger electric field strength that 

improves the immunity to environmental noises. 

One of the challenges of using capacitive sensors is they are susceptible to shape 

and size of the object it perceives, that makes it difficult to infer high-level information from 

the measured capacitances. A small object that is close to the sensor might result in the 

same response as a larger object at a further distance [133]. Moreover, the relative 

horizontal location between the object and the electrode-matrix also makes a difference 

in measurement results. Thus, a model is required that evaluates the behavior and 

influence of different shapes and locations of the object within the generated electric field. 

 

Figure 3.10. Capacitive responses from three shapes: plate, sphere, and cylinder. 
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Typically, the actual shape of the desired object is approximated by simple 

geometric shapes that are easier to process. Plate, sphere, and cylinder are selected for 

modeling the most frequently encountered shapes in the industry working space. The area 

of the plate is 7cm × 7cm; the diameter of the sphere is 6cm; the radius and the height of 

the cylinder are 1.5cm and 7cm respectively as shown in Figure 3.10. Based on the 

previous simulation results, Type I that represents the interdigital connection mode is 

chosen as an example to illustrate the effects brought by different shapes. The simulation 

process is similar to the aforementioned one: the object moves vertically so that the 

distance d from the sensor to the lowest point of each object varies from 0.5cm to 25cm. 

The three sets of responding capacitance as a function of vertical distance are plotted in 

the same coordinate axis for comparison (also shown in Figure 3.10). It can be observed 

that the shape of an object affects the capacitive responses in terms of absolute values 

as well as the slope. 

One more set of simulations is performed to investigate how different horizontal 

positions affect the vertical distance evaluation and to figure out which connection type 

could neutralize this effect the most. In this simulation, the mutual capacitances are 

measured when the object is performing a grid scan at the plane with a vertical distance 

of 5cm. The same process is repeated for each object with each electrode connection 

pattern. Figure 3.11 (a) depicts the capacitances obtained from ring-shaped sensing type 

(Type IV) with respect to the relative horizontal positions of the plate. For all the three 

objects with all the connection types, the measured capacitance shares the same trend: 

the capacitance value increases when the object moves from the center to the edge of the 

electrode matrix. In order to understand the total span and variation of the data, the 

variation percentage that can be expressed as (Cmax-Cmin)/Cmax is calculated and also be 

listed in Figure 3.11 (b). A smaller variation percentage indicates the horizontal position 

has a smaller effect on distance evaluation under the certain connection type. In general, 

detection for a sphere is affected the most from its horizontal positions; on the contrary, 

horizontal positions of a cylinder make the least difference. For a plate, the ring-shaped 

pattern (Type IV) provides the minimum variation, whereas the interdigital mode (Type I) 

works the best for both the sphere and the cylinder. A remarkable point can be achieved 

at this point is that for distance evaluation, the uncertainty and variation brought by 

horizontal positions is much less than that by different shapes.  
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Figure 3.11. Investigate on the effects from horizontal positions. (a) Simulated 
capacitance vs. grid locations on the same plane. (b) Calculated 
horizontal variation percentages for all the object and connection 
types. 

After all these comprehensive simulations, quantifying the distance between the 

object and the sensor accurately is not an easy task, and requires multiple moves. Based 

on the performed studies, sensing electrode matrix with a complementary active shielding 

electrode array and a grounded backplane represents the best approach in terms of 

generating electric field generation. The shape of an approaching object causes the most 

uncertainty in capacitive responses with respect to vertical distance. This ambiguity leads 

to the inaccuracy in distance evaluation. Identifying the shape of an object first, and then 

choose the most suitable connection type (i.e. the one causes the least capacitance 

variation among different horizontal positions) to measure the capacitance can be a good 

strategy to improve the sensing performance. 

3.2.2. Electrode structure based on flexible substrate 

Flexible circuits are a high-growth technology in the area of electrical 

interconnectivity and look set to deliver improved performance against the demands of a 

wide range of electronic products [134]. Flexible sensors have emerging applications in 

biomedicine, artificial skin, and wearable electronics. A lot of factors contribute to the allure 

of flexible electronics: they are typically more rugged, lighter, and portable compared to 

their rigid substrate counterparts [135]. Flexible sensors are able to offer a wearable and 

longtime non-intrusive monitor. The electrodes can be cut and unobtrusively integrated 

into a piece of working garment to be worn during the whole working process. For human-

robot interaction applications, in order to realize a convenient, comfortable, and reliable 

measurement that results in a sufficient protection for human workers, the use of 
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sensorized garments is a suitable strategy. The design concerns and the sensing 

properties of the flexible capacitive sensor are investigated in this section. 

One of the most commonly used methods to obtain a sensor flexible is to fabricate 

the device directly on a flexible substrate. This is the approach adopted in this work to 

transform the designed sensor into a flexible version. There are some challenges that tie 

to the flexible substrate: very low amplitude signals, and complex relationship between 

signal and measured phenomena [136]. As the thickness of isolation layer for a flexible 

substrate is much smaller than a traditional rigid substrate, thus, the strength of electric 

field between the electrode and the backplane is stronger. That leads to a smaller mutual 

capacitance between an electrode pair. Moreover, the capacitive responses for a flexible 

sensor not only depending on the approaching object but also dependence on the nature 

of the structural changes (bent angles) of the sensor itself. Instead of simply duplicating 

the whole design into a flexible substrate, more emphasizes are put to cope with these 

new challenges. 

As a fringing electric field sensor, the geometrical parameters including size, 

shape, and the separation of the electrodes are the key factors that determine the sensing 

properties. The investigation of these parameters is the same as the one being performed 

for the rigid sensor. Based on the simulations that investigate the relationship between the 

acquired mutual capacitance, electrode shape, size, and shielding strategies (the results 

were demonstrated in Figure 3.4, Figure 3.5, and Figure 3.7), two hollow square-shaped 

electrodes with the side length of 1cm and separation of 0.5cm are selected as the building 

unit for this flexible design. Again, driven shield and grounded backplane are applied to 

shield out the detection from undesired direction. The attractive properties of the hollow 

square shape include its ability to hold more charge and its smaller area that reduces the 

parasitic capacitance to the backplane. Another essential modification being made to the 

flexible sensor is to shrink the array structure to a band-structure with just one row of 

electrodes. This change is made under the consideration of practical applications: the 

flexible sensor is most probably being used as or integrated into a soft wristband. By 

adopting multiple sensors, it is possible to cut and rearranged the electrodes to create an 

electrode-matrix if necessary. One band contains five electrodes that can be connected 

differently for the purpose of different detecting requirements. 



44 

In order to gain a better insight into the characterizations under different bending 

angles, a set of simulations are performed. The basic simulation setups are shown in 

Figure 3.12 (a): the electrode-band is attached on the surface of a cylinder, and a plate 

which is used to mimic the detection target moves from 1cm to 20cm away from the 

sensor. Different bending angles are realized by changing the radius of the cylinder from 

3cm to 8cm. This range is decided according to the general sizes of human arms and 

working garments. Based on the study about dielectric properties of the human body in 

[137], water is chosen as the material of the cylinder to imitate the human body. The area 

of the plate is 7cm × 7cm, and the material used for the object and the electrodes is copper 

that is conductivity. 

 

Figure 3.12. Simulations of the sensor on the flexible substrate. (a) Simulation 
setups. (b) Simulated results in terms of electric field distribution and 
capacitance as a function of object distance and radius of the 
attached cylinder 

The inner connection of the five electrodes is the comb-type, in which three 

electrodes are connected as the transmitter and the rest two electrodes work as the 
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receiver (also described in Figure 3.12 (a)). The simulated electric field distribution and 

the obtained capacitance vs. different cylinder radiuses are plotted in Figure 3.12 (b). It 

can be seen different bending angles would result in quite different capacitive responses: 

Not only in terms of absolute capacitive values but also the changing rate with respect to 

the vertical distance of the object. This finding provides a guidance in practical application 

of the flexible sensor: Some pre-tests include attaching the electrode-band to different 

parts of the human body and/or to different persons should be performed to calibrate the 

raw capacitive sensing data. This procedure would help in improving the accuracy of the 

desired vertical distance information. 

3.2.3. Sensing method  

The designed sensor has 16 independent sensing electrode, providing many 

possible configurations to generate the fringing electric field so that multiple functionalities 

can be achieved by the same sensing platform. The aiming sensing capabilities include 

proximity sensing capability, surface profile recognition, improved distance estimation, 

and parallel motion tracking. Selecting the most suitable connection patterns for each 

functionality plays a significant role in applying the designed sensing system most 

effectively. All the potential connection configurations are demonstrated in Figure 3.13 in 

the form of matrices: each letter represents the connection of each electrode (“T” 

represents the transmitter, “R” stands for the receiver, and “G” means ground connected), 

and electrodes labeled by the same letter are connected. 

Penetration depth that determines detection range is an intrinsically important 

factor when employing the system as a proximity sensor. Four promising candidates 

corresponding to the four connection types investigated in the simulations (Section 3.21) 

are illustrated in Figure 3.13 (a). Among those types, Type III that utilizes only the two 

most remote electrode strips as transmitter and receiver is chosen for the basic proximity 

feature. This type stands out because it generates the largest spatial wavelength λ and it 

has been verified in the previous simulation to have the largest penetrate depth.  
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Figure 3.13. Electrode connection patterns for different operation modes. “T”: 
transmitter; “R”: receiver, “G”: ground. All the capacitors are formed 
between transmitter and receiver. (a) Four connection types used in 
basic proximity sensing and improved distance estimation. (b) 
Surface profile recognition configuration I: eight independent 
capacitors (C1 – C8) based on the connections to mesh the nearby 
surrounding. The first three generated capacitors (C1 – C3) are 
measured for parallel motion trajectory detection. (c) Surface profile 
recognition configuration II: nine connection configurations that can 
provide electric field with various parameters.  

For the purpose of distinguishing different object shapes, the inputs of the 

classification tools are the readings of several distributed proximity sensor from the 

electrode array. Management of electrode configurations plays an essential role in 

acquiring the shape information. The key point in reconstructing the desired obstacles is 

to distinguish the differences in terms of sensor responses among different circumstances. 

Two different approaches that can be performed to mesh the close surroundings are given 

and explained in detail as follows.  
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The electric field between adjacent columns and adjacent rows can be generated 

by connecting the electrodes in a way as shown in Figure 3.13 (b), the upper part. Six 

individual capacitors are formed and the nearby space can be well meshed along the X-Y 

plane. Based on the surface topography, cylinder tends to have similar capacitive 

responses as sphere along X-axis. To reduce this obscurity, two more capacitance 

between diagonal eight electrodes as depicted in Figure 3.13 (b) (i.e. C7 and C8) are 

measured. Totally, eight sets of independent capacitances (C1 to C8) are acquired in this 

approach method for surface profile recognition.  

The inspiration for the second approach comes from the ring-shaped connection 

structure: the electric flux emits from the central four electrodes in every direction and falls 

to the receivers on the outer circle of the sensor. The environment around the sensor can 

be meshed comprehensively when employing this mode to the whole sensing matrix as 

shown in Figure 3.13 (c). Each of the nine connection patterns generates multiple electric 

fields with different spatial wavelength λ and different penetration depths. By combining 

these nine capacitive responses (CI to CIX) together, the surface profile of the nearby 

object can be estimated. 

With the shape information, the primary goal of the project, estimating the distance 

with high accuracy, is put back on the agenda. All the four connection types demonstrated 

in Figure 3.13 (a) are considered as each of them processes different advantages in terms 

of signal strength, penetration depth, and horizontal variation.  

The last functionality that can be achieved by the same sensing system is parallel 

motion tracking. More attention is paid to the moving direction in this scenario, whereas 

the absolute vertical distance is of secondary interest. Thus, the trajectory history of the 

target object has to be analyzed continuously. In this context, parallel movement assumes 

an object moves parallel to a reference axis with low deviations to the other two orthogonal 

axes in 3-dimensional space. Electrodes are connected to four strips along the reference 

axis as visualized in Figure 3.13 (b), the first three matrices. Thus, three mutual capacitors 

between two adjacent columns can be formed. These capacitors are measured in turn 

periodically to scan the surroundings. The interactions between the moving object and 

each capacitor would have the same shape but with certain delays in the moving direction. 

The parallel motion of an object can be discriminated against its past cluster centers 
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obtained by any of the three mutual capacitors, and the moving direction can be visually 

recognized by combining the three sets of measurements together.  

The performance of the sensing modalities of all the electrode connection patterns 

for every functionality will be experimentally assessed in Chapter 5. 
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Chapter 4.  
 
Data Processing 

Capacitive sensors are difficult to model analytically due to their inherently 

nonlinear characteristics. As explained in Chapter 3, the analytical models for fringing 

electric field sensors are based on idealized assumptions and restrict boundary conditions 

that limit their accuracy for real-world applications. So that acquiring desired shape and 

distance information relies heavily on numerical experiments and data processing. 

Statistical learning that refers to a vast set of tools for understanding data is used as the 

data processing tool. It can be further characterized as either qualitative or quantitative. 

Quantitative regression models are built to seek out distances while adaptive classification 

tools are employed to recognize the surface profiles. 

 

Figure 4.1. Block diagram of the designed capacitive proximity sensing system. 

In order to implement the different inner electrode connection configurations and 

extract the capacitive responses, the capacitive proximity sensing system is composed of 

five building blocks as described in Figure 4.1. The 4×4 electrode matrix together with its 

active shielding electrode array and the grounded back-plane constitute the core sensing 
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section. Two analog switch arrays are used to generate physically connections within 

sensing and driven shielding electric matrices. A digital controlling module that is mapped 

on a field programmable gate array (FPGA) creates desired signals to program the switch 

arrays. A capacitance to digital converter is obtained to measure the capacitive responses 

and convert them to strings of digital data. Finally, an external personal computer (PC) is 

involved to collect data and perform signal processing.  

In the human-robot interaction applications, we are primarily interested in the 

capacitive responses related to the approaching object, it is important to separate the 

distance/shape/motion variations from obscuring sources of variability introduced by the 

interference. The quality of data collecting and processing is, therefore, an essential step 

to interpret capacitive responses properly. 

Before delving into the question of how the signal processing methods operation, 

we begin by understanding the input data. The input takes the form of concepts, instances, 

and attributes [138]. The idea of a “concept” is the result of the signal processing, which 

in this case be the distance value or the shape of the object. The information that is fed to 

the processing tools takes the form of a set of “instances”. One instance represents one 

individual, independent example of the target concept. Each instance is characterized by 

the values of “attributes” that measure different aspects of the instance. In this project, the 

values of mutual capacitors under known concepts are attributes. Based on different 

processing purposes, these attributes should be fused differently to form the instances. 

The generated instances together with the concepts are utilized to build the regression 

models and to train the classifiers. In practical applications, the obtained statistical tools 

will be applied to the actually measured capacitances so that the desired information can 

be extracted directly.   

4.1. Data preparation  

The goal of data processing is to obtain desired information from the raw 

measurement results. Such a task is inherently interactive and iterative [139]: one cannot 

expect to gain useful knowledge simply by feeding a lot of data to a random tool. A solid 

understanding of the problem domain is essential in collecting data and selecting suitable 

classes of patterns. In this project, the ultimate goal is to derive the distance between an 

object and the sensor platform accurately. As specified in the last chapter, recognize the 
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surface profile of an approaching object and then extract the distance information stands 

for a good strategy. To support the hypothesis about the problems that intend to be solved, 

data collection forms the core to present any reasonable predictive analytic solution. 

However, until actually train a predictive model, it is hard to know which attributes will 

contribute the most and provide the best results.  

Depending upon the domain of this project, the input attributes are measurement 

results. The experiments are designed to restore the scenarios in realistic applications: 

the metallic plate, sphere, and cylinder are used to mimic the three surface profiles that 

are most likely to be encountered during a manufacturing process; the object is moving 

from 1cm to 20cm away from the sensor to cover the interested distance range. All the 

electrode connection patterns described in Chapter3 are implemented through 

programming the switch array, and the capacitive responses are collected to form the data 

sets. More detailed data acquiring methodologies will be explained together with the 

experimental setups in the next chapter. 

Though the data collection process is under adequate consideration, the 

experimental procedures might still highly liable to inner parasitic of the sensor, 

environmental interferences, noises, and unexpected mistakes. These factors result in 

missing values, inconsistency data, drifting, noises etc. [140], and they are the main 

sources of ambiguities in data processing results. Therefore, data pre-processing includes 

cleaning, normalization, integration and reduction [141] is the foremost step before running 

the analysis. More specifically, data cleaning is used to remove noise and correct drifting 

in the data set. Data normalization (also known as transformation) that scales numeric 

attributes to a smaller range like 0 to 1 to improve the accuracy and efficiency of data 

processing algorithms. Data integration merges data from multiple measurements into a 

coherent data store, whereas data reduction reduces data size by performing principal 

component analysis (PCA). These techniques are not mutually exclusive; they work 

together in many cases [142].  

Among the mentioned pre-processing techniques, except for data reduction, all the 

rest are straightforward in terms of understanding and conducting. Principal component 

analysis (PCA) is the general name for a technique that involves sophisticated underlying 

mathematical principles to transform the instances that are composed of several inter-

correlated quantitative dependent attributes into smaller dimensional instances [143]. The 
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goal of PCA is to extract the most important information from the data; compress the size 

of the data set by keeping only the new orthogonal attributes called “principal 

components”; simplify the description of the data sets, and analyze the structure of the 

instances and attributes [144].  

The principal components are the linear combinations of the original attributes. 

Covariance is considered to be a measure of how well correlated two variables are, and 

PCA method makes the fundamental assumption that the components in the transformed 

instances should be as uncorrelated as possible. The first principal component represents 

the one with the largest possible variance. The second component is computed under the 

constraint of being orthogonal to the first one with the largest possible inertia. This 

procedure is continued until all the principal components are acquired. The values of these 

new attributes are called factor scores, and these factors scores can be interpreted 

geometrically as the projections of the instances onto the principal components [145]. 

Depending on the rank of the factor scores, the components that are most related to the 

others can be discarded. So that the X attributes in original instances can be replaced by 

Y variables (Y<X). In this way, the influence of noise is minimized as the original attributes 

are replaced with weighted averages; the interpretation and visualization are greatly aided 

by having a simpler view of all the variations [146]. The way for finding the principal 

components can be explained with five steps: Firstly, all the data is standardized to the 

same scale. Then calculate the covariance matrix of the data. After that, the first principal 

component can be decided as the sum of the squared distances from the points to this 

component is minimized. Consequently, a second component that is orthogonal to the first 

one is obtained. Finally, rotate the figure of all the scaled data in order to plot all the points 

into the PCA coordinate system and repeat the last three steps for all the rest principal 

components. 

In summary, real-world experimental data tend to be dirty, incomplete, inconstant, 

and sometimes redundant. Data pre-processing techniques can improve the quality of the 

raw data, thereby helping to improve the accuracy and efficiency of the subsequent 

processing procedure. Typical data processing pipeline usually proceeds through multiple 

stages as shown in Figure 4.2, and it should always be remembered that those 

methodologies are not mutually exclusive.  
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Figure 4.2. Summary of data processing workflow. 

4.2. Distance estimation  

The distance estimation task for this project is quantitative: the results take on 

numerical values. The problems with a quantitative response are referred to as regression 

problems [147].  Regression analysis is a branch of statistical methodology concerned 

with relating a response to a set of input variables. The goal is to build a regression model, 

which is a prediction equation, that enables us to predict response for given values of 

inputs and to do so with a small error [148]. Regression analysis of experimental data is a 

powerful statistical tool that provides a technique for building a predictor of a piece of 

interested information (i.e. the distance value in this project) and enables users to place a 

bound (an approximate upper limit) on the error of prediction. 

In regression analysis, the outcome of interest is called the dependent variable 

and demoted with Y, and the subscript on Y identifies the particular unit from which the 

experiment is taken. Most commonly, the regression is aimed at reflecting how the mean 
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of the output changes with changing inputs assuming the variance of Y is unaffected by 

different inputs [149]. The input variables that provide information on the behavior of 

dependent variables are incorporated into the model as predictors and being demoted by 

X. In addition, all the unknown constants in regression models are called parameters, 

usually being denoted by Greek letters. They control the behavior of the model. In this 

specific project, Xs are the capacitive responses obtained experimentally and Ys 

represent the corresponding distance values. The parameters are estimated to give out 

the best fit of each predictor to its corresponding output. In practical, when the newly 

measured capacitance is reported, the distance value can be directly calculated. 

 Among all the regression approaches, linear regression is the basic approach for 

supervised learning. Though it seems dull compared to most of the modern regression 

methodologies, it is a useful and widely used tool, especially in engineering problems. The 

simplest linear model, straight-line model, involves only one predictor X and states that 

the true mean of the dependent variable Y changes at a constant rate with the changing 

of X. The functional relationship between the true mean of Yi, denoted by 𝐸(𝑌𝑖), and Xi is 

the equation of a straight line as in (4.1). In which β0 is the intercept, the value of 𝐸(𝑌𝑖) 

when X = 0, and β1 is the slope of the line, the changing rate in 𝐸(𝑌𝑖) per unit change in X. 

The subscript i indicates the particular experimental unit, i = 1, 2, …, n.  

𝐸(𝑌𝑖) =  𝛽0 + 𝛽1𝑋𝑖              (4. 1) 

The observations on the dependent variable Yi are assumed as random outputs 

from populations of random variables with the mean of each population given by 𝐸(𝑌𝑖). 

The deviation of an observation Yi from its mean 𝐸(𝑌𝑖) is taken into consideration by 

adding an error term εi. εi represents all unexpected variations caused by important but 

omitted variables or by unexpected random phenomena. Consequently, the probabilistic 

model is modified as shown in Equation (4.2).  

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖              (4. 2) 

The random error εi plays an important role in the test of the hypotheses or finding 

confidence intervals for the deterministic portion of a regression model. It also makes it 

possible to estimate the magnitude of the error of prediction when the model is applied to 

predict the value of Y based on the new observations in the future [150]. εi has zero mean 

and is assumed to have common variance σ2 and to be pairwise independent. For 

purposes of making tests of significance, εi is also assumed to be normally distributed as 
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described in Equation (4.3), which implies that Yi is also normally distributed. NID stands 

for “normally and independently distributed”, and “0” and “σ2” inside the parentheses 

denote the mean and the variance respectively.  

𝜀𝑖  ~ 𝑁𝐼𝐷(0, 𝜎
2)              (4. 3) 

The random variation makes each pair of inputs provides different results so that 

a method is needed to combine all the information and finally give out one solution which 

is the “best” by some certain criterion. One way to quantitatively decide how well a model 

fits a set of data is to determine the extent to which the data points deviate from the line 

as illustrated in Figure 4.3. The magnitude of deviations, also be expressed as errors of 

prediction, are the differences between the experimental and the predicted values of Y. 

The sum of squares of the errors (SSE) that is described in Equation (4.4) gives greater 

emphasis to larger deviations of the points from the line.  

 

Figure 4.3. Visual straight-line fit and the variation. 

𝑆𝑆𝐸 =  ∑ (𝑌𝑖 − 𝑌�̂�)
2𝑛

𝑖=1               (4. 4) 

𝑌�̂� = 𝛽0̂ + 𝛽1̂𝑋𝑖              (4. 5) 

The “hat” is treated as “estimator of”. Thus, 𝛽0̂ and 𝛽1̂ are the numerical estimates 

of the parameters β0 and β1; 𝑌�̂� is the estimated mean value of Y. The deviation of Yi from 

its predicted value is the ith residual. The least squares estimation method uses the 

criterion that the solution gives the smallest possible sum of the SSE.  

Another indicator to measure the utility of a regression model is to quantify the 

contribution of the independent variable X in predicting the output Y. The indicator is the 
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coefficient of determination, denoted by R2. It reflects how much the errors of prediction of 

Yi can be reduced by using the information provided by Xi. If the value of Yi doesn’t 

correlate to the value of Xi, the best prediction of Yi is the sample mean �̅�. The sum of 

squares of deviation for the model �̂� =  �̅� is given as SSyy: 

𝑆𝑆𝑦𝑦 = ∑(𝑌𝑖 − �̅�)
2              (4. 6) 

If Xi contributes little or no information for the prediction of Yi, SSE and SSyy will be 

nearly equal. The SSE will decrease with more information provided by Xi, until the best 

case when SSE = 0. The coefficient of determination (R2) is the quantity represents the 

reduction in the SSyy that can be attributed to Xi, expressed as a proportion of SSyy. R2 is 

always between 0 and 1 as SSE ≤ SSyy. An R2 value closer to 1 means a greater proportion 

of variance is accounted for by the model. 

𝑅2  =  
𝑆𝑆𝑦𝑦−𝑆𝑆𝐸

𝑆𝑆𝑦𝑦
              (4. 7) 

As the functional relationship between the capacitive responses and the predicted 

vertical distance in this project is highly non-linear, more complicated regression models 

such as high-order polynomial model and exponential model will be applied and compared 

with experimental data. These two methodologies can be treated as extensions of the 

simple linear model, and the indicators being used to evaluate the performance of the 

models are SSE and R2.  

4.3. Profile recognition 

The regression methodologies as explained in last section are able to build 

quantitative equations based on the numerical experimental capacitive responses. The 

regression model could be applied to the practically obtained capacitances, and 

consequently makes a prediction on the distance information. It provides an efficient way 

to acquire the desired distance information accurately and continuously. However, the 

ambiguity of the sensor readings, which is a common problem for capacitive sensing, 

makes it difficult to infer the distance without knowing additional object characteristics. 

Considering the generated electric field, a small object that is close to the sensor might 

have the same capacitive reading as a larger object at an increased distance. It has been 

verified during the simulation stage that even if placed at the same distance, objects with 

different surface profiles could result in quite different capacitive responses. Typically, the 
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actual shapes that might be encountered in a manufacturing process can be approximated 

by simple geometric shapes that are easier to process, e.g. plate, sphere, and cylinder. If 

the approaching object can be pre-classified into one of the shape categories, the most 

suitable regression model can be selected so that more accurate distance values can be 

derived. The task of profile recognition is qualitative: the variables being predicted are 

discrete rather than continuous. Therefore, the adaptive classification tools are involved 

to solve the problem.   

Interpreting the experiments taken by the proposed sensing system requires the 

analysis of complex, multivariate and multi-dimensional data. In recent years, one analysis 

approach that has huge growth in popularity is the use of machine learning algorithms to 

train classifiers to decode behaviors and information of interest from the experimental data 

[151]. Machine Learning (ML) was firstly introduced in the late 1950’s as a technique for 

artificial intelligence (AI) [152]. Over time, it has been used extensively for a wide range of 

tasks including classification in various application areas.  

In this project, the promise of machine learning lies in its ability to exploit historical 

data to make an accurate prediction without the need of re-programming. More 

specifically, machine learning is essential in the application of our sensor for the following 

reasons:  The sensor is usually deployed in a complicated and dynamic environment so 

that it is impossible to build an accurate mathematical model to describe the system 

behavior. A large amount of experimental data can be accessed but extracting important 

correlations within them can be difficult. 

Existing machine learning algorithms can be categorized by the intended structure 

of the model, and most of them fall into one of the categories of supervised, unsupervised 

and reinforcement learning [153]. Supervised learning is the most studied and utilized type 

of learning: a labeled training set (i.e. predefined inputs and known outputs) is used to 

build the model. This model represents the learned relation between the input, output, and 

the system parameters. In the unsupervised setting, the training data does not contain any 

output information at all. Unsupervised learning can be viewed as the task of 

spontaneously finding patterns and structures in input data. The method being used is to 

classify the sample set into different groups by investigating the similarity between them. 

When the training data does not explicitly contain the correct output for each input, it falls 

into the category of reinforcement learning. The classifier will learn by interacting with its 
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environment and learn to take the best actions that maximize the long-term rewards of its 

own experience.  

In this project, all the training data is acquired by performing experiments with the 

sensor. Thus, input data (capacitive responses) together with its target (shape classes) 

are both known. Therefore, in this project, supervised learning algorithms including k 

Nearest Neighbor (KNN), Neural Networks (NNs), and Support Vector Machines (SVMs) 

will be investigated and applied.  

4.3.1. K nearest neighbors (KNN) 

The k-nearest neighbors (KNN) algorithm is one of the most basic supervised 

learning techniques. KNN  problems can be defined as: given a collection of data points 

and a query point in an m-dimensional metric space, find the data point that is closest to 

the query point [154]. The KNN algorithm predicts the outcome of a new observation by 

comparing it to k similar cases in the training data set, where k is defined by the analyst. 

The KNN approach “looks at” the training set X, estimates the conditional 

distribution of Y given X, and then classify an observation with highest estimated 

probability [155]. Given a positive integer k and an experimental observation x0, the KNN 

classifier identifies the k points in the training set that are nearest to x0, counts how many 

members of each class are included in the set, and returns the empirical fraction as the 

classifying result [156]. More formally: 

𝑃(𝑌 = 𝑗|𝑋 =  𝑥0) =  
1

𝑘
∑ 𝐼(𝑦𝑖 = 𝑗)𝑖∈𝛮0               (4. 8) 

𝐼(𝑒) =  {
1     𝑖𝑓 𝑒 𝑖𝑠 𝑡𝑟𝑢𝑒
0     𝑖𝑓 𝑒 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒

              (4. 9) 

Where N0 is the collection of the k closest points to x0, and I(e) is the indicate 

function as defined in Equation (4.9).  

Figure 4.4 provides a demonstration of how does the KNN algorithm work. The 

left-hand panel plots a two-class training dataset consists of a few observations that are 

denoted by blue and red dots. The point labeled by a black cross is the new observation 

needs to be classified. Suppose the value of k is 3. The algorithm will firstly identify three 

nearest data points to the black cross, as shown in the green circle. Two blue dots and 
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one red dots are included, resulting in the estimated probabilities of 66.7% for the blue 

class and 33.3% for the red class. Therefore, the KNN classifier gives out its prediction 

that the new observation belongs to the blue class. Furthermore, by applying the KNN 

approach to all the training data points for both classes, the corresponding KNN decision 

boundary can be drawn as shown in Figure 4.4 (b). Despite the fact that it is a simple 

approach, KNN can often produce a quite optimal classification result, and it is treated as 

a suitable distributed learning algorithm for wireless sensor networks [157].  

 

Figure 4.4. The KNN approach, using k = 3. (a) A test observation that is labeled 
with the black cross belongs to the most commonly occurring class: 
the blue class. (b) The KNN decision boundary for this specific data 
set is drawn with the black line. 

The choice of “k” has a drastic effect on the performance of the KNN classifier 

obtained. Figure 4.5 displays two KNN fits two sets of random data with different offset 

values using the values for k as 1 and 25 respectively. When k =1, the decision boundary 

is overly flexible and induces a Voronoi tessellation of the points. This corresponds to an 

overfit classifier that has low bias but very high variance. With the growth in the value of 

k, the algorithm tends to be less flexible and the generated boundary becomes closer to 

linear. This corresponds to a low-variance but high-bias classifier. As any regression 

setting, there does not exist a strong relationship between the training error rate and the 

testing error rate. Though the training error rate with k = 1 is 0, the testing error rate might 

be very high. In general, the usage of a more flexible classification methodology, the 

training error rate will decline but the testing error rate not necessarily decreases. The 

testing error rate exhibits a characteristic U-shape, decreasing at the beginning before 

raising again when the algorithm is getting excessively flexible and overly fit. In this 

example, the first approach in which k = 1 would not be able to give good predictions: it 

will result in higher testing error rates due to the overfitting. Choosing the proper level of 
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the flexibility is critical to the success of any statistical learning method. The best tradeoffs 

between bias and variance should be taken good care of in order to obtain the optimal 

classification result. 

 

Figure 4.5. A comparison of the KNN decision boundaries (solid black lines) 
obtained with different values of “k”. With k = 1, the decision 
boundary is overly flexible; whereas with k = 25, the generated 
boundary is closer to linear. 

The KNN classifier is simple and works quite well, provided it is given a good 

distance metric and enough labeled training data [158]. However, the main problem with 

KNN classifier is that it might not work well with high dimensional settings. This poor 

performance when dealing with high dimensional data is due to the curse of 

dimensionality: the method is no longer local. The trouble that the neighbors that are 

generally far away make KNN not a good predictor of the behavior of the input-output 

function at a given point.  

4.3.2. Neural Networks (NN) 

The term “neural work” has its origins in attempts to find mathematic 

representations of information processing in biological systems [159]. Inspired by 

biological neural networks, an artificial neural network, also referred to as “neural networks 

(NN)” has been applied broadly as effective models for statistical pattern recognition [160].  

A neural network algorithm derives its computing power through its massive 

parallel distributed structure and the ability to learn and generalize. Generalization refers 
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to the production of reasonable outputs for inputs that are not encountered during the 

learning procedure. Neural networks offer the following useful properties: A neural 

network, made up of an interconnection of nonlinear neurons, is itself nonlinear. 

Nonlinearity is highly important as most physical mechanism responsible for the practical 

input is inherently nonlinear. It is a nonparametric approach, an NN classifier estimates 

arbitrary decision boundary in the training data space by constructing an input-output 

mapping without invoking a probabilistic distribution model [161]. It is adaptive: NN has a 

built-in capability to adapt its synaptic weights to change according to the operating 

environment conditions. In the context of pattern classification, an NN provides information 

not only about which class an observation belongs to, but also about the confidence in the 

decision made. The massively parallel nature of the NNs makes them potentially fast in 

terms of computation, and thus well suited for implementation using very large scale 

integrated (VLSI) technology. These capabilities make it possible for NNs to find good 

approximate solutions to complex problems including wireless sensor networks [162], 

nonlinear hydrological processes [163], power electronics [164], and much more. 

In this project, the attention is restricted to one specific type of NNs that is proven 

to have greatest practical value, namely the multilayer perceptron [165]. The basic 

features of multilayer perceptron can be highlighted with the following three points. The 

model of each neuron in the network involves a nonlinear activation function that is 

differentiable. The network contains one or more hidden layers from the input nodes to the 

output nodes. The network exhibits a high degree of connectivity and the extent of which 

is determined by its synaptic weight.  

Figure 4.6 is the architectural graph of a multilayer perceptron with two hidden 

layers. To describe the multilayer perceptron in a more general form, the network shown 

in the figure is fully connected, that means any neuron located in any layer of the network 

is connected to all the nodes in the previous layer. The signal flow through the network 

progresses in a forward direction, from left to right on a layer-by-layer basis. In this 

network, there are two types of signals: function signals and error signals. A function signal 

is an input signal comes in at the input end of the network. It propagates forward through 

the network and finally emerges as an output signal. At each neuron of the network 

through which a function signal passes, the signal is calculated as a function of the input 

and the associated weights applied to that neuron. Thus, a useful function is performed at 

the output of the network. On the contrary, the error signal originates at the output neuron 



62 

of the network and propagates backward layer by layer throughout the network. The 

computation of an error signal by every neuron involves an error-dependent function. So 

each neuron performs two sorts of computations: the computation of the function signal 

appearing at the output side of the neuron and the computation of an estimate of the 

gradient vector. The hidden neurons act as feature detectors that are critical in the 

operation of the multilayer perceptron. They perform a nonlinear transformation on the 

input data into a new space called feature space, in which the classes of interest for a 

pattern-classification task might be more easily separated from each other.  

 

Figure 4.6. Architectural graph of a multilayer perceptron with two hidden layers  

Training a multilayer perception is a procedure by which the values for the 

individual synaptic weights are determined so that the relationship between an output and 

an input is accurately resolved. Many training methodologies are available in training the 

multilayer perceptron, among them, the back-propagation algorithm is a popular one. The 

term “back-propagation” was popularized in the late 1980s through the publication [166]. 

The training process can be divided into two phases: the forward phase and the backward 

phase. In the forward phase, the synaptic weights are calculated and the input signal is 

propagated through the network until it reaches the output. In this way, the changes are 

confined to the activation potentials and outputs of the neurons in the network. In the 

backward phase, the error signal is generated by comparing the output with the desired 

response. The resulting error signal is propagated through the network in the backward 

direction from the output to the input. During this process, successive adjustments are 

made to optimize the synaptic weight. The development of the back-propagation algorithm 
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represents a landmark in neural networks as it provides a computationally efficient method 

for the training of a multilayer perceptron.  

The implementation of the back-propagation algorithm is known as online training 

where the weights are adapted after each pattern has been presented. One alternative is 

batch training, where the weights are updated according to the summed error of all the 

patterns. In practice, there are much more training iterations that can be acquired.  

Though the multilayer perceptron illustrates a lot of benefits and is broadly used, 

one reason that prevents it from being applied in practice is it is difficult to implement and 

interpret. The initial problem being faced when using a multilayer perceptron is deciding 

the network structure: the number of layers and the number of nodes located in each layer. 

Technically, only one hidden layer is required if the function between the input and the 

output is smooth [167]. However, the optimum number of the hidden layers and the 

neurons is highly problem dependent, and there are no rules to help. Another factor that 

needs sufficient attention is given too many hidden layers and nodes, it is highly probable 

that the perceptron will eventually learn all the training patterns of overfitting. This problem 

becomes severer with noisy training date. When such an overtrained network is presented 

with new patterns, high error rates will show up. It is also to remember that the purpose of 

the training process is to achieve the best generalization on unseen data. The training 

procedure should be stopped when the performance of the multilayer perceptron on an 

independent test data reaches a maximum, which is not necessarily when the network 

error is minimized. Maximum generalization performance always occurs before the overall 

network training error reaches a minimum. 

4.3.3. Support vector machine (SVM) 

Another machine learning algorithm that became popular within recent a few 

decades for solving problems in classification, regression, and novelty detection is Support 

Vector Machine (SVM). It is originally developed and refined by Vapnik and his co-workers 

in 1990s [168]. In the context of pattern classification, the SVM constructs a hyperplane 

as the decision surface based on the training samples, in such a way that the margin of 

separation between examples from different classes is maximized [161]. This basic 

definition can be extended in a principled way to deal with more difficult cases with non-

linear separable patterns. 
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Initially, the SVM is a binary learning machine with some highly elegant properties. 

SVM is a kernel-based [169] algorithm that has sparse solutions so that the prediction for 

new inputs depend only on the kernel function evaluated at a subset of the training data 

points. So that the learning algorithm involved in the construction of support vector 

machine is also referred to as a kernel method. The SVM can be used to solve both 

classification and regression problems, however, it is proven to be able to make its most 

significant impact in solving difficult pattern-regression problems such as human action 

recognition [170], neuro-image analysis [171] and much more. 

The aim of support vector classification is to devise a computationally efficient way 

of obtaining optimal separating hyperplanes in a high dimensional feature space. Different 

generalization bounds exist, motivating different algorithms: optimization of the maximal 

margin, the margin distribution, the number of support vectors, etc [172]. The most 

common and well-established approach is the maximal margin classifier. It works only for 

data which are linearly separable in the feature space, and hence cannot be used in real-

world situations. Nonetheless, it forms the main building block for SVM. 

The maximal margin classifier optimizes the bound by separating the data with the 

maximal margin hyperplane, and the geometric construction of an optimal hyperplane for 

a two-dimensional input space is visualized in Figure 4.7. The training samples can be 

expressed as (xi, di), where xi is an input sample and di is the corresponding output (i. e. 

either +1 or -1). The equation of a decision surface in the form of a hyperplane that does 

the separation is: 

𝑤𝑇𝑥 + 𝑏 = 0              (4. 10) 

where x is the input vector, w is the adjustable weight vector, and b is a bias. For a given 

pair of weight vector and bias, the separation between the hyperplane and the closest 

data point is defined as “margin of separation”, denoted by ρ. The goal of an SVM is to 

find the hyperplane for which the margin of separation is maximized. In this case, the 

decision surface is called the “optimal hyperplane”, represented by the area in between 

the two dashed lines in Figure 4.7.  



65 

 

Figure 4.7. Illustration of the optimal hyperplane for linearly separable patterns 

To extend this idea to the multidimensional problems, suppose w0 and b0 represent 

the optimum values of weight vector and bias respectively. Consequently, the optimal 

hyperplane, now representing a multidimensional linear separation surface can be defined 

with: 

𝑤0
𝑇𝑥 + 𝑏0 = 0              (4. 11) 

The discriminant function as expressed in Equation (4.12) provides an algebraic 

measure of the geometric distance from any x to the optimal hyperplane [173]. Then, the 

input x can be described with Equation (4.13), where xp is the normal projection of x onto 

the optimal hyperplane and r is the desired algebraic distance. R is positive when xi 

belongs to the class of +1, and negative when xi is on the negative side.  

𝑔(𝑥) =  𝑤0
𝑇𝑥 + 𝑏0              (4. 12) 

𝑥 =  𝑥𝑝 + 𝑟
𝑤0

||𝑤0||
              (4. 13) 

Therefore, by definition, g(xp) should be 0, or, equivalently,  
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𝑟 =  
𝑔(𝑥)

||𝑤0||
              (4. 14) 

Given the training data set (x, d), the parameter pair of (w0, b0) must satisfy the 

following constraints: 

𝑤0
𝑇𝑥𝑖 + 𝑏0 ≥ 0       𝑓𝑜𝑟 𝑑𝑖 = +1              (4. 15) 

𝑤0
𝑇𝑥𝑖 + 𝑏0 ≤ 0       𝑓𝑜𝑟 𝑑𝑖 = −1              (4. 16) 

The particular training data points for which one of the constraints are satisfied with 

the equality sign are the “support vectors”. All the remaining samples in the training data 

set are completely irrelevant. The conceptual understanding of support vectors is those 

data points that lie closest to the optimal hyperplane and therefore the most difficult to 

classify. From the equations, maximizing the margin of separation between classes is 

equivalent to minimizing the Euclidean norm of the weight vector w. This highly distinct 

property makes the SVM a prominent tool in pattern recognition applications. The optimal 

hyperplane is unique in the sense that the weight vector provides the maximum possible 

separation between the data points from different classes.  

SVM originally separates the binary classes with the maximized margin criterion. 

However, the real-world problems including the problems need to be solved in this study 

require the discrimination for more than two categories. So extending SVM so that it can 

be suitable for more general cases where an arbitrary number of classes is important. 

Among all the proposals for modifying the SVM to the K-class case, the two most popular 

approaches are the “one versus one” and “one versus rest” [174].  

The one versus one (1V1) approach is a pairwise decomposition. It evaluates all 

possible pairwise classes and therefore constructs K(K-1)/2 individual binary classifiers. 

Applying each classifier to a test sample will generate one vote to the winning class. 

Finally, the test example will be classified to the class with more votes. Though the size of 

classifiers generated by 1V1 is large, it is still possible to achieve a fast train process due 

to the computation cost for each classifier is small. Moreover, the one versus one method 

is symmetric.  

The one versus rest (1VR) approach only constructs K separate binary classifiers 

for a K-class problem. Each time, comparing one class to all the remaining classes as a 

whole. The i-th class is trained using the data from the i-th class as positive examples and 
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all the other data as negative samples, and the resulting parameters can be demoted with 

βi. During the testing procedure, a test observation X is classified to the class for which 

βiX is the largest. As this amounts to a high level of confidence that the test sample 

belongs to the i-th class rather than any other classes. 

There is no clear evidence that one versus one method can achieve higher 

accuracy compared to alternative multi-class SVM methods, but Hsu and Lin claim in  

[175] that 1V1 is more practical due to its quicker training process. 

4.4. Cross validation 

As mentioned a couple of times in the preceding sections of this chapter, a 

minimum training error rate does not necessarily result in an optimal testing error rate. The 

test error is the average error that results from using a learning method to predict the 

response on new observations: the data that is not used in the training procedure. The 

training error can be easily calculated with the pre-known training samples, however, in 

contrast, the real-world testing error can be difficult to evaluate and be quite different from 

training error. In particular, the training error rate can dramatically underestimate the 

testing error rate [147]. A common mistake when applying the machine learning tool is 

about overfitting. Overfitting is the phenomenon where fitting the training data point overly 

well so that the training performance no longer indicates a decent testing performance, 

and might actually lead to the opposite direction [153].  

A very general and most widely used strategy that is able to provide a good 

estimation of the out-of-sample error rate and avoid overfitting problems at the same time 

is cross-validation (CV). The main idea behind CV is to split the data, one or more times, 

for optimizing the learning algorithm [176], each time by holding out a subset of the training 

examples and using the remaining samples to train the algorithm. After the training, the 

algorithm is applied to the held-out observations for estimating the testing error of the 

algorithm. These steps can be repeated for several times, and finally, the learning method 

that shows the best-estimated error will be selected.  

A general description of the CV methodology is given in [177]: CV generates 

several hold-out estimators of the testing error corresponding to different data splits. While 

one of these non-empty subsets is used for testing, all the rest examples are used for 
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training the model. So that the training data and the estimators are totally independent of 

each other. There are several CV approaches, with the k-Fold cross-validation being an 

efficient and popular one. 

 

Figure 4.8. A schematic explanation of a 5-fold CV. The set of observations from 
1 to n is randomly split into five non-overlapping subsets as denoted 
by the yellow bars. Each of them acts as a validation set once when 
all the remand data points denoted by the blue bar) acting as the 
training samples. 

Figure 4.8 provides a schematic display of a 5-fold CV. The k-folds approach 

involves randomly diving the training observations into k groups (i.e. k folds), of 

approximately equal size. The method begins by treating the first subset as the validation 

set, and the learning algorithm is fit on the remaining k-1 folds. The first mean squared 

error, MSE1, is computed on the samples in the first held-out fold. This procedure is 

repeated for k times, and each time, a different group of the observations is treated as the 

validation set. This process results in k estimates of the testing error, and the overall k-

fold CV estimate can be calculated by averaging all these values: 

𝐶𝑉(𝑘) =  
1

𝑘
∑ 𝑀𝑆𝐸𝑖
𝑘
𝑖=1               (4. 17) 

In practice, the rule of thumb is setting k = 5 or k = 10. The most obvious advantage 

of choosing such values is computation efficiency. There also can be other non-

computational but potentially more important advantages to performing 5-fold or 10-fold 



69 

CV, that involve the bias-variance trade-off. Performing a k-fold CV results in each training 

dataset contain (k-1)n/k observations. With the increasing of the value of k, the bias of 

estimates is getting smaller until an approximately unbiased estimate of the testing error 

since each training set contains almost all the samples. In addition to the bias, another 

source for concern in a validating procedure comes from the variance. In contrast, the 

variance will increase with a larger value of k. When performing k-fold CV, the estimated 

error is the average of the output of k fitted models. The outputs are less correlated when 

the overlap between the training sets is smaller, and the mean of highly correlated 

quantities has higher variance.  

In summary, the choice of the value for k is associated with the computational 

efficiency and the bias-variance trade-off. Practically, given these considerations, a 5-fold 

or 10-fold cross validation shows empirically to yield testing error rate estimates not 

suffering from high bias nor high variance problems. 
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Chapter 5.  
 
Evaluation results 

In the previous chapters, the detailed theoretical analysis of the fringing electric 

field sensor was explained. Finite element methods (FEM) simulations were performed to 

model the most suitable array structure for the capacitive sensor. The extended 

characterization of operation and the corresponding statistical learning methods were 

described.  

In this chapter, the hardware implementation of the sensing system with discrete 

components will be described in the beginning. In order to investigate the capabilities of 

the sensor and to observe its behavior properties in real application scenarios, a wide 

range of experiments are conducted. So that the performance of the sensing modalities 

can be experimentally assessed. Quantitative and qualitative statistical learning methods 

will be applied to the experimentally obtained capacitive responses to extract desired 

distance and surface profile information. The performance of different machine learning 

algorithms will be provided and compared in terms of classification accuracy and 

computation cost. 

5.1. Hardware implementation  

As described previously, the core component of the sensor is the sensing matrix 

that consists of a 4 × 4 electrode matrix, a 4 × 4 active shielding array, and a grounded 

backplane as shown in Figure 5.1 (a). The electrode matrix can be configured to form 

multiple mutual capacitors so that the approaching objects can be detected by the 

generated shunt electric field. The core structure of the sensor together with the 

complementary electronics are fabricated on a four-layer printed circuit board (PCB). The 

top three layers of the PCB serve as carriers for sensing matrix, active shielding matrix, 

and backplane shielding. Two analog switch matrix chips (AD75019 from Analog Devices) 

and required supplementary electronic components including bypass capacitors and 

resistors are fabricated on the bottom side. The photographs from both the top and the 

bottom view of the manufactured PCB are shown in Figure 5.1 (b). The two switch matrix 

chips provide independent switching for every sensing and active shielding electrode, so 
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that each of them may serve as the transmitter, receiver, or ground electrode. The runtime 

matrix reconfiguration is implemented through the two switch chips with each containing 

256 unbuffered analog switches in the form of 16×16 array. The chip can be digitally 

programmed so that any or all of the input terminals can connect to any or all of the output 

terminals [178].  

 

Figure 5.1. Hardware implementation of the sensor. (a) The mesh structure of the 
core sensor and magnified cross-section view close one electrode 
pair. (b) Photographs of the fabricated PCB from both top and bottom 
side. 

In order to provide proper electrode connections for desired detection 

functionalities, the switch matrix chips (AD75019) need to be appropriately programmed. 

There are three digital input signals that need to be generated from an ad-hoc controlling 

digital logic: SIN, SCLK, and PCLK. In particular, the control instruction, which determines 

the configuration of all the 256 switches inside AD75019 chip, is clocked serially into a 

256-bit shift register and then transferred in parallel to 256 memory bits driving the 256 

analog switches: the instruction is loaded serially via the SIN pin. At the rising edge of the 

serial clock input SCLK, data is loaded into the shift register. After the shift register is filled 

with the new 256 bits of control data, the parallel clock input PCLK will be activated (pulse 

low) to transfer the data to the parallel memory driving the switches that will hold their data 

as long as power supply is applied. 

To generate the control signals described above, a Field Programmable Gate 

Array (FPGA) board (Terasic DE1 board featuring ALTERA Cyclone II 2C20 FPGA device) 
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was added to the system. The FPGA was chosen as it allows a better control of the system 

timings as opposed to a microcontroller, its inherent parallelism matches well with the size 

of the control word, and its ready programmability ensures that future upgrades could be 

easily integrated into the system.  

VHSIC Hardware Description Language (VHDL) is a programming language used 

for modeling the behavior of physical devices and processes [179]. It was developed to 

address a number of recurrent problems in the development, exchange, and 

documentation of digital hardware [180]. It is involved in our project as the programming 

language due to its public availability, technology and process independence, large-scale 

design, and design reusability. The goal of the VHDL code is to use the FPGA internal 

clock to generate proper control signals for the cross-point switches, in particular, the 256-

bit control instruction word determining the sensing arrangement. Three input signals are 

applied to the FPGA, and three output signals are fed from the FPGA to the switches. The 

three inputs are clock (produced by the oscillator embedded in the FPGA), reset (which is 

active high), and serial data input. The outputs are, as described above, PCLK, SCLK, 

and SIN.  

SCLK is the serial clock input of the cross-point switch chip, and according to the 

AD75019 specifications, its frequency range is between 20 KHz and 5 MHz. As the FPGA 

internal oscillator works at 50 MHz, a clock divider is built by the code. The 256-bit control 

word is exported serially through SIN port following the AD75019 specifications. The setup 

and hold time of SIN with respect to SCLK are taken into consideration by a dedicated 

finite state machine (FSM) that utilizes the 50 MHz clock as a discrete interval to 

implement the looser timings of the AD75019. PCLK is the parallel clock signal for the 

cross-point switch chip, it will only be active (pulse low) after the entire 256-bit instruction 

word has been loaded, and then come back to high within 5ms. 

The generated digital signals usually suffer from glitches and unknown states 

during the transition, that may lead to some undesired values in the outputs. In order to 

get rid of these effects, three synchronized registers are added as the last stage of the 

signal path. Moreover, SIN_enable is used as an enable signal of a register R1, at each 

rising edge of SIN_enable, one single bit of the predefined data will be sent to SIN_internal 

signal. A set of predefined instruction words are configured into the FPGA to perform 

desired electrode connection patterns. There are two working modes: the user is enabled 
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to select any of the configurations by operating the switches on the FPGA board; all or a 

portion of the instruction words can be scanned automatically with a user-defined interval. 

The block diagram of the digital design is depicted in Figure 5.2. 

 

Figure 5.2. Block diagram of the designed digital controlling block. 

The verification of the designed digital module is performed in three stages. The 

RTL VHDL described in the previous subsection is initially simulated utilizing Mentor 

ModelSIM. The VHDL code is then synthesized and mapped on the available FPGA chip 

and the resulting post-synthesis gate-level netlist is simulated again with Mentor 

ModelSIM, back-annotating timing delays extracted from the QuartusII timing analysis 

engine. This second step helps ensure that no glitch or delay would affect the expected 

behavior already verified at RTL level. Finally, the resulting bit-stream was loaded to the 

FPGA chip and the FPGA board was connected to the PCB featuring the sensors array 

as described previously. Measurements were performed using the different sensor 

arrangements specifies in the AD75019 control words proving the solidity of the whole 

system. When simulating the VHDL code both at RTL and gate-level, a testbench was 

prepared according to expected functionality. According to both RTL and Post-Synthesis 

back-annotated simulations, the proposed code achieved proper results.  
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In addition, timing and power analysis are also performed under the power supply 

of 1.25V at the temperature of 125°C. For the timing performance, the clock period is set 

as 20ns, while all the delay and transition times were set as half-period. Synthesis was 

carried out with the “compilation” function inside Quartus. In terms of power analysis, it is 

done by both vector-less and VCD-based methods. Value Change Dump (.VCD) file in 

which every signal and every change of state during the simulation is recorded for every 

wire in the design can be generated during the simulation process. This VCD file can be 

fed to Quartus power analyzer for a detailed and accurate power analysis called VCD-

based analysis. The power analysis without applying this file is known as vector-less 

analysis. The results for timing and power analysis are shown in Table 5.1. Compared to 

a vector-less power analysis, static power and I/O power hold almost the same value, but 

the dynamic power decreases a little bit as vector-less analysis is based on statistical, 

pessimistic approximations. 

Table 5.1. Analysis results of the digital block on Altera FPGA @1.25V_125°C 

Timing Setup time 
slacks 

Hold time 
slacks 

Power Vector-less 
(mV) 

VCD-based 
(mV) 

Slow model 4.297 0.621 Static 47.36 47.36 

Fast model 6.801 0.241 Dynamic 2.47 2.43 

   I/O 20.45 20.24 

To obtain the capacitive responses, in the experimental process, an AC signal is 

applied to the transmitter and the mutual capacitance is determined by measuring the 

displacement current on the receiver side [181]. AD7746 CDC chipset manufactured by 

Analog Devices is acquired to conduct a comprehensive study on capacitive sensing 

performance. The chip kit is used to achieve capacitance measurement, quantize the 

measured capacitances, and exhibit results in terms of both capacitance values and digital 

strings via its standard communication interface [182]. A square-wave excitation signal 

with the frequency of 32 kHz and voltage of 2.5 V is applied on the transmitter during the 

conversion and the charges going through the mutual capacitor is sampled. Its sampling 

rate is set as 90.9 Hz, which means the time consumed for one single measurement is 11 

ms. Ultimately, measured data is stored and processed on an external computer. 

In order to investigate the capabilities of the designed sensing system as a whole 

and to observe its behavior properties in real application scenarios, a variety of 

prototypical experiments are conducted. Figure 5.3 shows the experimental setup and the 
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apparatus established in this study: a height-adjustable frame is used to support different 

vertical positions, parallel movement, and change of objects with different shapes. The 

value d, which respects the vertical distance from the object to the sensor, is controlled by 

the positioning stage. Objects are held by a rotatable beam so that a parallel motion can 

be realized. The plate can be replaced by simply attaching alternative objects to the 

replaceable joint for surface profile classification. The three objects being used are a plate, 

a ball, and a cylinder. Different object materials would have different influences on the 

sensor’s capacitive responses. However, the main working scenario of the designed 

sensor is detecting robot parts that are usually metallic in manufacturing processes, so 

the focus is put on investigating the effects caused by metallic objects. Moreover, the 

human body and tissues are mainly composed of water, which is conductive. So a metallic 

object can also be a good surrogate for a human body. Though studying the capacitive 

responses from different materials is not the purpose from the perspective of this work, 

some other group members did this research previously. All the three objects involved in 

the experiments are made of the aluminum. The area of the plate is 16 cm × 13 cm, the 

diameter of the ball is 6.5 cm, and the radius and the height of the cylinder are 1.5 cm and 

10 cm respectively.  

 

Figure 5.3. Experimental setup. 
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5.2. Signal pre-processing  

One of the main drawbacks when applying the capacitive sensors is their detection 

range and resolution are sensitive to environmental interference. The capacitance will 

change with the temperature and the humidity because the dielectric constant depends 

on the temperature, and the moisture in the air leads to a larger dielectric constant [183]. 

In addition, random disturbance from various sources including human factors will cause 

unexpected influences to the capacitive responses. It is impossible to maintain the 

optimum working condition for the sensor. 

The effects of the interferences should be explored and accounted for in order to 

minimize the uncertainty of the results. Signal pre-processing procedure that deals with 

the “dirty” raw data is primarily intended to compensate for these non-ideal effects. One 

common type of interference that is added to the signal is high-frequency noises 

generated from the environment. Another important aspect of raw data processing is about 

random-walk canceling. A possible cause of the drift is the impact of temperature 

variations on the capacitance [184]. In practical, it is essential to provide a well calibrated 

and adaptive baseline, which is defined as the capacitance acquired from the environment 

without the presence of an object [185].  

 

Figure 5.4. Comparison of raw capacitive data from long-term measurement and 
filtered result with both a dc notch and a low-pass filter. 
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Both high-frequency interference and random-walk should be handled in the raw-

data processing stage. A long-term measurement was carried out to monitor the intrinsic 

capacitance: the sensor was kept working without any approaching object. The 

experiment lasted for a whole week. A portion of data that consists of measured 

capacitance of 8 hours from a typical working day have been captured and plotted in 

Figure 5.4 with blue dots. From which it can be found that the detection signal is drifting 

at a rather low frequency compared to the moving speed of an object whereas glitches 

that represent interference are at a much higher frequency. Therefore, a dc notch filter is 

used to cancel random-walk. Additionally, a low-pass averaging filter with the cut-off 

frequency of 20 Hz that takes various samples in the close neighborhood and calculates 

an average value will be employed in this work to deal with high-frequency noise issues. 

The data filters are applied using Matlab [186] and the filtered signals are plotted on the 

same graph in red. After proper filtering, the drift issue is fully eliminated and the waveform 

becomes much smoother. 

5.3. Proximity sensing capability  

The primary task of the designed capacitive sensor is to provide vertical distance 

measurements with large detection range and enhanced accuracy. The proximity sensing 

capability is measured with respect to the four electrode connection patterns (i.e. Type I, 

Type II, Type III, and Type IV as described in Chapter 3) and the three objects with 

different shapes (i.e. the plate, sphere, and the cylinder). The vertical distance range of 

interest is from 1 cm to 20 cm. 

The experiment process is explained by taking the plate as the example. The 

implementation of basic distance estimation can be divided into three steps: Select one of 

the four electrode connection patterns by configuring the switches on the FPGA board. 

Then move the object continuously from 1cm to 20cm away from the sensor, and record 

the capacitance values at the same time. Lastly, feed the acquired original experimental 

capacitive responses and their corresponding vertical distance values to MATLAB curve 

fitting tool to generate the desired regression model. This procedure is repeated for every 

electrode connection types for the sake of comparison. The original experimental samples 

for Type I, II, III, and IV are plotted with black dots in Figure 5.5 (a), (b), (c), and (d) 

respectively. Fitted curves that describe the mathematical relationship between a 

capacitive value and its corresponding distance are denoted by the red lines. After trying 
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different regression methodologies including linear models, polynomial models, and 

exponential models, it can be figured out that the two-term exponential regression models 

are able to provide high-degree of fittings.  

 

Figure 5.5. Use the plate as the object. Measured capacitive raw data (shown with 
the black dots) and the fitting curve (denoted by the red lines) with 
respect to four electrode connection types. (a) Type I. The approach 
to determine the spatial resolution at a given point is explained: it is 
based on a linearly interpolated measurement series and the standard 
deviation. (b) Type II. (c) Type III. (d) Type IV. 

Regression model expressions together with corresponding coefficients and 

goodness indices (i.e. SSE and R-square) are also denoted in the figures. The sum of 

squared errors of prediction (SSE) measures the total deviation of the response values 

from fit values. An SSE value closer to 0 indicates the regression model has a smaller 

random error component and is more useful for prediction. R-square, also called the 

coefficient of determination, is defined as the square of the correlation between the 

response values and predicted values. It stands for how successful the fitting model is in 

terms of explaining the variation of the data, and a value closer to 1 means a greater 

proportion of variance is accounted for by the model. New data from real-world 

applications can be directly inserted into the desired model and the vertical distance can 

be predicted by calculation.  
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The measured initial capacitance (at the distance of 1cm) of Type I, II, III, and IV 

are 16.607 pF, 10.844 pF, 6.055 pF, and 20.572 pF, respectively. Their absolute 

capacitive values are quite different. It worth the effort to make a comparison between 

them in a normalized form as in practice, the capacitive changing ratio and the linear 

detection range are with more interest. This process is known as a data normalization 

which means adjusting the data to a notionally common scale. The applied method is 

linearly rescaling the range of data from each type to the range in [0, 1]. More specifically, 

given the maximum capacitive value Cmax and the lower bound Cmin for one data set, a 

normalized value is calculated by CN = (C-Cmin)/(Cmax-Cmin) to keep the values in the [0, 1] 

range [132]. In addition, different connection types result in different levels of immunity to 

noises due to their different signal strengths. To enable a more precise comparison, two-

term exponential regression model as a function of distance f(d) is created to generate 

fitting curve for each set of the normalized data. By this way, effects brought by high-

frequency noises and outliners can be eliminated. However, the  maximum and minimum 

values of f(d) are slightly off 0 and 1, so the last step is to shift and stretch the obtained 

curves to the range of [0,1]. The concept used here is also linear scaling: finding the 

minimum value fmin of the function that obtained at the minimum distance f(10) and the 

maximum output fmax that happens at the longest distance f(200). The normalized fitting 

function can be expressed as f(d) = (f(d)-fmin)/(fmax-fmin). By plotting this normalized fitting 

curves for all the electrode connection types, an intuitionistic and precise comparison can 

be conducted. 

 

Figure 5.6. Use the plate as the object. Normalized fitting curve as a function of 
vertical distance for all the four electrode connection types. 
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Normalized capacitive fitting curves with respect to distance values for all the four 

types are represented by the lines in Figure 5.6, with red line represents Type I, blue line 

stands for Type II, green line describes Type III, and black line for Type IV. Though with 

the smallest absolute capacitance, Type III exhibits the longest linear detective range as 

expected whereas Type I tends to have largest capacitance change in short distance. 

One most important aspect of this study is to offer the distance measurement with 

improved accuracy. In order to provide a quantitative analysis of the sensing accuracy, 

one more set of experiments are carried out and the principle to determine a system’s 

spatial resolution introduced in [187] is applied. The spatial resolution for a given distance 

d can be used as an indicator: the sensor is able to detect the defined object at this 

specified distance with the precision of rs(d). 

Table 5.2. Spatial resolution summary for the plate 

d(mm) 
σn(d) (fF) rs(d) (mm) 

Type I Type II Type III Type IV Type I Type II Type III Type IV 

30 0.148 0.134 0.053 0.117 0.285 0.571 0.304 0.475 

60 0.165 0.172 0.061 0.123 4.469 7.123 4.179 1.974 

90 0.109 0.109 0.056 0.119 13.408 11.031 6.463 5.226 

120 0.105 0.111 0.062 0.116 16.356 12.648 14.444 13.525 

150 0.124 0.124 0.061 0.102 19.590 14.264 24.321 19.706 

180 0.133 0.133 0.055 0.108 21.111 15.215 32.301 22.330 

A group of discrete distance values in between 1cm and 20cm (i.e. 3cm, 6cm, 9cm, 

12cm, 15cm, 18cm) has been chosen for estimation. For every single distance d, the plate 

is fixed for measurement, and a series of experimental capacitive samples are recorded 

for 10 seconds. This allows calculating basic statistical values of the sampled sensor 

measurements. The most important values are the arithmetic mean Sn(d) and the standard 

deviation σn(d), the latter being the main criterion to determine the sensor’s signal-to-noise 

ratio. Figure 5.5 (a) outlines the way of obtaining the spatial resolution rs(d) for any given 

distance d by using Type I as an example. At a certain distance d, the standard deviation 

is used to look for distances d1 and d2 that deviate from the mean value with ±σn(d), 

respectively. This lead to an estimation of rs(d) which is calculated as the absolute 

difference between d1 and d2. The calculated spatial resolutions for some discrete 

distances are summarized in Table 5.2. The sensing precision is deteriorating with the 
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increasing distance, as the capacitive changes are becoming small and noises have a 

greater influence. Type IV provides a better performance in terms of resolution at short 

distances, whereas Type II shows better immunity to noises at longer distances. 

 

Figure 5.7. Use the sphere as the object. Measured capacitive raw data (shown 
with the black dots) and the fitting curve (denoted by the red lines) 
with respect to four electrode connection types. (a) Type I. (b) Type II. 
(c) Type III. (d) Type IV. 

 

Figure 5.8. Use the sphere as the object. Measured capacitive raw data (shown 
with the black dots) and the fitting curve (denoted by the red lines) 
with respect to four electrode connection types. (a) Type I. (b) Type II. 
(c) Type III. (d) Type IV.  
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The previous two sets of experiments provide a comprehensive analysis of the 

sensor’s proximity evaluation performance with respect to the electrode connection 

patterns. The same measurements are repeated with the other two objects for the study 

of the influences brought by different shapes. The experimental capacitive values together 

with the corresponding fitted curves are depicted in Figure 5.7 and Figure 5.8 for the 

sphere and the cylinder, respectively. In these two cases, the two-term exponential 

regression models also provide good fittings for the acquired data and are able to predict 

the distance information with future measured capacitance values. 

 

Figure 5.9. Normalized fitting curve as a function of the vertical distance. (a) Use 
the sphere as the object. (b) Use the cylinder as the object 
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The same as the plate, the absolute capacitive values and noise levels acquired 

from the four electrode connection types are quite different. To get a clearer understanding 

of the influences caused by different electrode connection patterns, the raw capacitance 

data was normalized for creating regression models. Figure 5.9 (a) denotes the 

normalized fitting curve as a function of vertical distance for the sphere with all the four 

electrode connection types. The same plot for the cylinder is shown in Figure 5.9(b). One 

common observation exits for all the three shapes is that though with the smallest absolute 

capacitance values, Type III which only involves the two columns located at the edge of 

the sensor brings out the longest detection range. For both the plate and the sphere, the 

Type I which stands for an interdigital connection pattern exhibits the largest capacitance 

change when the object is relatively close to the sensor. Whereas for the sphere, Type IV 

that represent the ring-shaped connection has the similar character in short distances. 

Table 5.3. Spatial resolution summary for the sphere 

d(mm) 
σn(d) (fF) rs(d) (mm) 

Type I Type II Type III Type IV Type I Type II Type III Type IV 

30 0.183 0.163 0.129 0.142 1.425 0.95 0.475 0.539 

60 0.156 0.173 0.192 0.153 1.425 3.334 2.154 2.375 

90 0.168 0.160 0.216 0.121 5.701 3.890 7.136 6.179 

120 0.183 0.207 0.117 0.110 9.987 12.963 15.675 9.5 

150 0.165 0.196 0.167 0.132 14.725 9.037 19.011 12.351 

180 0.173 0.222 0.148 0.158 16.825 19.938 23.125 21.842 

Table 5.4. Spatial resolution summary for the cylinder 

d(mm) 
σn(d) (fF) rs(d) (mm) 

Type I Type II Type III Type IV Type I Type II Type III Type IV 

30 0.138 0.144 0.171 0.116 3.325 1.907 1.830 3.324 

60 0.136 0.163 0.158 0.126 3.857 8.075 4.275 6.671 

90 0.134 0.187 0.235 0.145 6.637 9.025 9.978 11.873 

120 0.162 0.212 0.138 0.124 11.877 13.333 16.625 13.759 

150 0.160 0.185 0.121 0.122 12.832 18.05 17.579 21.843 

180 0.137 0.183 0.201 0.143 13.47 22.815 23.042 24.207 

The above-mentioned spatial resolution calculation procedure is performed for the 

sphere and the cylinder to investigate the different performance achieved by the different 
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connection types in terms of resolutions. The calculated standard deviation σn(d) and the 

estimated spatial resolution rs(d) are summarized in Table 5.3 and Table 5.4 respectively 

for the sphere and the cylinder.  

In summary, for every object, different electrode connection patterns can provide 

quite different distance detecting efficiency in terms of linear detection range, capacitive 

changes, and the spatial resolution. The most suitable connection types can be selected 

depending on the primary requests in the most desired application scenarios. Overall, for 

a pre-defined object, the proposed sensor is able to detect any of the three objects at 

distances up to 18cm with relatively high resolutions. 

 

Figure 5.10. Measuring error caused by the confusion of the object’s shape. 
Measurement is performed with the electrode connection Type IV. 

Based on the obtained experimental results, the influences on the capacitive 

results caused by different object shapes can also be investigated. One common 

observation for all the three objects is the measured capacitance is rising with the increase 

of the object’s vertical distance. However, when looking into the detailed numbers it 

becomes clear that their absolute capacitive values and the changing slopes are quite 

different. After comparing all the obtained data, it is found that the electrode connection 

Type IV demonstrates the least measurement difference among those three objects. For 

these three objects, the experimental capacitive response as a function of vertical distance 

using Type IV is summarized to the same plot for comparison as shown in Figure 5.10. 

Even though better than the other three electrode connection patterns, it still generates 
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high-degree of uncertainty to the relation between capacitance and distance. That will lead 

to a decreased measurement accuracy or even a wrong distance estimation. This fact 

motivates the requirement for surface profile recognition. 

5.4. Profile recognition   

Accomplished the comprehensive evaluations on the proximity sensing capability, 

it can be found that with the shape information pre-known, the sensor is able to detect a 

metallic object with high resolutions. However, the relation between the vertical distances 

and the capacitive responses is highly dependent on the shape of the approaching object. 

Therefore, the spatial resolution drops dramatically if the sensor is confused about the 

shape. To improve the distance detecting accuracy, it is essential to eliminate the 

ambiguity on the surface profile of an object before or at the same time of performing the 

distance measurement. In this section, dynamic measurements are carried out with the 

same sensing platform, and multiple statistical learning methods are applied to extract 

finer information from the experimental data. 

We attempted two different paths to the ultimate goal of this study: estimate the 

distance of an approaching object with high accuracy. The first technique involves two 

stages: Firstly, recognize what is the most probable shape of the approaching object, then 

select the most suitable regression model accordingly and feed the measured capacitive 

values to it for distance calculation. The second technique sectionalizes the results with 

the criteria of both distance and surface profile information. In this method, three discrete 

vertical distances of 5cm, 10cm, and 15cm and three shapes including plate, sphere, and 

cylinder form the basis of the criteria. The target categories are defined by permutations 

between the distances and the shapes. The obtained capacitive responses are classified 

into one of the nine target classes, namely plate with the distances of 5cm, 10cm, 15cm, 

(P@5, P@10, P@15); sphere with the distances of 5cm, 10cm, 15cm, (S@5, S@10, 

S@15); cylinder with the distances of 5cm, 10cm, 15cm, (Cy@5, Cy@10, Cy@15). In this 

way, the consciousness of which object appears at what distance range can be 

accomplished in one step. 
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5.4.1. Experiment process 

The basic experimental procedure for both the techniques are similar: The FPGA 

is programmed to run an automatic sweeping of the different electrode connections used 

for surface profile recognition (as described in Chapter 3, Section 3.2.3), and the 

capacitive responses are captured and recorded by the capacitance-to-digital converter 

through an external PC. The effectiveness of the generated data often relies on the well-

designed behaviors of the experimental subjects. The “behaviors” under the context of this 

project represent a series of the object locations that will most likely add confusions to the 

learning tools but not contribute to the classification. The obtained data is then fused and 

labeled with the desired classes.  

 In the first technique, the primary task is to recognize the surface profile of the 

nearby object while any other non-geometric features including its vertical location and 

horizontal status are of less or none interest. During the testing, each of the three objects 

(i.e. the plate, the sphere, and the cylinder) is placed at 90 random locations within the 

detectable area. Every capacitive measurement will last for a short period of time. That 

allows the sensing system to have enough time for scanning all the internal electrode 

connection patterns as well as collecting multiple samples. In this process, the 

corresponding mutual capacitors are measured in turns resulting in an eight-dimensional 

or nine-dimensional feature vector (i.e. {C1-C8} or {CI-CIX}). Every time, ten feature vectors 

are generated and collected for completing the input data sets. This process is repeated 

for every location and every object, resulting 2700 feature vectors that can be divided into 

three surface profile classes with each consist of 900 feature. 

For the second technique, the goal is to reliably distinguish the specified vertical 

distance together with the object’s shape. In this case, the implementation is location-

awareness, but the horizontal status of the object is with less priority. A list of horizontal 

actions is executed by each object at every distance to enrich the dataset for each of the 

nine categories. The actions being chosen for each object are appropriate metaphors for 

potential situations that may bring confusions to the classification tools. The actions are 

also designed to make the interpretations of signals intuitively and as reproducible from 

time to time as possible. As a symmetrical shape, the sphere affects the sensing responds 

with its different horizontal locations. For every vertical distance, 30 different relative 

locations are investigated with the ball. Figure 5.11 (a) demonstrates five of the most 
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typical locations: above the center and the four corners of the sensor. On the contrary, for 

the plate, the most likely scenario that may cause confusions is tilting. Instead of only 

studying the flat position, 30 plate positions with different tilting angles are taken into 

consideration. Figure 5.11(b) denotes the tilting positions about one of the central axes of 

the plate, and the plate is also tilting along the other direction during the test. The in-plane 

rotations of the cylinder could disturb the classification, so a series of rotating positions as 

shown in Figure 5.11 (c) has been studied. The rotating interval is set as 6° so that 30 

different in-plane locations can be obtained by the cylinder. Thus, each class that 

represents one distance/shape category contains 30 independent data sets. 

 

Figure 5.11. Horizontal actions performed by different objects at one certain 
distance. (a) Several different locations for the sphere. (b) The tilting 
positions about one central axis for the plate. There are more along 
the other direction. (c) Some in-plane rotations performed by the 
cylinder. 

Data is collected by performing the capacitive measurements when maintaining 

the subject at one of the above-mentioned positions. Eight or nine mutual capacitors are 

measured in turns resulting in high-dimensional feature vectors. Repeat this process for 

10 times, as a result, 300 feature vectors are generated for each class and in total 2700 

input instances that can be acquired and labeled to nine classes.  

5.4.2. Principal component analysis (PCA) 

Principal component analysis (PCA) is a dimensional reduction and data 

compression tool. PCA can be used to reduce the large set of attributes to a smaller set 

but still contains most of the information. It is a mathematical procedure for identifying the 

patterns in data and expressing the data in a way that highlights the similarities and 

differences among variables. In this project, the number of attributes contained in each 

instance is either eight or nine, thus, compressing the dimension might not have a 
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significant impact on computational cost. However, PCA provides a good way to analysis 

the dependency behind the variables, and that will, in turn, help us understand the 

correlations among the data sets.  

 

Figure 5.12. The data set used for performing PCA. (a) The original experimental 
data. (b) The data set with the means being subtracted. 

The steps for performing a PCA is explained with one of the test datasets. The 

original data set is found in Figure 5.12 (a), it comes from the second classification 

technique by scanning and recording the values of the eight mutual capacitors. C1 to C8 
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are the eight variables for each complete scan process, and the number 0 to 8 represents 

one of the nine categories.  

The first step is to subtract the mean from each of the data dimensions. The mean 

values being subtracted are the averages across each dimension: all the C1 values have 

Sn(C1) subtracted and so on until C8. This step produces a data set whose mean is zero 

as shown in Figure 5.12 (b). After that, the covariance matrix is calculated. The covariance 

is always measured between two dimensions, and for our eight-dimensional data set, all 

the possible covariance values between all the different dimensions can be summarized 

in an 8×8 matrix as explained in Figure 5.13, on the left. In this matrix, down the main 

diagonal, each covariance value, which is between one of the dimensions and itself, 

represents the variance for that dimension. Since cov(a,b) = cov(b,a), this matrix is 

symmetrical about the main diagonal. The calculated covariance matrix for our data set is 

given in Figure 5.13 on the right side. It can be expected that all the capacitance values 

should increase/decrease together as the non-diagonal elements are all positive. 

(
𝑐𝑜𝑣(𝐶1, 𝐶1)⋯ 𝑐𝑜𝑣(𝐶1, 𝐶8)

⋱
𝑐𝑜𝑣(𝐶8, 𝐶1)⋯ 𝑐𝑜𝑣(𝐶8, 𝐶8)

)

(

 
 
 
 
 

0.0055  0.0026  0.0039  0.0043  0.0053  0.0267  0.0230
0.0026  0.0012  0.0018  0.0020  0.0025  0.0126  0.0108
0.0039  0.0018  0.0028  0.0031  0.0038  0.0190  0.0164
0.0043  0.0020  0.0031  0.0034  0.0042  0.0211  0.0182
0.0053  0.0025  0.0038  0.0042  0.0051  0.0258  0.0223
0.0267  0.0126  0.0190  0.0211  0.0258  0.1307  0.1128
0.0230  0.0108  0.0164  0.0182  0.0223  0.1128  0.0973
0.0219  0.0103  0.0156  0.0173  0.0212  0.1074  0.0926)

 
 
 
 
 

 

Figure 5.13. The 8×8 covariance matrix for the data set. 

Since the covariance matrix is square, the eigenvectors and eigenvalues for the 

obtained matrix can be calculated and expressed in Figure 5.14 (a) and Figure 5.14 (b) 

respectively. These eigenvectors are all unit eigenvectors (i.e. their lengths are all 1) and 

they are perpendicular to each other [188]. More importantly, the eigenvalues provide us 

with the information about the patterns located behind the data: the eight data sets are 

related mostly along the eigenvector that with the highest eigenvalue. In fact, the 

eigenvectors, also known as the principal components, can be ordered by their 

corresponding eigenvalues from highest to the lowest. This order represents the 

component’s order of significance. The components with less significance can be 

discarded without losing much information. 
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Figure 5.14. Calculated eigenvectors and eigenvalues. (a) The 8×8 matrix 
composed of all the eigenvectors. (b) The 8×1 matrix of eigenvalues 

After the process of calculating the eigenvectors of the covariance matrix, the lines 

that characterize the data can be extracted. The rest of the steps involves transforming 

the raw data so that it is expressed in terms of the eigenvectors. More specifically, our 

eight-dimensional original feature vector generates eight eigenvectors, if only the first p 

eigenvectors are selected as the principal components, then the dimension of the final 

data set is p instead of eight. The method of obtaining the final data is to take the transpose 

of the matrix that composed of the compressed eigenvectors and multiply it on the left of 

the original data set, transposed, as expressed in Equation (5.1).  

𝐹𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 =  (𝑒𝑖𝑔1⋯𝑒𝑖𝑔𝑝)
𝑇
× (𝐶1⋯𝐶8)

𝑇              (5. 1) 

5.4.3. Data preparation 

In this project, we tried two different classification techniques for recognizing the 

geometrical features of an approaching object. Moreover, we proposed two different 

capacitor scan types as described in detail in Section 3.2.3. That results in four different 

data sets with each data set representing the capacitive responses experimentally 

generated by one independent approach. All of these four datasets will be fed to the 

statistical learning tools for the purpose of training and testing. To be more specific, the 
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four approaches are the results of the combination between the classification techniques 

and the mutual capacitor scan types. 

In the first scanning method, eight mutual capacitors are swept. The electrode 

connection modes for generating these eight mutual capacitors are depicted in Figure 3.13 

(b). Six of the capacitors are formed by using two adjacent columns or two adjacent rows. 

The other two capacitors are generated between diagonal electrodes within the electrode 

matrix. This kind of scanning method results in the eight-dimensional feature vectors (i.e. 

{C1, C2, C3, C4, C5, C6, C7, C8}). 

The second scanning method is inspired by the performance of the ring-shaped 

electrode connection structure. Four neighboring electrodes are connected to act as the 

transmitter and all the rest electrodes in the matrix work as the receiver. In this attempt, 

nine mutual capacitors as shown in Figure 3.13 (c) are scanned in turn. Thus, the obtained 

feature vectors are nine dimensional (i.e. {CI, CII, CIII, CIV, CV, CVI, CVII, CVIII, CIX}). 

In terms of the classification techniques, the difference between the two techniques 

is whether or not it provides distance and shape information at the same time. The first 

technique divides all the acquired feature vectors into three classes depending on the 

shape information: the sphere, the plate, and the cylinder. In this technique, 900 

independent measurements are performed for each class so that in total 2700 instances 

are obtained.  

The second technique offers a finer classification that contains nine separate 

classes based on the distinct shape-position status. They are sphere with the distance of 

5cm, 10cm, and 15cm (S@5, S@10, and S@15); plate with the distance of 5cm, 10cm, 

and 15cm (P@5, P@10, and P@15); and cylinder with the distance of 5cm, 10cm, and 

15cm (Cy@5, Cy@10, and Cy@15). 300 measurements are carried out for each category, 

and thus, the total data points for the second technique is also 2700. 

The first data set is the combination of the first classification technique and the first 

mutual capacitor scanning method. Each feature vector contains eight attributes and is 

labeled to one of the three classes. The second approach still follows the first classification 

technique but with the second scanning mode: The feature vectors are nine-dimensional. 

The third and fourth data sets are both generated according to the second classification 

technique. Both of them are divided into nine classes. The feature vectors in the third data 
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set are eight-dimensional whereas feature vectors in the fourth data set are nine-

dimensional. The total numbers of observations for the four data sets are all the same that 

is 2700. Each dataset is split into two separate part with one contains 1800 samples for 

the purpose of training the learning machine, and the rest 900 different data points are 

used for testing.  

The intermediate step between acquiring raw capacitive values and applying the 

statistical learning tools is scaling the data. This step is important and almost required for 

every learning algorithm is because scaling can avoid attributes in greater numeric ranges 

dominating those in smaller numeric ranges. In addition, it can also avoid numerical 

difficulties during the calculation. In this project, we linearly scale each attribute in all the 

four datasets to the range of [-1, +1]. In summary, the characteristics of the four data sets 

are given in Table 5.5. 

Table 5.5. Description of the data sets  

Data 
set 

Classes Class 
Description 

Instances Attributes Attribute 
description 

Training 
data 

Testing 
data 

Scale 

1 3 Shapes 2700 8 6 adjacent 
column/row 
capacitors + 
2 diagonal 
capacitors 

1800 900 [-1,1] 

2 3 Shapes 2700 9 9 capacitors 
between 4 
neighboring 
electrodes 
and others 

1800 900 [-1,1] 

3 9 Distance & 
shape 

2700 8 6 adjacent 
column/row 
capacitors + 
2 diagonal 
capacitors 

1800 900 [-1,1] 

4 9 Distance & 
shape 

2700 9 9 capacitors 
between 4 
neighboring 
electrodes 
and others 

1800 900 [-1,1] 
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5.4.4. K nearest neighbors (KNN) algorithm for classification 

 

Figure 5.15. (a) Training accuracy vs. “K”. (b) Testing accuracy vs. “K” 

The k-nearest neighbors (KNN) model is a very simple but powerful tool that has 

been widely used in many applications and particularly in classification tasks [189]. In this 

project, MATLAB KNN function is applied to perform the classification on the 

abovementioned four data sets. Each sample is then classified according to the class 

memberships of its “k” nearest neighbors, as determined by the Euclidean distance in the 

proposed eight or nine-dimensional space.  

The performance of KNN classification tool is highly dependent on the application 

specification “k” so we study the impact of varying “k” in terms of the classification 

accuracy. The third data set which provides both the distance and the shape information 

at the same time is used for this investigation. Every observation in this data set is eight-

dimensional and is labeled as one of the nine classes. Figure 5.15 summarizes the training 

accuracy and the testing accuracy as a function of different values of k in (a) and (b) 

respectively. In this study, k varies from 1 to 100, with the step length of 1 when increasing 

k from 1 to 10 and 10 after that. As can be expected, when setting the number of k to be 

1, there is no error exists in the training set, however, the testing error rate is not optimal. 

The training error rate drops slightly with the increase of the k, and the testing error 

experiences a small upward trend at the beginning but falls after the highest point. In this 

case, the change of k does not have too much effect on the improvement of error rate in 

terms of training and testing. It can also be observed that even though with a high training 

accuracy, the performance on the testing data is relatively poor. 

The KNN tool categories query points based on their distances to points in a 

training data set. The most commonly used distance metric for KNN classifier is Euclidean 

distance, but there are several more distance metrics can also be applied for the purpose 



94 

of KNN classification. These distance metrics include standardized Euclidean distance, 

Mahalanobis distance, city block distance, and Chebyshev distance. Using different 

distance functions might affect the performance of the KNN classifier.  

To measure the “distance” between points X and Y in a feature space, the 

aforementioned distance metrics are the results of different distance functions. Given A 

and B are represented by feature vectors X = (x1, x2, …, xm) and Y = (y1, y2, …, ym) where 

m is the dimension of the feature space. The Euclidean metric is the straight-line distance 

that can be expressed as: 

𝑑 (𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛) =  √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑚

𝑖=1               (5. 2) 

To balance out different contributions, some form of standardization is performed 

to the original data points. The conventional way to do this is to transform the variables so 

that they all have the same variance of 1 [190]. The transformation is commonly done as 

(original value – mean)/standard deviation, so the standardized Euclidean distance can 

be expressed as follows where s stands for the standard deviation. 

𝑑(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛) =  √∑ (
𝑥𝑖−𝑚𝑒𝑎𝑛𝑥

𝑠𝑥𝑖
−
𝑦𝑖−𝑚𝑒𝑎𝑛𝑦

𝑠𝑦𝑖
)2𝑚

𝑖=1               (5. 3) 

Mahalanobis distance is the distance between two points in multivariate space, it 

measures the distance relative to the centroid. It solves the problem when there are more 

than three variables, and some of these variables are correlated. If C is the sample 

covariance matrix, the Mahalanobis distance can be calculated with: 

𝑑(Mahalanobis) =  √(𝑋 − 𝑌)′𝐶−1(𝑋 − 𝑌)              (5. 4) 

City block distance is the shortest distance between the two points is along the 

hypotenuse. More specifically: 

𝑑(city block) =  ∑ |𝑥𝑖 − 𝑦𝑖|
𝑚
𝑖=1               (5. 5) 

Chebyshev distance, also known as maximum metric, is a metric defined on a 

vector space where the distance between two vectors is the largest of the differences 

along any coordinate dimension: 

𝑑(Chebyshev) = max |𝑥𝑖 − 𝑦𝑖|              (5. 6) 
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Figure 5.16. KNN performance as a function of different distance metrics (K = 10). 

The performance of KNN classifiers using different distance functions is tested with 

data set 3 and with the value of “k” equals to 10. The average testing time it consumes is 

0.12 s. Both training accuracy and testing accuracy result from all these distance metrics 

are plotted with the histogram as depicted in Figure 5.16. From which it can be observed 

that the training accuracies are all good (greater than 99%) regardless of the involved 

distance functions. In terms of testing accuracy, Mahalanobis function results in the best 

performance (86.56% testing accuracy) whereas the lowest testing accuracy (59.22%) 

comes from Chebyshev metric. This result indicates that some attributes inside this data 

set (data set 3) might be correlated to some other attributes. 

The performance of KNN classifier is tested with all the four different datasets for 

comparison. Both the training accuracy and testing accuracy are provided in Table 5.6. 

From these numbers, it can be observed that the KNN classifier is able to achieve a high 

training accuracy (higher than 90%) and better performance for the tasks with fewer 

categories. When classifying the data into three classes, the second data set that each 

observation has nine attributes exhibits higher training and testing accuracies compared 

to the 8-dimensional datasets. That gives us a guidance on the choice of electrode 

connection patterns: measuring the mutual capacitors between four neighboring 

electrodes and all the rest electrodes as a whole is able to provide more information in 

distinguishing among the three shapes. However, when trying to perform a finer 
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classification with more categories, it is hard for KNN to give out a satisfied result. The 

testing accuracies with both the two data sets are 65.11% and 58.11%, respectively. 

Table 5.6. KNN classification performance with different data sets 

KNN K = 10 

Data set 1 Data set 2 Data set 3 Data set 4 

Training accuracy 93.11% 95.54% 99.67% 91.17% 

Testing accuracy 75.33% 95.89% 63.89% 58.11% 

In addition to the low testing accuracy, another concern when applying KNN 

classifier is it only reveals the resulting classes, not provides the probability information. 

This disadvantage prevents it from being used for the more detailed analysis of the object’s 

geometrical features. As a simple algorithm, its computational cost is very small, and the 

needed testing time is much less than 0.1 ms. In summary, KNN classifier can provide 

high testing accuracy and small computational cost classification solutions for simple 

tasks. However, for more complex situations with more categories, its performance is 

insufficient.  

5.4.5. Neural networks (NN) 

Neural networks (NN) gather their knowledge by looking for the underlying patterns 

and the relationships between the input attributes and the target classes in the data. NNs 

learn through experience, not from programming. This feature makes the NN a promising 

classification technique for our project where the relationship between the experimental 

capacitive data and its corresponding category is non-linear. An NN is formed from 

multiple artificial neurons, connected with coefficients (weights) that constitute the neural 

structure, and organized in layers [191]. During the training process, the inter-neuron 

connections are optimized until the error in predictions is minimized and the network 

reaches the specified level of accuracy.  

In this project, the NN using supervised training and back-propagation rule is 

applied as it performs well at prediction and classification tasks. This type of network is a 

system of fully interconnected neurons organized in the input layer, the output layer, and 

the hidden layers between them. According to the theory presented in [192], most 

functions can be approximated using a single hidden layer. So in this project, the number 

of hidden layers is selected as one without further investigation. The hidden neurons are 
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part of the large internal pattern that determines a solution to a problem by communicating 

with other neurons. They are the building components of the neural networks, and the 

number of hidden neurons has a significant effect on the classification performance. In 

this section, the study of different numbers of hidden neurons is performed. 

For classification problems, the NN goal is to model the posterior probabilities of 

class membership, conditioned on the input variables. In order to provide a better 

estimation of the performance of an NN, a more appropriate error function, the cross-

entropy is considered. The concept of entropy was originally developed by physicists in 

the context of equilibrium thermodynamics and later introduced into information theory by 

Shannon [193]. The differences of information content between two probabilities 

distributions are measured by cross-entropy (CE), which is a lower convex function [194]. 

The loss function for classification problems can be constructed by cross-entropy [195] as 

expressed in Equation (5.7). 

𝐿𝐶𝐸 = −
1

𝑁
∑ 𝑦𝑛

𝑇 log𝑃𝑛
𝑁
𝑛=1               (5. 7) 

where the log(𝑃𝑛) is an element-wise logarithmic function, and 𝑃𝑛 is the output of the 

network. The cross-entropy holds several theoretical advantages over other error 

functions including squared error cost function. It is a log-linear error function so that it is 

impacted less by the outliners. It depends upon the relative errors of the network outputs, 

hence, cross-entropy could perform equally well on both large and small target values 

because they tend to result in similar relative errors. Cross-entropy minimization technique 

is frequently applied in the optimization of the classifier. Therefore, cross-entropy is used 

as the indicator for the training and testing performance in this study. 

The same as the KNN classifier, the third data set in which the eight-dimensional 

feature vectors are targeted to nine classes is used for studying the NN algorithm 

parameters. MATLAB Neural Pattern Recognition tool is applied to perform the 

classification task. The neural networks being tested all contain a single hidden layer with 

the neurons varies from 1 to 10. Too few hidden neurons will hinder the learning process 

and too many will depress prediction abilities through overtraining. By increasing the 

number of the hidden neurons the NN could more closely follow the topology of the training 

dataset. However, exceeding an optimum number might result in overfitting and lower 

testing accuracy. The networks are trained in multiple epochs, in which all data from 

training corpus are sequentially presented. Neuron weights are initialized to small values, 
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and the standard back-propagation algorithm with stochastic gradient descent is used to 

train the networks [196]. After each epoch, the neural network is tested on the validation 

data. If log-likelihood of the validation data increases, the training process continues in 

new epoch until no significant improvement can be observed. The results are summarized 

in Table 5.7, in addition to the achieved cross-entropy and the number of epochs, the 

training time consumption is also included in this table. 

Table 5.7. Neural network results with respect to the number of neurons 

Neurons 1 2 3 4 5 6 7 8 9 10 

Time 9s 15s 13s 16s 17s 56s 20s 67s 43s 49s 

Epochs 69 102 92 116 122 393 146 462 311 351 

Testing 
CE 

0.114 0.0864 0.0882 0.0516 6.45e-
3 

1.42e-
4 

6.62e-
3 

6.41e-
7 

2.36e-
5 

1.46e-
7 

Testing 
accuracy 
(%) 

89.23 91.72 91.56 94.97 99.36 99.99 99.34 100 100 100 

 

Figure 5.17. Neural network training performance. (a) Testing accuracy and 
training time consumption as functions of the number of neurons. (b) 
Testing cross-entropy as a function of epoches used.  

From Table 5.7, it can be observed that the more neurons being used in the hidden 

layer, the better performance (the lower cross-entropy values and higher accuracies) the 

network can achieve. However, better performance is gained with the cost of larger 

computational cost: The larger number of neurons leads to taking more epochs to meet 

the minimum cross-entropy criterion. The testing accuracy and the training time 

consumption as functions of the number of neurons are shown in Figure 5.17 (a). When 

the number of neurons reaches 5, the testing accuracy is greater than 99%, and the 
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training time consumption which is 17s, is still within a moderate range. The required 

testing time consumption is 0.13 s. So the number of neurons is hereby selected as 5.  

The NN performance in terms of training CE and testing CE with respect to the 

epochs is plotted in Figure 5.17 (b). In this case, the best performance is achieved at 

epoch 116. The training accuracy and the testing accuracy are similar while the training 

CE is slightly lower. Moreover, the training confusion matrix and the testing confusion 

matrix are given in Figure 5.18. The network can provide almost perfect classification 

results with both training data and testing data.  

 

Figure 5.18. Neural network confusion matrices. (a) Training confusion matrix. (b) 
Testing confusion matrix 

Again, which of the different capacitor sweeping modes can provide the best 

classification performance is one of the issues of interest. In this investigation, the number 

of hidden layers and the number of the neurons are set as one and five respectively. The 

neural network training results with all the four data sets are summarized in Table 5.8. For 

classification tasks involve more categories, the performance of NN is similar with either 

eight-dimensional or nine-dimensional feature vectors. The fourth data set is able to 

provide a slightly higher accuracy with a little less time consumption. However, the 

different scanning patterns lead to quite different results for classifying the data into three 

different surface profile classes. Training with data set 2 results a much lower cross-

entropy with less training time.  
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Table 5.8. NN classification performance with different data sets 

NN Neurons = 5 

Data set 1 Data set 2 Data set 3 Data set 4 

Time 2s 1s 17s 16s 

Epochs 27 29 122 110 

Cross-entropy 0.161 6.54e-7 0.00645 0.00219 

Testing Accuracy 85.13% 100% 99.36% 99.38% 

In summary, the neural network is a powerful classifier to solve the recognition 

problems in this project. It provides high testing accuracy with every data set for each 

classification task. The only concern when applying NN is the high computational cost, 

which might restrict its usage in high-frequency systems.  

5.4.6. Support vector machine (SVM) 

As the sensing capacitance values are grouped into eight or nine-dimensional 

vectors for the purpose of profile recognition, the support vector machine (SVM) with a 

non-linear kernel function is employed. SVM is a classification tool which maps the 

features into a high-dimensional feature space and constructs a hyperplane to separate 

binary classes. It has been for instances proven successful for robotic arm control [197] 

and for patient locomotion-mode identification [198]. In addition to the high-dimensional 

feature, SVM classifier is selected as a promising candidate because it can classify 

accurately using nonlinear boundaries when linear boundaries are difficult to define. In this 

study, LIBSVM [199] which supports “one-against-one” (OAO) multiclass classification 

and employs 5-fold cross-validation is used.  

The third data set that contains eight-dimensional feature vectors is fed to LIBSVM 

package for model training and new samples testing. LIBSVM supports for multiclass 

classification as well as estimating class-conditional probabilities for any given feature 

vector. SVM classification accuracy, defined as the percentage of correctly classified 

testing samples out of the total testing data, is dependent on the algorithm parameters β 

and γ. Cost parameter (β) determines various different trade-offs between computational 

cost and accuracy, and gamma (γ) defines how far the influence of a single training sample 

reaches. It is not known beforehand what combination of β and γ pair could lead to the 

best testing result for any given problem, so a series of different parameters are tested 
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with the experimental data set in this study. The investigated values for gamma varies 

from 0 to 8, and the range of studied cost parameter is 0 to 600. The impact of cost 

parameter and gamma on overall recognition accuracy is demonstrated in the 3D plot 

Figure 5.19. It can be observed that the overall testing accuracy is increasing from 74.67% 

to 90.33%, and it tends to be stable and at a relatively high level with moderate β and γ. 

As the definition of the cost parameter β, a larger value of β tends to consume more 

computational resources, so the parameter pair of β = 200 and γ = 4 is selected for this 

specific task. 

 

Figure 5.19. Impact on testing accuracy of SVM algorithm parameters: cost 
parameter (β) and gamma (γ) 

For a more comprehensive investigation of the performance of the SVM classifier, 

the classify probabilities are tested. Nine new experimental data points, each belonging to 

one of the 9 classes, are provided for classification. The estimated probabilities are 

summarized in Table 5.9. In most cases, surface profile together with distance information 

can be recognized with high confidence (more than 95% probability). However, though 

classifying to the correct category, the boundaries among plate at 5 cm, cylinder at 5 cm 

and sphere at 10 cm are ambiguous to some extent. 
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Table 5.9. Confusion matrix with SVM classifier (%) 

Actual 

class 

Estimation class 

S@5 P@5 Cy@5 S@10 P@10 Cy@10 S@15 P@15 Cy@15 

S@5 95.158 0.914 1.031 0.257 0.0658 0.0547 0.217 0.0591 0.0233 

P@5 0.227 46.055 38.052 5.875 0.0386 0.0328 0.0631 0.0374 0.197 

Cy@5 0.165 38.820 42.923 45.900 0.0330 0.0280 0.0479 0.0322 0.0898 

S@10 0.148 10.663 14.003 47.050 0.0300 0.0255 0.0451 0.0292 0.0759 

P@10 0.0261 0.524 0.588 0.35 99.677 0.0026 0.0766 2.565 0.0276 

Cy@10 0.0229 0.458 0.514 0.119 0.0037 99.689 0.0647 0.449 0.0240 

S@15 0.159 0.733 0.824 0.190 0.0954 0.0787 99.253 0.0649 0.0082 

P@15 0.0302 0.611 0.686 0.158 0.006 0.0476 0.0957 96.726 0.0317 

Cy@15 4.064 1.220 1.377 0.314 0.0497 0.0416 0.134 0.0365 99.523 

The performance of the SVM classifier might be influenced by using different 

electrode connection patterns. In order to figure out the most suitable pattern, all the four 

data sets are fed to the SVM algorithm for the purpose of training and testing. The selected 

values for the cost parameter (β) and gamma (γ) are 200 and 4, respectively. The obtained 

training accuracy and testing accuracy are listed in the Table 5.10, and the average testing 

time consumption is 0.043 s. From this table, it can be observed that SVM performance is 

highly dependent on the choice of sweeping mode. For the classification task with fewer 

categories, dataset 2 that scanning the nine mutual capacitors between the four 

neighboring electrodes and all the other electrodes shows superior to the other sweeping 

mode. Using dataset 2 provides a perfect SVM classifying performance: both the training 

accuracy and the testing accuracy is 100%. On the contrary, for the task of classifying the 

data points to finer distance/shape categories, data set 3 that contains 8-dimensional 

feature vectors is more suitable. Though with the similar training accuracy, the testing 

accuracy with data set 3 is much higher than with data set 4 (90.33% vs. 66.57%). 

Table 5.10. SVM classification performance with different data sets 

SVM Β = 200; γ = 4 

Data set 1 Data set 2 Data set 3 Data set 4 

Training accuracy 80.94% 100% 99.94% 91.44% 

Testing accuracy 63.33% 100% 90.33% 66.57% 

Overall, the multi-class SVM method can work as a powerful tool for both 

classification tasks with suitable choice of the data sets. The computational time 

consumption for one single classification is less than 0.1ms that is much faster than the 

required sensing frequency (tens of Hz). Moreover, the SVM method can be cascaded to 

complete more complex classification tasks for broader applications.  
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After performing the surface recognition task with the three different classifiers, 

their performance is summarized and compared with Figure 5.20. In this figure, each bar 

stands for the testing accuracy acquired from the combination of a certain classifier and 

one specific dataset. It can be verified that the three surface profiles that are most 

frequently encountered in the manufacturing environment can be recognized with all of 

the three classifiers. Moreover, the surface profile information together with three discrete 

vertical distances can be identified at the same time with high confidence by using the 

more advanced machine learning tools (Neural Network and Support Vector Machine). 

Generally, the NN classifier provides the best classifying results, but its computational cost 

is also the highest. By adding the surface profile recognition procedure, the ambiguity 

brought by the different shapes can be eliminated. Therefore, the most suitable regression 

models presented in section 5.3 can be selected, and the accuracy of distance estimation 

will be improved. 

 

Figure 5.20. Comparison of different classifiers in terms of testing accuracy 

5.5. Parallel motion tracking  

The last functionality that can be achieved by the same sensing system is tracking 

an object which moves in parallel with the sensor. In this task, the aluminum plate is used 

to simulate the parallel movement. Initially, the lateral distance from the center of the 

moveable aluminum plate to the left edge of the sensor is 10cm. Then it moves along the 

reference axis, which in this case is x-axis, towards until exceeds the right edge of the 
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sensor for 10cm. For this task, more attention is paid to the movement direction, whereas 

the absolute vertical distance is of secondary interest. So the vertical distance is always 

kept as 5cm. For every 1 cm of displacement, the electrode matrix was programmed to 

scan the three mutual capacitors (C1, C2, and C3) described in Figure 3.12 (b). Thus, the 

trajectory history of the target object has to be analyzed continuously.  

 

Figure 5.21. Parallel motion tracking. 

The acquired capacitive readings along with the movement sketch are plotted in 

Figure 5.21 with red, blue, and green dots. As can be seen, the presence of an object is 

detected reliably by employing any one of the three capacitors, and the moving direction 

can be tracked by combining all the configurations together. 

5.6. Distance evaluation capability on a robot 

In the previous sections, the performance of the designed capacitive sensor is 

verified in the domain of lab equipment. In this section, its behavior properties in robotic 

applications will be investigated with an industrial robot KUKA LBR iiwa. The robot is a 

lightweight robot with a 7-axes jointed-arm. All drive units and current-carrying cables are 

installed inside the robot so that it can autonomously move and transport objects. It has 

the capability of orienting itself independently in its surroundings and moving into positions 

for automation tasks with millimeter precision [200].  
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Figure 5.22. Experimental setup with KUKA robot. 

To verify the shape classification would improve the accuracy of distance 

measurement, a series of experiments are conducted with the KUKA robot. The 

experimental setup is illuminated with Figure 5.22, and the KUKA robot is involved to 

replace the height-adjustable frame. The object is held by the robot, and the robot is 

programmed to perform pre-defined movements with high accuracy. The sensing 

electrode matrix is put underneath the robot arm which grips the desired object; the inner 

connection of this matrix is controlled through the cross-point switch by the FPGA; the 

sensed capacitive signals are acquired and quantized by the CDC chipset. Again, the 

three objects include a plate, a cylinder, and a ball are used exchangeably for the purpose 

of shape recognition.  

The first set of experiments are carried out for investigating the distance 

measurement capability. The capacitive responses are measured with respect to the four 

electrode connection types (i.e. Type I, Type II, Type III, and Type IV with detailed being 

explained in Chapter 3) and the three objects with different shapes (i.e. plate, sphere, and 

cylinder). The vertical distance range of interest is from 1 cm to 20 cm. 

The distance estimation functionality can be practically achieved with three steps: 

The sensor’s inner electrode connection type is pre-selected by properly configuring the 

FPGA. Then program the robot to move the object from 1cm to 20cm vertically away from 
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the surface of the sensor with a constant speed, at the same time, the capacitive values 

are measured and recorded. The final step is creating the statistical regression model, 

that is done by sending the acquired capacitive responses and their corresponding 

distance values to MATLAB curve fitting tool. This experimental procedure is repeated for 

each electrode connection type for all the three objects. So that the performance 

differences can be compared. 

For the plate, the raw experimental capacitive samples acquired by all the four 

electrode connection types are plotted with black dots in Figure 5.23. Fitted curves that 

stand for the mathematical formulas describe the relationship between a capacitance 

value and its corresponding vertical distance are denoted by the red lines. In this case, 

the two-term exponential regression models are able to provide high-degree of fittings. 

More specifically, the sum of squared errors of prediction (SSE) is close to 0 indicating the 

model has a small random error and the coefficient of determination R-square is almost 1 

meaning that a great proportion of variance is accounted for by the model. In real-world 

applications, the vertical distance can be predicted with high confidence by feeding the 

measured capacitance to the desired regression function. 

 

Figure 5.23. Distance measurement for the plate with the KUKA robot. Measured 
capacitive raw values (shown with the black dots) and the fitting curve 
(denoted by the red lines) with respect to four electrode connection 
types. (a) Type I (b) Type II. (c) Type III. (d) Type IV. 
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From Figure 5.23, it can be observed that the electrode connection Type IV 

provides the largest absolute capacitance values (starts from 20.395 pF), whereas the 

absolute values from Type III are the smallest (starts from 5.366 pF). Despite the great 

difference in terms of capacitive values, it makes more sense to perform a performance 

comparison by normalizing all the acquired capacitances to a common scale. More 

specifically, the linear scaling method is applied to rescale the data acquired from each 

connection type to the range of [0, 1]. Two-term exponential regression models are 

created based on the normalized data and then be linearly stretched to the same range of 

[0, 1]. The normalized fitting curves as functions of vertical distance for all the four types 

are summarized in Figure 5.24. Type I, II and IV exhibit similar performance in terms of 

linear detection range. Type III is able to achieve a slightly longer linear region, however, 

its capacitive responses are highly affected by the noises, as the signal strength is the 

weakest among the four types.  

 

Figure 5.24. Normalized fitting curve as functions of vertical distance for the plate. 
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Figure 5.25. Distance measurement for the sphere with the KUKA robot. Measured 
capacitive raw values (shown with the black dots) and the fitting curve 
(denoted by the red lines) with respect to four electrode connection 
types. (a) Type I (b) Type II. (c) Type III. (d) Type IV. 

 

Figure 5.26. Distance measurement for the cylinder with the KUKA robot. 
Measured capacitive raw values (shown with the black dots) and the 
fitting curve (denoted by the red lines) with respect to four electrode 
connection types. (a) Type I (b) Type II. (c) Type III. (d) Type IV. 
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To investigate the sensing capabilities with respect to different shapes, the three 

experimental steps are repeated with the other two objects, the ball and the cylinder. The 

measured capacitive responses together with the corresponding fitted curves are 

demonstrated in Figure 5.25 and Figure 5.26 for the sphere and the cylinder respectively. 

Again, two-term exponential regression models provide high-degree of fittings and can be 

used for calculating distances from newly acquired capacitive signals. 

 

Figure 5.27. Normalized fitting curve as a function of vertical distance. (a) For the 
sphere. (b) For the cylinder.  

In order to get a better understanding of the distance measurement performance 

achieved by the four different types, the normalization is required for a comparison. 

Normalized fitting curves as functions of vertical distances for the ball are denoted by 

Figure 5.27 (a), and the same plots for the cylinder are shown in Figure 5.27 (b). For all 
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the three objects, there are several common facts: Electrode connection Type III that 

generates the largest spatial wavelength can achieve the longest linear detection range, 

however, it suffers from the environmental noises the most. Type I and Type IV depict 

similar performance in terms of linear detection range, Type I gives out larger capacitance 

changes whereas Type IV provides the largest absolute capacitive values. Type II offers 

moderate results in the aspects of linear range, signal strength, and capacitance changes. 

One of these electrode connection types can be selected based on the requirements and 

emphases of a specific application scenario. 

From the analysis of the experimental results, it can be verified that the vertical 

distances can be calculated by the exponential regression function with high accuracy 

under the condition of the shape of the object is pre-known. However, when comparing 

the data acquired by the same electrode connection type but from different objects, it can 

be figured out that both the absolute capacitive values and the changing rates are 

different. Type IV is used as an example to study the how the different shapes affect the 

distance evaluation accuracy as it demonstrates the least measurement difference. To 

eliminate the error brought by drifting, an offset canceling procedure is performed. Take 

the plate’s asymptotic capacitance value that is measured when the plate is put infinitely 

far (in our measurement is 50 cm when the capacitances stop changing) from the sensor 

as a reference. Then shift the capacitance vs. distance curves of the other two objects to 

the same ending point by adding or subtracting a constant. The experimental capacitance 

values after offset canceling with respect to distances for all the three objects are 

summarized in Figure 5.28 (a). From which it can be observed that the same capacitance 

value can result in quite different distance values if confused about the object’s shape. 

This fact will lead to a decreased distance evaluation accuracy or even a wrong detection. 

An intuitional observation from Figure 5.28 (a) is that the shape feature would have 

significant impact on the estimation of distance, especially in close distance region. For a 

more precise analysis, error 𝑒(𝑑) and relative error 𝑒(𝑑)/𝑑 are investigated. The distance 

error is defined as the difference between the estimated distance and the true value, and 

the relative error can be expressed as the ratio of error and the true distance. For a group 

of discrete distances (i.e., 1cm, 3cm, 5cm, 7cm, 10cm, 15cm, 20cm), use the plate to 

preform the capacitive measurement. The acquired capacitance values are fed to all the 

three regression models to predict the distances 𝑑’(𝑃), 𝑑’(𝑆𝑝), and 𝑑’(𝐶𝑦). Consequently, 

the estimation error and the relative error can be calculated. The tolerance for the errors 
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varies with different distances: the same error value would have a larger impact on the 

measurement accuracy when the true distance is small.  

 

(a) 

 

(b) 

Figure 5.28. Distance measurement error caused by unknown object shape. (a) A 
comparison of measured capacitance values for the three objects. (b) 
Calculated errors vs. vertical distances for the three objects 

The regression model used here is generated by the measurement data with the 

plate. The calculated measurement errors as functions of discrete distances are plotted in 

Figure 5.28 (b), with blue, orange, and gray bars stand for the plate, sphere, and cylinder 

respectively. From the distance error values calculated the plate, the estimation error is 

less than 1 cm when the vertical distance is under 10 cm, and the maximum fitting error 

is 3.4 cm when the distance is 15 cm. Though the distance error increases with the vertical 

distance as the signal strength becomes weaker as the object moves farther from the 
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sensor, the measurement errors are limited to 25% all the time. That indicates the created 

regression model is with high accuracy and can be used for prediction. However, the same 

model would have a large error when applied to the other two objects, especially in short 

distances. The calculated error distances are competitive to the actual distances (i.e. the 

measurement errors are around 100%) when below 5 cm. Within the range of under 10 

cm, a high detection accuracy is required in order to allow the robot to perform a proper 

reaction, so the regression model is not applicable.  

According to the error analysis, the quality of the regression model is highly 

dependent on the shape of the object. Therefore, acquiring the shape information of an 

approaching object plays an essential role to improve the measurement accuracy. The 

shape recognition is achieved by performing a series of dynamic experiments and 

applying machine learning tools to the collected data.  

The dynamic experiment is about automatically sweeping the inner electrode 

connection configurations so that the detailed circumstances can be monitored. For the 

purpose of shape classification, there are two different sweeping patterns as explained in 

Chapter 3. The first pattern successively measures eight independent capacitors that are 

composed of three capacitors generated by two adjacent columns (𝐶1 – 𝐶3), three 

capacitors between two adjacent rows (C4 – C6), and two capacitors between diagonal 

electrodes (C7 and C8). In the second sweeping approach, four neighbor electrodes are 

grouped as the transmitter and all the rest electrodes are connected as the receiver. 

Moving the position of the transmitter all over the whole sensing matrix so that nine 

independent capacitors (CI – CIX) are generated. A graphical illustration of both the 

sweeping patterns are provided in Figure 3.13 (b) and (c).  
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Figure 5.29. A conceptual demonstration of the experimental procedure. The pre-
selected capacitors are measured when object is positioned at nine 
discrete distance values. (a) Sphere. (b) Plate. (c) Cylinder. 

When designing the experimental procedure, the primary consideration is to 

recognize the shape while the object’s vertical location is treated as one of the features. 

A conceptual measurement procedure is demonstrated in Figure 5.29. The KUKA robot is 

programmed to hold the object at nine different discrete distances (i.e. 3cm, 5cm, 6cm, 

9cm, 10cm, 12cm, 15cm, 18cm, and 20cm) for two minutes. The first sweeping pattern is 

pre-selected by configuring the switch array through the FPGA, and at each distance, the 

eight generated mutual capacitors are measured in cycles during the 2-minute. This 

results in 100 times of repeating measurement for every capacitor. Every complete set of 

capacitive values can be fused to one eight-dimensional feature vector (i.e. {C1, C2, C3, 

C4, C5, C6, C7, C8}). Therefore, one-hundred feature vectors represent one independent 

data point are collected, and nine independent 8-dimensional data points with each stand 

for one separate position are obtained for the object. In this way, the data set (Dataset I) 

for classification is formed. It contains 27 independent data points with 9 for each class 

(i.e. plate, sphere, and cylinder) and each data point is made up of 100 eight-dimensional 

feature vectors.  

The same procedure is repeated with the second sweeping pattern for all the 

objects so that a second data set (Dataset II) is acquired for the same three-shape 

classification purpose. The only difference between Dataset I and II is the dimension of 
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the feature vector, as the second sweeping pattern would lead to a measurement of nine 

mutual capacitors per cycle.  

Before feeding the obtained data sets to the learning tools, all the raw capacitive 

values inside the data sets are linearly scaled to the range of [-1, +1]. This step would 

balance the effects between attributes in greater numeric range and smaller numeric 

range. In addition, it is able to reduce the computational burden of the learning tools. For 

both the data sets, 1800 feature vectors that represent 18 data points are used as inputs 

for training the statistical learning tools, and the rest 900 feature vectors that stand for the 

other 9 complete different data points are used as testing data for verifying the quality of 

the prediction model. A brief description of the characteristics of the two data sets is 

summarized in Table 5.11.  

Table 5.11.  Characteristics of the data sets 

Dataset Classes Data 
points 

Instances Dimension Training Testing Scale 

I 3 shapes 27 2700 8 (6 capacitors between 
adjacent columns/rows 
and 2 between diagonal 
electrodes) 

1800 900 [-1, +1] 

II 3 shapes 27 2700 9 (9 capacitors between 
four neighbor electrodes 
and all the rest electrodes) 

1800 900 [-1, +1] 

Both datasets are fed to the three different machine learning tools (i.e. KNN, NN, 

and SVM) separately. Thus the learning performance can be compared in terms of the 

character of the dataset as well as the feature of the classifier.  

The k-nearest neighbors methodology is the most straightforward tool in classifying 

data into multiple categories. Its working performance is highly dependent on the selection 

of the application parameter “k”. The impact brought by “k” is investigated by varying the 

value of “k” from 1 to 100 with the step length of 10. The training accuracy and the testing 

accuracy obtained from Dataset I and Dataset II are summarized in Table 5.12. In this 

scenario, KNN is providing perfect training quality, as with any value of “k” the training 

accuracy is 100%. Its performance in terms of testing is also perfect when using the eight-

dimensional Dataset I. However, Dataset II that is experimentally obtained from the 

second electrode-connection sweeping pattern results in the testing accuracy up to 

84.44%. The test accuracy then drops slightly to 84% when the value of “k” reaches 40. 
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The reason for this high performance is the size of the data sets are not large enough, 

and the boundary between different classes is relatively clear.  

Table 5.12. KNN performance with respect to the value of “k” 

Dataset KNN 

1 10 20 30 40 50 60 70 80 100 

Training 
accuracy 
(%) 

I 100 100 100 100 100 100 100 100 100 100 

II 100 100 100 100 100 100 100 100 100 100 

Testing 
accuracy 
(%) 

I 100 100 100 100 100 100 100 100 100 100 

II 84.44 84.44 84.44 84.11 84 84 84 84 84 84 

Neural Network (NN) is another machine learning tool that uses a mathematical 

model for pattern recognition based on a connectionistic approach to computation. It is an 

adaptive system that changes its structure according to the information that flows through 

the whole network. The neural network involved in this project is performed on Matlab 

platform, and it contains multiple neurons arranged in layers. Backward propagation of 

errors, one of the most widely used ways to train a neural network, is used in our project. 

It is a supervised training scheme, which means it learns from labeled training data. For 

every input in the training dataset, the NN is activated and the output is observed and 

compared to the desired output (the label) which is known in advance. The error is 

propagated back and the model coefficients are adjusted accordingly until the output error 

is below a predetermined threshold. 

As most functions can be approximated with only a single hidden layer [192], the 

number of hidden layer in this project is directly selected as one. Neurons, that receive the 

inputs and computes the corresponding outputs, are the basic computational units in a 

neural network. They perform computations and transfer information from  inputs to the 

outputs, and the number of hidden neurons would have a significant effect on the 

performance of a neural network. In this study, the performance of the neural network is 

examined when varying the number of neurons from 1 to 5, and the acquired performance 

indicators are listed in Table 5.13. 

As discussed in the previous section, the cross-entropy (CE) error, which depends 

on the relative errors of network output and is affected less by the outliners, is used and 

listed in the table as an indicator of the performance of the neural network. From the table, 
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it can be observed that the neural network is able to compute a correct output with only 

one hidden layer and small numbers of neurons. For both data sets, classifying new data 

into one of the three classes with high accuracy and confidence would not cost many 

computational resources of an NN. 

Table 5.13. NN performance with respect to the number of neurons 

 Neurons 

1 2 3 4 5 

Dataset I Epochs 133 76 49 45 63 

Testing CE 2.32e-6 1.53e-7 2.48e-7 2.66e-7 4.07e-7 

Training 
accuracy 

100% 100% 100% 100% 100% 

Testing 
accuracy 

100% 100% 100% 100% 100% 

Dataset II Epochs 62 98 54 53 151 

Testing CE 0.0144 5.90e-7 1.63e-8 1.93e-8 1.08e-7 

Training 
accuracy 

99.8% 100% 100% 100% 100% 

Testing 
accuracy 

100% 100% 100% 100% 100% 

The last classifier that has been examined is Support Vector Machine (SVM). The 

SVM is a discriminative classifier formally defined by a separating hyperplane. The same 

as the neural network, SVM is also a supervised learning method. Given labeled training 

data, the machine computes an optimal hyperplane, which is able to maximize the margin 

of the training data, that categorizes examples. LIBSVM that supports multiclass 

classification by using “one-against-one” (OAO) method is used on Matlab platform for the 

task of profile recognition.  

The testing accuracy from LIBSVM is determined by two kernel function 

parameters: cost parameter (β) and gamma (γ). It is not known beforehand which 

combination of the two parameters will lead to the best result for a specific problem. 

Consequently, a parameter search procedure is done separately with both the data sets. 

Growing sequences of β and γ are tried for training the model, and the identified most 

efficient parameter pair is the one leads to the highest testing accuracy. The involved 

values of β and γ for the grid-search are the same: β/γ = 0.5, 1, 2, 3, 4, 5. From the 

previous learning results, classifying the experimental data into three shape categories 
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does not require much computational cost. So these relatively small values are selected. 

The classification accuracy with testing data as a function of the cost parameter and 

gamma summarized in Table 5.14.   

Table 5.14. Testing Accuracy after grid-search for the parameters β and γ 

   β             γ 0.5 1 2 3 4 5 

 Dataset I 

0.5 66.67% 66.67% 66.67% 66.67% 82.33% 96.22% 

1 66.67% 66.67% 82.33% 100% 100% 100% 

2 66.67% 82.33% 100% 100% 100% 100% 

3 66.67% 100% 100% 100% 100% 100% 

4 82.33% 100% 100% 100% 100% 100% 

5 82.33% 100% 100% 100% 100% 100% 

 Dataset II 

0.5 66.67% 66.67% 66.67% 66.67% 66.67% 69.67% 

1 66.67% 66.67% 66.67% 75.56% 82.67% 82.67% 

2 66.67% 66.67% 82.67% 82.67% 82.67% 82.67% 

3 66.67% 75.56% 82.67% 82.67% 82.67% 82.89% 

4 66.67% 82.67% 82.67% 82.67% 82.67% 82.67% 

5 69.67% 82.67% 82.67% 82.89% 82.67% 82.67% 

The upper part of Table 5,14 represents the grid-search result from Dataset I in 

which samples are eight-dimensional. The testing accuracy starts from 66.67% when β 

and γ are both small, and then increases to 100% when either β or γ extends 2. That 

indicates the SVM is able to provide high-quality classification results with low 

computational cost. Whereas Dataset II that is composed of nine-dimensional examples 

would lead to lower testing accuracies. The SVM is getting a testing accuracy of 66.67% 

at low β and γ values, and the testing accuracy is growing gradually to 82.89% when β is 

5 and γ equals to 3. After looking into the resulting classify probabilities, it can be found 

that the majority of testing errors are due to the confusions between the sphere and 

cylinder. As the definition of the cost parameter β, a larger value of β tends to consume 

more computational resources. For this specific task, Dataset I combined with a parameter 

pair value of (2, 2) could make the SVM a powerful tool for efficient classification results. 
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The classification performance of the three classifiers with the two different data 

sets is summarized and compared in Figure 5.30. In this figure, each bar represents the 

testing accuracy results from a combination of a certain classifier and one specific data 

set. It can be observed that the three-shape recognition purpose can be achieved with 

high accuracy with any one of the combination patterns. Though consuming the most 

computational resources, the neural network performs the best with both data sets. 

Whereas for the other two classifiers, eight-dimensional Dataset I tends to result in higher 

testing accuracies in this specific learning task. In addition, NN and SVM are able to give 

out probability results that will be useful for more complex classification purposes.  

 

Figure 5.30. Comparison of different classifiers in terms of testing accuracy. 

In summary, performing the machine learning procedure is able to classify the 

approaching object into the correct shape category with a high confidence. The acquired 

surface profile information is in turn used in selecting the proper regression model for the 

specific object for distance calculation. By adding the classification step, the error caused 

by an improper regression model can be eliminated. Based on the calculated error from 

the previous section, the overall distance measurement error below the distance of 5cm 

is reduced from 4.6cm to 1.1cm. This improvement makes the sensing system has the 

capability to work reliably in practice. 
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Chapter 6.  
 
Conclusion and future work 

Capacitive sensing systems are experiencing a strong market growth due to their 

contactless characters, high sensitivity, robust, and low cost. They have a significant 

impact on multiple industry segments including automotive, utilities, manufacturing, 

robotics, and safety in the process industry. Despite the considerable amount of research 

on capacitive collision alarming systems, the study on collision avoidance under 

nondeterministic conditions where robots have to sense and react to safety violations are 

quite limited. This technique challenge comes from that a capacitive sensor inherently 

suffers from it is sensitive to environmental interference and susceptible to errors due to 

variations in shape and size the approaching objects. In order to acquire a reliable human-

robot interaction in manufacturing processes, it is desirable to design a multi-functional 

capacitive proximity sensing system that is able to provide a comprehensive and accurate 

monitor of the collaborative industrial workspace. The task is the subject of the research 

presented in this work. 

6.1. Summary of the work 

The objective of this study is to design a capacitive proximity sensing system with 

emphasis on optimizing its distance measurement accuracy. This goal is achieved by 

integrating three functionalities include distance measurement, surface profile recognition, 

and parallel motion tracking into the same sensing platform. Instead of just detecting the 

presence of an object, the quantitative distance is derived by the sensor for regulating the 

operation of a robot. Surface profile recognition in the proposed scenarios can be either 

distinguishing different objects according to their surface profiles regardless of their 

relative locations to the sensor or classifying an object into a few pre-set categories where 

each category stands for an object with a certain kind of shape located at a specific 

distance. In this way, the ambiguity issues in distance estimation can be alleviated. 

Moreover, an accessional functionality can be realized is the estimation of the parallel 

motion trajectory. The purpose of this feature is to reduce the possibility of shutting down 

the machine due to false alarms. 
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The basis of the whole design is the 4 × 4 matrix-shaped architecture that yielding 

16 independent electrodes, which can be configured to generate multiple electric fields in 

order to mesh and monitor the close surroundings. Shunt detecting mode is applied in this 

design as it is more informative and flexible way of measurement and neither the 

transmitter nor the receiver is in contact with the object. A grounded backplane and an 

active shielding electrode matrix are added to shield out the interference, avoid the 

undesired detection from the back-side of the sensor, and reinforce the strength of the 

fringing electric field. 

The sensing system is built up with discrete components: a four-layer printed circuit 

board (PCB), a field programmable gate array (FPGA), and a capacitance-to-digital (CDC) 

chipset. The top three layers of the PCB serve as carriers for sensing matrix, active 

shielding matrix, and backplane shielding. Two analog switch matrix chips and required 

supplementary electronic components are fabricated on the bottom side. The switch 

matrices are used to create desired connections within sensing and active shielding 

electrode matrix, respectively. The switch matrices are controlled by the FPGA which 

generates timing and switching signals. Ultimately, measured data is stored and 

processed on an external computer. 

The raw measured capacitive data has to be fused and processed for desired 

information such as distance values and shape types. Data processing is further split into 

raw data processing (pre-processing) stage and high-level processing stage. Raw data 

processing is primarily intended to compensate for the non-ideal effects including high-

frequency environmental noises and random walks. Statistical learning tools for 

understanding data is involved in high-level data processing. Quantitative regression 

models are built to seek out distances while different classifiers (i.e KNN, NN, and SVM) 

are employed to recognize the surface profiles. 

The performance of the sensing modalities has been experimentally assessed. 

Experimental results obtained from lab equipment as well as with a real robot KUKA LBR 

iiwa are provided to demonstrate that the system is able to detect a metallic target whose 

shape is pre-known at distances of up to 18 cm with high resolutions. The three most 

frequently encountered object’s surface profiles can be recognized with high accuracy by 

all the three classifiers; the shape information together with some discrete distances can 

be classified with high confidence by the more advanced classification algorithm (i.e NN 
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and SVM). The purpose of this recognition task is to improve the regression model created 

for distance evaluation and guarantee the accuracy. The capability of tracking the parallel 

motion is verified by combining the capacitive responses from different electrode 

connection configurations. 

6.2. Contributions 

The presented project began in 2014 when the detection range of a commercially 

available capacitive proximity sensor was limited to a few centimeters [56]-[58]. Despite 

the considerable amount of research on capacitive proximity sensing and detection 

systems, the study on collision avoidance under nondeterministic conditions where robots 

had to sense and react to safety violations was quite limited. Most capacitance-based 

systems were only able to track small, predetermined objects only, such as a finger [201]. 

This work, in part, was a continuation and improvement over the previous research, which 

focused on the explorations on the capacitive responses from different materials and the 

object tracking [202], [203]. 

This project focused on the development of a multi-functional capacitive proximity 

sensor to improve worker safety during industrial human-robot interactions. The main 

contributions are extending the detection range to 20 cm and improving the distance 

estimation accuracy by recognizing the shape of the approaching object. The system 

relied on an array of electrodes and advanced signal processing procedures. Three 

sensing capabilities, namely distance measurement, surface profile recognition, and 

parallel motion tracking, have been implemented in a single platform. To the best of our 

knowledge, no similar solution has been proposed by other researchers.  

The performance of the sensing modalities was experimentally assessed with lab 

equipment as well as on an industrial robot. The system can detect objects and classify 

their geometries at distances up to about 20 cm with high resolution. Recognizing the 

shape of the object, improved the regression models and reduced the close-distance 

measurement error by a factor of five compared to existing methods. The capability of 

tracking the parallel motion is demonstrated by combining the capacitive responses from 

different electrode connection configurations. The breakthroughs made through this work 

will make capacitive sensing a viable low-cost alternative to existing technologies for 

proximity sensing. Moreover, the application of the proposed solution is not restricted to 
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the field of robotics and the results can be applied to a wide range of other applications. 

As one example, there has been recent developments on the creating intelligent and 

responsive garments that use electrode arrays for human-computer interfaces [204], 

[205]. 

The presented research has resulted in the following publications. These papers 

focus on different aspects of the proposed sensing system and demonstrate the 

experimental results from different perspectives. 

 F. Xia, F. Campi, and B. Bahreyni, “Tri-mode capacitive proximity detection 

towards improved safety in industrial robotics,” IEEE Sensors Journal, 

18(12), 5058-5066. 

 F. Xia, B. Bahreyni, and F. Campi, “Design of digital modules for capacitive 

proximity sensing system applications”, Proceedings of the IEEE Canadian 

Conference on Electrical and Computer Engineering (CCECE), 2016. 

 F. Xia, B. Bahreyni, and F. Campi, “Multi-functional capacitive proximity 

sensing system for industrial safety applications,” Proceedings of the IEEE 

Sensors Conference, Oct. 2016. 

Another journal paper based on the most recent experimental results, “Improving 

the accuracy of a proximity sensor based on target profile estimation”, is under preparation 

and will soon be submitted for publication.  

6.3. Future work 

The future work would be making the system more portable and more informative. 

More specifically, there are two aspects worth working on in the future: the design of the 

interface circuit and the optimization of the classification tools. 

Currently, the sensing system is composed of several discrete components that 

are bulky. Moreover, as the desired capacitive responses come from the fringing electric 

field are generally small and weak. According to our observations during the experiments, 

the parasitic capacitances of the switch matrices worsen this situation as they might add 



123 

offsets to the sensing capacitive values and sometimes would even exceed the detected 

range of the capacitance-to-digital chip. 

In order to achieve primary function of the sensing system, it is critical that the 

functional interaction and spatial integration among electronic, control, and signal 

processing technologies be accomplished in a synergistic way. The essential link between 

the transducer and the controller is provided by the interface circuit. Future study is needed 

in terms of designing low parasitic MOSFET switch arrays and a capacitance to digital 

converter with a wide dynamic range. In this way, the performance of the sensor in terms 

of detection range and accuracy can be enhanced and the whole system could be more 

integrated and portable. The ultimate goal is integrating the sensing system to a piece of 

working garment and design of the small-sized and low power-consumption interface 

circuit would benefit the integration. 

Optimizing the classification tools is another aspect that can be considered as a 

future work. In this project, the high accuracy distance measurement is obtained with two 

separate steps: classification and regression. It is desirable to compress this procedure 

into one single step. Development of a one-step solution to estimate the quantified 

distance information can be followed in the future to simplify the sensing system. One 

potential way to achieve this goal is collecting more data by moving the objects in a more 

random way with the help of the KUKA robot and generating more complex electrode 

connection patterns by programming the FPGA. 
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