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Abstract
Platinum stability in the catalyst layer is vital to the lifetime of polymer electrolyte
fuel cells. This thesis uses physical-mathematical modelling to provide a deeper under-
standing of platinum degradation. Dissolution, a dominant degradation mechanism
under fuel cell operating conditions, is shown to be strongly linked to oxide formation,
growth, and reduction. However, since a consistent model that explains this link does
not exist, the goal is to understand the platinum oxide processes and relate these to
platinum degradation.

In the first part, a physical-statistical model of Pt degradation is presented that
encompasses the main particle-level degradation pathways namely dissolution, rede-
position, coagulation, and detachment. A systematic algorithm is developed to pro-
cess experimental inputs and generate outputs on kinetic rate parameters. Once the
complete parameter space is explored using Monte Carlo techniques, an optimization
routine is run to refine the results. In this way, unique, unambiguous rate parameters
pertinent to different degradation mechanisms under various operating protocols have
been extracted. It is shown that dissolution/redeposition increase with increasing up-
per potential cycling limit; particle detachment increases with increasing surface area
of the carbon support, whereas dissolution is independent of the carbon support type.

Then a platinum oxide growth and reduction model is developed that implements in-
terfacial exchange processes between platinum and oxygen atoms, as well as transport
mechanism of oxygen vacancies through diffusion and field migration. A quasi-steady
state model of oxide formation, growth, and reduction is developed. Oxide growth is
seen to be sensitive to oxygen ion vacancy at the metal-oxide interface and the rate
of platinum ion extraction across the interface.

The tools this thesis presents provide better understanding to the underlying relations
of platinum degradation that can be used to enhance the lifetime of fuel cells. For
example, reliable assessments of the prominent degradation mechanism under various
operating conditions can be evaluated to set priorities for materials research.
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Chapter 1

Introduction

1.1 Motivation

Undeniably the world’s demand for power is growing and will continue to increase.
There was nearly a 20% increase from 2006 to 2016 in the total world primary energy
consumption according to the BP statistical Review of World Energy 2017 of which,
in 2016, over 85% of the energy used was fuelled by oil, natural gas, or coal [10].
The continued increase in energy consumption is due to many factors including an
ever increasing population and an increase in per capita energy use that is linked to
economic growth, as well as greater accessibility to electrical power in remote and
developing areas [11]. It is important to understand the implications of our energy-
hungry society to manage and control our usage. It is well-established that energy
consumption is directly connected with greenhouse gas emissions, carbon dioxide
being the largest influence on climate change caused by increased energy consumption
in different regions of the world [12].

Despite persistent albeit naive political and social rhetoric denying the severity
of global climate change, it is undoubtedly and highly researched that humans play
a significant role in the steady trend of rising terrestrial temperatures. Detriments
that are less discussed on a public stage compared to climate change, but equally
important are human and environmental health effects from air pollution and ocean
acidification. Humans have literally changed the chemistry of the oceans with the
CO2 uptake [13]. Not only does this affect the CaCO3 levels critical to the strength
and life of crustaceans and coral reefs, but it impacts the sea life that cannot survive
in an acidic environment [13]. The leading contributors to the global disease burden
is ambient air pollution; exposure to Particulate Matter (PM) with aerodynamic
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diameter of less than 2-5 µm caused 4.2 million deaths worldwide in 2015, roughly
7.6% of deaths globally [14].

The focus of this thesis is not to discuss the potential collapse of human civilization
but it is meaningful to understand the severity of the energy crisis to motivate the
importance of this work. Road transportation contributed 16.9% of the total global
CO2 emission in 2012 [15]. As of 2013, 8.2% of greenhouse gases were attributed to
passenger cars with an estimate to double by 2050 with the current growth of global
car sales [15]. Although this is not the origin of the majority of CO2 emissions, it is
a significant amount and a direct way that every individual could help combat the
global energy and climate change crises. There were nearly 65 million cars sold in
2014 [15]; imagine if everyone of those vehicles were replaced with a zero-emission
vehicle. This would also show a collective dedication to the importance of slowing the
rapid temperature rise encouraging other sectors to follow a sustainable energy route.

The two zero-emission consumer vehicles currently in production are Battery Elec-
tric Vehicles (BEVs) and Fuel Cell Vehicles (FCVs). Zero-emission vehicle refers to
zero pollutant tailpipe emissions [16]. Vehicles can never be 100% emission free due
to materials, manufacturing process, and recycling, but reducing emissions during the
life of the vehicle is valuble. BEVs have a much richer history with mature battery
technology driving it as compared to FCVs. The first mass-produced hybrid-electric
vehicle was in 1997 in Japan when Toyota released the Prius whereas the release of
the first retail fuel cell vehicle did not happen until 2008 with the Honda FCX Clarity
[17]. Both, BEVs and FCVs have advantages and disadvantages and will continue to
need technological advancements but it is not a matter of BEVs or FCVs, but BEVs
and FCVs. In evaluating the technological prospects of both technologies, the main
differentiating factors are range and recharging time, as well as an overall compatibil-
ity with an energy supply infrastructure. It makes more sense to have a BEV in the
city if the driving time and range is short with a high density of charging stations. A
FCV is more practical when driving long distances and needing quick refilling times.
In the 1930s the electric car lost the battle to the Internal Combustion Engine Vehicle
(ICEV) due to affordability and simplicity; the world can no longer afford to solely
look at price and simplicity but sustainability and longevity must be a factor.

1.2 Fuel Cells

A fuel cell is an electrochemical device that converts chemical energy in the form of
a fuel, e.g. hydrogen, directly into electrical energy. There is still debate whether it
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was Christian Friedrich Schonbein or Sir William Robert Grove who was the first
to discover the principle of a fuel cell around 1839 but both independently showed
that a voltage could be measured from an electrochemical reaction of hydrogen and
oxygen [17]. It was not until 1893 that Friedrich Wilhelm Ostwald experimentally
determined the interconnection of the components of a fuel cell including electrode,
electrolyte, oxidizing and reducing agents, anions, and cations [17]. Fuel cells are
appealing because they are efficient and environmentally friendly.

Comparing the theoretical efficiencies, applying the ratio of Gibbs free energy and
reaction enthalpy (∆G/∆H), a H2/O2 fuel cell operating under standard conditions
achieves an ideal thermodynamic efficiency of 83%, which is excellent compared to
the maximum efficiency of an Internal Combustion Engine Vehicle (ICEV) of less
than 40%, but that does not account for other losses such as heat [18]. Unlike ICEVs,
FCVs are not limited by the Carnot cycle. However, the vehicle is only as efficient and
clean as the fuel source. Hydrogen can be produced using several methods namely
through renewable energy via water electrolysis, natural gas using steam reforming,
or coal through gasification [19]. Taking into consideration the hydrogen production
process, the total fuel-to-electricity conversion efficiency for the FCV is about 55%,
which is lower than a BEV [19], but overall it is clear that fuel cell vehicles are an
efficient means of energy.

Perhaps in today’s political climate, the biggest driver of the fuel cell market is
the fact they are zero-emission provided the hydrogen is sourced from renewables.
Government regulations and subsides are increasing globally to help slow the rapid
rise in the temperature and reverse the poisoning of air. Death and illness due to poor
air quality is an enormous financial burden on governments motivating an increase in
resources dedicated to renewable energy.

The applications for fuel cells span from portable devices to stationary back-up
power with the focus of this thesis on the transportation sector. There are many fuel
cells in operation across the globe with the demand increasing at a rapid rate. The
first operational fuel cell was developed by Francis Thomas Bacon and adopted by
NASA in the 1960s for the Gemini and Apollo manned space programs; the fuel cell
is on display at the Science Museum in London shown in Figure 1.1. Fuel cells are
ideal in space because they can generate electricity and drinking water in enclosed
areas. Many indoor warehouses employ fuel cell powered fork lifts for the fact they
can run indoors without producing toxic fumes; other technologies that employ fuel
cells include drones and stationary power stations [20, 21, 22, 23, 24, 25]. As of 2016,
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Figure 1.1: Photos taken July of 2017 at the Science Museum in London during a
conference trip. The first fuel cell developed by Francis Thomas Bacon and used by
NASA on the Gemini and Apollo manned space programs in the 1960s (right).

Hyundai and Toyota have a commercially available FCVs [26] with the Honda Clarity
available for lease in California.

Despite the positive momentum fuel cells have received over the past decade, there
are many challenges that remain before FCVs are seen abundantly on roadways and
in the average person’s garage. A major hurdle holding back full-commercialization of
FCVs is the hydrogen fill station infrastructure; the motivation to purchase a vehicle
that cannot be conveniently filled is very low. A discussion of the hydrogen-fill station
dilemma is beyond the scope of this thesis, but shows it will take a combined effort
across many disciplines and sectors including political, commercial, and consumer-
related interests to hurdle the challenges of FCVs. Another major challenge forcing
the average consumer out of the fuel cell market is cost and durability. To understand
the obstacles that remain internally in the fuel cell, the way they work is discussed
briefly.

1.2.1 How Fuel Cells Work

There are many works in the literature that review the progress of the fuel cell and
detail the processes; for the purposes of this thesis, just a brief overview is presented
[17, 18, 24, 25, 27]. A fuel cell is an energy conversion device. There are many types of
fuel cells that use various fuels and structures including but not limited to Solid Oxide
Fuel Cell (SOFC), Direct Methanol Fuel Cell (DMFC), Alkaline Fuel Cell (AFC), and
Polymer Electrolyte Fuel Cell (PEFC). A diagram of a PEFC is shown in Figure 1.2.
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Proton Exchange Membrane (20 µm)

Figure 1.2: Schematic of typical Polymer Electrolyte Fuel Cell

Hydrogen (H2), usually in the form of a gas, is fed into the anode side flow field
where it is dispersed in the Gas Diffusion Layer (GDL) crossing the Microporous
Layer (MPL) into the Anode Catalyst Layer (ACL) where the H2 is oxidized. The H2

is split into protons that cross the Proton Exchange Membrane (PEM) and electrons,
which are redirected around an external circuit to create a current which powers the
device. The reaction that occurs at the ACL is

2H2 → 4e− + 4H+. (1.1)

The electrons are recombined with the protons and oxygen from air to complete the
reaction at the Cathode Catalyst Layer (CCL) in the Oxygen Reduction Reaction
(ORR),

O2 + 4H+ + 4e− → 2H2O. (1.2)

The current state-of-the-art catalyst layers in operational fuel cells use platinum
nanoparticles decorated on carbon agglomerates as illustrated in Figure 1.3 [28]. The
structure of the components in the catalyst layer plays an integral role in fuel cell
design in order to optimize efficiency, durability, and power density of the fuel cell.
It is essential for the catalyst support to be an excellent electron conductor to limit
ohmic losses, as well as be highly porous. The porosity affords a maximum amount
of surface area for the platinum nanoparticles to bind, creating a high Electrochem-
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MPL ACL PEM CCL

Figure 1.3: Illustration of the morphology of the Anode Catalyst Layer (ACL) and
Cathode Catalyst Layer (CCL) from a section of the Proton Exchange Membrane
Fuel Cell including the Microporous Layer (MPL) and Proton Exchange Membrane
(PEM).

ically Active Surface Area (ECSA) while allowing for water and/or ionomer contact
required for oxygen and proton transport. The overall reaction is

2H2 + O2 → 2H2O. (1.3)

Portions of the catalyst layer are under-utilized because they are missing one or
multiple key components of the catalyst layers namely the catalyst, catalyst support,
and/or water/ionomer. Thus, many different support structures have been explored
in order to increase the effectiveness and overall platinum utilization.

The degree of the catalytic activity and durability of the support material comes
from the electronic character and geometric effects [29]. The ideal catalyst support
would have: (i) a surface area that widely disperses the platinum particles while pre-
serving the particle shape and size; (ii) an ideal porosity that is large enough for the
platinum particles and ionomer to be dispersed but small enough to maintain the
high surface area; (iii) be corrosion resistant, which relates to the degree of carbon
oxidation; and (iv) hydrophilic channels and gas channels [29, 30]. Graphitization
is used in the fabrication of carbon supports to obtain ideal porous morphologies
and surface terminations where the degree of graphitization is determined by the
process temperature [29, 31]; although the graphitic content is not homogenous and
differs from the surface to the bulk [32]. Relative surface areas can be used to distin-
guish between different carbon supports, such as Low Surface Area Carbon (LSAC),
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Medium Surface Area Carbon (MSAC), High Surface Area Carbon (HSAC), although
there is no explicit industry standard defining the levels. LSAC has a high degree of
graphitic content resulting in a very low micropore volume with the least amount of
anchoring sites for Pt, e.g. multi-walled carbon nanotubes, Denka black, or Vulcan
[33, 34, 35]. HSAC has the least number of graphitic walls, yielding well-dispersed
Pt nanoparticles due to the large number of anchor sites, which results in increased
kinetic performances, but is more prone to corrosion because of the number of sur-
face sites [33, 36]; examples are Ketjen EC600JD or Black Pearls 2000 [29, 35]. The
morphology of MSAC samples falls somewhere in between LSAC and HSAC samples
[33, 35].

Although several metals and metal alloys can be used as a catalyst, there is a bal-
ance between the binding energy of reaction intermediates such as Oad and OHad, and
the catalyst activity. The effectiveness of different metals as catalyst can be predicted
by the Sabatier principle [37]. Pure platinum is the best pure metal catalyst in terms
of the oxygen reduction activity since its binding energy of Oad and OHad is near the
optimal value at which these species bind strongly enough to initiate the reaction,
but weakly enough for the products to be released [38]. Moreover, platinum is more
corrosion-resistant compared to the other potential catalysts in the harsh environ-
ment of the fuel cell with high acidity and high temperatures. Although platinum is
the best catalyst in practice, it is a large contributor to the delay of commercialization
of FCVs.

1.2.2 Platinum Shortcomings

The two largest issues delaying the commercialization of FCV are cost and lifetime
attributed to platinum as a catalyst. Despite a valiant effort of research throughout
recent decades to reduce the loading and increase the stability of platinum, the es-
sential DOE benchmarks have not yet been met [39]. The catalyst layer accounts for
80% of the total cost of the fuel cell stack [40]. Current state-of-the art fuel cell stacks
contain between 22 to 38 g of platinum per vehicle equating to about $1,500 USD,
which is well above the DOE target of less than 10 g of platinum per vehicle or 0.125
g/kW for platinum-specific power density [22, 41]. The current lifetime of a FCV is
less than 3500 hrs with a DOE target of 5500 hrs [18]. Thus, to increase affordability
of FCVs, the platinum loading on the catalyst layers must be further reduced and the
stability of the platinum that is deposited must be increased to improve the lifetime.
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Understanding the underlying reasons for the degradation of the platinum in the
CCL is the main focus of this thesis. It is essential to know the parametric effects of
degradation mechanisms, in order to develop mitigation techniques.

1.2.3 Importance of Modelling

Whether building a stadium or designing a program, modelling is an essential com-
ponent to nearly every industry. The importance of modelling can be broken down
to two core elements: understanding and prediction. Models are used to simplify re-
ality in order to better understand a system or process and convey the information
in a meaningful way, such as supporting design criteria, understanding the necessity
of individual components, and optimize operation protocols to name a few. Models
with accurate predictive capabilities span from aiding the development of warranty
information to determining the price of insurance to predicting the likelihood of your
child having a disease proving the importance of a quality model. It is important to
understand the gravity of a quality model, because a poor model can have detrimental
consequences.

The goal of this thesis is to use physical-mathematical modelling to explain and
give insight into the degradation phenomena prevalent throughout the literature. Ob-
servational analysis is useful to a point, but a full mechanistic understanding and
precise quantification of different degradation mechanisms demands comprehensive
physical-mathematical models. Understanding the underlying physical relations and
model-based analysis of experimental data will lead to strategic design criteria essen-
tial to prolong the lifetime of the fuel cell [42]. Modelling effects, such as degradation
of various carbon support types, degradation pathways, degradation mechanisms, can
also save time and resources by limiting the expenses for experimental test materials
and efforts.

1.3 Objectives

The primary objective of this thesis is to contribute to a better understanding of
platinum degradation in fuel cells. This is achieved by expanding previous literature
models on platinum degradation in order to resolve ambiguities, developing a refined
model of interfacial kinetics of oxide formation, growth and reduction on platinum,
and linking the degradation model to the model of oxide formation, growth, and
reduction.
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1.4 Outline

• Chapter 2 outlines the significant milestones in the literature pertaining to this
thesis.

• Chapter 3 analyzes and expands upon an existing model of platinum degrada-
tion.

• A model of oxide formation, growth, and reduction is presented in Chapter 4.
The model developed considers the kinetic reactions at the interfaces of the
metal and oxide layer to promote growth and reduction.

• The model presented in Chapter 4 is solved for the case of oxide formation
and growth in Chapter 5 and the results are compared to a wide range of
experimental data.

• In Chapter 6 the model of oxide formation is expanded to include platinum
oxide reduction phenomena.

• Chapter 7 ties the models together and discusses the future implications for the
work presented. The outlook is discussed for expanding the presented models
further.
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Chapter 2

Literature Review

2.1 Catalyst Degradation

The platinum degradation problem has gained traction in recent literature studies.
Accelerated Stress Tests (ASTs) are a useful way to simulate long-term effects on fuel
cells and estimate lifetime in a laboratory environment in a manageable time period.
During start up of a FCV, the cathode potential can reach up to 1.4 VRHE [35, 43]
and an automotive stack will see around 30,000 detrimental start-up events [43]. For
platinum degradation in a catalyst layer, the AST is commonly performed by applying
an electrical potential at varying protocols; some examples are: (i) potentiostatic tests,
which hold the potential at a constant value and (ii) potentiodynamic tests, which
cycle the potential at different wave shapes, as shown in Figure 2.1, such as triangular
wave, which applies a potential to the electrode that increases and decreases at a set
scan rate, square wave, or a combination of square or triangular waves. These tests can
provide valuable information on electrode processes, quantify ECSA, and distinguish
adsorption of different species. Origins of degradation in catalyst layers have been
studied by distinguishing between mechanical, chemical, and electrochemical roots
[44, 45]. A strong relationship is seen between applied electrode potential and the
degradation rate and mechanism [33, 46, 2, 47, 48].

There are four main degradation pathways that decrease the amount of the ECSA
in the catalyst layer resulting in power loss consisting of dissolution and redeposition,
coagulation, and detachment, as shown in Figure 2.2 [42, 44, 49, 50, 51]. Dissolution
is an atomistic loss of particle mass, shrinking the size of the particle. Redeposition
occurs when there are dissolved metal ions in the electrolyte that redeposit on particles
still attached to the support. The combination of particle shrinkage from dissolution
and growth from redeposition, a process known as Ostwald-ripening [52], causes an
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Figure 2.1: Examples of Accelerated Stress Test protocols: a.) triangular wave and
b.) square wave.
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Figure 2.2: Illustration of processes involved in the catalyst degradation mechanisms
of platinum in polymer electrolyte fuel cells.

overall surface area loss. At the same total mass, many small particles have a higher
surface area compared to larger sized particles. Coagulation is the merging of two
particles whereas detachment is the full release of a particle from the support usually
attributed to support degradation such as carbon oxidation in the case of a carbon
support. Different AST protocols impact the rate and mechanism of degradation
leading to key insights into the platinum degradation phenomenon [47, 1].

In Ref. [53], Mayrhofer et al. performed accelerated aging tests by cycling a cat-
alyst layer, made of carbon support decorated with platinum nanoparticles, similar
to one found in a fuel cell, between 0.4 VRHE to 1.4 VRHE at 1.0 V/s for four hours.
Individual nanoparticles were tracked visually using Identical Location Transmission
Electron Microscopy (IL-TEM) during the test. The images showed clear platinum
degradation that was attributed to the dissolution and detachment mechanism; no
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signs of redeposition or coagulation were seen [53]. Ref. [54] showed that Pt dissolution
increases significantly by increasing the upper potential limit from 1.0 to 1.4 VSHE,
but the ECSA was not seen to change significantly. From this the authors concluded
that coagulation played a greater role than Oswald ripening in the coarsening process
[54].

One of the most comprehensive studies of platinum dissolution in acidic media are
from Refs. [46] and [2]. To gain insight into understanding platinum dissolution, the
Mayhofer group used an electrochemical flow cell system connected to an inductively
coupled plasma mass spectrometer to monitor platinum dissolution as a function of
potential [46, 2]. Platinum dissolution was below the detection limit when cycling
with an upper potential limit lower than 0.9 VRHE. However, as the upper potential
was increased above 1.0 VRHE, the total amount of platinum in solution increased.
The dissolution profiles showed that the majority of the dissolution occurs during
the cathodic scan and was strongly dependent on the upper potential limit [46, 2],
whereas there was significantly less dissolution that occurred in the anodic scan and
was independent of the upper potential limit. The difference in quantity of platinum
dissolved associated with scan direction is attributed to the platinum oxide growth
and reduction and will be discussed in detail in the following section.

Along with testing protocols, catalyst particle size and shape are seen to exhibit
an effect on the degradation process [42, 55, 56, 57]. Ref. [55] analyzed the particle size
effect of the platinum in a catalyst layer under potentiostatic and potentiodynamic
conditions to study the degradation phenomena. Potentiodynamic conditions showed
significantly more degradation compared to potentiostatic operation under the same
conditions. Dissolution increased for all particle sizes as the electrode potential was
increased but overall smaller particles dissolved faster and to a larger degree than
larger particles [55]. There is a balance between being small enough to have a high
ECSA and large enough to be stable. The ideal platinum particle size is 3-5 nm,
showing the best compromise of high stability and activity [42, 57, 58]. Although the
sizes ranging 1-5 nm in diameter did not have a significant impact on specific activity,
catalyst layers with a large fraction of particles smaller than 2 nm in diameter were
seen to have much less stability compared to catalyst layers with average diameters
of 3-5 nm [42]. In Ref. [57] platinum nanoparticles as small as 2 nm, provided they
were highly dispersed and of uniform size, were seen to be quite durable and the
ORR activity was also seen to be independent of particle size. Platinum nanoparticles
that have more under-coordinated edge and corner sites result in faster degradation
rates; for instance, particles around 2 nm diameter with a cubo-octahedral shape
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consist of more than 50% under-coordinated edge and corner sites resulting in rapid
degradation compared to larger particles [42]. Another study is Ref. [56] in which
Atomic Force Microscopy (AFM) revealed that tetrahedral platinum nanoparticles
commence dissolution at the apex of the particle rapidly at the beginning of the cycle
whereas cubic nanoparticles dissolved gradually and showed higher durability.

On the topic of particle size, a pristine catalyst layer begins with an initial Particle
Radius Distribution (PRD), but as the AST proceeds there is a clear change in the
PRD revealing the extent of degradation [50, 59, 60, 61]. The shift to larger particles
is attributed to redeposition and coagulation mechanisms. Platinum mass loss from
the support is attributed to dissolution or detachment. Platinum dissolved in the
electrolyte is available to be redeposited, but may also migrate into the membrane
forming the so-called Platinum-in-the-Membrane (PITM). Platinum ions are pushed
into the membrane to form the PITM band by crossover oxygen, but cease when they
meet crossover hydrogen [62].

Models have been developed to gain a deeper insight into the underlying degrada-
tion relations that experiment alone cannot unfold. For instance, a model is necessary
to understand the mechanistic breakdown at specific potentials and times. A steady-
state model of Pt dissolution was developed in Ref. [63]. This model was expanded to
include potential cycling in Ref. [64]. Ref. [52] focused on nonmonotonic dynamics of
degradation processes. The model evaluated the evolution of the PRD based on Ost-
wald ripening. It was shown that the rate of redeposition is proportional to the mass
loading of the catalyst and inversely proportional to the thickness of the catalyst layer
[52]. Ref. [65] assessed the coagulation and detachment mechanisms individually. All
four mechanisms shown in Figure 2.2 were incorporated and evaluated individually
in Ref. [66], and solved in coupled form in Ref. [47].

Dissolution is a dominant degradation mechanism contributing a significant amount
of platinum loss in the potential range of an operating fuel cell [65]. It was also shown
that there is a significant increase in the rate of platinum dissolution while cycling
when increasing the upper potential limit from 0.9 VRHE to 1.2 VRHE [66]. Ref. [44]
claims that electrochemical dissolution prevails below 4 nm while chemical dissolution
dominates in bulk-like metal, whereas Ref. [67] shows particles below 4 nm dissolve
via direct electrochemical processes while larger particles form an oxide.

Despite the strong efforts, details of the mechanism are still not fully resolved.
It is clear that platinum oxidation and reduction play a strong role in platinum
dissolution proving it is imperative to understand the former before being able to
have a full understanding of the latter.
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2.2 The Connection of Dissolution to Oxide Growth
and Reduction

Cyclic voltammetry is an electrochemical technique that applies a voltage at a fixed
scan rate, e.g. 0.1 V s−1, from a set Lower Potential Limit (LPL) to a set Upper Po-
tential Limit (UPL) and then reverses the polarization back to the LPL and records
the corresponding current; this methods corresponds to a triangular wave form as
discussed and shown in Figure 2.1. The peaks on the voltammetry scans correlate to
the surface science of the electrode. A typical platinum polycrystalline cyclic voltam-
metry scan is shown in Figure 2.3 but has been unfolded, i.e., usually the cathodic
scan is shown below the anodic scan resulting in a cycle. The region where the elec-
trode is free of adsorbents, known as the double layer charging region, is seen where
there are no peaks during the anodic scan between 0.4 and 0.8 VRHE. A peak begins
to form just after 0.8 VRHE which represents the onset of platinum oxide formation
[68]. The higher the UPL and/or the slower the scan rate, the thicker the oxide layer
becomes. Oxygen evolution occurs at higher potentials above 1.39 VRHE [69, 70, 71].
Once the potential is reversed, there is a delay seen before the reduction of the oxide
layer commences followed by hydrogen adsorption. The hydrogen is desorbed once
the electrode potential is reversed again and the potential is increasing.

Figure 2.3 compares a dissolution profile to one cycle of an unfolded cyclic voltam-
metry scan to shows that dissolution is directly correlated to platinum oxide growth
and reduction. There is a relationship to the quantity of platinum dissolved and the
upper potential limit while cycling [2]. The blue curve in Figure 2.3 is a dissolution
profile of one cycle collected by Topalov et al. in Ref. [2] with a UPL of around 1.8
VRHE. The study used Inductively Coupled Plasma Mass Spectromter (ICPMS) cou-
pled directly to an electrochemical flow cell shows that as the UPL is increased, the
amount of platinum dissolved does not exceed about 25 pg cm−2 s−1 during the oxide
growth regime beginning just after 1.0 VRHE and holding steady to higher UPLs (the
first peak of the blue curve in Figure 2.3) whereas during the reduction of the oxide
(the second peak of the blue curve in Figure 2.3), the dissolution amount continues
to increase as potential is increased and is roughly 250 pg cm−2 s−1 at 1.8 VRHE [2].
Platinum dissolution is not seen to increase after about 1.0 VRHE because the oxide
layer creates a passivating effect protecting the electrode from degradation but also
blocking active sites for the ORR. If the electrode is not cycled below the initiation
potential of oxide reduction, that is, if there is still a passive layer present, no disso-
lution is detected [46]. Ref. [46] showed an electrode can be cycled without significant
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Figure 2.3: Unfolded cyclic voltammetry scan of platinum polycrystalline (black line)
[1] overlaid with dissolution profile (blue line) from [2], labeled with the designated
regions. Note: this is not exactly to scale, just intended to be an illustration to aide
understanding.

platinum dissolution provided the LPL does not drop below around 1.1 VRHE as to
not reduce the passivating layer.

Lopes et al. also showed that the dissolution primarily takes place during the
reduction of the platinum oxide [72, 73]. It was found that the rate of dissolution
during the positive-going sweep (oxide formation) was small and considered a faradaic
process and not closely related to the oxide formation kinetics, whereas the rate of
dissolution during the negative-going scan (oxide reduction) was large and controlled
by the positive potential limit as well as the scan rate [73]. ICPMS was also used
but this time it was coupled to a stationary probe rotating disk electrode to measure
dissolution rates of surface atoms to show the specific effect on the dissolution related
to various Pt(hkl) surfaces. Pt(110) was seen to have nearly ten times more platinum
ions dissolved in solution compared to Pt(100), which has slightly more than Pt(111)
in one cycle with an UPL of just above 1.0 VRHE. Nearly all the dissolution for all
three Pt surfaces were collected during the reduction scan [72].

One explanation for the reason that the greatest amount of dissolution is seen dur-
ing the reduction scan is that during reduction, if the oxygen ions escape faster than
the Pt ions return to the metal, under-coordinated platinum atoms will remain that
are prone to dissolution [46, 74]. Significant cycling through the reduction regime will
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also cause roughening of the electrode surface making it more susceptible to degra-
dation. This direct correlation motivates the necessity to fully understand platinum
oxide growth and reduction in order to master the degradation of platinum in fuel
cells. Oxide growth and reduction have been studied intensely over the last several
decades and it is important to highlight the milestones published.

2.3 Oxide Growth

Oxide growth is an inevitable process that can be both beneficial and detrimental. On
the one hand, oxides can create a passivating layer that protects the metal, while on
the other hand it can limit the catalytic activity [75] and corrode the electrode upon
reduction. Understanding oxide growth on metals spans an impressive history with
an expansive range of topics from modeling general metal oxide growth to specific
metals and utilizing various experimental techniques to quantify the growth laws
[76, 77, 78, 79, 80, 81]. In 1923, Pilling and Bedworth [80] published one of the first
articles discussing the oxidation of metals and outlining the hypothesis that the flux
of oxygen is inversely proportional to the length of the path of diffusion, or, in this
case, the thickness of the oxide layer.

dW

dt
∝ 1
L

(2.1)

where W is the quantity of oxygen bound by oxide layer formation, L is the thickness
of the oxide layer, and t is time. It is assumed that all of the oxygen that diffuses
across the oxide layer contributes to the increase in thickness, W ∝ L which leads to,

W 2 = At (2.2)

where A is a rate constant. This results in a parabolic growth law which is seen as
a common formula for many other metal oxide theories. In their paper, Pilling and
Bedworth looked at oxidation of metals at high temperature. They determined the ex-
tent of oxidation by heating a metal spiral, holding the temperature constant, quickly
removing and cooling, and determining the change in mass [80]. This technique, al-
though effective, was highly prone to impurities. The parabolic growth law proves to
be a good approximation for metal oxidation at sufficiently high temperatures and
for sufficiently thick films [76].

Wagner’s pioneering work of metal oxide theory paved the way for many well-
known theories of oxide growth such as the Carbera-Mott model [76] and the Point De-
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fect Model (PDM)[79]. Wagner’s theory expanded on the model proposed by Pillings
and Bedworth by incorporating charged particles into the model and using the Nernst-
Planck equation to describe their transport. Wagner’s theory correlates well with
experimental data at sufficiently thick oxide films but is limited because it only de-
scribes the effect of species migration in the bulk without interface effects, thus the
oxide must be thick enough that there are no or very limited influences from the
charged interfaces.

In the middle of the 20th century, Mott developed another hypothesis to explain
the formation of protective films at low temperatures [82]. The hypothesis was based
on the phenomenon that a strong electric field develops in the oxide due to the oxide
ions formed from the adsorbed oxygen atoms on the surface. These very strong fields
induce migration of ions that thus build the oxide layer without much help from
temperature. Mott explained that electrons can pass the film easily, while a very
strong field is required for ions to penetrate it. This results in a logarithmic growth
law of the type

1
L

= A−B ln(t). (2.3)

A couple of years later, in 1949, Cabrera joined Mott and together they developed the
well-know Cabrera-Mott model [76]. The model expanded on Mott’s hypothesis. Due
to the strong field, every ion which escapes from the metal will be pulled across the
film, thus the rate of oxidation is determined only by the rate at which ions escape
from the metal. The model accounted for the field-dependent activation energy of the
Pt extraction process,

dL

dt
= A exp

(
− E

kBT

)
exp

(
Qφ

kBT

)
(2.4)

where E is the activation energy for the formation of a metal ion in the oxide, φ is
the field in the film, kB is the Boltzmann constant, Q is a constant that accounts
for the charge on the ion, and T is the temperature. This concept only applies if
the film is thin enough for interfacial processes to dominate the growth. Thus, in the
thick film regime, the parabolic law is expected to dominate the growth whereas a
logarithmic growth law dominates for thin films. The Cabrera-Mott model does not
consider specific structures or kinetics of different metals [76].

Validation of oxide growth models through experimental data became increasingly
prevalent as technology progressed. As is known, metal oxidation is a function of
potential, temperature, and time; in the times of Pilling and Bedworth [80], only the
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temperature was varied, as this was the simplest approach to take albeit also being
prone to contamination of the oxide layer. To study the effect of potential and time, a
current can be applied to a metal and the voltage recorded, or a voltage can be applied
and a current is measured. The change in resistance can also be determined. A change
on the surface, i.e. different structure or adsorbed ion(s), will result in a change in
current, potential, and/or resistance [83]. The difficulty comes when determining the
thickness of the oxide layer. Usually this is done by correlating the amount of charge
reduced from the surface, which is caused by the oxygen leaving, to the thickness of
the oxide layer. For example, the amount of current is measured as the oxide layer is
being reduced while cycling the electrode; this current can be related to the amount
of oxide. The difficulty is, in order to relate this charge to the oxide layer thickness,
the exact structure must be known because different lattice structures can have the
same effective charge from the same number of oxygen atoms but different thicknesses
due to different densities or atom packing.

A significant hurdle is the size of the oxide layer particularly when discussing
platinum; it is essential to have sub-Angstrom resolved microscopy, for which, within
the last decade, there has been a huge leap with TEM, STEM, and TEAM. The
biggest challenge for these measurements is that the sample must be in a vacuum.
This poses a problem because the oxide must be removed from the electrolyte and the
potential source prior to measurement, which may cause the oxide layer to undergo
structural changes [84]. There are also challenges in distinguishing oxygen atoms from
platinum due to the fact that lighter atoms deflect electrons less than heavier atoms,
which means that only the platinum ions show up on an image [85]. Despite the
significant challenges, there has been upstanding studies throughout the literature.

Schuldiner and Roe pioneered work in 1963 to determine the double layer ca-
pacitance and the number of hydrogen and oxygen atoms on the Pt surface using a
charging curve [70]. A charging curve uses a galvanostat to hold the current constant
while recording the voltage of the electrode. Changes in the voltage are associated
with different reactions happening on the surface. Schuldiner and Roe determined a
series of events that occur on the Pt anode from the distinct four regions seen on
their charging curve. They designated the regions as hydrogen ionization region (0 to
0.55 VNHE), double layer charging region (0.55 to 0.88 VNHE), oxygen atom adsorp-
tion region (0.88 to 1.76 VNHE), and molecular oxygen evolution region (1.76+ VNHE)
[70]. Understanding surface chemistry was still in its early stages when Schuldiner
and Roe wrote their paper, thus focusing on measuring active surface area, double
layer capacitance, and the number of hydrogen and oxygen atoms and not specifically
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on the oxidation processes but their work proved the importance of understanding
surface chemistry.

Feldberg et al. also published an article in 1963 discussing the formation and
dissolution of a Pt oxide film [86]. Charging curves were used for the experimental
work; they also proposed an explanation of the mechanism and kinetics of the oxide
film processes. Concern was expressed in reproducibility due to the high probability of
impurities in the solution. To determine the kinetics, Feldberg et al. [86] modified the
conventional electrochemical rate equation, i.e., they used a modified Butler-Volmer
equation. The model showed consistent logarithmic plots of surface oxidation with
experimental data, but it was only tested to below 500 seconds.

Vetter and Schultze published a series of articles that gave the most detailed
analysis of the kinetics of the electrochemical formation and reduction of oxide layers
on platinum to date in 1972 [87, 88]. Details in the articles include the place exchange
mechanism, charging curves using galvanostatic pulse measurements, and a kinetic
model of oxide layer formation. It is noted that the oxygen atoms are first chemisorbed
from the electrolyte solution and then the oxygen atoms are exchanged for Pt atoms,
which is the rate determining step, then a thicker layer is formed; this is still the widely
accepted theory today [87, 88]. The oxide coverage was determined by calculating
the ratio of hydrogen adsorption charge to cathodic charge of oxide reduction [87].
Vetter and Schultze developed their model in a similar manner of Feldberg et al. [86].
Some shortcomings include, the experiment was not performed to very long times,
impurities are likely to be involved on the surface between charging and discharging,
and degradation could occur between runs.

Another experimental method to show multiple mechanisms occurring during the
oxidation process was presented by Shibata in Ref. [83] in 1977. Shibata measured
resistance data as a function of the total amount of oxide. They showed that there
are clearly two regions of the resistance vs coverage curve; first there is no resistance
seen up to 2 mC cm−2 of oxide and then a resistance is seen that increases linearly
with the total amount of oxide [83]. Shibata attributed this change in resistance to
a bilayer structure of oxide on Pt, which they called α to the first oxide layer and β
to the second layer. The bilayer structure has become a widely accepted idea but is
usually designated as a Pt-O layer and an α-PtO2 layer [89] according to the specific
oxide lattice structures.

Angerstein-Kozlowska et al. used linear potential sweep voltammetry to show that
the pseudocapacitance is not constant with increasing potential, as earlier studies had
suggested [90]. Linear sweep voltammetry is a common method used to study electro-
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chemical surface effects by sweeping the potential linearly with time while recording
a current. One variation to the linear sweep method is cyclic voltammetry where the
applied potential is reversed and swept back to the initial starting point. Cycling
the voltage and recording the current allows for much more in depth electrochemical
studies. Now the potentiodynamic case of the surface effects could be studied, not
just the potentiostatic case.

The development of oxide growth models has not slowed in recent years. Mac-
donald developed the PDM which incorporated some of the structural aspects of the
oxide layer including the bilayer structure that is commonly seen in metal oxides [79].
The PDM defined the mechanisms at each interface and developed a growth model
that included reaction kinetics and incorporates pH and current; the model is not
specific to platinum, and does not account for different electrode structures. Dissolu-
tion of the film is also discussed, but the mechanism of reduction of the oxide layer
is not. The PDM has a strong foundation and is widely referred to. The growth law
developed by Macdonald and others that built upon it follows a direct logarithmic
dependence.

Conway wrote a comprehensive review of electrochemical oxide film formation, in
which the oxidation process specific to platinum was presented [77]. Conway showed
that there is a better basis for a direct logarithmic growth law for platinum oxidation
compared to an inverse logarithmic one [91]. Conway emphasized the importance of
incorporating the surface electrochemistry into the model. A common trend is to use
an empirical approach when developing a growth law, first looking at the trend of the
experiment and then developing a model that “fits” best.

Oxide growth is a very complex process. Simply assigning inverse logarithmic,
direct logarithmic, or parabolic growth and building the theory around it falls short
of encompassing the full growth process. A few common shortcomings are seen across
the oxide growth models in the literature. Many models and experiments do not
show the trend at very high times, e.g. above 10000 seconds. None of the growth
laws discussed show any growth limit. Sun et al. [69] modified the PDM by including
a linear term (C) to account for dissolution of the metal. This allows the oxide to
achieve a steady state thickness [69],

dL

dt
= AeaV−bL − C. (2.5)

Sun’s model implies that to achieve a steady state thickness, dissolution must also
occur.
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The experimental data of platinum oxide growth from Topalov et al. [2] shows
that at a potential hold, there is an initial spike in platinum dissolution as the oxide
layer first begins to form then the dissolution drops to nearly undetectable limits
as time progresses until the oxide layer is reduced, at which point the majority of
dissolution occurs dependent on the thickness of the oxide layer [2]. There is no
indication that there is any dissolution as the oxide grows beyond the initial spike
which is inconsistent with Sun’s hypothesis. Also, there is no experimental data that
shows a clear steady state condition on the surface but instead a significant slowing
of the oxide growth. This leads to the assumption that the levelling off of the oxide
growth is the result of a migration rate approaching zero, but never ceasing until the
oxide is reduced.

Marcus’s group at Chime Paris Tech has recently developed a so-called General-
ized Growth Model (GGM) to describe oxide film growth on metals and alloys [78, 81].
Unlike the PDM, the GGM does not assume a potential drop at the oxide/film inter-
face nor that the electric field in the oxide remain constant as the oxide layer grows.
The model describes the oxide growth by defining two cases; i) the growth controlled
by migration of charged species through the oxide layer; and ii) the growth controlled
by injection of charged species at the metal/oxide interface. In the first case, the
Nernst-Planck relation is employed [81]. Cabrera-Mott kinetics are applied for the
second case based on an equation describing the probability of a cation escaping the
metal; this is assumed to only occur in the presence of a very strong electric field, as
obtained for a thin oxide film. The dissolution of the oxide film is also considered in
the GGM. Similar to the PDM, the oxide film will be stable when the growth rate
is equal to the dissolution rate. To solve the model, Marcus et al. defined equations
to explain every probable reaction to aid oxide growth and combined them. The nu-
merical simulation is presented in a separate paper by Leistner et al. [78]. The model
shows relatively good agreement, but only a narrow set of experimental data was
compared.

2.4 Oxide Reduction

Studies of oxide reduction are not as prevalent throughout literature as oxide growth.
However, several methods have been used to explore the reduction phenomena includ-
ing potentiostatic measurements [92], galvanostatic pulse measurements [88], spec-
troscopy [8, 9, 93, 94], and computations with DFT [75]. The reduction process is
dependent on the properties of the oxide layer and in turn the oxide formation con-
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ditions of the layer [88, 93]. A thicker layer and/or a layer that has been aged, result-
ing in more homogeneity, will require a higher overpotential in order to be reduced
[88, 95]. The thickness of the layer will also dictate the degree of the irreversibility
of the growth process; below a certain coverage, θ, the platinum atoms can easily
return to their original site [93] and the oxide layer will be reduced uniformly [88].
However, a thicker oxide layer will show greater irreversibility, reorganization, and
disorder [93, 94]. At coverages above θ = 1, the reduction process will be non-uniform
and begin at edge defects [88]. The reduction process will proceed electrochemically
[92]. Refs. [96] and [97] showed evidence that the 2D film is first reduced beneath the
oxide layer. This is supported by the fact that the majority of the dissolved Pt in
solution after the reduction is Pt(II), which is the oxidation state of platinum in the
Pt-O layer, and not Pt(IV) found in the Pt-O2 layer on top, even at high upper po-
tential limits [51]. Once the reduction commences, the process proceeds significantly
faster compared to the oxidation process [8]. Most of the platinum will return to the
bulk Pt layer in a disordered fashion; the further the platinum in the oxide layer is
away from the bulk layer, the harder it will be to return to its original position [98].

Despite the ongoing research, there are still ambiguities that need to be resolved
in oxide reduction. For instance, it is unclear at which interface the electron transfer
occurs [93]. Although the exact kinetics of oxide reduction is still undetermined, the
general consensus is a two-step reduction from PtO to PtOH and from PtOH to Pt [75,
8, 99], which can be described as a pseudo-first-order one-step reaction [9]. Ref. [100]
described a general Fickian transport model that assumed that subsurface oxygen
ions diffuse through lattice vacancies created in the reduction process that is coupled
with oxygen removal at the surface. Ref. [88] stated that reduction proceeds through
the transport of oxygen vacancies. In Ref. [66] Rinaldo and Eikerling developed a
kinetic model that captures the dynamics of formation and reduction of chemisorbed
oxygen at lower potentials.

First we present a modelling-based analysis of platinum degradation. This moti-
vates the development of an oxide formation, growth, and reduction model developed
in Chapter 4. In Chapter 5 we solve the steady-state oxide formation and growth
limit and in Chapter 6 we expand the model to include platinum oxide reduction.
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Chapter 3

Modelling-Based Data
Treatment and Analytics of
Catalyst Degradation in
Polymer Electrolyte Fuel
Cells

H. Baroody, D. Stolar, M. Eikerling, Electrochimicia Acta, 283: 1006-1016, 2018.
https: // doi. org/ 10. 1016/ j. electacta. 2018. 06. 108

Material from this publication is used in this chapter with permission from Elsevier.

Author Contribution: ME supervised the original research. HB worked directly with DS
to expand a previously developed degradation model and apply it to Ballard data. This
prompted the need for HB and DS to develop the systematic algorithm. HB performed
the extensive data analysis. HB and ME wrote the manuscript. DS and ME reviewed
the work.

3.1 Introduction

This chapter presents a method for modeling-based treatment and analytics of exper-
imental data to determine kinetic parameters for specific degradation mechanisms.
The parameters allow for useful insight for industry including in view of materials
selection, electrode design, and setting operating conditions. Experimental data mon-
itored and analyzed include the ECSA, thickness reduction, average particle size,
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amount of PITM, and PRD. The model expands on the models discussed at the
end of Section 2.1 [47, 63, 64, 65, 66]. A modelling framework was developed that
used a continuity equation to describe the propagation of the PRD. It accounts for
all four degradation mechanisms illustrated in Figure 2.2. The results allowed the
temporal evolution of particle number density, mean radius, mass active platinum,
concentration of platinum ions in solution and ECSA to be calculated and compared
to experimental data at different cycling protocols [66]. From the analysis in Ref [66],
mechanisms were evaluated separately and it was found that the dissolution and re-
deposition mechanism could explain the surface-area loss data under all conditions
(UPL = 0.9 and 1.2 VRHE) whereas coagulation and detachment were only seen to
correlate to the data at 1.2 VRHE [66]. The four mechanisms were coupled in Ref.
[47] where individual mechanistic contributions were shown for different UPL under
different cycling conditions.

Several issues arose which demanded us to refine the fully coupled model. The
three main issues in Ref. [47] include: (i) results of the fitting are sensitive to input
parameters, i.e., altering the starting values that should in principle be arbitrary,
leads to different kinetic parameters; (ii) the values of kinetic rate parameters are not
consistent with single mechanism models or literature results; and (iii) at high upper
potential limit (φUPL) (1.2 VSHE) the model overpredicts the PRD shift.

This work aims to resolve the ambiguities in the coupled degradation model and
reconcile the inconsistencies identified in Ref. [47]. To achieve this several tasks are
implemented: (i) the previous model is expanded to account for the effluence of Pt
ions into the polymer electrolyte membrane, a sink of platinum mass so far not pre-
viously considered in the model; (ii) we devise an algorithmic procedure for fitting
of experimental data and parameter extraction; and (iii) consider more diverse data
sets.

3.2 Methodology

3.2.1 Model Equations

The bulk of the model equations were first developed in the decoupled model defined
in Refs. [52, 63, 64, 65, 66]. Here, we will review the formalism and explain how
the impact of PITM is added to it. To account for the evolution of the particle
radius distribution, fN(r, t), normalized to the total number of particles in the initial
distribution, the continuity equation used with contributions from each mechanism
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was developed from theories of Wagner, Lifshitz and Slyozov [52] and is indicated
below,

∂fN(r, t)
∂t

= − ∂

∂r

[
fN(r, t)dr

dt

]
︸ ︷︷ ︸
dissolution/redepostion

+ J+ − J−︸ ︷︷ ︸
coagulation

− kdetfN(r, t)︸ ︷︷ ︸
detachment

. (3.1)

where fN(r,t) is the PRD function, which is a function of particle radius, r, and time,
t. The detachment mechanism contribution has a rate constant kdet (s−1). The fN(r, t)
contribution from coagulation derived from the Smoluchowski equation,

J+ = 1
2kcgl

∫ r

0+

r2

(r3 − r̃3)2/3fN
(
(r3 − r̃3)1/3, t

)
fN(r̃, t)dr̃ (3.2)

J− = kcgl

∫ r

0+
fN(r, t)fN(r̃, t)dr̃. (3.3)

where kcgl (s−1) is the coagulation rate constant and r̃ is the radius of the merging
particle. To account for dissolution and redeposition, the rate of radius change for
individual particles is given as,

dr

dt
= VmkrdpC̄Pt(t) exp

(
−R0

r

)
− VmkdisCref

P t exp
(
R0

r

)
, (3.4)

where the characteristic radius is defined as,

R0 = VmγPt
RT

, (3.5)

where R is the ideal gas constant, T temperature, and the rate constants are kdis
(m s−1) for dissolution and krdp (m s−1) for redeposition. Equation 3.4 was derived
from Talapin et al [101]. The averaged molar concentration of dissolved platinum in
solution is C̄Pt, Vm is the molar volume of platinum, Cref

Pt the reference concentration
of Pt for the electrolyte in contact with the Pt/C electrode, and γPt, the surface
tension of platinum. We assume a constant surface tension. It was discussed in Ref
[65] that although surface tension will change as the surface changes, e.g. due to the
growth of an oxide layer, the variation is negligible when comparing to the nearly
2000 times increase in the dissolution rate constant from an Upper Potential Limit
(UPL) of 0.9 VRHE to 1.2 VRHE.

The overall mass balance of platinum was modified from the previous model to
account for PITM. Incorporating PITM alters several model equations. Platinum
that is dissolved in solution not only is available to redeposit as before but could

25



also be lost to the membrane. This is added to the total mass balance equation, as
well as the mass moment associated with PITM and dissolution. The total amount
of PITM is determined using the rate of formation of PITM (kpitm) and the C̄Pt
difference between the CCL and the membrane, where the concentration is assumed
to be zero. The rate of change in the normalized Pt mass moment associated with
PITM formation (Mpitm) is,

dMpitm

dt
= kpitmC̄PtMPt

4
3πρPt

∫∞
0+ r

3fN(r, 0)dr . (3.6)

where kpitm (m3 s−1) is an effective rate constant, derived from considering diffusion
of Pt ions or ion complexes into the Proton Exchange Membrane (PEM). MPt is the
atomic weight of platinum and ρPt is the density of platinum. The mass loss from
dissolution is,

dMdis

dt
=

4πρPt
∫∞

0+ r
2fN(r, t)dr

dt
dr

4
3πρPt

∫∞
0+ r

3fN(r, 0)dr (3.7)

where the rate of particle radius change due to dissolution and redeposition in the
support phase is given by dr/dt as shown in Equation 3.4. The rate of change in
concentration of dissolved Pt ion complexes in the catalyst layer electrolyte is,

dC̄Pt
dt

= −Iv
mv

MPt

(
dMdis

dt
+ dMpitm

dt

)
, (3.8)

where Iv is the water volume fraction in the catalyst layer and mV the platinum mass
loading per unit volume. Using the full solution to Equation 3.1 allows for temporal
moments to be determined. These equations were developed in Ref. [52]. The temporal
evolution of the normalized moments of the distribution of platinum particles on the
support include mean radius,

r̄N(t) =
∫∞

0+ rfN(r, t)dr∫∞
0+ fN(r, t)dr

∫∞
0+ fN(r, 0)dr∫∞

0+ rfN(r, 0)dr , (3.9)

surface area,

SN(t) =
∫∞

0+ r
2fN(r, t)dr∫∞

0+ r
2fN(r, 0)dr , (3.10)

and mass,

MN(t) =
∫∞

0+ r
3fN(r, t)dr∫∞

0+ r
3fN(r, 0)dr . (3.11)
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For a given set of rate constants (kdis, krdp, kcgl, kdet, kpitm), Equation 3.1 is solved
for fN(r, t), using Equations 3.2 to 3.5. Having obtained fN(r, t), r̄N(t), SN(t), and
MN(t) can be calculated with Equations 3.9 to 3.11. The mass of the total dissolved
Pt and of PITM can be obtained by integrating Equations 3.6 and 3.7 over time. We
assume that the Pt loss via the detachment mechanism can be attributed to carbon
corrosion. The mass of platinum due to detachment can be obtained from the overall
mass balance equation,

Mdet = 1−MN −Mpitm − C̄Pt
mv

MPt
, (3.12)

where all the masses are normalized toMPt. For simplicity, we assume a simple linear
relation between the normalized thickness change, ∆lCCL, and Mdet,

Mdet = ∆lCCL(t) = 1− LCCL(t)
LCCL

(3.13)

where LCCL is the thickness of the cathode catalyst layer.
Equations established in this section describe how experimentally observable changes

in mean particle radius, ECSA, PITM, and LCCL can be calculated in the model, once
the solution for fN(r, t) has been found. These equations thus establish the link be-
tween macroscopic observables for structure and composition of the CCL and the
kinetics of microscopic degradation processes.

To apply the model directly to experimental data, we define the goodness of fit
as,

χ2
e = We

∑
i∈Se

(
(xe,i − x̄e,i)

he

)2

+Wr
∑
i∈Sr

(
(xr,i − x̄r,i)

hr

)2

+Wp
∑
i∈Sp

(
(xp,i − x̄p,i)

hp

)2

+Wd
∑
i∈Sd

(
(xd,i − x̄d,i)

hd

)2

, (3.14)

where Wk denote weights. x̄k and xk are experimental and model values respectively,
and hk is the correlating scaling factor with k designating the data set (e = ECSA, r
= mean radius, p = PITM, d = detachment/catalyst thickness); each summation is
over all elements i of a given data set Sk. This allows for the ability to simultaneously
fit the experimental data. Previous literature studies only considered the goodness of
fit in ECSA loss.
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3.2.2 Algorithm Formulation

The algorithm implemented in this work is illustrated in Figure 3.1. The goal of the
algorithm is to determine a unique solution for the six unknowns (R0, kdis, krdp, kcgl,
kdet, kpitm) for a given experimental data set. The outside columns define the inputs
(right column) and outputs (left column) of the model. The middle part details the
inner workings of the algorithm. There are two stages: STAGE I involves Monte
Carlo sampling of the parameter space to identify input values for STAGE II, where
parameter values are optimized using a direct search algorithm.

Monte Carlo Method

As mentioned, one of the goals in refining the model beyond the coupled degradation
model implemented in Ref. [47] was to resolve ambiguities. The hope initially was to
achieve this simply by adding PITM physics to the model and expand the experi-
mental data set to simultaneously fit mean radius, PITM, thickness loss, and ECSA
loss. Unfortunately, it was not that straightforward. Even with the extended data set,
there were still not enough constraints with having six free parameters. We needed
to devise a strategy to systematically constrain and/or limit the free parameters such
that the results were independent of the initial values or ensure that the initial values
used were intentionally chosen. The Monte Carlo method is a numerical technique
that uses random sampling to obtain meaningful results through statistical analysis.
This method was implemented to be able to survey a wide parameter space with
multiple dimensions in a manageable time frame.

STAGE I

A Monte Carlo technique is implemented using MATLAB to screen broad ranges
of values for each of the six unknown parameters. The full MATLAB code for this
approach is provided in Appendix B.1. The model described above is solved using a
restricted range of randomly generated parameters for R0, kdis, krdp, kcgl, kdet, and
kpitm. The upper and lower bounds for each parameter were based on literature data
from Ref. [66]. This restricted the model parameters to values in a reasonable range.
The procedure and values for the random number generator using MATLAB is in
Lines 20-33 in Section B.1. For each data set, the model is solved using a modified
ordinary differential equation solver and compared to a desired set of experimental
values using the goodness of fit analysis, Equation 3.14. To reduce the computation
time, I modified MATLAB’s ode15s solver to have a time limit to solve one run of
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Figure 3.1: Flowchart for algorithm employed in degradation analytics.
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the model. Since the primary value of the Monte Carlo procedure is to create a large
number of results, if the solver takes exceptionally long on one run, the modified
ode solver will end the current run and begin the next parameter set. This process is
repeated between five thousand and twenty thousand times. This results in thousands
of parameter sets that corresponded to a goodness of fit value; thus the correlation
of parameters with the best fit can be visualized. For example, Figure 3.2, shows
the relationship of the dissolution rate constant and the characteristic radius, which
relates to the surface tension, to the goodness of fit when comparing to MSAC 1.0
VRHE model results. Since there is a known trend, using this visualization a parameter
set or area can be pinpointed as a reasonable initial input value. This technique
eliminates statistical outliers and identifies the region of a global minimum opposed
to local minima. The output of STAGE I is a parameter set for the region around the
global minimum, which serves as input for STAGE II of the optimization.

As illustrated in Figure 3.1, our approach prescribes three courses of action if
the best fit region is not fully resolved: i) if there is a significant number of best-fit
points condensed near a boundary, the limits of parameter ranges must be expanded
and the Monte Carlo method must be re-run, ii) more experimental data needs to
be accumulated for a better outcome of the Monte-Carlo based analysis or, iii) the
underlying modelling framework may require refinement.

STAGE II

Now that we have identified the area of the global minimum, we can use a numerical
optimization routine to refine the results. This code is provided in Section B.2 of
Appendix B. The extracted parameter set from STAGE I is used as input for the
optimization routine. This not only reduces the computational time but refines the
results from STAGE I. Unique solutions for the rate constants are obtained with a
direct search method that uses the same equation (Equation 3.14) to minimize the
mean square deviation between model predictions and experimental data as in STAGE
I. The results presented here were all determined using the patternsearch function
available in MATLAB and shown in Line 23 of Section B.2. Upon completion of
the optimization, the final evaluation of consistency is performed based on literature
values and outputs of previous runs. For example, Ref. [66] determined an R0 value of
10 nm for φUPL near 1.0 VRHE. Thus a narrow region of points around a global minima
with associated goodness of fit can be extracted from plots such as in Figure 3.2 and
tested for optimization; the six parameters that correlate to a desired single point
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from the plot were used as start values for the optimization routine where R0 was
held constant while the other five parameters (kdis, krdp, kcgl, kdet, kpitm) were allowed
to vary. Reducing the number of free parameters decreases the computational time.
The results are analyzed for goodness of fit to the experimental data set, parametric
trends between other model runs, and relativeness to literature values. If the results
are consistent, a breakdown of degradation contributions can be conducted. Moreover,
predictions can be made on the impact of varying operation conditions and cycles, as
well as prospects of various materials modifications and design strategies.

If the final results are inconsistent, several steps can be repeated. The first step
would be to rerun the optimization with a different set of start values. The underlying
modelling framework could also be modified; one or more of the parameters could be
held constant to reduce the dimensions of the model provided there is confidence in
the held values. Acquiring more experimental data could also aid in honing a unique
parameter set.

3.3 Results and Discussion

3.3.1 Experimental Data Set

Experimental data used in these analyses stem from a comprehensive catalyst degra-
dation study at Ballard Power Systems, published as a DOE report in 2013 [33]. The
platinum degradation experiments were performed in situ for an operating Membrane
Electrode Assembly (MEA); experimental studies explored degradation impacts of
different φUPL on performance typical for potential cycling experiments and they
evaluated different platinum catalyst supports denoted as: Low Surface Area Carbon
(LSAC), Medium Surface Area Carbon (MSAC), High Surface Area Carbon (HSAC)
as described above in Section 1.2.1.

Although all three supports had the same Pt loading of 0.4 mg cm−2, the beginning
of life particle size distribution varied; LSAC had the highest initial mean Pt particle
size. For the majority of the experiments, only the initial and final values of r̄N , PITM,
and lCCL reduction were recorded. An additional extended experiment was performed
on only LSAC with φUPL = 1.2 VRHE that included intermediate points for r̄N and
PITM. For future studies, more dense data sets for all the φUPL for these important
degradation metrics would be desired. PITM was measured using Energy-Dispersive
X-ray Spectroscopy (EDS) [33]; Scanning electron microscopy (SEM) was used to
determine LCCL; as mentioned, the thickness loss was attributed to carbon corrosion,
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Operational / structural parameter Parameter Values
Upper potential limit (φUPL) (VRHE) 0.9, 1.0, 1.1, 1.2, 1.3
Lower potential limit (φLPL) (VRHE) 0.6

Cycling Profile Square Wave
Hold times 30 s (φLPL) / 60 s (φUPL)

Temperature (◦C) 80
Pressure (psig) 5

Relative Humidity 100
Fuel / oxidant H2 4450 sccm

20%O2/N2 9000 sccm
Cycle number 0, 50, 700, 2100, 4700

Carbon support type LSAC: low surface area carbon
MSAC: medium surface area carbon
HSAC: high surface area carbon

Pt loading (mg cm−2) 0.4

Table 3.1: Experimental parameters

which was assumed to correlate directly to the detachment mechanism. The goodness
of fit weights We, Wr, and Wp in Equation 3.14 were adjusted such that each point
had equal weight, e.g. We = 1/(6 points); Wd was set to 0.5 for the single point due
to the larger experimental uncertainty in LCCL data.

The initial PRD was not determined in the experimental data set analyzed. How-
ever, using the mean radius and standard deviation of the initial particle size, the
normalized PRD was calculated for each carbon support type by applying a log-
normal distribution,

fN(r, 0) = 1
σ
√

2π
exp

(
−(ln x− µ)2

2σ2

)
(3.15)

where σ = 0.314 and µ = 0.944 for LSAC, σ = 0.460 and µ = 0.612 for MSAC, and
σ = 0.323 and µ = 0.478 for HSAC. Table 3.1 details the experimental parameters
used.

3.3.2 Algorithm Implementation

The degradation data from Ref. [33] were analyzed with the algorithm described in
Section 3.2.2 and 3.2.2. Figure 3.2 is an example of the results from STAGE I for
MSAC at φUPL = 1.0 VRHE. The plot illustrates the goodness of fit as determined
in Equation 3.14 of the model to the experimental data, exemplified for the plane
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Figure 3.2: Goodness of fit function values (Equation 3.14) for the random sets of
parameters sampled with the Monte Carlo method plotted vs. kdis and R0 for MSAC
at 1.0 VRHE. Grey points on the basal plane correspond to projections of the data
points with goodness of fit values below the threshold of 3%.

spanned by kdis and R0. Each point represents a unique parameter set. A correlation
between kdis and R0 is most easily seen in the grey points on the basal plane of Figure
3.2, which corresponds to the data points with the best fit. As seen in Equation 3.5, R0

is directly proportional to γPt. Ideally several model parameters could be determined
from independent experiments allowing the free model parameters to be reduced. For
instance, knowing the value of γPt at specific oxide coverages that correlate to φUPL
allows the results to be pinpointed to specific kdis with the best fit value. This work
used R0 values near the reported values corresponding to φUPL in Ref. [65] and [66].
The reader is referred to Ref. [64, 63] for a deeper discussion of surface tension and
specific model impacts. It was seen that the radius dependence for the dissolution
component of the model equation (Equation 3.1) was relatively stable with changing
conditions leading to the assumption that a specific value for surface tension could be
used in the model [64]. The corresponding parameter set to any point in Figure 3.2
can be extracted and used as the input for the optimization to minimize the goodness
of fit function in STAGE II.
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Figure 3.3: Model (line) and experimental data (circles) for Low Surface Area Carbon
(LSAC) at different φUPL: 1.0 VRHE - purple; 1.1 VRHE - red; 1.2 VRHE - blue; 1.3
VRHE - cyan after full parametric optimization according to Figure 3.1.

3.3.3 Model Evaluation

The general expectation across the literature is that overall Pt mass loss due to degra-
dation increases monotonically with φUPL [48, 51, 1, 53, 102, 103]. This model looks
to distinguish between the specific mechanisms to further understand the degrada-
tion phenomenon. The best-fit results from the model for LSAC, MSAC, and HSAC
reproduce experimental data with reasonable accuracy.

For LSAC, there are some unexpected results in the experimental data as seen
in Figure 3.3. For instance, there is less SN loss at φUPL = 1.2 VRHE at 5000 cycles
compared to 1.1 VRHE. The experimental results show that the r̄N after 5000 cycles
for φUPL = 1.0 VRHE is nearly equal to that at φUPL = 1.3 VRHE and higher than
the r̄N after 5000 cycles for φUPL = 1.1 VRHE and 1.2 VRHE. Notably, the model
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Figure 3.4: Model (line) and experimental data (circles) for Low Surface Area Carbon
(LSAC) after full optimization of parameters at φUPL = 1.2 VRHE for the additional
set of experimental data that included intermediate values of mean radius and PITM;
parameters are shown in Table A.1 in the row labelled with a [*].
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shows a stable initial r̄N for φUPL = 1.2 VRHE that exceeds that at φUPL = 1.1 VRHE

around 2000 cycles seen in Figure 3.3; this is not seen in the additional experiment
performed for φUPL = 1.2 VRHE as shown in Figure 3.4. The model does not capture
the increased amount of Mpitm reported for φUPL = 1.1 VRHE compared to the other
φUPL in the lower left quadrant of Figure 3.3 nor the greater lCCL reduction seen
for 1.0 VRHE compared to 1.1 VRHE; however, it shows expected trends that as the
φUPL is increased,Mpitm increases and lCCL decreases. More experimental data will be
needed to determine if these variations in experimental data are due to experimental
artifacts or are reproducible results.

Despite the non-monotonic trends in the experimental data of LSAC, the opti-
mized rate constants do show consistent trends with φUPL displayed in Figure 3.5. The
rate constant of detachment, kdet, was allowed to vary in STAGE I but during STAGE
II the goodness of fit was equal to or less for φUPL < 1.2 VRHE when kdet was set to
zero; for φUPL ≥ 1.2 VRHE, a monotonic trend is seen with kdet. The dissolution rate
constant, kdis, increases until φUPL = 1.2 VRHE, above which it exhibits a substantial
decrease. Overall at φUPL = 1.3 VRHE the most significant degradation is observed
in Figure 3.3, with the greatest decrease in SN and lCCL and the largest increase in
r̄N and Mpitm. Although there is a decrease in kdis and krdp from φUPL = 1.2 VRHE

to 1.3 VRHE, the values of kcgl, kdet, and kpitm are significantly increased leading to
the highest overall amount of degradation seen. The results of model fitting show an
increased kcgl, as seen in Figure 3.5, for φUPL = 1.0 VRHE compared to 1.1 VRHE and
1.2 VRHE; this non-monotonic trend needs to be further explored with additional data
sets.

The experimental data for MSAC in Figure 3.6 show a monotonic trend with
increasing φUPL; there is also a higher signal-to-noise ratio which could allow the model
to better resolve the data compared to LSAC. The optimized rate constants kdis, kcgl,
and kdet from the fitting of MSAC data (Figure 3.7) show fairly consistent, monotonic
trends with φUPL. Neither the data nor the derived rate constants show monotonic
trends for PITM or redeposition. Additional experimental data at intermediate cycle
numbers would help resolve ambiguities in the derived rate constants.

Experimental data for HSAC were limited to φUPL = 1.2 VRHE. Therefore, pa-
rameters could not be compared for different UPLs nor a broad comparison between
supports. The best fit solutions and parameter values are shown in Figure 3.8 and in
Table A.3 of the supporting information. Figure 3.9 shows the best fit of kdis and kdet
for the studied carbon support type at φUPL = 1.2 VRHE. Generally, kdis exhibits a
modest variation across all carbon support types. There is a strong increase in kdet
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Figure 3.5: Optimized best fit model results for kdis (circles), kcgl (diamonds), and
kdet (squares) for LSAC at 80◦ C from Table A.1 in the Supporting Information.

between LSAC and MSAC but not as strong for kcgl. This shows that MSAC is less
corrosion resistant compared to LSAC but the Pt particles are still bonding relatively
strongly to the support inhibiting the merging of particles. On the other hand, there
is a strong increase in between MSAC to HSAC showing that HSAC is neither car-
bon corrosion resistant nor has strong particle bonding properties relative to LSAC
or MSAC.

The relative contribution of the individual degradation mechanism can be com-
pared using an approach developed in Ref. [47]. The impact of each mechanism on
the PRD is given by

∂fdisN

∂t
= − ∂

∂r

[
fN
dr

dt

]
, (3.16)

∂f cglN

∂t
= J+ − J−, (3.17)

and
∂fdetN

∂t
= kdetfN . (3.18)
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Figure 3.6: Model (line) and experimental data (circles) for Medium Surface Area
Carbon (MSAC) after full optimization according to the algorithm in Figure 3.1
at varying φUPL: 0.9 VRHE - black; 1.0 VRHE - purple; 1.1 VRHE - red; 1.2 VRHE -
blue; 1.3 VRHE - cyan. A reduced model only considering the dissolution/redeposition
mechanism was applied to 0.9 VRHE with the parameters reported in Table A.2 for
the row labeled with a [*].
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Figure 3.7: Optimized model results for kdis (circles), kcgl (diamonds), and kdet
(squares) for MSAC at 80◦ C from Table A.2 in the Supporting Information.

From these, the degradation contributions to ECSA loss from each mechanism can
be determined using Equation 3.10.

Figure 3.10 and Figure 3.11 show the breakdown of different mechanistic contri-
butions to the overall ECSA loss at different φUPL for LSAC and MSAC respectively.
For LSAC at φUPL = 1.0 VRHE dissolution/redeposition/PITM and coagulation are
the dominant mechanisms of degradation and coincidentally contribute equivalently.
No contribution to ECSA loss is seen with coagulation for MSAC which is consis-
tent with Ref. [66]. Coagulation was reported to be the dominant mechanism in Ref.
[47] for one set of initial parameters for both triangle wave and square wave data.
There is no contribution from particle detachment for φUPL = 1.0 VRHE, which is
consistent with the results in Ref. [47] for all four data sets at φUPL = 0.9 VRHE. It is
a surprising result that LSAC shows contributions from the coagulation mechanism
at φUPL = 1.0 VRHE but MSAC does not; further experimental data are needed in
order to conclude if the structure of the support alone could lead to a reduction of
the coagulation mechanism. Since the High Surface Area Carbon (HSAC) data was
limited, a mechanistic breakdown could not be performed for comparison.
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Figure 3.8: Model (line) and experimental data (circles) for High Surface Area Carbon
(HSAC) after full optimization with the algorithm in Figure 3.1 at upper potential
limit of 1.2 VRHE with the parameters reported in Table A.3.
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Figure 3.11: Mechanistic breakdown for MSAC at φUPL of a.) 1.0 VRHE and b.) 1.3
VRHE.

3.4 Summary of Results

This chapter presented a step-wise algorithm to analyze catalyst degradation data
to extract rate parameters that are essential for detailed mechanistic understand-
ing of platinum degradation. Unique, unambiguous rate parameters for individual
mechanisms of degradation have been extracted from experimental data. This was
achieved by simultaneously fitting ECSA loss, mean particle radius, PITM loss, and
catalyst layer thickness loss. In general, the derived rate constants for dissolution
and detachment increase with φUPL. The detachment rate constant increases with the
surface area of the carbon support whereas the dissolution rate constant appears to
be independent of the support.

Knowing the individual rate constants under various cycling protocols shows the
degradation mechanism that dominates at specific conditions, as well as at which
point during the cycling the individual mechanism contributes to platinum loss. For
instance, detachment was not seen to play a predominant role while cycling the po-
tential below 1.0 VRHE correlating to no carbon corrosion at lower potentials. The un-
derstanding gained by the presented model gives catalyst layer manufacturers bench-
marks such that catalyst layers can be better optimized, e.g., either designed towards
more stable catalyst or more stable supports. Ideally this model will be applied to
vast amounts of data to refine the model in order to allow for accurate predictive
capabilities.
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Now that we have a process to predict degradation rates, we look to understand
the underlying relations that cause the degradation. In the next chapters a model
of platinum oxide formation, growth, and reduction is presented. The model is first
solved for only oxide formation and growth in the quasi steady-state limit then the
reduction mechanism is added. Ideally, the dissolution rate constant for this model,
will be obtained from the oxide formation, growth, and reduction model that will be
discussed in the upcoming chapters, which would reduce the number of free parameter
inputs ultimately saving computational time.
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Chapter 4

Modelling Oxide Formation,
Growth, and Reduction of
Platinum

4.1 Introduction

The connection between platinum dissolution and oxide growth and reduction was
outlined in Chapter 2 where an overview of the significant literature studies that
pertain to these phenomena were discussed. Many factors contribute to the degree
of growth and reduction of metal oxides. Some metals, such as iron, will easily oxi-
dize in mild conditions without a protective coating. But even robust metals such as
platinum will oxidize under harsh environmental conditions. In a fuel cell, the plat-
inum metal catalyst is exposed to continuously varying potentials, high temperatures,
acidic surroundings, and oxygen exposure through both liquid and gas creating an
oxidizing environment. This oxidation disrupts the orderly structure of the platinum
resulting in enhanced degradation and overall loss in power density and lifetime but
there are still debates on the exact reactions causing this loss. In the previous chapter
we looked at rates of different degradation mechanisms. Here we take steps at un-
derstanding underlying kinetics and processes leading to dissolution. The goal is to
be able to use results from the degradation model discussed in the previous chapter
as parameter inputs to a model of oxide growth and reduction to predict the degree
of platinum degradation attributed to the platinum oxidation and reduction process.
First the phenomenology of the oxide growth and reduction process is discussed and
then a model is developed and solved.
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4.2 Phenomenology of Oxide Formation, Growth,
and Reduction

As we saw in Section 2.2, several experimental methods reveal a plethora of infor-
mation regarding the surface science of platinum oxides. We dive into greater detail
regarding the process of the oxide growth and reduction in order to have a solid foun-
dation to build a model on. Here we discuss the oxide growth and reduction resulting
from an applied potential as in Figure 2.3. Hydrogen is adsorbed as the potential
is decreased from just below 0.5 VRHE to 0 VRHE and then desorbed off the plat-
inum electrode as the applied potential is increased; at around 0.4 VRHE, the surface
transitions to the adsorbate-free double layer charging region indicated by the region
with no peaks on the cyclic voltammetry scan as highlighted in Figure 2.3. Many
AST cycling protocols use a Lower Potential Limit (LPL) in this region to avoid the
adsorption and desorption of hydrogen when studying the oxidation process.

The electrode remains clean while the electrode potential is increasing (or de-
creasing) throughout the double layer charging region until oxygen atoms begin to
chemisorb on the surface. Oxygen atoms continue to be attracted to the platinum
surface until it becomes energetically favourable for platinum atoms to be dislodged
from their metal lattice position at the surface creating a buckling effect [104]. At
sufficiently high surface oxygen coverage, this buckling creates a defect that opens
a space for an oxygen atom to fill [99, 105, 106]. It is this defect creation process
that spawns the oxide growth. The replacement of a surface platinum atom with an
oxygen atom in the buckling process is often known as place-exchange. The oxide
layer will continue to grow thicker as the applied potential is increased [107]. Initially
the oxide layer forms a Pt-O structure but there is evidence at higher potentials of
the formation of a bilayer oxide structure [96, 3, 108, 109].

A schematic of the oxidation process is depicted in Figure 4.1. Figure 4.1a illus-
trates the formation of oxygen adsorbed on the surface of platinum as a potential
is applied. Figure 4.1b represents the PtO layer that forms upon chemisorption of a
sufficient amount of oxygen to induce the place exchange mechanism and grow the
oxide layer. The oxide layer grows into the metal via Pt atom displacement, as well as
into the electrolyte via binding of oxygen ions. The formation of PtO2 is illustrated
in Figure 4.1c.

The oxide layer grows thicker through the migration and diffusion of defects in
the form of oxygen ion vacancies or Pt interstitials [69]. The growth of the oxide layer
is limited by the rate of defect creation at the Metal-Oxide (M-O) interface [4].
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Figure 4.1: Schematic of Pt oxide growth; a.) Oxygen formation on surface; b.) PtO
layer formation c.) Bilayer structure of PtO (yellow) and PtO2 (light blue) with
oxygen ion vacancies shown;

The initial Pt-O layer forms as a typical rock salt crystal structure whereas the
PtO2 layer is less defined [110]. The crystalline structures of the oxide relate directly
to the semiconducting characteristic of the material and can be determined by calcu-
lating the electronic band structure using DFT and ReaxxFF [111, 112]. Both layers
are known to exhibit semiconducting properties. Ref. [110] shows evidence that the
second layer is α-PtO2 with the configuration of the CdI2 crystal structure [110]. In
Ref. [112] it is discussed that β-PtO2 (CaCI2 orthorhombic) had a smaller band gap
and was more stable relative to α-PtO2 (CdI2). Despite the uncertainty in the exact
structure, the PtO2 layer is seen to grow to several monolayers in thickness, whereas
the PtO layer is believed to only grow to an average of two monolayers in the case of
Pt(poly); this limit could be different in the case of Pt(hkl) electrodes [68].

One hypothesis for the bilayer structure of PtO and PtO2 is lattice matching: it is
more energetically favourable for Pt oxide to be in the PtO2 structure but this cannot
reside directly on pure Pt metal. Thus an intermediate layer, such as the PtO layer,
is needed between the two layers [97]. However, the formation of the PtO layer could
also just be a transient phenomenon.

The oxide layer will grow until the potential is negative enough for a chemisorbed
oxygen species to release from the oxide layer creating an oxygen vacancy defect
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Figure 4.2: General schematic of the oxide reduction process: a.) defect creation; b.)
diffusion; c.) Pt filling; d.) Pt dissolution

at the Oxide-Electrolyte (O-E) interface triggering the reduction reaction as shown
in Figure 4.2a [113, 114]. The initiation potential of the reduction process depends
on the thickness of the oxide layer, which in turn is determined by the UPL, hold
times, and/or experimental conditions; the thicker the oxide layer, the lower the
potential needed to promote the reduction process [115]. The reduction reaction can
only proceed as fast as the vacancies at the surface are created. Then the oxygen
atoms can migrate towards the O-E interface and into the electrolyte resulting in
the diffusion of oxygen vacancies towards the bulk metal represented in Figure 4.2b.
Once an oxygen vacancy has diffused/migrated through the oxide layer to the Metal-
Oxide (M-O) interface, a space is made available for a charged Pt atom in the oxide
layer to reunite with the metal and be reduced (Figure 4.2c). The rate of the defect
creation will determine the nature of the reduction. For example, if the rate is very
fast, the oxygen atoms will escape from the oxide layer much faster than the Pt atoms
can return to the bulk leaving under-coordinated platinum atoms that are prone to
dissolution (Figure 4.2d). On the other hand, if the rate of defect creation is very
slow, there may be a uniform healing and thinning of the entire layer.

The model is developed from the general scheme shown in Figure 4.3 and incor-
porates the mechanisms of oxide layer growth and reduction based on diffusion and
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defect
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Figure 4.3: Illustration of the boundary condition and oxide growth and reduction
processes.

migration of defects. It moreover accounts for the kinetic reactions that occur at the
interfaces.

Figure 4.4 shows the corresponding reaction scheme for oxide growth, reduction,
and dissolution. The equations incorporate:

1. Oxygen vacancy creation (growth) / annihilation (reduction)

2. Oxygen vacancy annihilation (growth) / creation (reduction)

3. Cation transport through interstitial

4. Dissolution of oxide layer (most significant during reduction - assume negligible
during oxide growth due to lack of experimental detection)

Although there are several species transporting across the oxide layer including
Pt and O ions, Pt and O defects, and electrons, for modelling purposes, accounting
only for the minority species, i.e. the oxygen vacancies, is sufficient. Any movement of
oxygen vacancies will result in either a growth or reduction depending on the direction
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METAL OXIDE ELECTROLYTE

1) Pt0 growth−−−−−−⇀↽−−−−−−
reduction

Ptχ+ + χe− + VO

3) Pt0 growth−−−−−−⇀↽−−−−−−
reduction

Ptχ+
i + χe− + VPt

2) VO + H2O
growth−−−−−−⇀↽−−−−−−

reduction
+ 2H+ + O2−

4) Pt−Oχ/2 + χH+ dissolution−−−−−−⇀↽−−−−−− Ptχ+ + χ
2 H2O

Direction of flow
Growth:

Ptχ+ →
VO →

χe− ←

O2− ←

Reduction:

Ptχ+ ←
VO ←

χe− →

O2− →

Figure 4.4: Species equations for growth, reduction, and dissolution

of the flux keeping in mind there is global charge neutrality. It is assumed the flux
of the Pt interstitial defects through the lattice does not contribute to the growth
or reduction of the oxide layer and thus Reaction 3 in Figure 4.4 is not considered
initially in the model development.

4.3 Model Structure

For the purposes of our model, we assume an interface between the metal and oxide
layer at x = 0 and an interface between the electrolyte and the oxide layer at x = L,
shown in Figure 4.3. Our model does not account for the formation of a bilayer struc-
ture, but the geometry of the oxide layer is included in model parameters, such as
the reaction rate and the expansion factor, which can be adapted for different struc-
tures or analyzed to determine probable oxide structures. The general assumptions
of the model include: (i) the oxygen vacancy density is small; the ratio of the oxygen
vacancy to total oxygen ranges from a fraction of a percent to several percent [69],
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(ii) overall-homogenous composition across the film [116], (iii) a PtO oxide structure,
(iv) an isothermal system, and (v) we only consider the x-components of the fluxes,
i.e. 1D model.

Concerning the thickness regime, the model should allow for a consistent treatment
of the transition from thin to thick oxide layer, as an effective interpolation scheme.
In the limit of a thin oxide layer, the kinetics and structural sensitivity of the defect
creation process at the interface controls the growth. In the limit of a thick oxide layer,
diffusion and migration of species in the oxide layer will determine the growth rate.
We employ a continuum transport model based on Poisson-Nernst-Planck equation
for the latter case. Of course, this approach fails when the oxide layer is thin. However,
since transport effects in the layer are insignificant in this thickness regime, the use
of the continuum description remains without any impact.

Oxygen ion vacancies are generated at the M-O interface by the extraction of Pt
atoms during growth. The rate of this process depends on the local composition of
the interface, i.e., the amount of oxygen species, and the structure of the oxide. These
aspects determine the local electric field and thus the energetics of the extraction
process. The structural sensitivity of the rate of Pt atom extraction and of the simul-
taneous production of oxygen ion vacancies was studied in Ref. [105]. The challenge
for oxide growth models is to cast these dependencies into a suitable mathematical
form. The proposed functional relation will be discussed in Section 4.4.1. It represents
a crucial component of our model.

4.4 Model Equations

We assume that transport in through-plane direction is dominant and transport in
other directions is neglected reducing the model to one dimension. The continuity
equation for oxygen ion vacancies is

∂C(x, t)
∂t

= −∂J(x, t)
∂x

, (4.1)

where C is the oxygen ion vacancy concentration in the oxide layer, J denotes the
flux, x is the position across the layer, and t time. The flux of the oxygen ion vacancies
is described by the Nernst-Planck relation,

J(x, t) = −D
(
∂C(x, t)
∂x

+ zF

RT
C(x, t)∂φ(x, t)

∂x

)
, (4.2)
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where D is the diffusion coefficient; F Faraday constant, R ideal gas constant, and T
temperature. The charge number is denoted by z and φ is the electrostatic potential.
Diffusion and migration contribute to oxygen ion vacancy flux across the layer facil-
itating the growth of the oxide layer. The Poisson equation accounts for the electric
potential across the oxide layer for a given charge density, ρ,

∂2φ

∂x2 = −ρ(x, t)
ε0εr

(4.3)

where
ρ(x, t) = zFC(x, t), (4.4)

and ε0 is the permittivity constant in a vacuum and εr the relative permittivity of
platinum oxide. For the oxide system we consider charge contributions from oxygen
vacancies. Figure 4.5 is a general schematic of the potential profile across the oxide
layer. The electric field strength can be determined using

E(x, t) = −∂φ(x, t)
∂x

. (4.5)

The current density as described by Cohen and Cooley [117] is,

I(x, t) = F
∑

zJ(x, t) + ε0εr
∂E(x, t)
∂t

(4.6)

with the last term being the displacement current. Equation 4.2 is combined with
Equation 4.1 and Equation 4.5,

∂C(x, t)
∂t

= D
∂2C(x, t)
∂x2 − zFD

RT

∂C(x, t)
∂x

E(x, t). (4.7)

The kinetic rate of the reaction at the M-O interface can be used to describe oxide
growth or reduction over time,

dL(t)
dt

= κf1fC(x)− κrf1rC(x)|x=0. (4.8)

where f1f and f1r are the forward and reverse of the interfacial functions across the
M-O interface and will be described in detail in the next section. The corresponding
rate constants are κ for the forward reaction and κr for the reverse reaction.
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φm = Eapp

φm
o (0, t)
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o(L(t), t)

x = 0 x = L

Figure 4.5: General schematic of the potential profile across the layers and boundary
values. The dashed red line symbolized the potential distribution across the oxide
layer which is not necessarily linear but will be determined using Eq. 4.3.

4.4.1 Interfacial Kinetic Functions

We define four interfacial kinetic functions that are designed to mathematically cap-
ture the exchange of species at each interface. Defining kinetic functions at the bound-
aries allows for a relationship between Pt extraction and oxygen vacancy concentra-
tion at the interface to be quantified. At the M-O interface we define the forward
interfacial function as f1f and the reverse as f1r. These values are incorporated into
the boundary conditions in Section 4.4.2. For the forward reaction, it is clear from
the literature that there is a dependence of Pt atom extraction on oxygen coverage
[106, 3, 118]. The exact shape of this dependence is unknown. However, we use a
functional form that allows us to tune the steepness of the transition, which is related
to the sensitivity of the reaction rate of platinum extraction on oxygen coverage. A
practical way to incorporate this dependence is to use a tanh function,

f1f = 1
2

(
1 + tanh

(
Γ
(

1− C(0)
C0

)))
, (4.9)

where C0 is the characteristic oxygen vacancy concentration required to promote Pt
extraction. A phenomenological parameter, Γ, is introduced to quantify the sensitivity
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Figure 4.6: The interfacial kinetic function (f1f ) as a function of the normalized
oxygen ion vacancy density at the M-O interface at varying Γ values.

of the dependence of Pt extraction on C(0). Low Γ values show a gradual linear trend,
representing a relatively weak dependence of Pt atom extraction to C(0). A high value
of Γ, i.e., Γ � 10, implies a strong step-like dependence. According to results in Ref.
[105], the latter is the more realistic scenario. The plot of f1f as a function of C(0)
for different Γ is shown in Figure 4.6.

A similar function is used to describe the reverse reaction across the M-O interface,
f1r. It is assumed a threshold is also needed to promote the reduction of the oxide,

f1r = 1
2

(
1 + tanh

(
Γ
(
C(0)
C0
− 1

)))
, (4.10)

which is represented in Figure 4.7. When the oxygen vacancy concentration goes
above the threshold, the oxide layer will begin to decrease in thickness, below the
threshold, the layer reduction will be slow. It is assumed that the rate limiting steps
are the reactions across the M-O interface such that the interfacial functions at the
O-E interface can be defined more simply. During growth it is assumed that any
vacancy that makes it to the O-E interface will simply be filled at a sufficiently high
rate, given by a simple equation is defined as,

f2f = C(L)
C0

. (4.11)
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Figure 4.7: The interfacial kinetic function (f1r) as a function of the normalized oxygen
ion vacancy density at the M-O interface at varying Γ values.

The reverse reaction at the O-E interface where the reduction phenomena is dominant
is dependent on the number of oxygen atoms at the surface,

f2r = 1− C(L)
C0

. (4.12)

Equations 4.9 - 4.12 can be adapted to account for different processes that occur at
each boundary. Incorporating material-specific kinetic reactions at each boundary is
a key part of the model that distinguishes it from oxidation models in the literature.

4.4.2 Flux Boundary Conditions

The boundaries are defined at the M-O interface, shown in Figure 4.3 as x = 0, and at
the O-E interface, x = L. Both boundaries are moving as the oxide grows and reduces;
at the M-O interface the boundary shifts into the metal as oxygen species cross the
interface during oxide growth. Initially we transform the computational domain to
have a static boundary of the oxide layer at x = 0. This allows us to mathematically
consider only one moving boundary. At x = 0 we have,

J

∣∣∣∣
x=0

= k1ff1f (C(0))− k1rf1r(C(0)). (4.13)

Equation 4.13 defines the rate of extraction of Pt atoms across the M-O interface,
as the difference of, the forward reaction with rate constant k1f minus the reverse
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reaction of Pt atoms returning to the metal with the rate constant k1r. The dominating
rate constant will determine whether the oxide layer is in the growth or reduction
phase. At x = L(t), the boundary condition is

J

∣∣∣∣
x=L

= k2ff2f (C(L))− k2rf2r(C(L)) (4.14)

which defines the flux of oxygen ion vacancies across the O-E interface and corresponds
to Reaction 2 in Figure 4.4. The recombination rate constant of an oxygen ion vacancy
with an oxygen ion resulting in oxide layer growth is defined as k2f and the creation
rate constant of an oxygen ion vacancy by the release of an oxygen ion is k2r resulting
in the reduction of the oxide layer.

As shown in Figure 4.4, only reactions across the M-O interface are potential-
dependent, i.e., involve an electron transfer. The reaction rates are defined as,

k1f = k0
1f exp

(
−αF
RT

(φm/o)
)

= k0
1f exp

(
−αF
RT

(φm − φ(0))
)
, (4.15)

and
k1r = k0

1r exp
(
−αF
RT

(φo/m)
)

= k0
1r exp

(
−αF
RT

(φ(0)− φm)
)
, (4.16)

where k0
1f and k0

1r are the forward and reverse rate constants, α the transfer coefficient,
φm/o the forward potential difference from the metal to oxide at the M-O interface, and
φo/m the reverse potential difference from the oxide to the metal at the M-O interface.
For simplicity, we assume electrochemical kinetics of Butler Volmer-type with α =
0.5. This assumption could be relaxed later to account for a multiple electron-transfer
reaction or one where the energy transition state favours the reactants ( α > 0.5) or
products (α < 0.5) [119]. The reaction rates at the O-E interface are simply equal to
their corresponding rate constant,

k2f = k0
2f , (4.17)

for the forward reaction, and
k2r = k0

2r, (4.18)

for the reverse reaction.
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4.4.3 Potential Boundary Conditions

In order to solve Equation 4.3 we need to define the electric field at x = 0 and
x = L(t),

∂φ(x, t)
∂x

∣∣∣∣
x=0

= −σ(0)
εrε0

(4.19)

where σ is the effective charge density at the M-O interface. Originally, we will assume
this is a non-zero constant. In the future this assumption could be relaxed into a
function of potential and time. At the O-E interface,

∂φ(x, t)
∂x

∣∣∣∣
x=L

= −σ(L(t))
εrε0

= 0. (4.20)

4.5 Nondimensionalization

In order to simplify the mathematical formalism and determine the number of in-
dependent parameters, we nondimensionalize the model equations. This allows for a
clear understanding and interpretation of the parametric effects seen in experimental
data. We define a dimensionless time,

τ = Dt

L2
0

(4.21)

where L0 is the thickness of a unit cell of the oxide with one layer of oxygen ions. The
value of L0 depends on the geometry of the oxide layer. For α-PtO2, L0 is 4.3 Å, and
for PtO, L0 is 2.7 Å [110]. The dimensionless thickness is,

λ = L

L0
, (4.22)

and the position variable is
ξ = x

L0
. (4.23)

The dimensionless oxygen ion vacancy concentration is,

C̃ = C

C0
. (4.24)

The dimensionless electric field is,

Ẽ(ξ, τ) = zFE(x, t)
RT

(4.25)
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and
Z = zFC0L

2
0

ε0εr
(4.26)

The dimensionless oxygen ion vacancy concentration is,

C̃(ξ, τ) = C(x, t)
C0

. (4.27)

The rate constants in nondimensional form are,

k̃1f =
k0

1fL0

DC̃0
exp

(
αFφm/o
RT

)
, (4.28)

k̃1r = k0
1rL0

DC̃0
exp

(
αFφo/m
RT

)
, (4.29)

k̃2f =
k0

2fL0

DC̃0
, (4.30)

and
k̃2r = k0

2rL0

DC̃0
. (4.31)

The dimensionless growth rate constant is,

κ̃ = k1fL0

Dε
, (4.32)

and the dimensionless reduction rate constant is,

κ̃r = k1rL0

Dε
. (4.33)

The model parameter Γ is non-dimensionalized but can be broken into dimensional
components,

Γ = γ

C0
. (4.34)

Using the above variables, Equation 4.1 and 4.2 become,

∂C̃(ξ, τ)
∂τ

= − J̃(ξ, τ)
∂ξ

(4.35)

and
J̃(ξ, τ) = −∂C̃(ξ, τ)

∂ξ
− C̃(ξ, τ)Ẽ(ξ, τ), (4.36)
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respectively. Inserting the above variables into Equation 4.7 gives,

∂C̃(ξ, τ)
∂τ

= ∂2C̃(ξ, τ)
∂ξ2 − ∂C̃(ξ, τ)

∂ξ
Ẽ(ξ, τ)− C̃(ξ, τ)∂Ẽ(ξ, τ)

∂ξ
. (4.37)

Equation 4.3 becomes,
∂Ẽ(ξ, τ)
∂ξ

= ZC̃(ξ, τ), (4.38)

and Equation 4.8 is,
dλ(τ)
dτ

= κ̃f̃1f C̃(0)− κ̃rf̃1rC̃(0)). (4.39)

After non-dimensionalization, the interfacial functions become,

f̃1f = 1
2(1 + tanh(Γ(1− C̃(0))), (4.40)

f̃1r = 1
2(1 + tanh(Γ(C̃(0)− 1)), (4.41)

f̃2f = C̃(λ), (4.42)

and
f̃2r = 1− C̃(λ). (4.43)

The boundary conditions must be non-dimensionalized as well. At ξ = 0,

J̃

∣∣∣∣∣∣
ξ=0

= k̃1f f̃1f (C̃(0))− k̃1rf̃1r(C̃(0)) (4.44)

At ξ=λ,

J̃

∣∣∣∣∣∣
ξ=λ

= k̃2f f̃2f (C̃(λ))− k̃2rf̃2r(C̃(λ)) (4.45)

We non-dimensionalize charge density as

σ̃ = σRT

εrε0F
(4.46)

Thus equations 4.19 and 4.20 become

Ẽ(ξ, τ)|ξ=0 = σ̃(0) (4.47)
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and
Ẽ(ξ, τ)|ξ=λ = σ̃(λ(τ)) (4.48)

4.6 Summary

This chapter presented a model for platinum oxide growth and reduction. The model
is based on the diffusion and migration of oxygen vacancies to promote oxide thickness
change. The main differences between this model and others in the literature are it
explicitly applies a mathematical formalism to account for the interfacial reactions
that occur, and the oxide growth and reduction of the layer are encompassed in a
single model. In the next chapter, the model is solved in the quasi-steady state limit
for only the oxide formation and growth phenomena. Chapter 6 incorporates the
reduction process and presents an approach for the transient solution to the entire
oxide growth and reduction modelling framework.
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Chapter 5

Quasi-Steady State Solution
and Results for Oxide
Formation and Growth

H. A. Baroody, G. Jerkiewicz, M. H. Eikerling, Journal of Chemical Physics, 146:
144102, 2017. https: // doi. org/ 10. 1063/ 1. 4979121

Material from this publication is used in this chapter with permission from AIP Pub-
lishing.

Author contribution: HB and ME developed the research question. HB performed the
literature review and proposed the approach. ME refined the equations. HB solved
the model and performed the parametric analysis and experimental comparison. GJ
provided experimental results and insight. ME and HB analyzed and interpreted the
results. HB and ME wrote the manuscript. ME and GJ reviewed the work.

5.1 Introduction

It is important in model development to start as simply as possible and then add
complexities if necessary. Simple models offer vital mechanistic insights. As we have
seen, oxide formation, growth, and reduction are not trivial processes and transcend
many disciplines from solid state chemistry, electrochemistry, physics, mathematics,
to name a few. Breaking the process into its key components and building from there
affords the opportunity to understand exactly the impact each parameter has on the
results of the model and what assumptions are reasonable.
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In this chapter we limit the model developed in Chapter 4 to only describe the
formation and growth of platinum oxide. This was a logical first step because there
are many literature studies with quality experimental data that have isolated the
growth phenomena to compare our model with. If we can develop a solid model that
describes oxide formation and growth, we can then add the reduction component with
more confidence where there is not as much available experimental data. The model
assumptions are discussed with the corresponding changes to the equations and then
the results are presented and discussed.

5.2 Model Equation Modifications

We consider growth at a fixed potential across the oxide layer and impose an as-
sumption that the potential drops at the boundaries of the oxide layer are constant
because their composition remains constant as the oxide layer grows [76, 79]. This
assumption results in potential drops at the boundaries that are independent of the
oxide layer thickness. With the assumption of constant composition, it follows that
the potential gradient is constant across the layer and decreases as the oxide layer
grows [120]. This assumption allows for the Poisson equation to be neglected and we
define,

∂φ

∂x
= φL − φ0

L(t) , (5.1)

where φ0 and φL are the potentials at the M-O and O-E interfaces, respectively.
Assuming a constant diffusion coefficient, the above equation modifies Equation 4.2
to,

∂C(x, t)
∂t

= D
∂2C(x, t)
∂x2 + zFD

RT

(
φL − φ0

L(t)

)
∂C(x, t)
∂x

. (5.2)

All reactions are assumed to occur at the boundaries of the oxide layer. Since we are
only considering oxide formation and growth, reverse rate constants are set to zero.
This reduces the boundary conditions to

J

∣∣∣∣
x=0

= k1ff1f (C(0)), (5.3)

and
J

∣∣∣∣
x=L

= k2ff2f (C(L)). (5.4)
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The thickness equation omits the reduction component and becomes simply the oxide
growth over time,

dL(t)
dt

= κf1f (C(x))|x=0, (5.5)

where κ is the growth rate constant that is equal to the reaction rate constant k1 (mol
m−2 s−1) divided by a Pt expansion factor, ε (mol cm−3). The expansion factor is the
number of oxygen ion vacancies needed to create one monolayer of oxide, divided by
the thickness of a monolayer.

5.2.1 Non-dimensionalization

To consolidate the variables and simplify the math without compromising the solution
we define a new dimensionless variable for the potential difference across the oxide
layer,

Φ = zF

RT
(φL − φ0). (5.6)

The rate constants are simplified and converted to a non-dimensional form as,

k̃1f = k1L0

DC0
and k̃2f = k2L0

DC0
. (5.7)

Inserting the above variables and the other necessary defined variables from Section
4.5 into Equation 4.7 gives,

∂C̃(ξ, τ)
∂τ

= ∂2C̃(ξ, τ)
∂ξ2 + Φ

λ(τ)
∂C̃(ξ, τ)
∂ξ

. (5.8)

The thickness growth equation, Equation 5.5, becomes

dλ(τ)
dτ

= κ̃f̃1f (C̃(0)). (5.9)

The boundary conditions must be non-dimensionalized as well. At ξ = 0,

dC̃(ξ)
dξ

∣∣∣∣∣∣
ξ=0

+ ΦC(0)
λ

= −k̃1f f̃1f (C̃(0)). (5.10)

At ξ=λ,
dC̃(ξ)
dξ

∣∣∣∣∣∣
ξ=λ

+ ΦC(0)
λ

= −k̃2f f̃2f (C̃(λ)). (5.11)
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5.3 Model Solution

The transport model equation was solved in steady state approximation, i.e. assuming,

∂C̃(ξ, τ)
∂τ

= ∂2C̃(ξ, τ)
∂ξ2 + Φ

λ

∂C̃(ξ, τ)
∂ξ

= 0. (5.12)

Under steady state conditions, λ is treated as a parameter, giving the following general
solution,

C̃(ξ) = ã exp
(
−Φξ
λ

)
+ b̃, (5.13)

where ã and b̃ are constants that depend on λ. The integration constants in Equation
5.13 are obtained from using the boundary equations in Equation 4.13, which results
in

2Φb̃
k̃1fλ

= 1 + tanh
(
Γ
(
1−

(
ã+ b̃

)))
, (5.14)

and
b̃ = − k̃2f ã exp(−Φ)

Φ
λ

+ k̃2f
. (5.15)

We can further simplify by regrouping parameters. Reducing the model to the min-
imum set of free parameters allows us to navigate the full range of solutions more
easily. We define,

α = − 2Φ
λk̃1f

, (5.16)

and
β = − k̃2f exp(−Φ)

Φ
λ

+ k̃2f
. (5.17)

Now Equations 5.14 and 5.15 can be combined and simplified,

αβã = 1 + tanh(Γ(1− ã(1 + β))). (5.18)

A numerical solution for ã was found using Equation 5.18 and the results were deter-
mined and analyzed.

To determine the change in oxygen ion vacancy density at the M-O interface as
the oxide layer grows, we consider Equation 5.13 at ξ = 0,

C̃(0) = ã+ b̃, (5.19)
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Figure 5.1: Oxygen ion vacancy density at the M-O interface as oxide layer thickness,
λ, is increased at varying C0 values.

We can eliminate b̃ by using Equation 5.15 and 5.17 in 5.19, giving,

C̃(0) = ã(1 + β) (5.20)

Equation 5.20 is plotted in Figure 5.1 and shows the change in oxygen ion vacancy
density at the M/O interface as the oxide layer grows. It is seen that the oxygen
ion vacancy density increases more rapidly in the thin film limit, below about one
monolayer, but levels off as the film thickens.

Equation 5.20 is used to explore the relationship between C̃(0) and λ, Γ, or Φ
as illustrated in Figure 5.2. Figure 5.2a shows that as Φ decreases, C̃(0) increases.
A larger field across across the oxide layer will result in larger C̃(0) values. As λ is
decreased, there is less of a dependence seen in Figure 5.2b between C̃ and Φ.

5.4 Adding Dimensions

The reference thickness is L0 = 2.7 × 10−8 cm. This was calculated by dividing the
unit cell height of the PtO structure, 5.34 Å (Pt2O2), in two because there are two
oxygen layers in one unit cell of the PtO structure [110]. We define a monolayer of the
oxide to be the equivalent of the thickness of one unit cell. In order for the quasi-static
approximation to be valid, the diffusion length must be large compared to oxide layer
thickness. Thus we set the diffusion coefficient of oxygen ion vacancies to be, D = 1.0
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Figure 5.2: Oxygen ion vacancy density at the M-O interface as a function of Φ a.) λ
= 0.5; b.) Γ = 1.

× 10−14 cm2 s−1. Using aforementioned L0 and D, the time scale becomes,

t = 7.1× 10−2s× τ (5.21)

The potential difference, Φ, is determined using z = 2 and ∆φ = φL − φ0 = -0.05 V
[121],

Φ = zF

RT
(φ0 − φL) = −3.9. (5.22)

∆φ is assumed to be negative due to the potential drop across the layer from the M-O
interface to the O-E interface. We use a value of ∆φ = 0.05 based on the work of Ref.
[78] that uses a value of 0.1 and of Ref. [122] that discusses the relationship between
potential across the oxide and oxide thickness applying Mott-Cabrera theory.

The relationship κ = k1ε
−1 explicitly accounts for the surface geometry in the

model. The expansion factor, ε, directly relates to the structure of the oxide. For
example, α-PtO2 has a layered structure similar to CdI2 [110]. The lattice parameters
of the oxide are a = 4.34 Å, b = c = 3.11 Å with a volume of 42.1 Å3 per two oxygen
ions; for PtO the volume is 50.6 Å3 per two oxygen ions [110]. The density of oxygen
ions for α-PtO2 is

2 O atoms
4.21× 10−23 cm3 = 4.8× 1022 cm−3 (5.23)

and for the PtO,
2 O atoms

5.058× 10−23 cm3 = 4.0× 1022 cm−3. (5.24)
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Converting to molar concentration gives,

ε = 4.8× 1022 O atoms cm−3

NA

= 7.9× 10−2 mol cm−3 (5.25)

for α-PtO2 and,

ε = 4.0× 1022 O atoms cm−3

NA

= 6.6× 10−2 mol cm−3 (5.26)

for PtO. Hypothetically, if all model parameter values were known from experiment,
the value of ε could be extracted from experiment by model fitting. The value C0

is defined as the characteristic amount of surface coverage of oxygen ion vacancies
needed to promote place exchange and is reported in units of mol cm−3. By knowing
the amount C that corresponds to a coverage of 1 ML of oxygen ion vacancies on the
surface, C0 can be determined by calculating the percent required to promote oxide
growth presented in literature studies. The latter is calculated by determining the
surface area of the metal and determining the number of oxygen ion vacancies per
atom.

Several literature studies indicate a surface oxygen coverage far greater than 50%
is needed to promote place exchange [105, 106, 3, 118]. Sun et al. determined the
fraction of vacant sites across the entire oxide layer in the PtO lattice including
interstitial sites to increase from 0.087 to 0.164 as the potential was increased from
1.14 to 1.39 VSHE based on Mott-Schottky plot [69]. Unfortunately there is no data
specifying the vacancy density at the interface or the amount necessary to promote
place exchange.

It is to be noted that experimentally the thickness of the platinum oxide layer has
not been measured directly. Most experimentalists apply a potential to a platinum
electrode at a sufficiently high voltage to grow an oxide layer; then the potential is
reversed and the current flowing during oxide reduction is recorded. The degree of
oxidation is computed by integrating the oxidation current curve. From the results of
the calculated charge, the thickness of the layer can be deduced provided the oxide
layer formation is associated with charge flux and the thickness change per amount
of charge is known, which is calculated from the amount of oxygen in the specific
oxide structure. Here the problem arises that the exact structure of the oxide must be
known in order to determine the thickness of the entire layer. Further issues arise if the
structure of the oxide layer is not uniform across the thickness or if it involves different
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layers or crystalline structures. This creates issues when attempting to convert charge
to thickness without making assumptions about the architecture of the layer.

5.5 Parametric Analysis

A parametric analysis is performed. The black model lines in Figures 5.3-5.6 use the
reference set of parameters in Table 5.1. In Figure 5.3a, the effect of the extraction
rate constant k1f is explored. It is seen that there is a delay in the oxide growth as
k1f decreases. Increasing k1f increases λ. A similar trend is seen in Figure 5.3b, which
shows the effect of k2f when k1 is 1×10−10 mol cm−2 s−1. Increasing k2f also increases
λ until the growth law approaches an asymptotic limit for k2f > 1× 10−11 mol cm−2

s−1. This shows that above the specified value of k2f , the rate of recombination is
sufficiently rapid to not exert any impact on the overall rate of oxide growth. The
assumption that the rate determining step is the extraction of Pt atoms across the
M-O interface, requires k2 � k1 thus we set k2f to 1 ×10−7 mol cm−2 s−1, for the
remainder of this chapter.
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Figure 5.3: Parametric dependence of oxide growth upon varying the rate constant,
a.) k1 across the M-O interface, and b.) k2 across the O-E interface.

Figure 5.4a shows the effect of varying Φ. The potential difference across the oxide
layer and temperature are parameters coupled in Φ. Temperature can also affect many
of the other parameters such as rate constants; thus when varying Φ, we only consider
the effects of the potential across the oxide layer, φL-φ0. It is seen in Figure 5.4a, as
Φ becomes more negative, oxide growth increases; meaning a larger field across the
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Symbol Units
T K 298

∆φ V -0.05
D cm2 s−1 1.0×10−14

L0 cm 2.7×10−8

k1f mol cm−2 s−1 1.0×10−10

k2f mol cm−2 s−1 1.0×10−9

C0 mol cm−3 5.0×10−4

γ cm3 mol−1 5.0×104

ε mol cm−3 0.066

Table 5.1: Table of general parameter values for Section 5.5.

oxide layer will accelerate the growth of the layer. Figure 5.4b shows the change in
oxide growth if ε is varied. The oxide layer grows faster at smaller ε values.
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Figure 5.4: Parametric analysis of oxide growth upon varying a.) the non-dimensional
parameter, Φ that includes the potential difference across the layer, and b.) the geo-
metric parameter, ε, that relates to the density of the oxide layer.

The effect of varying C0 is shown in Figure 5.5. More oxide growth is observed at
higher C0 values. That is the higher the number of oxygen ion vacancies required for
Pt extraction, the faster the oxide film will grow. Figure 5.6 shows the influence of Γ
on the oxide growth. At very high Γ values, when the transfer function at the M-O
interface is step-like, the oxide growth rate is logarithmic. But as Γ is decreased and
the steepness of f1f is relaxed, the growth of the oxide layer diverges.

Understanding the direct parametric effect of potential and temperature is not
trivial because there are many parameters that are affected when they are varied. As
has been discussed, increasing applied potential changes the structure of the metal
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Figure 5.5: Effect of varying, C0, the oxygen ion vacancy density at the metal bound-
ary required to promote oxide growth.

surface and of the oxide, thus affecting kinetic and geometric parameters. Similar
effects are seen with changing temperature. To dissect the parameters that are most
affected by potential and temperature, experimental trends are analyzed.

5.6 Comparison with Experimental Data

The model is applied to various experimental data. Much of the oxide growth data
published does not specify many of the parameters needed for the model, in part
because it is difficult or not yet possible to measure certain parameters such as the
extraction rate across the interface. We can make approximations based on logical
assumptions, compare results, and analyze parametric effects.

In Figure 5.7a, the model is applied to data from Imai et al. [3]. The degree of ox-
idation of highly dispersed carbon-supported platinum nanoparticles was determined
during a potential step experiment to 1.4 VRHE. Imai et al. calculated the current
contribution from double layer charging during CV scans and subtracted it from the
total current to isolate in the oxidation current [3]. They integrated the oxidation
current to give the charge and calculated the ratio of the oxide charge over the hydro-
gen charge. For comparison, both the axes have been converted to non-dimensional
units defined in this article assuming the oxide layer is only PtO with charge contri-
bution of 440 µC cm−2 per layer. This is the same assumption used in the published
experimental work thus it is presented this way for consistency [5].
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Figure 5.6: Dependence of oxide growth on Γ.

Symbol Units a. b.
T K 298 298

∆φ V -0.05 -0.05
D cm2 s−1 1.0 ×10−14 1.0 ×10−14

L0 cm 2.7 ×10−8 2.7 ×10−8

k1f mol cm−2 s−1 1.8×10−10 1.0×10−10

k2f mol cm−2 s−1 1.0×10−7 1.0×10−7

C0 mol cm−3 6.5×10−3 2.1×10−2

γ cm3 mol−1 9.0×103 9.0×103

ε mol cm−3 0.070 0.070

Table 5.2: Table of parameter values for Figure 5.7

Figure 5.7b shows the model applied to experimental data reported from Fromhold
in Ref. [4] using similar assumptions. The oxide film was plasma-produced and is
significantly thicker than recent experimental data for oxide formation. The model
shows good agreement. Model parameters used in Figure 5.7 are listed in Table 5.2.

The model is applied to experimental data collected from Furuya et al. in Figure
5.8a and 5.8b [5]. The surface oxide was grown on a polycrystalline Pt electrode
in CF3SO3H solution under potentiostatic conditions at a range of potentials and
temperatures. The experimental oxide growth data is shifted to begin at zero at the
onset of oxide growth. This corrects for the impact of other contributions, e.g., anion
desorption, to the recorded current.

The parameters used for the model were taken from experimental data; they are
presented in Table 5.3. The unit cell thickness, L0, and the diffusion coefficient, D,
are based on the discussion in Section 5.4. The reaction rate k1f is determined based
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Figure 5.7: Model results applied to experimental data a.) reported at 1.4V from Imai
et al. [3] and b.) from Fromhold et al. [4]. Parameters used are found in Table 5.2.
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Figure 5.8: Model results applied to experimental data reported from Furuya et al.
[5] for a.) 298 K and b.) 333 K at varying potentials: purple - 1.5VSHE; blue - 1.3
VSHE; cyan - 1.1 VSHE. The model parameters are in Table 5.3.

Symbol Unit a. 1.1VRHE a .1.3VRHE a. 1.5VRHE b. 1.1VRHE b. 1.3VRHE b. 1.5VRHE

T K 298 298 298 333 333 333
∆φ V -0.05 -0.05 -0.05 -0.05 -0.05 -0.05
D cm2 s−1 1.0×10−14 1.0×10−14 1.0×10−14 1.0×10−14 1.0×10−14 1.0×10−14

L0 cm 2.7×10−8 2.7×10−8 2.7×10−8 2.7×10−8 2.7×10−8 2.7×10−8

k1f mol cm−2 s−1 1.0×10−10 1.3×10−12 5.6×10−13 1.0×10−10 6.5×10−13 3.1×10−13

k2f mol cm−2 s−1 1.0×10−7 1.0×10−7 1.0×10−7 1.0×10−7 1.0×10−7 1.0×10−7

C0 mol cm−3 3.4×10−4 1.0×10−5 4.4×10−6 5.0×10−4 2.2×10−6 1.5×10−6

γ cm3 mol−1 5.0×105 5.0×105 5.0×105 5.0×105 5.0×105 5.0×105

ε mol cm−3 0.070 0.070 0.070 0.070 0.070 0.070

Table 5.3: Table of parameter values for Figure 5.8
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on the data set. As mentioned, k2f is set to 1 ×10−7 mol cm−2 s−1 rendering the
solution insensitive to this parameter.

The model reproduces the experimental data very closely in Figure 5.8. In ana-
lyzing the parameters listed in Table 5.3, there is a significant decrease in k1f seen
as the potential increases from 1.1 VRHE to 1.3 VRHE. A less pronounced decrease in
k1f is seen upon further increase of the growth potential to 1.5 VRHE. This obser-
vation suggests that above 1.3 VRHE there is a change in the extraction and growth
mechanism that slows the Pt extraction rate across the M-O interface. The value of
C0 also decreases more significantly when the potential increases from 1.1 VRHE to
1.3 VRHE compared to 1.3 VRHE to 1.5 VRHE. According to previous literature on
the topic, the potential range between 1.1 VRHE and 1.3 VRHE is a critical range, in
which the oxide layer undergoes significant change that has been associated with the
high-growth regime [51], irreversibility [98], and the onset of increased dissolution due
to the oxide layer dynamics [46, 66]. From the model we can conclude that as the
oxide layer grows, the rate of Pt extraction across the M-O interface decreases and
the growth becomes less dependent on C̃(0). According to this analysis, the geometric
factor ε does not increase, which is in accord with results of Xing et al. who stated
that the growth of a PtO2 layer does not commence until above 1.6 VRHE [51].

To demonstrate its versatility, the model is applied to the oxidation of Iron (Fe)
and Nickel (Ni). Figure 5.9 shows the oxidation of Fe for different surface structures
explored in Ref [6]. Single crystals of known orientation were produced in that work
using a Ferrovac E iron by strain annealing. The iron was oxidized by first reducing
the layer with hydrogen several times to clear the surface, then the specimen was
reheated under continuous oxygen pressure of about 1.3 x 10−2 Torr. Reflection elec-
tron diffraction was used to identify the oxide phases present [6]. Experimental results
were normalized and the y-axis was converted to monolayers of oxide for Fe3O4. The
geometric parameters were calculated for Fe. The results show that different metal
structures result in different rates of metal ion extraction across the interface.

Figure 5.10 shows the model applied to experimental data for β-Ni(OH)2, with the
corresponding parameters shown in Table 5.5 [7]. Nickel was oxidized in 0.5 aqueous
M KOH using cyclic voltammetry. X-ray photoelectron spectroscopy (XPS) was used
to determine the passive layer thickness [7]. More analysis is needed for other metals
but these preliminary results are promising.
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Figure 5.9: Model results applied to experimental data of the oxidation of polycrys-
talline (pc) [purple], (110) [blue], and (112) [cyan] iron surfaces at 100◦ C from Graham
et al. [6]. The parameters for the model are listed in Table 5.4. The model was scaled
to the start of the experimental data similar to above.

Symbol Units Fe(pc) Fe(110) Fe(112)
T K 373 373 373

∆φ V -0.05 -0.05 -0.05
D cm2 s−1 1.0×10−14 1.0×10−14 1.0×10−14

L0 cm 4.2×10−8 4.2 ×10−8 4.2×10−8

k1f mol cm−2 s−1 5.0×10−11 3.3×10−10 3.0×10−10

k2f mol cm−2 s−1 1.0×10−7 1.0×10−7 1.0×10−7

C0 mol cm−3 2.5×10−3 4.0×10−3 3.8×10−3

γ cm3 mol−1 400 400 400
ε mol cm−3 0.080 0.080 0.080

Table 5.4: Table of parameter values for Figure 5.9

Symbol Units 0.7 V 1.1 V
T K 295 295

∆φ V -0.05 -0.05
D cm2 s−1 1.0×10−14 1.0×10−14

L0 cm 2.3×10−8 2.3 ×10−8

k1f mol cm−2 s−1 5.0×10−11 1.0 ×10−10

k2f mol cm−2 s−1 1.0×10−7 1.0×10−7

C0 mol cm−3 5.0×10−3 5.0×10−3

γ cm3 mol−1 22 22
ε mol cm−3 0.074 0.074

Table 5.5: Table of parameter values for Figure 5.10
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Figure 5.10: Model results applied to experimental data of the oxidation of β-Ni(OH)2
using experimental results from Ref. [7]. The parameters for the model are listed in
Table 5.5.

5.7 Summary and Outlook

A mathematical model was solved to derive laws of oxide growth phenomena on metal
surfaces. The model is solved numerically in steady state approximation. The main
conclusions are:

1. Oxide growth is sensitive to the oxygen ion vacancy concentration at the M-O
interface and the rate of Pt ion extraction across this interface.

2. Good agreement is seen with a range of experimental data for different metals.

3. The model encompasses a wide range of growth laws displayed in experimental
data from various studies.

4. Reasonable parameters can be extracted from the model that allow for insightful
mechanistic interpretations.

The most noteworthy difference in the model presented compared to studies in the
literature is that the boundary condition at the M-O (Pt-PtO) interface that incor-
porates the interfacial kinetics and controls the growth of the oxide. In comparison,
the Point Defect Model and the Generalized Growth Model both account for reac-
tions happening at the interface but they assume that growth is controlled by species
transport across the layer and do not account for the threshold in Oad density at the
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M-O interface that seems necessary in order to promote oxide growth [78, 123]. We
implemented a peculiar form of the M-O boundary conditions in Equations 4.9 and
4.10 to account for this limit. As far as the author is aware, this is the first time a
single model of oxide growth has been compared to such a robust set of experimental
data sets and metals.

The next step is to add the oxide reduction phenomena into the model. Initially a
similar approach will be applied. The steady-state approximation used in this chap-
ter proved to be a reasonable assumption as the model recreated experimental data
reasonably well. In the next chapter the validity of the assumption will have to be
revisited. Ultimately a solution in the non-steady state limitation would be ideal.
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Chapter 6

Quasi-Steady State Solution
and Results for Oxide
Reduction

6.1 Introduction

It was seen in the last chapter that our model can be simplified to reproduce a variety
of experimental data of oxide formation and growth showing the assumptions applied
were reasonable. The goal of this chapter is to solve the model for the reduction of
platinum oxide. First, we assess the quasi-steady state limit similar to Chapter 5. This
limit is valid under the assumption that equilibrium of the reactions at each interface
is established rapidly such that the relaxation time of the layer will be much less
than the layer formation time [124]. For this limiting case, the model is either solved
in the growth phase, or reduction phase and cannot incorporate both, that is the
transition from one phase to the other. The transient solution is necessary to capture
the transition phase. The main model assumptions are carried over from the oxide
growth model. It is important to stress that the assumption that the defect density is
small is crucial. For example, in the case that oxygen atoms leave the oxide layer much
more rapidly than the platinum ions return to the bulk metal, a large defect density
would result in moving reaction front that would potentially leave a fragile platinum
skeleton layer in the extreme case. This skeleton layer would essentially collapse into
a highly disorder surface. In the case of a large defect density, a different model would
be necessary, such as a phase field model, because the layer thickness would no longer
be determined by the simple transport and migration mechanics of the defect density.
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After the model is solved, a parametric analysis is performed and the validity of the
model assumptions are discussed. Then a transient solution approach is outlined.

Including oxide reduction to the growth model adds several levels of complexity
to consider. For instance, as discussed in Section 2.4, during reduction the oxide layer
undergoes structural changes. The structure relates directly to the electronics thus
if the exact structure is unknown, how the electronics contributes to the process is
then not known as well. We first explore the steady state limit in order to simplify
the model and have a base to build on and relax assumptions if necessary.

6.2 Model Equation Modifications for the Steady
State Limit

To add the platinum oxide reduction component, we apply the same approach as
outlined in Chapter 5 but use the full boundary conditions and interfacial functions
listed in Chapter 4. As a reminder, the non-dimensionalized transport equation for
the quasi-steady state approach is

∂C̃(ξ, τ)
∂τ

= ∂2C̃(ξ, τ)
∂ξ2 + Φ

λ

∂C̃(ξ, τ)
∂ξ

= 0, (6.1)

with the boundary condition at ξ = 0,

J̃

∣∣∣∣∣∣
ξ=0

= k̃1f f̃1f (C̃(0))− k̃1rf̃1r(C̃(0)), (6.2)

and at ξ=λ,

J̃

∣∣∣∣∣∣
ξ=λ

= k̃2f f̃2f (C̃(λ))− k̃2rf̃2r(C̃(λ)). (6.3)

The rate constants in non-dimensional form are,

k̃1f =
k0

1fL0

DC0
exp

(
αFφm/o
RT

)
, (6.4)

k̃1r = k0
1rL0

DC0
exp

(
αFφo/m
RT

)
, (6.5)

k̃2f =
k0

2fL0

DC0
, (6.6)
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and
k̃2r = k0

2rL0

DC0
. (6.7)

The forward (f) and reverse (r) interfacial kinetic functions at each interface are

f̃1f = 1
2(1 + tanh(Γ(1− C̃(0))), (6.8)

and
f̃1r = 1

2(1 + tanh(Γ(C̃(0)− 1)), (6.9)

for the M-O interface, and
f̃2f = C̃(λ), (6.10)

and
f̃2r = 1− C̃(λ), (6.11)

for the O-E interface. The oxide thickness equation is,

dλ(τ)
dτ

= κ̃f̃1f C̃(0)− κ̃rf̃1rC̃(0). (6.12)

6.3 Model Solution

Since we are solving in the quasi-steady state limit, the same general solution to
Equation 6.1 can be used as in the previous chapter,

C̃(ξ) = ã exp
(
−Φξ
λ

)
+ b̃, (6.13)

where ã and b̃ are constants that depend on λ. Applying the full boundary conditions,
the new equations for the integration constants are obtained,

− 2Φb̃
λ

= −k̃1f
(
1 + tanh

(
Γ
(
1−

(
ã+ b̃

))))
+ k̃1r

(
1 + tanh

(
Γ
((
ã+ b̃

)
− 1

)))
, (6.14)

and,

b̃ = k̃2r + (−k̃2f − k̃2r)(ã exp(−Φ)
Φ
λ

+ k̃2f + k̃2r
. (6.15)

The integration constants are solved numerically at λ values from a defined layer
thickness to zero as we are exploring the reduction case. The solution to the thickness
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Figure 6.1: Oxygen vacancy concentration across the oxide layer as thickness is de-
creased. Parameters used are listed in Table 6.1.

of the oxide layer with time is solved using Equation 6.12 for λ and τ . This is done
in MATLAB using the cumulative trapezoid numerical integration method.

6.3.1 Parametric Analysis

A parametric analysis was performed to explore the parameter space and analyze
trends assessing the validity of the model assumptions. The same parameters were
used as a starting point for each plot, as listed in Table 6.1. The model result indicated
by the black line in the figures has the same parameter values across all figures and
are the base values listed in Table 6.1. The same structural parameters were used as
in Chapter 5. Figure 6.1 shows the variation of C̃ across the oxide layer as the layer is
reduced. ξ = 0 represents the M-O interface whereas the value of ξ = λ is at the O-E
interface. It is clear the model is in the reduction phase because C̃ decreases from
the O-E interface to the M-O interface. This is consistent with Figure 4.3; during
reduction oxygen vacancies are created at the O-E interface, a surplus builds up, and
the vacancies diffuse/migrate across the layer to the M-O interface where a platinum
atom can be reduced. If k2r is increased with the same rate of consumption, there is
a higher concentration of defects and a steeper gradient across the layer as shown in
Figure 6.2. As k2r approaches k2f , the gradient approaches zero indicating that the
reaction across the O-E interface is in equilibrium with the oxygen vacancies being
consumed and created.
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Figure 6.2: Oxygen vacancy concentration across the oxide layer as k2r is increased.
Parameters are listed in Table 6.1.

Figure 6.3 and Figure 6.4 shows the parametric effect of C̃ at the M-O interface as
a function or λ. Figure 6.3a shows that C̃ at the M-O interface increases at a faster rate
as λ is reduced and k1r is increased indicating that a higher k1r does indeed consume
more C̃ at the M-O interface. Increasing k2r does not have a significant effect on
the consumption rate of C̃ at the M-O interface as the layer reduces as indicated
by parallel lines in Figure 6.3. This is consistent with the assumption that the rate
determining step is at the M-O interface. Figure 6.4 shows that as γ is increased, C̃
has a higher concentration at the M-O interface at the start of reduction and increases
at slower rates as the layer is reduced. In the case of oxide growth, as was discussed
in Section 4.4.1, the more realistic scenario is a very large γ value whereas in the case
of reduction, it seems to be the opposite. Reduction occurs very rapidly compared to
oxide growth, thus a steeper gradient of C̃ at the M-O interface vs thickness, as seen
in Figure 6.4, will result in faster reduction kinetics.

Figure 6.5 shows how the oxide layer is reduced with varying rate constants across
the M-O interface. The oxide layer reduces faster, taking less time to reach zero with
a faster k1r and reduces slower with faster k1f . Figure 6.6 analyzes the reaction rates
at the O-E interface. The first observation is that oxide reduction is less sensitive
to changes in the rate across the O-E interface compared to changes in the rates
across the M-O interface. For example, a four-order of magnitude increase of either
the forward or reverse reaction rate across the O-E interface equates to only a 2000
time-step difference to reach zero thickness whereas in looking at the rates across
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Figure 6.3: Oxygen vacancy concentration at the M-O interface as a.) k1r and b.) k2r
is increased. Parameters are listed in Table 6.1.
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Figure 6.4: Oxygen vacancy concentration at the M-O interface as γ is increased.
Parameters are listed in Table 6.1.
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Figure 6.5: Parametric analysis of oxide layer thickness during reduction as a function
of τ for a.) varied k1f and b.) k1r. Parameters are listed in Table 6.1.

the M-O interface, increasing the rates by even two-orders of magnitude results in
over a 5000 time-step change for the forward reaction and roughly 3000 time-steps
for the reverse. This is consistent with the reactions at the M-O interface to be rate
determining because changes in k1f and k1r have a more significant effect on the
overall rate of the reaction. There is an increase in the reduction time for decreasing
k2r as expected.

As previously discussed, one of the model assumptions was that the potential dif-
ference across the layer stays constant as the thickness changes and only the gradient
of the potential changes. From Figure 6.7a, it is seen there is a measurable effect
in the reduction time with changing ∆φ across the layer. This shows relaxing this
assumption may have an important effect on the overall oxide reduction time. Figure
6.7b shows that as γ is increased, the time to reduce the oxide layer increases.

6.3.2 Comparison to Experimental Data

For preliminary results, the model is compared to experimental data in Figure 6.9.
This was a very rudimentary study simply to assess the trends thus it is stressed
that the parameters can not be taken as absolutes. The experimental data in Figure
6.9a was taken from Ref. [8] and are based on the coordination number of Pt-O
bonds. Thus the model assumes the number of Pt-O bonds is proportional to the
thickness of the oxide layer. Tada et al. used time-gating quick X-ray adsorption fine
structure spectroscopy (TG-QEXAFS) to monitor the chemical bonds directly [8].
The experimental data in Figure 6.9b was extracted from Ref. [9]. Allen et al. used a
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Figure 6.6: Parametric analysis of oxide layer thickness during reduction as a function
of τ for a.) varied k2f and b.) k2r. Parameters are listed in Table 6.1.
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Figure 6.7: Parametric analysis of oxide layer thickness during reduction as a function
of τ for a.) varied ∆φ and b.) γ. Parameters are listed in Table 6.1.
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Figure 6.8: Parametric analysis of oxide layer thickness during reduction as a function
of τ for varied C0. Parameters are listed in Table 6.1.

Symbol Units
T K 353

∆φ V -0.002
D cm2 s−1 1.0×10−14

L0 cm 2.7×10−8

k1f mol cm−2 s−1 1.0×10−12

k1r mol cm−2 s−1 1.0×10−10

k2f mol cm−2 s−1 1.0×10−8

k2r mol cm−2 s−1 1.0×10−7

C0 mol cm−3 5.0×10−3

γ cm3 mol−1 100
ε mol cm−3 0.066

Table 6.1: Table of general parameter values for Section 6.3.1.
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Figure 6.9: Model results applied to experimental data reported from a.) Ref. [8] and
b.) Ref. [9]. The model parameters are listed in Table 6.2.

similar method as Tada et al. based on time-resolved X-ray absorption spectroscopy to
determine the number of oxygen atoms with time. Table 6.2 presents the parameters
for Figure 6.9 and shows the model can capture the two curves by simply changing k1r

and the starting thickness of the layer; this is expected as the experimental procedure
and conditions were similar.

The presented reduction model captures the first part of the curve but fails as
the oxide layer becomes very thin. The reason for this comes back to the assumption
that the defect density is very small. As the oxide layer becomes highly depleted in
oxygen, reduction kinetics will be limited by the amount of oxygen concentration still
incorporated in the layer resulting in an exponential thickness decay.

6.4 Transient Solution

This section is intended to propose a possible route forward to solving the full transient
solution to the coupled oxide growth and reduction model. Using the steady-state
assumption, as well as the assumption that the potential difference across the layer is
not a function of thickness, allowed for the general solution of the transport equation
to be applied. There is no general solution to the transport equation if either of these
assumptions are relaxed. However, using the finite difference method, a numerical
solution is possible. Ref. [125] outlines an efficient procedure to solve the coupled
Nernst-Planck and Poisson equation system using the finite difference approach. The
approach was applied again in Ref. [126]. The method solves the transport equation
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Symbol Units a. Ref. [8] b. Ref. [9]
T K 353 353

∆φ V -0.002 -0.002
D cm2 s−1 1.0×10−14 1.0×10−14

L0 cm 2.7×10−8 2.7×10−8

k1f mol cm−2 s−1 1.0×10−12 1.0×10−12

k1r mol cm−2 s−1 6.5×10−10 6.0×10−10

k2f mol cm−2 s−1 1.0×10−8 1.0×10−8

k2r mol cm−2 s−1 1.0×10−7 1.0×10−7

C0 mol cm−3 5.0×10−3 5.0×10−3

γ cm3 mol−1 100 100
ε mol cm−3 0.066 0.066

Table 6.2: Table of general parameter values for model comparison to experimental
data for Figure 6.9.

coupled with the Poisson equation for a system with fixed boundaries. First the
equations are outlined for a single thickness, then a way to expand the system of
equations to include a moving boundary is discussed.

The implicit finite difference form of Equations 4.35, 4.36, and 4.38 are

C̃n+1
i − C̃n

i

∆τ = − J̃ni − J̃ni−1
(ξi+1 − ξi−1)/2 , (6.16)

J̃ = −
(
C̃n
i+1 − C̃n

i

∆ξ

)
− C̃n

i Ẽ
n
i , (6.17)

and
Ẽn
i+1 − Ẽn

i

∆ξ = −ZC̃n
i , (6.18)

where subscript i denotes distance grid point and superscript n denotes time level.
Combining the flux and continuity and applying boundary conditions leads to the
following solutions, for i = 1,

C̃n+1
1 − C̃n

1
∆τ = − 1

(ξ2 − ξ0)/2

[(
−C̃

n
2 − C̃n

1
ξ2 − ξ1

− C̃n
2 − C̃n

1
2 Ẽn

1

)
−
(
J̃n1
)]

(6.19)
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for 2 ≤ i ≤ N − 1,

C̃n+1
i − C̃n

i

∆τ = − 1
(ξi+1 − ξi−1)/2[(

−
C̃n
i+1 − C̃n

i

ξi+1 − ξi
−
C̃n
i+1 − C̃n

i

2 Ẽn
i

)
−
(
C̃n
i − C̃n

i−1
ξi+1 − ξi

−
C̃n
i − C̃n

i−1
2 Ẽn

i−1

)]
(6.20)

for i = N,

C̃n+1
N − C̃n

N

∆τ = − 1
(ξN+1 − ξN−1)/2[(

J̃nN
)
−
(
C̃n
N − C̃n

N−1
ξN+1 − ξN

−
C̃n
N − C̃n

N−1
2 Ẽn

N−1

)]
(6.21)

And for the fields: for j = 0,
Ẽn+1

0 − Ẽn
0

∆ξ = −α̃ (6.22)

for 2 ≤ j ≤ N − 1,
Ẽn+1
j − Ẽn

j

∆ξ = −ZC̃n
i (6.23)

for j = N,
Ẽn+1
N − Ẽn

N

∆ξ = 0. (6.24)

The boundary conditions in implicit form become, at ξ = 0,

J̃n1 = −k̃1f
1
2(1 + tanh(Γ(1− C̃n

1 ))) + k̃1r
1
2(1 + tanh(Γ(C̃n

1 − 1))), (6.25)

and at ξ = λ

J̃nN = −k̃2f C̃
n
N + k̃2r(1− C̃n

N). (6.26)

The system of equations above can be implemented into a program and output the
results for concentration change across a layer of defined thickness provided the initial
condition is defined. The tricky part will be figuring out how to include the moving
boundary condition. The idea is to set up an extensive matrix that defines space
and time where the solution to a finite thickness begins somewhere in the middle of
the first row. For example, have a matrix of i columns that define the space and n
rows that define the time. Have the first section of columns zeros and define i = 100
as the initial M-O interface; this way the moving boundary can shift into the metal
without having negative index values. There needs to be at initial oxygen vacancy
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concentration across the layer at zero time, assumably a very thin layer with uniform
concentration, as time proceeds, the oxygen vacancy concentration across the layer
would change due to boundary conditions and the model equations, which would
result in either growth or reduction and provide the initial inputs and boundary
condition for the solution at the next time step. This is a theoretical procedure that
has not been tested, but would allow the full transient model to be solved.

6.5 Summary and Outlook

In this chapter, a solution was presented for a steady state case of platinum oxide
reduction. A parametric study was performed that successfully captured expected
trends indicating that the model, albeit simple, captures crucial aspects of platinum
reduction. It was shown that the model solution is more sensitive to the rate con-
stants at the M-O interface compared to the O-E interface. The model was shown to
capture experimental trends reasonably well at thicker layers when the concentration
of oxygen vacancies is small and the reduction is controlled by diffusion. The model
diverges from experimental trends at small thicknesses of the oxide layer.

The next step is to apply the outlined finite difference approach. As has been dis-
cussed, a significant amount of platinum dissolution occurs during oxide reduction.
Although this has not yet been incorporated into the model, there has been progress
made towards this inclusion. This would be the ultimate step to tie everything to-
gether.
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Chapter 7

Conclusion

7.1 Overview of Main Results

Platinum stability in the cathode catalyst layer plays a vital role in guaranteeing suf-
ficient lifetime standards of fuel cell vehicles in the ongoing commercialization efforts.
This thesis provides mathematical models to aid the understanding of degradation
mechanisms driving the deterioration of the catalyst layer. The thesis is broken into
three parts to work towards this goal. Part one focuses on the degradation mecha-
nisms; part two is on the platinum oxide layer formation and growth and part three
incorporates platinum oxide reduction.

For part one, a step-wise algorithm is presented to analyze degradation data. The
statistical physics-based model uses experimental inputs to determine a unique set of
rate constants for the pertinent degradation mechanisms namely platinum dissolution
and redeposition, coagulation, and detachment. Moreover, it includes the effluence
of platinum into the membrane. Parameters are obtained by simultaneously fitting
electrochemical active surface area loss, mean particle radius, and platinum-in-the-
membrane loss. To obtain unique, unambiguous results, independent of the initial
model guess, the algorithm proceeds in two stages. The intent of STAGE I is to
survey the narrowed parameter space using Monte Carlo sampling. The outputs from
STAGE I are then used as inputs for the optimization routine in STAGE II.

The experimental data compared consisted of varying potential cycling protocols
and carbon support type. From the model results it is seen that the derived rate
constants for dissolution and detachment increase with the upper potential limit of
potential cycling, φUPL. The detachment rate constant increases with the surface area
of the carbon support whereas the dissolution rate constant appears to be independent
of the support. Dissolution/redeposition was seen to be the dominant degradation
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mechanism at φUPL = 1.0 VRHE for Medium Surface Area Carbon whereas coagulation
and detachment contribute more significantly at φUPL = 1.3 VRHE. A similar trend
is seen for Low Surface Area Carbon support except coagulation and are seen to
contribute equally to dissolution/redeposition. More experimental data is needed to
confidently determine if this is a coincidence or if a lower surface area support is more
prone to coagulation at lower UPLs.

A mathematical model of oxide formation, growth, and reduction was developed
to gain deeper insight into degradation via dissolution. A quasi-steady state model
of oxide formation and growth was introduced. Although many oxide growth models
have been developed over the last several decades, the presented model is new in that
it uses a functional form for the interfacial kinetics that drives the growth mechanism.
Moreover, it was applied to a diverse range of experimental studies, as well as various
metals. It proved robust by successfully capturing the diverse range of growth laws
presented in the literature.

It was seen that oxide growth is highly sensitive to the oxygen ion vacancy density
at the metal-oxide interface. The reaction rate at the metal-oxide interface was shown
to decrease as the UPL was increased, which is expected as the growth of the oxide
layer slows the thicker it becomes.

The reduction of the platinum oxide layer is the key to understanding the funda-
mentals of the dissolution mechanism. But this is not a trivial task due to the com-
plexity of the structural changes the oxide layer undergoes resulting in unpredictable
electronic characteristics. The first attempt to add the reduction phenomena to the
oxide formation and growth model was to add the reverse reaction to the boundary
condition while keeping the quasi-steady state approach. It is expected that the oxide
growth and reduction model would perform best in the limit of a thick oxide since the
model framework is based on the Nernst-Planck equation. However, it also seems to
perform seemingly well at thin (below one monolayer) oxide layers. This shows that
in the thin layer limit, the oxidation or reduction kinetics are controlled by interfacial
rates of reaction and the transport effects not captured by the model in this limit are
insignificant.

Despite the robustness of the developed model on the oxidation and reduction of
platinum, there are several limitations that must be noted. As was discussed through-
out, the model is only valid in the limit of very low defect density. The model is not
applicable at high defect density because the thickness is no longer simply controlled
by transport and migration of the defects, but other mechanisms will have an effect
such as a collapse of the platinum skeleton lattice. The diffusion coefficient must be
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high in the steady state approximation such that the species cross the oxide layer
rapidly compared to the rate of reaction at the M-O interface. Another limitation of
the model is the assumption that potential difference across the layer does not change
as the layer grows or reduces, as well as the potential gradient across the layer is a
linear function of the thickness. Potential is known to have a significant effect on the
oxidation and reduction phenomenon. The model incorporates a potential dependence
in the reaction rates but the potential is not time or position dependent.

Solving a fully transient variant of the oxidation and reduction model would ad-
dress some of the aforementioned limitations. An approach was outlined to obtain
the transient solution to the coupled oxide growth and reduction model using a finite
difference approach. This version of the model has not yet been fully solved.

7.2 Significant Contributions

Some of the specific contributions of this thesis to the scientific community are as
follows:

1. We expanded the coupled model of the four degradation mechanisms (disso-
lution, redeposition, coagulation, and detachment) to include the effluence of
platinum ions to the membrane.

2. An algorithm was developed that resolves the ambiguities in the mechanistic
rate constants of the coupled degradation model previously published.

3. To the best of the author’s knowledge, the step-wise degradation algorithm is
the first attempt to fit such an extensive set of data with a statistical physics-
based modelling approach by simultaneously fitting ECSA loss, mean particle
radius, PITM loss, and catalyst layer thickness loss.

4. The oxide formation and growth model uses a novel interfacial kinetic rate
function to describe a wide range of growth laws presented in the literature, as
well as different metals.

5. A model of reduction was coupled to the model of oxide formation and growth
to show which factors control oxide growth and oxide reduction.

With these tools, it is possible for R&D personnel in academia or industry to per-
form reliable assessments of degradation mechanisms under various operating condi-
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tions and cycling protocols in order to understand how to mitigate or reduce degra-
dation in PEFCs.

For example, being able to obtain precisely and uniquely defined parameters of dif-
ferent degradation mechanisms is the prerequisite for performing comparative analysis
of different catalyst or support materials, as well as analyze sensitivities of materials
stability to operating conditions. The ability to deconvolute degradation mechanisms
and assess their relative contributions, enabled by the model-based analysis, is im-
portant in order to set priorities in terms of materials research, e.g., in view of the
following questions: is it more important to find more stable catalysts or more stable
supports?

7.3 Future Research Paths

For any good model there is always the question of needing more data or a better
model. It is important to highlight the shortcomings of each and discuss potential
future paths forward. More experimental data are needed to further resolve some
inconclusiveness acquired in the analysis for the degradation model. For example,
there is still not a clear trend to the redeposition rate, as well as it is unclear if there
is a contribution from the coagulation mechanism at lower upper potential limit for
Low Surface Area Carbon supports, while there is none for Medium Surface Area
Carbon supports. Ideally, experimental studies on High Surface Area Carbon should
be expanded such that we could include a full analysis to compare with Medium
Surface Area Carbon and Low Surface Area Carbon. Most importantly, extending
the experimental data to add more data intermediate points during the degradation
testing for mean surface area, platinum loss to the membrane, and catalyst thickness
for all data sets would allow for more confidence in the entire results compared to
just the initial and final data point.

There are limitations of the degradation model that could be improved on as well.
Two points are computational time and the lack of trend seen between several rate
constants including platinum-loss-in-the-membrane and redeposition. A suggestion to
solve these issues would be to develop a machine learning algorithm that implements
a neural network. This would hypothetically reduce the computational time, but more
experimental data would be needed to apply such an approach.

In the case of the platinum oxidation and reduction model, the major next step
would be to solve the fully transient case. This would allow Poisson’s equation to be
included to account for time-dependent changes of the potential difference across the
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layer that are coupled to the reactions at each interface. The steady state assumption
could be relaxed relieving several of the restrictions including the requirement of a very
small defect density. This would allow for broader oxidizing and reducing conditions
to be explored, as well as a coupled solution that incorporates growth and reduction
in a single run enabling the simulations of features seen in cyclic voltammetry.

The ultimate goal of the PhD work was to link the dissolution degradation mech-
anism to the platinum oxide formation, growth, and reduction phenomena. Although
significant progress has been made towards understanding oxide layer growth and re-
duction, the link to dissolution of platinum is not established. A deeper understanding
of the reduction process is necessary to develop a method to couple the process to
the degradation rates. One idea to couple the models (once expanded) would be to
correlate under-coordinated platinum atoms during the oxide reduction process to the
rate of dissolution that is determined from the degradation model while accounting
for the platinum mass balance. This would allow for interesting analysis of how the
dissolution mechanism is directly effected by the growth and reduction of the oxide.
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Appendix B

Platinum Degradation Code
for Chapter 3

B.1 The Monte Carlo Simulation for STAGE I

1 % Monte Carlo MATLAB Code f o r Stage I f o r Chapter 3
2 % func t i on degradation_main_pitm
3

4 %% Load exper imenta l data
5 % fo r example : MSAC data
6 load USDOE_13M_data .mat
7 run = ’MSAC 1.3V ’ ;
8 f i l e = ’MSAC_13V−1 ’ ;
9

10

11 %% load parameters
12 p=degradation_parameters_pitm ;
13

14 %% in t e g r a t o r opt ions
15 tspan = data . c y c l e ;
16 opt ions=odeset ( ’ S ta t s ’ , ’ on ’ , ’ RelTol ’ ,1 e−3, ’ AbsTol ’ ,1 e−5) ;
17

18 %% Monte Carlo S imulat ion
19

20 LB = [1E−9 −15 −15 3 −6 −34];
21 UB = [4E−9 −5 −5 9 −3 −29];
22 nsim = 50 ; %number o f s imu la t i on s
23 r = ze ro s ( nsim , 6 ) ;
24 e r r o r = ze ro s ( nsim , 1 ) ;
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25

26 f o r i = 1 : nsim
27 r ( i , : ) = rand (1 , 6 ) . ∗ (UB−LB)+LB;
28 p .R0 = r ( i , 1 ) ;
29 p . k_dis = 10^ r ( i , 2 ) ;
30 p . k_rdp = 10^ r ( i , 3 ) ;
31 p . k_cgl = 10^ r ( i , 4 ) ;
32 p . k_det = 10^ r ( i , 5 ) ;
33 p . k_pitm = 10^ r ( i , 6 ) ;
34

35 %% c a l l i n t e g r a t o r
36 [ t , x , te ]= ode15s_l imit ( @degradation_pitm , tspan , p . x0 , opt ions , p )

;
37

38 %% post p ro c e s s i ng
39 %% s p l i t the s t a t e vec to r
40 f = x ( : , 1 : p . n ) ;
41 c_Pt = x ( : , p . n+1) ;
42 pitm = x ( : , p . n+2) ;
43

44 i f n s teps == 12500
45 e r r o r ( i ) = 1E99 ;
46 e l s e i f sum(sum( f <0) ) <= 0
47

48 %% ca l c u l a t i o n o f the moments
49

50 f o r l v =1: l ength ( t )
51 PN( lv ) = trapz (p . r_m, f ( lv , : ) ) /p .PN_0;
52 rN( lv ) = trapz (p . r_m, p . r_m’ . ∗ f ( lv , : ) )∗p .PN_0/( trapz (p . r_m,

f ( lv , : ) )∗p . rN_0) ;
53 SN( lv ) = trapz (p . r_m, p . r_squared ’ . ∗ f ( lv , : ) ) /p .SN_0;
54 MN( lv ) = trapz (p . r_m, p . r_cubed ’ . ∗ f ( lv , : ) ) /p .MN_0;
55 h=degradation_help_pitm ( t , f ( lv , : ) ’ , p ) ;
56 J_p( lv , : ) = h . J_p ;
57 J_m( lv , : ) = h .J_m;
58 r_mean( lv ) = trapz (p . r_m, p . r_m’ . ∗ f ( lv , 1 : p . n ) ) /( t rapz (p . r_m

, f ( lv , 1 : p . n ) ) ) ;
59 end
60

61 MN_detach = 1−MN’−c_Pt/p .m_V__M_Pt;
62

63 %% er r o r c a l c u l a t i o n
64 w_epsa = 1/ length ( data .ECSA) ;
65 sca le_epsa = 1 ;
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66 w_rad = 1/ length ( data . r_mean) ;
67 sca le_rad = data . r_mean (1) ;
68 w_pitm = 1/ length ( data . pitm ) ;
69 scale_pitm = 1 ;
70 w_thick = 0 . 5 ;
71 s ca l e_th i ck = 1 ;
72

73 e r r o r ( i ) = sum ( ( (SN’ − data .ECSA) . / sca le_epsa ) .^2 ) . . .
74 + sum( ( ( r_mean( end ) ’ − data . r_mean( end ) ) . / sca le_rad )

.^2 ) . . .
75 + sum( ( ( pitm ( end )−data . pitm ( end ) ) . / scale_pitm ) .^2 ) . . .
76 + w_thick∗sum ( ( (MN_detach( end )−data . EOT_thick ) . /

s ca l e_th i ck ) .^2 ) ;
77 e l s e
78 e r r o r ( i ) = 1E99 ;
79 end
80 end
81

82 FID = fopen ( [ da t e s t r (now , ’yymmddHHMM’ ) , ’ MC_results_full_ ’ ,
f i l e , ’ . csv ’ ] , ’w ’ ) ;

83 i i = f i nd ( e r r o r~=1E99) ;
84 f o r i = 1 : l ength ( i i )
85 f p r i n t f (FID , ’%i , %f , %f , %f , %f , %f , %f , %f \n ’ , [ i i ( i ) ; r (

i i ( i ) , 1 ) ∗1 e9 ; r ( i i ( i ) , 2 : end ) ’ ; e r r o r ( i i ( i ) ) ] ) ;
86 end
87 f c l o s e (FID) ;
88

89 save ( [ da t e s t r (now , ’yymmddHHMM’ ) , ’ ful l_mc_results_nocgl_ ’ ,
f i l e , ’ . mat ’ ] ) ;

90

91 %% Plot Resu l t s : A l l F i t s
92 f i g u r e
93 subplot ( 2 , 2 , 1 )
94 hold on
95 p lo t ( t , SN, ’ c o l o r ’ , [ 0 . 4 2 , 0 . 2 5 , 0 . 3 9 ] , ’ l i n ew id th ’ , 1 . 5 ) ;
96 p lo t ( data . cyc l e , data .ECSA, ’ o ’ , ’ c o l o r ’ , [ 0 , 0 . 4 5 , 0 . 7 4 ] , ’

l i n ew id th ’ , 1 . 5 ) ;
97 x l ab e l ({ ’ c y c l e s ’ } , ’ FontSize ’ , 15)
98 y l ab e l ({ ’ECSA ’ } , ’ FontSize ’ , 15)
99 t i t l e ( e r ro r , ’ FontSize ’ , 20)

100

101 subplot ( 2 , 2 , 2 )
102 hold on
103 p lo t ( t , r_mean , ’ c o l o r ’ , [ 0 . 4 2 , 0 . 2 5 , 0 . 3 9 ] , ’ l i n ew id th ’ , 1 . 5 ) ;

112



104 p lo t ( data . cyc l e , data . r_mean , ’ o ’ , ’ c o l o r ’ , [ 0 , 0 . 4 5 , 0 . 7 4 ] , ’
l i n ew id th ’ , 1 . 5 ) ;

105 x l ab e l ({ ’ c y c l e s ’ } , ’ FontSize ’ , 15)
106 y l ab e l ({ ’mean rad iu s ’ } , ’ FontSize ’ , 15)
107

108 subplot ( 2 , 2 , 3 )
109 hold on
110 p lo t ( t , pitm , ’ c o l o r ’ , [ 0 . 4 2 , 0 . 2 5 , 0 . 3 9 ] , ’ l i n ew id th ’ , 1 . 5 ) ;
111 p lo t ( data . cyc l e , data . pitm , ’ o ’ , ’ c o l o r ’ , [ 0 , 0 . 4 5 , 0 . 7 4 ] , ’

l i n ew id th ’ , 1 . 5 ) ;
112 x l ab e l ({ ’ c y c l e s ’ } , ’ FontSize ’ , 15)
113 y l ab e l ({ ’PITM ’ } , ’ FontSize ’ , 15)
114

115 subplot ( 2 , 2 , 4 )
116 hold on
117 p lo t ( t ,MN_detach , ’ c o l o r ’ , [ 0 . 4 2 , 0 . 2 5 , 0 . 3 9 ] , ’ l i n ew id th ’ , 1 . 5 )

;
118 p lo t ( data . c y c l e ( end ) , data . EOT_thick , ’ o ’ , ’ c o l o r ’

, [ 0 , 0 . 4 5 , 0 . 7 4 ] , ’ l i n ew id th ’ , 1 . 5 ) ;
119 x l ab e l ({ ’ c y c l e s ’ } , ’ FontSize ’ , 15)
120 y l ab e l ({ ’ t h i c kne s s ’ } , ’ FontSize ’ , 15)

B.2 The Optimization Routine for STAGE II

1 % Optimizat ion MATLAB Code f o r Stage I I f o r Chapter 3
2 % func t i on degradation_main_pitm
3

4 %% Load exper imenta l data
5 % fo r example : MSAC data
6 load USDOE_12M_data .mat
7 source = ’ 1 .2 V MSAC − f u l l ’ ;
8 f i l e = ’M12− f u l l ’ ;
9

10 %%% parameter opt imiza t i on
11 t i c
12 p=degradation_parameters_pitm ;
13

14 %% se t s t a r t po int
15

16 p . p0_log = [ p . k_dis_log p . k_rdp_log p . k_cgl_log p . k_det_log p
. k_pitm_log ] ;

17

18 LB = [−20 −20 0 −10 −37];
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19 UB = [−10 −10 7 −03 −26];
20

21 options_ps = psopt imset ( ’ Display ’ , ’ i t e r ’ , ’ PlotFcn ’ ,
@psp lo tbes t f ) ;

22 format shor t e ;
23 [ p f i t , f va l , e x i t f l a g ] = pat t e rn s ea r ch (@( fp )

errorfunct ion_pitm_conpos ( fp , data , p) ,p . p0_log , [ ] , [ ] , [ ] , [ ] ,
LB,UB, [ ] , options_ps ) ;

24

25

26 computingtime=toc ;
27

28 p . k_dis = 10^ p f i t (1 ) ;
29 p . k_rdp = 10^ p f i t (2 ) ;
30 p . k_cgl = 10^ p f i t (3 ) ;
31 p . k_det = 10^ p f i t (4 ) ;
32 p . k_pitm = 10^ p f i t (5 ) ;
33

34 %%%%% ca l c u l a t i o n o f model r e s u l t s f o r g iven parameters
%%%%%%

35 %% in t e g r a t o r opt ions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36 tspan=data . c y c l e ;
37 % in t e g r a t o r opt ions
38 options_ODE=odeset ( ’ S ta t s ’ , ’ on ’ , ’ RelTol ’ ,1 e−3, ’ AbsTol ’ ,1 e−5)

;
39

40 %%% c a l l i n t e g r a t o r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

41 % p r o f i l e on ; p r o f i l e c l e a r ;
42 [ t , x]=ode15s ( @degradation_pitm , tspan , p . x0 , options_ODE , p) ;
43 % p r o f i l e r epo r t ;
44

45 %%% post p ro c e s s i ng
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46 %% s p l i t the s t a t e vec to r
47 f = x ( : , 1 : p . n ) ;
48 c_Pt = x ( : , p . n+1) ;
49 pitm = x ( : , p . n+2) ;
50

51 f o r l v =1: l ength ( t )
52 PN( lv ) = trapz (p . r_m, f ( lv , : ) ) /p .PN_0; % Eq . 2 .8

denominator
53 rN( lv ) = trapz (p . r_m, p . r_m’ . ∗ f ( lv , : ) )∗p .PN_0/( trapz (p . r_m,

f ( lv , : ) )∗p . rN_0) ; % Eq . 2 .9
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54 SN( lv ) = trapz (p . r_m, p . r_squared ’ . ∗ f ( lv , : ) ) /p .SN_0; % Eq
. 2 .10

55 MN( lv ) = trapz (p . r_m, p . r_cubed ’ . ∗ f ( lv , : ) ) /p .MN_0; % Eq .
2 .11

56 h=degradation_help_pitm ( t , f ( lv , : ) ’ , p ) ;
57 %c_Pt( lv ) = h . c_Pt ;
58 J_p( lv , : ) = h . J_p ;
59 J_m( lv , : ) = h .J_m;
60 old_c_Pt ( lv ) = p .m_V__M_Pt∗(1−MN( lv ) ) ;
61 r_mean( lv ) = trapz (p . r_m, p . r_m’ . ∗ f ( lv , 1 : p . n ) ) /( t rapz (p . r_m

, f ( lv , 1 : p . n ) ) ) ;
62 end
63 MN_detach = 1−MN’−pitm−c_Pt/p .m_V__M_Pt;
64

65 %% f i n a l e r r o r c a l c u l a t i o n
66 w_epsa = 1/ length ( data .ECSA) ;
67 sca le_epsa = 1 ;
68 w_rad = 1/ length ( data . r_mean) ;
69 sca le_rad = data . r_mean (1) ;
70 w_pitm = 1/ length ( data . pitm ) ;
71 scale_pitm = 1 ;
72 w_thick = 0 . 5 ;
73 s ca l e_th i ck = 1 ;
74

75 e r r o r = w_epsa∗sum ( ( (SN’ − data .ECSA) . / sca le_epsa ) .^2 ) . . .
76 + sum( ( ( r_mean( end ) ’ − data . r_mean( end ) ) . / sca le_rad )

.^2 ) . . .
77 + sum( ( ( pitm ( end )−data . pitm ( end ) ) . / scale_pitm ) .^2 ) . . .
78 + w_thick∗sum ( ( (MN_detach( end )−data . EOT_thick ) . /

s ca l e_th i ck ) .^2 ) ;
79

80

81 save ( [ da t e s t r (now , ’yymmddHHMM’ ) , f i l e , ’
f u l lmode l_p i tm_f i t r e su l t s . mat ’ ] ) ;

82

83

84 %% Resu l t s Al l f i t s
85 f i g u r e
86 subplot ( 2 , 2 , 1 )
87 hold on
88 p lo t ( t , SN, ’ c o l o r ’ , [ 0 . 4 2 , 0 . 2 5 , 0 . 3 9 ] , ’ l i n ew id th ’ , 1 . 5 ) ;
89 p lo t ( data . cyc l e , data .ECSA, ’ o ’ , ’ c o l o r ’ , [ 0 , 0 . 4 5 , 0 . 7 4 ] , ’

l i n ew id th ’ , 1 . 5 ) ;
90 x l ab e l ({ ’ c y c l e s ’ } , ’ FontSize ’ , 15)
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91 y l ab e l ({ ’ECSA ’ } , ’ FontSize ’ , 15)
92 t i t l e ( e r ro r , ’ FontSize ’ , 20)
93

94 subplot ( 2 , 2 , 2 )
95 hold on
96 p lo t ( t , r_mean , ’ c o l o r ’ , [ 0 . 4 2 , 0 . 2 5 , 0 . 3 9 ] , ’ l i n ew id th ’ , 1 . 5 ) ;
97 p lo t ( data . c y c l e ( end ) , data . r_mean( end ) , ’ o ’ , ’ c o l o r ’

, [ 0 , 0 . 4 5 , 0 . 7 4 ] , ’ l i n ew id th ’ , 1 . 5 ) ;
98 x l ab e l ({ ’ c y c l e s ’ } , ’ FontSize ’ , 15)
99 y l ab e l ({ ’mean rad iu s ’ } , ’ FontSize ’ , 15)

100

101 subplot ( 2 , 2 , 3 )
102 hold on
103 p lo t ( t , pitm , ’ c o l o r ’ , [ 0 . 4 2 , 0 . 2 5 , 0 . 3 9 ] , ’ l i n ew id th ’ , 1 . 5 ) ;
104 p lo t ( data . c y c l e ( end ) , data . pitm ( end ) , ’ o ’ , ’ c o l o r ’

, [ 0 , 0 . 4 5 , 0 . 7 4 ] , ’ l i n ew id th ’ , 1 . 5 ) ;
105 x l ab e l ({ ’ c y c l e s ’ } , ’ FontSize ’ , 15)
106 y l ab e l ({ ’% PITM ’ } , ’ FontSize ’ , 15)
107

108 subplot ( 2 , 2 , 4 )
109 hold on
110 p lo t ( t ,MN_detach , ’ c o l o r ’ , [ 0 . 4 2 , 0 . 2 5 , 0 . 3 9 ] , ’ l i n ew id th ’ , 1 . 5 )

;
111 p lo t ( data . c y c l e ( end ) , data . EOT_thick ( end ) , ’ o ’ , ’ c o l o r ’

, [ 0 , 0 . 4 5 , 0 . 7 4 ] , ’ l i n ew id th ’ , 1 . 5 ) ;
112 x l ab e l ({ ’ c y c l e s ’ } , ’ FontSize ’ , 15)
113 y l ab e l ({ ’% th i ckne s s r educt i on ’ } , ’ FontSize ’ , 15)
114 s a v e f i g ( [ d a t e s t r (now , ’yymmddHHMM’ ) , f i l e , ’ subp lot . f i g ’ ] )

B.3 Files

B.3.1 degradation_pitm.m

1 f unc t i on dxdt=degradation_pitm ( t , x , p )
2

3 %% s p l i t the s t a t e vec to r
4 f = x ( 1 : p . n) ;
5 c = x(p . n+1) ;
6 %pitm = x(p . n+2) ;
7

8 %% ca l c u l a t e he lp v a r i a b l e s
9

10 h = degradation_help_pitm ( t , x , p ) ;
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11

12 %% time d e r i v a t i v e s
13 % f u l l model
14 drdt = p .Vm_Pt∗p . k_rdp .∗ c .∗ exp(−p .R0 . / p . r_m) − p .Vm_Pt∗p .

k_dis .∗ exp (p .R0 . / p . r_m) ;
15 dfdt = − grad i en t ( f .∗ drdt , p . dr )+ h . J_p − h .J_m− p . k_det∗ f ;
16 dmdt = 4∗ pi ∗p . rho_Pt∗p .r_m.^2 .∗ drdt ;
17 dMdt = trapz (p . r_m, f .∗dmdt) ;
18 dcdt = p . I_V∗p .m_V__M_Pt∗(−dMdt−(p . k_pitm .∗ c .∗p .M_Pt) ) /p .M_0;
19 dpitmdt = (p . k_pitm∗c∗p .M_Pt) /p .M_0;
20 %% output vec to r
21 dxdt = [ dfdt ; dcdt ; dpitmdt ] ;

B.3.2 degradation_help_pitm.m

1 f unc t i on h=degradation_help_pitm ( t , x , p )
2

3 %% s p l i t the s t a t e vec to r
4 f = x ( 1 : p . n) ;
5 %c = x(p . n+1) ;
6

7 %% numer i ca l ly i n t e g r a t ed
8 h .J_m = p . k_cgl∗ f .∗ t rapz (p . r_m, f ) ;
9

10 %% numer i ca l ly i n t e g r a t ed us ing r e c t angu l a r approximation , i .
e . in

11 %% the i n t e r v a l l r0 . . . r1
12

13 % pre−a l l o c a t i o n f o r f a s t e r running time
14 J_p = ze ro s (p . n , 1 ) ;
15

16 f o r l v =2:p . n % loop over a l l r a d i i
17

18 rng=1:( lv−1) ; % f o r r~ = r the integrand would become
i n f i n i t y ( r^3−r ~^3)−>i n f i n i t y f o r r~−>r

19 % Fix : l a s t element i s omitted .
20 r_1 = (p . r_cubed ( lv )−p . r_cubed ( rng ) ) .^ (1/3 ) ; % rad iu s o f

the second merging p a r t i c l e
21

22 J_p( lv , 1 ) = p . k_cgl /2∗p . dr∗sum(p . r_squared ( lv ) . / ( ( p .
r_cubed ( lv )−p . r_cubed ( rng ) ) .^ (2/3 ) ) .∗ i n t e rp1q (p . r_m, f ,
r_1 ) .∗ f ( rng ) ) ;

23

24 end
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25 h . J_p = J_p ;

B.3.3 degradation_parameters_pitm.m

1 f unc t i on p=degradation_parameters_pitm
2

3 %% phys i c a l and chemical cons tant s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 p .Vm_Pt = 9.09 e−6; % [m3/mol ]
5 p .M_Pt = 195 .0849 ; % [ g/mol ]
6 M_Pt = 195 .0849 ; % [ g/mol ]
7 p . rho_Pt = 21450000; %[ g/m3]
8 %% geometry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 %% Fin i t e Volume Method with equ i d i s t an t e lements
10 p . r_max = 30 .1 e−9; % [m] maximum rad iu s o f

PRD
11

12 p . n = 301 ; % number o f e lements o f
FVM

13

14 p . dr = p . r_max/p . n ; % [m] l ength o f elements ,
e qu i d i s t an t

15 p . r = l i n s p a c e (1 e−10,p . r_max , p . n+1) ’ ; % [m] boundar ies o f
e lements

16 p .r_m = p . r ( 1 : p . n)+p . dr /2 ; % [m] cent e r o f e lements
17

18 p .V = 4/3∗ pi ∗p . r . ^ 3 ;
19 p .dV = p .V( 2 : end )−p .V( 1 : end−1) ;
20 p .V_m = 4/3∗ pi ∗p .r_m.^ 3 ;
21

22 %% i n i t i a l c ond i t i on s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23

24 % S = 0 . 3 1 4 ; %LSAC
25 % M = 0 . 9 4 4 ; %LSAC
26 %
27 S = 0 . 4 6 0 ; %MSAC
28 M = 0 . 6 1 2 ; %MSAC
29 %
30 % S = 0 . 3 2 3 ; %HSAC
31 % M = 0 . 4 7 8 ; %HSAC
32
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33 p . f 0 = 1 . / ( S .∗ s q r t ( 2 .∗ pi ) .∗p .r_m∗1 e9 ) .∗ exp ((−( l og (p . r_m∗1 e9 )−
M) .^2) . / ( 2 . ∗ S .^2 ) ) ;

34 p . f 0 (1 ) = 0 ;
35

36 p . c0 = 0 ;
37 p . pitm0 = 0 ;
38

39 p . x0 = [ p . f 0 ; p . c0 ; p . pitm0 ] ;
40

41 %% k i n e t i c parameters
42

43 p .R0 = 1.001892 e−09;
44 p . k_dis_log = −8.247704;
45 p . k_rdp_log = −11.106991;
46 p . k_cgl_log = 6 .365476 ;
47 p . k_det_log = −4.285574;
48 p . k_pitm_log = −25.363878;
49

50 p . k_dis = 10^p . k_dis_log ;
51 p . k_rdp = 10^p . k_rdp_log ;
52 p . k_cgl = 10^p . k_cgl_log ;
53 p . k_det = 10^p . k_det_log ;
54 p . k_pitm = 10^p . k_pitm_log ;
55

56 p .m_V__M_Pt = 0.33333 e6/M_Pt; % m_V/M_Pt, mass l oad ing /
molecu lar weight ; p r e f a c t o r o f Eq . 2 . 5

57 % est imated : th i c kne s s o f CL=12e−6m, load ing 4mg/cm2
58

59 p . r_squared = p .r_m.^ 2 ; % [m^2] squares o f the rad iu s ( c en t e r
o f e lements )

60 p . r_cubed = p .r_m.^ 3 ; % [m^3] cubes o f the rad iu s ( c en te r
o f e lements )

61 p .MN_0 = trapz (p . r_m, p . r_cubed .∗p . f 0 ) ;
62 p .SN_0 = trapz (p . r_m, p . r_squared .∗p . f 0 ) ;
63 p . rN_0 = trapz (p . r_m, p . r_m.∗p . f 0 ) ;
64 p .PN_0 = trapz (p . r_m, p . f 0 ) ;
65 p .M_0 = 4/3∗ pi ∗p . rho_Pt∗p .MN_0;
66 p . I_V = 1 ; %ionomer volume f r a c t i o n in the c a t a l y s t l a y e r
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Appendix C

Platinum Oxide Growth and
Reduction Code for Chapter
4

C.1 Main

1 %% Reduction Model s o l u t i o n main
2 % September 2018
3 %% Parameters
4 ful lOxideModel_parameters ;
5

6 %% de f i n e zero matrix
7 m=1000; %L/c note : f o r some unknown reason L/c stop working

so I ente r t h i s manually now
8 rho = ze ro s (1 ,m) ;
9 t_a = ze ro s (1 ,m) ;

10 b = ze ro s (1 ,m) ;
11

12 %% Numerical s o l v e f o r i n t e g r a t i o n cons tant s
13

14

15 f o r i = 1 :L/c
16

17 Lambdaspace = logspace ( log10 (L) , log10 ( s ) ,L/c ) ;
18 %Lambdaspace = l i n s p a c e (L , s , L/c ) ;
19

20 Lambda1 = Lambdaspace ( i ) ;
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21

22 t_a ( i ) = f z e r o (@( t_a ) soln_to_a ( t_a , Lambda1) ,5 ) ; %
s o l u t i o n to i n t e g r a t i o n constant ’ a ’

23 b( i ) = ( k2r+(−k2f−k2r ) ∗( t_a ( i )∗exp(−Phi ) ) ) / ( ( Phi/Lambda1)
+k2f+k2r ) ; %Eq 48 i n t e g r a t i o n constant ’b ’

24 rho ( i ) = t_a ( i )+b( i ) ; %O vacancy concent ra t i on at m/o
i n t e r f a c e ( x i=0)

25 end
26

27 rho_fu l l = t_a (1 , end ) .∗ exp(−Phi∗Lambdaspace/L)+b (1 , end ) ; %Eq
46 − O at Lambda

28

29 f 1 f = (0.5∗(1+ tanh (Gamma.∗(1− rho ) ) ) ) ; %Eq 36
30 f 1 r = (0.5∗(1+ tanh(−Gamma.∗(1− rho ) ) ) ) ; %Eq 37
31 dLdt = ( kappa .∗ f 1 f )−(kappar .∗ f 1 r ) ;
32 %% in t e g r a t e
33

34 tau = cumtrapz (Lambdaspace , 1 . / dLdt ) ;
35

36 time=tau ;
37 %% Plot s
38

39

40 %% plo t oxide l ay e r th i ckne s s as a func t i on o f time
41

42 f i g u r e
43 hold on ;
44 %plo t ( time , Lambdaspace , ’ co lo r ’ , [ 0 . 4 2 , 0 . 2 5 , 0 . 3 9 ] , ’

LineWidth ’ , 2) ;
45 %plo t ( time , Lambdaspace , ’ co lo r ’ , [ 0 . 6 4 , 0 . 0 8 , 0 . 1 8 ] , ’ LineWidth

’ , 2) ;
46 %plo t ( time , Lambdaspace , ’ co lo r ’ , ’ k ’ , ’ LineWidth ’ , 2) ;
47 p lo t ( time , Lambdaspace , ’ c o l o r ’ , [ 0 , 0 . 4 5 , 0 . 7 4 ] , ’ LineWidth ’ ,

2) ;
48 %plo t ( time , Lambdaspace , ’ co lo r ’ , [ 0 , 0 . 7 5 , 0 . 7 5 ] , ’ LineWidth ’ ,

2) ;
49

50 s e t ( gca , . . .
51 ’ Color ’ , [ 0 . 9 7 , 0 . 9 7 , 0 . 9 7 ] , . . .
52 ’Box ’ , ’ on ’ , . . .
53 ’ v i s i b l e ’ , ’ on ’ , . . .
54 ’ TickDir ’ , ’ in ’ , . . .
55 ’ TickLength ’ , [ . 0 1 . 0 1 ] , . . .
56 ’ XMinorTick ’ , ’ on ’ , . . .
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57 ’ YMinorTick ’ , ’ on ’ , . . .
58 ’YGrid ’ , ’ o f f ’ , . . .
59 ’ XColor ’ , [ . 3 . 3 . 3 ] , . . .
60 ’ YColor ’ , [ . 3 . 3 . 3 ] , . . .
61 ’ LineWidth ’ , 1 , . . .
62 ’ f o n t s i z e ’ , 18) ;
63

64 x l ab e l ({ ’ time ( s ) ’ } , ’ FontSize ’ , 25)
65 y l ab e l ({ ’ \lambda ’ } , ’ FontSize ’ , 25)
66

67 h=legend ( ’ \gamma = 1 ’ , . . .
68 ’ \gamma = 50 ’ , . . .
69 ’ \gamma = 100 ’ , . . .
70 ’ \gamma = 150 ’ , . . .
71 ’ \gamma = 200 ’ , ’ Locat ion ’ , ’ bes t ’ ) ;
72

73 s e t (h , ’ Color ’ , ’w ’ ) ;

C.2 Files

C.2.1 soln_to_a.m

1 %% Function to s o l v e a us ing f z e r o
2 % main : fullOxideModel_main .m
3 % September 2018
4

5 f unc t i on f_a = soln_to_a ( t_a , Lambda1)
6 ful lOxideModel_parameters ;
7

8 b = ( k2r+(−k2f−k2r ) ∗( t_a∗exp(−Phi ) ) ) / ( ( Phi/Lambda1)+k2f+
k2r ) ; %Eq 48

9 f_a = 2 .∗Phi .∗b . / ( Lambda1)−(k1f .∗(1+ tanh (Gamma.∗(1−( t_a+b
) ) ) )+(k1r .∗(1+ tanh(−Gamma.∗(1−( t_a+b) ) ) ) ) ) ; %Eq 47

10

11 end

C.2.2 fullOxideModel_parameters.m

1

2 de l t aph i = −0.002;
3 D = 1E−14; %cm^2 s^−1 %Di f f u s i on constant
4 F = 96485; %C mol^−1 Faraday Constant
5 R = 8 . 3 1 4 ; %J K^−1 mol^−1 Gas Constant
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6 T = 353 ; %K Temperature
7 Phi = 2∗F∗ de l t aph i /(R∗T) ; %non d imens i ona l i z e p o t e n t i a l

parameter
8 L_0 = 2.67E−8; %cm c h a r a c t e r i s t i c th i c kne s s
9 k11f = 1E−12; %forward r e a c t i on ra t e a c r o s s mo i n t e r f a c e

10 k11r = 1E−10; %r ev e r s e r e a c t i on ra t e a c r o s s mo i n t e r f a c e
11 k22f = 1E−8; %forward r e a c t i on ra t e a c r o s s oe i n t e r f a c e
12 k22r = 1E−8; %r ev e r s e r e a c t i on ra t e a c r o s s oe i n t e r f a c e
13 rho_0 = 0 . 0 0 5 ; %mol cm^−3 r e f e r e n c e concent ra t i on
14 EF = 0 . 0656 ; %(0.0789−0.0656) mol cm^−3 expansion f a c t o r
15 alpha = 0 . 5 ;
16 phi_mo = 0 . 0001 ; %forward po t e n t i a l a c r o s s the mo i n t e r f a c e
17 phi_om = 0 . 0001 ; %r ev e r s e p o t e n t i a l a c r o s s the mo i n t e r f a c e
18 k1f = k11f ∗L_0/D/rho_0∗exp ( alpha∗F∗phi_mo/(R∗T) ) ; %Eq 27
19 k1r = k11r∗L_0/D/rho_0∗exp ( alpha∗F∗phi_om/(R∗T) ) ; %Eq 28
20 k2f = k22f ∗L_0/D/rho_0 ; %Eq 29
21 k2r = k22r∗L_0/D/rho_0 ; %Eq 30
22 kappa = k11f ∗L_0/D/EF;
23 kappar = k11r∗L_0/D/EF;
24

25 t_gamma = 100 ;
26 Gamma = t_gamma∗rho_0 ;
27

28

29 dt = 1 ;%713 ; %d imens i ona l i z e time constant
30 z = 0 ; %s h i f t
31 L = 5/dt ; %d imens i on l e s s l ength ( end point )
32 c = 0.005/ dt ; %counts
33 s = 0.005/ dt ; %s t a r t po int
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