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Abstract 

The goal of this research is to introduce nonlinear microresonator designs that 

utilize nonlinear modal interaction for application in angular rate sensing. This dissertation 

specifically looks at the application of nonlinear 2:1 internal resonance, as an actuation 

mechanism, in micro-electro-mechanical (MEMS) gyroscopes to measure angular input 

rate. Many MEMS Coriolis vibratory gyroscopes work based on matching the drive- and 

sense-mode frequencies. The mode-tuning condition cannot be preserved without 

sophisticated control electronics, due to inevitable fabrication defects and fluctuations in 

drive parameters. The proposed principle of operation can eliminate the mode-matching 

requirement in conventional MEMS gyroscopes, and widen the operational frequency 

region with, ultimately, high flat-top signals. Moreover, it reduces the common problem in 

MEMS gyroscopes known as cross-coupling by moving the drive mode away from the 

sense mode of operation. 

In this thesis, we suggest and develop two microresonator designs in form of 

frame-shaped and H-shaped microdevices. The proposed microresonators resembled the 

nonlinear dynamics of spring-pendulum mechanism with forced and 2:1 internal 

resonances. The reduced-order modeling software was employed to design and 

characterize the nonlinear microresonators through comprehensive transient simulations. 

The simulation results revealed the sensitivity of the microresonators to the angular input 

rate while probing the 2:1 internal resonance. The designed microresonators were 

fabricated in a foundary process and tested to investigate the nonlinear modal interaction 

between the vibrational modes. The lumped mass-spring-damper models of the 

microdevice with electrostatic actuation and detection mechanism were derived and 

studied via two-variable expansion perturbation technique. Qualitative agreement 

between experiments and simulations was confirmed for both microresonators with 

distinct frequency ratios. Finally, the H-shaped microresonator, with closer frequency ratio 

to 2:1 and better nonlinear features, was mounted on the rate table for the performance 

evaluation. The experimental findings implied a full-scale range of sensitivity between 0 to 

220 deg sec-1. This work as a proof of concept showed that the output voltage of the 

microresonator linearly changed with an increase in the applied angular rates. This 

research proposed an alternative actuation mechanism that can provide new avenues to 

develop the next generation of nonlinear MEMS gyroscopes. 
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Chapter 1.  
 
Introduction 

1.1. Background 

1.1.1. Internal resonance and its applications 

Microresonators are the constituent elements of many micro-electro-mechanical 

systems (MEMS). Their diverse applications range from timing resonators, and radio 

frequency (RF) filters to various sensors including Coriolis vibratory gyroscopes (CVG) 

and gravimetric chemical sensors [1]. In most cases, microresonators are designed to 

work in a linear regime where the sensed output is proportional to driving input. However, 

unavoidable inherent actuation and structural nonlinearities are of interest in some cases. 

The presence of nonlinearities in system dynamics may cause nonlinear coupling among 

the vibrational modes. Nonlinear mode coupling has been recently investigated in micro 

and nanostructures [2]–[7]. Energy transfer through nonlinear mode coupling has been 

suggested for several applications, such as energy harvesting [2], mass sensing [8]–[10], 

and stabilizing oscillation in MEMS resonators for frequency references [11], [12]. One of 

the primary mechanisms of nonlinear mode coupling is an internal resonance between 

various modes of vibrations. The internal resonance can occur between vibrational modes 

of a system either in the same plane [13] or different planes [2], [4] with the ratio of 1:1 [2], 

2:1 [4], and 3:1 [3]. 

The internal resonance phenomenon can serve various useful purposes because 

of its impressive dynamic properties. It is increasingly used due to its property of 

suppressing oscillation in a cantilever [14], enhancing the coupling effect in dynamical 

systems [15], and preventing disaster in a structure-fluid interaction system carrying a 

cylindrical liquid tank [16]. There is an abundance of theoretical and experimental research 

papers describing the 2:1 internal resonance in macro-scale systems, including control of 

flexible structures [17]–[20], pitch and roll modes interactions in ship dynamics [21], 

rotating machinery [22], cable-stayed bridges [23], energy harvesting systems [2], etc. 

However, few reports exist on its practical applications to micron-sized devices. To the 
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best knowledge of the author, use of the internal resonance in MEMS has been limited to 

band-pass filtering [24], mass sensing [8], and a mechanism to stabilize oscillations [3]. 

One of the areas which can fall under the umbrella of the 2:1 internal resonance 

and benefit from its unique characteristics, is the inertial measurement. Inertial 

measurement is an area where MEMS sensors have gained good acceptance from the 

market. Micromachined inertial sensors have experienced a continuous performance 

enhancement. They are increasingly mass produced due to the tremendous demand in 

many applications such as mobile devices, navigation, homing and control stabilization. 

Currently, many of the efforts are oriented toward improving precision and accuracy of 

micromachined gyroscopes, to achieve the performance of fiber-optic and ring laser 

gyroscopes (inertial grade performance, i.e., sub-degree-per-hour rate resolution and bias 

stability). These types of gyroscopes are used for the most critical and precision-

demanding applications, e.g., military, tactical/inertial navigation and space applications 

[25]. However, precise fiber-optic and ring laser gyroscopes are all too expensive and too 

bulky to be used in most engineering applications [26]. Compared to conventional 

gyroscopes (i.e., fiber-optic and ring laser), MEMS gyroscopes are several orders of 

magnitude smaller and can be fabricated in large quantities by batch fabrication 

processes. Nevertheless, the MEMS gyroscopes face challenges due to their conventional 

actuation mechanism that can be addressed by the nonlinear modal coupling caused by 

the 2:1 internal resonance. The corresponding issues are explained in the next section. 

1.1.2. Operating principle of Coriolis vibratory gyroscopes and 
challenges  

MEMS gyroscopes are micro- or millimeter-scale sensors used to measure the 

rate of rotation of an object. They have attracted a great deal lot of attention during the 

last decades due to their small size, low cost, and low power consumption. With 

revolutionized MEMS technology, extensive research efforts have led to a broad range of 

gyroscope designs, fabrication and integration techniques. MEMS gyroscopes are 

extensively employed in numerous applications ranging from ride stabilization and rollover 

in automotive, consumer electronics such as video-camera stabilization, virtual reality and 

inertial mouse for computers, robotics applications, and a wide range of military 

applications [27]. Many existing MEMS gyroscopes operate based on the principle of 

rotation-induced Coriolis acceleration measurement using a single vibrating proof mass. 
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The equations of motion of a simplified mass-spring-damper (MSD) model are provided 

to understand the operational principle of a MEMS gyroscope [28]; 

 
{
𝑀𝑥̈ + 𝐶𝑥𝑥̇ + 𝐾𝑥𝑥 = 𝐹𝑒 + 2𝑀Ω𝑧𝑦̇                  
𝑀𝑦̈ + 𝐶𝑦𝑦̇ + 𝐾𝑦𝑦 = −2𝑀Ω𝑧𝑥̇                         

 
(1.1) 

where M is the mass of the resonating proof mass; x and y are translational displacements 

along the drive and sense directions, respectively; Cx and Cy are damping factors; Kx and 

Ky are stiffness coefficients; Fe is the electrostatic force in the drive direction; and Ωz is 

the constant input angular rate about the z-axis, which is orthogonal to the drive and sense 

axes. The two terms 2MΩzẏ and 2MΩzẋ are the rotation induced Coriolis forces, which 

show the coupling between the drive direction and the sense direction. The proof mass is 

driven at or near the resonant frequency of the drive mode by an external harmonic force. 

When the gyroscope is subjected to the angular rate Ωz, a Coriolis force with the same 

frequency as the driving signal is induced along the sense direction. If the drive and sense 

natural frequencies match, the maximized coupling Coriolis force excites the system into 

resonance in the sense direction. The rotation induced motion in the sense direction is 

proportional to the applied angular rate. Consequently, the input angular velocity can be 

inferred by measuring the oscillation amplitudes of the proof mass along the sense axis. 

The resonant frequencies of the sense and drive modes are matched to gain sensitivity of 

MEMS Coriolis vibratory gyroscopes. Matching natural frequencies amplifies the output of 

the gyroscope since the Coriolis force causes resonance in the sense mode. This principle 

of operation is termed as mode matching. Operation of the MEMS vibratory gyroscopes 

with this condition has proven to be rather challenging. 

The inherent tolerances and defects associated with microfabrication 

technologies, such as lithography, deposition, and etching steps, significantly affect the 

geometry and dynamic properties of MEMS gyroscopes. As a result, a perfect frequency 

tuning is not feasible without the implementation of sophisticated control systems. Even in 

the ideal scenario of a mode-matched system, the vibratory gyroscopes usually confront 

other difficulties. It is evident that the bandwidth (BW) of the Coriolis vibratory gyroscope 

reduces as the natural frequencies of the drive and sense modes move towards each 

other since the Coriolis force acts along the steepest edge of the sense mode response 

characteristics [28]. This issue is usually handled by keeping the resonance frequencies 

of the two modes close to each other, but not perfectly tuned. Nevertheless, the MEMS 
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vibratory gyroscopes operating based on mode-matching or near mode-matching 

condition are quite sensitive to fluctuations in oscillatory system parameters. A few-Hz of 

frequency shift between the operating frequency and the sense resonant frequency in a 

high-quality factor (Q) CVG (with low structural damping) could contribute to a 

considerable gain drop in the gyroscope output [29]. In practice, this might cause noisy 

output signals and sensitivity loss of the micro CVG. 

The perfect mode matching also results in another significant problem facing 

micromachined vibratory gyroscopes known as mechanical cross-coupling or crosstalk. In 

practice, the drive and sense axes of a CVG are not perfectly aligned orthogonal to each 

other, due to unavoidable tolerances in the fabrication processes. This misalignment 

introduces the unwanted coupling between the drive and sense modes in the presence of 

Coriolis coupling. This effect and accompanying mode tuning result in false output 

response from the sensing mechanism in the absence of a rate input. This response is 

defined as the zero-rate-output (ZRO) or rate bias of the gyroscope. Misalignment of a 

driving axis with respect to the predefined drive axis could result in high quadrature signal. 

The high quadrature signal causes an offset at the gyroscope output, and even it may 

cause saturation in the readout electronics [28]. 

1.2. Motivation and objectives 

The goal of this research is to introduce nonlinear microresonator designs that 

utilize nonlinear modal interaction for application in angular rate sensing. In particular, 

tuning fork microresonator designs exhibiting the nonlinear 2:1 internal resonance (IR) are 

of interest, and investigated theoretically and experimentally. In such microresonators, the 

design topology duplicates the nonlinear dynamics of the wellknown spring-pendulum 

system affected by forced and 2:1 internal resonances. The proposed tuning fork 

microresonator designs can be thought of demonstration of spring-pendulum systems in 

MEMS. In these microresonators, the rule of thumb is to allow two desired modes of 

vibration of the microresonators (a) to be coupled through quadratic nonlinearities, and (b) 

to be tailored to establish 2:1 frequency ratio between them through adjustment of the 

structural geometry. The quadratic coupling terms and 2:1 internal resonance in the 

presence of external forced excitation cause pumping the energy from the higher-

frequency mode to the lower-frequency mode. The standard features of such internally 
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resonant systems with 2:1 frequency ratio are as follow: a) 2:1 frequency ratio between 

two modes of vibration; b) quadratic nonlinearities couple the two modes; and c) the direct 

resonant of the mode with higher natural frequency. Fulfillment of these requirements 

results in energy bridging of much of input mechanical energy from the mode with higher 

frequency to the one of lower natural frequency. The response of the system with this 

operating phenomenon can be found at half the excitation frequency. This operational 

mode can be beneficial in a way to reduce the mechanical cross-coupling or crosstalk 

between the input and output signal due to the significant separation between input and 

output frequencies. 

In cases where the frequency ratio is quite close to 2:1, this nonlinear characteristic 

of the device forms almost flat-top resonant frequency curves. These nonlinear resonant 

curves are somewhat valuable in the MEMS Coriolis vibratory gyroscopes since the idea 

of employing 2:1 internal resonance in microresonators can eliminate the mode-tuning 

condition. The flat-top frequency region is defined as the operational region of the 

gyroscope. Under these conditions, the nonlinear coupling terms will be responsible for 

facilitating the energy transfer between the drive and sense modes. The proposed 

nonlinear strategy can be explained using Figure 1.1. This figure illustrates the dynamic 

response of two types of Coriolis vibratory gyroscopes, (a) mode-matched and (b) desired 

with 2:1 internal resonance, versus the excitation frequency. The mode matching condition 

is acquired by matching the resonant frequency of the sense (A) and drive (B) modes. 

Nevertheless, the fabrication nonidealities and fluctuations in operating conditions result 

in a frequency shift between the natural frequency of the drive and sense modes (Figure 

1.1(a)). This unwanted effect induces the sensitivity loss in the gyroscope output. The 

issue can be rectified with the use of the nonlinear 2:1 internal resonance in MEMS 

gyroscopes. This phenomenon in the case of 2:1 frequency ratio between the sense (A) 

and drive (B) modes, i.e., fB≈2fA, ensures that the resonant frequency of the drive mode 

(B) lies within the operating region of the sense mode (A). The nominal operation is in the 

flat part, where the signal gain is relatively high, and the sensitivity of the signal gain to 

the driving frequency fluctuations is low. 
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Figure 1.1. Dynamic response of (a) mode-matched and (b) internally resonant 2-
DOF vibratory gyroscope in the sense (A) and drive (B) directions. 

In this dissertation, the nonlinear dynamics of the tuning fork microresonators are 

investigated using lumped MSD modeling and two-variable expansion perturbation 

technique. The microresonator designs are fabricated using a foundry MEMS fabrication 

process. After successful fabrication of the designed micro-devices, precise 

characterization techniques and experimental test-beds are exploited to verify and 

evaluate the operation of the devices in two different operational modes as (a) resonator 

and (b) angular rate sensor. Nonlinear 2:1 internal resonance is discussed and validated 

through extensive simulations and experiments. The simulation and experimental results 

confirm the effectiveness of the 2:1 internal resonance in tuning fork microresonator 

designs for rotation rate measurement purposes. The microresonators designs employing 

2:1 internal resonance can pave the way for the development of nonlinear Coriolis 

vibratory gyroscopes with (1) no mode matching requirement, (2) large operating region 

in the sense-mode frequency responses and (3) reduced cross-coupling and mechanical 

interference between the drive and sense modes. 

1.3. Thesis outline 

This dissertation is divided into seven chapters as follows: 

Chapter 1 gives an introduction to the 2:1 internal resonance and its applications, 

Coriolis vibratory gyroscopes, and challenges in their principle of operation. Furthermore, 

the motivation of this thesis is provided. 
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Chapter 2 presents state-of-the-art on the 2:1 internal resonance in macro- and 

micro-scaled devices. Moreover, the acquired techniques to overcome mode-tuning 

condition in Coriolis vibratory gyroscopes are reported. 

Chapter 3 focusses on the design topology of feasible micro-devices incorporating 

nonlinear 2:1 internal resonance. The step-by-step design procedures using the reduced-

order model software are explored and exemplified for a MEMS T-beam and two MEMS 

tuning forks (frame-shaped and H-shaped). The design process in the reduced-order 

simulation software is followed by linear and nonlinear analysis to obtain natural 

frequencies, structural mode shapes, nonlinear features, and angular-rate sensing 

evaluation. Besides the design process, the description of the foundry fabrication 

technology is described. 

Chapter 4 demonstrates the analytical and experimental investigations on the 2:1 

internal resonance in the fabricated frame-shaped tuning fork microresonator. A detailed 

mathematical model of the device is derived. Simulated and experimentally-achieved 

nonlinear frequency response curves and saturation plots are thoroughly discussed.  

Chapter 5 includes a detailed nonlinear analysis on an H-shaped tuning fork 

microresonator. The steps summarized above for the frame-shaped design are also 

followed for the H-shaped microdevice analysis. 

Chapter 6 describes the experimental test setup to evaluate the performance of 

the microresonator when subjected to angular input rate. The experimental findings and 

discussions are also provided in detail. 

Chapter 7 summarizes the work in this dissertation and gives conclusions. The 

chapter concludes with recommendations and perspectives for future work direction. 
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Chapter 2.  
 
Literature review 

Since Sethna [30] reported the internal resonance phenomenon, many 

researchers have studied various nonlinear macro-sized systems tuned to internal 

resonance [31]–[36]. For instance, around three decades ago, Haddow et al. [32] studied 

the effects of nonlinearities inherent in an L-shaped beam configuration when forced at a 

frequency close to the natural frequencies of the system. The system was assumed to 

possess two DOFs, and the first two natural frequencies were in the ratio of approximately 

2:1. In the mathematical model, the quadratic nonlinearities were retained. The system 

exhibited saturation effects, the jump phenomenon, and the existence of non-periodic 

solutions. The internal resonance has also been the subject of research in a broad range 

of nonlinear systems, including pitch and roll modes interactions in ship dynamics [21], 

rotating machinery [22], cable-stayed bridges [23], energy harvesting systems [2], etc. 

The use of internal resonance and saturation phenomena in nonlinear control has 

been extensively studied by numerous researchers [37]–[41]. Golnaraghi was one of the 

first known researchers who utilized IR to control disturbance induced oscillations in a 

nonlinear system [37]. Golnaraghi [37] and Tuer et al. [42] proposed active control 

strategies based on internal resonances for controlling the free vibrations of oscillatory 

systems. They introduced a controller taking the form of a second-order system that was 

coupled to the plant via quadratic or cubic nonlinear terms. Upon proper tuning of the 

controller’s natural frequency, the nonlinear terms acted as an energy bridge and a state 

of exchange of energy was established between the plant and the controller, resulting in 

a beat in the response of the total system. When the controller absorbed most of the plant’s 

energy, a damping mechanism was activated to prevent the energy from returning to the 

plant. Queini and Golnaraghi [39] implemented this IR control strategy by developing a 

circuit that emulated the equations of a controller with quadratic coupling terms. This circuit 

was built with analog electronic components, and it was used to regulate the free vibrations 

of a DC motor by employing a position feedback mode. The potential of the internal 

resonance vibration controller has been further explored by Tuer et al. [17], Tuer [43], 

Duquette et al. [18], and Duquette [44], where the controller was tested on a clamped-free 

beam. In these studies, attached to the tip of the primary beam (the beam to be controlled) 
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was a regulated DC (direct current) motor with a second rigid beam/mass configuration 

attached to the motor shaft at an angle 90̊ to the primary beam. This configuration gave 

rise to dynamics nonlinearities, which were necessary for the operation of the controller. 

The natural frequencies of the system could be altered by adjusting the position gain of 

the regulator, and therefore, an internal resonance condition could be established. In 

addition, velocity feedback was used to the regulated DC motor as the artificial damping, 

which was essential for obtaining the desired transient response. The proposed control 

technique, in these studies, was unconventional in that the principles of operation were 

dynamically based [45]. 

In recent years, researchers have been attracted by exciting features of nonlinear 

2:1 internal resonance to exploit them and develop next generation of nonlinear MEMS 

transducers. A few researchers have reported experimental verification of the internal 

resonance in MEMS. Samanta et al. [4] exploited a strong nonlinear mode coupling 

between various vibrational modes to demonstrate experimentally two different types of 

internal resonances in an atomically thin MoS2 resonator. Ramini et al. [7] described a 

systematic experimental approach through electrothermal modulation to tune the ratios 

among the natural frequencies of a MEMS arch resonator. They also successfully 

presented the activation of several nonlinear modal interactions due to mainly 2:1 and 3:1 

internal resonances as well as veering. Antonio et al. [3] verified experimentally a 

frequency stabilization mechanism through 3:1 internal resonance. They demonstrated 

that very low-frequency noise performance was possible in the nonlinear regime. Sarrafan 

et al. [46] reported on the design and characterization of an H-shaped microresonator 

exhibiting nonlinear modal interactions due to 2:1 internal resonance. They successfully 

demonstrated the continuous transfer of energy between two anti-phase orthogonal mode 

shapes of the microdevice. In another research, Sarrafan et al. [47] designed and 

characterized a frame-shaped tuning fork microresonator. They experimentally 

demonstrated even in the presence of fabrication defects, and nonideal frequency ratio, 

the 2:1 internal resonance could occur in two separate regions of nonlinear frequency 

response curves. 

A few researchers have paid attention to the theoretical study of the nonlinear 

dynamics of vibrating microresonators with internal resonance. Vyas et al. [48] analyzed 

the response of a pedal microresonator operating on the principle of nonlinear modal 

interactions arising due to a 1:2 internal resonance between torsional (an out-of-plane 
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motion of pedal) and flexural (an in-of-plane motion of pedal) modes. In a similar work, 

Vyas et al. [24] designed an electrostatically actuated T-beam microresonator operated 

on the principle of 1:2 ratio internal resonance in which the higher frequency mode auto 

parametrically excited the lower mode through inertial quadratic and cubic nonlinearities. 

Hacker and Gottlieb [49] derived a two-field continuum based model for a non-uniform 

atomic force microscopy micro-cantilever near internal resonance conditions. Moreover, 

they showed that a step-like heterogeneity in the cantilever longitudinal direction led to 

states for both 3:1 and 2:1 internal resonances. Souayeh and Kacem [50] investigated the 

nonlinear dynamics of nanoelectromechanical cantilever arrays due to 3:1 internal 

resonance using a comprehensive analytical multiphysics model. Gutschmidt and Gottlieb 

[51] employed a consistent nonlinear continuum model to probe the nonlinear dynamic 

behavior of an array of N nonlinearly coupled microbeams near the array’s pull-in point. 

They showed the region near the pull-in point was governed by several 3:1 internal and 

combination resonances. Hassanpour et al. [52] addressed the nonlinear dynamics of an 

internally resonant beam-type MEMS structure due to stretching of the beam excited by 

attached electrostatic comb-drive actuators. Younis and Nayfeh [53] investigated into the 

response of a microbeam in case of 3:1 internal resonance condition. They used a 

nonlinear model to account for the mid-plane stretching, a DC electrostatic force, and an 

AC harmonic load. 

There also have been reports on experimental verification of theoretical models 

describing the internal resonance in MEMS. Kirkendall et al. [8] demonstrated the use of 

nonlinear jump phenomena due to internal resonance in harmonically driven quartz crystal 

resonator operating as a mass sensing paradigm. They modeled the nonlinear behavior 

of the device through a system of coupled Duffing equations. Van der Avoort et al. [54] 

described 2:1 internal resonance in a micro dog-bone resonator experimentally and 

analytically. They studied the limited power handling of the device due to coupling between 

the in-plane length-extensional resonance mode and one or more out-of-plane bending 

modes. Daqaq et al. [55] developed a rigorous model of an electrically-actuated torsional 

micromirror. For a specific voltage range, they observed a 2:1 internal resonance between 

the first two modes. They believed that due to this internal resonance, the mirror exhibited 

complex dynamic behavior, which degraded the micromirror’s performance. They 

formulated a simple design rule to avoid this problem. 
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Although the internal resonance has been noticeably appearing in the literature at 

a rapid pace, the application of this nonlinear phenomenon in microsystems has remained 

limited [8], [24], [25]. The 2:1 internal resonance can be more efficiently utilized to enhance 

the performance of microsensors including MEMS Coriolis vibratory gyroscopes. 

Gyroscopes have traditionally used the angular momentum stored in a spinning wheel or 

the Sagnac effect in counterpropagating light beams in ring laser cavity or fiber optic coil 

[56]. Nowadays, many MEMS rate gyroscopes are based on working principle of the 

vibrating gyroscope, in which at least two structural modes of vibrations are dynamically 

coupled through the Coriolis acceleration. Consequently, mechanical energy can be 

exchanged between fundamental modes of vibration whenever the sensor undergoes a 

rotation. The IEEE Gyro and Accelerometer panel coined the term Coriolis vibratory 

gyroscopes (CVGs) to describe such devices [56]. In a CVG, the first mode (drive mode) 

is excited at its resonant frequency, providing vibrational energy to the whole mechanical 

structure. When the sensor rotates, the second mode of vibration (sense mode) starts to 

vibrate because of the Coriolis coupling. By measuring the amplitude of the motion along 

the secondary mode, it is possible to infer about the angular rate of rotation of the sensor. 

The sensitivity of the CVG is strictly related to the amplitude of the motion along secondary 

mode. Therefore, it is necessary to enhance the energy transfer between the primary and 

secondary modes to gain sensitivity. 

Ideally, the sensitivity is maximized when the resonant frequencies of the two 

structural modes are matched (mode-matching condition). Considering this mode of 

operation, the system is susceptible to variation in system parameters causing a shift in 

the resonant frequencies [57]. Under high-quality factor conditions the gain is high; 

however, the bandwidth is extremely narrow. For example, a 1% fluctuation in frequency 

matching between the drive and sense modes can produce an error of 20% in the output 

signal [58]. Since the Coriolis force and the sense mode oscillation amplitude are directly 

proportional to the drive-mode response, it is desired to enhance the drive-mode 

amplitude by increasing the Q-factor with vacuum packaging. Increasing a gyroscope’s 

drive-mode Q-factor is also beneficial in such a way that it reduces necessary driving 

voltages, consequently decreasing contamination of electrical signals by parasitics and 

improving the sensor power consumption [59]. Nevertheless, the bandwidths of the drive 

and sense frequency responses become incredibly narrow; leading to much tighter mode-

matching requirements and limited bandwidth of angular-rate detection [60]. 
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Attaining a perfect frequency matching during fabrication is rather infeasible 

because of inherent tolerances and defects associated with manufacturing processes. 

Moreover, maintaining the frequency matching during the operation of the sensor is very 

difficult, since parameter fluctuations induced by temperature changes cause additional 

mistuning. Performance robustness against mistuning can be obtained by enlarging the 

bandwidth of sense mode, typically by reducing its quality factor (i.e., increasing damping), 

but this comes at the price of reduced sensitivity, which is not always acceptable [25]. 

Therefore, to increase the sensitivity of the CVG, it is necessary to optimally design the 

structure parameters and improve the fabrication process for high mechanical factor (Q-

factor) and small difference of resonant frequency between the driving and detecting 

modes. 

Post-processing techniques have been proposed in the literature to reduce 

mismatching between resonant modes such as controlling process variations more 

accurately by allowing extra fabrication steps in which polysilicon is selectively deposited 

[61], [62] or etched [63], laser trimming [64], ion beam milling [65], and softening the spring 

constant of the secondary structural mode by exploiting local thermal stressing effects 

[66]. These strategies share the same drawback of requiring, to some extent, a manual 

intervention, so that are not very suitable for batch fabrications. Moreover, mechanical 

balancing methods (e.g., ion beam milling and laser trimming) are time-consuming, 

expensive, and difficult to perform on a small-size MEMS gyroscope [67]. Softening the 

spring constant of the structural modes also can be implemented by applying different DC 

bias voltages separately to the drive and sense electrodes to decrease the small mismatch 

between the resonant frequencies [68]–[70]. However, as the mismatch decreases, the 

mechanical coupling between the two modes makes the operation more and more 

unstable [71]. 

Many researchers have also focused on developing other practical approaches to 

match the resonant frequencies of the CVGs. One scheme is to design symmetric 

suspensions for mode-matching and to compensate for temperature-dependent output 

drift. Even the drive and sense mode frequencies of an asymmetric gyroscope are 

matched with accurate design, but these matching could not be conserved as the 

operating temperature varies [68]. Extensive research has been carried out on the design 

of decoupled and symmetric suspensions and resonator systems for the mode-matching 

and minimizing temperature dependence [72]–[75]. However, the requirement for mode-
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matching is well beyond fabrication tolerances, and none of the symmetric suspension 

designs can provide a degree of mode-matching without active tuning schemes. 

Mode-matching requirements cannot be met without feedback control, even with 

the symmetric designs under the presence of the mentioned perturbations [75]. Therefore, 

sophisticated control electronics is required to maintain the operation in the region of the 

resonance peak. In the past twenty years, many researchers have focused on advanced 

control electronics to compensate for frequency mismatch between the drive and sense 

modes [76]–[80]. Sung et al. [77] suggested automatic mode control using PLL-based 

(phase locked loop) double oscillation loop and tested on a MEMS gyroscope of the 

parallel-type sensing electrode to automatically tune the resonant frequencies to be 

identically matched. Antonello et al. [25] presented a mode-matching controller based on 

an extremum-seeking controller that maximizes the amplitude of sense-mode vibrating 

motion by adjusting the sense-mode stiffness, which can be implemented by using a few 

analog electronic components. Different control strategies also have been investigated on 

mode-matched control of MEMS vibratory gyroscopes such as phase-domain analysis 

[79], fuzzy sliding mode control [80], digital close control loop [81], adaptive control [67] 

and on robustness enhancement (i.e., enlarging bandwidth) such as H∞ control design 

[82]. It is apparent that utilizing control systems to enhance the performance of a MEMS 

CVG is unavoidable; however, the small size of the MEMS gyroscopes puts a big 

challenge on controller design and micro-fabrication [83]. 

Robustness enhancement against fabrication and operating condition fluctuations 

is feasible through ensuring that the vibration frequency of the primary mode lies within 

the bandwidth of the second mode (i.e., enlarging the bandwidth of secondary mode) [25]. 

The bandwidth enhancement can be achieved by a form of feedback control called force-

to-rebalance (FTR) mode of operation.[33], [84], [85]. The FTR allows increasing the 

bandwidth of the mode-matched gyroscope through maintaining the sense-mode 

amplitude at zero by applying a rebalancing force which includes Coriolis and quadrature 

signals [86]. Several classes of MEMS rate gyroscope designs introduced and 

experimentally demonstrated where the inherent robustness against structural and 

environmental parameter variation had been achieved structurally [87]–[92]. Accordingly, 

it is verified that the complexity from the control electronics can be shifted to the structural 

design of the gyroscope dynamical system [29]. One possible design concept is to design 

non-resonant multi-degree of freedom (MDOF) of the sense mode oscillatory systems, for 
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example, 3-DOF design concept aiming to utilize resonance in either the drive mode or 

the sense mode to improve sensitivity while maintaining the robust operational 

characteristics [93]. Hence, the flat regions between the peaks of drive or sense modes 

define the operational frequency region, and resonant frequencies are designed to overlap 

with the flat operating region. The other feasibility is based on forming multiple drive-mode 

oscillators, distributed symmetrically around the center of a supporting frame with 

incrementally spaced resonant frequencies [75]. This design concept provides wider drive-

mode bandwidth in vibratory MEMS gyroscopes. There are also different designs allowing 

interchangeable operation in robust wide-bandwidth and precision mode-matched [87], 

high-bandwidth highly-sensitive MEMS gyroscope with 2-DOF sense mode [89], and 

MDOF vibratory gyroscope with double sense-modes [91]. 

The sensitivity loss due to fabrication imperfections in MEMS gyroscopes based 

on harmonic oscillators is also overcome by using a nonlinear dynamics phenomenon 

termed as parametric resonance or parametric amplification [94], [95]. It is an actuation 

mechanism without the mode-matching requirement. Parametric amplification is a 

nonlinear effect, due to the modulation of the equivalent spring constants. To generate a 

parametric resonance response, the actuation force can be produced by a set of non-

interdigitated comb fingers [96]. One of the most notable peculiarities of these systems is 

that large responses can be made even if the excitation frequency is far away from the 

natural frequency. Using this actuation mechanism, the system can achieve a wide 

bandwidth of operation without sacrificing the sense mode gain. It offers a robust 

microsensor that is less sensitive to parameter variations [97], [98], has excellent noise 

rejection [99]–[101], and even can reduce quadrature error signal which strongly 

constraints the maximum gain of sensing circuit [99], [100]. 

In 2015, Marzouk [102] successfully implemented the idea of utilization of 2:1 

internal resonance in a macro-scaled T-beam for angular rate sensing. He demonstrated 

that the output displacement of the resonator linearly changed with an increase in the 

angular input rate. Motivated by this recent work, this dissertation aims to extend and apply 

the same idea from macro- to micro-devices. The actuation mechanism can be extremely 

beneficial in the performance enhancement of Coriolis vibratory gyroscopes in different 

ways. It can omit frequency matching. Moreover, it generates high, flat-top operational 

region in the sense-mode frequency response, thus less sensitive to fluctuations in the 

driving frequency. Finally, it reduces the effect of mechanical interference/cross coupling. 
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Chapter 3.  
 
Nonlinear microresonator design and fabrication 

3.1. Nonlinear 2:1 internal resonance 

The mechanical vibrations are classified into several categories according to the 

relationship between the external forcing frequency and the natural frequencies of the 

system. In the case where one or more external periodic forcing functions are applied to 

the system, the vibration is called forced. When the frequency of the external force is set 

at one of the natural frequencies of the system, the oscillation amplitude is maximum. The 

resonance is referred to as primary resonance. Technically, mechanical engineers tend to 

either avoid primary resonance or exploit it in their systems. When a system has 

nonlinearities, which exhibit in the equations of motion, the system may resonate at a 

frequency different from the frequency of the forcing function. One of these resonance 

situations is called internal resonance. It is also known as auto-parametric resonance in 

nonlinear vibrations since the specific relationship between the natural frequencies of the 

system enforces the system into resonance. 

Internal resonance can cause nonlinear modal interactions between the directly 

excited modes of vibration through external harmonic forcing functions and the indirectly 

excited modes. This phenomenon exists when the linear natural frequencies of the system 

are commensurable or nearly commensurable and nonlinear terms couple the structural 

modes [103]. For example, the equations of motion of a 2-DOF system take the form [104] 

 
{
𝑦̈ + 𝛾𝑦𝑦̇ + 𝜔𝑦

2𝑦 = 𝑥̇2                                                         

𝑥̈ + 𝛾𝑥𝑥̇ + 𝜔𝑥
2𝑥 = 𝐹 cos(𝛺𝑒𝑥𝑐𝑡) + 2𝑥̇𝑦̇                        

 
(3.1) 

where 2ẋẏ and ẋ
2
 can represent the quadratic Coriolis and centripetal nonlinearities, 

respectively. If the linear natural frequencies are defined as ωy and ωx, internal resonance 

occurs through quadratic nonlinearities when Ωexc~ωx and ωx~2ωy. In this case, the 

nonlinear quadratic coupling terms cause auto-parametric excitation of the lower-

frequency mode by the higher-frequency mode. In other words, it pumps the energy from 

the mode with higher natural frequency into the mode of lower natural frequency. The 
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amount of energy that is transferred depends on the type of quadratic nonlinearities, the 

amplitude of external force, modal Q-factors, the frequency ratio between the vibrational 

modes, etc. There exists an interesting phenomenon termed saturation in internally 

resonant systems with 2:1 frequency ratio in the presence of quadratic coupling 

nonlinearities. When the system is excited at a frequency near the higher natural 

frequency, the structure responds to the frequency of excitation, and the amplitude of the 

response increases linearly with the amplitude of excitation. However, when the high 

natural frequency mode reaches a critical value, this mode saturates and all additional 

energy transfers to the low natural frequency mode. The mode with the lower resonant 

frequency then starts to oscillate at half the excitation frequency. Many researchers found 

this nonlinear characteristic interesting and utilized it in the suppression of unwanted 

oscillations [18], [38], [39]. 

3.2. Design strategy 

The design idea stems from nonlinear dynamics of the classical spring-pendulum 

system excited by the forced resonance and the 2:1 internal resonance. The schematic of 

a spring-pendulum system is illustrated below 

 

Figure 3.1. Model of the spring-pendulum system. 

The dynamics of the system can be considered as the planar motion of a mass 

attached to the end of a massless linear spring. Assume that a harmonic force F(t) with 

the frequency of Ωexc is applied to the system along the spring direction. In this system, 

internal resonance occurs when the requirements for the external and 2:1 internal 
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resonances are met (i.e., (1) the frequency of the harmonic force F(t) equals the natural 

frequency of spring extensional mode and (2) the natural frequency of the spring 

extensional mode is approximately twice as the natural frequency of the angular pendulum 

mode). Many investigators have studied the nonlinear dynamics and chaotic motions of 

the spring-pendulum systems excited by external and internal resonances [105], [106]. 

To design an equivalent structure at micro scale, MEMS design engineers need to 

explore devices which can couple translational motions (spring mode) with linear natural 

frequency 2ω to rotational movements (pendulum mode) of linear natural frequency ω. 

Then, with sufficiently large harmonic driving forces, nonlinear mode coupling occurs, and 

mechanical energy spills over from the translational mode to the rotational mode. There 

exists a source of structural nonlinearity in the problem which is the nonlinear coupling 

between the large radial and angular motions of the spring-pendulum system. In this 

chapter, three microresonator designs with the same dynamical characteristic as the 

spring-pendulum system are designed and discussed using reduced-order modeling 

software, Architect™1 CoventorWare©2. 

3.3. Nonlinear analysis via Architect™ CoventorWare© 

The simulation of the 2:1 internal resonance phenomenon proved to be a rather 

significant challenge. The Architect™ module in CoventorWare© was the only tool could 

demonstrate the coupling of energy between the modes of the structures in reasonable 

computation times (i.e., several hours to days). The electromechanical structure of the 

microresonators is designed using Architect™ module in a CoventorWare© environment. 

The Architect™ parametric libraries allow system-level designers to simulate and rapidly 

evaluate multiple design configurations using a top-down, system-level approach. In the 

following sections, a step-by-step methodology is provided to design and assess nonlinear 

features and rate sensitivity in three internally resonant microresonator designs. 

                                                

1 Architect is a Trademark of Synopsys. 

2 CoventorWare is copyrighted by Coventor Incorporation. 
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3.3.1. T-beam design 

The T-shaped structure has been under increasing focus in recent years, 

especially as filters, actuators, mass sensors and gyroscopes [24], [48], [107], [108], [102]. 

The schematic of a T-shaped resonator is shown in Figure 3.2. The T-beam structure 

comprises two beams: a clamped-clamped (CC) beam whose ends are anchored to fixed 

supports and a clamped-free (CF) beam attached orthogonally to the middle of the CC 

beam. This structure possesses a nonlinear behavior due to the presence of quadratic 

and cubic nonlinearities, arising from its geometry. 

 

Figure 3.2. Schematic of the T-shaped microresonator. 

The high-level schematic of the detailed structural design in Architect™ 

environment is shown in Figure 3.3(a). The schematic includes three 1-segment nonlinear 

beams, two beam side electrodes, two anchors, an alternating current (AC) source, a 

direct current (DC) source, two constrained mechanical bus connectors, an input angular 

rate function about Z-axis, and a reference frame. The schematic is then processed, and 

a 3D view of the device is created based on silicon-on-insulator (SOI) process as 

demonstrated in Figure 3.3(b). The microresonator and the drive electrodes are made of 

silicon. However, they are pictured with different colors to be distinguishable from each 

other. The design parameters of the microresonator are presented in Table 3.1, where Li 

and wi are the length and width of the beams, i=CC, and CF; Ld is the length of the drive 

electrode facing the CC beam, and g is the gap width. The device geometry is adjusted to 

have the desired natural frequencies in a frequency ratio of 2:1. The drive electrode is 

biased with DC voltage of 100 V to enhance the linear component of the electrostatic 

force. The resonator device is excited by the two beam side electrodes through the 

actuation voltage of VDC+Vac sin(Ωexct), where VDC is the polarization voltage and Vac and 

Ωexc are the amplitude and frequency of the AC actuation signal, respectively. The 

resulting motions of the device are captured through two mechanical bus connectors. To 

speed up the simulation, the translational movement along the Z-axis, and angular 
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rotations about the X- and Y- axes are grounded in the mechanical bus connectors. The 

assumption is because the desired modes of the microresonators take place in the X-Y 

plane. Small-signal frequency analysis is performed to achieve the natural frequencies 

and structural mode shapes of the microdevice, depicted in Figure 3.4. The natural 

frequencies can be found at f1 =1.4145 MHz (pendulum mode) and f2 =2.8419 MHz (spring 

mode). The pendulum mode describes the angular rotation of the CF beam tip about the 

Z-axis, and the spring mode is associated with the translational displacement of the middle 

of the CC beam along the Y-axis. Based on the AC analysis, the frequency ratio can be 

computed as f2 f1⁄ =2.0091. 

(a)  

(b)  

Figure 3.3. (a) Complete system schematic of the T-shaped microresonator in 
CoventorWare© Architect™, (b) 3D view of the built model in 
Architect™ Scence3D. 
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Table 3.1. The T-beam design dimensions in Architect™ schematic. 

Symbol  Value (μm) 

LCC 120 

wCC 8 

LCF 80 

wCF 8 

Ld 100 
g 2 

 

 (a)  

(b)

 

(c)

 

Figure 3.4. (a) Modal analysis of the T-beam microresonator simulated using 
Architect™. (b) The pendulum mode shape with natural frequency 
1.4145 MHz. (c) The spring mode shape with natural frequency 2.8419 
MHz. (blue-no displacement and red-maximum displacement) 

Comprehensive transient simulations are carried out to probe the nonlinear 

characteristics of the T-beam microdevice. To reduce the time required for each transient 

simulation, the Q-factors of the desired modes are needed to be artificially set at low 
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values to complete the simulation in reasonable times. The Q-factors for the pendulum 

and spring modes are set at 1000 and 500, respectively. Using low Q-factors requires the 

application of larger drive voltages to reach the minimum displacement threshold to trigger 

the 2:1 internal resonance. The Rayleigh’s damping method is employed to specify the Q-

factors above in the transient simulations (a=52.39, b=1.1210-10). Trapezoidal integration 

method is selected with truncation error of 0.001 in the transient simulation settings. Each 

simulation run on a personal computer with an Intel Core i5-3450 processor and 16GB of 

RAM took about 3 hours to reach steady-state, corresponding to one pair of data points in 

Figure 3.5(a) and Figure 3.6 (i.e., the data in Figure 3.6 required 3×16×3=144 hours of 

calculations besides the time needed to update the parameters in between steps). 

Figure 3.5(a) exhibits the steady-state amplitudes of the spring mode (Y) and the 

pendulum mode (X) versus various driving voltages Vac=0-50 V, where VDC=100 V and 

Ωexc=2f1≈2.8292 MHz. It should be mentioned that the amplitudes X and Y are collected 

from the x and y output ports of the mechanical bus connectors attached to the tip of the 

CF beam and the middle of the CC beam, respectively. From this figure, it can be noticed 

that the amplitude of the spring mode (Y) increases linearly with the changes in the drive 

voltages Vac. However, the amplitude of the pendulum mode is zero. When the drive 

voltage reaches the critical threshold value (Vac~22.5 V), the amplitude Y saturates, and 

all excess of energy pumps into the amplitude X. This observation confirms the occurrence 

of the saturation phenomenon in which much of the input or excitation energy transfer 

from the higher frequency mode (spring mode) to the lower frequency mode (pendulum 

mode). Figure 3.5(b) demonstrates the time-domain responses of the spring-mode (Y) and 

the pendulum-mode (X) amplitudes associated with region A in Figure 3.5(a), where the 

loading setting is as follows; VDC=100 V, Vac=30 V and Ωexc=2f1≈2.8292 MHz. The figure 

shows that the mode with lower frequency (pendulum-mode) starts to pick up energy from 

the higher frequency mode after around 1 msec, confirming the nonlinear mode coupling. 

The simulated nonlinear frequency response curves of the spring (Y) and the 

pendulum (X) modal amplitudes for different actuation levels are exhibited in Figure 3.6. 

This figure is achieved by saving the steady-state amplitude of the signals (X and Y), while 

the excitation frequency Ωexc is swept around the natural frequency of the spring mode f2. 

The figure discloses that the spring mode (Y) resonates at the frequency of excitation Ωexc, 

while the pendulum mode (X) responds at half the excitation frequency Ωexc/2, i.e., in the 

vicinity of the pendulum resonant frequency f1. Furthermore, it reveals the transfer of 
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energy between the vibrational modes due to nonlinear mode coupling and generating 

broad operational region in the pendulum-resonant curves. 

(a)  

(b)  

Figure 3.5. Transient simulation results obtained using Architect™ for the T-

beam microresonator, where VDC=100 V and exc=2.8292 MHz. (a) 
the steady-state modal amplitudes of X and Y extracted from 
repeated transient simulations for Vac=[0 50] V. (b) the oscillation 
amplitudes of the spring-mode (Y) and the pendulum-mode (X) for 
region A corresponding to Vac=30 V. 

These nonlinear characteristics of the microresonator (i.e., the pendulum mode 

with the wide operational region and high-amplitude resonant curves) can be exploited 
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efficiently to reduce the sensitivity of MEMS CVGs to fluctuations in the drive frequency. 

It is also noteworthy that the effect of mechanical cross-coupling/mechanical interference 

can be reduced since the pendulum natural frequency is away from the spring natural 

frequency (i.e., f2≈2f1). The observation is despite the fact in mode-matched CVGs, where 

the sense mode is forced to resonate at the natural frequency of the drive-mode or the 

excitation frequency. Figure 3.6 also implies that an increase in the voltage Vac can enlarge 

and control the operational region over which the pendulum-mode participates in the 

modal interactions. Although, significant AC levels might cause pull-in effect and 

functionality loss. 

(a)  

(b)  

Figure 3.6. Simulated nonlinear frequency response curves for the T-beam 
microresonator achieved via Architect™ (a) the spring mode and 
(b) the pendulum mode. 
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As seen from the transient simulations, the T-beam microresonator is capable of 

exhibiting the nonlinear mode coupling between the so-called extensional spring and 

rotational pendulum modes. The following step is to analyze the dynamic response of the 

microresonator when exposed to the angular input rate along the Z-axis. The 

microresonator is excited through the drive electrode with VDC=100 V, Vac=25 V and 

Ωexc=2f1~2.8292 MHz. The input rate profile is defined as a ramp function with 5-msec 

delay and a constant angular acceleration of 1910 deg/sec2. Consideration of the time 

delay in the profile is essential to let the system settle at steady state after the modal 

interactions. The implementation of such a high-angular acceleration (i.e., 1910 deg/sec2) 

seems to be infeasible in an experiment with available commercialized rate tables in the 

market. Nevertheless, setting smaller values for the angular acceleration in the simulations 

will be incredibly tedious, especially when it comes to the application of the high angular 

rates. This is because the simulations need more time to settle and reach steady-state 

condition. 

To observe the effect of the angular input rate on the output signals (X and Y 

amplitudes), tighter condition on truncation error setting in Architect™ is required. The 

truncation error needed to be reduced to 0.00001. This value is much smaller than the 

previous value for the calculation error, i.e., 0.001. Consequently, the simulation time 

significantly increases in this state of analysis. Figure 3.7 depicts the dynamical behavior 

of the microresonator as subjected to the angular velocity Ωz =±1.5 rad sec-1 (RPS) (or 

±86 deg sec-1 (DPS)). The amplitudes along the spring (Y) and pendulum (X) modes 

before and after application of the angular velocity can be seen in Figure 3.7(a) and Figure 

3.7(b). As it can be found out from the figure, the input rate is effective after 5 msec of 

delay in the ramp function. The envelope of the spring and pendulum modal amplitudes 

(X and Y signals) grow with an increase in the angular rate. Once the rotational velocity 

ends up at the target value and stays for 10 msec, the modal amplitudes become steady. 

The signal amplitudes before and after the input rate were taken in the time interval [4 5] 

and [75 80] milliseconds (msec), respectively. It is worth mentioning that the excitation 

frequency of the microresonator can be chosen from any frequency values in the 

operational region of the pendulum mode (wide-bandwidth resonant area) depending on 

the AC driving levels Vac. 

The full range of the microresonator sensitivity to the rate ΩZ= [-200 200] DPS (or 

[-3.5 3.5] RPS) is shown in Figure 3.8. The spring and pendulum modal amplitudes linearly 
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change by further application of the angular input rate until the microresonator sensitivity 

reaches its upper limit for the angular rates greater than ±143 DPS. The non-zero bias in 

the signals (X and Y) corresponds to the oscillation generated by the nonlinear mode 

coupling due to the 2:1 internal resonance. 

(a)  

(b)  

Figure 3.7. Time-domain analysis (Architect™) for the T-beam microresonator, 

when the applied angular velocity Z equals to (a) 1.5 RPS (or 86 DPS) 
and (b) -1.5 RPS (or -86 DPS). 
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 (a)  

(b)  

Figure 3.8. Simulated sensitivity plots acquired using Architect™ for the T-beam 

microresonator, when exposed to the input rate Z = [-200 200] DPS. 
(a) the spring mode and (b) the pendulum mode. 

3.3.2. Frame-shaped tuning fork design 

Despite the easy fabrication and ability to be driven deep into the nonlinear regime, 

the T-shaped microresonator design is not considered as a suitable candidate for MEMS 

Coriolis vibratory gyroscope applications. The reasons are as follows;  

• Asymmetric structure design. 

• Sensitivity to fabrication process since a slight change in the geometry of the 
CC and CF beams will significantly detune the frequency ratio from 2:1. 
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• Any small disturbance applied to the CC beam will result in generation of 
unwanted oscillations in the CF beam. 

• Low structural mass when compared to tuning fork (TF) designs.  

Considering these decisive factors brings up dual-mass tuning fork designs with 

anti-phase resonant modes to our attention. The dual-mass tuning fork designs are well 

known to be relatively immune to vibration because of their differential operation and 

common-mode rejection [109]. Beside all these, for our purpose, they can dynamically act 

as the spring-pendulum mechanism to facilitate the nonlinear modal interactions as 

explained in the following sections. The schematic of the TF microdevice is illustrated in 

Figure 3.9. This design has two identical two-DOF resonators labeled as the left and the 

right resonator, Figure 3.9(a). Each resonator is free to move in the X-Y plane. The device 

comprises two identical proof masses which are connected to the two vertices of T-shape 

like linkage, and the center bar of the T-shape linkage is attached to the anchor. The proof 

masses are supported by some flexural beam springs and centrally anchored. The flexural 

beam suspensions include the anchor beams (from the anchor to the base beam), the 

base beams (connecting two parallel tuning fork beams), and the tuning fork beams (from 

the proof mass to the base beam). The microdevice is surrounded by a collection of 

symmetrically distributed parallel plate electrodes. The system has two drive electrodes 

(DE) to load the device into resonance. The vibration sensing system has four sensing 

electrodes (SE) to detect the oscillations. The design parameters in Figure 3.9(b) are 

explained in Table 3.2.  

The proof masses can move in either opposite directions (tuning fork mode) or 

together in the same direction (the hula mode) along the X- and Y-axes. The dimension 

of the tuning fork beams and the anchor beams mostly determine the natural frequency of 

the tuning fork mode or the hula mode along the X-direction. The natural frequency of the 

tuning fork mode (or the hula mode) along the Y-axis depends on the geometry of the 

base beams and the anchor beams. With tuning fork mode of operation, the proof masses 

move in opposite directions, i.e., 180 phase difference with respect to each other. 

Therefore, the base beams remain essentially static and only small shear stresses are 

transmitted through the anchor to the substrate [110]. If the anchor beams are thick and 

rigid, the masses move independently. The topology forms a mechanically decoupled 

resonator design. In the linear regime, where the driving level is below a specific threshold, 

the motion of the proof masses along the Y-axis is assumed to be translational. Practically, 
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driving the device deep into nonlinear regime can induce large deformations of the base 

and tuning fork beams, causing rotation of the proof masses about the center of the anchor 

[111]. As a result, the masses can undergo rotational motion around the anchor while they 

can also experience translational movement in the tuning fork mode or the hula mode 

along the X-direction. From a theoretical point of view, this resembles the classical 

mechanical system of the spring-pendulum mechanism. The translational mode (hula or 

tuning fork) along the X-axis can be considered as the spring mode, and the rotational 

mode of the proof masses about the anchor (hula or tuning fork) can be evaluated as the 

pendulum mode. Overall, the dynamic of the microresonator, in case of nonlinear 

operation, is equivalent to the dynamics of two decoupled spring-pendulum systems. 

(a)  

(b)  

Figure 3.9. Schematic diagram of the frame-shaped tuning fork microresonator; 
(a) Outline of the device. (b) The TF design parameters. In part (b), 
solid gray is the moveable device. Electrical contact pads are an 
anchor, sense electrodes (SE) 1-4 and drive electrodes (DE) 1 and 2. 



29 

Table 3.2. Design parameters of the frame-shaped tuning fork microresonator. 

Symbol  Quantity 

La The length of the anchor beam 

wa The width of the anchor beam 

Lb The length of the base beam 

wb The width of the base beam 

Ltf The length of the tuning fork beam 

wtf The width of the tuning fork beam 

w The width of the proof mass 

h The height of the proof mass 

g The electrostatic gap 

 

The nonlinear characteristics and rate sensitivity of the frame-shaped TF 

microresonator are explored through comprehensive transient simulations in Architect™. 

The electromechanical model of the microresonator is formed by connecting multiple 

mechanical and electrical elements as illustrated in Figure 3.10. The schematic consists 

of ten 1-seg nonlinear beams, four beam side electrodes, two nonlinear rigid plates, two 

rigid plate side electrodes, eight constrained mechanical bus connectors, two anchors, an 

AC voltage source, a DC voltage source, a fixed reference frame and an input angular 

rate function along the Z-axis. Figure 3.10(b) shows the 3D model of the schematic, which 

is built based on MEMS Integrated Design for Inertial Sensors (MIDIS) process design kit 

[112]. This fabrication technology offers a minimum feature size of 1.5 μm for the device 

layer and vacuum-encapsulated silicon devices. These features of the manufacturing 

process are of great importance in this research because the 2:1 internal resonance can 

be probed by producing large electrostatic drive forces with 1.5 μm of the electrostatic 

gap. Moreover, the experiments can be accomplished without the need to use a vacuum 

chamber and pumping system. The MIDIS process is thoroughly described at the end of 

this chapter. The adjusted dimension of the microresonator can be found in Table 3.3. In 

this table, Ls is the length of the SE facing the base beam and Ld is the length of the DE 

facing the proof mass. The geometry of the microresonator is determined by a trial and 

error process to tailor the natural frequency of the modes of interest to be in a 2:1 

frequency ratio. The drive and sense electrodes are biased at 90 V using the DC voltage 

source. The electrostatic drive forces are inserted into the microresonator structure 

through DE 1 and DE 2, which are provided with in-phase AC voltages. 
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(a)  

(b)  

Figure 3.10. (a) Complete system schematic of the frame-shaped microresonator 
in CoventorWare© Architect™, (b) 3D view of the built model in 
Architect™ Scence3D. 

The resulting oscillations induced by the nonlinear modal interactions are 

measured through SE 1-4 and output ports of the mechanical bus connectors. The 

mechanical bus connectors give the translational and angular motions of the pinned 

junctions along the X-, Y- and Z-axes in meter and radian, respectively. As it can be 

noticed from the schematic, some of the output ports of the mechanical bus connectors 
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are grounded. According to the author’s experience, this is a crucial step to speed up the 

transient simulations in the nonlinear analysis. Using the nonlinear elements for nonlinear 

vibration investigations is unavoidable. The nonlinear elements in Architect™ library can 

handle large displacements generated by large electrostatic and Coriolis forces. 

Nevertheless, they add to the complexity of the problem. If the planar structural modes 

are desirable, the unused ports in the mechanical bus connectors (displacements and 

rotations) can be safely grounded. 

Table 3.3. The frame-shaped design dimensions in Architect™ schematic. 

Symbol  Value (μm) 

La 26.5 

wa 50 

Lb 240 

wb 11 

Ltf 102 

wtf 17 

w 70 

h 50 

g 1.75 

Ls 119 

Ld 50 

 

The natural frequencies and corresponding mode shapes of the microresonator 

are acquired through small-signal frequency analysis, Figure 3.11. Here, the pendulum 

mode is defined as the anti-phase oscillation of the proof masses along the Y-axis, Figure 

3.11(b), and the spring mode is an anti-phase oscillation of the proof masses along the X-

axis, Figure 3.11(c). The natural frequency of the pendulum and spring modes are, 

respectively, as follow; f1 =519.5 kHz, f2 =1.0438 MHz, and the frequency ratio 

f2 f1⁄ =2.0092. The Q-factors of the pendulum and spring modes are considered to be 1000 

and 500, respectively. Rayleigh’s damping approach is employed to enter the pendulum 

and spring-mode Q-factors into the transient analysis setting (a=20.28, b=3.0410-10). 

Trapezoidal integration method is set with truncation error of 0.001 to solve the reduced-

order equations. Each simulation run on a personal computer with an Intel Core i5-3450 

processor and 16GB of RAM took about 10 hours to reach steady-state, corresponding to 

one pair of data points in Figure 3.12 or Figure 3.13 (i.e., the data in Figure 3.13 required 

3×22×10=660 hours of calculations in addition to the time needed to update the 
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parameters in between steps). Although the nonlinear analysis in Architect™ is time-

consuming, it will be shown in the following chapters that it can predict the nonlinear 

properties of the microresonators to an acceptable degree. 

(a)  

(b)

 

(c)

 

Figure 3.11. (a) Modal analysis of the frame-shaped microresonator simulated 
using Architect™. (b) The pendulum mode shape with natural 
frequency 519.5 kHz. (c) The spring mode shape with natural 
frequency 1.0438 MHz. (blue-no displacement and red-maximum 
displacement) 

The steady-state amplitudes of the pendulum-mode (Y) and the spring mode (X) 

as a function of the AC actuation voltages Vac are exhibited in Figure 3.12(a). This figure 

is obtained when the AC voltage is swept from 0-50 V, and the excitation frequency is set 

at Ωexc=1.0388 MHz. For each data point in the figure, the steady-state amplitudes of the 

vibrational modes (X and Y) are captured for each AC drive voltage. It can be observed 
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that the saturation phenomenon occurs in this nonlinear system. Because, the spring-

mode amplitude (X) proportionally changes with the rise in the value of AC voltage, while 

the spring-mode amplitude (Y) remains constant at zero. As the AC voltage reaches a 

specific threshold, i.e., Vac =25 V, the pendulum response starts growing. For a better 

understanding of the nonlinear mode coupling, the case where Vac=30 V is separately 

demonstrated in Figure 3.12(b). It implies that there is an energy channeling between the 

spring mode of amplitude X and the pendulum mode with amplitude Y after about 

approximately 13 msec. 

The nonlinear frequency resonant curves of the microresonator are achieved by 

sweeping the excitation frequency Ωexc in the neighborhood of the higher-mode resonant 

frequency (spring mode with the natural frequency f2). The simulated resonant curves are 

shown in Figure 3.13. The data points in this figure are the steady-state amplitudes of the 

pendulum and spring modes for the AC voltages Vac=30, 40 and 50 V. The results indicate 

that the mode with lower frequency (pendulum mode) resonates at half the excitation 

frequency (Ωexc/2) and the higher-frequency mode (spring mode) responds at the 

excitation frequency (Ωexc). As it can be understood from Figure 3.13(b), a rise in the 

actuation voltage Vac can significantly enlarge the operational region of the pendulum 

mode. This point can be verified by looking at the nonlinear resonant curves for the case 

of Vac=30 V and Vac=50 V. Similar to the T-shaped microresonator, the frame-shaped TF 

microresonator can be considered as a candidate to be utilized as the rate sensor 

incorporating the 2:1 internal resonance. It can produce the nonlinear resonant frequency 

curves with high gain, and wide operational region in the pendulum mode. 

The dynamical behavior of the microresonator is investigated as the device 

undergoes rotation along the Z-axis. For the same transient simulation setting (i.e., 

truncation error=0.001), the sensitivity of the microresonator is not figured. Truncation 

error has to be specified as 0.00001 to resolve this issue. This error setting and a large 

number of the nonlinear mechanical elements in Architect™ schematic justify the long 

hours of simulation for the case of angular sensitivity analysis. A ramp function with the 

slope of 1910 deg/sec2 is exerted on the microresonator. This rate profile is set up for the 

microresonator when it experiences the following loading setting; Vac=40 V, VDC=90 V and 

Ωexc=1.0388 MHz. The delay of 36 msec exists before the input rate implementation. This 

time delay is needed to allow the vibrational mode amplitudes to reach the steady-state 

condition. 
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 (a)  

(b)  

Figure 3.12. Transient simulation results obtained using Architect™ for the frame-

shaped microresonator, where VDC=90 V and exc=1.0388 MHz. (a) the 
steady-state modal amplitudes of X and Y extracted from repeated 
transient simulations for Vac=[0 50] V. (b) the oscillation amplitudes of 
the spring-mode (X) and the pendulum-mode (Y) for region A 
corresponding to Vac=30 V. 
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(a)  

(b)  

Figure 3.13. Simulated nonlinear frequency response curves for the frame-shaped 
microresonator achieved via Architect™ (a) the spring mode and (b) 
the pendulum mode. 

The sensitivity of the microresonator when it rotates with the input angular velocity 

of ΩZ=±3 RPS (or ±172 DPS) is shown in Figure 3.14. The steady-state amplitudes of the 

spring and pendulum modes before and after the effect of the rate can be realized for the 

time interval [34 36] and [131 136] msec, respectively. From the figure, it can be apparently 

inferred that there is a growth in the signal envelope in the modal amplitudes when 

subjected to the angular rate. The same study is accomplished for a broader range of 

angular velocities ΩZ= [-229 229] DPS (or [-4 4] RPS) and the resulting dynamical behavior 

of the microresonator is demonstrated in Figure 3.15.The results indicate the linear 
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sensitivity in the range of -172 DPS≤ ΩZ ≤172 DPS for the microdevice. The pendulum 

and spring-mode responses start to be insensitive to the rotational rate after ΩZ=172 DPS. 

(a)  

(b)  

Figure 3.14. Time-domain analysis (Architect™) for the frame-shaped tuning fork 

microresonator, when the applied angular velocity Z equals to (a) 3 
RPS (or 172 DPS) and (b) -3 RPS or (-172 DPS). 
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(a)  

(b)  

Figure 3.15. Simulated sensitivity plots acquired using Architect™ for the frame-
shaped tuning fork microresonator, when exposed to the input rate 

Z =[-229 229] DPS. (a) the spring mode and (b) the pendulum mode. 

3.3.3. H-shaped tuning fork design 

To demonstrate, yet another realization of the spring-pendulum mechanism in 

MEMS, an in-plane H-shaped tuning fork microresonator design is introduced. Figure 3.16 

shows the top view of the structure. This design consists of two identical 2-DOF 

resonators, as the left (green) resonator and the right (red) resonator as illustrated in 

Figure 3.16 (a). Each 2-DOF resonator dynamically can act as a spring-pendulum 

mechanism under the impact of proper harmonic forcing levels. The top and bottom 
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coupling beams secure the resonators. Therefore, one can analyze the dynamics of the 

device by two spring-pendulum mechanisms joined through the coupling beams. 

(a)  

(b)  

Figure 3.16. Schematic of the H-shaped tuning fork microresonator. (a) outline of 
the device. (b) the TF design parameters. 

The device utilizes twin proof masses that are mechanically connected through 

beam suspensions to form an H-shaped structure. The H-shaped proof masses can move 

in the radial direction and rotate about the anchor, simultaneously. The flexural beam 

suspensions consist of the anchor beams, the tuning fork beams, and the coupling beams. 

The microdevice is enclosed by series of symmetrically placed parallel plate electrodes; 

two drive electrodes (DE) 1 and 2 and four sense electrodes (SE) 1-4. The design 

parameters in Figure 3.16 (b), are explained in Table 3.4. Similar to the previous 
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microresonator designs, transient analysis with Architect™ helps us to study the nonlinear 

dynamics and rate sensitivity of the H-shaped tuning fork microresonator. 

Table 3.4. Design parameters of the H-shaped tuning fork microresonator. 

Symbol  Quantity 

La The length of the anchor beam 

wa The width of the anchor beam 

Lc The length of the coupling beam 

wc The width of the coupling beam 

Ltf The length of the tuning fork beam 

wtf The width of the tuning fork beam 

w1, w2 The widths of the proof mass 

h1, h2 The heights of the proof mass 

l1 The length of the drive electrodes 1 and 2 

l2 The length of the sense electrodes 1-4 

g The electrostatic gap 

 

The detailed structure design is started from a high-level schematic as shown in 

Figure 3.17. The schematic incorporates twelve 1-segment nonlinear beams, eight beam 

side electrodes, two nonlinear rigid plates, two rigid plate side electrodes, an AC source, 

a DC source, eight constrained mechanical bus connectors, a reference frame, and an 

input angular rate function. Then, the schematic is processed, and a 3D view of the device 

is created according to the MIDIS process as shown in Figure 3.17(b). The design 

parameters are presented in Table 3.5. The dimensions of the structure are designed and 

tailored such that the linear natural frequency of the mode along the X-axis (spring mode) 

is twice the linear natural frequency of the mode along the Y-direction (pendulum mode). 

The drive and sense electrodes are biased with DC voltage of 70 V. Adjusting the DC bias 

voltage can be considered as a tool to tune the frequency ratio between the vibrational 

modes. The small-signal frequency analysis is carried out to find the natural frequencies 

and the structural mode shapes, Figure 3.18. It determines the natural frequencies at 

f1=525.95 kHz (pendulum mode) and f2=1.0548 MHz (spring mode). Accordingly, the 

frequency ratio is f2/f1 ~2.0055. The Q-factors are set to 500 and 1000 for the spring and 

pendulum modes, respectively. To implement the desired Q-factors for simulations, values 

of modal damping are calculated using Rayleigh’s damping method (a=11.5938, 

b=3.015110-10). Trapezoidal integration method is selected with truncation error of 0.001 

in the transient simulation settings. Each simulation run on a personal computer with an 
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Intel Core i5-3450 processor and 16GB of RAM took about 7 hours to reach steady-state, 

corresponding to one pair of data points in Figure 3.19 or Figure 3.20 (i.e., the data in 

Figure 3.20 required 3×28×7=588 hours of calculations in addition to the time needed to 

update the parameters in between steps). 

(a)  

(b)  

Figure 3.17. (a) Complete system schematic of the H-shaped microresonator in 
CoventorWare© Architect™, (b) 3D view of the built model in 
Architect™ Scence3D. 
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Table 3.5. The H-shaped design dimensions in Architect™ schematic. 

Symbol  Quantity (μm) Symbol Quantity (μm) 

La 159 h1 60 

wa 9 w2 36 

Lc 78 h2 206 

Ltf 75 l1 206 

wtf 21 l2 195 

w1 25 g 1.75 

 

(a)  

(b)

 

(c)

 

 Figure 3.18. (a) Modal analysis of the H-shaped microresonator simulated using 
Architect™. (b) The pendulum mode shape with natural frequency 
525.95 kHz. (c) The spring mode shape with natural frequency 1.0548 
MHz. (blue-no displacement and red-maximum displacement) 

The presence of the saturation phenomenon, and consequently quadratic 

couplings, in the H-shaped microresonator dynamics, can be confirmed in Figure 3.19. 

The figure illustrates the X-(spring) and Y-(pendulum) modal amplitudes as the AC voltage 

is changed from 0-40 V while the forcing frequency is secured at 1.052 MHz. It reveals 
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that the linear changes in the spring-mode amplitude (X) stop at Vac=10 V. Instead the 

pendulum-mode response (Y) jumps from zero-static equilibrium and grows further by an 

increase in the actuation levels. The time-domain responses associated with the region A 

in Figure 3.19(a), i.e., for the case of Vac=30 V, are demonstrated in Figure 3.19(b). It 

implies the energy transfer from the spring-mode (X) to the pendulum-mode (Y) after 1.75 

msec. 

(a)  

(b)  

Figure 3.19. Transient simulation results obtained using Architect™ for the H-

shaped microresonator, where VDC=70 V and exc=1.052 MHz. (a) the 
steady-state modal amplitudes of X and Y extracted from repeated 
transient simulations for Vac=[0 40] V. (b) the oscillation amplitudes of 
the spring-mode (X) and the pendulum-mode (Y) for region A 
corresponding to Vac=30 V. 

Figure 3.20 shows the nonlinear frequency response plots for various AC levels 

Vac = 30, 40 and 50 V. This figure is achieved by measurement of the steady-state 

amplitudes of the signals (X and Y) for different excitation frequencies. It should be 
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mentioned that the excitation frequency is changed in the vicinity of the spring mode 

resonant frequency (f2=1.0548 MHz). However, the vibrational modes respond differently. 

The spring-mode in Figure 3.20(a) resonates at the frequency of the excitation, although 

the pendulum-mode amplitudes shown in Figure 3.20(b) are captured at half the excitation 

frequency. This dynamical behavior is similar to the previously discussed microresonator 

designs. All share the same property, which can be explained by nonlinear vibrations 

generated by forced and 2:1 internal resonances. 

(a)  

(b)  

Figure 3.20. Simulated nonlinear frequency response curves for the H-shaped 
microresonator achieved via Architect™ (a) the spring mode and (b) 
the pendulum mode. 

The truncation error in the transient setting is reduced to 0.00001 to run the time-

domain simulations for examining the rate sensitivity. Figure 3.21 (a) and (b) exhibit the 

dynamical behavior of the microresonator as it is opposed to the input rate of ΩZ= 1.5 RPS 
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(86 DPS) and ΩZ= -1.5 RPS (-86 DPS), respectively, when Vac=20 V. The assigned rate 

profile can be seen in the figure, which is constructed by 20-msec delay, a ramp function 

with constant angular acceleration 1910 deg/sec2). As it can be observed in both cases, 

the microresonator reacts to it with an increase in the spring- and pendulum response 

amplitudes. 

(a)  

(b)  

Figure 3.21. Time-domain analysis (Architect™) for the H-shaped tuning fork 

microresonator, when the applied angular velocity Z equals to (a) 1.5 
RPS (or 86 DPS) and (b) -1.5 RPS (or -86 DPS). 
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And finally, the full-range of angular rate sensitivity of the microresonator for ΩZ= 

[-100.3 100.3] DPS (or [-1.75 1.75] RPS) is demonstrated in Figure 3.22. Figure 3.22(a) 

shows the dynamical behaviour of the spring mode when subjected to the angular velocity 

and Figure 3.22(b) exhibits the pendulum mode under impact of the angular rate. 

Obviously, the steady-state modal amplitudes of the spring-(X) and pendulum (Y) modes 

keep increasing until the applied angular rate reaches to ±100.3 DPS which can be thought 

of the operational limit of the microresonator as an angular sensor. 

(a)  

(b)  

Figure 3.22. Simulated sensitivity plots acquired using Architect™ for the H-
shaped tuning fork microresonator, when exposed to the input rate 

Z =[-100.3 100.3] DPS. (a) the spring mode and (b) the pendulum 
mode. 
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3.4. MEMS integrated design for inertial sensors fabrication 
technology 

In this section, the MEMS integrated design for inertial sensors (MIDIS) fabrication 

process offered by Teledyne DALSA Inc. (TDSI) is discussed. The MIDIS platform is a 

high-aspect-ratio-bulk-micromachining process of a 30-μm thick single-crystal silicon 

(SCS) device layer that is vacuum encapsulated at 10 mTorr between two silicon wafers 

[113]. The bottom wafer (handle wafer) has a 380-μm thickness, while the top wafer 

(interconnect wafer) has a thickness of 108 μm. The top wafer includes through-silicon 

vias (TSVs) to create electrically isolated connections to the device wafer. The fabrication 

process flows for the handle, and device wafers can be found in [113].  

The MIDIS design guidelines do not provide full characterization information 

regarding the etching profiles. As such, several device designs of the frame- and H-

shaped microresonators with slight variations to the dimensions in Table 3.6 and Table 

3.7 are designed to ensure a 2:1 ratio between the modes, respectively. The arrangement 

of the microresonators in the sketched layout is shown in Figure 3.23. Figure 3.24 exhibits, 

scanning electron microscope (SEM) image of the fabricated devices before 

encapsulation. 

 

Figure 3.23. Schematic drawing of the layout, sketched using the Coventorware© 
Designer module, submitted to TDSI. 
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(a)  

(b)  

Figure 3.24. Top-view SEM image of (a) the frame-shaped and (b) H-shaped tuning 
fork microresonators before vacuum encapsulation. 
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Table 3.6. Design parameters of the frame-shaped microresonator in the 
presented layout to the external foundry. 

Symbol  Value (μm) 

La 25 

wa 50 

Lb 150 

wb 12 

Ltf 94 

wtf 18 

w 60 

h 62 

g 2 

Table 3.7. Design parameters of the H-shaped microresonator in the presented 
layout to the external foundry. 

Symbol  Value (μm) Symbol Value (μm) 

La 165 h1 60 

wa 8 w2 35 

Lc 76 h2 201 

Ltf 72 l1 194 

wtf 25 l2 197 

w1 29 g 1.75 

3.5. Summary 

In this chapter, nonlinear microresonator designs were introduced which resemble 

the nonlinear dynamics of the spring-pendulum mechanism with the primary and 2:1 

internal resonances. Nonlinear dynamic analysis of reduced-order model simulation 

software, Architect™ CoventorWare© was utilized to design and examine the 2:1 internal 

resonance based microresonators. These microresonators use 2:1 internal resonance in 

their functioning. Through extensive and timely simulations, it was proved that these 

designs were cable of exhibiting the nonlinear properties and sensitivity to the angular 

input rate. In the end, the MIDIS fabrication technology was introduced, and the SEM 

image of the microresonators studied in this dissertation was revealed. 
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Chapter 4.  
 
Analytical modeling and experimental verification of 
nonlinear mode coupling in a frame-shaped tuning 
fork microresonator 

This chapter provides the analytical and experimental studies into the nonlinear 

mode coupling in a frame-shaped tuning fork microresonator, with electrostatic actuation 

at forced and internal resonance frequencies. The systematic investigation leads to 4-DOF 

modal equations that take into account kinematic and electrostatic nonlinearities. The 

equations of motion are derived using Lagrange’s energy method. The theoretical 

resonance curves are determined by using the two-variable expansion perturbation 

technique near internal resonance. The two desired mode shapes of the device are 

tailored to establish an approximate two-to-one frequency ratio between their natural 

frequencies. The influence of AC driving levels and a detuning frequency parameter, due 

to inevitable fabrication imperfections, on the system dynamics are investigated 

theoretically and experimentally. It is shown that the deviation from the ideal internal 

resonance condition separates the region of the nonlinear vibration into two distinct 

excitation frequencies. The model and simulated results obtained by the perturbation 

analysis are validated by comparing them with the experimental results. 

4.1. Mathematical modeling and perturbation analysis 

4.1.1. Description of the mathematical model 

Symmetric with respect to a vertical central line, each half of the tuning fork 

microdevice, as shown in Figure 3.9, can be considered as a 2-DOF MSD mechanical 

system. Therefore, the microresonator forms a 4-DOF mechanical structure constructed 

by two decoupled 2-DOF spring-pendulum mechanisms. The lumped modeling has to be 

started with the consideration of a few assumptions as listed  

1) According to the FEM modal analysis in CoventorWare©, rotation with 
respect to the anchor is allowed at either of the tuning fork beams ends. 
Thus, it seems reasonable to consider the tuning fork beams on each 
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side of the device as a simply supported beam with an attached proof 
mass in the middle. 

2) Each half of the base beam can be considered as a cantilever beam in 
the analysis. 

3) The left and right resonators are decoupled. Moreover, They can rotate 
with respect to the anchor, induced by substantial deformation of the 
suspension beams. 

4) The tuning fork beams displace translationally with respect to the base 
beams attached to them. The base beams are pinned to the anchor to 
allow the rotation at the junction point. 

5) The silicon anchor in the middle is assumed to be fixed and rigid during 
entire nonlinear operation of the microresonator. 

Because of these assumptions, the tuning fork microresonator can be modeled as 

a 4-DOF mechanism, demonstrated in Figure 4.1. The (X, Y, Z) reference frame is 

stationary and centered at the point O. The constant input angular rate applied to the 

structure is denoted by ΩZ. Mass Mi (i=1 and 2) represents the mass of the beam of length 

Ltf with the proof mass. The mass Mb represents the effective mass of two cantilever 

beams of length Le where Le=Lb-0.5(wa+wtf). The stiffness of the linear springs is 

represented by the spring constant Ki. The flexibility of each resonator is taken into 

account by a torsional spring with the spring constant of Kti. The translational and torsional 

dampers of the system are denoted as Ci and Cti, respectively. The electrostatic forces F1 

and F3 are generated by the drive electrodes DE 1 and DE 2, respectively. The capacitive 

forces F2 and F4 represent, respectively, the difference between the forces exerted to the 

device by the sense electrodes SE 1 and SE 3, and SE 2 and SE 4. The differential 

sensing approach has been selected; therefore, the total captured capacitance can be 

doubled, resulting in boosting the output signal on each side of the device. 

 

Figure 4.1. Lumped parameter model for the frame-shaped tuning fork dynamics. 
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4.1.2. Derivation of equations of motion 

The equations of motion of the microresonator are achieved using Lagrangian 

dynamics. The equations are derived by applying symbolic manipulation software MAPLE. 

For the developed 4-DOF model, the kinematics are easily obtained using vector algebra. 

It is evident from the schematic of the system in Figure 4.1; the motion can be described 

by using four generalized coordinates (q). Namely, r1 and r2, the extension of the masses 

M1 and M2 along the radial direction, respectively, and θ1 and θ2, the angle that the 

masses M1 and M2 along with the mass Mb make with a horizontal line passing through 

the point O about which springs Kt1 and Kt2 rotate, respectively. Considering Figure 4.1, 

we define 

 rM1= - ((Le+r1(t)) cos(θ1(t))) î+ ((Le+r1(t)) sin(θ1(t))) ĵ 
(4.1) 

 r(Mb)L= -Le cos(θ1(t)) î+Le sin(θ1(t)) ĵ (4.2) 

 rM2= ((Le+r2(t)) cos(θ2(t))) î+ ((Le+r2(t)) sin(θ2(t))) ĵ 
(4.3) 

 r(Mb)R= Le cos(θ2(t)) î+Le sin(θ2(t)) ĵ (4.4) 

as the vectors describing the positions of the masses M1, Mb on the left side, M2, and Mb 

on the right side, respectively. In the above equations, î and ĵ are the unit vectors of the 

(X, Y, Z)-coordinate reference frame. Thus, the velocities of the masses can be calculated 

as 

 ṙM1= (-r1̇(t) cos(θ1(t))+ (Le+r1(t))(θ1̇(t)-ΩZ) sin(θ1(t)))î 

 +(r1̇(t) sin(θ1(t))+ (Le+r1(t))(θ1̇(t)-ΩZ) cos(θ1(t)))ĵ 

(4.5) 

  ṙ(Mb)L= (Le(θ1̇(t)-ΩZ) sin(θ1(t)))î+(Le(θ1̇(t)-ΩZ) cos(θ1(t)))ĵ (4.6) 

 ṙM2= (r2̇(t) cos(θ2(t))- (Le+r2(t))(θ2̇(t)+ΩZ) sin(θ2(t)))î 

+(r2̇(t) sin(θ2(t))+ (Le+r2(t))(θ2̇(t)+ΩZ) cos(θ2(t)))ĵ 

(4.7) 



52 

  ṙ(Mb)R= -(Le(θ2̇(t)+ΩZ) sin(θ2(t)))î+(Le(θ2̇(t)+ΩZ) cos(θ2(t)))ĵ (4.8) 

The dot represents differentiation with respect to the time t. Hence, the kinetic 

energy (KE) of the system can be expressed as 

 KE = 
1

2
M1ṙM1 .ṙM1+

1

2
Mb ṙ(Mb)L .ṙ(Mb)L+

1

2
M2ṙM2 .ṙM2+

1

2
Mb ṙ(Mb)R .ṙ(Mb)R= 

1

2
(M1r1

2(t)+2LeM1r1(t)+Le
2(M1+Mb)) θ̇1

2(t) 

+
1

2
(M2r2

2(t)+2LeM2r2(t)+Le
2(M2+Mb)) θ̇2

2(t) 

+
1

2
M1ṙ1

2(t)+
1

2
M2ṙ2

2(t) 

+
1

2
(M1r1

2(t)+M2r2
2(t)+2LeM2r2(t)+2LeM1r1(t)+Le

2(M2+M2+2Mb))ΩZ
2 

+
1

2
(
- (2M1r1

2(t)+4LeM1r1(t)+2Le
2(M1+Mb)) θ1̇(t)

+ (2M2r2
2(t)+4LeM2r2(t)+2Le

2(M2+Mb)) θ2̇(t)
)ΩZ 

 

 

(4.9) 

The potential energy (PE) of the system involves that of the translational and 

torsional springs K1, Kt1, K2 and Kt2, and can be written as 

 
PE = 

1

2
(K1(r1(t))

2
+Kt1(θ1(t))

2
+K2(r2(t))

2
+Kt2(θ2(t))

2
) 

(4.10) 

Rayleigh’s dissipation force (Fd) can also be defined as 

 
Fd = 

1

2
(C1(ṙ1(t))

2
+Ct1 (θ̇1(t))

2
+C2(ṙ2(t))

2
+Ct2 (θ̇2(t))

2
) 

(4.11) 

Lagrange’s equations of motion of the microdevice are 

 
{

L=KE-PE                                     

(
∂L

∂q̇i
) -
∂L

∂qi
+
∂Fd
∂q̇i

=Gi, i=1-4
 

(4.12) 

where L is the Lagrangian of the system; the q
i
 is the generalized coordinate; and the Gi 

is defined as the nonconservative force or moment applied to the system. Hence, 
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 q1=θ1, q2=r1, q3=θ2, q4=r2

G1=-
F2

cos(θ1(t))
(Le+r1(t)), G2=-

F1

cos(θ1(t))

G3=
F4

cos(θ2(t))
(Le+r2(t)), G4=

F3
cos(θ2(t)) }

 
 

 
 

 

 

(4.13) 

Substituting Equations (4.9)-(4.11) and Equation (4.13) into Equation (4.12), the 

equations of motion can be derived as follow 

 Le
2(Mb+M1)θ̈1(t)+Ct1θ̇1(t)+Kt1θ1(t)=-F2

(Le+r1(t))

cos(θ1(t))
 

(M1 (r1
2(t)+2Ler1(t))+Le

2(Mb+M1))ΩŻ-M1 (r1
2(t)+2Ler1(t)) θ̈1(t) 

-2M1(Le+r1(t))ṙ1(t)θ̇1(t)+2M1(Le+r1(t))ṙ1(t)ΩZ 

 

(4.14) 

 
M1r̈1(t)+C1ṙ1(t)+K1r1(t)=M1(Le+r1(t))θ̇1

2(t)-
F1

cos(θ1(t))
 

-2M1(Le+r1(t))θ̇1(t)ΩZ+M1(Le+r1(t))ΩZ
2 

 

(4.15) 

 Le
2(Mb+M2)θ̈2(t)+Ct2θ̇2(t)+Kt2θ2(t)=F4

(Le+r2(t))

cos(θ2(t))
 

- (M2 (r2
2(t)+2Ler2(t))+Le

2(Mb+M2))ΩŻ-M2 (r2
2(t)+2Ler2(t)) θ̈2(t) 

-2M2(Le+r2(t))ṙ2(t)θ̇2(t)-2M2(Le+r2(t))ṙ2(t)ΩZ 

 

(4.16) 

 
M2r̈2(t)+C2ṙ2(t)+K2r2(t)=M2(Le+r2(t))θ̇2

2(t)+
F3

cos(θ2(t))
 

+2M2(Le+r2(t))θ̇2(t)ΩZ+M2(Le+r2(t))ΩZ
2 

 

(4.17) 

where 

M1= M2= MProof mass+Mtf beam=tsiρsi(wh+Ltfwtf), Mb=0.4714tsiρsiLewb 
 

ωn1=2π(Kt1 Le
2(M1+Mb)⁄ )

1 2⁄
, ωn2=2π(K1 M1⁄ )1 2⁄  

 ωn3=2π(Kt2 Le
2(M2+Mb)⁄ )

1 2⁄
, ωn4=2π(K2 M2⁄ )1 2⁄  
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c1=ωn1ωn2

(
ωn2
Q1
) - (

ωn1
Q2
)

(𝜔𝑛2)
2
-(𝜔𝑛1)

2 , d1=
(
ωn2
Q2
) - (

ωn1
Q1
)

(𝜔𝑛2)
2
-(𝜔𝑛1)

2 

 c2=ωn3ωn4

(
ωn4
Q3
) - (

ωn3
Q4
)

(𝜔𝑛4)
2
-(𝜔𝑛3)

2 , d2=
(
ωn4
Q4
) - (

ωn3
Q3
)

(𝜔𝑛4)
2
-(𝜔𝑛3)

2 

 

[
Cj
Ctj
]=cj [

Mj 0

0 (Mj+Mb)Le
2]+dj [

Kj 0

0 Ktj
], j =1 and 2 

 

F1=
1

2
(VDC+Vac cos(Ωrt))

2p0tsi(2(Ltf+wb-4g)+h)(
d

d(r1(t))
(

1

g-r1(t)
))= 

1

2
(VDC+Vac cos(Ωrt))

2(2(Ltf+wb-4g)+h)
p0tsi

(g-r1(t))
2 

F2=
1

2
VDC
2 p0tsi (Lb-

g

2
)(

d

d(θ1(t))
(

1

g-Le tan(θ1(t))
-

1

g+Le tan(θ1(t))
))= 

1

2
VDC
2 p0tsiLe (Lb-

g

2
) (1+(tan(θ1(t)))

2
)  (

1

(g-Le tan(θ1(t)))
2+

1

(g+Le tan(θ1(t)))
2) 

F3=
1

2
(VDC+Vac cos(Ωrt))

2p0tsi(2(Ltf+wb-4g)+h)(
d

d(r2(t))
(

1

g-r2(t)
))= 

1

2
(VDC+Vac cos(Ωrt))

2(2(Ltf+wb-4g)+h)
p0tsi

(g-r2(t))
2 

F4=
1

2
VDC
2 p0tsi (Lb-

g

2
)(

d

d(θ2(t))
(

1

g-Le tan(θ2(t))
-

1

g+Le tan(θ2(t))
))= 

1

2
VDC
2 p0tsiLe (Lb-

g

2
) (1+(tan(θ2(t)))

2
)  (

1

(g-Le tan(θ2(t)))
2+

1

(g+Le tan(θ2(t)))
2) 

where p
0
 is the permittivity of the space (8.85×10

-12
 (F/m)); tsi is the thickness of silicon 

device layer; ρ
si
 is the mass density of silicon (2330 Kg/m3); d dx⁄  is defined as the 

differentiation with respect to the variable x; VDC is the DC bias voltage applied to the 
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sense and drive electrodes; Vac is the amplitude of the AC driving voltage applied to the 

drive electrodes; and Ωr is the excitation frequency. The quality factor Qi and the natural 

frequency ωni
 (i=1-4) are substituted into Rayleigh’s damping equation, stated above, to 

estimate the translational (C1 and C2) and rotational (Ct1 and Ct2) damping coefficients. 

The description of device design parameters can be found in Table 3.2. It is worth 

mentioning that in Equations (4.14)-(4.17), the nonlinearities are kinematic and 

electrostatic. The nonlinear kinematic terms include ṙ1 and θ̇1 (e.g., ṙ1θ̈1), whereas the 

electrostatic nonlinearities stem from the electrostatic forces produced by the drive and 

sense electrodes. The effect of Coriolis coupling between the vibrational modes ri and θi 

can be spotted in the equations of motion (e.g., 2M1(Le+r1)ṙ1ΩZ and 2M1(Le+r1)θ̇1ΩZ). 

The linearized resonance frequencies can be expressed as ωn1
=ωn3

 and ωn2
=ωn4

 

if the two systems are completely symmetric. That is M1= M2, K1= K2, Kt1= Kt2, C1= C2, 

Ct1= Ct2, |r1|=|r2| and |θ1|=|θ2|. Nevertheless, this does not hold in real life due to 

unavoidable fabrication defects (such as over-etching). For simplicity of presentation, it is 

assumed that these values are equal, and due to the symmetric and uncoupled design of 

the microresonator, the perturbation analysis is carried out for the left resonator, shown in 

Figure 3.9.  

4.1.3. Nondimensional and scaled equations of motion 

To generalize the problem, the equations of motion, Equations (4.14)-(4.17), are 

nondimensionalized by introducing the following length and time scales. 

Ρ1=
r1
Le
, Θ1=θ1, t =

τ

Ω
, 
d

dt
=Ω

d

dτ
, 
d2

dt2
=Ω2

d2

dτ2
 

(4.18) 

In the above equation, Ω is the nondimensionalizing frequency. Thus, the 

nondimensional equations take the form 
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Θ̈1(τ)+γt1Θ̇1(τ)+ω1
2Θ1(τ)=

-m1 ((Ρ1
2(τ)+2Ρ1(τ)) Θ̈1(τ)+2(1+Ρ1(τ))Ρ̇1(τ)Θ̇1(τ))

+ (m1 (Ρ1
2(τ) + 2𝛲1(𝑡))+1)ΩŻ+2m1(Ρ1(t)+1)Ρ̇1(τ)ΩZ

-
1

2
VDC
2 p0tSi (Lb-

g

2
) (1+(tan(Θ1(τ)))

2
) .

(
1

(g-Le tan(Θ1(τ)))
2+

1

(g+Le tan(Θ1(τ)))
2)

(1+Ρ1(τ))

(M1+Mb)Ω2 cos(Θ1(τ))

Ρ̈1(τ)+γ1Ρ̇1(τ)+ω2
2Ρ1(τ)=(1+Ρ1(τ))Θ̇1

2(τ)

-2(Ρ1(t)+1)Θ̇1(τ)ΩZ+(Ρ1(t)+1)ΩZ
2

-
1

2
(VDC+Vac cos(Ω1τ))

2(2(Ltf+wb-4g)+h)
p0tSi

M1LeΩ2(g-LeΡ1(τ))
2
cos(Θ1(τ))}

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

(4.19) 

where the dots represent the differentiation with respect to the nondimensional time τ. The 

natural frequencies of the uncoupled unforced linear system are 

ω1=
√

Kt1
(M1+Mb)Le2

Ω
, ω2=

√
K1
M1

Ω
 

(4.20) 

The nondimensional mass and the nondimensional excitation frequency are 

defined as 

m1=
M1

M1+Mb
, Ω1=

Ωr
Ω
  

(4.21) 

The non-dimensional damping parameters are defined as 

γt1=
Ct1

(M1+Mb)Le2Ω
, γ1=

C1
M1Ω

  
(4.22) 

The unforced equations of motion have a stable equilibrium state at (Ρ1=0, Ρ1̇=0, 

Θ1=0, Θ1
̇ =0). In the approximate solutions, we will replace the nonlinear trigonometric 

terms in Equation (4.19) by truncated Taylor expansions about this equilibrium point. 

Then, we proceed to scale them to see how large the effect of nonlinear terms is compared 

to the linear terms. The scaling process produces a small dimensionless parameter ε in 

the equations, 0< ε≪1, which shows the order of nonlinearities and coupling. The 
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parameter ε is chosen so that we perturb off the linear equations for small ε. In other 

words, the motions are investigated in the vicinity of the static equilibrium position. 

We introduce a change of variables as follow 

Θ1(τ)=ε
mψ1(τ), Ρ1(τ)=ε

nρ1(τ), ΩZ=ε
pφ̇(τ)

 Vac=ε
rVAC, VDC=ε

sVdc
} 

(4.23) 

In the above equation, m, n, p, r, and s are integers greater than or equal to one. 

These integers are to be specified such that the power of ε in the linear terms are of one 

order lower than the nonlinear terms. That is to say that we require the order of ε in the 

linear terms be zero, and at least one lower than the nonlinear terms. 

The changed variables in Equation (4.23) are the substituted in Equation (4.19). 

The power values are to be specified as m=n=p=r=s=1 to meet the requirement above. 

To perturb off from the undamped linear equations, the damping coefficients γ
t1

, and γ
1
 

are scaled. Therefore, the damping and nonlinear terms can appear in the same 

perturbation equations. 

γt1= εμt1, γ1= εμ1 (4.24) 

With these assumptions, the scaled equations of motion take the form of the 

following equations 

ψ̈1+ω1
2ψ1+ε(2m1ρ̇1ψ̇1+2m1ρ1ψ̈1+μt1ψ̇1)+

+ε2m1ρ1(ρ1ψ̈1+2ρ̇1ψ̇1)-(m1(ε
2ρ1
2+2ερ1)+1)φ̈-2m1(ε

2ρ1+ε)ρ̇1φ̇

=-
1

2
p0tSi

(2Lb-g)

(M1+Mb)Ω2g2
Vdc
2 (ρ1ε

2+ε)

ρ̈1+ω2
2ρ1+ε(μ1ρ̇1-ψ̇1

2)-ε2ρ1ψ̇1
2=

-2(ε2ρ1+ε)ψ̇1φ̇+(ε
2ρ1+ε)φ̇

2

-

(

 
 
 
 
 
p0tSi(2(Ltf+wb-4g)+h)(

2ρ1 cos(Ω1τ) ε
2

M1g3Ω2
+
cos(Ω1τ) ε

M1Leg2Ω2
)VdcVAC

+(
ρ1ε

2

M1g3Ω2
+

ε

2M1Leg2Ω2
)Vdc

2

+(
ρ1(cos(Ω1τ))

2ε2

M1g3Ω2
+
(cos(Ω1τ))

2ε

2M1Leg2Ω2
)VAC

2

)

 
 
 
 
 

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

(4.25) 
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4.1.4. The two-variable expansion-perturbation method 

The two-variable expansion-perturbation approach is utilized to understand the 

dynamics of the microresonator near internal and forced resonances [104]. In this 

approach, the independent variable τ would be replaced by two new variables ξ, and η, 

such that 

ξ = τ,      η = ετ (4.26) 

where ξ is an actual stretched time variable, and η is a slow time variable. The idea behind 

this perturbation technique is to express dependent variable ψ
1
 and ρ

1
 to depend explicitly 

on two-time scales ξ and η. For example, the periodic steady-state behavior will occur in 

ξ, while the approach to the steady state will occur in η [104]. 

Using the chain rule, we rewrite the time derivative of ψ
1
(ξ, η) and ρ

1
(ξ, η) such 

that 

d

dτ
=
∂

∂ξ
+ε

∂

∂η
+O(ε2), 

d2

dτ2
=
∂2

∂ξ2
+2ε

∂2

∂ξ∂η
+O(ε2) 

(4.27) 

We also expand ψ
1
 and ρ

1
 as 

ψ1 = ψ10+εψ11+O(ε
2),  ρ1 = ρ10+ερ11+O(ε

2) (4.28) 

At this point, the equations of motion are ready to be analyzed at the primary and 

2:1 internal resonance cases. For the primary resonance case, we detune the resonance 

with the parameter σ1 such that 

Ω1= ω2+εσ1 (4.29) 

where σ1 denotes the external forcing parameter. Substituting Equations (4.26)-(4.29) into 

Equation (4.25) and equating coefficients of equal powers of ε, neglecting terms of O(ε2), 

we find the zeroth and first-order equations of ε to be as follows. 

 For order ε0 
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ψ10ξξ+ω1
2ψ10= 𝜑𝜁𝜁 ,  ρ10ξξ+ω2

2ρ10= 0 (4.30) 

For order ε 

ψ11ξξ+ω1
2ψ11=-2ψ10ξη -μt1ψ10ξ-2m1 (ρ10ψ10ξξ+ρ10ξψ10ξ)

-p0tSi
(2Lb-g)

2(M1+Mb)(gΩ)2
Vdc
2 + 2m1 (𝜌10𝜉  𝜑𝜁 +  ρ10𝜑𝜁𝜁)

ρ11ξξ+ω2
2ρ11=(ψ10ξ)

2
-μ1ρ10ξ-2ρ10ξη + ( 𝜑𝜁)

2
− 2 𝜑𝜁ψ10ξ

-
p0tSi(2(Ltf+wb-4g)+h)

2M1Le(gΩ)2
(
2VdcVAC cos(Ω1τ)+

Vdc
2 +VAC

2 (cos(Ω1τ))
2) }

 
 
 

 
 
 

 

 

(4.31) 

where the sub-subscripts represent partial derivatives. The solution of Equations (4.30)1,2 

can be written in the form 

ψ10=k1(η) sin(ω1ξ)+k2(η) cos(ω1ξ)

ρ10=k3(η) sin(ω2ξ)+k4(η) cos(ω2ξ)
} 

(4.32) 

We now substitute Equation (4.32) into Equation (4.31), suppressing the secular 

terms sin(ωiξ) and cos(ωiξ) in Equation (4.31), where i=1 and 2. Secular terms cause 

unbounded growth in the signal amplitudes. They are needed to be eliminated. Note that 

we need to write 

cos(Ω1ξ)= cos(ω2ξ + σ1η)=cos(ω2ξ) cos(σ1η) - sin(ω2ξ) sin(σ1η) (4.33) 

Due to the length of the expressions, some of the intermediate steps are 

eliminated. The case of internal resonance, ω2≈2ω1, is examined through the significance 

of the secular terms in the resonance. The case of ω2≈2ω1 is the case when ω2 is very 

close to 2ω1. The detuning parameter σ2 is introduced to show the closeness of the 

frequencies. Thus, 

 𝜔2 = 2𝜔1 + 𝜀𝜎2 (4.34) 

In addition to Equation (4.33), we can write 

cos(ω2ξ)= cos(2ω1ξ + σ2η)=cos(2ω1ξ) cos(σ2η) - sin(2ω1ξ) sin(σ2η) (4.35) 
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Before writing the solvability conditions, a polar transformation is introduced such 

that 

k1(η)=a1(η) sin(α1(η)) ,  k2(η)=a1(η)cos(α1(η))

k3(η)=a2(η) sin(α2(η)) ,  k4(η)=a2(η)cos(α2(η))
} 

(4.36) 

where an and αn are real functions of η. This transformation makes it possible to 

achieve the secular-term equations more conveniently. Therefore, the non-autonomous 

solvability equations, in polar form, 

α1η=
1

2
m1a2(ω1-ω2) cos(β1)

a1η=-
μt1
2
a1+

1

2
m1(ω1-ω2)a1a2 sin(β1)

α2η=-
ω1
2

4a2ω2
a1
2 cos(β1) -

p0tSi(2(Ltf+wb-4g)+h)

2M1Le(gΩ)2ω2a2
VdcVAC cos(β2)

a2η=-
μ1
2
a2+

ω1
2

4ω2
a1
2sin(β1)-

p0tSi(2(Ltf+wb-4g)+h)

2M1Le(gΩ)2ω2
VdcVAC sin(β2)}

 
 
 
 

 
 
 
 

 

 

(4.37) 

where 

β1=2α1-α2+σ2η,    β2= α2+σ1η (4.38) 

Eliminating α1 and α2 from Equation (4.37), we obtain the following set of 

equations 

β1η=m1a2(ω1-ω2) cos(β1)+
ω1
2

4a2ω2
a1
2 cos(β1)+

p0tSi(2(Ltf+wb-4g)+h)

2M1Le(gΩ)2ω2a2
VdcVAC cos(β2)+σ2

a1η=-
μt1
2
a1+

1

2
m1(ω1-ω2)a1a2 sin(β1)

β2η=-
ω1
2

4a2ω2
a1
2 cos(β1) -

p0tSi(2(Ltf+wb-4g)+h)

2M1Le(gΩ)2ω2a2
VdcVAC cos(β2)+σ1

a2η=-
μ1
2
a2+

ω1
2

4ω2
a1
2sin(β1)-

p0tSi(2(Ltf+wb-4g)+h)

2M1Le(gΩ)2ω2
VdcVAC sin(β2) }

 
 
 
 
 

 
 
 
 
 

 

 

 

(4.39) 
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When the condition for the steady-state solutions, i.e., the equilibrium solutions, is 

satisfied, that is a1η=a2η=β
1η

=β
2η

=0, there are two possible steady-state solutions for 

Equation (4.39). Where ai and β
i
 (i=1 and 2) denote the steady-state nondimensionalized 

amplitudes and phase variables of modes. Two cases for Equation (4.39) can be 

recognized as follow. The first case is 

a1=0,  a2=-
p0tSi(2(Ltf+wb-4g)+h)VdcVAC

M1ω2Le(gΩ)2√4σ1
2+μ1

2

β1=cos
-1

(

 
(σ1+σ2)M1ω2Le(gΩ)

2√4σ1
2+μ1

2

p0tSi(2(Ltf+wb-4g)+h)VdcVACm1(ω1-ω2)

)

 

β2= tan
-1

(

 
μ1

√4σ1
2+μ1

2

,-
2σ1

√4σ1
2+μ1

2
)

 

 

}
 
 
 
 
 

 
 
 
 
 

 

 

 

(4.40) 

The first case implies the solutions to that of the linear systems, as follows 

ψ1= O(ε)

ρ1=-
p0tSi(2(Ltf+wb-4g)+h)VdcVAC

M1ω2Le(gΩ)2√4σ1
2+μ1

2

cos(Ω1τ-β2)+O(ε)

}
 

 

 

(4.41) 

The second case is 

a1=-
1

ω1gΩ
[
2(Γ1±√(Γ2+Γ3)(Γ2-Γ3))

M1m1Le(ω1-ω2)
]

1
2

a2=-
√(μt1)2+(σ1+σ2)2

m1(ω2-ω1)

β1=tan
-1 (

μt1

√(μt1)2+(σ1+σ2)2
,-

σ1+σ2

√(μt1)2+(σ1+σ2)2
)

β2=-tan
-1 (

(σ1+σ2)Γ3-μt1√(Γ2+Γ3)(Γ2-Γ3)

μt1Γ3+(σ1+σ2)√(Γ2+Γ3)(Γ2-Γ3)
)

}
 
 
 
 
 

 
 
 
 
 

 

 

 

(4.42) 

where 
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Γ1=M1ω2Le(gΩ)
2(μ1μt1-2σ1(σ1+σ2)) 

Γ2=p0tSiVdcVAC(ω1-ω2)m1(2(Ltf+wb-4g)+h) 

Γ3=M1ω2Le(gΩ)
2((μ1+2μt1)σ1+μ1σ2) 

(4.43) 

Hence, the steady-state response for this case is 

ψ1=-
1

ω1gΩ
[
2(Γ1±√(Γ2+Γ3)(Γ2-Γ3))

M1m1Le(ω1-ω2)
]

1
2

cos(
1

2
(Ω1τ-β1-β2))+ O(ε)

ρ1=-
√(μt1)2+(σ1+σ2)2

m1(ω2-ω1)
cos(Ω1τ-β2)+O(ε) }

 
 

 
 

 

 

(4.44) 

By comparing the two feasible solutions, Equations (4.41) and (4.44), we can 

understand that ψ
1
 responds at half of the excitation frequency due to the existence of the 

intended phenomena. Moreover, the phase of motion will be varying by (β1
+β

2). The other 

observation from Equation (4.41) is that the amplitude of ρ
1
 is the independent of the 

electrostatic actuation (VdcVAC) due to saturation phenomenon. Moreover, ρ
1
 responds at 

the excitation frequency Ω1. The system parameters utilized for simulations, which will be 

presented in this chapter, can be found in Table 4.1. It is noteworthy that the system 

parameters are estimated to agree with the experimental measurements. 

Table 4.1. System parameter values for the frame-shaped microresonator. 

Symbol  Value Symbol Value 

ω1 1 M1 4.06×10
-10

 Kg 

ω2 1.9932 C1 6.17×10
-7

 N/m.sec 

Ω ωn1
 Ct1 5.97×10

-15
 N.m/sec 

m1 0.9 K1 1.99×10
4
 N/m 

μ1 0.43 Kt1 7.54×10
-5

 N.m 

μt1 0.28 Mb 4.92×10
-11

 Kg 

ε 0.001 Le 116 m 

σ2 -6.8 g 2.25 m 

4.2. Experimental setup and resonance characterization 

Two experimental test-beds are employed to explore the nonlinear mode coupling 

arising from the 2:1 internal resonance. The natural frequencies and the quality factors of 

the structure are estimated using the setup shown in Figure 4.2. 
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Figure 4.2. The experimental configuration to achieve the natural frequencies 
and the quality factors of the frame-shaped microresonator. 

The setup includes (1) a vacuum encapsulated microresonator; (2) a DC power 

source (Keysight, Model: B2901A) with the output DC voltage of VDC; (3) a vector network 

analyzer (Rohde & Schwarz, Model: ZVB 4); (4) a signal splitter (Mini-Circuits SPLITTER, 

Model: ZFSCJ-2-2-S) and (5) a lock-in amplifier (LIA) (Zurich Instruments, Model: HF2LI) 

with a pre-amp gain of Gamp. In the figure, P is the power of the output signal which has 

to be specified in the vector network analyzer in dBm, and Y1 and Y2 are the capacitance 

change captured via SE 2 and 4, respectively. The required setting to determine the 

natural frequencies is: VDC=80 V, P =10 dBm and Gamp=10 kΩ. Figure 4.3 demonstrates 

two resonant modes of the device and the mode shapes simulated via CoventorWare© 

FEM analysis. The microresonator has its first desired natural frequency at f1 =558.4 kHz 

(pendulum mode), and the corresponding quality factor is Q1=3.6k. The second desired 

resonance frequency is at f2=1.113 MHz (spring mode) with the quality factor of Q2=4.6k. 

The frequency ratio is f2 f1⁄ =1.9932≈2.  

As it can be inferred from the figure, the state of 2:1 internal resonance is 

established between the anti-phase movements along the X-axis and the in-phase 

motions along the Y-axis. The observation is astonishing because the intended pendulum-

mode shape in the design process was tailored to be the anti-phase movements of the 

masses along the Y-axis. The in-phase and out-of-phase modal displacement along the 

Y-axis were both detected using the network analyzer. However, the frequency ratio 
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between the resonant modes shown in Figure 4.3 was closer to 2:1. Therefore, the 

nonlinear mode coupling occurred between these two modes instead. 

(a)  

(b)  

Figure 4.3. The experimentally measured frequency spectrum for the frame-
shaped microresonator. The natural frequency and the quality factor 
of (a) the pendulum mode and (b) the spring mode. 

The nonlinear mode interaction is evaluated through the saturation figure and the 

nonlinear frequency transmission plots. To achieve the plots, a series of experiments have 

to be accomplished through the experimental configuration demonstrated in Figure 4.4. 

The setup involves (1) a vacuum encapsulated microresonator; (2) a DC power source 

(Keysight, Model: B2901A) to bias the microresonator with the voltage VDC; (3) a pulse 

function arbitrary generator (Agilent Technologies, Model: 81150A) to provide the 
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harmonic and sweep AC signals, i.e., Vac cos(Ωrt), through the drive electrodes DE 1 and 

DE 2; (4) a signal splitter (Mini-Circuits SPLITTER, Model: ZFSCJ-2-2-S) to measure the 

output signals differentially and to remove interferences (improving the signal processing); 

(5) a lock-in amplifier of pre-amp gain Gamp (Zurich Instruments, Model: HF2LI) to boost 

the output current captured by the sense electrodes SE 2 and SE 4; (6) a signal analyzer 

(Agilent Technologies, Model: N9000A) to monitor the sensed signals in the frequency 

domain. The output signals Y1 and Y2 are proportional to the capacitance changes 

captured via SE 2 and SE 4, respectively. 

 

Figure 4.4. Experimental setup to obtain saturation figure and perform frequency 
sweeps for the frame-shaped microresonator. 

4.3. Results and discussion 

This section presents the simulation and experimental findings. When the system 

incorporating the 2:1 internal resonance is excited at a frequency near the higher natural 

frequency, the structure responds at the frequency of excitation, and the amplitude of the 

response increases linearly with the amplitude of excitation. However, when the amplitude 

of the mode with higher resonant frequency reaches a critical value, the response 

saturates and the additional energy spills over to the lower natural frequency mode. This 

phenomenon is known as saturation due to 2:1 internal resonance. The following loading 

setting is required to investigate saturation phenomenon: VDC = 80 V, Vac = 08.5, and 

Gamp=10 kΩ. Figure 4.5 shows the experimental observations confirming the saturation. 
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(a)  

(b)  

(c)  

Figure 4.5. (a) The measured response of the pendulum mode versus the voltage 
Vac in the frame-shaped microresonator. Frequency spectrum on the 
signal analyzer when Vac=7 V and the excitation frequency is set at (b) 
2f1 and (c) f2. 



67 

Figure 4.5(a) illustrates the experimentally measured oscillation amplitude of the 

microresonator at the frequencies f1 and f2/2 while the drive amplitude Vac is changed and 

the excitation frequency Ωr is fixed at the frequencies 2f1 and f2. We observe the 

signatures of nonlinear mode coupling at frequencies f1 and f2/2 for the AC drive voltages 

Vac≥ 5.6 V and Vac≥ 4.2 V, respectively. Beyond these thresholds, the microresonator 

starts to experience the internal resonance, and the jump occurs. This effect leads to the 

energy spillover from the saturated mode with a natural frequency f2 to the mode of natural 

frequency f1. To better understand this effect, Figure 4.5(b) and Figure 4.5(c) present the 

signals saved via the signal analyzer when Vac=7 V and Ωr is set at 2f1 and f2. As it can 

be seen in both figures, there are two spikes. The one at the lower frequency belongs to 

the pendulum mode, and the other one is associated with the spring mode and electrical 

interferences. This observation also confirms the transfer of energy from the mode with 

the higher resonant frequency to lower-natural-frequency mode. 

The perturbation solutions in Equation (4.42) are simulated, shown in Figure 4.6. 

The loading setting same as the experiments stated above is chosen. Hence, the 

nondimensionalized excitation frequency is fixed at Ω1=ω2 (σ1=0) and Ω1=2ω1 (σ1=-σ2) 

and the nondimensionalized AC load VAC is swept from 0 to VAC = Vac ε⁄ . Upon using the 

real values for the system parameters, obtained from the experimental measurements, we 

will observe a jump phenomenon when σ1=0 for Vaccritical
=εVACcritical

>3.8 V and σ1+σ2=0, 

for Vaccritical
=εVACcritical

>4.7 V. We also numerically integrate Equation (4.39) for ai and β
i
 

(i=1 and 2), and compare the results with the solution of Equations (4.40) and (4.42) which 

are the steady-state behavior of the response amplitudes. Figure 4.7 illustrates the 

response amplitudes a1 (pendulum mode) and a2 (spring mode) as functions of 

nondimensionalized forcing voltage VAC for two different cases when Ω1= ω2 (σ1=0) and 

Ω1= 2ω1 (σ1=-σ2), respectively. In both figures, for specific values below an AC voltage 

threshold, while the amplitude of a2 of the directly excited mode (spring mode) is 

proportional to VAC, the amplitude a1 of the pendulum mode is zero. It implies that the 

internal resonance is not activated and the nonlinear mode coupling is not triggered. For 

the excitation voltages higher than the threshold, the amplitude a2 of the resonantly 

excited mode is independent of VAC, while the amplitude a1 of the pendulum mode, which 

is not directly resonated, depends on VAC. The result confirms the saturation phenomenon 

in the nonlinear systems incorporating quadratic nonlinearities. These plots show that the 
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results of numerical integration match accurately with the perturbation solutions, 

confirming the validity of perturbation analysis. 

 

Figure 4.6. The simulation of the amplitudes of response a1 in the frame-shaped 
microresonator versus the forcing voltage VAC showing perturbation 
solutions when σ1=0 or Ω1=ω2 and σ1=-σ2 or Ω1=2ω1. 

The experimental and simulated nonlinear frequency response curves are 

illustrated in Figure 4.8. We sweep the frequency of the AC driving voltage Vac forward 

and backward around the resonance frequency of the second mode natural frequency f2 

when VDC=80 V, Vac=7.5, 8 and 8.5, and Gamp=10 kΩ. We actuate the second mode of 

vibration at a constant drive voltage Vac. The drive frequency is then varied forward and 

backward around the frequency f2 while monitoring and capturing the half subharmonic 

response of the device in the vicinity of the frequency f1. It should be mentioned that max-

hold function on the signal analyzer was activated to achieve the nonlinear frequency 

response plots in Figure 4.8(a). The sweep frequency range was set between the 

frequencies 1.1 MHz-1.13 MHz. 

This nonlinear mode coupling corresponds to the characteristics of the systems 

with 2:1 internal resonance. The behavior is predicted to occur in the presence of quadratic 

nonlinearities and with the structural modes such that one mode has a natural frequency 

which is twice the natural frequency of the other mode, i.e., f2≈2f1. Therefore, the first 

mode goes into internal resonance. When the frequency ratio is perfectly achieved as 

exact 2:1, the frequency response curves for a specific range of driving voltages form flat-

top curves. However, due to the presence of fabrication nonidealities, it is predictable to 
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come up with the case where the frequency ratio has some difference, though limited, 

from 2:1. In this case, nonlinear vibrations can separately occur in two intervals of the 

excitation frequencies. Splitting the curve is the representation of this non-ideal case 

where there is detuning between f2 and 2f1 and the frequency ratio is not exactly 2:1. As 

a result, the nonlinearly coupled vibrations occur in two intervals of the excitation 

frequency due to small detuning between f2 and 2f1. As it can be seen increasing the AC 

driving voltages leads to more separation between the resonant peaks. Moreover, the 

signal goes through half-order subharmonic resonance, and the subharmonic frequency 

locks to approximately one-half of the forcing frequency. 

(a)  

(b)  

Figure 4.7. The simulation of the modal amplitudes a1 and a2 in the frame-shaped 
microresonator versus the voltage VAC when (a) σ1=0 or Ω1=ω2. (b) 
σ1=-σ2 or Ω1=2ω1. The plots are a typical representation of saturation 
phenomenon due to 2:1 internal resonance. 
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It is worth mentioning here that the strong signal that is observed is mainly due to 

the long capacitive electrodes, the high vacuum within the device package, and the 

relatively small gap between the device and electrodes. The simulated frequency 

response curves are demonstrated in Figure 4.8(b). The figure shows the amplitude a1 

versus the detuning forcing parameter σ1 for the different AC drive levels. The 

nondimensionalized electrostatic voltages are Vdc=80000 and VAC=7500, 8000, and 8500. 

The values of parameters are chosen to agree with the experiments. The simulation 

results confirm the existence of the gap between the resonant curves at f1 and f2/2 in 

agreement with experimental results, which is because σ2≠0. 

(a)  

(b)  

Figure 4.8. The measured nonlinear frequency transmission responses for the 
frame-shaped microresonator. (a) Experiment. Due to the frequency 
ratio of 1.9932, the vibrational amplitudes split. (b) Simulation of the 
amplitude a1 versus the detuning forcing parameter σ1. The 
separation in the nonlinear modal couplings is due to σ2 ≠0. 
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4.4. Summary 

This chapter reported on the analytical, numerical and experimental investigation 

on nonlinear mode coupling due to 2:1 internal resonance in a decoupled frame-shaped 

tuning fork microresonator. We developed a simple 2-DOF dynamical model for each side 

of the microresonator, by which we can reproduce the nonlinear behavior of our 

microresonator at resonance by simulation. We studied the possible forced and 2:1 

internal resonances to the first order of approximation, that is Ω1≈ω2 and ω2≈2ω1, by the 

method of two-variable expansion perturbation. By this model, we showed that saturation 

and nonlinear mode coupling of the modes exist in qualitative agreement with the 

experimental findings. Due to the approximate 2:1 resonance condition, the nonlinear 

mode coupling occurs in two intervals of the excitation frequency. Finally, the comparison 

of the perturbation and the numerical solutions with the experimental results confirms that 

the derived mathematical model qualitatively predicts the dynamical behavior of the 

microresonator exhibiting 2:1 internal resonance. 
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Chapter 5.  
 
Dynamics of an H-shaped tuning fork microresonator 
with nonlinear mode coupling: modeling, simulations, 
and experiments 

In this chapter, the nonlinear dynamics and mode coupling in an H-shaped tuning 

fork microresonator with internal resonance are examined numerically and experimentally. 

The device is studied through the lumped mass-spring-damper modeling of two spring-

pendulum systems. The equations of motion are derived using Lagrange’s energy method. 

By the method of two-variable expansion perturbation technique, the original 4-DOF 

system is reduced to an approximate system of amplitude and phase variables. Splitting 

of the resonance peaks was noticed in the simulated and experimentally obtained 

nonlinear frequency responses for the sufficiently large drive voltages. The results 

demonstrated that the perturbation closed-form solutions could qualitatively agree with the 

experimental findings, confirming the validity of perturbation approach. 

5.1. Theory 

5.1.1. Governing equations 

The schematic drawing of the microresonator was shown in Figure 3.16. The 

lumped modeling of the device dynamics in nonlinear regime involves some assumptions;  

1) According to the FEM modal analysis in CoventorWare©, rotation with 
respect to the anchor is allowed at either of the tuning fork beams ends. 
Thus, it makes sense to consider the tuning fork beams on each side 
of the device as a simply supported beam with an attached H-shaped 
proof mass in the middle.  

2) Each anchor beam can be considered as a cantilever beam.  

3) The left and right resonators are assumed to be decoupled.  

4) The resonators can rotate with respect to the anchor, caused by large 
deformation of the suspension beams.  

5) The tuning fork beams displace translationally with respect to the 
anchor beams attached to them.  
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6) The anchor beams are pinned to the fixed support to allow the rotation 
at the junction point.  

7) The silicon anchors are assumed to be fixed and rigid during entire 
nonlinear operation of the microresonator. Accordingly, the planar 
motion of the microdevice can be modeled as a 4-DOF mechanism (see 
Figure 5.1).  

It is perceptible from the schematic that the motion of the microdevice with the 

masses M1 and M2 can be described by using four generalized coordinates q
1
=θ1, q

2
=r1, 

q
3
=θ2 and q

4
=r2. The variables r1 and r2 describe the extensional motions of the masses 

M1 and M2, respectively. The generalized coordinates θ1 and θ2 represent the angular 

motions of masses M1 and M2 along with Mb, respectively. The (X, Y, Z) reference frame 

is stationary and centered at the point O. The mass Mi represents the mass of the beam 

of length Ltf with the central H-like proof mass. The mass Mb represents the effective mass 

of two cantilever beams of length Le where Le=La-0.5wtf. The linear and rotational springs 

and dampers are considered to be present in both spring and pendulum motions. The 

electrostatic forces F1 and F3 are applied to the masses M1 and M2, respectively. The 

capacitive forces F2 and F4 stand for the difference between the electrostatic forces 

imposed on the device by the sense electrodes SE 1 and SE 3, and SE 2 and SE 4, 

respectively. The constant input angular rate is indicated by ΩZ. 

 

Figure 5.1. Lumped parameter model for the H-shaped tuning fork dynamics. 
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The positions of the masses M1, Mb on the left side, M2, and Mb on the right side, 

respectively, can be expressed as 

rM1= (-(La+
Lc
2
)+(Le+r1(t)) cos(θ1(t))) î+ ((Le+r1(t)) sin(θ1(t))) ĵ 

(5.1) 

r(Mb)L= (-(La+
Lc
2
)+Le cos(θ1(t))) î+(Le sin(θ1(t)))ĵ 

(5.2) 

rM2= ((La+
Lc
2
)-(Le+r2(t)) cos(θ2(t))) î- ((Le+r2(t)) sin(θ2(t))) ĵ 

(5.3) 

r(Mb)R= ((La+
Lc
2
)-Le cos(θ2(t))) î-(Le sin(θ2(t)))ĵ 

(5.4) 

where î and ĵ are the unit vectors of the (X, Y, Z)-coordinate reference frame. The velocity 

vectors can be sorted as  

ṙM1= (r1̇(t) cos(θ1(t)) -(Le+r1(t))(θ1̇(t)+ΩZ) sin(θ1(t)))î 

 + (r1̇(t) sin(θ1(t))+(Le+r1(t))(θ1̇(t)+ΩZ) cos(θ1(t)) − (La+
Lc
2
)ΩZ) ĵ 

(5.5) 

 ṙ(Mb)L= (-Le(θ1̇(t)+ΩZ) sin(θ1(t)))î 

+(Leθ1̇(t) cos(θ1(t))+ΩZ (Le cos(θ1(t)) - (La+
Lc
2
))) ĵ 

(5.6) 

ṙM2= ((Le+r2(t))(θ2̇(t)+ΩZ) sin(θ2(t)) -r2̇(t) cos(θ2(t))) î 

- ((Le+r2(t))(θ2̇(t)+ΩZ) cos(θ2(t))+r2̇(t) sin(θ2(t)) -(La+
Lc
2
)ΩZ) ĵ 

(5.7) 

 ṙ(Mb)R= (Le(θ2̇(t)+ΩZ) sin(θ2(t)))î 

+(-Leθ2̇(t) cos(θ2(t))+ΩZ (-Le cos(θ1(t))+ (La+
Lc
2
))) ĵ 

(5.8) 
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The dot represents differentiation with respect to the time t. The kinetic and 

potential energy of the system (KE) and (PE), respectively, are 

KE = 
1

2
M1ṙM1 .ṙM1+

1

2
Mb ṙ(Mb)L .ṙ(Mb)L+

1

2
M2ṙM2 .ṙM2+

1

2
Mb ṙ(Mb)R .ṙ(Mb)R 

(5.9) 

PE = 
1

2
(
K1(r1(t))

2
+Kt1(θ1(t))

2
+K2(r2(t))

2
+Kt2(θ2(t))

2

+KcLe
2 ((tan(θ1(t)))

2
+(tan(θ2(t)))

2
)

) 

(5.10) 

Rayleigh’s dissipation force (Fd) can also be defined as 

Fd = 
1

2
(

C1(ṙ1(t))
2
+Ct1 (θ̇1(t))

2
+C2(ṙ2(t))

2
+Ct2 (θ̇2(t))

2
+

CcLe
2 ((θ̇1(t)(1+ tan

2(θ1(t))))
2
+(θ̇2(t)(1+ tan

2(θ2(t))))
2
)
) 

(5.11) 

The above expressions for the kinetic, potential energy and dissipation forces can 

be then substituted into Lagrange equations: 

(
∂L

∂q̇i
) -
∂L

∂qi
+
∂Fd
∂q̇i

=Gi, i=1-4 (5.12) 

where L is the Lagrangian defined through 

L = KE-PE 
(5.13) 

and the Gi are the generalized nonconservative forces or moments. Therefore, we get the 

equations of motion as 

Le
2(Mb+M1)θ̈1(t)+Ct1θ̇1(t)+Kt1θ1(t)=

F2

cos(θ1(t))
(Le+r1(t)) 

-M1 ((r1
2(t)+2Ler1(t)) θ̈1(t)+2(Le+r1(t))ṙ1(t)θ̇1(t)) 

-Le
2 (Kc

sin(θ1(t))

cos3(θ1(t))
+Cc

θ̇1(t)

cos4(θ1(t))
) - (2M1ṙ1(t)(Le+r1(t)))ΩZ 

+((La+
Lc
2
) sin(θ1(t)) (M1(Le+r1(t))+MbLe))ΩZ

2 

- (M1(Le+r1(t))
2
+MbLe

2- (M1(Le+r1(t))+MbLe)cos(θ1(t)) (La+
Lc
2
)) Ω̇Z 

 

(5.14) 
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M1r̈1(t)+C1ṙ1(t)+K1r1(t)=M1(Le+r1(t))θ̇1
2(t)+

F1

cos(θ1(t))
 

+2M1(Le+r1(t))θ̇1(t)ΩZ 

+(M1 (La+
Lc
2
) sin(θ1(t))) Ω̇Z+M1 (Le+r1(t)- cos(θ1(t)) (La+

Lc
2
))ΩZ

2 

(5.15) 

Le
2(Mb+M2)θ̈2(t)+Ct2θ̇2(t)+Kt2θ2(t)=

F4

cos(θ2(t))
(Le+r2(t)) 

-M2 ((r2
2(t)+2Ler2(t)) θ̈2(t)+2(Le+r2(t))ṙ2(t)θ̇2(t)) 

-Le
2 (Kc

sin(θ2(t))

cos3(θ2(t))
+Cc

θ̇2(t)

cos4(θ2(t))
) - (2M2ṙ2(t)(Le+r2(t)))ΩZ 

+((La+
Lc
2
) sin(θ2(t)) (M2(Le+r2(t))+MbLe))ΩZ

2 

- (M2(Le+r2(t))
2
+MbLe

2- (M2(Le+r2(t))+MbLe)cos(θ2(t)) (La+
Lc
2
)) Ω̇Z 

 

(5.16) 

M2r̈2(t)+C2ṙ2(t)+K2r2(t)=M2(Le+r2(t))θ̇2
2(t)-

F3

cos(θ2(t))
 

+2M2(Le+r2(t))θ̇2(t)ΩZ 

+ (M2 (La+
Lc
2
) sin(θ2(t))) Ω̇Z+M2 (Le+r2(t)- cos(θ2(t)) (La+

Lc
2
))ΩZ

2 

(5.17) 

Where 

F1=
1

2
(VDC+Vac cos(Ωrt))

2l1
p0tSi

(g-r1(t))
2 , F3=

1

2
(VDC+Vac cos(Ωrt))

2l1
p0tSi

(g-r2(t))
2 

 

F2=
1

2
VDC
2 p0tSiLel2 (1+(tan(θ1(t)))

2
)  (

1

(g-Le tan(θ1(t)))
2+

1

(g+Le tan(θ1(t)))
2) 

F4=
1

2
VDC
2 p0tSiLel2 (1+(tan(θ2(t)))

2
)  (

1

(g-Le tan(θ2(t)))
2+

1

(g+Le tan(θ2(t)))
2) 

 
M1= M2= MProof mass+Mtf beam=tSiρSi(2h2w2+h1w1+Ltfwtf), Mb=0.4714tSiρSiLewa 

 

ωn1=2π((Kt1+KcLe
2) Le

2(M1+Mb)⁄ )
1 2⁄
=(Kt1eff Le

2(M1+Mb)⁄ )
1 2⁄
,  ωn2=2π(K1 M1⁄ )1 2⁄  

 

 ωn3=2π((Kt2+KcLe
2) Le

2(M2+Mb)⁄ )
1 2⁄
=(Kt2eff Le

2(M2+Mb)⁄ )
1 2⁄
, ωn4=2π(K2 M2⁄ )1 2⁄  

 

c1=ωn1ωn2

(
ωn2
Q1
) - (

ωn1
Q2
)

(𝜔𝑛2)
2
-(𝜔𝑛1)

2 , d1=
(
ωn2
Q2
) - (

ωn1
Q1
)

(𝜔𝑛2)
2
-(𝜔𝑛1)

2 

c2=ωn3ωn4

(
ωn4
Q3
) - (

ωn3
Q4
)

(𝜔𝑛4)
2
-(𝜔𝑛3)

2 ,  d2=
(
ωn4
Q4
) - (

ωn3
Q3
)

(𝜔𝑛4)
2
-(𝜔𝑛3)

2    
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[
Cj
Ctj
]=cj [

Mj 0

0 (Mj+Mb)Le
2]+dj [

Kj 0

0 Ktj+KcLe
2], j=1 and 2 

 

where p
0
 is the permittivity of the space (8.85×10

-12
 (F/m)); tSi is the thickness of silicon 

device layer; ρ
Si

 is the mass density of silicon layer (2330 Kg/m3); VDC is the DC bias 

voltage applied to the sense and drive electrodes; Vac is the amplitude of the AC driving 

voltage applied to the drive electrodes, and Ωr is the frequency of the AC voltage signal. 

The Qi stands for the quality factor corresponding to the ith-mode, i=1-4. The translational 

(C1 and C2) and rotational (Ct1 and Ct2) damping coefficients are estimated using 

Rayleigh’s damping equation, stated above. The linearized natural frequencies of 

pendulum-mode are specified as ωn1
, and ωn3

 and the corresponding spring-mode 

resonant frequencies of the system are defined by ωn2
 and ωn4

, respectively. The device 

design parameters, e.g., w1 and h1, were described in Table 3.4. Based on the symmetry 

and the assumed uncoupled nature of the microresonator, the perturbation closed-form 

solutions are extracted for the left resonator. 

5.1.2. The two-variable expansion perturbation analysis 

The following equations represent the scaled and nondimensionalized equations 

of motion 

ψ̈1+ω1
2ψ1+ε(

2m1ρ̇1ψ̇1+2m1ρ1ψ̈1+μt1ψ̇1

+2φ̈m1ρ1-φ̈m1ρ1
(La+

Lc
2 )

Le
+2m1ρ̇1φ̇

)

+(1-
(La+

Lc
2 )

Le
) φ̈+ε2m1(

ρ1
2φ̈+ρ1(ρ1ψ̈1+2ρ̇1ψ̇1)

+2ρ̇1ρ1φ̇-
(La+

Lc
2 )

Le
ψ1φ̇

2
)

=p0tSi
l2

(M1+Mb)Ω2g2
Vdc
2 (ρ1ε

2+ε)

ρ̈1+ω2
2ρ1+ε(μ1ρ̇1-ψ̇1

2-
(La+

Lc
2 )

Le
ψ1φ̈+(

(La+
Lc
2 )

Le
-1) φ̇2-2ψ̇1φ̇)

-ε2 (2ρ1φψ̇1
̇ +ρ1ψ̇1

2+ρ1φ̇
2)

=p0tSil1(Vdc+VACcos(Ω1τ))
2
(
ε2ρ1

M1g3Ω2
+

ε

2M1Leg2Ω2
)

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

(5.18) 

where 
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r1(t)=Ρ1(τ)Le, θ1(t)=Θ1(τ) 

t =
τ

Ω
, 
d

dt
=Ω

d

dτ
, 
d2

dt2
=Ω2

d2

dτ2
 

Θ1(τ)=εψ1(τ), Ρ1(τ)=ερ1(τ), ΩZ=εφ̇(τ), Vac=εVAC, VDC=εVdc, γt1= εμt1, γ1= εμ1 

ω1=

√
Kt1+KcLe2

(M1+Mb)Le2

Ω
, ω2=

√
K1
M1

Ω
, m1=

M1

M1+Mb
, Ω1=

Ωr
Ω

 

  

γt1=
Ct1+CcLe

2

(M1+Mb)Le2Ω
=

Ct1eff
(M1+Mb)Le2Ω

,γ1=
C1
M1Ω

 

In the above equation, Ω is the nondimensionalizing frequency, and ε is a small 

dimensionless parameter, 0< ε≪1, expressing the order of nonlinearity and coupling. The 

method of two-variable expansion is used to obtain an approximate solution for Equations 

(5.18)1,2 in case of the external resonance (Ω1≈ω2) and the 2:1 internal resonance 

(ω2≈2ω1). To describe how close the frequencies are to the resonance conditions we 

introduce detuning parameters σ1 and σ2: 

Ω1= ω2+εσ1,  ω2=2ω1+εσ2 (5.19) 

where σ1 is called the external detuning parameter; σ2 denotes the internal detuning 

parameter. In the two-variable expansion perturbation method, the independent variable τ 

is replaced by two new variables ξ, and η, such that 

ξ = τ, η = ετ 
(5.20) 

where ξ is a stretched time variable τ, and η is a slow time variable. The fast scale ξ is 

associated with the relatively rapid changes in response, and the slow scale η corresponds 

to the relatively low changes in amplitudes and phases. We seek a set of solutions for 

Equation (5.18) for small but finite ψ
1
 and ρ

1
 in the form of 

ψ1 = ψ10+εψ11+O(ε
2),  ρ1 = ρ10+ερ11+O(ε

2) (5.21) 

Derivatives with respect to τ are then transformed into 
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d

dτ
=
∂

∂ξ
+ε

∂

∂η
+O(ε2), 

d2

dτ2
=
∂2

∂ξ2
+2ε

∂2

∂ξ∂η
+O(ε2) (5.22) 

where O(ε2) represents the higher order of ε terms. Substituting these expressions 

into Equation (5.18) and equating coefficients of equal powers of ε lead to 

For order ε0 

ψ10ξξ+ω1
2ψ10= 

(1- (La+
Lc
2 ))

Le
φζζ= 0,  ρ10ξξ+ω2

2ρ10= 0 

(5.23) 

For order ε 

ψ11ξξ+ω1
2ψ11=-2ψ10ξη -μt1ψ10ξ-2m1 (ρ10ψ10ξξ+ρ10ξψ10ξ)

p0tSil2
(M1+Mb)Ω2g2

Vdc
2 -2m1(ρ10ξ φζ+(

La+
Lc
2

Le
)  ρ10φζζ)

ρ11ξξ+ω2
2ρ11=(ψ10ξ)

2
-μ1ρ10ξ-2ρ10ξη+(1-(

La+
Lc
2

Le
)  ) ( φζ)

2

+2 φζψ10ξ

+(
La+

Lc
2

Le
)ψ10φζζ+

p0tSil1
2M1Le(gΩ)2

(
2VdcVAC cos(Ω1τ)+

Vdc
2 +VAC

2 (cos(Ω1τ))
2)

}
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

(5.24) 

where the sub-subscripts represent partial derivatives. The solutions of Equations (5.23)1,2 

can be written in the form: 

ψ10=k1(η) sin(ω1ξ)+k2(η) cos(ω1ξ)

ρ10=k3(η) sin(ω2ξ)+k4(η) cos(ω2ξ)
} (5.25) 

where 

k1(η)=a1(η) sin(α1(η)) ,  k2(η)=a1(η)cos(α1(η))

k3(η)=a2(η) sin(α2(η)) ,  k4(η)=a2(η)cos(α2(η))
} (5.26) 

In these equations an and αn are real functions of η. This transformation makes it 

possible to achieve the secular-term equations more conveniently. Equation (5.25) can be 

then rewritten as: 

ψ10=a1(η) cos(ω1ξ-α1(η))

ρ10=a2(η) cos(ω2ξ-α2(η))
} (5.27) 
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We now substitute Equations (5.27)1,2 into Equations (5.24)1,2, suppressing the 

secular terms sin(ωiξ) and cos(ωiξ) in Equations (5.24)1,2, where i=1 and 2. Note that we 

need to write 

cos(Ω1ξ)= cos(ω2ξ + σ1η)= cos(ω2ξ) cos(σ1η) - sin(ω2ξ) sin(σ1η)
cos(ω2ξ)= cos(2ω1ξ + σ2η)= cos(2ω1ξ) cos(σ2η) - sin(2ω1ξ) sin(σ2η)

} (5.28) 

The functions an and αn are to be determined by satisfying the solvability 

conditions. The form of solvability conditions depends on the resonance conditions, i.e., 

an internal resonance if ω2≈ 2ω1 and an external resonance if Ω1≈ω2. The solvability 

conditions (the conditions for the elimination of secular terms) can be written as 

α1η=
1

2
m1a2(ω1-ω2) cos(β1)

a1η=-
μt1
2
a1+

1

2
m1(ω1-ω2)a1a2 sin(β1)

α2η=-
ω1
2

4a2ω2
a1
2 cos(β1)+

p0tSil1
2M1Le(gΩ)2ω2a2

VdcVAC cos(β2)

a2η=-
μ1
2
a2+

ω1
2

4ω2
a1
2sin(β1)+

p0tSil1
2M1Le(gΩ)2ω2

VdcVAC sin(β2)}
 
 
 
 

 
 
 
 

 

 

(5.29) 

where 

β1=2α1-α2+σ2η, β2= α2+σ1η 
(5.30) 

Differentiating Equation (5.30) with respect to η, and substituting Equation (5.29) 

and Equation (41) into Equation (5.30), we have a system of ordinary differential equations 

of amplitude an and phase β
n
 for n= 1 and 2. 

β1η=m1a2(ω1-ω2) cos(β1)+
ω1
2

4a2ω2
a1
2 cos(β1) -

p0tSil1
2M1Le(gΩ)2ω2a2

VdcVAC cos(β2)+σ2

a1η=-
μt1
2
a1+

1

2
m1(ω1-ω2)a1a2 sin(β1)

β2η=-
ω1
2

4a2ω2
a1
2 cos(β1)+

p0tSil1
2M1Le(gΩ)2ω2a2

VdcVAC cos(β2)+σ1

a2η=-
μ1
2
a2+

ω1
2

4ω2
a1
2sin(β1)+

p0tSil1
2M1Le(gΩ)2ω2

VdcVAC sin(β2) }
 
 
 

 
 
 

  

 

(5.31) 

To obtain the steady-state solutions, solving a1η=a2η=β
1η

=β
2η

=0, we have two 

possible cases. The first case is 
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𝑎1 = 0, 𝑎2 =
𝑝0𝑡𝑆𝑖𝑙1𝑉𝑑𝑐𝑉𝐴𝐶

𝑀1𝜔2𝐿𝑒(𝑔𝛺)
2√4𝜎1

2 + 𝜇1
2

𝛽1 = 𝜋 − 𝑐𝑜𝑠
−1 (

(𝜎1 + 𝜎2)𝑀1𝜔2𝐿𝑒(𝑔𝛺)
2√4𝜎1

2 + 𝜇1
2

𝑝0𝑡𝑆𝑖𝑙1𝑉𝑑𝑐𝑉𝐴𝐶𝑚1(𝜔1 −𝜔2)
)

𝛽2 = 𝑡𝑎𝑛
−1 (

𝜇1

√4𝜎1
2 + 𝜇1

2
, −

2𝜎1

√4𝜎1
2 + 𝜇1

2
)

 

}
 
 
 

 
 
 

 

 

(5.32) 

The first case implies the solutions to that of the linear systems, as follows 

ψ1= O(ε)

ρ1=
p0tSil1VdcVAC

M1ω2Le(gΩ)2√4σ1
2+μ1

2

cos(Ω1τ-β2)+O(ε)

}
 

 

 

 

(5.33) 

The second case is 

a1=-
1

ω1gΩ
[
2(Γ1±√(Γ2+Γ3)(Γ2-Γ3))

M1m1Le(ω1-ω2)
]

1
2

a2=
√(μt1)2+(σ1+σ2)2

m1(ω2-ω1)

β1= tan
-1 (-

μt1

√(μt1)2+(σ1+σ2)2
,

σ1+σ2

√(μt1)2+(σ1+σ2)2
)

β2=-tan
-1 (

(σ1+σ2)Γ3-μt1√(Γ2+Γ3)(Γ2-Γ3)

μt1Γ3+(σ1+σ2)√(Γ2+Γ3)(Γ2-Γ3)
)

}
 
 
 
 
 

 
 
 
 
 

 

 

 

(5.34) 

where 

Γ1=M1ω2Le(gΩ)
2(μ1μt1-2σ1(σ1+σ2)), Γ2=p0tSiVdcVAC(ω1-ω2)m1l1  

Γ3=M1ω2Le(gΩ)
2((μ1+2μt1)σ1+μ1σ2) 

(5.35) 

Hence, the steady-state responses for this case, with the use of Equations (5.34) 

and (5.35), are 

ψ1=-
1

ω1gΩ
[
2(Γ1±√(Γ2+Γ3)(Γ2-Γ3))

M1m1Le(ω1-ω2)
]

1
2

cos (
1

2
(Ω1τ-β1-β2))+ O(ε)

ρ1=
√(μt1)2+(σ1+σ2)2

m1(ω2-ω1)
cos(Ω1τ-β2)+O(ε) }

 
 

 
 

 

 

 (5.36) 

The solutions for the second case correspond to the nonlinear behavior of the 

system when the nonlinear internal resonance occurs. The system parameters utilized for 

simulations can be found in Table 5.1. It should be mentioned that these values are 

estimated according to the experimental measurements. 
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Table 5.1. System parameter values for the H-shaped microresonator. 

Symbol  Value Symbol Value 

ω1 1 M1 1.32×10
-9

 Kg 

ω2 2.001 C1 1.63×10
-6

 N/m.sec 

Ω ωn1
 Ct1eff 1.62×10

-14
 N.m/sec 

m1 0.97 K1 6.55×10
4
 N/m 

μ1 0.35 Kt1eff 3.93×10
-4

 N.m 

μt1 0.14 Mb 4.31×10
-11

 Kg 

ε 0.001 Le 152 m 

σ2 1 g 1.75 m 

5.2. Experimental setups and resonance characterization 

The natural frequencies of the microresonator (f1 and f2) and the quality factors 

(Q1 and Q2) for the pendulum- and spring modes are estimated using the test-bed shown 

in Figure 5.2. 

 

Figure 5.2. The experimental configuration to achieve the natural frequencies 
and the quality factors of the H-shaped microresonator. 

The setup comprises of (1) a vacuum encapsulated microresonator, (2) a DC 

power source (Keysight, Model: B2901A) with the output DC voltage of VDC, (3) a vector 

network analyzer (Rohde & Schwarz, Model: ZVB 4) with the output signal of power P in 

dBm, (4) a signal splitter (Mini-Circuits SPLITTER, Model: ZFSCJ-2-2-S) and (5) a lock-in 
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amplifier (Zurich Instruments, Model: HF2LI) with a preamp gain of Gamp. In this figure, 

the signals Y1 and Y2 are the capacitance change captured via SE 2 and SE 4, 

respectively. The required setting to determine the natural frequencies and the Q-factors 

is: VDC=100 V, P =5 dBm and Gamp=10 kΩ. Figure 5.3 shows the resonant modes of the 

device are located at f1= 560.28 kHz with Q1=6.9k (pendulum mode) and f2=1.12235 MHz 

with Q2=5.7k (spring mode). According to these frequencies, the frequency ratio between 

f2 and f1 can be calculated as f2 f1⁄ =2.003≈2. 

(a)  

(b)  

Figure 5.3. The experimentally measured frequency spectrum for the H-shaped 
microresonator. The natural frequency and the quality factor of (a) the 
pendulum mode and (b) the spring mode. 
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The nonlinear mode coupling caused by the 2:1 internal resonance is evaluated 

through the saturation figure and the nonlinear frequency response curves. A series of 

experiments have to be accomplished through the experimental configuration 

demonstrated in Figure 5.4. The setup consists of (1) a vacuum encapsulated 

microresonator; (2) a DC power source (Keysight, Model: B2901A) to bias the 

microresonator; (3) a pulse function arbitrary generator (Agilent Technologies, Model: 

81150A) to provide harmonic and sweep AC signals, i.e., Vac cos(Ωrt), through the drive 

electrodes DE 1 and DE 2; (4) a signal splitter (Mini-Circuits SPLITTER, Model: ZFSCJ-

2-2-S) to measure the output signal differentially and double the total capacitance change 

(improving the signal processing); (5) a lock-in amplifier (Zurich Instruments, Model: 

HF2LI) to boost the output current captured by the sense electrodes SE 2 and SE 4; (6) a 

signal analyzer (Agilent Technologies, Model: N9000A) to monitor the sensed signals in 

frequency domain. 

 

Figure 5.4. The experimental setup to obtain saturation figure and perform 
frequency sweeps for the H-shaped microresonator. 

5.3. Results and discussion 

Multiple experiments were performed to reveal the intended 2:1 internal resonance 

and nonlinear mode coupling in the microresonator. Figure 5.5 exhibits the experimental 

and simulated half-order subharmonic response of the pendulum mode of the device as 
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the drive voltage amplitude is increased and the frequency of excitation is fixed at f2 ≈ 2f1 

(experiment) or ω2 ≈ 2ω1 (simulation). For tests, we set VDC=100 V, Vac =0-4.5 V and 

Gamp=10 kΩ. Figure 5.5(a) shows the amplitude of the spike generated at half the 

excitation frequency (i.e., f2 2⁄ ≈f1) versus the AC forcing voltage. As it can be seen the 

device is quickly driven to the nonlinear regime where the 2:1 internal resonance is 

triggered by the amplitude of Vac ≥1 V and Ωr =1.120448 MHz≈2f1. Therefore, we spot 

signatures of nonlinear mode coupling due to the saturation phenomenon. This 

phenomenon leads to spill over of energy from the higher- frequency mode to the mode 

with the lower natural frequency. To obtain the numerical results, we have used the values 

of the system parameters in Table 5.1. The steady-state solution amplitude a1 in Equation 

(5.34) is used to achieve the simulation results illustrated in Figure 5.5(b). The figure 

demonstrates the modal amplitude a1 versus the nondimensionalized AC drive voltage 

VAC when Vdc=100000 and σ2=-σ1 (Ω1=2ω1). Upon using the real values for the system 

parameters, obtained from experimental measurements stated in Table 5.1, we can notice 

the activation of the nonlinear mode coupling by a response jump at VAC ≥923. 

We also numerically integrate Equations (5.31)1-4 for ai and β
i
 (i=1 and 2), and 

compare the results with the steady-states solutions from the perturbation analysis 

Equations (5.32) and (5.34). Using these equations, we have plotted the response curves 

shown in, Figure 5.6, where a1 (pendulum mode) and a2 (spring mode) are the modal 

amplitudes, and VAC is the amplitude of the nondimensionalized AC harmonic voltage. For 

specific values of the excitation below a threshold, while the amplitude of a2 of the directly 

excited mode (spring mode) is proportional to VAC, the amplitude a1 of the pendulum mode 

is zero. The finding implies that the internal resonance is not activated and the nonlinear 

mode coupling is not triggered. For the excitation voltages higher than the threshold, the 

amplitude a2 of the resonantly excited mode is independent of VAC, while the amplitude 

a1 of the pendulum mode, which is not directly resonated, depends on VAC. The dynamical 

behavior implies the saturation phenomenon in the 2:1 internally resonant systems. The 

similar behavior between the experimental and simulation results tell us that the 

approximate perturbation solutions reflect the response of the microresonator very well. 

Moreover, the results of numerical integration match accurately with the perturbation 

solutions, confirming the validity of perturbation solutions. 
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(a)  

(b)  

Figure 5.5. The pendulum-mode response in the H-shaped microresonator 
versus the AC voltage amplitudes.(a) experimentally measured when 
Ωr=2f1≈1.120448 MHz and (b) simulated when σ1=-σ2 or Ω1=2ω1. 

To demonstrate the 2:1 Internal resonance in the system, we also actuate the 

second mode of interest (spring mode) at a constant drive voltage when VDC=100 V and 

Gamp=10 kΩ. The drive frequency of the electrostatic voltage is then varied forward and 

backward around the spring mode frequency in steps while monitoring the frequency 
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response of the first desired mode (pendulum mode). Figure 5.7 shows the experimental 

and simulated frequency response of the first mode for three different drive voltages. The 

simulated amplitudes a1 are achieved using Equation (5.34).The observed coupling and 

associated nonlinear frequency response curves are the characteristics of the nonlinear 

systems with 2:1 internal resonance. Despite the actuation of the system at the excitation 

frequency in the vicinity of the spring-mode resonant frequency, the pendulum mode 

responds at half the excitation frequency. As the electrostatic voltage is increased, the 

microresonator starts to experience more nonlinear mode coupling, where the vibrational 

amplitude splits and two peaks of the vibrational deflection emerge in the vicinity of the 

pendulum-mode resonant frequency. The splitting of the resonance curve is a 

consequence of the nonlinear mode coupling due to the 2:1 internal resonance. Increasing 

more the electrostatic voltage Vac will result in more separation between the peaks. A 

remark worth mentioning is the broadening of the resonance band due to the presence of 

two peaks in the frequency response curve. 

 

Figure 5.6. The simulation of the modal amplitudes a1 and a2 in the H-shaped 
microresonator versus the voltage VAC when σ1=-σ2 or Ω1=2ω1. The 
plots are a typical representation of saturation phenomenon due to 
2:1 internal resonance. 
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(a)  

(b)  

Figure 5.7. The measured nonlinear frequency transmission responses for the H-
shaped microresonator. (a) experiment and (b) simulation of the 
amplitude a1 versus the detuning forcing parameter σ1. 
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5.4. Summary 

In this chapter, we derived a 4-DOF system of two spring-pendulum mechanisms 

for an H-shaped tuning fork microresonator near the external and internal resonance 

conditions. The approximate solutions achieved from two-variable expansion perturbation 

technique were shown to have the saturation phenomenon and the half-order 

subharmonic resonance for sufficiently large forcing voltages. By examining the 

experimental and numerical simulation results, we found that the approximate system 

qualitatively reflects the nonlinear characteristics of the microresonator in case of the 2:1 

internal resonance. 
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Chapter 6.  
 
Rate table characterization of the microresonator 

This chapter presents the experimental setup and results on testing the sensitivity 

of the H-shaped microresonator to rate. The description of the setup and testing approach 

is provided in detail. Measuring the sensitivity of the device to the input rate required 

specific adjustments and apparatus. The experimental findings revealed a linear 

correlation between the magnitude of the input angular rate and the device output over a 

particular range of the input rates. 

6.1. Tuning fork microresonator for angular rate sensing 

In the previous two chapters, MEMS tuning fork designs capable of exhibiting the 

nonlinear mode coupling were introduced and developed. The state of 2:1 internal 

resonance could be established in both microresonators, i.e., the frame- and H-shaped 

designs, experimentally and analytically. However, the frequency ratios were different, 

although close to 2:1. The results indicated that the internal resonance occurs in both 

devices, in which frequency ratios have some difference, though limited, from 2:1. 

Moreover, as shown in the frame-shaped tuning fork microresonator, the nonlinear 

vibrations could occur separately in two intervals of the excitation frequency where the 

frequency ratio is more detuned from 2:1 compared to the H-shaped microdevice. It 

happened even though this microdevice was designed to have the ideal-2:1 frequency 

ratio between the two modes of interest. In contrast to the frame-shaped design, the H-

shaped microresonator with the closer frequency ratio to 2:1 demonstrated the famous M-

shaped frequency response curves in the internally resonant systems. The H-shaped 

microresonator is selected for characterization on the rate table, since it can provide 

continuous and broader region of operation for angular rate sensing, without distance 

between the nonlinear resonance peaks. 

The experimentally-measured resonance peaks of the H-shaped microresonator 

is illustrated in Figure 6.1. As mentioned earlier in Chapter 5, this plot was captured by 

forward- and backward frequency sweeps around the linear natural frequency of the spring 

mode with f2=1.12235 MHz. For performance evaluation as a rate sensor, the operational 
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region of the microresonator is specified as the overlap between the forward- and 

backward sweeps. This common area is where the microresonator can be directly driven 

and the energy will be exchanged between the modes. It is noteworthy that the 

microresonator cannot be resonated by applying the excitation frequencies twice the 

frequency values outside this range. 

 

Figure 6.1. Operational frequency region for the H-shaped microresonator when 
Vac=6V and VDC=100V. 

6.2. Required test arrangements 

This section highlights description of the test-bed for the rate-table characterization 

of the microresonator. System level tests are carried out to get information about the 

performance of the device when undergoes the input rotation rates. The system level test 

is considered as scale factor (SF) test. Scale factor or sensitivity is the relationship 

between the output signal of the microresonator and the angular rate being measured. It 

is specified as the amount of change in the output voltage per unit change of rotation rate 

and is expressed in V deg-1 sec-1. The vacuum-encapsulated device is affixed to a printed 

circuit board (PCB) to perform the SF test. Then, the PCB is mounted in a test setup, 

illustrated in Figure 6.2 and Figure 6.3. The block diagram in Figure 6.2 shows the practical 

implementation of the microresonator and the designed electronics for signal processing 

and measurement. Figure 6.3 shows a photograph of the actual setup. The rate 
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performance of the H-shaped microresonator is experimentally evaluated using a 

computer controlled rate table (Ideal Aerosmith, Model: 1621-200A-TL) with a rate 

controller (AERO 812 Table Controller). The rate table generates an angular rotation rate 

at various amplitudes up to approximately 2000 deg sec-1. The microresonator on the PCB 

is placed inside the chamber of the rate table. Signal from a lock-in amplifier (Model: 

HF2LI-Zurich Instruments) is used to actuate the microresonator and demodulate the 

detected rate table signal. The simultaneous actuation and measurement scheme is 

performed through Zi-Control software installed on the computer. 

 

Figure 6.2. Block diagram of actuation and detection scheme used for the rate 
performance characterization. 
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Before the sensitivity test, it is crucial to confirm the nonlinear modal interaction 

between the anti-phase modes of the structure. To meet this requirement, we need to 

perform the following procedures. The microresonator is driven into the anti-phase 

resonant oscillations using a combination of an 80V DC bias voltage applied to the anchor 

through the DC power source 4 (KEYSIGHT, Model: B2901A) and an 800 mVpp (peak-

to-peak voltage) AC driving voltage applied to DE 1 and DE 2 through the output port of 

the LIA. A reference signal at 561.236 kHz is provided to the LIA though the ZI-Control 

software. The LIA tracks the signal variation at this frequency during the testing. The 

frequency doubler, powered by the DC source 2 (TENMA, Model: 72-6905) of 5V, 

multiplies the frequency of the AC voltage by two and generates an actuation signal with 

a frequency in the neighborhood of the spring mode≈1.122468 MHz. It also produces an 

unwanted frequency component at 561.236 after frequency doubling. The DC source 1 

(KEYSIGHT, Model: B2901A) with 3mV bias voltage is employed to eliminate this 

unwelcome frequency component. After this stage, the AC voltage has to be amplified to 

reach to the intended threshold to trigger the nonlinear mode coupling. The high-voltage 

amplifier (TEGAM, Model: 2350) with the gain of 20 facilitates this voltage increase. The 

connection between the parts inside and outside of the chamber is made possible through 

the slip ring on the rate table and the standard male (SMA) connectors on the breadboard. 

Up to this point, the microresonator is excited to reach the necessary drive 

oscillations. The motions of the structure and the induced capacitance changes detected 

by SE 2 and SE 4 are subtracted from each other by a signal splitter (Mini-Circuits 

SPLITTER, Model: ZFSCJ-2-2-S). This differential sensing scheme is utilized to detect the 

resulting motion in the pendulum mode. To reduce the influence of the electrical 

interference on the signal, a notch filter with the attenuated frequency at 1.124 MHz is 

constructed. This removal of the interfering signal can result in an adjustment of the higher 

gain of the amplifier since the high-gain interference signal can overload the amplifier 

output signal. The output current of the microresonator is converted into a voltage by a 

transimpedance amplifier (FEMTO, Model: DHPCA-100), with the adjusted gain of 108 

and powered with 15V by the DC power source 3 (Agilent, Model: E3631A). The boosted 

signal is then fed back to the LIA through the slip ring and the SMA connectors on the 

breadboard. The frequency response of the microdevice shown on the oscilloscope 

module in Zi-Control software is exhibited in Figure 6.4. As it can be noticed, the structure 

responds at half the excitation frequency or the reference frequency adjusted earlier on 
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the LIA. This observation confirms the activation of the nonlinear mode coupling due to 

the 2:1 internal resonance. 

(a)  

(b)  

Figure 6.3. The photographs of (a) the PCB mounted inside the chamber of the 
rate table, and (b) the complete setup showing the actuation and 
measurement equipment used during the tests. 
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Figure 6.4. The Experimental frequency transmission plot of the H-shaped 
microdevice before the rotation rate application. 

6.3. Test results 

In the scale factor test, the rate signal in the range of ±360 deg sec-1 with 10 deg 

sec-1 steps is applied to the device. During the scale factor tests, the applied rate first 

increases from 0 deg sec-1 to the desired rate with the constant angular acceleration of 40 

deg sec-2, stays at the intended amplitude rate for roughly 30 secs, and then decreases 

from the desired speed to 0 with the same angular acceleration of negative sign. At the 

same time, the output response of the microresonator is monitored and recorded via the 

spectroscope module in Zi-Control software. The applied trapezoidal rate profile provides 

the opportunity to observe the correlation between the input rate and the output response 

of the microresonator. The linearity, full-scale range, and response of the microresonator 

to the input rotation rate are extracted from the data obtained through the scale factor test. 

To calculate the full-scale range and scale factor value, we perform a dynamic rate 

experiment using a high precision rate table. Figure 6.5 shows the calibration curve 

obtained by controlling the rate table to constant angular rate and observing the 

corresponding output voltage of the microresonator. The x-axis in the figure represents 

the reference signal read from the rate table output shown on the rate table controller, and 

the y-axis represents the difference between the output voltage in response to the rotation 
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rate and the bias-voltage offset before the application of the rate for the microresonator 

system. The asterisk mark is the measured data, and the red line is the basic fit model 

generated by MATLAB. By observing the data in Figure 6.5, the microresonator 

demonstrates that the collected data-points are fitted to a line to reveal a sensitivity of 

0.011 mV deg-1 sec-1 in a measurement range (full-scale range) of approximately |220| 

deg s-1. For higher rates, the microresonator output seems to be less sensitive to the 

further input rates. The remark verifies that the simulated and measured data are 

qualitatively consistent with each other. 

 

Figure 6.5. Measured full-scale rate range of the microresonator in a 
measurement range of ±360 deg sec-1 with 10 deg sec-1 steps. 

As seen from the software simulations and experimental results, the 

microresonator responds to the absolute value of rate and does not recognize changes in 

the direction of rotation. This issue can be resolved by placing an accelerometer next to 

the PCB on the rate table. Accordingly, we put Samsung Galaxy S8 next to the PCB on 

the rate table and utilize the data acquired from the accelerometer embedded inside the 

phone. Figure 6.6(a) shows the measured DC output of the microresonator in response to 

constant angular rate inputs from the zero rate up to +200 deg sec-1 and then back to the 

zero rate and Figure 6.6(b) exhibits the accelometer’s output signal sitting beside the PCB. 

In a similar fashion, Figure 6.7(a) illustrates the measured DC output of the microresonator 

in response to constant angular rate inputs from the zero rate up to -200 deg sec-1 and 

then back to the zero rate and Figure 6.7(b) demonstrates the output of the accompanying 

accelometer.  
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Figure 6.6. (a) Measured DC output of the microresonator in response to 
constant angular input from the zero rate up to +200 deg sec-1 and 
then back to the zero rate. (b) The output of the accelerometer while 
testing (clockwise rotation of the rate table). 

 

Figure 6.7. (a) Measured DC output of the microresonator in response to 
constant angular input from the zero speed up to -200 deg sec-1 and 
then back to the zero rate. (b) The output of the accelerometer while 
testing (counterclockwise rotation of the rate table). 
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According to the rate table datasheet and experimental observations, the positive 

angular rate values cause the clockwise rotation of the rate table, and the negative values 

result in the counterclockwise motion of the table. The DC bias voltages before the 

application of the input rate (approximately up to the first 20 seconds), shown in Figure 

6.6(a) and Figure 6.7(a), are associated with the output voltage produced by the 

microresonator in the absence of the angular rate.  As the microresonator experiences the 

input angular rate applied by the rate table, it responds to the command and follows the 

rate profile. The results also reveal that the direction of rotation can be realized by the 

accelometer’s output. This can be understood by the sign change in the output signals of 

the accelerometer shown in Figure 6.6(b) and Figure 6.7(b).    

6.4. Summary 

The sensitivity of the H-shaped microresonator to the angular input rate was 

experimentally investigated. The detailed description of the test-bed to capture the 

microresonator output was explained thoroughly. It was shown that the output response 

of the microresonator linearly changed with an increase in the angular input rate in the 

range of 0 to 220 deg sec-1. The test defined the full dynamic range of the microdevice for 

the angular rate measurement. The accelerometer inside the cell phone was utilized and 

placed beside the PCB while rotating the microresonator, to recognize the direction of the 

rate table rotation. This strategy helped us to specify both the direction and quantity of the 

rotation rate. 
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Chapter 7.  
 
Conclusions and future work 

7.1. Conclusions and contributions 

In this dissertation, for the first time, the utilization of nonlinear 2:1 internal 

resonance in microresonators for angular rate sensing was investigated. I studied 

nonlinear features of the proposed microresonators incorporating the 2:1 internal 

resonance through experiments as well as the analytical studies. The nonlinear mode 

coupling induced by the internal resonance was introduced as an alternative solution to 

eliminate the mode-matched condition in MEMS Coriolis vibratory gyroscopes. The author 

believed that the 2:1 internal resonance has a few advantages which are of interest in 

MEMS Coriolis vibratory gyroscopes applications as follow. The microresonator with the 

2:1 internal resonance between the vibrational modes can generate broad operational 

frequency region with high gain signals. The mode of operation causes less sensitivity of 

the microdevice to the fluctuations in the driving frequency. Another remarkable benefit is 

to decrease the effect of the off-axis cross-coupling between modes of operation. For 

conventional MEMS gyroscopes, the drive and sense modes are required to be in a close 

match for improving sensor sensitivity. However, a small fabrication defect may cause 

undesirable cross-coupling arising from damping and stiffness forces, which prevents high 

precision of the gyroscopes arising from quadrature error. In the proposed principle of 

operation, the drive (spring) and sense (pendulum) modes are away from each other, and 

this may reduce the unwanted cross-coupling problem. 

I proposed two MEMS tuning fork designs, which resemble nonlinear dynamics of 

a spring-pendulum system with the forced and 2:1 internal resonances. The tuning fork 

designs were chosen due to their excellent dynamic characteristics regarding common-

mode rejection and differential mode of operation. Electrostatic/capacitive transduction 

was employed for actuation and detection ends because of easy fabrication and ease of 

implementation. The frame- and H-shaped tuning fork MEMS structures were designed 

using Architect™ CoventorWare© software. This analysis tool has proven to be extremely 

reliable, particularly for the analysis of the nonlinear dynamics of systems operating on the 

2:1 internal resonance. The author could successfully predict the qualitative behavior of 
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the device before the experiments, which was of great significance during the device 

design and also in testing them. The reduced-order modeling software (Architect™ 

CoventorWare©) facilitated the modal analysis and transient behavior of the 

microresonators in two different modes as a resonator and an angular rate sensor. Long 

hours of simulations on the microdevices demonstrated the effectiveness of the 2:1 

internal resonance application in angular rate measurements. The microresonators 

illustrated sensitivity to the angular rotation velocities while the nonlinear mode coupling 

was probed. 

The simulation software proved to be truly valuable in the nonlinear analysis, 

although the simulations were incredibly lengthy. Consequently, the nonlinear behavior of 

the tuning fork resonators was then investigated through the lumped mass-spring-damper 

modeling and the two-variable expansion perturbation technique. Detailed nonlinear 

models of the microstructures according to the spring-pendulum assumption were 

presented and explained in detail. These include the models of electrostatic (actuation 

and detection) nonlinearities. Later the simulation results achieved by the mathematical 

models established a qualitative agreement with the experiments, confirming the validity 

of the closed-form perturbation solutions. 

The sketched layout consisting of the designed microresonators (the frame- and 

H-shaped designs) were sent to the external foundry, Teledyne DALSA Inc., and 

fabricated via MIDIS fabrication technology. The extensive experiments were 

accomplished to probe the nonlinear dynamics of the microresonators. The testing on the 

frame-shaped microresonator showed that there was 1.9932 frequency ratio between the 

in-phase (pendulum mode) and the anti-phase (spring mode) motions of the masses along 

the Y- and X-axes, respectively. The test result differed from the expected modes of 

vibration, which were both out-of-phase oscillations. The non-ideal, although close to 2:1, 

frequency ratio in the frame-shaped tuning fork led to the occurrence of the nonlinear 

resonant peaks in the separate region of the excitation frequency. The analytical studies 

also confirmed the experimental responses. The measured frequency ratio of 2.003 

between the anti-phase modes (pendulum and spring modes) in the H-shaped 

microresonator were more desirable and closer to 2:1. The experimental results confirmed 

the nonlinear mode coupling between the modes and generation of the M-shaped 

nonlinear frequency response curves. The results proved the initial hypothesis obtained 
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through the software simulations. The validity of the perturbation solutions was also 

approved via qualitative comparison with the experimental measurements. 

The existence of the preplanned nonlinear characteristics of the microresonators, 

i.e., saturation phenomenon and nonlinear frequency response curves created by half 

subharmonic responses, were confirmed analytically and experimentally. Afterward, it was 

the time to investigate the dynamical behavior of the microresonator when subjected the 

angular input rate. The H-shaped microstructure was chosen as it offered better nonlinear 

dynamical behavior due to closer frequency ratio to 2:1 compared to the frame-shaped 

microresonator. The unique testing apparatus was designed and implemented to carry out 

the rate table characterization of the microresonator. With careful design and selection of 

the test-bed components, the experimental results showed the sensitivity of the 

microresonator to the angular input rates in the range of 0 to 220 deg sec-1. An 

accelerometer was used to determine the direction of rotation. To sum up, the author 

believes the utilization of the 2:1 internal resonance as the actuation mechanism can lead 

to alternative avenues and pave the way for the development of the nonlinear MEMS 

Coriolis vibratory gyroscopes without the need to mode-tuning condition. 

7.2. Future work 

This work founded the basis of the application of the 2:1 internal resonance in next 

generation of nonlinear MEMS Coriolis vibratory gyroscopes. Additional investigations can 

be conducted to improve further the performance of the microresonators exhibiting the 

nonlinear modal interaction. Following provides a list of viable future enhancements. 

1) The performance figures of merit of the MEMS gyroscopes, i.e., resolution (angle 

random walk), dynamic drift bias, bandwidth, etc., have to be investigated and enhanced 

for the future microresonator designs. 

2) Two approaches are feasible for improving the sensitivity and enhancing the 

resolution of the microdevices. The first scheme is to design and fabricate structures with 

larger inertial proof masses. The second approach is using system-level solutions for 

increasing the sensitivity, for instance by inducing a significant displacement in the spring 

mode or/and increasing the structural quality factors. These proposed strategies have to 
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be accomplished through analytical/software simulations before fabrication and 

experiments. 

3) Non-deterministic noise levels, e.g., drift bias and electronic noise have to be 

minimized. To this end, electronic actuation and readout circuits are needed to be carefully 

designed with low noise floors and power consumption. Future experiments are 

recommended to be accomplished by placement of the PCB inside a small vacuum 

chamber affixed to the rate table. This arrangement can be significantly beneficial to 

reduce the effect of electrical interference and noise floors. 

4) The improved characteristics associated with typical MEMS gyroscopes tuned to 

2:1 internal resonance include wide bandwidth with a flat frequency response curve of the 

sense vibrational mode. The flat frequency region is defined as the operational frequency 

region of the gyroscope with a 2:1 frequency ratio. Under these conditions, the coupling 

terms such as Coriolis (or nonlinear quadratic terms) will be responsible for facilitating the 

energy-transfer between the drive and sense modes, and because of the wide (and flat 

top) sense-mode frequency response curve, the gyroscope becomes less sensitive to 

variation in the drive frequency. Accordingly, investigation on the impact of nonlinear 

coupling terms to widen the operational frequency region, and enhance the flat-top area 

of operation is of great importance. The influence of various nonlinear coupling terms to 

improve the performance of the internally resonant gyroscopes (i.e., bandwidth and 

smooth operation region) are needed to be well studied. As the proof of concept, this idea 

has been implemented on a macro-scale T-beam structure actuated by an 

electromagnetic shaker, shown in Figure 7.1. The effect of the cubic nonlinearity 

feedbacks on the nonlinear frequency response of the pendulum mode with 1.89 

frequency ratio between the vibrational modes (r1: spring mode and θ2: pendulum mode) 

are presented in Figure 7.2. In these figures, term 1 indicates Kar1θ̇2

2
, and term 2 implies 

Kbr1̇θ̇2

2
. As it can be observed, the manipulation of the nonlinear feedback can generate 

flat-top resonant curves. Although this strategy is pretty useful in the macro-scale systems, 

its implementation in microstructures can be extremely challenging. 

5) Other microresonator designs capable of exhibiting 2:1 internal resonance are 

designed and characterized to study their sensitivity to the angular input rates. As such, 
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two structural designs simulated in Architect™ are introduced in Figure 7.3 and Figure 

7.4. 

6) The characterization of bulk acoustic wave (BAW) microresonators operating on 

the nonlinear 2:1 internal resonance is of great interest. Since they are capable of 

delivering superior dynamic properties such as high resistance to shock and vibration due 

to their high natural frequencies, high-quality factor under atmospheric or near 

atmospheric pressure and without vacuum packaging, high resistance to stiction during 

both fabrication and operation, etc. 

 

 

 

Figure 7.1. Photograph of the macro-scale T-beam as a resonator excited by the 
electromagnetic shaker. 
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(a)  

(b)  

Figure 7.2. Effect of cubic nonlinear feedback (a) term 1 and (b) term 2 on the 
nonlinear resonant peaks of the macro-scale T-beam structure. 
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(a)  

(b) 

Figure 7.3. (a) 3D view of the proposed TF microresonator simulated in 
Architect™ Scence3D. (b) Full-scale sensitivity range of the 
microresonator to the input rate. 
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(a)  

(b)  

Figure 7.4. (a) 3D view of the proposed TF microresonator simulated in 
Architect™ Scence3D. (b) Full-scale sensitivity range of the 
microresonator to the input rate. 
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