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Abstract

Prior to committing an offence for which they are ultimately found not criminally responsible
(NCR), offenders may have contact with the health care and criminal justice systems.
Understanding the frequency of these contacts can potentially help to prevent such offences
by informing strategies for intervention. In particular, escalation in contact frequency could
foreshadow the committing of an index offence. Inspired by real data, in this project, we
investigate models that describe such escalation. In particular, we consider two classes of
models: time-to-event models that are framed in terms of numbers of contacts in an interval,
and time-between-events models that are framed in terms of times between two successive
contacts. Both classes of models can incorporate predictor variables and between-subject
heterogeneity (via random effects). The properties of the maximum likelihood estimators of
the escalation rate and the performance of the Kolmogorov-Smirnov test of goodness-of-fit
are assessed using simulations under various scenarios.

Keywords: NCR-Accused; Recurrent Events; Poisson Process; Gap Time Analysis
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Chapter 1

Introduction

According to Section 16 of the Criminal Code (Criminal Code, 1985), individuals are found
not criminally responsible on account of mental disorder (NCRMD) for "an act committed or
an omission made while suffering from a mental disorder that rendered the person incapable
of appreciating the nature and quality of the act or omission or of knowing that it was
wrong." Based on the summary provided by Miladinovic and Lukassen (2014), from the
fiscal year 2005/2006 through to 2011/2012, across all provinces and territories in Canada,
63% of NCRMD cases involved crimes against a person, whereas only 24% of non-NCRMD
cases involved crimes against a person. Major assault is the most frequent offence type in
NCRMD cases (20%), while only 5% of non-NCPMD cases are classified as major assault.

Some studies on the NCRMD population have been conducted to investigate the forensic
psychiatric system and potentially help with early intervention and prevention of the offence.
In a study conducted by Golding et al. (1989), all persons found not guilty by reason
of insanity (NGRI) between November, 1975 and January 1, 1984 in British Columbia
were included. They found that only 16% of NGRI-acquitted individuals had no mental
health contacts of any kind prior to indexed offences. The data showed that the majority
of individuals found NGRI were in the forensic and/or mental health system prior to their
indexed offences. Similarly, Livingston et al. (2003) reported that 63% of persons found
NCRMD between February 1992 and February 1998 in British Columbia, Canada, were
involved with the criminal justice system, and 51.8% of them had been admitted to a
general psychiatric facility at least 4 times prior to the indexed offence.

The studies mentioned above imply that offences committed by NCRMD-accused people
are potentially foreseeable and thus preventable. This project lays the statistical groundwork
for an intervention strategy based on prior health-care admissions and criminal justice
system history.

The specific goal of this project is to explore appropriate models and preliminary tools
for data analysis in this setting. One challenge is the handling of non-conventional left-
censoring. We develop special techniques for this purpose. Using our models, we examine
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the performance of inference methods for parameters that represent the escalation in rate
of contact with the two systems.

The outline of this paper is as follows. In Chapter 2, we describe the NCRMD data
context. In Chapter 3, we provide details of the proposed methods. In Chapter 4, we describe
simulation studies for investigating inference methods for the parameters of primary interest.
We discuss limitations of the data and our approaches, as well as possibilities for extensions
to our methods, in Chapter 5.

2



Chapter 2

NCRMD Data

2.1 Data Description

Due to a confidentiality agreement, only the context surrounding the real data will be
described. Plots and parameter estimates derived using real data will not be shown. All
analysis is based on simulated data that have been generated to mimic the real data.

In this setting, a contact with a system is an interaction with the system. In other
words, a contact occurs each time the person has an interaction with the police or with
health agencies. In statistical terms, a contact is called an event.

The data constitute a retrospective cohort study of individuals who committed an in-
dex offence but were subsequently deemed NCRMD. The cohort comprises both men and
women, with a very low female-to-male ratio. In addition to date of birth and sex, informa-
tion about each subject’s contacts with the criminal justice and health care systems were
also gathered for the 12-month period prior to the date of the index offence.

Criminal justice events encompass events concerning criminal violence, criminal nonvio-
lence, and general police assistance. Health care events encompass events concerning social
services, medical physical examinations, medical voluntary psychological treatments, etc.
Most subjects have more health care events than criminal justice events. In fact, some sub-
jects have only a single criminal justice event, i.e., no criminal justice event prior to the
index offence. All subjects have at least two health care events.

Since all subjects were admitted to the forensic hospital for treatment following the
index offence, we treat the index offence as both a criminal justice and health care event.
In other words, the index offence of each subject represents the last event this person had
with each system. We will therefore call the index offence the terminal event. Note that
the terminal event corresponds to the only index offence committed by a given subject.
However, some subjects may have committed less serious offences over the one-year period
(for which they were not deemed NCRMD). These events were also recorded as criminal
justice contacts.

3



The one-year observation window ends at the time of a subject’s index offence and begins
365 days prior (at time t = 0). Therefore, the first event time recorded provides only partial
information about the time between this event and the preceding event (which occurred
prior to time 0). In other words, a subject’s first inter-event time is censored.

Miladinovic and Lukassen (2014) reported that fewer than 1% of the adult criminal
court cases are NCRMD cases, which means that NCRMD-accused people form a very
small group. Given this fact, in our work, we assume that the sample size is relatively small
(on the order of 100).

2.2 Question of Interest

Figure 2.1 displays simulated health event times for each individual (in elapsed days since
the start of their observation period). The calendar dates of the observation period for each
subject can be different, but the total observation time is the same for all subjects (365
days). Each horizontal line represents one subject’s observation period, and each black dot
represents an event. The event time plot shows that events tend to occur more frequently
towards the end of the observation period. We consider a model to quantify this feature
of the data via changes in the intensity function over time. Looking at the data from a
different perspective, wait times between two successive events tend to be shorter than
previous wait times. Therefore, we also consider a class of models that is specified in terms
of the relationship between inter-event times.

Other plots, e.g., the cumulative sample mean function plot, can also be used to show
the escalation of the event rate. Specifically, suppose there are m subjects, each with an
event process. Let Ni(t) denote the number of events over the time interval [0, t] for subject
i. Then, the cumulative sample mean function is

µ̂(t) = 1
m

m∑
i=1

Ni(t),

where we assume that events occur in continuous time.
Figure 2.2 shows the plot of µ̂(t) using simulated health care event times for a collection

of individuals. The convex shape of µ̂(t) suggests an increase in event rate over the observa-
tion period. This notion leads to the main objective of this project: to model the escalation
in intensity of events. We will model the individuals’ contacts with the two systems (the
criminal justice system and the health care system) separately over time.

4



Figure 2.1: (Simulated) event time plot for health care system events (all subjects)

Figure 2.2: Cumulative sample mean function for (simulated) recurring contacts with the
health care system
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Chapter 3

Methods

We have recurrent event data, and thus consider time-to-event models and time-between-
events models – two broad classes of modelling techniques for such data. Time-to-event
models are specified in terms of the occurrence rate of events (the intensity function),
whereas time-between-events models are specified in terms of gap times between events (the
hazard function). We use the Poisson process (a counting process that treats event counts
in non-overlapping time intervals as independent) as a basis for the time-to-event models
we investigate. In contrast, models for gap times are specified in terms of the distribution of
the current gap time conditional on the history of the process (and possibly other variables
as well, such as random effects). We consider only gap time models where the gap times are
independent given the most recent gap times.

In the following sections, we describe how these models can be applied to NCRMD
data and, in particular, how to handle the particular type of censored data observed in this
context. We also outline the goodness-of-fit methods that we consider.

3.1 Time-to-Event Models

In this section, we describe the time-to-event models considered in this project. We define
notation and the notion of an intensity function in Section 3.1.1, discuss our approach to
censoring in Section 3.1.2, describe the specific models we apply in the NCRMD context in
Section 3.1.3, and outline our methods of estimation in Section 3.1.4.

3.1.1 The Intensity Function

For a recurrent event process starting at t0 = 0, let 0 = Ti0 < Ti1 < Ti2 < ... < Ti,ni = 365
denote the event times for individual i, i = 1, . . . ,m, where Ti0 is the start of the observation
period. Since the terminal event is also the end of the observation period, Ti,ni is an event
time as well as the end of the observation period. We define Ni(t) =

∑ni
j=1 1(Tj ≤ t) as the

cumulative number of events occurring over the time interval [0, t]. We let ∆Ni(t) denote the
number of events occurring over the interval [t, t+ ∆t), and let Hi(t) = {Ni(s) : 0 ≤ s < t}
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denote the history of the process up to time t. The intensity function is defined as

λi(t|H(t)) = lim
∆t↓0

Pr(∆Ni(t) = 1|Hi(t))
∆t . (3.1)

This intensity function implies that the instantaneous probability of an event occurring
between times t and t + ∆t, conditional on the event history H(t), is λi(t|H(t))dt. Given
H(t), Cook and Lawless (2007) defined the likelihood contribution from subject i (who is
assumed to have had ni events at times t1 < . . . < tni over the time interval [0, τ ]) as ni∏

j=1
λi(tij |H(t))

 exp
(
−
∫ τ

0
λi(t|H(t))dt

)
,

where τ is the end of the observation period (τ = 365 in our context).

3.1.2 Backward Right Censoring of First Event Times

Since the data collection was retrospective, for modelling time to events, we treat the pro-
cess as going backwards in time, starting at the time of the terminal event (t = 365). Since
the data reflect only event times that occurred within the year prior to the terminal event,
it is possible that some individuals had events before the start time, i.e., there might be
observations before t = 0 for some individuals. In these cases, because of the data col-
lection protocol, we will only partially observe the first (in chronological time) gap time.
By modelling the backward process, we can then treat this first gap time as conventional
right-censored data.

As an aside, neither conventional left-censoring nor left-truncation occurs in our case.
Conventional left-censoring is present when we know the censoring time, C, and we know the
event has occurred before the censoring time (Klein and Moeschberger, 2006). For example,
if we want to know the age when patients with a mental disorder first receive treatment, then
we will have observations of actual event times on patients who started treatment after they
entered the study. We will also know the left-censoring times of those who started treatment
before they entered. I.e., we observe the maximum of the event time and left-censoring time
for each patient. In contrast, left-truncation is present when we observe event times only on
those individuals who have responses above a certain truncation limit. For example, if we
want to know the age when adult patients with a mental disorder first receive a treatment,
patients who are younger than 18 years old at the time of recruitment are excluded from
the study.

Let t be the elapsed time after the start of the observation period (t = 0), and u be
the time remaining until the time of the terminal event (t = 365). The forward counting
process is N(t) =

∫ t
0 dN(s), the cumulative event counts over the time interval [0, t]. The

7



backward counting process isM(u) =
∫ τ
τ−u dM(s), the number of events that occur over the

time interval [τ − u, τ ]. Figure 3.1 illustrates the forward and backward counting processes.

Figure 3.1: Forward and backward counting processes, N(t) and M(u)

3.1.3 Model Specification

For this project, the only time-to-event models we consider are Poisson process-based, where,
given subject-specific random effects, v1, . . . , vm, inter-event times are assumed independent.
In this case, the intensity function (3.1) becomes

λi(t|H(t), vi) = lim
∆t↓0

Pr(∆Ni(t) = 1 | vi)
∆t = ρi(t | vi), (3.2)

i.e., the intensity function does not depend on the event history H(t).
We propose a model that reflects the increasing rate of events over time by including

a time effect parameter, α. In addition, Nagin and Land (2006) pointed out that rate
of offending may vary with age and other individual-level characteristics, observable and
unobservable. To characterize this heterogeneity among subjects, in addition to including
a subject-specific random effect, we also extend the rate function (3.2) to incorporate the
covariate age. Other predictors, such as gender, could be also be incorporated using the
same framework. .

More specifically, let xi denote the ith subject’s age. Let vi follow a gamma distribu-
tion with mean 1 (for model identifiability) and variance θ. Given the random effect, the
conditional rate function forwards in time is assumed to be of the form

ρ∗i (t|vi) = viρ
∗
i (t) = vie

γ+αteνxi .

In terms of the backward process, the conditional rate function is

ρi(u|vi) = viρi(u) = vie
γ+α(τ−u)eνxi .

By implication, the conditional rate function for subject i at the time origin (u = 365) is
eγ+νxi , which we interpret as the conditional baseline rate for this subject.

8



The conditional cumulative rate function, Λi, for subject i over an interval [0, u] is then

Λi(u|vi) =
∫ u

0
ρi(s|vi)ds = vi

α
eγ+ατ (1− e−αu)eνxi .

Let η = {γ, α, ν, θ} be the vector of all parameters. As discussed by Cook and Lawless
(2007), the contribution to the conditional likelihood (given the random effect) from subject
i can be expressed as

Li(η|vi) = exp
(
−
∫ τ

0
viρi(s)ds

)ni−1∏
j=1

viρi(uij)


Note that this likelihood function also includes the contribution from the last (censored)
event time (where “last” is defined in backwards time). The marginal likelihood for subject
i is therefore

Li(η) =
∫ ∞

0
exp

(
−
∫ τ

0
viρi(s)ds

)ni−1∏
j=1

viρi(uij)

G(vi)dvi,

where G(·) is the density function of the random effect. When the random effect is gamma
distributed, the backward counting process (M(ui0), ...,M(ui,ni)) defined in Section 3.1.2
forms a negative binomial process (Cook and Lawless, 2007). The resulting marginal likeli-
hood function is

Li(η) = Γ(ni + θ−1)
Γ(θ−1)

(θµi(τ))ni
(1 + θµi(τ))ni+θ−1

{
ni−1∏
j=1

ρ0(uij)
µ0(τ)

}
, (3.3)

where ρ0(u) = eγ+α(τ−u), µ0(τ) =
∫ τ

0 ρ0(s)ds and µi(τ) =
∫ τ

0 ρi(s)ds.
The complete log-likelihood is then

`(η) = log
( m∏
i=1
Li(η)

)
=

m∑
i=1

{
ni logµi(τ)− (ni + θ−1) log(1 + θµi(τ))

+
n∗i∑
j=1

[log ρ0(uij)− logµ0(uij)] +
n∗i∑
j=1

log(1 + θj)
}
,

where n∗i = max(1, ni − 1). The parameters are estimated as the maximizer of `(η).
The rate function can also be modified to reflect special cases of interest (e.g., no time

trend, no age, no random effect, other predictors). Below we consider two such cases that
are practical in the present context.
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Rate Function with Time-Independent Predictors, Xi, Only

Consider the case where the rate function does not depend on time or random effects, but
may depend on other predictors. Representing these predictors by xi, the (constant) rate
function for subject i is

ρi(u) = ρi = eγex′iν ,

where ν is a vector of regression parameters.
The complete log-likelihood is

`(γ,ν) = log
(
m∏
i=1
Li(γ,ν)

)

= log

 m∏
i=1

exp
(
−
∫ τ

0
ρids

)ni−1∏
j=1

ρi


= log

(
m∏
i=1

exp
(
− ρiτ

)
ρi
ni

)

=
m∑
i=1

[
−τeγex′iν + ni(γ + x′iν)

]
= −τeγ

m∑
i=1
ex′iν + γ

m∑
i=1
ni +

m∑
i=1
nix′iν,

Rate Function with Time Trend α only

Alternatively, the rate function may depend on time but not on other predictors. In this
case, the (time varying) rate function for subject i is

ρi(u) = eγ+α(τ−u).

The cumulative rate function Λ over an interval [0, u] is then

Λi(u) =
∫ u

0
ρi(s)ds = 1

αe
γ+ατ (1− e−αu).

The contribution to the likelihood from subject i can be expressed as

Li(γ, α) = exp (−Λi(τ))

ni−1∏
j=1

ρi(uij)


= exp

(
− 1
αe

γ+ατ (1− e−ατ )
)

exp

niγ + α
ni−1∑
j=1

(τ − uij)

 .
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The complete log-likelihood is

`(γ, α) = log
(
m∏
i=1
Li(γ, α)

)

= −m
α e

γ+ατ (1− e−ατ ) +
m∑
i=1
niγ +

m∑
i=1

ni−1∑
j=1

α(τ − uij).

3.1.4 Model Estimation

Let U(η) be a p×1 vector of partial derivatives of `(η), where η is the vector of p parameters,
i.e.,

U(η) = ∂`(η)
∂η

=


∂`
∂η1
...
∂`
∂ηp


The vector U(η) is the score function. We let I(η) be a p× p matrix of the negative second
derivatives of `(η),

I(η) = − ∂2`

∂ηi∂ηj
,

where i, j = 1, 2, . . . p. The matrix I(η) is the observed information matrix. Under some
conditions, the maximum likelihood estimates η̂ are unique and are solutions to U(η) = 0.

For the case of ρi(u) = eγ+α(τ−u), the elements of the score vector are

Uα(η) = ∂`(η)
∂α

= m
α2 e

γ+ατ − mτ
α e

γ+ατ − mτ
α e

γ +
m∑
i=1

ni−1∑
j=1

(τ − uij)

Uγ(η) = ∂`(η)
∂γ

= −m
α e

γ+ατ − m
α e

γ +
m∑
i=1

ni,

and the elements of the information matrix are

Iαα(η) = − ∂
2`

∂α2 = 2m
α3 e

γ (eατ − 1)− 2mτ
α2 e

γ+ατ + mτ2

α eγ+ατ

Iαγ(η) = − ∂2`

∂α∂γ
= m

α2 e
γ (1− eατ ) + mτ

α e
γ+ατ

Iγα(η) = − ∂2`

∂γ∂α
= Iαγ(η)

Iγγ(η) = − ∂
2`

∂γ2 = m
α e

γ (eατ − 1) .
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Therefore, the information matrix is

I(η) =
(
Iαα(η) Iαγ(η)
Iγα(η) Iγγ(η)

)
.

For the case of ρi(u) = vie
γ+α(τ−u), the elements of the score vector are

Uα(η) = ∂`(η)
∂α

=
m∑
i=1

ni−1∑
j=1

(τ − uij)−
θ
αe

γ
(
τeατ − 1

α(eατ − 1)
)

(
1 + θ

αe
γ(eατ − 1)

) m∑
i=1

(ni + θ−1)

Uγ(η) = ∂`(η)
∂γ

=
m∑
i=1

ni −
θ
αe

γ (τeατ − 1))(
1 + θ

αe
γ(eατ − 1)

) m∑
i=1

(ni + θ−1),

and the information matrix is

I(η) =

−∂Uα(η)
∂α −∂Uα(η)

∂γ

−∂Uγ(η)
∂α −∂Uγ(η)

∂γ

 .
Standard errors of the estimates can be obtained as the square root the diagonal elements

of I−1(η̂).

3.2 Time-Between-Events Models

In this section, we describe the second class of models we consider in this project: time-
between-events models, also known as gap time models.

3.2.1 Gap Times

We define Wij = tij − ti,j−1 as the gap time, that is the wait time between events j− 1 and
j on subject i. For this class of models, each event time is considered the new time origin
for next event, and gap times may be correlated.

Let fWij (w) be the probability density function (pdf) of Wij and let the cumulative
distribution function (cdf) be

FWij (w) = Pr(Wij ≤ w) =
∫ w

0
fWij (t)dt.

Then, the probability of observing a gap time longer than w is

SWij (w) = Pr(Wij ≥ w) =
∫ ∞
w

fWij (t)dt.
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Gap time models are specified in terms of the conditional distribution of each gap time:

hij(w|H(w)) = lim
∆w→0

Pr(w ≤Wij < w + ∆w|Wij ≥ w,H(w))
∆w =

fWij |H(w)(w)
SWij |H(w)(w) . (3.4)

Here, hij(w|H(w)) is called the hazard function of the gap time Wij . Similar to the in-
tensity function, the hazard function defines the instantaneous rate of an event at time w,
conditional on the gap time being at least w and on the history of the process. In fact, the
hazard function is related to the intensity function (3.1):

λij(t | H(t)) = hij(t− TiN(t−)|H(w)),

where t− TiN(t−) is the time since subject i’s most recent event (measured at time t).
The survival function SWij |H(w)(w) can be expressed in terms of the hazard function

since

hij(w|H(w)) = −
S′Wij |H(w)(w)
SWij |H(w)(w)) = d

dw
logSWij |H(w)(w).

Specifically,
SWij |H(w)(w) = exp

(
−
∫ w

0
hij(s|H(s))ds

)
.

3.2.2 Censoring

As described in Section 3.1.2, some events could have occurred earlier than the start time
t = 0. In this case, the first observed event time, ti1, is likely less than the first gap time,
wi1. If we assume wi1 = ti1, then we may introduce bias in our parameter estimates.
Alternatively, if we ignore the (incomplete) first gap times, we lose substantial information.
Therefore, as in our time-to-events models, in our time-between-event models, we treat the
first gap time as censored. However, for time-between-events models, we work in forwards
time.

3.2.3 Model Specification

We use the generic notation f(x) to denote the density of a random variable X. Let xi
denote the ith subject’s age at time t = 0. We allow gap time to be dependent on previous
gap times by considering hazard functions of the form

hij(w|H(w)) = hij(w | xi, wi,j−1).

This hazard function can capture increasing intensity of events via a negative associa-
tion between consecutive gap times. Following Pénichoux et al. (2015), event-dependence is
included by treating the previous gap time wi,j−1 as an internal covariate.
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The likelihood is a function not only of the conditional densities of the fully observed
gap times, but also of the marginal density of the first (censored) gap time. Let the last
event time in (−∞, 0] be ti0 and let η be the vector of all parameters. Suppose the gap time
distribution for subject i is specified by the survivor function SWij (w) (or, equivalently, the
density fWij (w)). The contribution to the likelihood from subject i can be written as

Li(η) = f(ti1, . . . , tini)

=
∫ ∞
ti1

f(ti1, . . . , tini | wi1)f(wi1 |Wi1 > ti1)dwi1

=

∫ ∞
ti1

1{
ti1=τ−

∑ni
j=2 wij

} fWi1(wi1)
SWi1(ti1) fWi2|Wi1(wi2 | wi1)dwi1

 ni∏
j=3

fWij |Wi,j−1(wij | wi,j−1)


The complete log-likelihood is then

`(η) =
m∑
i=1

logLi(η).

In both the CJS and health care system data sets, some subjects have only two events.

The product
ni∏
j=3

fWij |Wi,j−1(wij | wi,j−1) will vanish in this case. The other special case

is where a subject has no events other than last terminal event (a scenario that happens
more often in the CJS data than in the health care system data). The contribution to the
likelihood from a subject, i, with only a terminal event is Li(η) =

∫∞
τ f(wi1)dwi1 = SWi1(τ),

i.e., the probability of observing a first gap time longer than τ .
We consider a few common parametric distributions for gap times here. We specify the

a marginal hazard rate for the first gap time Wi1 and conditional hazard functions for
subsequent gap times (i.e., conditional on previous gap times).

Exponential Distribution

If Wi1 and Wij | Wi,j−1 follow an exponential distribution, then we assume the following
hazard function for subject i:

hij(w) =


eγ+νxi for j = 1

eγ+βwi,j−1+νxi for j > 1

The density of Wi1 is

fWi1(w) = exp(γ + νxi) exp(−weγ+νxi),
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the survivor function for Wi1 is

SWi1(w) = exp(−weγ+νxi),

and the density of Wij |Wi,j−1, j = 2, . . . , ni is

fWij |Wi,j−1(w) = exp(γ + βwi,j−1 + νxi) exp(−weγ+βwi,j−1+νxi).

Weibull Distribution

If Wi1 and Wij |Wi,j−1 follow a Weibull distribution with shape a > 0, then we assume the
following hazard function for subject i:

hij(w) =


(
a
b

) (
w
b

)a−1
eνxi for j = 1

(
a
b

) (
w
b

)a−1
eβwi,j−1+νxi for j > 1

The density of Wi1 is

fWi1(w) =
(
a

b

)(
w

b

)a−1
exp (νxi) exp

(
−
(
w

b

)a
eνxi

)
,

the survivor function for Wi1 is

SWi1(w) = exp
(
−
(
w
b

)a
eνxi

)
,

and the density of Wij |Wi,j−1, j = 2, . . . , ni is

fWij |Wi,j−1(w) =
(
a

b

)(
w

b

)a−1
exp (βwi,j−1 + νxi) exp

{
−
(
w

b

)a
eβwi,j−1+νxi

}
.

Note that the exponential distribution is a special case of the Weibull distribution with
a = 1.

Log-normal Distribution

If Wi1 and Wij | Wi,j−1 follow a log-normal distribution, then we assume the following
hazard function for subject i:

hij(w) =


hZ(zi1) exp (−µi1 − σzi1) /σ for j = 1

hZ(zij) exp (−µij − σzij) /σ for j > 1

where hZ(x) = φ(x)
Φ(−x) is the hazard function associated with the standard normal distribu-

tion. (We use φ(·) to denote the cumulative distribution function of the standard normal
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distribution and Φ(·) to denote the probability density function of the standard normal
distribution.) Here µi1 = ν0 + ν1xi, µij = ν0 + βwi,j−1 + ν1xi, and zij = log(wij)−µij

σ .
The density of Wi1 is

fWi1(w) = 1
wσ
√

2π
e−

(lnw−µi1)2

2σ2 ,

the survivor function for Wi1 is

SWi1(w) = 1− Φ
( lnw − µi1

σ

)
,

and the density of Wij |Wi,j−1, j = 2, . . . , ni is

fWij |Wi,j−1(w) = 1
wσ
√

2π
e−

(lnw−µij)2

2σ2 .

Log-Logistic Distribution

If Wi1 and Wij |Wi,j−1 follow a Log-Logistic distribution with positive shape parameter κ,
then we assume the following hazard function for subject i:

hij(w) =


λκ(λw)κ−1

1+(λw)κ eνxi for j = 1

λκ(λw)κ−1

1+(λw)κ eβwi,j−1+νxi for j > 1

The density of Wi1 is

fWi1(w) = λκ(λ)κ−1

(1 + (λw)κ)2 exp (νxi) exp(eνxi),

the survivor function for Wi1 is

SWi1(w) = 1
1 + (λw)κ exp(eνxi),

and the density of Wij |Wi,j−1, j = 2, . . . , ni is

fWij |Wi,j−1(w) = λκ(λw)κ−1

(1 + (λw)κ)2 exp (βwi,j−1 + νxi) exp(eβwi,j−1+νxi).

3.2.4 Model Estimation

Direct maximization of the likelihood function requires the integration of a complex function
with respect to wi1, and the integral does not usually have a closed form solution. We use
Gauss-Laguerre quadrature rules to numerically approximate the integral by weighted sums.
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A Gaussian quadrature rule is

∫ b

a
w(x)f(x)dx ≈

n∑
k=1

αkf(xk), x1 < x2 < . . . xn,

where w(x) is the weight function, αk are weights, and xk are quadrature points. When
the weight function is w(x) = exp(−x), Gaussian quadrature is called Gauss-Laguerre
quadrature. We can use this method to evaluate all of the likelihood functions that we
consider since they all include an exponential factor (doing some variable transformations
to derive the corresponding function f(x), as necessary). We use the glaguerre.quadrature

function in the gaussquad package to evaluate the integral. General optimization software
can produce the Hessian matrix, −I(η̂), where η is the vector of parameters for a specific
distribution. An estimate of the asymptotic covariance matrix of η̂ can be obtained as the
inverse of the negative of the Hessian matrix evaluated at η̂.

3.3 Model Assessment

In this section, we present two methods of model assessment that we investigate in the
NCRMD data context: the Kolmogorov-Smirnov test based on generalized residuals and
the likelihood ratio test applied to nested models. The advantage of the former is its flexi-
bility, e.g., it can be used to compare non-nested models across different classes, while the
advantage of the latter is its power (at least asymptotically).

3.3.1 Adjusted Generalized Residuals and the Kolmogorov-Smirnov Test

We use adjusted generalized residuals and the Kolmogorov-Smirnov (K-S) test to assess the
goodness-of-fit of the proposed model.

Time-to-Event Models

Let a general event process starting at ui0 = 0 (in backwards time) have events at ui0 <
ui1 < . . . < ui,ni = 365, and let ui,ni = 365 be the time at the end of the observation period,
as displayed in Figure 3.1. For a rate function ρi(u | H(u)), the generalized residuals are

Eij =
∫ Uij

Ui,j−1
ρi(u|H(u))du i = 1, . . . ,m, j = 1, . . . , ni,

and the realizations of the generalized residuals eij are obtained by replacing Uij with the
observed uij and ρi(s|H(s)) with the maximum likelihood estimate ρ̂i(s|H(s)). Because the
event times ui,ni are censoring times (not contact times), adjusted residuals (Lawless, 2011)
are used instead. Specifically, let δij be the indicator of censoring, δij = 1(tij is observed).
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Then the adjusted realizations of the residuals are

eadj
ij = δijeij + (1− δij)E(Eij | Eij ≥ eij) i = 1, . . . ,m, j = 1, . . . , ni + 1,

where E(Eij | Eij ≥ eij) denotes the conditional expected value of Eij . If the proposed
model is correct, the distribution of adjusted residuals is the standard exponential distri-
bution. By the memoryless property, E(Eij | Eij ≥ eij) = eij + E(Eij). Since Eij follows a
standard exponential distribution, E(Eij) = 1, and the adjusted residuals are

eadj
ij = δijeij + (1− δij)(eij + 1) i = 1, . . . ,m, j = 1, . . . , ni + 1,

Time-Between-Events Models

Let a general event process starting at ti0 = 0 (in forwards time) have events at ti0 < ti1 <

. . . < ti,ni = 365. For a hazard hij(t|H(t)) and corresponding survival function S(Wij), the
generalized residuals are

Eij =
∫ Tij

Ti,j−1
hij(s|H(s))ds

=
∫ Wij

0
−S

′ (s+ ui,j−1)
S (s+ ui,j−1) ds

= − logS(Wij),

where i = 1, . . . ,m and j = 1, . . . , ni. Note that the event times ti0 are censoring times (not
contact times).

Since

Pr(− logS(Wij) ≤ x) = Pr(S(Wij) ≥ e−x)

= Pr
(
Wij ≤ S−1(e−x)

)
= 1− S

(
S−1(e−x)

)
= 1− e−x,

Again, because the event times ti0 are censoring times, adjusted residuals are also used for
time-between-events models. As explained above, The adjusted residuals have a standard
exponential distribution.

A quantile-quantile (q-q) plot is used to compare the êadj
ij with quantiles from the stan-

dard exponential distribution, and hence to detect model misspecification.
An example of residual plots is given in Figure 3.2. The left and right panels represent

residuals êadj
ij that were computed by fitting the correct and incorrect models, respectively,

to simulated data. The residuals based on the correct model lie roughly on the 45◦ line,
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particularly those corresponding to the non-censored observations. Some subjects have only
a terminal event (i.e., a single, censored event time of length 365). These residuals are the
largest, and correspond to the tied residuals in the upper right corners of the plots. The
residuals based on the wrong model form a non-linear shape and deviate away from the 45◦

line as the size of the residual increases.
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Figure 3.2: Generalized residual plots (simulated data)

We can also conduct the Kolmogorov-Smirnov (K-S) goodness-of-fit test (Chakravarti
et al., 1967) to assess the proximity of the distribution of the adjusted generalized residuals
to the standard exponential distribution. The K-S test compares an empirical distribution
with a specified parametric distribution. If the test statistic is large enough, then we can re-
ject the null hypothesis that the adjusted generalized residuals follow a standard exponential
distribution. Rejecting the null in this case implies poor fit of our chosen model. Referring
again to Figure 3.2, the K-S statistics are D = 0.045 (p−value=0.2177) and D = 0.286
(p−value≈ 0) for the residuals depicted in the left and right panels, respectively.

3.3.2 Likelihood Ratio Tests

In addition to the K-S test based on the adjusted generalized residuals, a formal model check
can be performed via a likelihood ratio test (LRT). Specifically, by nesting our proposed
model within a class of more complex models, a LRT can be used to test whether the data
provide evidence against the fit of the simpler model (for a given class of alternatives).
One possible exploratory approach is to conduct a series of LRTs, first specifying the model
under the null hypothesis as the simplest model under consideration, and then extending the
model by one parameter at a time, each time conducting a LRT to test for evidence against
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the smaller model. For instance, we could start with H0 : ρ0 = eγ vs. HA : ρ1 = eγ+αt to
test if there is time effect term in the rate function. Similarly, a LRT of H0 : ρ0 = eγ vs.
HA : ρ1 = eγ+βxi can be used to examine if the predictor variable xi has an effect on the
rate. As a final example, a LRT of H0 : θ = 0 vs. HA : θ > 0 could be used to test for the
existence of random effects.

For our class of time-to-event models, a Poisson process results when the variance of
the random effects, θ, is zero. Note that when we test H0 : θ = 0, the value of θ under
the null is on the boundary of the parameter space. Under the null hypothesis, the limiting
distribution of the test statistic is a fifty-fifty mixture distribution of a χ2

0 distribution (a
point mass at zero) and a χ2

1 distribution (Miller, 1977).
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Chapter 4

Simulation Studies

In this section, we discuss the simulation studies that we conducted to evaluate the be-
haviour of the MLEs of the parameters of our models of primary interest, α and β. The
parameter α determines the increase in the event rate in our time-to-event models and
β determines the increase in the hazard (conditional on previous gap time) in our time-
between-events models. Both α and β can be considered measures of escalation rate. We
also present simulation studies for studying the performance of the goodness-of-fit tests
outlined in Sections 3.3.1 and 3.3.2.

4.1 Overview

Our most complex time-to-event model is the random effects model. We use ρij(u) =
vie

γ+α(τ−u) as a basis for studying α̂. In terms of time-between-events models, we con-
sider the time-dependent Weibull hazard model conditional on the previous gap time (as
specified in Section 3.2.3) as a basis for studying β̂. We evaluate the behaviour of α̂ and
β̂ for various values of the parameters in the models. Specifically, we study the biases of
the estimators, the standard deviations of the estimators, the standard errors of estimators,
and the coverage probability of the associated Wald CIs.

In terms of goodness-of-fit methods, we assess the ability of the LRTs and K-S test to
detect departures from the true model. To explore the validity and sensitivity of the tests, we
estimate their size and power under various conditions. The size of a test is the probability
of falsely rejecting the null hypothesis when it is true, i.e., the probability of making a Type
I error. True models are always used to fit the simulated data when assessing the size. The
power of a test is the probability of correctly rejecting the null hypothesis when it is false.
To assess the size of LRTs, we simulate data from the complex models described above with
the escalation rate parameters set to 0. We then compute the proportion of times that the
null hypothesis of no escalation is rejected at a significance level of 5%. To assess the power
of LRTs, we simulate data using the complex models with true values of the escalation
rate parameters other than 0, and then fit the same models but with the escalation rate
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parameters set to 0. We record the proportion of times that the null hypothesis is rejected
at a significance level of 5%. Because the K-S test can be used to test the fit of non-nested
models, separate studies were conducted. We assess the performance of the K-S test for
both classes of models. To assess the size of K-S test, we simulate two data sets: one from
the complex models with no random effects for time-to-event models and one from the
complex models for time-between-events models. For each simulated data set, we fit the
true model and then compute the proportion of times that the null hypothesis of standard
exponentially distributed generalized residuals is rejected at a significance level of 5%. To
assess the power of the K-S test, two different wrong models are also used to fit, one within
the same class and one from the other class. For each class of the models, we simulate data
using the complex model within that class with true values of the escalation rate parameter
other than 0, and then fit two models: the same model with the escalation rate parameter
set to 0 and the complex model from other class with the the other escalation rate parameter
also set to 0.

We conduct the simulation study in the spirit of a designed experiment. For the study
of α̂, we consider three factors: α, m (the number of subjects), and θ (the variance of the
distribution of the random effects). For each factor, we consider three levels: low, medium,
and high. We also consider the special case of θ = 0 (no random effect). The chosen levels
were inspired by parameter estimates computed using real data. The values of the factors
are listed in Table 4.1.

α m θ

special case 0.0
low 0.0005 40 0.1

medium 0.0050 90 0.5
high 0.0100 150 1.0

Table 4.1: Factor levels for the study of α̂

For the study of β̂, we consider three factors: β, a, and b, the parameters of the Weibull
distribution. The values of the factors are listed in Table 4.2.

β a b

low −0.0050 0.3 10
medium −0.0010 0.6 30

high −0.0003 1.0 50

Table 4.2: Factor levels for the study of β̂

In each study, simulations are conducted using all combinations of levels, i.e., we use a
full factorial design. The performance of the LRT of H0 : β = 0 is assessed using the same
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design. Because γ is not a parameter of interest in this project, we fix its value at −5.12 in
all time-to-event models used for generating data.

For the study of the size of the K-S test, we consider two factors for time-to-event
models (α and m) and three factors for time-between-events models (β, a, and b). Each
factor has the three levels listed in Tables 4.1 and 4.2. Simulations are conducted using all
combinations of levels. For the study of the power of the K-S test, we simulate data sets
using our time-to-event model with random effects and the time-dependent hazard model
(with parameters chosen according to Tables 4.1 and 4.2).

4.2 Simulation Settings

We generate data using the steps explained in Sections 4.2.1 and 4.2.2 for the two classes
of models. We repeat this process n =1,000 times to generate 1,000 datasets (“replicates”)
for every combination of factor levels (“run”). For each replicate, we obtain the following
five quantities associated with the parameter of interest (α or β):

• The MLE

• The standard error of the estimate based on the information matrix or Hessian matrix

• The 95% Wald confidence interval

• The p-value from the LRT of H0 : α = 0 or β = 0

After completing this process for all n replicates, we then obtain the following summaries
for the run:

• Sample bias of the estimator, computed by taking the difference between the average
of the n estimates and the true parameter value

• Sample standard deviation of the n parameter estimates (which we call the empirical
standard deviation)

• The proportion of LRTs where the null hypothesis was rejected at a significance level
of 5%

For the K-S test, we also use 1,000 replicates for every combination of parameter levels for
each chosen model (“run”). For each replicate, we use the following procedure to compute
the size:

• Use a time-to-event model with ρ(u) = eγ+α(τ−u) as the true model. Fit the simulated
data using the same model. Calculate the residuals using the estimates and record the
p-value from the K-S test.
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• Use a time-between-events model with hij(w) =
(
a
b

) (wij
b

)a−1
eβwi,j−1 as the true

model. Fit the simulated data using the same model. Calculate the residuals using
the estimates and record the p-value from the K-S test.

We use the proportion of replicates within each run for which the null hypothesis was
rejected at level 5% as an estimate of the size of the test for the given setting. Similarly, for
each replicate, we use the following settings to assess the power:

• Generate data using the time-to-event model with rate function conditional on random
effects ρi(u) = vie

γ+α(τ−u) (as described in 3.1.3). Fit the model with rate function
with no random effects ρ(u) = eγ+α(τ−u) and an event-independent hazard function
h(w) =

(
a
b

) (
w
b

)a−1. Calculate the residuals using the estimates from each fitted model
and record the p-value from the K-S test.

• Generate data using the event-dependent Weibull hazard function
hij(w) =

(
a
b

) (wij
b

)a−1
eβwi,j−1 (as described in 3.2.3). Fit the simulated data using

the rate function without random effect ρ(u) = eγ+α(τ−u) and an event-independent
hazard function h(w) =

(
a
b

) (
w
b

)a−1. Calculate the residuals using the estimates from
each fitted model and record the p-value from the K-S test.

For each run, we estimate power as the proportion of K-S tests (across all replicates within
the run) where the null hypothesis was rejected at a significance level of 5%

4.2.1 Generating Data Using Time-to-Events Models

We generate event times backwards in time from the terminal event time until the length
of the observation window reached at least 365 days. We then truncate the last gap time.
Specifically, for each subject, we took the following steps:

1. For the models with random effects, we first simulate each subject’s random effect, vi,
from a gamma distribution with shape k and scale θ, where we fix the mean to be 1
(and hence the variance to be θ).

2. Gap times are simulated using the inversion method. For the jth event of individual i,
simulate Yij ∼ U [0, 1]. Compute Wij = 1−S−1

ij (Yij), where Sij(Wij) = exp (−Λi(wj))
is the survival function associated with the jth gap time of individual i. The backwards
event time is then Uij = Ui,j−1 +Wij .

3. Repeat Step 2 until Uij > 365. Set ni equal to the current value of j. The nth
i gap

and event times are right-censored by setting Wini = 365 −
∑ni−1
j=1 Wi,j and Ui,ni =∑ni

j=1Wi,j .

24



4.2.2 Generating Data Using Time-Between-Events Models

To generate data from time-between-events models (including a censored first gap time), we
first simulate complete gap times. We then truncate the first (complete) gap time to mimic
the censoring observed in the real data. Specifically, for each subject, we took the following
steps:

1. Simulate a series of event-dependent gap times (wi1, wi2, . . .) forwards in time using a
parametric gap time distribution, stopping when the sum of the gap times is greater
than 365 days. Denote the number of events generated by ni.

2. Define the last event time as tini = 365 days. Working backwards in time, calculate
the jth event time as tij = 365−

∑ni
k=j+1wik, j = ni − 1, ni − 2, . . . , 1.

4.3 Results of Simulation Studies

4.3.1 Time-to-Events Models

Results concerning α̂ are presented in Table 4.3. Boxplots of the differences between esti-
mated values and true values are also presented in Figure 4.1.
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Figure 4.1: Differences between α̂ and α using 1,000 replicates per run

The higher the level of α, the less biased the estimator α̂. When α = 0.01, the estimator
is biased low. As evident in Figure 4.2, the average standard error and empirical standard
deviation are close when θ < 1 or α > 0.0005, indicating that the information matrix
provides reasonably accurate estimates of the standard deviation of α̂ in these cases. In
other cases, particularly when m is small, the standard error appears to be biased low.
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Figure 4.2: Empirical SD against average SE of α̂ using 1,000 replicates per run

Figure 4.3 shows the estimated coverage rate of the 95% Wald CI. Surprisingly, we
find that the coverage rate decreases as m increases. A likely explanation is that, over the
levels of m we considered, the bias remains approximately constant while the standard error
decreases, resulting in a lower coverage rate.

Figure 4.3: Estimated coverage rate of the 95% Wald CI for α̂. Grey horizontal lines represent
the nominal 95% coverage level.
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With respect to the performance of the LRT of H0 : α = 0, when there is no random
effect (i.e., θ = 0), for all values of m, the size of LRT is 0, meaning that the test always
fails to reject the null hypothesis when it is true. When θ = 0.1, the estimated size is 5%.
But, when θ is far from 0, the estimated size is 1. In terms of power, in all cases, the LRT
always correctly rejects the null hypothesis (i.e., the estimated rejection rates are all 1).

α = 0 α 6= 0
θ=0 θ=0.1 θ=0.5 θ=1 θ=0 θ=0.1 θ=0.5 θ=1

m=40 0 0.051 1.000 1.000 1.000 1.000 1.000 1.000
m=90 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m=150 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.4: Estimated rejection rate of the LRT of H0 : α = 0

4.3.2 Time-Between-Events Models

We choose the case of (a, b) = (0.6, 50) as an example to present here. The results for other
values of the Weibull parameters are similar. Table 4.5 displays the results for the time-
dependent Weibull hazard function and Figure 4.4 illustrates the differences between β̂ and
β. Consistent with our results from time-to-event models, higher values of β lead to less
bias. And, β̂ is consistently biased low.

Figure 4.4: Differences between β̂ and β using 1,000 replicates per run
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Figure 4.5: Empirical SD against average SE of β̂ using 1,000 replicates per run

Both the average standard error and the empirical standard deviation are smaller for
higher values of β, possibly because as β increases, the number of events tends to increase.
As exhibited in Figure 4.5, the average standard error seems to be consistently greater than
the empirical standard deviation. This difference indicates that the Hessian provided by the
minimization routine that we used fails lead to reliably accurate standard errors. However,
inference based on these standard errors is likely to be conservative, and, as m increases,
the average standard error looks closer to empirical standard deviation.

Figure 4.6 shows the estimated coverage rate of the 95% Wald CI for β. When β is
small, the estimated coverage rate is at most 45%, whereas when β is large, the estimated
coverage rate is 1.
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Figure 4.6: Estimated coverage rate of the 95% Wald CI for β̂. The black horizontal line
represents the nominal 95% coverage level.

Figure 4.7 shows the estimated size and power of the LRT of H0 : β = 0. The estimated
size of the test is less than 5%, suggested that the test is valid. In contrast, the power of
the LRT is at most 26%, meaning that only 25% of time the LRT correctly rejects the null
hypothesis when it is not true.
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Figure 4.7: Estimated rejection rate of the LRT of H0 : β = 0 using 1,000 replicates per run

4.3.3 Kolmogorov-Smirnov Test

We assess the performance of the K-S test of the distribution of the generalized residuals.
Our goal is to evaluate its usefulness as a goodness-of-fit test, focusing on the case where
the true and proposed models are not nested (i.e., the case where the conditions of the LRT
don’t hold). As described in Section 4.2, two settings are considered for evaluating the size
and power of the K-S test.

Figure 4.8 shows the estimated size of the K-S test when a time-to-event model with
ρ(u) = eγ+α(τ−u) is used to simulate the data (and the same model is used to fit the data).
Figure 4.9 shows the estimated size of the K-S test when the dependent gap time model
is used to simulate and fit the data. We show results only for the gap time model with
Weibull parameters (a, b) = (0.6, 50); results for other values of (a, b) are similar. Under
both settings, the estimated size of K-S test is often higher than 5%, indicating that this
test is not valid.
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Figure 4.8: Estimated size of the K-S test when a time-to-event model with a random rate
function is used to simulate data

Figure 4.9: Estimated size of the K-S test when a time-between-events model with event-
dependent hazard function is used to simulate data
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In terms of power, Figures 4.10 and Figure 4.11 depict the estimated power when the
time-to-event model with random rate function ρi(u) = vie

γ+α(τ−u) and the time-between-
events model with event-dependent hazard function, respectively, are used to simulate the
data. In both cases, two incorrect models (a time-to-event model with rate function ρ(u) =
eγ+α(τ−u) and a time-between-events model with an event-independent gap time hazard
function) are used to fit the data. Across all the cases, when m is small, the power is
relatively weak, but may be satisfactory when m ≥ 150. The K-S test appears to be more
powerful in detecting misspecified models from a different class than within the same class.

Figure 4.10: Estimated power of the K-S test when the time-to-event model with random
rate function is used to simulate the data
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Figure 4.11: Estimated power of the K-S test when the time-between-events model with
event-dependent hazard function is used to simulate the data
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Chapter 5

Discussion

In this preliminary study, we use a recurrent events framework to model the escalation in
event frequency a year prior to an index event for which the offender is found NCRMD.
Two particular classes of models are used: time-to-event models and time-between-events
models. We adapt these models to account for the unconventional left-censoring in the data.

The simulation results show that our sophisticated time-to-event and time-between-
event methods are not practical in this context. The (short) one-year observation time
frame negatively impacts the performance of the estimators of escalation rate; their finite
sample properties can be quite different from their expected asymptotic properties. The
main issue appears to be the sparse event history data from each subject. Both parameters
of interest (α and β) are closely related to the event occurrence rate and gap times. The
goodness-of-fit approaches that we considered seem similarly sensitive to relatively little
information available per individual. Overall, our simulation studies indicate that none of
the proposed approaches works reliably in this context.

Our results concerning the invalidity of the K-S test could be due to the bias in the
parameter estimators, since the K-S test is very sensitive to the values of the parameter
estimates. If the estimators are biased, even if correct model is used to fit the data, the
generalized residuals may not lie close to the 45◦ line. One example is given in Figure 5.1.
The data are simulated and fit using a time-to-event model with rate function without
random effects and α = 0.05. The residuals are calculated using the biased estimators γ̂
and α̂. The K-S test returns D = 0.086 (p-value ≈ 0), which could lead to the wrong
conclusion that the model is misspecified. Although we don’t recommend the K-S test (in
light of concerns about its size), we note that it is relatively more powerful in testing the
goodness-of-fit when the true and proposed models are from different classes.
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Figure 5.1: Example of an adjusted generalized residual plot when the same model is used
to generate and fit the data

In the initial phase of this project, a Poisson GLM was used as a simple preliminary
approach to analyzing the data. Using this approach, we were able to detect an increase in
mean number of events in the second 6 months of the observation period compared to the
first 6 months of the observation period, i.e., we found evidence of escalation. For future
research, an expansion of this approach could be considered. Specifically, a quality control
chart based on Ni(t) could be explored where signals of increasing mean number of events
in a time interval could be monitored.

For the time-between-events models, we assumed that the first gap time, Wi1, has the
same baseline hazard function as the later gap times, Wij , j > 1. This assumption may not
be realistic and requires further investigation.

We modelled the data from the CJS and health care systems separately. It is possible
that these two data sets are related. For example, perhaps a subject who has had more
frequent events with the health care system is likely to have fewer events with the CJS. A
joint model for multitype recurrent events could be considered for modelling event times
from the two systems simultaneously. In addition, some events are hospitalization or/and
incarceration. Unlike the events considered in this project (which we treated as having zero
durations), hospitalizations and incarcerations have a positive duration. When subjects
are hospitalized or incarcerated, they are unlikely to have more events within the same
system. A class of multilevel discrete-time event history models could be used to handle
the transitions between two-states (in jail/out of jail or in hospital/out of hospital) (Steele,
2011). We could potentially model the four different (but possibly related) processes for
each individual simultaneously.

Moreover, in order for us to use these two classes of models, event times were required to
be measured on a continuous scale (i.e., so that two events could not occur simultaneously).
However, in practice, the day – but not the exact time – of events are usually recorded. In
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other words, the real data could contain multiple events with the same event times. In our
simulation studies, we simulated precise times, but, in the future, methods for dealing with
tied event times could be considered.

Finally, we notice that about half of the cohort didn’t have any prior events with the
CJS system, suggesting the possibility of latent classes of subjects within this system. As
shown in Eggleston et al. (2004), group-based approaches have been developed to discover
crime trajectories. Extensions of our methods to include latent classes (which allow subjects
from different latent groups to be treated differently) could be another avenue for future
research.
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