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Abstract 

The studies reported in this thesis focus on specific problems in detection of intoxicated 

driving, improving the performance of the vehicle when an intoxicated driver is 

controlling the vehicle, and designing autonomous lateral controllers. 

In the first phase of this study, we apply system identification techniques on the steering 

wheel control behavior of the driver to present two models to describe the behaviors of 

sober and drunk drivers. Then we use these models and online identification methods to 

detect intoxicated driving from steering wheel data and vehicle lateral position. 

In the second part of this thesis, we present the idea of improving the steering action of 

intoxicated drivers by adding serial and parallel controllers to the system while the driver 

is in the loop. In the first proposed algorithm, the steering signal coming from the 

steering wheel is fed to a serial controller. The output of the controller becomes the actual 

steering of the car. In the second suggested algorithm, the output of an independent 

lateral controller is added to the control signal generated by the human driver. 

In the third phase, several look-ahead lateral controllers are designed to maintain the 

vehicle in the center of the lane when the driver is removed from the system. Among the 

designed controllers are a novel, simple fused neural-network controller, introduced by 

our group, and a recently introduced robust adaptive controller which applies ℒ1 adaptive 

control theory on vehicles for the first time. The designed controllers are tested in 

challenging scenarios including wind gusts, road banking, icy roads, vehicle parameter 

uncertainties, and measurement noise, all present at the same time.  

Finally, longitudinal controllers are studied, designed, and combined with the previously 

designed lateral controllers to complete the control subsystem of autonomous vehicles. 

Keywords: Driver Modeling; Intoxicated Driving Detection; Driver Assistance 

Systems; Lateral Control; Longitudinal Control; ℒ1 Adaptive Control 
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Chapter 1.  

 

Introduction 

The second decade of the twenty-first century will probably be remembered as the 

years of emerging disruptive technologies that triggered another industrial revolution 

with an irreversible impact on human societies across the world. These game changers 

have challenged the status quo and are envisioned to force paradigm shifts in all aspects 

of our daily life. Driverless cars are at the center of these disruptors, and their further 

developments will be closely intertwined with other disruptive innovations including but 

not limited to AI, cloud computing, wireless, and the Internet of Things. Driverless cars 

are expected to revolutionize the land mobility, redefine the role of human drivers, and 

reshape the road and traffic infrastructure. The research on these autonomous vehicles is 

ongoing and diverse. There are still many open and coupled questions that ought to be 

addressed among which are –in no particular order of priority, appropriate and cost-

effective sensor technologies, power technologies, sensors technology, machine 

intelligence and perception, advanced driver assistance systems, road and traffic sign 

detection, situation awareness and assessment, scene understanding, self-diagnosis, 

design of lower level control systems, vehicle-2-vehicle communication, vehicle-2-road 

infrastructure communication, planning, localization and mapping, detection of other 

road users (moving and stationary objects), guaranteed safe driving, passenger comfort, 

legal issues and liabilities, and regulations. The list is exhaustive and clearly indicates the 

scope of complexity and multidimensionality of the area.  

The central premise of this dissertation is to address selected questions within the 

context of advanced driver assistance systems and study the lower level control systems. 

In particular, we study detection and overriding intoxicated drivers and design of lateral 

control system that is essential for autonomous or semi-autonomous vehicles. We have 

predominately adopted the model-based control theory as the backbone of the studies 

undertaken in this project and suggest that it has much to offer for the overall operation of 

an autonomous vehicle.     
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1.1. Research Motivation 

The rationale for autonomous vehicles is multi-faceted; yet enhancing road safety 

is often referred to as one of the main objectives in designing intelligent transportation 

systems. In average, every thirty seconds, one person dies somewhere in the world due to 

a car crash. The cost of accidents in the USA is estimated to be about 300 billion dollars 

annually [1], i.e., about 2% of its GDP. Conservative estimates suggest that a high 

proportion of fatalities and injuries due to traffic accidents involve impaired drivers. It is 

projected that these figures could be increased by 65% in the next 20 years unless novel 

driving risk reduction methods are leveraged [2].  

Among all fatal traffic accidents, 95% are caused by human errors [3]. The three 

major causes of these human errors, often referred to as the “Big Three”, are alcohol, 

drowsiness, and inattention [4]. Statistics show that 25% of fatal accidents in Europe [5], 

32% in the US [6], and 38% in Canada [7] are caused by drunk drivers. 

Educating drivers, especially young drivers, through extensive advertising 

campaigns in media against impaired driving and detecting drunk drivers on the road via 

visual observations by police are the only two main preventive measures to eliminate or 

alleviate the problem; the outcome is less than impressive. The U.S. National Highway 

Traffic Safety Administration (NHTSA) has conducted 3 field studies, involving 

hundreds of officers and about 12,000 enforcement stops, to find typical driving 

behaviors of intoxicated drivers [8]. The results of this study indicate that drunk drivers 

have difficulty in vigilance, judgment, braking, and maintaining desired lateral position 

and speed [8]. Therefore, these behaviors are used as the most important cues for officers 

to detect Driving While Intoxicated (DWI) motorists, stop them, and perform a 

Breathalyzer test.   

Even though the mentioned cues can be noticed in most of the alcohol-induced 

drivers, knowing these cues is not enough to identify intoxicated drivers [6]. The main 

reason is the small number of available petrol officers compared to the enormous number 

of cars and roads. The other reason is that poor weather conditions, darkness, and 

obstacles can prevent detecting intoxicated driving patterns. As an example, a study by 
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Centre for Disease Controls and Prevention (CDC) shows that about 99% of drunk 

drivers in the US are not detected by officers because of the aforementioned reasons [9]. 

Even the detected drivers might have been driving for a long distance before they get 

noted. Based on the premise that every single death or injury due to impaired driving 

could be avoidable, the main motivation of the first phase of this project is to propose and 

design a system that can detect the state of an impaired driver based on his/her handling 

of the car. It is envisaged that ultimately an intelligent car detects whether or not its 

driver is impaired. 

There have been attempts to identify impaired drivers via on-board sensor-based 

condition monitoring techniques in recent years.  A survey that reviews many of these 

condition monitoring systems is available in [10]. In these systems, data is gathered using 

vehicle-based sensors; then it is processed to determine the impairment level of the 

driver. Based on the signals they use, the driver monitoring systems available in the 

literature, which will be reviewed in Chapter 2, can be classified into three categories 

[11]:  

1) Systems which use signals containing physiological measures of the driver 

such as electroencephalogram (EEG), eye movement, eye gaze data, eyelid 

aperture, pulsation waves, heart rate, perspiration, breath, etc.[4, 12-15]. 

These signals contain rich information that can lead to the detection of 

impaired drivers. However, except for eye tracking systems which are non-

invasive, the rest require either wearable devices, or active participation of the 

driver.  

2) Systems which use signals containing vehicle information such as its speed, 

its lateral position, etc. [6, 16-18]. Although collecting these signals is easier 

than driver physiological signals, they usually do not carry sufficient 

information by themselves.  

3) Systems which use vehicle inputs (driver outputs) such as accelerator and 

brake pedals, steering wheel, etc.[11, 19]. These signals are available in most 

of the new cars, especially the ones equipped with drive-by-wire-systems.  
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Systems in the first category are expected to play an important role to detect DWI 

in the next few years as the technology matures and prices become more competitive. In 

addition, most of the condition monitoring systems in the other two categories consider 

driver impairments such as fatigue, distraction, and drowsiness. Only a few (e.g.,  [11] 

and [6]) have specifically considered intoxicated motorists. Even these few studies have 

considered a single signal from one of the two aforementioned categories (categories 2 

and 3). However, a signal from the third category might be affected by other variables 

from the second one (and vice versa).  Therefore, studying only one of these signals is 

insufficient for detection of alcohol-induced drivers. 

The scope and flow of this thesis include four phases as shown in Figure 1.1. The 

organization of the thesis, the summary of each chapter, and the original contributions of 

this study are presented in the next sections of this chapter. 

 

Figure 1.1. Thesis scope and flow 
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The research reported in Chapter 3 is related to classes two and three as outlined 

above. We rely on system identification based on input and output signals from the driver 

to estimate the state of the driver. In particular, we propose a method to overcome these 

shortcomings through considering the lane-keeping task of the drivers and focusing on 

two signals: lateral preview error (from category 2) and steering wheel (from category 3), 

to 

1) Present two models to describe the lane keeping behavior of sober and drunk 

drivers 

2) Perform online identification on the driver to detect drunk driving by 

comparing the current model of the driver with the obtained models in the 

previous part 

Detecting drunk driving concludes the first phase of this study. In the second 

phase, we try to improve the handling of the vehicle when it is being driven by an 

impaired driver. Modern technology has tried to reduce the risk of car accidents using 

various means which can be categorized into two classes: passive and active [20]. Passive 

methods, like seatbelts and airbags, can only reduce the injury, but active methods, like 

advanced driver assistance systems (ADAS), are meant to assist the driver in preventing 

the accidents. Since more than 95% of the fatal accidents are caused by human error [3], 

driver assistance systems are expected to  have a significant role in reducing the risk of 

traffic accidents. Different causes of accidents and the effect of different advanced driver 

assistance systems are discussed in [21]. 

Although much progress has been made in developing these ADASs, the 

suggestion that these systems are not yet reliable and might even lead to driver distraction 

has been around. For example, the warning systems used in the cars are visual, auditory 

or haptic [22]. If the driver is looking away, fixed front displays in front of him will not 

attract his/ her attention so it will not be useful. In addition, side screen displays can take 

the driver’s attention off the road which can be dangerous. Auditory or haptic warning 

systems cannot transmit enough information in a short time. Moreover, drivers might not 
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appreciate repetitive warning messages when they already have noticed an imminent 

danger [23]. 

On the other hand, although the main goal of a driver assistance system is to 

reduce the physical and mental workload of the driver and therefore to improve safety, 

however, if the workload is less than a certain amount, the driver would be disengaged 

from driving. 

The main idea of the second phase of this thesis, explained in Chapter 4, is to 

design either a series or a parallel controller to the human control loop to assist in steering 

the vehicle.  In the serial assisting controller system, when the driver turns the steering 

wheel, the steering signal is fed to a controller instead of the steering column of the car. 

The output of the controller is the actual value of the steering signal which acts on the 

wheels. This control system can be readily implemented using a steer-by-wire system 

[24]. In the parallel assisting controller, the output of an independent lateral controller is 

added to the driver’s steering signal so that the poor performance caused by driver 

impairment is compensated. 

In the third phase of the thesis, we study, design, and evaluate several lateral 

controllers. Vehicle lateral control is an integral part of the autonomous and intelligent 

vehicle control systems. The primary goal of the lateral control, also referred to as 

steering control, is to navigate a car along the desired path (lane keeping/following). In 

addition, performing lane change maneuvers, avoiding obstacles and collisions in 

emergency situations are also directly related to vehicle lateral control. 

Data from the Federal Highway Administration (FHWA) suggests that crashes 

caused by lane deviation account for about 53 percent of all fatal crashes [25]. More than 

half a million road accidents are due to improper lane changing executions [26] which 

makes it one of the dangerous driving maneuvers on highways. In emergency obstacle 

avoidance cases, less experienced drivers have difficulty performing evasive maneuvers 

and stabilizing the vehicle afterward. Advanced Driver Assistance Systems are expected 

to alleviate the number of these types of accidents by assisting the drivers in lane-
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keeping, lane changing, and emergency collision avoidance tasks. Also, driverless cars 

also need to have high-performance steering control systems. 

The vehicle lateral controller should be able to maintain the car in the center of 

the lane in the presence of disturbances and uncertainties. In addition, the parameters of 

the vehicle dynamics are not constant and depend on the car speed, weather, road, and 

tire conditions. Therefore, the system should be able to follow the reference road 

trajectory by compensating the effects of all uncertainties, noises, disturbances, and 

parameter variations. 

As lateral control is central to driving, it has been extensively studied. A literature 

survey on the most important methods used for this task is presented in Chapter 2. The 

literature review discusses the significance and importance of lateral control in 

autonomous vehicles. However, the problem presents additional challenges when 

external disturbances, uncertainties, and parameter variations are considered. These 

complexities are less considered in the literature. Therefore, it is envisaged that a robust 

adaptive control is an excellent candidate to address these problems successfully.  

Less than a decade ago, ℒ1 adaptive control was introduced by Hovakimyan and 

Cao [27-29]. The following properties of this controller make it a suitable choice for the 

vehicle lateral control problem. The key features of this control architecture are 

guaranteed robustness and fast adaptation. These ensure that the control system is robust 

to variations in the uncertainty and parameters of the system as well as demonstrating an 

acceptable performance. The ℒ1 control algorithm also ensures uniformly bounded 

transient response and steady-state tracking. This is achieved by proper formulation of 

the control objective in a way that the uncertainties of the system can be compensated for 

within the bandwidth of the control channel [27]. In this algorithm, the decoupling of 

adaptation and robustness is made possible by building the robustness specifications in 

the problem formulation, which increases the speed of adaptation.  In other words, 

employing  ℒ1 adaptive control addresses fast adaptation which is beneficial for both 

robustness and performance. One of the crucial steps in this algorithm is selecting the 
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underlying filter structure. This task can be addressed using classical and robust control 

techniques. 

Within the above context, the contribution of Chapter 6 of this study is two folds: 

(1) The algorithm will guarantee stability and performance in trajectory (lane center) 

tracking in the presence of model uncertainties, wind disturbance, road banking angle, 

and icy roads, assuming there is no sensor failure; (2) The proposed controller will 

rapidly adapt to variations in the parameters of the system model and compensate for the 

effects of unknown disturbances. Also, since this method is adaptive, it is a suitable 

choice for vehicle lateral control problem in the presence of parameter variations. Lastly, 

because of its guaranteed robustness, ℒ1 adaptive controller is an appropriate controller 

for handling vehicle lateral model uncertainties and disturbances such as the wind, 

slippery roads, and road banking angles. 

 In the fourth and the last phase of this dissertation, we design longitudinal 

controllers, add it to the lateral control systems designed before, and implement the 

integrated controller on the driving simulator. This completes the control system module 

of driverless cars. In order to have a completely autonomous driving vehicle, sensors, 

perception, and planning modules should be designed and added to the system, which is 

not within the scope of this study. 

1.2. Organization of the Thesis 

In Chapter 2, we present an overview of the literature related to driver modeling, 

safety methods regarding intoxicated driving, and lateral control systems. Driver 

assistance systems and vehicle safety systems are used to improve the driving 

performance of the driver. We also show through our selective literature review that one 

of the important requirements in designing such systems is the driver mathematical 

model. We will see that although different models of sober drivers are available in the 

literature, to the best of our knowledge, the steering behavior of intoxicated drivers has 

not been previously reported. 
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In Chapter 3, we apply system identification techniques and present two models 

to describe the lateral control behavior of sober and drunk drivers. We also introduce a 

novel method to detect alcohol-induced driving. The proposed method not only is useful 

in detecting alcohol-induced driving but also can be used as a measure to evaluate the 

performance of the driver. It can also detect any other impairment that might have a 

similar effect as alcohol on driving behavior. 

In Chapter 4, the idea of improving the steering action of the driver by serial and 

parallel controllers is presented and studied. The performances of the suggested 

algorithms are studied and compared using computer simulations and human-in-the-loop 

experiments using the driving simulator and actual human drivers. 

In Chapter 5, we design several lateral control systems including a state-feedback 

controller which is accompanied by a feedforward controller. We also use a preview error 

algorithm to design a lead compensator that increases the stability margins of the system 

significantly. In addition, we introduce a novel, simple neural-network controller, which 

was recently developed by our group. We use genetic algorithm to optimize the neural 

network weights for designing a lateral controller. 

In Chapter 6, the recently introduced ℒ1 adaptive control algorithm is utilized to 

design a controller for the lateral dynamics of the vehicle. We consider challenging 

conditions in the simulation scenarios of this chapter, which include icy roads, strong 

wind gusts, road banking angle, curves, and drastic variations in vehicle model 

parameters. The robustness of ℒ1 adaptive control makes it possible to control the vehicle 

when all these disturbances and uncertainties are present in the system. 

In Chapter 7, we design a control system for vehicle cruise (speed) control. In 

addition, we investigate different strategies to be considered for adaptive cruise control of 

the autonomous vehicle in our project and decide which is the most appropriate one to 

select considering the available sensors and current limitations. We also consider the 

transition between speed control and vehicle following modes. The conditions when the 

vehicle should apply the brake to avoid a collision are also investigated. Finally, we 

implement the designed control algorithms on a high-quality driving simulator. We show 
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that both longitudinal and lateral controllers can make the vehicle follow the desired 

trajectories in various scenarios satisfactorily. 

In Chapter 8, we summarize the research accomplished in this thesis. The 

conclusions and outcomes of the thesis based on theoretical studies, simulation results, 

and experimental evaluations are given in this chapter. Finally, tentative suggestions for 

the future direction of this research work are included. 

1.3. Original Contributions and Publications 

The summary of the original contributions and publications at the time of writing 

this thesis follows: 

 Using system identification techniques to derive two mathematical models 

to describe the steering wheel handling behavior of sober and intoxicated 

drivers, published in IEEE Intelligent Transportation Systems Conference 

in 2012 [30] 

 Introducing a novel method to detect intoxicated driving, published in 

IEEE Transaction on Intelligent Transportation Systems in 2014 [31] 

 Designing a human-in-the-loop vehicle lateral serial controller, published 

in IEEE International Conference on Mechatronics in 2011 [32] 

 Designing parallel assisting lateral controller, a paper to be submitted to 

IEEE Transaction in Intelligent Transportation Systems in 2018. 

 Contributing to development of a new fused neural network controller 

(introduced by our group) and designing vehicle lateral controller based on 

it, published in the Journal of Applied Soft Computing in 2012 [33] 

 Designing ℒ1adaptive control for vehicle lateral dynamics, published in 

IEEE Transaction on Intelligent Vehicles in 2017 [34] 
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 Designing an integrated autonomous vehicle control system and 

implementing it, done as part of an NSERC research project for an 

industrial partner in 2013, published as a report.  
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Chapter 2.  

 

Literature Review 

In the 1960’s, the Bureau of Public Roads (BPR) of the Department of Commerce 

in the United States, the predecessor to Federal Highway Administration (FHWA), 

started the earliest research and development program to improve the efficiency and 

safety of highway-based transportation [35]. The core of this program was an effort to 

apply the evolving electronic communications and control systems theory to 

vehicle/highway operations. Later, several similar programs were conducted around the 

world, the most important of which were in the US, Europe, and Japan. The main goals of 

these programs were to improve safety, mitigate congestion, reduce environmental 

pollution, increase energy efficiency, and improve travel comfort. 

In the mid-1980s in the US, a group (named Mobility 2000) consisting of 

universities, federal and state governments, and private companies started working 

together and discussed possible technologies that could change the future of 

transportation [36]. These discussions resulted in forming of Intelligent Vehicle Highway 

Systems (IVHS), that was later renamed to Intelligent Transportation Systems (ITS) 

America, which has continually conducted many transportation projects since the 1990s. 

One of the most famous transformation research programs initiated in that period was 

Partners for Advanced Transit and Highways (PATH) in California [37].  

Almost parallel and at the same time as the US, the Commission of European 

Communities (CEC) initiated similar projects in Integrated Road Transport Environment 

(IRTE) and Road Transport Informatics (RTI). Two important projects conducted under 

the European Advanced Transport Telematics (ATT) in 1989 were DRIVE I and DRIVE 

II [38]. The European vehicle industry started the PROgraM for European Traffic with 

Highest Efficiency and Unprecedented Safety (PROMETHEUS) in 1985. Later, several 

other intelligent transportation programs such as Cybercar and PReVENT were launched 

in Europe [39].  
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In the last few decades, significant advances have been made in the field of 

intelligent transportation. However, the scope of research in this field is multifaceted, and 

a thorough literature review is neither intended nor feasible within the constraints of this 

dissertation. An overview of the research topics related to intelligent vehicles is shown in 

Figure 2.1. Here, the key objective is to provide a succinct coverage of the key related 

topics within the scope of the research undertaken in this project in order to set the scene 

for the next chapters. Hence, the literature review presented here covers advanced driver 

assistance systems, driver behavior modeling, detection of intoxicated driving, and lateral 

control systems.  

 

Figure 2.1. An overview of the field of intelligent vehicles. The sections shown by 

dashed rectangles are not within the scope of this dissertation. 

The chapter is organized as follows: some basic definitions used in this field and 

throughout this thesis are reviewed in section 2.1. Classification of advanced driver 

assistance systems and reviewing some commercially available ones are done in the next 
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section. The issues in driver modeling are discussed in section 2.3. The available safety 

methods regarding intoxicated driving are reviewed in section 2.4. Finally, the chapter is 

concluded with a review of available lateral control systems. 

2.1. Some Basic Definitions and Concepts 

Oxford dictionary defines “intelligence” as “the ability to acquire and apply 

knowledge and skills”. However, applying this definition to vehicles and transportations 

systems raises the expectations too high and far from reality. For several decades, the 

ultimate goal of researchers in the field of artificial intelligence has been to design 

intelligent machines. Although the progress towards this goal has been considerable, the 

success in demonstrating real human-like intelligence has been limited. A more realistic 

and practical definition of an intelligent vehicle is a vehicle that helps the drivers to 

perform their driving tasks more safely and effectively, or performs some aspects of 

driving autonomously [40]. 

The word autonomous refers to machines that can perform a task without 

guidance from a human operator. The range of such a task is vast and can be anything 

from placing a part at the desired location to piloting an airplane and driving a vehicle. 

Therefore, performing a task autonomously involves having a specific goal, sensing, 

perceiving the conditions, analyzing and planning for action, and finally executing the 

task [40]. In the case of vehicle driving, these steps for the goal of autonomous driving 

translate to  

(I) employing sensors for detecting the surrounding environment,  

(II) perceiving the current situation including traffic lights, traffic signs, or 

obstacles and other vehicles on the current path,  

(III) analyzing the conditions, making decisions to react to the current situation, 

considering the desired destination and the required route to reach there, 

and considering all of these goals for planning the desired vehicle 

trajectories,  
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(IV) executing the necessary steering, accelerating, or braking tasks to follow 

the trajectories planned in part (III).  

The above steps, in addition to comparison to manual driving, are shown 

schematically in Figure 2.2. More details on different parts of this figure will be given in 

Chapter 7. The sensing, perception, and planning subsystems are not within the scope of 

this study, as it will be further explained in Chapter 7. 

 

Figure 2.2. Different parts of the autonomous driving system 

As mentioned in Chapter 1, about 95% of accidents are caused by human error 

[41]. Therefore it is not surprising that the idea of driverless cars has a long story. The 

dream started to appear in science fictions in the 1920s, the more realistic concept was 

presented in General Motor’s Futurama New York World’s Fair in the 1930s, and it 

seemed a real possibility in the 1980s. At this time, the road to driverless cars was paved 
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by works such as [42]. The most notable early results were obtained in (1) the previously 

mentioned PROMETHEUS project where the VaMP driverless car drove 95% of its 1600 

𝑘𝑚 path autonomously in 1994 [43], and in (2) Carnegie Mellon University (CMU) 

Navlab where the autonomous vehicle in the No Hands Across America project drove 

98% of the 5000 𝑘𝑚 road across the US autonomously in 1995 [44]. 

The next important milestone in developing autonomous vehicle technology was 

the first Defense Advanced Research Projects Agency (DARPA) Grand Challenge in 

2004 [45]. The goal was for autonomous vehicles to navigate a 240-kilometer off-road 

route as fast as possible without any human intervention during the race.  Eliminating 

human assist in critical moments proved to be the main challenge, and none of the 15 

vehicles could finish the route. The challenge was repeated in 2005 [46]; this time 5 out 

of 23 teams arrived at the finish line, and Stanley [47] from Stanford University was the 

winner. Later, in 2007, DARPA Challenge was held in a simulated urban environment. 

Six vehicles finished the course demonstrating the advancements in fully driverless urban 

driving [48]. 

Several events and challenges regarding driverless cars were held since the 

DARPA challenges. Some of the noteworthy examples include VisLab Intercontinental 

Autonomous Challenge (VIAC) which was a 16,000 𝑘𝑚 (from Italy to China) driverless 

challenge with no human intervention held in 2010 [49], Hyundai Autonomous Challenge 

in 2010 [50], China Intelligent Vehicle Future Challenges (IVFC) from 2009 to 2017 

[51], and the autonomous journey on a historic route of Bertha Benz [52]. Recently, the 

research on this topic has accelerated rapidly in both academia and industry. Waymo 

(Google) self-driving car [53] and Tesla Autopilot system [54] are two of the commercial 

products that have received significant media attention recently. 

The field of intelligent transportation and the term intelligent vehicle are not 

limited to autonomous driving. Advanced Driver Assistance Systems (ADAS) refers to 

vehicle driving tasks that an intelligent vehicle assists the drivers to perform more safely 

and effectively. The term driver assistance, which is usually used interchangeably, 
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includes ADAS but also refers to all the other in-vehicle driver support systems, such as 

navigation, too [40]. 

In summary, driving tasks are supported by intelligent vehicles at different levels 

of automation. The highest level of automation is called driverless where all aspects of 

driving are performed without the intervention of the human driver. In the intermediate 

levels of automation (semi-autonomous), the intelligent vehicle assists the human driver 

in various aspects of driving as needed and acts as a copilot. In the lower levels of 

automation, the vehicle acts as an informational assistant and warns the driver when 

necessary. Examples of such systems will be given and explained in more details in 

section 2.2. The Society of Automotive Engineers (SAE), an automotive standardization 

body, published a classification based on six different levels of driving automation 

systems [55]. This classification system is mainly based on the required level of human 

attentiveness and intervention, rather than the capabilities of the vehicle [56]. The 

summary of these levels of automation based on SAE taxonomy are shown in Table 2.1. 

Table 2.1. Autonomy levels based on SAE taxonomy 

SAE 
Level 

Name 

Execution of 
Steering, 

Acceleration, 
and Brake 

Monitoring 
of Driving 

Environment 

Fallback 
Performance 
of Dynamic 

Driving Task 

System 
Capability 
(Driving 
Modes) 

Human driver monitors the driving environment 

0 
No 

Automation 
Human driver Human driver Human driver n/a 

1 
Driver 

Assistance 
Human driver 
and system 

Human driver Human driver 
Some driving 

modes 

2 
Partial 

Automation 
System Human driver Human driver 

Some driving 
modes 

Automated driving system monitors the driving environment  

3 
Conditional 
Automation 

System System Human driver 
Some driving 

modes 

4 
High 

Automation 
System System System 

Many driving 
modes 

5 
Full 

Automation 
System System System 

All driving 
modes 

 



18 

In this dissertation, Chapter 3 and Chapter 4 are related to SAE levels 1 to 3, and 

Chapters 5 to 7 can be applied in levels 1 to 5 of autonomy. 

2.2. Advanced Driver Assistance Systems (ADAS) 

Advances in microelectronics have encouraged automotive industry to integrate 

sensors, actuators, microcomputers, and information processing for the engine, drivetrain, 

suspension, and brake systems. The first developments in this regard were cruise control 

systems and digitally controlled combustion engines in the 1970s. Electronic braking and 

advanced vehicle handling were then introduced to reduce the risk of driving. A historical 

survey on these developments is reported in [57]. These were the first advanced driver 

assistance systems introduced which reduced the number of accidents by assisting the 

driver.  

 

Figure 2.3. Illustration of some commercially available advanced driver 

assistance systems 

Some of the most famous and effective systems developed at this stage (the 1980s 

and the 1990s) are anti-lock braking systems (ABS) [58], traction control system, brake 

assist, and electronic stability control (ESC) [59]. Meantime, active steering systems, 

active roll stabilization, and active suspension systems were developed to improve 
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vehicle lateral stability and driver comfort [60]. Many of the proposed ADASs are 

currently commercially available. Some of these systems are shown in Figure 2.3. 

The field of research on advanced driver assistance system is wide and includes a 

broad range of algorithms and technologies. Here, we briefly categorize them based on 

the hierarchical levels of the driving task. More information about them can be found in 

[61-65]. 

1) Driver information systems which help the driver in the highest level of 

driving task. In these systems, no control or intervention by ADAS occurs, 

and the driver is the only controller of the vehicle. However, the driver 

assistance gives additional information to the drivers and increases their 

situation awareness [66]. Some of the examples that fit into this category 

include GPS navigation system, adaptive light control, and night vision head-

up display. 

2) Driver warning systems which assist the driver in the second level of driving 

task which is maneuvering. These systems are among active safety systems 

which are always monitoring vehicle, road and driver conditions and give an 

alarm to the driver when there is an imminent danger. Then, it is up to the 

driver to perform the correct action and avoid the danger. Some of the systems 

that fit in this category are lane departure warning, forward collision warning, 

driver drowsiness warning, parking assistant, intersection collision warning, 

and blind spot warning systems [67]. 

3) Intervening systems which assist the driver actively in the control level of the 

driving. These systems can take over control the car in some specific tasks. 

Although these tasks can be performed automatically be these ADASs, the 

driver should be alert to take other tasks of the driving. Some examples are 

adaptive cruise control (ACC) [68], intelligent speed adaptation [69], and lane 

keeping systems [70]. 
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4) Integrated passive and active safety systems which increase the safety by 

integrating passive and active systems (see Table 2.2). In the normal driving 

conditions, the system informs the driver about potential dangers. In the next 

step, some warnings are sent to the driver to alert him/her. If the driver still 

does not respond and time to collision is reduced to a few seconds, ADAS 

overtakes and tries to avoid the accident. In addition, emergency braking 

systems can reduce the severity of the accident. At about 500ms to crash, seat 

belt pre-tensioners can be activated  [71], and at about 10ms before the 

accident, airbag deployment can be optimized [72]. Automatic emergency call 

system (eCall) can be activated after the accident [73]. 

5) Fully automated systems are beyond driver assistance and completely 

eliminate the driver from the control loop. Autonomous vehicles which can 

drive automatically have been the topic of intense research. Although these 

systems can greatly improve road safety [74], full autonomy is at least a 

decade away. The main reasons are the high cost of sensors used by driverless 

cars, such as Lidar receivers, and also the need to map all roads with 

centimeter-precision. 
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Table 2.2. Integrated safety systems including both passive and active systems 

which cooperate before, during, and after an accident  

Preventive and Active Safety 

C 
 

R 
 

A 
 

S 
 

H 

Passive Safety 

Inform Support Intervene 
Safety 

systems  
soft level 

Safety 
systems  

hard level 
Rescue systems 

Foresighted 
driving 

Warning Assistance 
Pre-crash 
systems 

Minor 
accidents 

Major 
accidents 

Post-crash 

Night vision [75] 
Route navigation 
[76] 
Incident warning 
[77] 
Cooperative 
systems [78, 79]  

Blind spot [80] 
Forward 
collision 
warning [81] 
Lane departure 
warning [82] 
Speed warning 
[83] 

Electronic 
Stability 
Control [84] 
Brake assist 
[85] 
Collision 
avoidance [86] 

Reversible 
restraints[87] 
Emergency 
braking [88] 
Adaptive 
seatbelt 
adjustment 
system [89] 

Pedestrian 
airbag systems 
[90, 91] 
 
Intelligent 
restraint 
systems [92] 
 

Vehicle 
crashworthiness 
[93] 
Airbags [94] 
Smart materials 
(energy 
absorption) [95] 

eCall system [96] 
 
Emergency vehicle 
automatic dispatch 
system [97] 

Normal driving Collision avoidance 
Collision 
mitigation 

Human protection Injury treatment 

60-10 𝑠 before 
10-2 𝑠 
before 

2-1 𝑠  
before 

1-0 𝑠 
before 

0-100 𝑚𝑠  
after 

100 𝑚𝑠–60 𝑠 
after 

 

The research in this field is very broad, so we only presented the most significant 

developments. More comprehensive reviews can be found in [61, 63, 64, 98-104]. 

2.3. Driver Modeling 

Understanding the behavior of drivers and attempts to derive mathematical 

models for human operators has been an important research topic in many different 

disciplines in the last five decades. The first significant results in this regard were 

obtained during aircraft pilot studies [105-108]. For example in [107], the following 

transfer function was proposed for any human operator in pursuit tasks: 

𝐺(𝑠) =
(𝑎1𝑠+𝑎0)𝑒

−𝑠𝜏

𝑏2𝑠2+ 𝑏1𝑠+𝑏0
   (2-1) 

where 𝑎1 is related to the anticipatory behavior of human and 𝜏 is the inherent delay in 

human tracking tasks. Later in the seventies, specific research on the human driver of 

automobiles was conducted [109-112]. The main result of the investigations in this 

decade suggested that the model of the driver could not be clearly decoupled from the 
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model of the vehicle. In other words, vehicle and driver constitute a complex combined 

system which cannot be split. Some survey papers on the results obtained in driver 

modeling up to the nineties were reported [113-115]. 

The human sensory and neuromuscular system has some limitations which are 

usually considered in the driver models. These limitations are explained comprehensively 

in [116]. The most important ones among these limitations are transport delay, threshold 

properties, rate-limiting properties, signal noise in sensory inputs and output responses, 

and visual acuity abilities. 

Further progress in modeling human driver was made when engineers started to 

work with scientists from other disciplines such as psychology and physiology, e.g. [117-

119]. The main characteristics that these scientists suggested that should be considered in 

deriving a driver model can be categorized into three groups. The first group contains 

general characteristics of human beings such as input channels of the driver (visual, 

vestibular and kinesthetic, tactile, and auditory) which have different effects on driver 

behavior in different scenarios. Other characteristics to be considered are perception, 

processing, neuromuscular dynamics, preview, anticipation, adaptation, learning, path 

planning, and speed adjustments. Further information about these characteristics can be 

found in [120]. The second group consists of properties regarding the experience, age, 

sex, and willingness to take and accept risks of the driver. Finally, features like emotions, 

tiredness, concentration, and stress are other factors which should be considered while 

modeling the human driver. 

A look back to early research in this area, when Kondo [121] in Japan started to 

model the driver, might be helpful to illustrate some of the roots to which many later 

models up to now (although not always directly) are obliged [122]. In that study, a 

bicycle model was considered for the vehicle, which has a constant longitudinal model, 

and the driver steers in a way that at a point in a definite distance ahead, he/she would 

like to coincide with the sight point. In other words, from a control theory point of view, 

the driver would like to reduce Δ𝑦𝑝, at a distance L ahead of the vehicle (Figure 2.4). 
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Figure 2.4. Kondo’s shaft driver model 

This study was the first work which used the well-known preview tracking 

structure. The general structure of these kinds of models is shown in Figure 2.5. In this 

structure P(s) is the preview strategy of the driver, H(s) represents control properties of 

the driver, G(s) is the transfer function(s) of the vehicle, and B(s) shows the feedback 

function. 

 

Figure 2.5. General structure of preview tracking driver models 

In Kondo’s shaft model we have 

𝛥𝑦𝑝(𝑡) ≈ 𝑦(𝑡) + 𝐿𝜓(𝑡) = 𝑦(𝑡) + 𝑇𝑝𝑣𝜓(𝑡) ≈ 𝑦(𝑡 + 𝑇𝑝)   (2-2) 

where the preview time is 𝑇𝑝 = 𝐿 𝑣⁄ . In order to show it in the format of Figure 2.5, we 

can determine 𝐵(𝑠) = 𝑒𝑇𝑝𝑠 and 𝑦𝑝 = Δ𝑦𝑝.With 𝑃(𝑠) = 𝑒𝑇𝑝𝑠 and 𝐻(𝑠) = 𝐾, a simple 

proportional control is composed for Kondo’s shaft model in Figure 2.4 with 𝛿𝑠(𝑠) =

𝐾𝑒𝑇𝑝𝑠𝑦(𝑠) for desired 𝑦0 = 0. 
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In some papers, for small values of 𝜓(𝑡), 𝑣𝜓(𝑡) in the above equation is replaced 

by 𝑦̇(𝑡), therefore 𝐵(𝑠) = 1 + 𝑇𝑝𝑠 [123, 124]. Some others have used Taylor series 

expansion for 𝑦(𝑡 + 𝑇𝑝) and used the following second order prediction function [115, 

125, 126]: 

𝐵(𝑠) = 1 + 𝑇𝑝𝑠 +
1

2
𝑇𝑝
2𝑠2   (2-3) 

One of the most popular driver models used by many scientists is the McRuer 

model [127] where 

𝐻(𝑠) =
𝐾(𝑇𝐿𝑠+1)

(𝑇𝐼𝑠+1)(𝑇𝑁𝑠+1)
𝑒−𝜏𝑟𝑠   (2-4) 

was used for the tracking behavior of human. In this model, P(s) and B(s) of Figure 2.5 

are neglected. The parameters in the above transfer function can be categorized into two 

groups. The first group are related to human characteristics: neuromuscular delay time 𝑇𝑁 

and reaction time 𝜏𝑟. The second group of parameters (𝐾, 𝑇𝐿, and 𝑇𝐼) depend on the 

controlled system (vehicle) and are independent of the human driver. Later, McRuer 

modified this model and presented the ‘precision model’ [128]. 

One effective way of describing human regulation task (e.g., driving) is the 

‘crossover model’ [111, 129]. In this model, the open-loop transfer function of the 

combined system of driver H(s) and vehicle G(s) is presented by 

𝐻(𝑠)𝐺(𝑠) =
𝜔𝑐

𝑠
𝑒−𝜏𝑟𝑠   (2-5) 

in the vicinity of the crossover frequency 𝜔𝑐. Transport delay is shown by 𝜏𝑟 as before. 

The main problem of this model is the fact that it is valid only near the crossover 

frequency and it does not tell anything about the other frequencies, especially the low 

frequency where most of the human driving tasks occur. Some information about 

crossover frequencies and phase margins for different driving scenarios are given in 

[126]. 
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Two-level driver model from Donges [130] is another famous driver model which 

was used and modified by many other scientists later, for example [131-134]. This model 

consists of an anticipatory open-loop layer and a compensatory closed-loop one. The 

parameters of this model can be selected to meet the required characteristics of the 

crossover model [125]. This model is extended to a three-layer model in [132]. 

In a major class of human driver models, the goal of the driver is minimizing 

tracking errors in an interval of the future path ahead. These tracking errors can be 

several different variables such as lateral deviation from the center of the road, heading 

angle, etc. and their cause is usually the difference between previewed and desired path 

and the predicted motion of the car. One of the most cited models in this category is the 

preview/prediction model [135] which uses optimal control theory and is the basis of 

many software packages including Carsim and Trucksim. 

Another class of controllers used for representing human driver is fuzzy logic. 

Since it is shown that fuzzy logic can be used to resemble human thinking and perception 

for making a decision [136], some scientists have expressed human driving behaviors 

with fuzzy logic linguistic terms [137, 138]. A self-organizing technique for fuzzy logic 

human driver model is presented in [139] to have more accurate fuzzy reasoning rules. 

The inputs of the fuzzy controller are lateral deviation of the vehicle in single and double 

lane change maneuvers and yaw velocity. Some other fuzzy logic driver models are 

introduced in [140-142]. 

Neural Networks (NNs) were also used in several driver models. In [143], a visual 

data processing method for the road ahead of the vehicle was developed using NNs. In 

this model, the curvature of the road is the only variable which affects the steering wheel 

angle, which is the output of the driver model. Time delays of sensor data are also used as 

input of NN in [144] to obtain steering wheel angle. Similar methods were used in [145-

147] to obtain an NN model for the human driver. The longitudinal behavior of the driver 

is also modeled using NNs in [148]. The task of this model is to follow a given velocity 

profile.  
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2.4. Safety Methods Regarding Intoxicated Driving 

As mentioned in Chapter 1, although the number of alcohol-related accidents is 

very high, the most important method for detecting drivers, and therefore preventing 

accidents, is only performing visual observations by patrol officers. Intoxicated drivers 

have difficulty in performing various tasks related to driving, including maintaining the 

desired lateral position, speeding, braking, vigilance, and judgment [149]. Therefore, 

these behaviors are used as some guidelines for identifying drivers under the influence of 

alcohol. But since usually only 1% of drunk drivers are identified and arrested using this 

method [9], some other methods need to be established to prevent accidents related to 

drunk driving. 

The research on developing devices for detecting drivers with high alcohol level 

started in the nineties [150, 151]. Most of the more recent methods proposed in the 

literature, for improving road safety regarding drunk driving, are drunk driver detection 

techniques [4-6, 12, 152-157]. For example, in the method proposed by [152], the driver 

is constantly monitored, and face detection techniques are combined with alcohol 

detection systems to guarantee the uniqueness of the driver. A dynamic Bayesian network 

is used in [153] to consider blood alcohol concentration (BAC), eye movement, and head 

movement simultaneously to detect intoxicated drivers. Oxygen level in driver’s breath 

[154], water-cluster-detecting method [12], biological sensor obtained from driver’s seat 

and frequency time series analysis [4], vehicle maneuvers detected by accelerometer and 

orientation sensors in mobile phones [6], electric alcohol nose sensor [155], vehicle 

trajectories [156], and driver’s perspiration [157] are also used to detect intoxicated 

drivers.  

Many lane departure warning systems are also available which aim to prevent the 

crashes caused by driver inattention, intoxication or fatigue. Some of these systems are 

presented in [158-162]. In [163], a non-standard safety technology, which assists 

impaired drivers to improve the driving safety is presented. Sometimes a driver drives the 

vehicle with some actions that might not cause an accident immediately but may show 

that he/she is intoxicated, tired or drowsy. In this situation, this non-standard safety 
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system determines if the driver is physiologically impaired based on the information of 

vehicle, road and other objects before the driver causes an accident. 

A summary of studies in the last half a century on the effects of alcohol on driver 

performance is given in [164]. Comprehensive experimental and epidemiological studies 

are available in this report. The relationships between alcohol and fatigue, aggression, 

and the degree of injury are also investigated. Specific studies on the effects of different 

blood alcohol concentrations (BAC) and breath alcohol concentrations (BrAC) on driving 

behavior are presented in [165] and [7], respectively. The effects of age, gender and 

drinking practice characteristics on alcohol impairment of the drivers are also looked into 

in [165]. 

2.5. Lateral Control Systems 

Vehicle lateral control is an integral part of autonomous and intelligent vehicle 

control systems. The primary goal of the lateral control, also referred to as steering 

control, is to navigate a car along the desired path (lane keeping/following). In addition, 

performing lane change maneuvers, avoiding obstacles and collisions in emergency 

situations are also related to vehicle lateral control. 

2.5.1. Lateral Referencing Systems 

In order to implement the lateral control algorithms, we need to measure the 

position of the vehicle with respect to the road (reference). This task can be done using 

various referencing systems. One of the earliest methods available in literature was laying 

a wire along the center of the lane [166] in the 1960’s. The wire was excited with an 

alternating current. This amplitude-sensing technique, employed by General Motors 

Corporation/Radio Corporation of America worked satisfactorily at low speeds (up to 55 

𝑘𝑚/ℎ) provided no ferrous material were located under or on the road. In order to 

increase the robustness to ferrous materials, phase-sensing approaches were replaced later 

in the mid-1970’s [167]. In 1977, FHWA banned the use of wire-reference systems 

because of operations and maintenance considerations. This incident led to a search for 

referencing systems with only passive devices in the roadbed or along the road. 
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Various referencing systems have been proposed in the last four decades, all of 

which can be categorized into look-down and look-ahead systems. The look-down 

systems measure the lateral error at a place within the vehicle boundaries. The most 

famous example of look-down referencing systems is magnetometer [168]. Discrete 

permanent magnets were used in [169] for implementing lateral control algorithms. 

Guldner et al. employed magnetic markers to code road information [170]. The magnet 

binary coding in that study could also code information such as road geometry, lane 

change permit, merge/diverge, and Kilometer-post.  

In contrast to look-down systems, look-ahead systems try to mimic human driving 

behavior by measuring lateral error at a distance ahead of the vehicle. One of the earliest 

methods presented in this category was a forward-looking chirp monopulse [171] 

developed at Ohio State University. In this method, a frequency selective surface (FSS) 

strip is installed at the center of the lane, so that the radar chirp can identify the vehicle 

lateral error. This technique could also provide the distance to the preceding vehicle by 

detecting the echo of the radar pulse. 

The most commonly used look-ahead referencing systems are machine vision 

systems which employ cameras and image processing techniques [172, 173]. The main 

advantage of visual guidance techniques is the minimal infrastructure modification they 

require. Vision-based systems can be employed not only for lateral control of the vehicle 

but also for its situation awareness. They were also used for designing active safety 

systems such as Emergency Lane Assist (ELA) [174]. Another advantage of camera-

based systems is in the lane change maneuver where they can continuously provide the 

reference signal, which is impossible in systems with magnetic markers or FSS. On the 

other hand, the main disadvantage of computer vision based systems is their dependency 

on light and weather conditions. Enhancing image processing techniques to improve the 

robustness of such systems is ongoing research [175-178]. 

2.5.2. Lateral Control Algorithms 

As lateral control is central to driving, it has been extensively studied [40]. The 

research on lateral control has been reported by many government-funded programs, 
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industrial sector, and academia [63]. Currently, research on designing reliable and 

effective lateral control system for both autonomous vehicles and active safety systems in 

manually driven cars is ongoing. 

Steering assistance is available in many vehicles in various forms including lane-

keeping support systems [179]. The differences in these systems are mainly due to the 

controller algorithm, which will be explained later, or the control signal. The control 

signal in these systems is either (1) steering angle or (2) steering torque [179, 180]. 

Whereas most of the practical available lane-keeping systems have used steering torque 

as the control signal [181-183], many researchers in academia have selected steering 

angle as the control signal for lateral control [180].  

In practice, various sensors can measure the lateral error of vehicle position. 

These sensors, which are usually accompanied by a signal processor to estimate the 

lateral position of the vehicle with respect to the lane, include differential global 

positioning systems [184], cameras [185, 186], and magnetometers [168]. 

Another major part of the lateral control system is performing lane change 

maneuvers [187]. This maneuver is performed in four steps: sense, perceive, decide, and 

act. A combination of sensors including camera, Radar, Laser, and infrared is usually 

required for this task [188]. Various algorithms have been proposed by researchers for 

performing lane change maneuvers. A review of many of these techniques is presented in 

[189]. 

Active driver-assistance systems of the vehicle related to its lateral movement are 

increasingly being used in commercial vehicles. Although there are still many problems 

that need to be addressed, these active systems are being improved rapidly and can 

already perform many fully autonomous tasks including parking, lane changes, and 

obstacle avoidance [190]. A comprehensive list of such active safety systems is presented 

in [174]. 

A vast range of control algorithms has been used for all different task of lateral 

control mentioned above. Among the methodologies employed are linear quadratic 
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control (LQ) [191], lead-lag control [192], optimal preview control [193], sliding mode 

control [194], virtual curvature method for lane change [188], extended Kalman filter 

[195], and genetic algorithm [196]. Some researchers have tried to imitate human steering 

behavior using fuzzy logic controllers [197], artificial neural networks [33], and also by 

using the neuromuscular dynamics [198].  

In the last decade, following the implementation and excellent performance of 

model predictive controllers (MPC) in various industrial projects [199], many researchers 

and companies in automotive industries have started using this algorithm for the lateral 

control of autonomous vehicles. For example, MPC was used for double change 

maneuver in [200]. Lee and Yoo designed a controller using MPC algorithm using 

sideslip angle and vehicle velocity [201]. In 2010, Anderson et al. applied  MPC to plan 

optimal vehicle trajectories to keep the vehicle in a safe corridor [202]. 

Less than a decade ago, ℒ1 adaptive control was introduced by Hovakimyan and 

Cao [27-29]. In Chapter 6, we employ this algorithm for vehicle lateral control problem. 

In recent years, this algorithm was applied to control some industrial and military 

systems. The first and most notable application of ℒ1 adaptive control was in flight 

control for aircraft, missiles, and spacecraft [203-206]. These flight tests included 

different sources of un-modeled dynamics and unknown and variable parameters. Current 

flight tests are being performed on a prototype commercial jet at NASA. Other than 

Unmanned Aerial Vehicles (UAV), this algorithm has also been used successfully in 

drilling systems [207], anesthesia delivery [208], wind turbines [209], and some other 

industrial systems [27]. 
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Chapter 3.  

 

Detection of Intoxicated Drivers via Steering Behaviour: A 

System Identification Approach 

Impaired driving is known to be among the leading causes of death and injury on 

the roads [4]; however, as discussed in the previous chapter, the existing measures to 

address this menace appear to be insufficient.  In this chapter, we present a novel method 

that not only mathematically models the behavior of drivers; also detects intoxicated 

driving. The algorithm lays a foundation that can be implemented in future cars to derive 

personalized models of the drivers and to detect intoxicated driving as well as other 

reckless driving styles. 

In this study, we consider the vehicle information and driver input signals to study 

the behaviors of drivers in performing lateral control task. We rely on system 

identification techniques based on the input and output signals from the driver to estimate 

his/her state. In particular, we propose a method to overcome the current shortcomings of 

intoxicated driver detection, explained in Chapter 2, by considering the lane-keeping task 

of the drivers and focusing on two signals: the lateral preview error and the steering 

wheel angle. We employ these two signals to: 

1. Present and evaluate two models to describe the lane keeping behavior of sober 

and drunk drivers 

2. Perform online identification on the driver to detect drunk driving by 

comparing the current model of the driver with the obtained models in the 

previous part 

3.1. Data Collection 

3.1.1. Driving Simulator  

The dataset used for system identification was collected from several hundred 

trials on the Forum8 PC-based driving simulator [210] in the Autonomous and Intelligent 
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Systems Lab (AISL) at the School of Mechatronic Systems Engineering of Simon Fraser 

University.  

The software is a 3D, virtual reality, and real-time urban visualization and 

transport modeling software referred to as UC-Win/Road. Users can manipulate a 

dynamic 3D space, import and edit CAD data, build and texture simple block models, 

automatically build roads, tunnels, and bridges, view multiple design alternatives in real-

time, both offline and online, as well as being able to visualize and edit intelligent traffic 

in different scenarios. The hardware is a quarter-cab fixed-base structure which consists 

of a simulator of a car with automatic transmission (see Figure 3.1). The simulator 

includes a driver seat, a steering wheel, brake and accelerator pedals, and a gearshift. 

Three 42” monitors, connected to a common platform, allow the virtual reality appear 

more realistic. An analog dashboard is used to display speedometer and revolution meter. 

The software development kit (SDK) of this set is in Delphi, and the plugins of the 

software can be designed by the users. Integration of the simulator hardware and the 

software provides a real-time interaction of the driver with the virtual environment 

through visual, auditory, and haptic channels. 
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Figure 3.1. Driving simulator used for data collection 

One of the main challenges to overcome was to interface Matlab/Simulink with 

the driving simulator. We solved this problem using the user datagram protocol (UDP) 

network. We wrote a plugin within the UC-Win/Road environment which sends and 

receives real-time data on ports number 4050 and 5000. This configuration (Figure 3.2) 

facilitates sending and receiving data to/from Matlab/Simulink.  
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Figure 3.2. UDP connection between Matlab, UC-Win/Road, and the simulator 

3.1.2. Experiments 

In order to conduct the data collection, we required two sets of data: (i) data from 

sober drivers, and (ii) data from intoxicated drivers. Regarding the former, we asked ten 

volunteers who had at least five years of driving experience to participate in the data 

collection process. All the eight male and two female subjects were in their late twenties 

or early thirties. We collected the data ensuring that the subjects were sober and alert as 

drowsiness, drugs, age, fatigue, or emotional states interfered with the driving behavior of 

the participants. We also made sure that all of the volunteers had sufficient time to get to 

know the system and feel comfortable with the driving simulator. Data was collected 

between 9:00 to 10:00 am for all the subjects. There was no distraction in the 

environment while the subjects were driving and as data was being collected. 

Collecting data for the latter group presented us with challenges. We could not 

have “drunk” participants in the research laboratory for obvious reasons. Therefore, we 

decided to “simulate” the state of intoxication. We came across  Fatal Vision Goggles 

that is claimed to mimic the state of alcohol intoxication [211, 212]. One of the most 

famous indices to show the level of alcohol intoxication is Blood Alcohol Concentration 

(BAC) [213]. The manufacturer of these goggles suggests that the driving behavior of 

someone wearing a Silver Label Fatal Vision goggles is comparable to a person with a 

BAC of 0.17 to 0.20 [214]. In addition, a common phenomenon for driving-while-
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impaired (DWI) motorists is that they do not pay much attention to objects (other cars, 

persons, animals, and obstacles) before these objects move from drivers’ peripheral 

vision into their line of central vision [215]. In order to make the simulation studies more 

realistic, we attached a couple of lenses to the goggles to create the so-called tunnel 

vision as shown in Figure 3.3.  

 

Figure 3.3. Silver Label Fatal Vision goggles which equal to BAC of 0.17 to 0.20 

and tunnel vision lenses attached to them 

The U.S. National Highway Traffic Safety Administration (NHTSA) has 

conducted a comprehensive study on drunk driving  [8] which suggests that one of the 

main characteristics of drunk driving is having problem to maintain proper lane position 

leading to occasional weaving, swerving, turning with a wide radius, and drifting as 

depicted in Figure 3.4. These behaviors were observed in all of the volunteers when they 

wore the goggles. 
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Figure 3.4. DWI driver problems in maintaining proper lane position: (a) 

weaving, (b) swerving, (c) turning with a wide radius, (d) drifting [8] 

We designed four different roads for data collection. The first road was just a 

simple turn, which was used both as a right turn when driving in it from the beginning to 

the end, and a left turn when driving from its end to the beginning. The other three roads 

were short, medium, and long, with the length of 3.5 𝑘𝑚, 10 𝑘𝑚, and 72 𝑘𝑚, 

respectively. All of them had 5 lanes in each direction and the width of each lane was 2.7 

𝑚. The first two roads and the curvatures of the second two roads are shown in Figure 3.5 

and Figure 3.6, respectively. They were designed with different curvatures to excite all 

modes of the driver lateral control behavior and make the data richer. Whereas having a 

rich data set and ensuring sufficient excitation are very important steps for the purpose of 

system identification, they have generally been ignored in previous studies of driver 

modeling [216, 217]. Majority of reported studies have only considered simple straight 

highways. 
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Figure 3.5. (a) Road no. 1, a simple turn (b) Road no. 2, a short road (𝟑. 𝟓 𝒌𝒎) 

 

Figure 3.6. The curvature of (a) road no. 3, medium road (𝟏𝟎 𝒌𝒎) (b) road no. 4, 

long road (𝟕𝟐 𝒌𝒎) 

The volunteers attended five sessions of driving. The first session was designed 

for their familiarization with the simulator and lasted about two hours for each driver. 

This practice run involved both rural and urban driving, highway, intersection, traffic, 

and parking scenarios. The main goal of this session was to provide the volunteers with a 
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“feel” of the dynamics of the driving simulator and the driving environment. In the 

second visit, each subject was asked to drive along the road no. 1 twice, once from the 

beginning and another time from the end. They drove down the roads nos. 2 to 4 once in 

the same session. The same procedure was repeated in the third visit, but the volunteers 

were asked to wear the goggles. The fourth and fifth trials were identical to the third and 

second ones, respectively. The reason to collect data in different sessions was to prevent 

the fatigue of the drivers. Based on the recommendations in  [11] and [216], the numbers 

of these sessions and drivers are enough in order to establish the desired models. The 

drivers started all the roads in the third lane and were asked to remain in that lane. They 

were instructed to strictly adhere to a speed limit of 80 𝑘𝑚/ℎ. The experiments were 

conducted in a low traffic environment whereby occasional   motorcycles, sedans, sport 

utility vehicles (SUVs), and trucks passed by. 

  

Figure 3.7. The magnitude of the Preview Error (PE) and the Lateral Position are 

shown. The signs are considered positive if the position is on the right 

side of the center of the lane. Otherwise, it is considered negative. 

Output logs consisting of 60 parameters including 𝑥𝑦𝑧 positions, the direction of 

the car, steering wheel angle, pedals values, yaw, pitch, roll, road curvature, and the 

offset from the lane center were recorded at each instance for each driver. In the next 

section, we will further discuss that the preview error signal and the steering wheel angle 

were employed for the identification purpose. While the steering wheel angle is easily 



39 

available, the preview error signal should be calculated using the position and the 

direction measurements of the car and the coordinates of the center of the lane, as 

depicted in Figure 3.7. Samples of these two signals from one of the subject drivers are 

shown in Figure 3.8. 

 

Figure 3.8. Sample (a) preview error and (b) steering wheel angle data collected 

on road no. 1  

3.2. Identification of Sober and Intoxicated Driver Lateral 

Control Behaviors 

We apply system identification techniques on the data sets collected from the 

driving simulator to estimate two models for drivers while they are sober and intoxicated. 

These models will be used in the next section to detect drunk drivers. We consider a 

black-box driver model where the input of the driver is the preview error (𝑝𝑒) and the 

output is the steering wheel angle (𝛿). This idea of the lateral control behavior of the 

driver is shown in Figure 3.9.  

 

Figure 3.9. Black-box driver model where 𝒑𝒆 is the preview error and 𝜹 is the 

steering wheel angle 
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3.2.1. Pre-processing the Data 

The periodogram of data is plotted in Figure 3.10. This periodogram is computed 

by taking the absolute squares of the Fourier transforms of the data, divided by the 

number of data points, and multiplied by the sampling interval. This data spectrum shows 

that the two signals we use in our system identification do not have any significant 

frequency component above 1.7 𝐻𝑧 (10.7 𝑟𝑎𝑑/𝑠). Since the rule of thumb is to use a 

frequency ten times this value as the sampling time, we set the sampling rate to 17 𝐻𝑧 for 

our signals. 

 

Figure 3.10. Sample signals spectra. The values of components after 1.7 𝑯𝒛 (10.7 

𝒓𝒂𝒅/𝒔) are very small. 

The distance between the center of the lane and the center of gravity of the car 

was considered as the lateral position, as shown in Figure 3.7. We noticed that most 

drivers did not drive exactly at the center of the lane, even on straight roads. In fact, this 

lateral position is rather subjective to each driver. Therefore, it should be measured and 

subtracted from the data so that the dynamics of driver behavior would not be influenced 

by this offset. Each driver might tend to drive at the right or left side of the lane center, 

close to or far from it. Therefore, we measured the mean lateral position error for each of 

the subject drivers and then removed it from the data, through subtraction from the 

preview error. For this purpose, we asked each driver to drive in the center of the middle 
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lane of a 5-lane 10-kilometers straight highway without any traffic. The measured mean 

lateral positions are 10, 5, 38, 34, 17, 18, -1, -29, -25, and -16 centimeters for our drivers. 

Negative values imply that these drivers tend to drive on the left side of the center of the 

lane. 

In overall, there were 100 sets of data collected for sober driving and another 100 

sets were collected for intoxicated driving. We divided each set into two halves: the first 

half was used for the identification purpose and also finding parametric uncertainty 

ranges for the models, and the second half was used to evaluate the obtained models 

(validation data). 

3.2.2. Model Structure 

Selecting a model structure is a trade-off between simplicity and accuracy of the 

model to be identified. The two models obtained for sober and drunk drivers will be used 

in the next section for online identification and detection of DWI motorists. This 

constraint imposes some limitations on the model structures, one of which is that they 

necessitate using parametric models. In this study, we considered six different model 

structures to describe the driver behavior. The structure which resulted in a better model 

validation was finally selected. 

The general linear time-invariant model structure that we considered was also 

subject to additive random disturbances [218] given by : 

𝛿(𝑡) = 𝐺(𝑞)𝑝𝑒(𝑡) + 𝐻(𝑞)𝑒(𝑡)   (3-1) 

in discrete-time with 

𝐺(𝑞) = ∑ 𝑔(𝑘)𝑞−𝑘∞
𝑘=1    (3-2) 

𝐻(𝑞) = 1 + ∑ ℎ(𝑘)𝑞−𝑘∞
𝑘=1    (3-3) 

where 𝛿 is the steering wheel angle, 𝑝𝑒 is the preview error,  𝑒 is the disturbance which 

we consider as a sequence of independent random variables with zero mean values, 𝐺 and 
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𝐻 are the transfer functions from 𝑝𝑒 and 𝑒 to 𝛿, respectively, 𝑞−1 is the backward shift 

operator, and the sequence {𝑔(𝑘)}1
∞ is the impulse response of the system. 

For describing the relation between the preview error and the steering wheel angle 

signals, the simplest parametric input-output relationship used in our study was the auto-

regressive with exogenous input (ARX) structure. Such models are very common in 

signal-processing applications. In these models, 𝐺(𝑞) and 𝐻(𝑞) in (3-1) are considered as 

𝐺(𝑞) =
𝐵(𝑞)

𝐴(𝑞)
     (3-4) 

and  

𝐻(𝑞) =
1

𝐴(𝑞)
   (3-5) 

where 

𝐴(𝑞) = 1 + 𝑎1𝑞
−1 +⋯+ 𝑎𝑛𝑎𝑞

−𝑛𝑎  (3-6)  

and 

𝐵(𝑞) = 𝑏1𝑞
−1 +⋯+ 𝑏𝑛𝑏𝑞

−𝑛𝑏   (3-7) 

The simplicity of this ARX model is a remarkable advantage, and it can be 

selected subject to passing residual analysis (whiteness and independence tests of 

residuals). However, it fails at describing the disturbance term. This shortcoming can be 

overcome by considering the disturbance term as a moving average of white noise. By 

doing this, the structure of 𝐺(𝑞) in (3-4) remains the same, but 𝐻(𝑞) in (3-5) is replaced 

by 

𝐻(𝑞) =
𝐶(𝑞)

𝐴(𝑞)
   (3-8) 

where 

𝐶(𝑞) = 1 + 𝑐1𝑞
−1 +⋯+ 𝑐𝑛𝑐𝑞

−𝑛𝑐   (3-9) 
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This model is known as the auto-regressive moving average with exogenous input 

(ARMAX), and it is a common structure in econometrics and control for both control 

design and system description. Another version of this structure includes an integrator in 

noise structure, 𝑒(𝑡). In these models the structure of the disturbance is 

𝐶(𝑞)

𝐴(𝑞)Δ
 𝑒(𝑡)    (3-10) 

where 

Δ = 1 − 𝑞−1   (3-11) 

Putting Δ in the denominator of the noise model indicates that the noise is non-

stationary (𝑒(𝑡)/Δ is known as a random walk) and it forces integration in the controller 

to be designed later. In this study, we considered the third and the fourth model structures 

to be used as ARX and ARMAX with the noise integrator Δ, which are referred to as 

ARIX and ARIMAX models, respectively. 

All the four considered models so far in our study had a common factor 𝐴 in the 

denominators of the transfer functions 𝐺 and 𝐻 in (3-1). Output error (OE) and Box-

Jenkins (BJ) model structures are the other two models that we considered for describing 

the lateral behavior of drivers. These models did not have the common factor 𝐴 in the 

transfer function from noise to output. In the output error model structure, the term 𝑒(𝑡) 

was directly added to the output. In other words, we parameterized the dynamics of the 

driver behavior in this model, but we did not estimate a noise model: 

𝛿(𝑡) =
𝐵(𝑞)

𝐹(𝑞)
𝑝𝑒(𝑡) + 𝑒(𝑡)  (3-12)  

Finally, the Box-Jenkins model structure provides completely independent 

parameterization for the driver dynamics and the noise, using rational polynomial 

functions. The advantage of this structure is that it provides the highest flexibility for 

modeling compared to the previous five models. The disadvantage is the higher number 

of parameters to be estimated. This model structure can be described as 
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𝛿(𝑡) =
𝐵(𝑞)

𝐹(𝑞)
𝑝𝑒(𝑡) +

𝐶(𝑞)

𝐷(𝑞)
𝑒(𝑡)   (3-13) 

The six model structures used in this study are summarized in Table 3.1. After 

estimating the parameters of each model, the best one was employed for online 

identification and detection of drunk drivers in next section. The best model structure is 

the one that shows better results in these two validations tests: First, we compared the 

measured outputs and the simulated ones for models obtained in different structures. 

Second, we tested the residuals for whiteness and independence of past inputs. 

Table 3.1. Black-box model structures used here as special cases of 

 𝑨𝜹 = 𝑩 𝑭⁄  𝒑𝒆 + 𝑪 𝑫⁄  𝒆 

Model Structure Polynomials Used Noise Integration 

ARX A, B No 
ARMAX A, B, C No 
ARIX A, B Yes 
ARIMAX A, B, C Yes 
OE B, F No 
BJ B, F, C, D No 

 

After selecting each model structure, it is important to select the order of the 

model. The common method is trying several values for the orders and choosing the best. 

There is a compromise between simplicity and accuracy in this stage as well. In addition, 

there are some criteria for choosing the model order available in the literature [218]. 

Akaike information criteria (AIC), final prediction error (FPE), and Rissanen MDL 

criterion are three of these criteria which are used in our study [219, 220]. 

3.2.3. Delay Estimation 

Regardless of the model structure we choose for identification, there is an 

inherent delay in the behavior of the driver which should also be identified. One option 

for determining the value of the delay is simply to use the driver reaction time suggested 

in the literature (e.g., in [120]). However, the input-output pair and the preview time used 

here is unique, and it has never been used previously. Therefore, it is not possible to use 

this method to identify the delay. 
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Another option for finding the delay of systems is plotting the impulse response 

of the system. In this case, the delay was obtained by identifying the time when the first 

variation in response occurred. However, since our data was collected in a closed-loop 

system, the delay estimated using the impulse response method is not valid [218].  

In this study, we consider a fixed ARX model with a range of delays for the input-

output channel and then choose the delay which results in the best fit. We repeat this for 

each driver to find the appropriate delay value for each subject. This delay time, which is 

the summation of reaction time and neuromuscular delay [120], will be used in all six 

models identified for each driver. 

3.2.4. Closed-loop Identification 

An important problem in system identification is the existence of feedback in the 

data. The techniques used for system identification will be different if the data is 

collected in a closed-loop system. The setup in which we collect the data in this study is a 

closed-loop system, i.e., contains output feedback. The simulator is controlled by the 

steering command given by the driver (𝛿) and the driver uses the preview error (𝑝𝑒) as 

his/her input for lateral control of the vehicle. In other words, while it is ideal for system 

identification techniques that the input of the system to be identified (𝑝𝑒 here) be 

independent of the previous outputs (𝛿 here), they are strongly correlated in a closed-loop 

configuration (see Figure 3.11). 

 

Figure 3.11. Schematic closed-loop system used for identification 

The most important problem with the closed-loop data is that it usually has 

significantly less excitation compared to the data collected in an open-loop system. This 

problem refers to the concept of persistent excitation [221]. In fact, one of the main goals 

of introducing feedback in a system is reducing the sensitivity of the closed-loop system 
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to changes in the open-loop system. This phenomenon has a negative effect on system 

identification where richness in excitation is crucial. 

Since the nature of driving a vehicle involves this closed-loop configuration (it 

cannot be performed in open-loop), we solved this problem by making the excitation 

richer by designing roads with a high number of sharp and smooth turns, as shown in 

Figure 3.6. In addition, we added some small wind disturbance while collecting the data. 

Finally, we included some unevenness in road pavement in a few parts of the roads. 

These three elements (curves, winds, and unevenness) significantly increased the richness 

of data so that it had enough information to be used in the closed-loop identification. 

There are three methods available in the literature to identify systems using the 

closed-loop data: direct, indirect, and joint approaches [218]. The method used here is the 

direct identification approach where the estimation method is applied straightforwardly: 

we ignored the feedback and used 𝛿 and 𝑝𝑒 as if they were collected in an open-loop 

configuration. In addition to data richness problem, which was solved here as explained 

before, the most significant drawbacks of this approach was the need for good noise 

models. Since ARMAX, ARIMAX, and BJ structures estimate a noise model, we 

expected that they could model the driver lateral behavior better than ARX, ARIX, and 

OE models. 

The final problem that should be considered in the closed-loop identification was 

that many estimation methods that work well and give consistent estimates for the open-

loop data would probably fail when used in the direct approach when dealing with the 

closed-loop data. In fact, even many of the well-known estimation methods cannot be 

used with the closed-loop data, including instrumental variable method, subspace 

method, spectral and correlation analysis, and output error methods with the wrong 𝐻 

transfer function (noise model) [218]. Therefore, we applied the prediction error method 

which produced consistent estimates and optimal accuracy even in the presence of the 

feedback in data. 
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3.2.5. Identification Results and Validation 

The steering behavior of drivers can be modeled using two different approaches. 

The first approach is finding a specific model for each driver and the second one is 

presenting a more general model using the data collected from all the driver subjects. 

Even though the first approach results in models with smaller uncertainty, it needs two 

training procedures for each different driver while they are sober and intoxicated. For that 

reason, we used the second approach in this work and presented two generic models for 

each case using 200 collected data sets. 

The first parameter that should be identified in this method is the preview time. In 

previous works such as [222], a preview time equal to 1 𝑠 was considered for the driver. 

However, investigating 200 sets of data and testing a range of preview times from 0.1 𝑠 

to 5 𝑠 showed that 1.25 𝑠 is the optimal value and results in the best fit for the data, as 

shown in Figure 3.12.  

 

Figure 3.12. The optimal preview time, considering the best fit to estimation, is 

obtained at 𝟏. 𝟐𝟓 𝒔 

The next parameter that should be fixed during the identification procedure was 

the delay time. Using the method mentioned in section 3.2.3, we identified the average 

delay time as 1 sample or 0.06 𝑠. This is obtained from an ARX model with 𝑛𝑎 = 𝑛𝑏 = 2 
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for all the drivers. The delay value (𝑘) that results in the best estimation fit is 𝑘 = 1 

which will be used as the delay for all 6 model structures.. 

Table 3.2. Parameters of six models of steering wheel behavior of sober drivers 

and an ARIMAX model presented for drunk drivers (last row) 

Structure 𝑎1 / 𝑓1 𝑎2 / 𝑓2 𝑎3 / 𝑓3 𝑎4  𝑎5 𝑏1 𝑏2 𝑐1 𝑐2 𝑑1 𝑑2 

ARX -1.771 0.126 1.18 -0.527 ― -0.001 ― ― ― ― ― 

ARIX -0.767 -0.716 0.726 0.966 -0.216 -0.011 ― ― ― ― ― 

ARMAX -1.053 -0.730 0.801 ― ― -0.001 ― 0.586 ― ― ― 

ARIMAX -0.644 -0.740 0.514 ― ― -0.008 ― 0.0142 ― ― ― 

OE -3.795 5.472 -3.55 0.874 ― -5e-4 ― ― ― ― ― 

BJ -2.833 2.685 -0.852 ― ― -0.001 0.001 -0.040 0.590 -1.782 0.790 

ARIMAX (d) -0.887 -0.760 0.707 ― ― -3.3e-4 ― -0.201 ― ― ― 

 

Using a fixed preview time of 1.25 𝑠 and a fixed delay time of one sample, the 

best model structure for sober drivers were found using the residual analysis of the best 

model (the model that fits data the best) in each structure. Using prediction error 

estimation techniques, the best parameter values that could describe the lateral control 

behavior of drivers were found for each of the six structures and shown in Table 3.2.  

 

Figure 3.13. Residual analysis of six different models structures. Whiteness test 

(above) shows that ARIMAX is the only structure that 

autocorrelation of residuals fit in the 99% confidence interval. 

Independence test (below) shows the superiority of ARIX and 

ARIMAX models. 
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Whiteness test of residuals, shown in Figure 3.13, shows that ARIMAX is the best 

structure because its auto-correlation plot fits in the 99% confidence interval. Moreover, 

the independence test (cross-correlation) shows that the selected delay value is 

appropriate and results in almost zero cross-correlation for the ARIMAX structure. 

Therefore, this is the model we selected in this study to describe the steering wheel 

behavior of sober drivers. 

One of our objectives of finding a model for sober drivers was to identify a model 

with a similar structure as intoxicated drivers and to detect them using online system 

identification. Since the best model we presented for sober drivers is an ARIMAX model, 

we also found a model with a similar structure for 100 sets of data we have from the 

drivers who drove the simulator vehicle wearing fatal vision goggles with tunnel vision 

lenses attached to them (simulated drunk driving). The result is shown in the last row of 

Table 3.2.  

3.3. Online Identification and Drunk Driver Detection 

Mathematical models of sober and impaired drivers were presented in the 

previous section. We would like to use these models to identify alcohol-induced driving. 

The main idea is to use online identification techniques to update the model of the driver 

while he/she is driving. The model structure used for online identification should be fixed 

and the same as the structure we used previously, i.e., ARIMAX structure with 𝑛𝑎 = 3 

and 𝑛𝑏 = 𝑛𝑐 = 𝑘 = 1. 

In order to perform this task, instead of generating one generic model based on 

the 100 sets of data, 100 different models based on each set of data are generated. Then 

this procedure was repeated for 100 sets of data collected from impaired drivers. There 

were five parameters which should be identified for each of these 200 models: 

𝑎1, 𝑎2, 𝑎3, 𝑏1, and 𝑐1. The parameter variations of all these 200 models are shown in 

Figure 3.14. In addition, the mean and the standard deviations of the parameters are 

displayed in Table 3.3. Since the values of parameters are very close to each other, they 

cannot be used to detect DWI drivers.  
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The parameter that can be considered an exception is 𝑏1 which is higher for 

impaired drivers in most of the models. In the ARIMAX model structure presented here, 

the parameter 𝑏1 is proportional to the gain of the system (driver). The fact that it is 

higher for impaired driver is not far from expectation. Human factor scientists have 

reported previously that alcohol causes aggression in the behavior of the drivers [215]. 

Higher gain in the driver model is in complete agreement to the aggressive driving style 

of DWI motorists. 

 

Figure 3.14. The variation of model parameters of sober (solid) and impaired 

(dashed) drivers 

While the values of the parameters of the models related to sober and intoxicated 

drivers do not show a significant difference, it can be observed that the positions of the 



51 

complex conjugate poles of these two models have a meaningful and considerable 

difference. The model structure used here has three poles in the steering dynamics of the 

driver. These poles include a real-valued pole between -0.65 and -0.9 and two other poles 

which are complex conjugate in more than 95% of our data sets, as shown in Figure 3.15. 

Table 3.3. Mean and standard deviation of model parameters for sober and 

impaired drivers 

 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒃𝟏 𝒄𝟏 

Mean (sober) -0.9037 -0.3398 0.3706 -0.0091 -0.0383 

SD (sober) 0.0729   0.0602 0.0590 0.0022 0.1107 

Mean (impaired) -1.0386 -0.3424 0.4674   -0.0025 -0.1034 

SD (impaired) 0.1025 0.0797 0.0686 0.0026 0.1232 

 

The complex conjugate poles associated with each group of the data sets (sober or 

impaired) are in two regions shown in Figure 3.15. Although these two regions have an 

overlap, in more than 80% of the models the poles are outside the overlap region. The 

fact that the poles related to DWI drivers are closer to the point (1 + 𝑗0), unit circle, and 

the instability region, clearly shows that their behavior is more aggressive and confirms 

all previous results available in the literature. 

 

Figure 3.15. Regions of complex conjugate poles of identified models for sober 

(black) and impaired (gray) drivers (plotted using 200 sets of data) 
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Although these two regions slightly vary for different car dynamics, for any 

specific car these two regions can be identified and used to detect alcohol-induced 

driving. The basic idea is to use recursive system identification techniques and Kalman 

filter algorithm [218] to update the model of the driver. At each instant, the poles of the 

driver model are calculated. If for several samples the poles remain in the area associated 

with intoxicated drivers, one can conclude that the driver is under the influence of alcohol 

(or drives similarly to someone who is intoxicated). 

In order to test the performance of this method, one of the subjects was asked to 

drive for a few minutes in the simulator. Meanwhile, online identification techniques 

were performed using the structure and the initial model obtained previously. He was 

then asked to wear the goggles to simulate the intoxicated driving behavior. This moment 

is considered to be at 𝑡 = 0. The conjugate pole of the model of the driver, which is 

inside the region associated with sober drivers, is shown in Figure 3.16 at this moment. 

Data collection at the sampling rate of 17 𝐻𝑧 is continued and the parameters of the fixed 

structure model are updated using this data. After about 2 seconds of driving the pole 

moves out of the sober driver region and after about 10 seconds it enters the region 

associated with intoxicated drivers. The driver continues driving for about one minute 

and during this time the poles of updated models remain in the impaired driving region. 

Hence, the alcohol-induced driving is detected. 
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Figure 3.16. Place of complex pole in online identification of intoxicated drivers 

In order to test the robustness of the algorithm, this test was repeated 150 times 

and drivers were asked to drive the car first without the goggles, then wearing the 

goggles. After 30 s the system decided whether they showed the behavior of alcohol-

induced drivers or not. In 116 cases (77%) the system successfully detected impaired 

driving. In 13 cases (9%) the poles remained in the sober region, and they were not 

detected. In other cases, the poles were outside both of the regions. We also observed a 

false alarm rate of 8%. These results can be improved by training each driver and finding 

the regions which are specific to each driver. However, the trend that the complex poles 

move to the right can be seen in all the cases of intoxicated driving. 

3.4. Conclusion 

Driver assistance systems and vehicle safety systems are used to improve the 

driving performance of the driver. One of the important requirements in designing such 

systems is the driver mathematical model. Although different models of sober drivers are 

available in the literature, to the best of our knowledge, the steering behavior of 

intoxicated drivers has not been reported. 
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In this section, we applied system identification techniques and presented two 

models to describe the lateral control behavior of sober and drunk drivers. In these 

models, the preview error at 1.25 𝑠 ahead of the vehicle was considered as the input to the 

driver and the steering wheel angle of the vehicle was treated as the driver’s output. 

Different linear model structures were investigated and the ARIMAX structure was 

chosen as the best structure to describe the behavior of drivers. 

The delay time (reaction time) is a very important parameter to be identified in 

any system identification problem. The delay we found in our model was about 0.06 𝑠 

which is less than the usual delay values reported previously for the drivers. This is 

resulting from the preview error considered as input here. Since the driver output depends 

on the error if the vehicle goes in the same direction for 1.25 𝑠, the model involves a 

smaller delay compared to the models that consider instant error as the input of the driver. 

The 200 sets of data collected in driving simulator were split into two halves: the 

first half was used only for identification and the second half for validation of the models. 

The model validations show that the proposed models can successfully predict the 

behavior of both types of drivers. Also, the residual analysis was performed, and the 

validity of the model was confirmed.  

In this study, we also introduced a novel method to detect alcohol-induced 

driving. We showed that if an ARIMAX model is considered for drivers, the positions of 

two complex conjugate poles of the models will be indicators of the intoxicated driving 

behavior. We used online identification techniques to identify and update the model of 

the drivers while they are driving. We demonstrated that this method could facilitate 

recognition of sober and intoxicated drivers through checking the poles of the model.  

This method of identifying DWI drivers not only is useful in detecting alcohol-

induced driving but also can be used as a measure to evaluate the performance of the 

driver. It can also detect any other impairment that might have a similar effect as alcohol 

on driving behavior. Since the region of specified poles for intoxicated drivers in our 

model is associated with aggressive behavior of drivers, it can be used to detect any 

aggressive driving behavior as well. 
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Detection of driver impairment, especially driver drunkenness, is one of the most 

important problems in transportation systems and it is very crucial for the safety of all 

drivers, passengers, and pedestrians. The proposed novel method can be used to develop 

a warning system for driver impairment as well. However, there is room for further 

improvement in the future. In this analysis, we used vehicle information (preview error) 

and vehicle input (steering wheel angle) to detect alcohol impairment. Accelerate and 

brake signals can also be added to the system to make the detection more accurate. In 

addition, this information can be used together with the physiological state of the driver 

to make the DWI detection more precise. Finally, in order to reduce the level of 

uncertainty, a personalized model of each driver can be used instead of generic models of 

sober and impaired drivers. 

After detection of intoxicated driving, the next step is to modify the steering 

vehicle signal applied to the vehicle. One solution is removing the driver and performing 

the steering wheel control autonomously. This solution will be applied in Chapter 5 and 

Chapter 6. In the next chapter, we investigate the possibility of another solution, which is 

keeping the driver in the loop and adding serial and parallel controllers to the system to 

improve the performance. 
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Chapter 4.  

 

Serial and Parallel Assisting Lateral Controllers 

4.1. Introduction 

In the previous chapter, we developed and tested two mathematical models to 

represent intoxicated and sober drivers. After the detection of impaired driving, a semi-

autonomous car can be provided with different options including but not limited to 

switching to autonomous control (overriding the driver), stopping the vehicle, or making 

a call to the nearest police station. In addition, various advanced driver-assistance 

systems (ADAS) can be employed to warn the driver or intervene in handling the vehicle. 

Although much progress has been made in developing these ADASs, researchers 

still believe that these systems might distract the driver. For example, the warning 

systems used in the cars are visual, auditory or haptic [22]. If the driver is looking away, 

fixed front displays in front of him will not attract his/her attention so it will not be 

useful. In addition, side screen displays can take the driver’s attention off the road and 

can be dangerous. Auditory or haptic warning systems cannot transmit enough 

information in a short time. Furthermore, drivers might not like repetitive warning 

messages when they already have noticed the imminent danger [23]. 

On the other hand, although the main goal of a driver assistance system is to 

reduce the physical and mental workload of the driver and therefore to improve safety,  

the driver would be disengaged from driving if the workload is less than a certain 

amount. 

In this Chapter, we investigate the possibility of two other solutions involving 

serial and parallel controllers, which can assist the drivers without distracting or 

disengaging them. The main idea of the serial controller is that the driver control signal 

(steering signal) is fed to another controller instead of the steering column of the car. The 

output of this controller is the effective steering signal which acts on the wheels. This 

control system can be readily implemented using a steer-by-wire system [24] without 
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requiring additional sensors or actuators (unlike a parallel controller or most similar 

ADASs). On the other hand, the proposed parallel assisting controller requires additional 

sensors as it will be explained in section 4.2. The basic idea of this system is to add the 

driver steering signal to the output of an independent lateral controller. The summation of 

these two control signals is then fed to the steering column of the vehicle. In this chapter, 

we investigate whether these two structures can improve the performance of the lateral 

control of the vehicle.  

The organization of the chapter is as follows: Section 4.2 describes the lateral 

dynamics of the vehicle. The proposed algorithms are described in section 4.3. The 

simulation results of the serial controller are discussed in section 4.4. The evaluation of 

this algorithm using human-in-the-loop experiments is presented in the next section. 

Section 4.6 discusses the simulation and experiment results related to the parallel 

controller. Finally, section 4.7 concludes this chapter. 

4.2. Vehicle Dynamics 

A nonlinear six-degree-of-freedom (DOF) vehicle model, which represents the 

vehicle lateral dynamics as realistically as possible, is developed in [223]. This complex 

model has sixteen state variables: twelve for the six DOF motions (three translational and 

three rotational) and four for the tires.  A simplified linear two-degree of freedom 

‘bicycle’ model of the vehicle can be obtained from the complex model. Several studies 

have already established that the simplified model, which we use in this work, is a good 

approximation of the complex model for all practical purposes [200, 223, 224]. 

The bicycle model used in this study to describe vehicle lateral dynamics is 

shown in equation (4-1). The details of this model, its derivation, and its properties will 

be discussed in Chapter 6 (section 6.1) of this dissertation.  
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𝜓̇𝑑𝑒𝑠   (4-1) 

In the above equation, 𝑒1 is the vehicle displacement error and 𝑒2 is the vehicle 

orientation error. The longitudinal velocity of the car at its center of gravity is denoted by 

𝑉𝑥. The distances of the front and rear tires from the center of gravity and cornering 

stiffness of each front and rear tire are shown by 𝑙𝑓 , 𝑙𝑟 , 𝐶𝑎𝑓, and 𝐶𝑎𝑟, respectively. The 

steering angle is shown by 𝛿 and the yaw moment of inertia of the vehicle is 𝐼𝑧. 

Assuming the radius of the road is 𝑅, the rate of change of the desired orientation of the 

vehicle is defined as 𝜓̇𝑑𝑒𝑠 =
 𝑉𝑥

𝑅
. 

In addition, the output equation of the state-space, the equation that expresses the 

output as a linear combination of the states, is as follows: 

𝑦 = 𝑒1 + 𝑑𝑠𝑒2  (4-2) 

where 𝑑𝑠 is the look-ahead distance, i.e., the longitudinal distance of the point ahead of 

the vehicle center of gravity, where the sensor measurements are extracted. The reason 

why 𝑦 in equation (4-2) is considered as the output will also be explained in Chapter 6, 

section 6.1 of this thesis (see page 112). The block diagram of the closed-loop control 

system is shown in Figure 4.1. In this Figure, 𝑃(𝑠) is the vehicle transfer function 

between the steering angle input for the vehicle and the lateral position measurement 

output described in equation (4-2). The steering signal (𝛿) is the output of the controller 

block, which is the human driver here. The road-determined desired yaw rate 𝜓̇𝑑𝑒𝑠 affects 

the system dynamics through a transfer function denoted in Figure 4.1 as 𝐺(𝑠) 
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Figure 4.1. Closed-loop driver-vehicle system 

4.3. Proposed Algorithms 

The conventional driving structure is shown in Figure 4.1. The main controller in 

this architecture is the human driver. Therefore, if the driver does not drive well (due to 

fatigue, using cell phones, drunkenness, etc.) the system performs poorly. One solution to 

this problem is to switch to an autonomous lateral control system, as shown in Figure 4.2. 

In this system, the driver controls the vehicle in normal conditions and an automatic 

controller replaces the human driver in other situations. The design of this autonomous 

lateral controller will be further discussed in Chapters 5 and 6 of this dissertation. 

 

Figure 4.2. Switching to autonomous controller for vehicle lateral control after 

impaired driver is detected 

However, in this chapter, we present two different control structures. The basic 

idea of the first proposed structure is adding a controller in series with the driver and the 
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vehicle steering wheel, as shown in Figure 4.3. The main goal is to improve the 

performance of the whole system while the driver is not driving well due to intoxication 

or other impairments.  

 

Figure 4.3. Proposed serial assisting lateral controller structure 

  A parallel controller (as shown in Figure 4.4), instead of this serial controller, 

has autonomous lateral control ability; however, the price would be extra sensors in the 

system. The basic idea of this system is to add the driver’s steering signal to the output of 

an independent lateral controller. The summation of these two control signals is then fed 

to the steering column of the vehicle (see Figure 4.4). Obviously, the parallel control will 

be less sensitive to driver impairment.  

 

Figure 4.4. Proposed parallel assisting lateral controller structure 

In this study, we consider a simple PID controller in standard (non-interacting) 

configuration [225] for both our serial and parallel controller configurations: 

𝐶𝑠(𝑠) = 𝐾𝑃𝑠 (1 +
𝐾𝐼𝑠

𝑠
+
𝐾𝐷𝑠𝑁𝑠

1+
𝑁𝑠
𝑠

)   (4-3) 
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𝐶𝑝(𝑠) = 𝐾𝑃𝑝 (1 +
𝐾𝐼𝑝

𝑠
+
𝐾𝐷𝑝𝑁𝑝

1+
𝑁𝑝

𝑠

)   (4-4) 

In the next sections, we study the performance of the serial structure through 

computer simulations and real experiments involving human drivers. 

4.4. Simulation Results for Serial Assisting Controller 

Considering the structure of the serial assisting lateral controller shown in Figure 

4.3 and the model obtained for the intoxicated drivers in Chapter 3, we tuned the PID 

controller in (4-3). The obtained controller parameters obtained were: 

𝐾𝑃𝑠 = 0.50,   𝐾𝐼𝑠 = 0.02,   𝐾𝐷𝑠 = 5.94,   𝑁𝑠 = 400   (4-5) 

The conventional steering wheel control system (Figure 4.1) and the proposed 

system including the serial controller (Figure 4.3) were simulated in Matlab. The ‘driver’ 

block in both of the systems were the identified intoxicated driver model obtained in 

Chapter 3. The ‘Serial Controller’ block in Figure 4.3 is shown in (4-3) and (4-5). The 

reference (desired) lateral position of the vehicle in this scenario is one meter away from 

its initial lateral position. The simulation results are shown in Figure 4.5. 

The simulation results show that the augmented serial controller can successfully 

smooth the driving behavior of the driver. Also, the deviation from the reference, which 

is a common phenomenon among intoxicated drivers, is significantly reduced in the 

proposed system.  

The above results indicate that adding a serial controller can mitigate the weaving 

driving behavior [8] of impaired drivers. These results are obtained using the fixed model 

obtained for intoxicated drivers presented in [31]. In the next section, we further 

investigate the serial assisting lateral control system using our driving simulator setup and 

actual human drivers. 
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Figure 4.5. Comparison of the performances of conventional steering wheel 

handling system and suggested serial assisting lateral control 

(computer simulations) 

4.5. Evaluation of Serial Assisting Controller Using Human 

Drivers 

In the previous section, we used computer simulations to show how the proposed 

serial controller can improve the performance of the steering control system of the 

vehicle under degrading driver conditions. However, in order to obtain a more realistic 

assessment of the performance of this controller, we validated the proposed structures in 

the driving simulator, described in Chapter 3, using actual human drivers. The results 

from these human-in-the-loop experiments can verify whether the suggested serial 

controller can improve the performance of the system in keeping the vehicle at the center 

of the lane. 

We asked a human driver wearing the Fatal Vision goggles (to simulate the 

driving of intoxicated drivers) to drive on a 5-lane straight road twice: first in a normal 

vehicle, then in a vehicle including the serial controller as shown in Figure 4.3.   

The speed of the vehicle was fixed at 70 𝑘𝑚/ℎ in this experiment. The vehicle 

was driven in the third lane initially. At 200 𝑚, there was a sign telling the driver to move 
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the vehicle to the second lane. At 600 𝑚, there was another sign telling the driver to go to 

the fourth lane. Finally, there was a sign at 1000 𝑚 asking the driver to return to the third 

lane. This road is shown in Figure 4.6. 

 

Figure 4.6. The 5-lane straight road  

The experiment results are shown in Figure 4.7. In this figure, the vehicle’s offset 

from road center is shown for both cases: (1) when the driver is controlling the vehicle in 

the conventional configuration shown in Figure 4.1 (blue plot) (2) when the serial 

controller is added to the system as shown in Figure 4.3 (magenta plot). This figure 

indicates that whereas the proposed system has improved the performance in some parts, 

it has had a negative effect in some other parts. In addition, we can see the results 

obtained from a human driver are significantly different from the results obtained from 

the computer simulations in Figure 4.5. Therefore, we performed a more systematic study 

to evaluate the performance of the serial assisting lateral controller. 
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Figure 4.7. Offset from road center of the vehicle in the conventional 

configuration (blue) and in the configuration including the serial 

controller (magenta), both driven by the same impaired driver. 

Dashed lines show the centers of each lane. 

In order to evaluate the proposed algorithm properly, we required more human 

drivers, more datasets obtained from longer driving times, and appropriate evaluation 

metrics. The next sections of this chapter explain how we addressed these items. 

4.5.1. Experiments 

The experiments were conducted in the same setup explained in section 3.1. The 

simulator software was modified so that the serial controller was added to the system. 

The long road (road no. 4 explained in Chapter 3) was selected for the experiments. Ten 

drivers volunteered to participate in this experiment. The same Fatal Vision Goggles 

explained in section 3.1 were used to simulate the driving behaviors of intoxicated 

drivers. The driving task was about one hour for each. Also, a 10-minute warm-up 

driving in normal conditions was given to the drivers. The first half of the experiment 

was conducted in the conventional method (without the serial controller). The serial 

controller was added to the system in the middle of the experiment. The goal of the 

drivers was to maintain the vehicle at the center of the lane. The other conditions of 

driving were the same as explained in Chapter 3 (section 3.1). 
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4.5.2. Evaluation Metrics 

The data from both parts of the experiments, the conventional system (CS) and 

serial controller system (SCS), are analyzed using two evaluation indices: road departure 

percentage (RDP) and lateral position standard deviation (LPSD). 

In order to define RDP, we defined three variables in Figure 4.8 which shows 

vehicle location with respect to the lane. Based on this figure, lane departure occurs when 

𝑙𝑝 ≤
𝑣𝑤

2
 or 𝑙𝑝 ≥ 𝑙𝑤 −

𝑣𝑤

2
. In these two cases, the vehicle enters adjacent lanes. We define 

RDP as the amount of time when lane departure occurs divided by the whole driving 

time. This definition follows: 

𝑅𝐷𝑃 =
1

𝑁
∑𝑓(𝑙𝑝(𝑛))

𝑁

𝑛=1

 

where 𝑁 is the total number of data points and 

𝑓(𝑙𝑝(𝑛)) = {
1,   if  𝑙𝑝(𝑛) ≤

𝑣𝑤

2
  or  𝑙𝑝(𝑛) ≥ 𝑙𝑤 −

𝑣𝑤

2

0,   if  
𝑣𝑤

2
< 𝑙𝑝(𝑛) < 𝑙𝑤 −

𝑣𝑤

2
                  

    (4-6) 

The goal of defining this evaluation metrics is to test whether the serial controller 

can maintain lane departures at a lower level or not. 
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Figure 4.8. Vehicle location with respect to the lane 

Lateral position standard deviation (LPSD) is a standard lateral control 

performance index which is defined as: 

𝐿𝑃𝑆𝐷(𝑙𝑝) = √
1

𝑁 − 1
∑(𝑙𝑝(𝑛) −

1

𝑁
∑ 𝑙𝑝(𝑛)

𝑁

𝑛=1 

)

2

 

𝑁

𝑛=1

 

The goal of defining this evaluation metrics is to test whether the serial controller 

can reduce the standard deviation of lateral position error. 

4.5.3. Results and Discussions 

All the volunteer drivers mentioned that they sensed the effect of the serial 

controller on the steering characteristics of the driving simulator, as soon as the controller 

was added to the system. They mentioned that the steering response felt more sensitive at 

first, which caused the lateral control of the vehicle even more difficult. However, they 

stated that they got used to the new steering behavior shortly after and could control the 

vehicle. 
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Driver Adaptation 

One of the most important behaviors observed both in the data and in the 

descriptions of drivers from their experience was the human adaptation phenomenon. 

Human’s ability to adapt to the new system is a very important issue that needs to be 

considered further. The adaptation related to driver-vehicle interaction was previously 

investigated for anti-lock braking systems (ABS) in [226] and adaptive cruise control 

systems (ACC) in [227]. The performance of any advanced driver-assistance system that 

works together with the driver is affected by the adaptation behavior of the human brain.  

The adaptation behavior of drivers is explained mathematically using crossover 

principle [228]. The crossover principle states that the open-loop transfer function of the 

combined system of human operator and system (s)he is manually controlling is  

𝜔𝑐

𝑠
𝑒−𝜏𝑟𝑠   (4-7) 

around the crossover frequency 𝜔𝑐 . In other words, the frequency response of any 

manually controlled system, which is vehicle in our case, has a −20𝑑𝐵/𝑠𝑒𝑐 magnitude 

slope in the vicinity of the crossover frequency. Therefore, no matter what the 

characteristics of the vehicle are, the drivers adjust their behaviour so that the overall 

system has the mentioned frequency response. The implication is that the driver considers 

the serial connection of the vehicle and our controller as a vehicle with new dynamics. 

Then the drivers adapt their steering wheel control behavior to satisfy the crossover 

principle. A similar effect in driving simulators was observed, investigated, and verified 

by Mitschke in [125]. While only vehicle parameters were changed in that study, the 

obtained results and observations were similar to what we achieved here (where the serial 

controller is added). 

Comparison of Evaluation Metrics 

The average values of RDP and LPSD for both configurations (with and without 

serial controller) are shown in Figure 4.9 and Figure 4.10, respectively. The difference 

between evaluation metrics in the conventional system and the system with the serial 
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controller in these figures are not conclusive. The performance indices have improved 

only for half of the drivers.  

 

Figure 4.9. Average RDP(%) of different drivers driving in the simulator using 

conventional system (CS) and serial controller system (SCS) 

 

Figure 4.10. Average LPSD of different drivers driving in the simulator using 

conventional system (CS) and serial controller system (SCS) 

The main cause of ineffectiveness of the added serial controller in the case of 

intoxicated driving is the human adaptation behavior, which was explained earlier. In a 

nutshell, the drivers adapt to the controller and consider the new system as a vehicle with 

new handling characteristics.  
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Another possible explanation for the observed results is Risk Homeostasis Theory 

(RHT) [229, 230]. This theory explains that the modifications made to the intrinsic risk of 

environments are nullified in three ways: behavioral adjustments, physical risk 

avoidance, and mode migration [231]. The results obtained here after adding the serial 

controller can be considered as an example of behavior adjustment, i.e., the drivers adjust 

their driving behavior after adding the serial controller so that they achieve a risk level 

similar to the previous condition. Therefore, changing the characteristics of the vehicle by 

adding a controller did not improve RDP and LPSD significantly. 

 Another observation that should be noted is that the different drivers adapted to 

the controller in different ways. For example, some drove more conservatively to avoid 

large lateral control error while adapting, whereas some others used more predictive 

steering action (like turning the steering wheel earlier while approaching a curve). The 

drivers with more driving practice with the simulator demonstrated a more consistent 

adaptation behavior. All these different personal adaptation behaviors can be reasons for 

variation in the results.  

The results with our driving simulator supported human driver’s adaptation 

ability, which is a well-known fact. Although this adaptation ability reduces the 

effectiveness of the serial controller in improving the performance of the vehicles being 

driven by intoxicated drivers, the added controller can have other benefits such as 

passengers comfort, investigating of which is not in the scope of this study.  

4.6. Simulation Results for Parallel Assisting Controller 

Considering the structure of the parallel assisting lateral controller shown in 

Figure 4.4 and the model obtained for intoxicated driver in Chapter 3, we manually tuned 

the PID controller in (4-4). The obtained controller parameters obtained are: 

𝐾𝑃𝑝 = 0.002,   𝐾𝐼𝑝 = 0.067,   𝐾𝐷𝑝 = 3.667,   𝑁𝑝 = 150   (4-8) 

The conventional steering wheel control system (Figure 4.1), the proposed serial 

assisting control system (Figure 4.3), and the proposed parallel assisting controller 
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(Figure 4.4) were simulated. The ‘driver’ block in all three systems are the identified 

intoxicated driver model obtained in Chapter 3. The ‘Serial Controller’ block in Figure 

4.3 is described in (4-3) and (4-5). The ‘Parallel Controller’ block in Figure 4.4 is 

presented in (4-4) and (4-8). In order to make the simulations more realistic, 

measurement noise is added to the system. In addition, a pulse disturbance (equivalent to 

a sudden movement of the steering wheel) was added to the control signal in all systems 

between 𝑡 = 10𝑠 and 𝑡 = 11𝑠. The simulation results are shown in Figure 4.11. 

 

Figure 4.11. Comparison of the performances of conventional, serial assisting, and 

parallel assisting lateral control systems (computer simulations) 

These results show how the proposed parallel assisting controller can keep the 

vehicle close to the center of the lane in spite of a sudden improper movement of the 

steering wheel, which is simulated here as a disturbance occurring at 𝑡 = 10𝑠.  

In the next step, we performed human-in-the-loop experiments using the driver 

simulator. We asked a human driver wearing the Fatal Vision goggles (to simulate the 

driving of intoxicated drivers) to drive on a 5-lane straight road (see Figure 4.6) twice: 

first in a normal vehicle, then in a vehicle including the parallel controller as shown in 

Figure 4.4.  
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At the beginning of each experiment, the speed of the vehicle was fixed at 70 

𝑘𝑚/ℎ, the vehicle was in the third lane, and the steering wheel angle was zero. After four 

seconds of driving, the steering wheel was turned left and then turned back to zero in half 

a second. Then the driver was asked to move the vehicle back to the center of the third 

lane. The experiment results and the steering wheel angle applied to the vehicle in both 

cases (conventional system and system with parallel assisting controller) are shown in 

Figure 4.12 and Figure 4.13, respectively. 

 

Figure 4.12. Result of the human-in-the-loop experiment with and without the 

parallel assisting controller 

These results confirm the simulation results presented in Figure 4.11, and show 

that although the disturbance given to the vehicle is significantly higher in the case with 

the parallel assisting controller (see Figure 4.13), the performance is better in this case. In 

addition, the parallel controller moves the vehicle back exactly to the center of the lane 

whereas there is an offset error in the system without the parallel controller. 

Based on the obtained results, the suggested structure can improve the driving 

performance of the drivers. Since a common problem of impaired drivers is maintaining 



72 

the vehicle at the center of the lane, the suggested parallel controller can be effective in 

increasing the road safety especially when the driver is impaired. 

 

Figure 4.13. Steering wheel signal applied to the vehicle with and without the 

parallel assisting controller 

4.7. Conclusion 

In this chapter, the idea of improving the steering action of the driver by serial and 

parallel controllers was presented. In the first proposed algorithm, the steering signal 

coming from the steering wheel is fed to a serial controller. The output of the controller 

becomes the actual steering of the car. In the second suggested algorithm, the output of 

an independent lateral controller is added to the control signal generated by the human 

driver.  

First, the serial controller was programmed in the driving simulator, and its 

performance was tested using actual drivers wearing Fatal Vision Goggles. The study of 

road departure percentage and lateral position standard deviation evaluation indices 

showed that the improvement caused by the added serial controller is insignificant. The 

observations agree with driver’s adaptation ability and risk homeostasis theory (RHT). 
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These two phenomena have significant effects on the driver-controller-vehicle system 

and need more investigations and extensive research. 

The added controller modifies the steering command from the driver before it is 

fed to the steering wheel. As a result, the driver experiences a new equivalent vehicle. 

Because of human driver’s adaptation ability, the drivers adjust their behavior so that the 

overall system follows the crossover principle. Future work continuing this research may 

consider methods to overcome this problem.  

In spite of what mentioned, the serial controller might have other benefits such as 

ease of driving, passenger comfort, reducing emissions, and less fuel consumption, which 

need to be further studied. Another advantage of this system is that, unlike many other 

driver assistance systems, it does not distract or disengage the driver, which improves 

safety.  

In the second part of this chapter, the parallel controller was programmed in 

Matlab and the driving simulator. In both sets of simulation studies and human-in-the-

loop experiment results, we demonstrated that the suggested parallel controller structure 

is effective in improving the lane keeping task when an impaired driver is controlling the 

vehicle. Therefore, this additional parallel controller can be added to the vehicle when an 

impaired driver is detected using the algorithm presented in Chapter 3. 

In the next chapter, we consider the case that the driver is completely removed 

from the loop and the controller should perform the lateral control task independently. 
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Chapter 5.  

 

Vehicle Lateral Control 

In the previous chapter, we investigated the idea of having controllers in series 

and parallel with the driver to compensate the poor performance of impaired drivers. In 

the case of the serial controller, because of the adaptation ability of the human brain, the 

drivers consider the added controller as a part of vehicle dynamics and adapt their driving 

behavior to the new vehicle behavior after a short driving period. As a result, this brain 

adaptation ability reduces the benefits of adding a controller. Another possible option is 

to remove the driver from the loop and replace her/him with a lateral controller after the 

algorithm introduced in Chapter 3 detects intoxicated driving behaviors.   

Vehicle lateral control is an integral part of autonomous and intelligent vehicle 

control systems. The primary goal of the lateral control, also referred to as steering 

control, is to navigate a car along a desired path (lane keeping/following). In addition, 

performing lane change maneuvers, avoiding obstacles and collisions in emergency 

situations are also related to vehicle lateral control. 

In this chapter, we present a comparative study of lateral controllers including 

state-feedback and output feedback methods, design, and implement them on the driving 

simulator introduced in Chapter 3 to replace the intoxicated drivers. We also introduce a 

novel neural-network-based controller developed by our research group. This controller 

is optimized using genetic algorithms. In section 5.4, we use this new method to design 

the controller parameters for the vehicle lateral control problem.   

5.1. Vehicle Model 

A nonlinear six-degree-of-freedom (DOF) vehicle model, which represents the 

vehicle lateral dynamics as realistically as possible, is developed in [223]. This complex 

model has sixteen state variables: twelve for the six DOF motions (three translational and 

three rotational) and four for the tires. However, several studies [200, 223, 224] 
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demonstrate that using this complex nonlinear sixteen-state-variable model is not 

necessary to study the lateral behavior of vehicles. We derive and consider two simpler 

kinematic and dynamic bicycle models in this dissertation which would suffice to 

describe the lateral vehicle motions and dynamics. 

5.1.1. Kinematic Model of the Vehicle 

A kinematic model of the lateral movement of the car describes vehicle lateral 

motion mathematically without considering the forces affecting the motion. In the bicycle 

model of the vehicle shown in Figure 5.1, the vehicle is assumed to have two wheels. In 

this model, both front wheels are represented at point 𝐴.  Similarly, rear wheels are both 

placed at point 𝐵.  Independent steering angles are assumed for front and rear wheels 

which are represented by 𝛿𝑓 and 𝛿𝑟.  In practice, we usually have 𝛿𝑟 = 0.  Point 𝐶 is the 

center of the gravity of the car. The distances of center of gravity from front and rear 

wheels are shown by 𝑙𝑓 and 𝑙𝑟, respectively. 

In order to describe the movement of the vehicle, three coordinates 𝑋, 𝑌, and 𝜓 

are required. 𝑋 and 𝑌 represent the position of the center of the gravity of the vehicle and  

𝜓 represents its orientation.  The velocity of the center of gravity of the car (𝑉) can have 

a different angle than the longitudinal axis of the car. This angle difference is ‘slip angle’ 

of the car, and it, is shown by 𝛽.  The course angle (𝛾) is defined as the summation of the 

heading angle (𝜓) and the slip angle (𝛽): 𝛾 = 𝜓 + 𝛽. 
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Figure 5.1. Kinematic model of vehicle 

The intersection of the two perpendicular lines to the direction of wheels is shown 

at point 𝑂 and is called instantaneous rolling center of the vehicle. Connecting this point 

to the center of gravity gives the line 𝑂𝐶. The length of this line defines the radius of the 

path 𝑅. 

In triangle 𝑂𝐶𝐴 we have 

sin(𝛿𝑓−𝛽)

𝑙𝑓
=

sin(
π

2
−𝛿𝑓)

R
   (5-1) 

Similarly, in triangle 𝑂𝐶𝐵 we can write  

sin(𝛽−𝛿𝑟)

𝑙𝑟
=

sin(
π

2
+𝛿𝑟)

R
   (5-2) 

Equation (5-1) yields  
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sin(𝛿𝑓) cos(𝛽)−sin(𝛽) cos(𝛿𝑓)

𝑙𝑓
=

cos(𝛿𝑓)

𝑅
   (5-3) 

Similarly, equation (5-2) results in 

cos(𝛿𝑟) sin(𝛽)−cos(𝛽) sin(𝛿𝑟)

𝑙𝑟
=

cos(𝛿𝑟)

𝑅
   (5-4) 

Multiplying equations (5-3) and (5-4) by 
𝑙𝑓

cos  (𝛿𝑓)
 and 

𝑙𝑟

cos  (𝛿𝑟)
 , respectively, we get 

tan(𝛿𝑓) cos(𝛽) − sin(𝛽) =
𝑙𝑓

𝑅
   (5-5) 

sin(𝛽) − tan(𝛿𝑟) cos(𝛽) =
𝑙𝑟

𝑅
   (5-6) 

Adding (5-5) and (5-6) results in 

(tan(𝛿𝑓) − tan(𝛿𝑟)) cos(𝛽) =
𝑙𝑓+𝑙𝑟

𝑅
   (5-7) 

The angular velocity of the vehicle is 
𝑉

𝑅
.  Assuming that the path radius changes 

slowly, the rate of change of heading angle of the vehicle (𝜓̇) is equal to the angular 

velocity (see (6-2)). Combining equations (6-2) and (5-7) results in 

𝜓̇ =
𝑉(tan(𝛿𝑓)−tan(𝛿𝑟)) cos(𝛽)

𝑙𝑓+𝑙𝑟
   (5-8) 

Considering three inputs 𝛿𝑓, 𝛿𝑟, and 𝑉, the overall kinematic model of lateral 

vehicle motion can be written as equations (5-8)(5-40), (5-9), and (5-10). 

𝑋̇ = 𝑉 cos(𝜓 + 𝛽)   (5-9) 

𝑌̇ = 𝑉 sin(𝜓 + 𝛽)   (5-10) 

The parameter 𝑉 is the speed of the vehicle and the methods to calculate and 

control it will be obtained from the longitudinal model of the vehicle which will be 

explained in Chapter 7. 
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Multiplying equation (5-5) by 𝑙𝑟 and subtracting it from equation (5-6) multiplied 

by 𝑙𝑓 gives the following equation which can be used to calculate the slip angle: 

𝛽 = tan−1 (
𝑙𝑓 tan𝛿𝑟+𝑙𝑟 tan𝛿𝑓

𝑙𝑓+𝑙𝑟
)   (5-11) 

The main assumption made in developing the above kinematic model is that the 

direction of the front and rear wheels are the same as velocity vectors at points 𝐴 and 𝐵 

(in Figure 5.1), respectively. In other words, slip angles at both wheels are assumed to be 

zero. This assumption is valid only at low speed movement of the vehicle. Considering 

the conditions that our final system is going to be used in, wheel slip angles might 

sometimes be nonzero. Therefore, in the next section we also consider a dynamic model, 

which is valid at high speeds, for the lateral control problem. 

5.1.2. Dynamic Model of Vehicle 

As mentioned in the previous section, the kinematic model developed in equations 

(5-8), (5-9), and (5-10) is not valid at higher speeds of the vehicle. A simplified linear 

two-degree of freedom ‘bicycle’ model of the vehicle can be obtained from the complex 

sixteen-state-variable model. Several studies have already established that the simplified 

model, which we use in this work, is a good approximation of the complex model for all 

practical purposes [200, 223, 224]. 

The bicycle model used in this study to describe vehicle lateral dynamics is 

shown in equation (5-12). The details of this equation, how we derived it, and why we 

use it are explained in section 6.1 of this dissertation.  

𝑑

𝑑𝑡
[

𝑒1
𝑒̇1
 𝑒2
 𝑒̇2

] =

[
 
 
 
 
 
 
0 1 0 0

0 −
2𝐶𝑎𝑓 + 2 𝐶𝑎𝑟

𝑚𝑉𝑥

2𝐶𝑎𝑓 + 2 𝐶𝑎𝑟

𝑚
−
2𝐶𝑎𝑓𝑙𝑓 − 2 𝐶𝑎𝑟𝑙𝑟

𝑚𝑉𝑥
0 0 0 1

0 −
2𝐶𝑎𝑓𝑙𝑓 − 2 𝐶𝑎𝑟𝑙𝑟

𝐼𝑧𝑉𝑥

2𝐶𝑎𝑓𝑙𝑓 − 2 𝐶𝑎𝑟𝑙𝑟

𝐼𝑧
−
2𝐶𝑎𝑓𝑙𝑓

2 + 2 𝐶𝑎𝑟𝑙𝑟
2

𝐼𝑧𝑉𝑥 ]
 
 
 
 
 
 

[

𝑒1
𝑒̇1
 𝑒2
 𝑒̇2

] + 
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[
 
 
 
 
0

2𝐶𝑎𝑓

𝑚

0
2𝐶𝑎𝑓𝑙𝑓

𝐼𝑧 ]
 
 
 
 

𝛿 +

[
 
 
 
 

0

−𝑉𝑥 −
2𝐶𝑎𝑓𝑙𝑓−2 𝐶𝑎𝑟𝑙𝑟

𝑚𝑉𝑥

0

−
2𝐶𝑎𝑓𝑙𝑓

2+2 𝐶𝑎𝑟𝑙𝑟
2

𝐼𝑧𝑉𝑥 ]
 
 
 
 

𝜓̇𝑑𝑒𝑠   (5-12) 

In the above equation, 𝑒1 is the vehicle displacement error and 𝑒2 is the vehicle 

orientation error. The longitudinal velocity of the car at its center of gravity is denoted by 

𝑉𝑥. The distances of the front and rear tires from the center of gravity and cornering 

stiffness of each front and rear tire are shown by 𝑙𝑓 , 𝑙𝑟 , 𝐶𝑎𝑓, and 𝐶𝑎𝑟, respectively. The 

steering angle is shown by 𝛿 and the yaw moment of inertia of the vehicle is 𝐼𝑧. 

Assuming the radius of the road is 𝑅, the rate of change of the desired orientation of the 

vehicle is defined as 𝜓̇𝑑𝑒𝑠 =
 𝑉𝑥

𝑅
. 

The bicycle model described above is used for both controller design and 

simulation studies. This model is a modified version of the original bicycle model. The 

ultimate goal of this study is designing a lateral control (steering control) for the lane 

keeping in autonomous vehicles. Therefore, we converted the original state-space 

representation of lateral dynamics to a model where the state variables are the position 

and orientation errors with respect to the center of the lane. 

The lateral position of the vehicle with respect to the road is usually measured at a 

location ahead of the vehicle (look-ahead strategy). The output equation of the state-

space, the equation that expresses the output as a linear combination of the states, is as 

follows: 

𝑦 = 𝑒1 + 𝑑𝑠𝑒2   (5-13) 

where 𝑑𝑠 is the look-ahead distance, which is the longitudinal distance of the point ahead 

of the vehicle center of gravity, where we make the sensor measurements. 

Considering equations (5-12) and (5-13), we can represent the conventional 

output feedback system as shown in Figure 5.2. In this Figure, 𝑃(𝑠) is the plant transfer 

function between the steering angle input for the vehicle and the lateral position 
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measurement output described in equation (5-12). The steering signal (𝛿) is the output of 

the controller block in autonomous vehicles.  In conventional driving, this signal is 

controlled by the driver, as shown in Figure 5.2. The road-determined desired yaw rate 

𝜓̇𝑑𝑒𝑠 affects the system dynamics through a transfer function denoted in Figure 5.2 as 

𝐺(𝑠). 

 

Figure 5.2. Closed-loop driver-vehicle system 

The above model of vehicle lateral dynamics is based on fixed coordinates. Since 

the controllers use errors with respect to body fixed coordinates, this is appropriate for 

lateral controller design. However, a global picture of vehicle trajectory should also be 

obtained. The global position of the vehicle can be written as 

𝑋 = 𝑋𝑑𝑒𝑠 − 𝑒1 sin𝜓   (5-14) 

𝑌 = 𝑌𝑑𝑒𝑠 + 𝑒1 cos𝜓   (5-15) 

where 𝑋𝑑𝑒𝑠 and 𝑌𝑑𝑒𝑠 are the global coordinates of the road. 

Using 𝑋𝑑𝑒𝑠 = ∫ 𝑉 cos𝜓𝑑𝑒𝑠 𝑑𝑡  
𝑡

0
, 𝑌𝑑𝑒𝑠 = ∫ 𝑉 sin𝜓𝑑𝑒𝑠 𝑑𝑡  

𝑡

0
, and 𝜓 = 𝑒2 + 𝜓𝑑𝑒𝑠 in 

equations (5-14) and (5-15), the global coordinates of the car can be written as the 

following equations: 
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𝑋 = ∫ 𝑉 cos𝜓𝑑𝑒𝑠 𝑑𝑡  
𝑡

0
− 𝑒1 sin(𝑒2 + 𝜓𝑑𝑒𝑠)   (5-16) 

𝑌 = ∫ 𝑉 sin𝜓𝑑𝑒𝑠 𝑑𝑡  
𝑡

0
+ 𝑒1 cos(𝑒2 +𝜓𝑑𝑒𝑠)   (5-17) 

Having the kinematic and dynamic models of vehicle lateral motion explained in 

this section, we design several controllers to be implemented on our system in the next 

sections. The controllers designed in this chapter include a novel fused neural network 

controller introduced by our group, which will be described in Section 5.4. 

5.2. State-feedback Controller 

As explained in the previous section, the bicycle model assumption results in a 

state-space representation (equation (5-12)) of vehicle which can be summarized as 

𝑥̇ = 𝐴𝑥 + 𝐵1𝛿 + 𝐵2𝜓̇𝑑𝑒𝑠   (5-18) 

with   

𝑥 = [

𝑒1
𝑒1̇
𝑒2
𝑒2̇

]   (5-19) 

where 𝑒1 is the distance of the center of the gravity of the vehicle from the center line of 

the lane and 𝑒2 is the orientation error of the vehicle with respect to the road. The 

numerical value of the parameters in (5-18) are given below: 

𝐶𝑎𝑓 = 80000, 𝐶𝑎𝑟 = 80000, 𝑙𝑓 = 1.1, 𝑙𝑟 = 1.58,   

𝐼𝑧 = 2873,           𝑚 = 1573   (5-20) 

No matter what the values of parameters in (5-20) are, the matrix 𝐴 in (5-18) has 

4 eigenvalues, two of which are at the origin. Therefore, the open-loop system is 

unstable. However, since the pair (𝐴, 𝐵1) is controllable, we can use the following control 

law such that the closed-loop system (𝐴 + 𝐵1𝐾) has arbitrary eigenvalues. 



82 

𝛿 = 𝐾𝑥 = 𝑘1𝑒1 + 𝑘2𝑒1̇ + 𝑘3𝑒2 + 𝑘4𝑒2̇   (5-21) 

Using the pole-placement techniques explained in [232], in order to place the 

eigenvalues at [−7 + 2𝑗 −7 − 2𝑗 −9 −11]𝑇, the designed controller would be 

𝐾 = [0.3456 0.0356 1.3365 0.0499]   (5-22) 

Since the data coming from the actual vehicle sensors will include noise, a 

normally (Gaussian) distributed random signal with zero mean and standard deviation 

equal to 0.02 is added to all the state measurements. The results for a straight road are 

shown in Figure 5.3 and Figure 5.4. These figures show that the designed state-feedback 

controller can satisfactorily stabilize and control the lateral dynamics of the system. 

However, these results were obtained on a straight road, where the term 𝐵2𝜓̇𝑑𝑒𝑠 in (5-41) 

is zero. 

 

Figure 5.3. States of vehicle’s lateral dynamics controlled by state-feedback on a 

straight road 



83 

 

Figure 5.4. Preview error (output) of vehicle’s lateral dynamics controlled by 

state-feedback on a straight road 

On the roads where the curvature is not zero (𝐵2𝜓̇𝑑𝑒𝑠 ≠ 0), although the closed-

loop system would be asymptotically stable (the term (𝐴 + 𝐵1𝐾) would have negative 

eigenvalues) if the state-feedback controller in (5-21) is properly designed, but the 

tracking error will not converge to zero. This error can be compensated by a feedforward 

term (𝛿𝑓𝑓): 

𝛿 = 𝐾𝑥 + 𝛿𝑓𝑓   (5-23) 

If we use the steering wheel angle given by (5-23) instead (5-21), the closed-loop 

system becomes  

𝑥̇(𝑡) = (𝐴 + 𝐵1𝐾)𝑥 + 𝐵1𝛿𝑓𝑓 + 𝐵2𝜓̇𝑑𝑒𝑠   (5-24) 

Laplace transform of (5-24) and some simplifications result in 

𝑋(𝑠) = (𝑠𝐼 − (𝐴 + 𝐵1𝐾))
−1
(𝐵1𝐿(𝛿𝑓𝑓) + 𝐵2𝐿(𝜓̇𝑑𝑒𝑠))   (5-25) 

with 𝐿(𝛿𝑓𝑓) and 𝐿(𝜓̇𝑑𝑒𝑠) being the Laplace transforms of 𝛿𝑓𝑓 and 𝜓̇𝑑𝑒𝑠, respectively. 

Considering 𝜓̇𝑑𝑒𝑠 =
 𝑉𝑥

𝑅
 , assuming 𝛿𝑓𝑓 is constant (therefore its Laplace transform is 

𝛿𝑓𝑓

𝑠
), 

and using final value theorem [233], we can write the steady-state value of error as 
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𝑥𝑠𝑠 = lim
𝑡→∞

𝑥(𝑡) = lim
𝑠→0

𝑠𝑋(𝑠) = −(𝐴 + 𝐵1𝐾)
−1 (𝐵1𝛿𝑓𝑓 + 𝐵2

𝑉𝑥

𝑅
)   (5-26) 

Replacing 𝐴, 𝐵1, and 𝐵2 from (5-12), and 𝐾 from (5-23), and simplifying the 

result yields in 

𝑥𝑠𝑠 =

[
 
 
 
 −

𝛿𝑓𝑓

𝑘1

0
0
0 ]
 
 
 
 

+

[
 
 
 
 
 
1

𝑘1

𝑚𝑉𝑥
2

𝑅(𝑙𝑓+𝑙𝑟)
(

𝑙𝑟

2𝐶𝑎𝑓
−

𝑙𝑓

2𝐶𝑎𝑟
−

𝑙𝑓

2𝐶𝑎𝑟
𝑘3) +

1

𝑘1𝑅
(𝑙𝑓 + 𝑙𝑟 + 𝑙𝑟𝑘3)

0
1

2𝑅𝐶𝑎𝑟(𝑙𝑓+𝑙𝑟)
(−2𝐶𝑎𝑟𝑙𝑓𝑙𝑟 − 2𝐶𝑎𝑟𝑙𝑟

2 + 𝑙𝑓𝑚𝑉𝑥
2)

0 ]
 
 
 
 
 

  (5-27) 

Equation (5-27) shows that a proper choice of feedforward controller (𝛿𝑓𝑓) can 

make the lateral error zero. This proper value of 𝛿𝑓𝑓 is 

𝛿𝑓𝑓 =
𝑚𝑉𝑥

2

𝑅(𝑙𝑓+𝑙𝑟)
(

𝑙𝑟

2𝐶𝑎𝑓
−

𝑙𝑓

2𝐶𝑎𝑟
−

𝑙𝑓

2𝐶𝑎𝑟
𝑘3) +

𝑙𝑓+𝑙𝑟+𝑙𝑟𝑘3

𝑅
   (5-28) 

However, the yaw angle error (𝑥3 = 𝑒2) is independent of the feedforward term 

and has the following steady-state value: 

𝑥3𝑠𝑠 = 𝑒2𝑠𝑠 =
1

2𝑅𝐶𝑎𝑟(𝑙𝑓+𝑙𝑟)
(−2𝐶𝑎𝑟𝑙𝑓𝑙𝑟 − 2𝐶𝑎𝑟𝑙𝑟

2 + 𝑙𝑓𝑚𝑉𝑥
2)   (5-29) 

If we simplify (5-29) we can see that the steady-state error of 𝑒2 would be zero 

only if  

2𝐶𝑎𝑟𝑙𝑟(𝑙𝑓 + 𝑙𝑟) = 𝑙𝑓𝑚𝑉𝑥
2   (5-30) 

The condition in (5-30) is met at a certain speed which is independent of the road 

curvature. For the vehicle whose parameters are mentioned in (5-20), this specific speed 

is 𝑉𝑥 = 71𝑘𝑚/ℎ. 

In order to see the effect of the feedforward controller, the previous experiment is 

repeated on a curved road. Figure 5.5 shows how 𝑥1 (lateral error, 𝑒1) does not approach 

to zero when the road is not straight. In addition, this figure shows how adding the 
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feedforward controller fixes that problem. We can also see that, as explained above in 

(5-29), adding 𝛿𝑓𝑓 cannot make 𝑥3 (yaw angle error, 𝑒2) zero. 

The preview error (output of the vehicle, defined in (5-13)) and the control signal 

(steering wheel angle) are shown in Figure 5.6 and Figure 5.7, respectively. These figures 

show the improvement caused by adding the feedforward term. The fact that the preview 

error does not reach zero in curves is the non-zero steady-state value of 𝑥3 shown in 

(5-29). However, the error is very small and can be neglected. 

 

Figure 5.5. Vehicle states on a curved road with and without the feedforward 

controller 



86 

 

Figure 5.6. Vehicle preview error on a curved road with and without the 

feedforward controller 

 

Figure 5.7. Steering wheel angle of the vehicle on a curved road with and without 

feedforward controller 
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5.3. Output Feedback 

The vehicle’s lateral error can be measured at somewhere ahead of the vehicle. 

The sensors that can measure this error include differential global positioning systems 

[184], cameras [185, 186], and magnetometers [168]. The block diagram of the closed-

loop system that uses preview error in an output feedback configuration is shown in 

Figure 5.2. In this Figure, 𝑃(𝑠) is the vehicle transfer function between the steering angle 

input for the vehicle and the lateral position measurement output described in equation 

(5-13). The steering signal (𝛿) is the output of the controller block in autonomous 

vehicles. 

Using the vehicle parameters mentioned in (5-20) we have  

𝑃(𝑠) =
285.5𝑠2+1986.6𝑠+15181.3

𝑠4+11.71𝑠3+59.94𝑠2
    (5-31) 

The poles and zeros of (5-31) are shown in Figure 5.8. This figure shows that 

𝑃(𝑠) has a pair of complex conjugate poles and two poles at the origin which makes it 

unstable. In addition, the system has a pair of complex conjugate zeros. Increasing the 

value of 𝑑𝑠 would decrease the imaginary part of these zeros, which would result in better 

damping of the system. 
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Figure 5.8. Pole-zero map of 𝑷(𝒔) 

First, we consider a simple proportional controller to analyze the behavior of this 

system: 

𝐶𝑝(𝑠) = 𝐾𝑝   (5-32) 

where 𝐾𝑝 is the proportional gain of the controller.  

The root locus of the system considering varying values of 𝐾𝑝 in (5-32) is shown 

in Figure 5.9. This figure shows that for a small value of 𝐾𝑝 the system would be 

unstable. Therefore, a large enough value of proportional gain is required to stabilize the 

system. For the parameters mentioned in this analysis, the minimum required value for 

𝐾𝑝 to make the system stable is 0.25. 
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Figure 5.9. Root locus of the system with proportional controller 

An important point that we should note is the fact that although larger values of 

proportional gain would stabilize the system, the system will still have poor stability 

margins and might become unstable in the presence of uncertainties. These poor stability 

margins are shown in the Bode plot of the system using a unity gain proportional 

controller in Figure 5.10. Using 𝐾𝑝 = 1, a phase margin of 15.2 degrees is obtained as 

demonstrated in Figure 5.10. Considering a proportional gain of 𝐾𝑝 = 0.2 results in an 

unstable overall system. On the other hand, increasing the proportional gain to 𝐾𝑝 to 10 

will result in a phase margin of only 5. This is should not be surprising considering 

Figure 5.10. This figure shows that using 𝐾𝑝 = 1, the phase margin is close to the best 

possible, because the gain-crossover frequency (15.5 𝑟𝑎𝑑/𝑠) is close to the frequency 

where the phase is at the maximum. 
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Figure 5.10. Stability margins of the system with proportional controller 𝑲𝒑 = 𝟏 

In order to increase the stability margins of the system, hence its robustness, we 

can add phase to the system in the gain-crossover range. A lead compensator can do this 

task. We consider the following transfer function for the compensator (controller) 

𝐶𝐿𝑒𝑎𝑑(𝑠) =
𝑎𝜏𝑠+1

𝜏𝑠+1
   (5-33) 

with 𝑎 > 1. The reader should note that the zero-frequency gain does not change if we 

use this structure of lead compensator. If the parameters 𝑎 and 𝜏 are designed properly, 

the compensator in (5-33) can increase the phase of the system at gain-crossover 

frequency, which results in higher phase-margin and better robustness of the system. The 

maximum phase added by (5-33) is 

𝜙𝑚𝑎𝑥 = sin (
𝑎−1

𝑎+1
)   (5-34) 

which is added to the system at the following frequency 

𝜔𝑚 =
1

𝜏√𝑎
   (5-35) 
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In order to determine the design parameters in (5-33), we consider a desired added 

phase of 𝜙𝑚𝑎𝑥 = 45°. Using (5-34), we get 𝑎 = 6.82. Since we would like this phase be 

added to the system at the gain-crossover frequency, which is 15.5
𝑟𝑎𝑑

𝑠
 (see Figure 5.10), 

using (5-35) and considering 𝑎 = 6.82 and 𝜔𝑚 = 15.5, we get 𝜏 = 0.0247. Therefore, 

the final controller can be considered as 

𝐶𝐿𝑒𝑎𝑑(𝑠) =
0.1685𝑠+1

0.0247𝑠+1
   (5-36) 

The Bode plot for the system controlled by (5-36) is shown in Figure 5.11. This 

figure shows that the designed lead controller increases the phase margin of the system to 

46.8°. Although the phase margin has significantly increased, it is a little less than what 

we used in the design procedure (𝜙𝑚𝑎𝑥 = 45°). The reason is the fact that adding the lead 

compensator changes the gain-crossover frequency of the system too, which can be seen 

in Figure 5.11. This figure shows that the gain-crossover frequency is different from the 

frequency at which the peak of the phase diagram occurs.  

 

Figure 5.11. Bode plot of the system controlled by lead compensator and 𝑲𝒑 = 𝟏 

The robustness of the system can be further improved by changing the gain-

crossover frequency of the system. This task can be done by changing the proportional 

gain of the system from 𝐾𝑝 = 1 to 𝐾𝑝 = 0.3163. The result is shown in Figure 5.12. The 
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phase margin of the system shown in this figure is 64° which is significantly more than 

the original system. The final output feedback controller (𝐶𝑓𝑜𝑓) used to obtain the more 

robust system shown in Figure 5.12 is 

𝐶𝑓𝑜𝑓(𝑠) = 𝐾𝑝𝐶𝐿𝑒𝑎𝑑(𝑠) = 0.3163
0.1685𝑠+1

0.0247𝑠+1
   (5-37) 

 

Figure 5.12. Bode plot of the system controlled by lead compensator and 𝑲𝒑 =

𝟎. 𝟑𝟏𝟔𝟑 

It should be noted that increasing the value of look-ahead distance would result in 

better damping in the closed-loop output feedback system shown in Figure 5.12. If a 

vision system (for example camera) is used for measuring the lateral error, the 

measurements would be look-ahead. However, if differential GPS or magnetometers are 

used, the measurements would be look-down (𝑑𝑠 = 0). In this case, the look-ahead error 

can be obtained using yaw angle measrements and combining it with the look-down 

measurements as described in (5-13). In other words, instead of directly measuring 𝑦 =

𝑒1 + 𝑑𝑠𝑒2 (look-ahead error) by camera, we can measure 𝑒1 (look-down error) and 𝑒2 

(yaw angle error), and then artificially increase 𝑑𝑠. 
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5.4. A Novel Simple Controller for Vehicle Lateral Control 

Multilayer neural network controllers have been extensively applied to control 

nonlinear systems with different network structure and different connection weights 

[234]. The reason is the nonlinear mapping characteristic of these powerful processing 

networks. The mapping nonlinearity directly relates to the number of neurons in the 

network. Nevertheless, the choice of the neural network structure and the number of 

neurons and layers are application dependent. 

A decomposition design method is proposed to simplify the design process of the 

neural network controller for known physical structure systems. The concept of 

decomposition is an attractive tool to tackle systems that require two input parameters –

say displacement and orientation– as their control variables [235]. For vehicle lateral 

control, the controller has to keep the vehicle position within the lane while maintaining 

the vehicle orientation parallel to a reference lane. In this system, while the controller 

maintains the displacement, the angle changes simultaneously. 

The neural network designed by task decomposition would reduce the number of 

connection weights and hence reduce the network complexity, compared to the 

conventional neural network controllers available for vehicle lateral control problem. In 

this section, the neural network controller simplification process is described for vehicle 

lateral control system. The task decomposition technique starts with identifying control 

objectives from the statement of the problem and assigns the appropriate parameters to 

individual subtasks. When the subtasks are identified, we can obtain the intuitive control 

laws for each subtask based on the understanding of the control system. From an intuitive 

control law, control variables related to the control subtasks can be obtained. For the 

network architecture, independent sub-networks should be created for individual subtasks 

and by using the related control variables as network inputs. Finally, the outputs of the 

independent sub-network are fused together as the controller output. 

The neural network simplification process based on task decomposition can be 

summarized in the following steps: 
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1. Decompose the control objective into subtasks.  

2. Set up intuitive control law for the subtasks. 

3. Identify control variables for the subtasks from the intuitive control law obtained in 

step 2. 

4. Create independent sub-networks for the subtasks and using the corresponding 

control variables obtained in step 3 as sub-network inputs. 

5. Fuse the sub-networks output together as the controller output. 

Let us demonstrate the first three steps by considering the lateral control problem 

as outlined in Table 5.1. 

 Table 5.1. Controller design process for the lateral control problem 

Step 1 Subtask 1 Maintain zero lateral position error 
Subtask 2 Maintain zero orientation error 

Step 2 Control law 1 Change the steering wheel angle when the 
lateral position error deviates from zero 

Control law 2 Change the steering wheel angle when the 
orientation error deviates from zero 
 

Step 3 Control variables 1 Lateral position error and its rate 
Control variables 2 Orientation error and its rate 

The network structure is shown in Figure 5.13. The network, in general form, has 

four inputs (𝜃, 𝜃̇, 𝑑, 𝑑̇) and one control output (𝑢). In the lateral control problem, for 

example, we have 𝑑 = 𝑒1 = 𝑥1, 𝑑̇ = 𝑒̇1 = 𝑥2, 𝜃 = 𝑒2 = 𝑥3, and 𝜃̇ = 𝑒̇2 = 𝑥4. The 

control output in this case is the steering wheel angle 𝑢 = 𝛿. There are two main sub-

networks in the network and each sub-network targets on one sub-task of the systems. 

The first sub-network deals with the angle and aims to maintain it at zero. The second 

network deals with the displacement of the control system. Finally, the sub-networks 

outputs are fused together by a simple summation to form the final controller output. 
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Figure 5.13. The structure of the neural network controller 

This network structure design divides variables into groups and sets them into 

different sub-networks. Since each sub-network handles a different task, the number of 

connection weights is reduced. Equations (5-38) to (5-40) show the characteristic of the 

network. 

𝑍1 = tanh(𝜃.𝑊1 + 𝜃̇.𝑊2)   (5-38) 

𝑍2 = tanh(𝑑.𝑊3 + 𝑑̇.𝑊4)   (5-39) 

𝑢 = 𝑍1𝑊5 + 𝑍2𝑊6   (5-40) 

where 𝑍1 and 𝑍2 are the outputs from the sub-networks 1 and 2, respectively. 𝑊1 to 𝑊6 

are the connection weights shown in Figure 5.13.  

5.4.1. Neural network optimization via genetic algorithms 

As noted before, the proposed controller architecture is simple, flexible and can 

be optimized by different methods. We suggest using Genetic Algorithms (GA) [236, 

237] for this optimization, as shown in Figure 5.14. In the initial stage, GA starts with a 

randomly generated population. The initial population is decoded into the connection 

weights of the network controller for fitness evaluation. GA then selects parent 

chromosomes from the initial population according to the evaluated fitness. The 

reproduction module produces a set of offspring based on the selected parent 

chromosomes. The offspring generation then undergoes both decoding and evaluation 
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processes to obtain the fitness of the children generation. The chromosomes fitness of 

both children and old (the initial population) generations are compared to formulate a 

new generation. The parent chromosomes will be selected from the new generation for 

offspring reproduction and thus forms an optimization cycle. The above optimization 

cycle is repeated until either the maximum number of generation is reached, or 

predefined optimal solution is obtained. 

 

Figure 5.14. Genetic algorithm optimization flow 

The above-described cycle consists of three main modules namely evaluation, 

parent selection, and reproduction modules. In the evaluation module, the chromosomes 

are decoded into the connection weights of the network controller and the controller is 

tested with simulation. Then the system states are used to evaluate the chromosomes 

fitness. The details of the fitness function will be discussed in section 5.4.3. 

In the parent selection module, parent chromosomes are selected based on roulette 

wheel selection [238] for offspring reproduction. The parent and children chromosome 

are compared, the chromosome with higher fitness are selected for the next generation. 
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The population performance will be continuously improved due to the fact that parents 

are replaced by fitter children in each generation. 

In the reproduction module, GA applies genetic operators, i.e., crossover and 

mutation, on selected parent chromosomes to generate a new set of connection weight, 

i.e., children. The children will be tested and evaluated in the evaluation module. 

5.4.2. Coding of connection weights into chromosomes 

Since the activation function and structure are fixed and predefined, the 

chromosomes define the network solely by its connection weights. Figure 5.15 shows the 

coding of connection weight into the chromosome. The six connection weights are coded 

into six real value genes instead of binary coding because the real value does not lose 

precision due to binary quantization. 

 

Figure 5.15. Coding of network weights into chromosome 

5.4.3. Fitness evaluation 

Using the equations describing the dynamics of the system, and equations (5-38) 

to (5-40) which give the control input, the error can be obtained. We use the sum of the 

performance index integral time-weighted absolute error (ITAE) of displacement and 

orientation errors. The fitness function is defined based on this sum, as follows: 
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

1+∫(|𝑒1|+|𝑒2|)𝑡𝑑𝑡
   (5-41) 

where 𝑒1 and 𝑒2 are displacement and orientation errors, respectively. ITAE is a 

performance index known for a balanced response with a reasonable rise time and 

overshoot, compared to integral squared error (ISE) performance index. 

5.4.4. Computation procedure for the neural network optimization 

The procedure for optimizing the neural network controller can be described as 

follows: 

1) Fix the searching range of individual genes in the chromosomes. 

2) Initialize 𝑛 chromosomes randomly to form an initial population. 

3) Decode chromosomes into neural network controller and test its performance 

in simulation. Then, calculate the fitness value from (5-41) and assign 

chromosome fitness. 

4) Select parent chromosomes from the population to reproduce children 

chromosomes. The selection is based on roulette wheel selection. 

5) Reproduce children chromosomes by crossover and mutation. One-point 

crossover is used to recombine the genetic material in two parent 

chromosomes to make two children. Mutation is used to introduce innovative 

materials to the population. 

6) Decode children chromosome into neural network controller to evaluate 

fitness. 

7) Select 50 best-fit chromosomes from children and parent chromosome to form 

a new generation. 

8) Repeat Steps 3 to 7 until either maximum number of generations is reached or 

the desired fitness value is evaluated. 

We should note that the roulette wheel selection may lead to premature 

convergence and binary tournament selection is preferred. However, as the search space 

is small in our problem, the roulette wheel selection is acceptable. 



99 

5.4.5. Simulation Results 

In this section, the proposed controller is designed for the lateral control problem, 

and the simulation results are presented. 

The parameter settings of GA are listed in Table 5.2. There are 50 chromosomes 

in each generation. The maximum number of generation is 400. A new generation is 

reproduced by mutation and crossover with rates of 0.2 and 0.8, respectively. Fitness 

function for fitness evaluation is based on the integral time of the absolute error.  

Table 5.2. Genetic algorithm parameters 

Population size 50 
Maximum generation 400 

Crossover rate 0.8 
Mutation rate 0.2 

Fitness function 1/(1+ITAE) 

The vehicle model parameters are the mentioned in (6-33). The connection weight 

search spaces of 𝑊1, 𝑊2, 𝑊3, and 𝑊4 are [-40, 40], and they are [-30, 30] for 𝑊5 and 𝑊6. 

The optimized connection weights obtained after GA optimization are shown in Table 

5.3. 

Table 5.3. Optimized connection weights 

Vehicle lateral 
dynamics 

𝑊1 13.3270 𝑊4 11.0144 
𝑊2 30.8529 𝑊5 11.2883 
𝑊3 34.2793 𝑊6 −23.7703 

In order to compare the performance of the proposed controller, we designed a 

standard linear state feedback controller (LC) for the linearized models of the system 

[232]. Since the linearized model of the system is state-controllable, the poles can be 

assigned arbitrarily. The feedback gain matrix determination is done using Ackermann’s 

formula [232]. The state feedback controller gains for the vehicle (𝐾𝑣) are shown in Table 

5.4. In addition, the associated closed-loop system poles are also mentioned in this Table. 

Table 5.4. Linear state-feedback controller gains 

System Closed-loop poles  𝐾1 𝐾2 𝐾3 𝐾4 

Vehicle lateral dynamics −1.2 ± 0.9𝑗, −10,−10 𝐾𝑣 11.1 −2.7 −11.1 −0.3 
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The lateral control performance of the proposed controller on a straight road 

scenario is shown in Figure 5.16 and Figure 5.17. The road curvature was set to zero 

throughout the simulation as a straight road condition was assumed. The initial state of 

the vehicle was located at 10𝑐𝑚 away from the reference lane and parallel to it; i.e. zero 

orientation error. The distance set-point from the reference lane was 20𝑐𝑚.  

 

Figure 5.16. Lateral control simulation result of lateral displacement 

 

Figure 5.17. Lateral control simulation result of vehicle orientation 
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In Figure 5.16, the vehicle lateral position maneuvers to set-point after 2𝑠, 

whereas this time was more than 5𝑠 for the linear controller. In Figure 5.17, the angle 

between vehicle center line and the road was calculated by the difference between front 

and tail displacements. The maximum angle was about 5° and it resumes to 0 after 2𝑠. 

In addition to comparison with linear state feedback controller, the performance 

of the proposed controller is compared with a conventional neural network controller 

[239]. The neural network controller used in this paper for comparison is a feed-forward 

network with a hidden layer of size four with symmetric sigmoid functions (see Figure 

5.18). This topology consists of 20 weights to be determined. These weights are 

optimized using Genetic Algorithm. The values of the weights obtained for lateral control 

problem are: 

𝑎 = [

 22.1691   6.8327 28.8852 14.2108
6.1040 −17.1301 4.2256 −24.2986

   −6.6490 −17.5206  13.8430 −3.8738
   19.8577 0.1882 −8.8330 −0.7479

]   (5-42) 

and  

𝑏 = [

−12.8255
−5.6457
−4.7671
 −24.2987

]   (5-43) 

where 𝑎𝑖𝑗 is the weight between input 𝑖 and sigmoid function 𝑗, and 𝑏 consists of the 

weights between the hidden layer and the output. 
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Figure 5.18. Genetic algorithm neural network architecture used for comparison 

Although performance results obtained using this GA NN is almost the same as 

the results achieved by the proposed controller, the numbers of function evaluations were 

6500 and 1650 for the conventional and the proposed controller, respectively. These 

numbers of function evaluation demonstrate a significant reduction in execution time and 

computational complexity. In other words, although the idea of using GA to update NN is 

not new, the simplicity and speed of the proposed structure make it superior to 

conventional GA NN controllers. 

The evolution of the genetic algorithm, considering the fitness value, is shown in 

Figure 5.19. Since some members of some of the generations cause instability of the 

system, hence too large fitness values, only the best individual of each generation is 

shown in this figure. 
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Figure 5.19. The best individual of each generation 

In order to check the performance of the proposed controller under different initial 

conditions, the lateral control system was simulated with different initial states 𝑒1, 𝑒̇1, 𝑒2, 

and 𝑒̇2. The results are shown in Figure 5.20 and Figure 5.21. These figures show that the 

proposed controller has good performance regardless of the choice of the initial 

conditions (displacement and orientation of the vehicle). 

 

Figure 5.20. Lateral control simulation result of lateral displacement with different 

initial conditions 



104 

 

Figure 5.21. Lateral control simulation result of vehicle orientation with different 

initial conditions 

5.4.6. Robustness Analysis 

In this section, we investigate the controller robustness using Monte-Carlo 

evaluation method [240]. The neural network controller optimized by the genetic 

algorithm was based on a linearized bicycle model which inevitably included incomplete 

vehicle dynamic information. Furthermore, the parameters change due to the change in 

vehicle speed, mass, road friction and tire cornering stiffness were not reflected in the 

model. Therefore, it is important to show that the controller is robust to parameter 

variation. 

10,000 Monte-Carlo evaluations are performed to illustrate the effect of 

parameter variation on the step response of the neural network controller. A single model 

parameter was randomly selected and varied ±25% using uniform uncertainty in each 

evaluation. Figure 5.22 shows 10,000 step responses of the bicycle model with ±25% 

parameter uncertainties using the proposed controller.  
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Figure 5.22. Monte-Carlo evaluation with ± 𝟐𝟓% parameters uncertainty 

Envelopes shown in Figure 5.22 are constructed based on the nominal step 

responses of the vehicle controlled by the neural network controller. The step response is 

multiplied by factors 1.2 and 0.8 to define ± 20% deviation limits. The purpose of 

defining the envelope is to estimate the probability of step response violating the 

envelope. That is the probability of a step response to falling out of the envelope if 

system parameters have ±25% variation. 

Figure 5.22 demonstrates that all the 10,000 Monte-Carlo evaluation results are 

within the defined ±20% deviation envelopes. Based on the Monte-Carlo evaluation 

result, we conclude that the proposed neural network controller is robust to ±25% 

parameters uncertainty and it is stable within this range of operation. 

5.5. Conclusion 

In this chapter, we described and analyzed the kinematic and dynamic models of 

vehicle lateral motions. By re-writing the original bicycle model equations using the re-

defined variables, the lateral model was converted to a state-space representation where 

the state variables are the position and orientation errors, and their derivatives, with 
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respect to the center of the lane. This modification facilitates controller design in this 

chapter and the remainder of this dissertation.  

Based on the vehicle model, a state feedback controller was designed to keep the 

vehicle at the center of the lane using pole-placement techniques. Also, the effects of 

adding a feed-forward controller to the designed state feedback controller were studied. 

Based on this analysis, the appropriate feed-forward controller was designed to improve 

the performance of the system, especially in the curved sections of the road. 

We considered the output of the system as the preview error at a distance ahead of 

the vehicle and designed several output feedback controllers for the system. We applied 

the root locus technique to find the minimum required proportional gain to stabilize the 

system. Using the Bode plots of the closed-loop system, we designed a lead compensator 

to increase the stability margins. 

Finally, a novel, simple neural-network controller, which was recently introduced 

by our group, was used to design a lateral controller. Unlike the other controllers 

designed in this chapter, the new controller was not model-based. In other words, the 

mathematical model of the vehicle was not necessary to find the controller parameters in 

this algorithm. The performance of this designed controller was comparable to 

conventional neural network controllers. However, the complexity of the proposed 

method is much less which results in a simpler design procedure and fewer function 

evaluations for GA optimization of the neural network weights. We also considered 25% 

variation in model parameters and demonstrated the robustness of the algorithm using 

Monte-Carlo analysis. 

Although these lateral controllers were designed in a way to be robust to some 

parameter variations, the disturbances and model uncertainties in real life scenarios might 

be more severe. Wind gusts, icy roads, road banking angles, drastic changes in vehicle 

cornering stiffness because of the road conditions, and other parameter variations might 

happen while driving. In addition, some of these conditions might occur at the same time, 

which makes the problem even more difficult. As explained in Chapter 2, these 
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complexities are less considered in the literature. In the next chapter, we apply a recently 

introduced robust adaptive controller to solve this problem. 
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Chapter 6.  

 

𝓛𝟏 Adaptive Steering Control 

In the previous chapter, we designed several lateral controllers. We also showed 

the significance and importance of lateral control in autonomous vehicles through the 

literature review in Chapter 2. However, the problem presents additional challenges when 

external disturbances, uncertainties, and parameter variations are considered. These 

complexities are less considered in the literature. Therefore, it is envisaged that robust 

adaptive control is an excellent candidate to address these problems successfully. 

Less than a decade ago, ℒ1 adaptive control was introduced by Hovakimyan and 

Cao [27-29]. The following properties of this controller make it a suitable choice for the 

vehicle lateral control problem. The key features of this control architecture are 

guaranteed robustness and fast adaptation. These ensure that the control system is robust 

to variations in the uncertainty and parameters of the system as well as demonstrating an 

acceptable performance. The ℒ1 control algorithm also ensures uniformly bounded 

transient response and steady-state tracking. This goal is achieved by proper formulation 

of the control objective in a way that the uncertainties of the system can be compensated 

for within the bandwidth of the control channel [27]. In this algorithm, the decoupling of 

adaptation and robustness is made possible by building the robustness specifications in 

the problem formulation. This method increases the speed of adaptation which will be 

restricted only by hardware limitations.  In other words, employing  ℒ1 adaptive control 

addresses fast adaptation which is beneficial for both robustness and performance. One of 

the crucial steps in this algorithm is selecting the underlying filter structure, which can be 

addressed using classical and robust control techniques. 

Within the above context, the contribution of this communication is two folds: (i) 

The algorithm will guarantee stability and performance in trajectory (lane center) 

tracking in the presence of model uncertainties, wind disturbance, road banking angle, 

and icy roads, assuming there is no sensor failure. (ii) The proposed controller will 

rapidly adapt to variations in the parameters of the system model and compensate the 
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effects of unknown disturbances. Also, since this method is adaptive, it is a suitable 

choice for vehicle lateral control problem in the presence of parameter variations. Lastly, 

because of its guaranteed robustness, ℒ1 adaptive controller is an appropriate controller 

for handling vehicle lateral model uncertainties and disturbances such as the wind, 

slippery roads, and road banking angles. 

In this chapter, we implement ℒ1 adaptive control on the vehicle lateral control 

problem. The main objective is to design a controller that ensures the vehicle follows the 

reference trajectory (center of the lane) with robustness to uncertain parameters of the 

vehicle lateral dynamics. The designed ℒ1 adaptive control signal compensates the 

uncertainties and variations in model parameters in the presence of disturbances. As with 

the previous chapters, a bicycle model for the vehicle lateral dynamics is considered. We 

will demonstrate the desirable performance of the proposed adaptive controller at steady-

state as well as the transient response. The simulation results confirm that the controller 

significantly improves the transient response of the vehicle lateral controller in the 

presence of wind gusts, road bank angle, icy or slippery road conditions, measurement 

noise, and other parameter uncertainties and unknown disturbances.  

6.1. Vehicle Lateral Dynamics 

6.1.1. Nominal Model 

A nonlinear six-degree-of-freedom (DOF) vehicle model, which represents the 

vehicle lateral dynamics as realistically as possible, is developed in [223]. This complex 

model has sixteen state variables: twelve for the six DOF motions (three translational and 

three rotational) and four for the tires.  A simplified linear two-degrees of freedom 

‘bicycle’ model of the vehicle can be obtained from the complex model. Several studies 

have already established that the simplified model, which we will use in this work, is a 

good approximation of the complex model for all practical purposes [200, 223, 224]. In 

this model, the vehicle yaw angle 𝜓 and lateral position 𝑦 are considered as the two 

degrees of freedom of the car, as shown in Figure 6.1. We consider 𝑂 as the center of the 

rotation of the vehicle. The lateral position of the car can be measured along the 𝑦 axis to 
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the point 𝑂. The yaw angle is considered as the angle between horizontal axis of the car 

(𝑥) and the global horizontal axis (𝑋). This is demonstrated in Figure 6.1.  

 

Figure 6.1. Vehicle lateral dynamics 

The longitudinal velocity of the car at its center of gravity is denoted by 𝑉𝑥. The 

distances of the front and rear tires from the center of gravity and cornering stiffness of 

each front and rear tire are shown by 𝑙𝑓 , 𝑙𝑟 , 𝐶𝑎𝑓, and 𝐶𝑎𝑟, respectively. The steering angle 

is shown by 𝛿 and the yaw moment of inertia of the vehicle is 𝐼𝑧. Considering lateral 

position, yaw angle, and their derivatives as the state variables, and using Newton’s 

second law for motion along the 𝑦-axis, the state-space model of lateral vehicle dynamics 

can be shown by the following equation [224]: 
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The ultimate goal of this study is designing a lateral control (steering control) for 

the lane keeping in autonomous vehicles. Therefore, we prefer to convert the above state-

space representation of lateral dynamics to a model where the state variables are the 

position and orientation errors with respect to the center of the lane. Therefore, the above 

lateral model can be re-defined in terms of two error variables: 𝑒1 which is the distance of 

the center of the gravity of the vehicle from the center line of the lane and 𝑒2 which is the 

orientation error of the vehicle with respect to the road.  

Assuming the radius of the road is 𝑅, the rate of change of the desired orientation 

of the vehicle can be defined as 

𝜓̇𝑑𝑒𝑠 =
 𝑉𝑥

𝑅
   (6-2) 

Based on the above state variables, the tracking objective of the lateral control 

problem can be expressed as a problem of stabilizing the following dynamics at the 

origin: 

𝑑

𝑑𝑡
[

𝑒1
𝑒̇1
 𝑒2
 𝑒̇2

] =

[
 
 
 
 
 
 
0 1 0 0

0 −
2𝐶𝑎𝑓 + 2 𝐶𝑎𝑟

𝑚𝑉𝑥

2𝐶𝑎𝑓 + 2 𝐶𝑎𝑟

𝑚
−
2𝐶𝑎𝑓𝑙𝑓 − 2 𝐶𝑎𝑟𝑙𝑟

𝑚𝑉𝑥
0 0 0 1

0 −
2𝐶𝑎𝑓𝑙𝑓 − 2 𝐶𝑎𝑟𝑙𝑟

𝐼𝑧𝑉𝑥

2𝐶𝑎𝑓𝑙𝑓 − 2 𝐶𝑎𝑟𝑙𝑟

𝐼𝑧
−
2𝐶𝑎𝑓𝑙𝑓

2 + 2 𝐶𝑎𝑟𝑙𝑟
2

𝐼𝑧𝑉𝑥 ]
 
 
 
 
 
 

[

𝑒1
𝑒̇1
 𝑒2
 𝑒̇2

] + 

        

[
 
 
 
 
0

2𝐶𝑎𝑓

𝑚

0
2𝐶𝑎𝑓𝑙𝑓

𝐼𝑧 ]
 
 
 
 

𝛿 +

[
 
 
 
 

0

−𝑉𝑥 −
2𝐶𝑎𝑓𝑙𝑓−2 𝐶𝑎𝑟𝑙𝑟

𝑚𝑉𝑥

0

−
2𝐶𝑎𝑓𝑙𝑓

2+2 𝐶𝑎𝑟𝑙𝑟
2

𝐼𝑧𝑉𝑥 ]
 
 
 
 

𝜓̇𝑑𝑒𝑠   (6-3) 

The lateral position of the vehicle with respect to the road is usually measured at a 

location ahead of the vehicle, as shown in Figure 6.2. Various sensors have been used by 

researchers to measure this lateral preview error [186].  
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Figure 6.2. Measurement of preview error 

Assuming that 𝑒2 is small, we can approximate the chord length by the arc length. 

Therefore, the output equation of the state-space, the equation that expresses the output as 

a linear combination of the states, is as follows: 

𝑦 = 𝑒1 + 𝑑𝑠𝑒2   (6-4) 

where 𝑑𝑠 is the look-ahead distance, which is the longitudinal distance of the point ahead 

of the vehicle center of gravity, where we make the sensor measurements. 

6.1.2. Road Bank Angle 

The bank angle is the angle at which the vehicle is inclined about its longitudinal 

axis with respect to the horizontal line. Road bank angle has a direct influence on the 

vehicle dynamics. Whereas quantities like speed or lateral error can be obtained by direct 

measurement, bank angle cannot be measured as easily. Although some methods for 

estimating this value have been reported  [241], the decoupling of parametric 

uncertainties (such as variations of cornering stiffness of tires and vehicle mass) from the 

road bank angle still needs to be addressed. 

Compensating the road bank angle is neglected in many of the lateral control 

algorithms, including those algorithms discussed in the previous chapters. In this study, 

we treat this variable as a disturbance or an unknown input to the vehicle and include it in 

all closed-loop simulations. We expect the control algorithm to compensate its effect 

without having any measurement of its value. The effect of the road bank angle is 
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considered in the dynamic model of the vehicle by adding the following term to the right-

hand side of (6-3): 

[

0
𝑔
0
0

] sin(𝜙)  (6-5) 

where 𝑔 is the gravitational acceleration and 𝜙 is road bank angle. 

6.1.3. Parametric Uncertainties 

Variations of the parameters in (6-3) affect the vehicle dynamics. Whereas the 

parameters 𝑙𝑓, 𝑙𝑟 and 𝑑𝑠 are fixed and known, mass (𝑚), moment of inertia (𝐼𝑧), 

longitudinal speed (𝑉𝑥), and cornering stiffness (𝐶𝑎𝑓 and 𝐶𝑎𝑟) might deviate from their 

nominal values. 

Peng and Tomizuka showed in [223] that the most significant variations of 

vehicle dynamics are caused by the uncertainties in the value of cornering stiffness. The 

values of 𝐶𝑎𝑓 and 𝐶𝑎𝑟 are affected by many factors: tire slip ratio, tire slip angle, tire 

pressure, load, velocity, temperature, and, most importantly, the road condition. Not only 

these values vary in a wide range, but also, they change the behavior of the vehicle 

drastically. The nominal and range of variations of the parameters are adopted from [223] 

and tabulated  in  

Table 6.1. Parameters of the vehicle model 

Parameter Symbol Unit Nominal Min (relative) Max (relative) 

Mass 𝑚 𝑘𝑔 1573 0.85 1.15 

Moment of 
Inertia 

𝐼𝑧 𝑘𝑔.𝑚2 2873 0.85 1.15 

Cornering 
Stiffness 

𝐶𝑎𝑓 , 𝐶𝑎𝑟 𝑁/𝑟𝑎𝑑 80000 0.2 2 
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Here, we assume all the above parametric uncertainties exist concurrently. 

Specifically, we assume one section of the road is icy, and the cornering stiffness drops to 

its minimum value, as it will be explained in section 6.3. 

6.1.4. Wind Gust 

The vehicle lateral control system should be able to maintain the car in the center 

of the lane when there is wind gust disturbance. The effect of the wind on vehicle lateral 

dynamics is derived in [223]. As per recommendation in [241], we add the following 

term to the right-hand side of (6-3): 

[

0
𝐹𝑤/𝑚 
0

𝑇𝑤/𝐼𝑧

]   (6-6) 

where 𝐹𝑤 and 𝑇𝑤 are wind force and torque acting on vehicle in lateral direction 

6.2. 𝓛𝟏 Adaptive Control 

In this section, we present an overview of the ℒ1 adaptive controller which was 

first reported by Cao and Hovakimyan [28, 29]. One of the main advantages of ℒ1 

controller over other adaptive control strategies is decoupling of the adaptation rate and 

the robustness. This goal is achieved by selecting an appropriate low-pass filter on the 

control signals. In all control algorithms, there is the issue of the trade-off between 

performance and robustness. The mentioned decoupling results in an easier solution for 

this trade-off problem. Although a compromise between the robustness and the 

adaptation rate exists in this algorithm too, the techniques used in this method facilitates 

handling the trade-off problem. 

Many variations of  ℒ1 adaptive controller have been reported after it was first 

introduced [27]. We employ a particular architecture of this controller that suitably 

addresses the lateral vehicle control with uncertainties on the parameters of the vehicle 

dynamics. This version of the controller employs output feedback in the presence of 
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unknown time-varying nonlinearities [242]. The main reason for the selection of this 

algorithm is that it does not require explicit measurement of the states of the systems as 

sensors that measure such states may not be available. 

This algorithm guarantees that the transient response for system’s both signals, 

input and output, are uniformly bounded as compared to similar signals of a reference 

system. The bounds for the error signals between the controlled system and the reference 

system can be reduced by increasing the adaptation gain [27]. The details of these bounds 

and their relationships with the adaptation gain are given in [28] and [27]. 

6.2.1. Problem Formulation 

In this methodology, the following structure is considered for the system 

𝑌(𝑠) = 𝐴(𝑠)(𝑈(𝑠) + 𝐷(𝑠))  (6-7) 

where 𝑌(𝑠) is the Laplace transform of system’s output 𝑦(𝑡), 𝑈(𝑠) is the Laplace 

transform of 𝑢(𝑡) which is the system’s input, 𝐴(𝑠) is the unknown transfer function of 

the system, and 𝐷(𝑠) is the Laplace transform of the nonlinear time-varying disturbances 

and uncertainties, represented by 𝑑(𝑡) = 𝑓(𝑡, 𝑦(𝑡)). Two assumptions are made for the 

unknown 𝑓: 

Assumption 1 (Lipschitz continuity): Arbitrary large constants 𝐿 > 0 and 𝐿0 > 0 

exist such that the following inequalities hold uniformly: 

{
|𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2)| ≤ 𝐿|𝑦1 − 𝑦2|

|𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑦| + 𝐿0
  (6-8) 

Assumption 2: The rate of variation of uncertainties is uniformly bounded. In 

other words, there exist arbitrarily large constants 𝐿1 > 0, 𝐿2 > 0, and 𝐿3 > 0 such that 

|𝑑̇(𝑡)| ≤ 𝐿1|𝑦̇(𝑡)| + 𝐿2|𝑦(𝑡)| + 𝐿3   (6-9) 

The control objective is to design an adaptive controller such that 𝑦(𝑡) tracks the 

reference 𝑟(𝑡) as a desired reference model 𝑀(𝑠): 
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𝑀(𝑠) =
𝑚

𝑠+𝑚
, 𝑚 > 0   (6-10) 

6.2.2. 𝓛𝟏 Adaptive Control Structure 

Based on (6-7) and (6-10), the system can be written in terms of the reference 

system: 

𝑌(𝑠) = 𝑀(𝑠)(𝑈(𝑠) + 𝜎(𝑠))   (6-11) 

where 

𝜎(𝑠) =
(𝐴(𝑠)−𝑀(𝑠))𝑈(𝑠)+𝐴(𝑠)𝐷(𝑠)

𝑀(𝑠)
   (6-12) 

The design of ℒ1 adaptive controller involves designing a strictly proper filter 

𝐶(𝑠) with 𝐶(0) = 1 which results in stable 𝐻(𝑠) where 

𝐻(𝑠) =
𝐴(𝑠)𝑀(𝑠)

𝐶(𝑠)𝐴(𝑠)+(1−𝐶(𝑠))𝑀(𝑠)
    (6-13) 

and the following norm condition is satisfied 

‖𝐺(𝑠)‖ℒ1𝐿 < 1   (6-14) 

where  

𝐺(𝑠) = 𝐻(𝑠)(1 − 𝐶(𝑠))   (6-15) 



117 

 

Figure 6.3. Closed-loop system with 𝓛𝟏 output feedback adaptive controller 

The general structure of a closed-loop output feedback ℒ1 adaptive controller is 

illustrated in Figure 6.3. In addition to the control law, this algorithm consists of an 

output predictor and an adaptation law. 

1) Output Predictor 

The following output predictor is used here 

𝑦̇̂ = −𝑚𝑦̂(𝑡) + 𝑚(𝑢(𝑡) + 𝜎̂(𝑡)), 𝑦̂(0) = 0   (6-16) 

where 𝜎̂(𝑡) is the adaptive estimate obtained by the adaptation law block. 

2) Adaptation Law 

The adaptive estimate 𝜎̂(𝑡) is obtained by 

𝜎̇̂(𝑡) = ΓProj(𝜎̂(𝑡),−𝑦̃(𝑡)), 𝜎̂(0) = 0   (6-17) 

where Proj is the projection function defined in Appendix A, 𝑦̃(𝑡) = 𝑦̂(𝑡) − 𝑦(𝑡) is the 

error between the predictor in (6-16) and the output of the system in (6-11), and Γ ∈ ℝ+ 

is the adaptation gain. Projection is used to ensure the bounds for parameter estimation. 
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3) Control Law with Low-pass Filter 

The following control signal is generated by this algorithm to compensate the 

uncertainties within the desired bandwidth: 

𝑈(𝑠) = 𝐶(𝑠)(𝑅(𝑠) − 𝜎̂(𝑠))   (6-18) 

where 𝐶(𝑠) is a strictly proper low-pass filter with 𝐶(0) = 1. The unity dc gain of the 

filter ensures tracking [27]. In this work, a first-order low-pass filter is considered: 

𝐶(𝑠) =
𝜔

𝑠+𝜔
   (6-19) 

6.2.3. Closed-loop Reference system 

Supposing that the adaptive variable 𝜎̂(𝑡) is exactly estimated, 𝜎̂(𝑡) = 𝜎(𝑡), if we 

define the control signal 𝑈(𝑠) to be equal to 𝑅(𝑠) − 𝜎(𝑠), the output signal 𝑌(𝑠) would 

exactly match 𝑀(𝑠)𝑅(𝑠). However, in the ℒ1 adaptive control algorithm, since we need 

to approximate the uncertain 𝜎(𝑠) signal, the system’s ideal input signal 𝑅(𝑠) − 𝜎(𝑠) is 

filtered with a low-pass filter 𝐶(𝑠). The main reason is to remove the high-frequency 

chattering phenomenon which is common in adaptive control algorithms [243]. As a 

result, the expected closed-loop reference response is altered. 

Assuming the uncertainties are entirely known (non-adaptive version of the 

adaptive controller), the closed-loop reference system would be given by 

𝑌𝑟𝑒𝑓(𝑠) = 𝑀(𝑠) (𝑈𝑟𝑒𝑓(𝑠) + 𝜎𝑟𝑒𝑓(𝑠))   (6-20) 

𝑈𝑟𝑒𝑓(𝑠) = 𝐶(𝑠)(𝑅(𝑠) − 𝜎𝑟𝑒𝑓(s))   (6-21) 

𝜎𝑟𝑒𝑓(𝑠) =
(𝐴(𝑠)−𝑀(𝑠))𝑈𝑟𝑒𝑓(𝑠)+𝐴(𝑠)𝐷𝑟𝑒𝑓(𝑠)

𝑀(𝑠)
   (6-22) 

where 𝐷𝑟𝑒𝑓(𝑠) is the Laplace transform of 𝑑𝑟𝑒𝑓(𝑡) = 𝑓(𝑡, 𝑦𝑟𝑒𝑓(𝑡)). Substituting (6-22) in 

(6-21) and cancellation of 𝑀(𝑠) from both numerator and denominator, which requires a 

stable non-minimum phase reference model 𝑀(𝑠) to ensure stability, results in 
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𝑈𝑟𝑒𝑓(𝑠) =
𝐶(𝑠)𝑀(𝑠)𝑅(𝑠)−𝐶(𝑠)𝐴(𝑠)𝐷(𝑠)

𝐶(𝑠)𝐴(𝑠)+(1−𝐶(𝑠))𝑀(𝑠)
   (6-23) 

Substituting the closed-loop reference command (6-23) into (6-20), we get 

𝑌𝑟𝑒𝑓(𝑠) = 𝐻(𝑠) (𝐶(𝑠)𝑅(𝑠) + (1 − 𝐶(𝑠))𝐷𝑟𝑒𝑓(𝑠))   (6-24) 

where 𝐻(𝑠) is given by (6-13). Therefore, 𝑀(𝑠) and 𝐶(𝑠) should be selected to ensure 

the stability of 𝐻(𝑠). In addition, the condition in (6-14) should be met so that the small-

gain theorem can be applied [27]. 

As mentioned before, the ideal control signal would lead to the desired system 

response 𝑀(𝑠)𝑅(𝑠) by exactly cancelling all the uncertainties. Obviously, the response in 

the reference system in (6-20) and (6-21) is different from the ideal one. In fact, the 

control signal in (6-21) cancels only the uncertainties which are in the bandwidth of the 

low-pass filter 𝐶(𝑠). The parameter 𝜔 in (6-19) can be selected such that the bandwidth 

of the filter is compatible with the control channel specifications.  This is exactly what 

one hopes to obtain in any feedback control problem in the presence of uncertainties and 

disturbances. 

The adaptive system in this algorithm tries to approximate the parameter 𝜎𝑟𝑒𝑓(𝑡) 

with the estimate 𝜎̂(𝑡) obtained from (6-17). However, we should examine the conditions 

that result in stability of the signal that 𝜎̂(𝑡) is attempting to estimate, which is 𝜎𝑟𝑒𝑓(𝑡). 

Pay attention that 𝑢𝑟𝑒𝑓(𝑡) and 𝜎𝑟𝑒𝑓(𝑡) are never explicitly calculated. Actually, the 

reason that we need to estimate them is the fact that we cannot calculate them. However, 

we can and should investigate the stability of 𝜎𝑟𝑒𝑓(𝑡). 

Substituting 𝑈𝑟𝑒𝑓(𝑠) from (6-21) in (6-22) we get  

𝜎𝑟𝑒𝑓(𝑠) =
(𝐴(𝑠) − 𝑀(𝑠))𝑈𝑟𝑒𝑓(𝑠) + 𝐴(𝑠)𝐷𝑟𝑒𝑓(𝑠)

𝑀(𝑠)
 

=
(𝐴(𝑠) − 𝑀(𝑠))𝐶(𝑠) (𝑅(𝑠) − 𝜎𝑟𝑒𝑓(s))𝐴(𝑠)𝐷𝑟𝑒𝑓(𝑠)

𝑀(𝑠)
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=
𝐶(𝑠)(𝐴(𝑠)−𝑀(𝑠))

𝑀(𝑠)
𝑅(𝑠) −

𝐶(𝑠)(𝐴(𝑠)−𝑀(𝑠))

𝑀(𝑠)
𝜎𝑟𝑒𝑓(𝑠) +

𝐴(𝑠)

𝑀(𝑠)
𝐷𝑟𝑒𝑓(𝑠)   (6-25) 

Figure 6.4 shows the block diagram of 𝜎𝑟𝑒𝑓(𝑠) obtained in (6-25). We can get the 

closed-loop equation for 𝜎𝑟𝑒𝑓(𝑠) of by solving (6-25) for 𝜎𝑟𝑒𝑓(𝑠): 

𝜎𝑟𝑒𝑓(𝑠) =
𝐶(𝑠)(𝐴(𝑠)−𝑀(𝑠))𝑅(𝑠)+𝐴(𝑠)𝐷𝑟𝑒𝑓(𝑠)

𝐶(𝑠)𝐴(𝑠)+(1−𝐶(𝑠))𝑀(𝑠) 
   (6-26) 

 

 

Figure 6.4. Block diagram of 𝝈𝒓𝒆𝒇(𝒔) 

Letting 

𝐴(𝑠) =
𝐴𝑛(𝑠)

𝐴𝑑(𝑠)
   

𝐶(𝑠) =
𝐶𝑛(𝑠)

𝐶𝑑(𝑠)
  (6-27) 

𝑀(𝑠) =
𝑀𝑛(𝑠)

𝑀𝑑(𝑠)
   

we can write the polynomial format of 𝜎𝑟𝑒𝑓(𝑠) as  

𝜎𝑟𝑒𝑓(𝑠) =
𝐶𝑛(𝑠)(𝐴𝑛(𝑠)𝑀𝑑(𝑠)−𝐴𝑑(𝑠)𝑀𝑛(𝑠))𝑅(𝑠)+𝐶𝑑(𝑠)𝐴𝑛(𝑠)𝑀𝑑(𝑠)𝐷𝑟𝑒𝑓(𝑠)

𝐶𝑛(𝑠)𝐴𝑛(𝑠)𝑀𝑑(𝑠)+(𝐶𝑑(𝑠)−𝐶𝑛(𝑠))𝐴𝑑(𝑠)𝑀𝑛(𝑠)
   (6-28) 
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Replacing (6-27) in (6-13), we get 

𝐻(𝑠) =
𝐶𝑑(𝑠)𝐴𝑛(𝑠)𝑀𝑛(𝑠)

𝐶𝑛(𝑠)𝐴𝑛(𝑠)𝑀𝑑(𝑠)+(𝐶𝑑(𝑠)−𝐶𝑛(𝑠))𝐴𝑑(𝑠)𝑀𝑛(𝑠)
   (6-29) 

Comparing (6-28) and (6-29) we note that 𝜎𝑟𝑒𝑓(𝑠) and 𝐻(𝑠) have the same 

polynomial in their denominators. Therefore, 𝜎𝑟𝑒𝑓(𝑠) is stable if 𝐻(𝑠) is stable. 

6.2.4. Designing the Controller Parameters 

To design an adaptive ℒ1 adaptive controller for the vehicle lateral control 

problem, a first-order reference model, as shown in (6-10), is selected. The reason is that 

the first-order dynamics behavior is expected from the vehicle when it is adjusting itself 

in the center of the lane. The parameter 𝑚 in (6-10) should be tuned. The other 

parameters that need to be designed are the bandwidth (𝜔) of the low-pass filter in (6-19), 

and the adaptation gain (Γ) in (6-17). 

At frequencies well below the bandwidth of the filter (way smaller than 𝜔), the 

filter 𝐶(𝑠) acts similar to an all-pass filter (𝐶(𝑠) ≈ 1) and from (6-13) we have: 

𝐻(𝑠) ≈ 𝑀(𝑠)   (6-30) 

In this case, the reference output of the system can be written using (6-24): 

𝑌𝑟𝑒𝑓(𝑠) ≈ 𝑀(𝑠)𝑅(𝑠)   (6-31) 

Similarly, at frequencies well above the bandwidth of the low pass filter (above 

𝜔), the filter 𝐶(𝑠) acts similar to a no-pass filter (𝐶(𝑠) ≈ 0), and from (6-13) we have: 

𝐻(𝑠) ≈ 𝐴(𝑠)   (6-32) 

Obviously, a higher cut-off frequency (𝜔) in 𝐶(𝑠) results in a closed-loop 

reference system that acts more similarly to the desired model. However, it increases the 

chattering problem and reduces the stability of the system. The requirement of stability of 

𝐻(𝑠) limits the range of 𝑚 and 𝜔 that can be considered for designing the controller. As 
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mentioned, a higher 𝜔 would result in a 𝑌𝑟𝑒𝑓(𝑠) (response of 𝐻(𝑠)𝐶(𝑠)) which is close to 

𝑌𝑖𝑑𝑒𝑎𝑙(𝑠) (response of 𝑀(𝑠)). Even if these two values are close to each other, the actual 

closed-loop output of the system, 𝑌(𝑠), would be different from these values if adaptation 

of 𝜎(𝑠) is not done fast enough. In other words, the adaptation gain Γ should be selected 

large enough so that the output of the system follows the reference closed-loop output 

closely. 

In summary, the control process, shown in Figure 6.3, can be described as 

follows. The output of the unknown system, including disturbances and uncertainties, is 

compared to the output of the predictor in (6-16), which has the dynamics of the desired 

reference model. The adaptation law in (6-17) uses the mentioned comparison and 

generates the adaptive estimate 𝜎̂(𝑡). This adaptation estimate, in addition to the 

reference signal, are given to the control law with a low-pass filter in (6-18) to generate 

the control signal. The parameters which need to be tuned are 𝑚 in (6-16), Γ in (6-17), 

and 𝜔 in (6-18). Pay attention that the higher Γ is, the more similar 𝑌(𝑠) (the actual 

response of the system) and 𝑌𝑟𝑒𝑓(𝑠) (the response to 𝐻(𝑠)𝐶(𝑠)) are. In addition, the 

higher 𝜔 is, the more similar 𝑌𝑟𝑒𝑓(𝑠) and 𝑌𝑖𝑑𝑒𝑎𝑙(𝑠) (the response to 𝑀(𝑠)) are. Also, the 

bigger 𝑚 is, the faster the response of 𝑌𝑖𝑑𝑒𝑎𝑙(𝑠) is. 

The steps of the algorithm applied in this work can be summarized as follows: 

1. The parameters 𝑚 and 𝜔 are selected such that the condition in (6-13) 

is met. In addition, 𝑚 determines the behavior of the ideal system, and 

𝜔 should be large enough so that the behavior of the reference system 

be similar to the one of the ideal system. 

2. The adaptation gain Γ is selected as large as possible such that the 

actual response of the system is close to the reference system. 

Especially, the value of Γ should not be less than the value that makes 

𝜎̂(𝑡) unstable. 

3. The prediction of the output signal (𝑦̂(𝑡)) is given by (6-16). 

4. The adaptive estimate of the uncertainties (𝜎̂(𝑡)) is given by (6-17). 

5. The adaptive control signal (𝑢(𝑡)) is given by (6-18). 
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6.3. Simulations and Results 

The dynamics of the vehicle are considered as explained in section 6.1 and 

parameters of this model, in the nominal case, are considered as follows [224]: 

𝐶𝑎𝑓 = 80000, 𝐶𝑎𝑟 = 80000, 𝑙𝑓 = 1.1, 𝑙𝑟 = 1.58,   

𝐼𝑧 = 2873,           𝑚 = 1573   (6-33) 

The road banking angle in (6-5) and the wind gusts in (6-6) are considered as 

disturbances to the system. The model parametric uncertainties in Table 6.1 and the 

neglected dynamics in the bicycle model are considered as the uncertainties. The look-

ahead distance, where the sensor measurements are made as shown in (6-4), is considered 

𝑑𝑠 = 18 𝑚. 

 

Figure 6.5. Region of pair (𝒎,𝝎) for stable 𝑯(𝒔) (left region) 

The range of acceptable values of 𝑚 and 𝜔 for stability of 𝐻(𝑠) in (6-13) is 

shown in Figure 6.5. This result shows that if the reference model is selected slower than 

a certain speed, the cut-off frequency of the low-pass filter can be chosen arbitrarily for 

meeting the condition in (6-13).  

In this algorithm, the adaptive system attempts to estimate the parameter 𝜎𝑟𝑒𝑓(𝑡) 

by updating the parameter 𝜎̂(𝑡) using (6-17). We proved in section 6.2.3 that 𝜎𝑟𝑒𝑓(𝑡) is 
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stable if 𝐻(𝑠) is stable. However, the controller parameters should be designed such that 

the signal 𝜎̂(𝑡) is stable too. In order to investigate the stability of this signal, we use the 

following equation obtained in [244]: 

𝜎̂(𝑠) =
𝐶(𝑠)(𝐴(𝑠)−𝑀(𝑠))𝑅(𝑠)+𝐴(𝑠)𝐷(𝑠)
1

Γ
𝑠+𝐶(𝑠)𝐴(𝑠)+(1−𝐶(𝑠))𝑀(𝑠)

   (6-34) 

As we expect, when Γ → ∞,  the estimate 𝜎̂(𝑠) → 𝜎𝑟𝑒𝑓(𝑠). One useful method to 

investigate the stability of this system, based on the variations of the adaptive gain Γ, is to 

use the root locus method. In order to use this method, we write the denominator of 

(6-34) as 

1 + Γ𝑇(𝑠)   (6-35) 

where 

𝑇(𝑠) =
𝐶(𝑠)𝐴(𝑠)+(1−𝐶(𝑠))𝑀(𝑠)

𝑠
   (6-36) 

Comparing (6-13) and (6-36), we can see that the zeros of 𝑇(𝑠) match the poles of 

𝐻(𝑠). Obviously if the parameters 𝑚 and 𝜔 are selected in the green area in Figure 6.5, 

the open-loop zeros of 𝑇(𝑠), which are equal to closed-loop poles of (6-34) or (6-35) for 

large values of  Γ, are stable. . However, the poles of 𝑇(𝑠), in addition to the trivial pole 

at 𝑠 = 0, match the poles 𝐶(𝑠), 𝑀(𝑠), and 𝐴(𝑠). In the vehicle lateral dynamics system, 

the poles of 𝐴(𝑠) are unstable even for the nominal case without uncertainties.  As the 

adaptation gain Γ increases from 0, to ∞, the poles of 𝜎̂(𝑠) move from the unstable poles 

of 𝑇(𝑠) to the stable zeros of 𝑇(𝑠). However, the unmatched poles go to ∞ following 

some asymptotes. Since these asymptotes might lead to unstable right half plane, we 

should be specifically careful about these unmatched poles. In addition, the adaptation 

gain should be chosen large enough to make sure that the matched poles are stable. 

We studied the effect of changing the acceptable (see Figure 6.5) parameters of 

𝐶(𝑠) and 𝑀(𝑠), i.e. 𝜔 and 𝑚, on the poles of 𝐻(𝑠) for the vehicle lateral dynamics (6-3) 

using nominal values mentioned in (6-33). If these two parameters are selected from the 

green region shown in Figure 6.5, the dominant real pole of 𝐻(𝑠) does not move 
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significantly, and it is always around −0.8. However, the dominant imaginary poles 

strongly depend on the pair (𝑚,𝜔). They would be farther from 𝑗𝜔 axis in complex plane 

when 𝑚 is smaller. This results in a trade-off because a smaller 𝑚 is equivalent to slower 

response in the reference model. The root locus of (6-35) for the vehicle lateral dynamics 

for a fixed 𝑚 and  𝜔 is shown in Figure 6.6. The higher the parameter 𝜔 is, the higher 

adaptation gain Γ is required to stabilize 𝐻(𝑠). In this system, any Γ > 2770 stabilizes 

𝜎̂(𝑠). 

 

Figure 6.6. Root locus for 𝚪 > 𝟎 for 𝝈̂(𝒔) using nominal parameters of vehicle 

dynamics  

In all the simulations, an initial offset of 1 meter is considered for the vehicle. The 

wind uncertainty starts at t = 9s and reaches its maximum t = 11s with a force of Fw =

−500 Newtons and moment of Tw = −200 Newton-meters in the lateral direction and 

affects the vehicle as explained in (6-6). The road bank angle starts at the same time as 

the wind, and it affects the lateral dynamics of the vehicle in the same direction as the 

wind, as shown in (6-5). This angle reaches its maximum of 6° at t = 11s. The variations 

of both the wind and road bank angle disturbances are shown in Figure 6.7. In this figure, 
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the value of one at 11 ≤ 𝑡 ≤ 13 shows the maximum value of wind force (-500N) and 

the maximum value of road bank angle (6°). The other values at other times are scaled 

accordingly between 0 and 1. The reader may note that the variations of these 

disturbances are matched so that the behavior of the system can be studied in the worst 

case where the peak of both disturbances happen at the same time (11 ≤ 𝑡 ≤ 13). 

 

Figure 6.7. Scaled variation of wind and road banking angle disturbances 

The road condition is assumed to suddenly change at 𝑡 = 11𝑠 to an icy section 

where 𝐶𝑎𝑓 and 𝐶𝑎𝑟 change to 0.2 times their nominal value, as shown in Table 6.1. The 

road remains icy until the end of simulations at 𝑡 = 30𝑠. 

The performance of the ℒ1 adaptive controller in steering the vehicle in the 

desired path, in the presence of the above uncertainties and disturbances, is compared 

with three other controllers. First, a conventional state feedback controller is designed to 

compare the performances of the controllers in the same scenario for disturbances and 

uncertainties. A state feedback controller that is designed for the nominal case would fail 

to stabilize the system in the extreme condition assumed in this scenario. Therefore, we 

designed the controller considering that the cornering stiffness parameters of the vehicle 

were at 60% of the nominal value, exactly in the middle of the nominal value and the 

extreme case of 20% used in the simulations. Second, a lead compensator was designed 
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for the system. Adding phase in the gain crossover range (low-frequency range) increases 

the gain margin and phase margin, as explained in details in Chapter 5. This results in a 

more robust control system in the presence of uncertainties and disturbances. Finally, a 

PID controller, which is known to have good disturbance rejection, is designed. The 

controller parameters used for all controllers in the simulations are mentioned in Table 

6.2. 

Table 6.2. The controller parameters used for the simulations 

Controller  Control Signal Parameters 

State-feedback 𝑢 = 𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥3 + 𝑘4𝑥4 
𝑘1 = 0.0137,  𝑘2 = 0.0024 

𝑘3 = 0.2023,  𝑘4 = −0.0412 

Lead Controller 𝐶𝐿(𝑠) = 𝑘
𝑇𝑛𝑠 + 1

𝑇𝑑𝑠 + 1
 

𝑇𝑛 = 0.5, 𝑇𝑑 = 0.1, 
  𝑘 = 0.08 

PID Controller 𝐶𝑃𝐼𝐷(𝑠) = 𝐾𝑃 +
𝐾𝐼
𝑠
+
𝐾𝐷𝑁

1 +
𝑁
𝑠

 𝐾𝑃 = 0.06, 𝐾𝐼 = 0.03 

𝐾𝐷 = 0.01, 𝑁 = 100 

ℒ1 adaptive  Equations (6-16) to (6-18) 
𝑚 = 2,   𝜔 = 2, 
  Γ = 50000 

 

The performance of these controllers in maintaining the vehicle at the center of 

the lane in the presence of the above-mentioned wind gusts, road bank angle, and icy 

section of road is shown in Figure 6.8 and Figure 6.9. The outputs of the vehicle lateral 

system controlled by these four controllers, which equals the preview error explained in 

(6-4), are compared in Figure 6.8. This figure shows that despite the sudden change in 

road and weather conditions, the ℒ1 adaptive controller designed here can satisfactorily 

keep the preview error close to zero during the whole simulation time. The position of 

vehicle compared to the center of the lane is also shown for all controllers in Figure 6.9 

for 𝑑𝑠 = 18.  
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Figure 6.8. Comparison of preview error of vehicle controlled with four different 

controllers 

 

Figure 6.9. Vehicle position in the presence of the wind, road banking angle, and 

icy section of road controlled by four different controllers 
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The control signals (steering wheel angles) 𝛿 generated by the controllers are 

demonstrated in Figure 6.10. The control signal generated by all controllers are in the 

acceptable range. However, it can be seen in the zoomed section of this figure that at the 

beginning of the simulation, the maximum value of the steering wheel angle used by the 

ℒ1 adaptive controller is less than a quarter of the equivalent signal generated by the lead 

compensator. This results in a smoother ride in the vehicle controlled by the ℒ1 adaptive 

controller. 

 

Figure 6.10. Control signal (steering wheel angle) 𝜹 of the controllers 

Similar simulations were performed on a curved road. The road started with 

straight line section, then there was a sharp left turn, and at the end, there was a long right 

turn, as shown in Figure 6.11. The vehicle was one meter off the center of the road at the 

beginning of the simulations. All the extreme cases of the wind, icy road, and road 

banking angles explained before are included in this scenario too. As explained before, 

wind gusts and road banking angle end at 𝑡 = 15𝑠, but the icy section of the road (with 
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80% drop in the values of cornering stiffness) continues until the end of the simulation 

(𝑡 = 30𝑠 and 𝑋 = 450𝑚). 

 

Figure 6.11. Position of the center of the lane in the curved road scenario 

The results in Figure 6.12 show the successful performance of the designed ℒ1 

adaptive controller in the presence of all uncertainties and disturbances. The simulation 

results show that the ℒ1 controller maintains the vehicle at the center of the lane in all 

sections of the road. Results shown in Figure 6.9 and Figure 6.12 might suggest that the 

lead compensator has a faster response. However, it should be considered the ℒ1 adaptive 

controller can maintain the vehicle at the center of the lane during the whole simulation, 

whereas the vehicle controlled by the lead compensator deviates from the lane center at 

some points. The reader may note that based on Figure 6.5, there is a limitation on the 

speed of the reference model (the value of 𝑚). 
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Figure 6.12. Comparison of preview error of vehicle on the curved road 

The lateral error, 𝑒1, for all the controllers are shown in Figure 6.13. This figure 

confirms that the ℒ1 adaptive controller has the best performance when both the 

disturbances and the curvy section of the road are added to the simulations. The fact that 

at the end of simulation the error is not zero is because that section of the road is curved 

(see Figure 6.11) and the controller is keeping the preview error (𝑒1 + 𝑑𝑠 𝑒2) at zero not 

the lateral error (𝑒1). 
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Figure 6.13. Lateral error (𝒙𝟏) of the vehicle on the curved road 

The steering wheel signals (𝛿) generated by the controllers are shown in Figure 

6.14. This figure shows that control signal (steering wheel) generated by ℒ1 adaptive 

controller is in the acceptable range. Also, in the beginning of the simulation where there 

is a significant initial offset from the center of the lane, the lead compensator shows an 

aggressive behavior which does not exist in the ℒ1 adaptive controller. The maximum 

value of the control signal in the lead controller is more than 3.5 times the maximum 

value of the control signal in the ℒ1 adaptive controller. In the curvy section of the road, a 

very small amount of chattering exists in the adaptive control signal, which is negligible 

compared to similar adaptive controllers. The reason that the chattering is so small in this 

algorithm is the existence of the low-pass filter in the controller. 
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Figure 6.14. Control signal (steering wheel angle) 𝜹 on the curved road 

In order to make the simulations more realistic, measurement noise is added to the 

simulations, and the last experiment is repeated. A normally (Gaussian) distributed 

random signal with zero mean and standard deviation equal to 0.05 is added to all the 

output/state measurements. Similar results to Figure 6.12 are obtained (see Figure 6.15). 

The results from the state feedback controller are not included in this figure because 

adding noise made the response of that controller unstable. 
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Figure 6.15. Comparison of preview error when measurement noise is added 

6.4. Conclusion 

ℒ1 adaptive control algorithm was utilized in this chapter to design a controller 

for the lateral dynamics of the vehicle. Assuming the states of the system cannot be 

measured, an output feedback version of the algorithm was designed in this study, which 

makes the implementation of the controller easier. In order to test the robustness of the 

controller, a scenario including strong wind gusts and road banking (in the same direction 

of the wind) was considered. In addition, it was assumed that as soon as the wind gusts 

start, the road condition deteriorates and becomes icy, resulting in 80% change in the 

values of cornering stiffness parameters, the parameters which have the most significant 

effect on the vehicle dynamics.  Finally, measurement noise was considered to make the 

simulations more realistic. 

The simulation results show that the designed lateral control algorithm has 

excellent robustness and disturbance rejection capability. In the challenging scenarios 

considered here, the conventional state feedback controller failed to keep the vehicle in 
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the center of the lane, and the more robust lead compensator brought the lateral preview 

error back to zero after some deviation. However, the proposed algorithm kept error very 

close to zero at all simulation time, for both straight and curved roads. 

Although we designed controllers to maintain the vehicle at the center of the lane 

in different conditions, in a fully autonomous vehicle, we need to control the longitudinal 

motion of the car too. Whereas vehicle lateral control only depends on each individual 

car and its position relative to the road reference, longitudinal control adds the 

complication of other vehicles driving in front of the vehicle with different speeds. In the 

next chapter, we design longitudinal controllers, combine them with the presented lateral 

controllers, and implement the overall system on our driving simulator. 
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Chapter 7.  

 

Integrated Vehicle Control System   

In the last two chapters, we studied and presented state-of-the-art lateral 

controllers for autonomous and driver-assisted vehicles. However, in any driving 

scenario, the driver is engaged in another fundamental control action: longitudinal 

control. The main aim of this chapter is to address the problem of longitudinal control 

and integrate it with the lateral controller. We will also implement the overall system on 

the driving simulator (described in Chapter 3).  

7.1. Longitudinal Control 

The longitudinal control is referred to a combination of control of a vehicle 

headway (vehicle-following) on the road, avoiding rear-end collision, and keeping safe 

distance with other road users. Some examples of the controlled variables are the distance 

from the preceding vehicle, the velocity of the vehicle, and the longitudinal acceleration. 

The actuating signals in these systems are accelerator (gas, throttle) and brake signals. 

Some of the familiar examples of the longitudinal control systems are cruise control 

(standard, adaptive, or cooperative), collision avoidance, and automated highway systems 

(platoons). Among other benefits and motivations for the longitudinal control systems 

studies are enhancing the ride comfort, improving highway safety, and reducing highway 

traffic congestions. 

7.1.1. Vehicle Longitudinal Dynamics 

The longitudinal forces acting on a vehicle on an inclined road are shown in 

Figure 7.1. These forces include gravity (𝑚𝑔 sin(𝜃) ), aerodynamic drag forces (𝐹𝑎𝑒𝑟𝑜), 

rolling resistance (𝑅𝑥𝑓 and 𝑅𝑥𝑟), and longitudinal tire forces (𝐹𝑥𝑓 and 𝐹𝑥𝑟). Considering 

𝑚 as the mass of the vehicle and 𝜃 as the angle of inclination of the road, the equation 

can be written as 
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𝑚𝑥̈ = 𝐹𝑥𝑓 + 𝐹𝑥𝑟 − 𝐹𝑎𝑒𝑟𝑜 − 𝑅𝑥𝑓 − 𝑅𝑥𝑟 −𝑚𝑔 sin(𝜃)    (7-1) 

The aerodynamic force on a vehicle can be written as 

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝜌𝐶𝑑𝐴𝐹(𝑉𝑥 + 𝑉𝑤𝑖𝑛𝑑)

2   (7-2) 

where 𝑉𝑤𝑖𝑛𝑑 is the velocity of wind (negative for tailwind), 𝑉𝑥 is the velocity of the car, 

𝐴𝐹 is the frontal area of the car, 𝐶𝑑 is aerodynamic drag coefficient, and 𝜌 is the air mass 

density. 

 

Figure 7.1. Longitudinal forces acting on a vehicle on an inclined road 

At a temperature of 15°𝐶 and pressure of 101.32 𝑘𝑃𝑎, the mass density can be 

considered as 1.225 𝑘𝑔/𝑚3. For a passenger car with a mass in range 800 − 2000 𝑘𝑔, 

the frontal area 𝐴𝐹 can be considered as [245]: 

𝐴𝐹 = 1.6 + 0.00056(𝑚 − 765)   (7-3) 

When the vehicle is moving, ground friction forces act on tires. These forces are 

called rear and front longitudinal tire forces 𝐹𝑥𝑟 and 𝐹𝑥𝑓, respectively. In normal driving 

conditions where the slip ratio is less than 0.1 (dry roads), these forces are proportional to 

the slip ratio: 

𝐹𝑥𝑓 = 𝐶𝜎𝑓𝜎𝑥𝑓   (7-4) 

𝐹𝑥𝑟 = 𝐶𝜎𝑟𝜎𝑥𝑟   (7-5) 
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In the above equations, 𝐶𝜎𝑓 and 𝐶𝜎𝑟 are the longitudinal tire stiffness of the tires 

of the vehicle. Slip ratio (𝜎𝑥) is defined as the difference between equivalent rotational 

velocity of the tire and the actual velocity (longitudinal) of the wheel (𝑉𝑥). This can be 

written as: 

𝜎𝑥 =
𝑟𝑒𝑓𝑓𝜔𝑤−𝑉𝑥

𝑉𝑥
   (7-6) 

during breaking and  

𝜎𝑥 =
𝑟𝑒𝑓𝑓𝜔𝑤−𝑉𝑥

𝑟𝑒𝑓𝑓𝜔𝑤
   (7-7) 

during acceleration. In the above equations, 𝑟𝑒𝑓𝑓 is the effective radius of the rotating tire 

and 𝜔𝑤 is the angular velocity of the wheel. 

The longitudinal slip ratio in slippery road conditions is greater than 0.1 implying 

that a linear model may not sufficiently describe the dynamics and nonlinear tire models 

are employed in such conditions. Some examples of these nonlinear models can be found 

in [246]. 

As the tire rotates, due to elasticity, the material is deflected when it goes through 

the contact patch. Although it springs back after it leaves the contact patch, the energy 

spent in deforming will not be completely recovered. Rolling resistance force is defined 

to represent this loss of energy. This force can be modeled as 

𝑅𝑥𝑓 + 𝑅𝑥𝑟 = 𝑓(𝐹𝑧𝑓 + 𝐹𝑧𝑟)   (7-8) 

where 𝐹𝑧 is the normal load on tire, and 𝑓 is the rolling resistance coefficient. This 

parameter varies in the range 0.01 − 0.04. For standard passenger cars with radial tires, it 

can be considered 0.015 [245]. 



139 

 

Figure 7.2. Calculation of tire loads 

The load on the tire (normal tire forces) depends not only on the weight of the 

vehicle, but also on the acceleration of the vehicle, fore-aft location of the center of the 

gravity of the vehicle, aerodynamic drag forces on the car, and inclination of the road. 

We can write the following equation at the contact point of the rear tire in Figure 7.2: 

𝐹𝑎𝑒𝑟𝑜ℎ𝑎𝑒𝑟𝑜 + 𝐹𝑧𝑓(𝑙𝑓 + 𝑙𝑟) + 𝑚𝑔ℎ sin(𝜃) − 𝑚𝑔𝑙𝑟 cos(𝜃) + 𝑚𝑥̈ℎ = 0  (7-9) 

where 𝑙𝑓 and 𝑙𝑟 are the longitudinal distances of front and rear axles from the center of 

gravity, respectively. Also in the above equation, ℎ is the height of the center of gravity, 

and ℎ𝑎𝑒𝑟𝑜 is the height of the point at which equivalent aerodynamics force acts. 

Similarly, we can write the following equation at the contact point of the front tire in 

Figure 7.2: 

−𝐹𝑎𝑒𝑟𝑜ℎ𝑎𝑒𝑟𝑜 + 𝐹𝑧𝑟(𝑙𝑓 + 𝑙𝑟) − 𝑚𝑔ℎ sin(𝜃) − 𝑚𝑔𝑙𝑓 cos(𝜃) − 𝑚𝑥̈ℎ = 0  (7-10) 

Solving (7-9) and (7-10) for 𝐹𝑧𝑓 and 𝐹𝑧𝑟, respectively, results in 

𝐹𝑧𝑓 =
−𝐹𝑎𝑒𝑟𝑜ℎ𝑎𝑒𝑟𝑜−𝑚𝑥̈ℎ−𝑚𝑔ℎ sin𝜃+𝑚𝑔𝑙𝑟 cos𝜃

𝑙𝑓+𝑙𝑟
   (7-11) 

and 

      𝐹𝑧𝑟 =
𝐹𝑎𝑒𝑟𝑜ℎ𝑎𝑒𝑟𝑜+𝑚𝑥̈ℎ+𝑚𝑔ℎ sin𝜃+𝑚𝑔𝑙𝑓 cos𝜃

𝑙𝑓+𝑙𝑟
        (7-12) 
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The above equations imply that when the vehicle accelerates, when the inclination 

of the road increases, or when the aerodynamic forces increase, the normal loads on the 

rear and front tires increase and decrease, respectively. 

7.1.2. Cruise (Speed) Control 

Standard cruise control systems regulate the speed of the vehicle. These systems 

have a hierarchical structure as shown in Figure 7.3. In this structure, the upper controller 

sets the desired acceleration. This desired acceleration is obtained by changing the 

throttle input by the lower controller. The lower controller uses the vehicle dynamics 

explained in section 7.1.1 and engine maps to determine the required throttle input [247, 

248]. The job of the lower controller is to make sure that the vehicle acceleration follows 

the desired acceleration set by the upper controller system. 

 

Figure 7.3. Cruise control hierarchical structure 

The vehicle longitudinal model considered by the upper controller is  

𝑥̈ =
1

𝜏𝑠+1
𝑥̈𝑑𝑒𝑠   (7-13) 

where 𝑥̈ and 𝑥̈𝑑𝑒𝑠 are the actual and desired acceleration of the vehicle, respectively. In 

other words, the acceleration of the car tracks the desired acceleration following a first 

order system with the time constant 𝜏. In fact, we do not expect the vehicle to track the 

desired acceleration perfectly. The reason is the limited bandwidth of the lower controller 

system. A standard value for this time constant is 0.5 which we have used in all the 

simulations and controller design problems [40]. 

Upper Level Controller 

A simple strategy for the upper controller is the PI control technique. The desired 

speed can be considered as the set-point, and the difference between the set-point and the 

actual longitudinal velocity of the car can be considered as the error signal: 



141 

𝑥̈𝑑𝑒𝑠(𝑡) = 𝑘𝑝(𝑉𝑟𝑒𝑓 − 𝑉𝑥) + 𝑘𝐼 ∫ (𝑉𝑟𝑒𝑓 − 𝑉𝑥)𝑑𝑡
𝑡

0
   (7-14) 

where 𝑉𝑟𝑒𝑓 and 𝑉𝑥 are the desired and actual speed of the vehicle, respectively. The 

parameters of the PI controlller are shown by 𝑘𝑝 and 𝑘𝐼. The speed control system using 

the above controller is depicted in Figure 7.4: 

 

Figure 7.4. Cruise (speed) control system 

Define  

𝑃(𝑠) =
1

𝑠(𝜏𝑠+1)
   (7-15) 

and  

𝐶(𝑠) = 𝑘𝑝 +
𝑘𝐼

𝑠
   (7-16) 

Then, the closed-loop transfer function is 

𝑉𝑥

𝑉𝑟𝑒𝑓
=

𝑃𝐶

1+𝑃𝐶
=

𝑘𝑝𝑠+𝑘𝐼

𝜏𝑠3+𝑠2+𝑘𝑝𝑠+𝑘𝐼
   (7-17) 

Considering 𝑘𝐼 = 𝑘𝑝/4 (as it is suggested for tuning PI controllers in [249]), and 

𝜏 = 0.5, the root locus of the system described in (7-17) is plotted for varying 𝑘𝑝 (Figure 

7.5). This figure shows that the closed-loop is stable for all non-zero values of 𝑘𝑝. For a 

value of 𝑘𝑝 = 0.9, the damping ratio is 0.75. The higher gains will result in a smaller 

damping ratio. 
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Figure 7.5. Root locus of the cruise control system 

A simulation is performed to evaluate the performance of a PI controller for 

controlling the speed of the vehicle. In this simulation, we have considered the parameter 

values as 𝜏 = 0.5, 𝑘𝑝 = 0.3, and 𝑘𝐼 = 0.01. The result of the simulation is shown in 

Figure 7.6. The reference speed is 20 𝑚/𝑠 (72 𝑘𝑚/ℎ) in the beginning. It is then changed 

to 25 𝑚/𝑠 (90 𝑘𝑚/ℎ). The simulation results show that the PI controller can 

satisfactorily control the speed of the vehicle. 

 

Figure 7.6. Speed control simulation 
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7.1.3. Adaptive Cruise Control 

Adaptive cruise control (ACC) can be considered as one of the main applications 

of the longitudinal control in autonomous cars. It can also be considered within a driving 

assistance system configuration. A vehicle, which is equipped with ACC, drives at the 

desired speed (set by the driver in driver assistance systems, or by the supervisory control 

of the car in autonomous vehicles) when there is no car in front of the vehicle. If the 

vehicle’s sensor (Radar or Lidar) detects a preceding vehicle, the ACC determines 

whether the current speed is safe or not. If the detected vehicle is slow or very close (it 

might come from another lane), the ACC will switch from speed control to spacing 

control. In this mode, a desired spacing from the preceding vehicle is maintained by 

manipulation of the accelerator and brake signals. 

Based on the definition of ACC above, there will be two modes of operation: 

speed control which is explained and designed in section 7.1.2, and vehicle following 

which will be explained in this section. Also, there will be transitional maneuvers 

between these two modes which will be discussed in section 7.27.2. 

In the vehicle following mode, two important specifications should be met: 

individual vehicle stability, and the string stability when there is a string of ACC vehicles 

[250].  

 

Figure 7.7. String of vehicles in adaptive cruise control 
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A vehicle is said to have individual vehicle stability if the spacing error converges 

to zero when the preceding vehicle has a constant speed. Consider the vehicles in Figure 

7.7. The spacing error for vehicle 𝑖 is defined as 

𝛿𝑖 = 𝑥𝑖 − 𝑥𝑖−1 + 𝐿𝑑𝑒𝑠   (7-18) 

where 𝐿𝑑𝑒𝑠 is the desired spacing. The length of the preceding vehicle 𝑙𝑖−1  is included in 

𝐿𝑑𝑒𝑠. The desired spacing can be constant or, preferably, a function of the longitudinal 

speed of the vehicle. The system has individual vehicle stability if 

𝑥̈𝑖−1 → 0 ⇒ 𝛿𝑖 → 0   (7-19) 

However, the spacing error will be nonzero when the acceleration of the 

preceding vehicle is not zero. If the spacing errors of a string of ACC vehicles are 

guaranteed not to be amplified towards the end of the string, it is referred to as having 

string stability.  

If we consider 𝛿𝑖 and 𝛿𝑖−1 as the spacing error of two consecutive cars in a string 

of ACC vehicles, the transfer function 𝐻(𝑠) can be defined as 

𝐻(𝑠) =
𝛿𝑖

𝛿𝑖−1
   (7-20) 

It can be shown that the system has string stability if the following two conditions 

are satisfied [250]: 

‖𝐻(𝑠)‖∞ ≤ 1   (7-21) 

ℎ(𝑡) > 0  ∀𝑡 ≥ 0   (7-22) 

Radar, Lidar, or the other vehicle onboard sensors can only measure the spacing 

between vehicles, relative velocity, and the vehicle’s own velocity. Assuming that the 

acceleration of the vehicle can be controlled without any delay (instantaneously), a linear 

control algorithm like  

𝑥̈𝑖 = −𝑘𝑝𝛿𝑖 − 𝑘𝑣𝛿̇𝑖   (7-23) 
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results in 

𝛿̈𝑖 = 𝑥̈𝑖 − 𝑥̈𝑖−1 = −𝑘𝑝𝛿𝑖 − 𝑘𝑣𝛿̇𝑖 + 𝑘𝑝𝛿𝑖−1 + 𝑘𝑣𝛿̇𝑖−1   (7-24) 

which yields 

𝛿̈𝑖 + 𝑘𝑣𝛿̇𝑖 + 𝑘𝑝𝛿𝑖 = 𝑘𝑝𝛿𝑖−1 + 𝑘𝑣𝛿̇𝑖−1   (7-25) 

The above closed-loop error dynamics can be shown in the following transfer 

function that shows how the spacing error is propagated along the string: 

𝐺(𝑠) =
𝛿𝑖

𝛿𝑖−1
=

𝑘𝑣𝑠+𝑘𝑝

𝑠2+𝑘𝑣𝑠+𝑘𝑝
   (7-26) 

Using 𝑘𝑝 = 1 and 𝑘𝑣 = 0.5, the Bode plot in Figure 7.8 can be obtained which 

shows that the magnitude of transfer function is greater than 1 in some frequencies. 

Considering the conditions necessary for string stability, this means that the mentioned 

control law is not string stable. 

 

Figure 7.8. Bode plot for constant spacing policy 

Although all positive values of 𝑘𝑝 and 𝑘𝑣 result in individual vehicle stability, no 

positive values of these parameters can guarantee the magnitude of 𝐺(𝑠) be less than one. 

In order to show this, we write 𝐺(𝑠) in (7-26) as 

𝐺(𝑠) = (
𝑘𝑝

𝑠2+𝑘𝑣𝑠+𝑘𝑝
) (

𝑘𝑣

𝑘𝑝
𝑠 + 1) = 𝐺1(𝑠)𝐺2(𝑠)   (7-27) 
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We know that the magnitude of 𝐺1(𝑗𝜔) is less than one if 
𝑘𝑣

2√𝑘𝑝
≥ 0.707, or 

𝑘𝑣 ≥ 1.414√𝑘𝑝   (7-28) 

The magnitude of 𝐺2(𝑗𝜔) is less than one at frequencies up to the resonant 

frequency √𝑘𝑝, if the frequency √𝑘𝑝 is smaller than the frequency 
𝑘𝑝

𝑘𝑣
. Therefore, we 

need to have 
𝑘𝑝

𝑘𝑣
> √𝑘𝑝. This can be written as 

√𝑘𝑝 > 𝑘𝑣   (7-29) 

Since the conditions in (7-28) and (7-29) cannot be satisfied at the same time, the 

magnitude of 𝐺(𝑠) will always be more than one at some frequencies, no matter what the 

values of 𝑘𝑝 and 𝑘𝑣 are.  

The above conclusion implies that using the sensors we have (which include 

Radar, Lidar, and other onboard sensors that can only measure the spacing between 

vehicles, relative velocity, and the vehicle’s own velocity), string stability cannot be 

guaranteed using constant spacing policy. The problem can be solved by adding wireless 

communication between the cars. Since this solution was not an option in this study, we 

considered constant time-gap policy instead of the constant spacing policy. 

In constant time-gap (CTG) policy, the spacing between vehicles depends on the 

velocity and is not constant: 

𝐿𝑑𝑒𝑠 = 𝑙𝑖−1 + ℎ𝑥̇𝑖   (7-30) 

where ℎ is defined as time-gap. The spacing error can be written as 

𝛿𝑖 = 𝑥𝑖 − 𝑥𝑖−1 + 𝑙𝑖−1 + ℎ𝑥̇𝑖   (7-31) 

The following control algorithm is presented in [251] for this problem. 

𝑥̈𝑖𝑑𝑒𝑠 = −
1

ℎ
(𝜀𝑖̇ + 𝜆𝛿𝑖)   (7-32) 
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where 

𝜀 = 𝑥𝑖 − 𝑥𝑖−1 + 𝑙𝑖−1   (7-33) 

  Considering (7-33) and differentiating (7-31) we get  

𝛿̇𝑖 = 𝜀̇ + ℎ𝑥̈𝑖   (7-34) 

Assuming the acceleration of the car equals the desired acceleration (𝑥̈𝑖 = 𝑥̈𝑖𝑑𝑒𝑠), 

and substituting it from (7-32) in (7-34), we get the following equation for the error 

dynamics: 

𝛿̇𝑖 = −𝜆𝛿𝑖   (7-35) 

This means 𝛿𝑖 is independent of 𝛿𝑖−1 and it approaches to zero if 𝜆 is positive. 

However, this result is obtained assuming that the vehicle can instantaneously follow the 

desired acceleration  (𝜏 = 0 in (7-13)). If the effect of lower controlled is considered, 𝜏 

would be nonzero in (7-13) and 𝑥̈𝑖 ≠ 𝑥̈𝑖𝑑𝑒𝑠. In this case, we have 

𝜏𝑥𝑖 + 𝑥̈ = 𝑥̈𝑖𝑑𝑒𝑠   (7-36) 

Substituting (7-32) in (7-36) we get 

𝜏𝑥𝑖 + 𝑥̈ = −
1

ℎ
(𝜀𝑖̇ + 𝜆𝛿𝑖)   (7-37) 

Differentiating twice from (7-31) results in 

𝛿̈𝑖 = 𝜀𝑖̈ + ℎ𝑥𝑖   (7-38) 

Using (7-37) and (7-38), we have 

𝜀𝑖̈ = 𝛿̈𝑖 +
1

𝜏
(𝛿̇𝑖 + 𝜆𝛿𝑖)   (7-39) 

The term 𝛿𝑖 − 𝛿𝑖−1, which is the difference between errors of two vehicles next to 

each other, can be written as  
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𝛿𝑖 − 𝛿𝑖−1 = 𝜀𝑖 − 𝜀𝑖−1 + ℎ(𝑥̇𝑖 − 𝑥̇𝑖−1) = 𝜀𝑖 − 𝜀𝑖−1 + ℎ𝜀𝑖̇   (7-40) 

Using (7-39) and (7-40), the dynamic relationship between 𝛿𝑖 and 𝛿𝑖−1 can be 

written as  

𝐺(𝑠) =
𝛿𝑖

𝛿𝑖−1
=

𝑠+𝜆

ℎ𝜏𝑠3+ℎ𝑠2+(1+𝜆ℎ)𝑠+𝜆
   (7-41) 

It is proved in [250] that the magnitude of the above function (substituting 𝑠 =

𝑗𝜔) is less than one in all frequencies if and only if  

ℎ ≥ 2𝜏   (7-42) 

In other words, in order to have the string stability, the time gap should be at least 

twice the time constant of the lower controller system. 

To simulate the explained constant time gap policy for two vehicles, we assume 

𝜏 = 0.5, ℎ = 1, 𝜆 = 1, 𝑙1 = 5 and 𝑥2(0) − 𝑥1(0) = 30. We consider the speed of the 

preceding vehicle (𝑥̇1) as shown in Figure 7.9 to have acceleration, constant speed, and 

deceleration in the simulation.   

 

Figure 7.9. The speed of the preceding vehicle 

Using the algorithm in (7-32), the spacing error of the following vehicle (𝛿2) is 

obtained (see (7-31)) as shown in Figure 7.10. This figure shows the satisfactory 
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performance of the algorithm even when the preceding vehicle accelerates or decelerates. 

This performance can be improved by selecting a higher time-gap.  

 

Figure 7.10. Error of longitudinal control system (spacing error) using constant 

time-gap policy 

7.2. Transitions 

The vehicle under velocity control might detect a new vehicle because either the 

new vehicle is slow or cuts from another lane. If ACC decides to change the mode to 

vehicle following, a transitional trajectory should be designed for the vehicle. On the 

other hand, when the car is in the vehicle following mode, it might lose the preceding 

vehicle because it might go faster or move to another lane. The vehicle might switch to 

velocity control or do a maneuver to follow another vehicle, which needs another 

transitional trajectory. The necessity of having this transition is explained in the 

following example. 

Suppose the vehicle is working under speed control with the velocity 30 𝑚/𝑠 

(about 108 𝑘𝑚/ℎ). Consider the scenario that it encounters a preceding vehicle in 100 

meters ahead which is stopped due to a technical problem. Also consider  𝜆 = 1 , ℎ = 1 𝑠 

and 𝐿 = 5. If the vehicle wants to switch to vehicle following mode, the initial spacing 

would be 𝐿 + ℎ𝑥̇𝑖 = 35 𝑚. However, using (7-31), the initial spacing error is 𝛿𝑖 =

−65 𝑚. In this case, the initial difference between velocities is 𝜀𝑖̇ = 30. 
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Based on the algorithm shown in (7-32), the initial desired acceleration would be 

35 𝑚/𝑠2 which is a big positive value. In other words, the vehicle speed should increase! 

Even if the vehicle decided to quickly stop at that speed with a braking deceleration of 

5 𝑚/𝑠2, it would have needed 

𝑋 =
302

2(5)
= 90𝑚   (7-43) 

to stop, which means it could barely prevent an accident with the stalled car. With an 

acceleration of 35 that was obtained by the mentioned rule, there will be a crash. 

The reason for the crash in this example is the fact that ACC without transitional 

trajectory does not consider that preventing a crash has the highest priority. It also does 

not consider that a new detected vehicle is not necessary a target vehicle for constant 

spacing (vehicle following). Therefore, a transitional controller is required to consider 

these issues. 

In this work, we use the transitional trajectories introduced in [252] to solve this 

problem. When a new target vehicle is detected by Radar/Lidar, the vehicle should decide 

to choose one of the following actions: 

1. Speed control 

2. Vehicle following (it should be performed using a well-defined transition 

trajectory) 

3. Braking hard to avoid accident 

 

Figure 7.11. Definition of range and range-rate 

The 𝑅 − 𝑅̇ diagram shown in Figure 7.12 is defined using the following 

equations: 
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𝑅 = 𝑥𝑝 − 𝑥   (7-44) 

𝑅̇ = 𝑉𝑝 − 𝑉   (7-45) 

where 𝑥 and 𝑉 are, respectively, the positon and velocity of the autonomous vehicle and 

𝑥𝑝 and 𝑉𝑝 are, respectively, the positon and velocity of the preceding vehicle. The 

variables 𝑅 and 𝑅̇ are demonstrated in Figure 7.11. 

 

Figure 7.12. Range versus range-rate diagram [252] 

When a preceding vehicle is detected, the values of 𝑅 and 𝑅̇ and the above figure 

determine the appropriate action that should be taken by the autonomous car. For 

example, if the vehicle is in speed control mode and detects a new car in front, if the 

values of 𝑅 and 𝑅̇ are in region 1 of the above figure, the vehicle continues the speed 

control. In other words, the detected vehicle will not be a target vehicle. The reason can 

be the high speed of the preceding vehicle (big 𝑅̇) or considerable distance between the 

vehicle (big 𝑅). In region 2, headway control (vehicle following) will be used. In other 

words, the detected vehicle will be the target vehicle. Finally, if the values of 𝑅 and 𝑅̇ are 

in region 3, maximum deceleration is necessary to avoid a collision. 

Since the horizontal axis is the derivative of the vertical axis in Figure 7.12, 𝑅 

will decrease in the left half of the diagram and it will increase in its right-half. This is 

shown in Figure 7.13. 
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Figure 7.13. Possible motion directions 

In the 𝑅 − 𝑅̇ diagram in Figure 7.12, there is a switching line which determines 

when the vehicle should switch from speed control to vehicle following and vice versa. 

Considering 𝑅𝑓𝑖𝑛𝑎𝑙 as the desired distance between the vehicles, the switching line can be 

written as 

𝑅 = −𝑇𝑅̇ + 𝑅𝑓𝑖𝑛𝑎𝑙   (7-46) 

where 𝑇 is the slope of the line.  

Whenever a new vehicle is detected, if the value of 𝑅 is greater than the value 

given by (7-46), the speed control should be activated. In this case, vehicle following 

would start only when the trajectory reaches the switching line. In other words, the 

trajectory ABC in Figure 7.14 means that first, the distance between the vehicles is 

reduced with a constant 𝑅̇. Then, the desired spacing is obtained on the switching line 

(7-46). Pay attention that since the value of 𝑅̇ is negative in the ABC trajectory, 𝑅 will 

never be less than 𝑅𝑓𝑖𝑛𝑎𝑙.  

The advantage of the trajectory shown in Figure 7.14 over other trajectories, for 

example directly going from 𝐴 to 𝐶, is that it avoids sudden braking and abrupt 

maneuvers as soon as the preceding vehicle is detected. The result of the proposed 

trajectory will enhance the drivers and passengers comfort.  
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Figure 7.14. Using switching line for smooth transition from speed control to 

vehicle following 

If the preceding vehicle is detected below the switching line, a trajectory similar 

to the one in Figure 7.15 can be used. When the vehicle brakes, 𝑅̇ becomes less negative 

(increases) and the car slows down. The mathematical equation of this parabolic section 

of the trajectory is given by 

𝑅 =
𝑅̇2

2𝐷
+ 𝑅𝑚𝑖𝑛   (7-47) 

where 𝐷 is the deceleration of the car. When the switching line is reached, the vehicle 

will accelerate again and reaches the desired spacing 𝑅𝑓𝑖𝑛𝑎𝑙. In this case, unlike the 

previous case, the distance becomes less than the desired distance for a short period of 

time. 𝑅𝑚𝑖𝑛 is the minimum value of the distance in the constant declaration trajectory. 

This trajectory is shown in Figure 7.15. 

 

Figure 7.15. Acceleration after constant deceleration  

To determine the slope of the switching line, we can use the coasting acceleration, 

which is the acceleration (deceleration) of the vehicle when there is no throttle and 

braking. In order to increase the driver comfort, we like the vehicle to reach the desired 
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following distance (𝑅𝑓𝑖𝑛𝑎𝑙) without any braking. Therefore, the slope of the switching 

line can be calculated using Figure 7.16.  

 

Figure 7.16. Coasting trajectory 

We assume 𝐷 = 0.4 𝑚/𝑠2 as the deceleration during coasting. We also assume 

that the maximum range of the sensor is 100𝑚. In other words, the preceding vehicle will 

be detected in a 100 𝑚 distance. Using the parabola equation in (7-47), the point where 

the parabola intersects with 𝑅 = 100𝑚 can be obtained. The slope of the line connecting 

that point and 𝑅𝑓𝑖𝑛𝑎𝑙, would be the slope of the switching line. For example, if the desired 

distance between the vehicles is considered as 𝑅𝑓𝑖𝑛𝑎𝑙 = 30𝑚, using equation (7-47), we 

get 𝑅̇ = 7.48. Therefore the switching line passes through points (−7.48,100) and 

(0,30). This means that the slope of this line is −9.35. The same algorithm can be used 

for different cars with different coasting accelerations, Radar/Lidar ranges, and the 

desired final distances. 

The reader may also note that we do not need to worry about string stability while 

executing these transitional maneuvers. The reason is the fact that only the lead car would 

perform the maneuvers. The rest of the cars in the string of the vehicles do not need to do 

the transitional maneuvers; they just simply follow the lead vehicle using the constant 

time-gap policy. The CTG guarantees the string stability of the vehicles in the string.  
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7.3. Implementation 

The final goal of this phase of the project is to implement the designed algorithms 

on the simulator and, in future, on the processors of an actual autonomous vehicle 

prototype. The controllers designed in Chapter 5, Chapter 6, and Chapter 7 constitute the 

control subsystem in the autonomous driving system shown in Figure 7.17. 

  

Figure 7.17. Different parts of autonomous driving system 

The sensors subsystem in Figure 7.17 collects data from the environment. The 

camera(s) will be mounted on top of the vehicle (facing front), the Lidar will be installed 

on its roof, and the Radar will be in the bumper. GPS sensor will contribute to the 

localization algorithm. Other sensors like ultrasonic and inertial measurement unit (IMU) 

might be added to increase the accuracy of the system. 

The perception subsystem uses the raw data obtained by the sensors and generates 

meaningful information from them. The localization section of this subsystem determines 

where in the world the vehicle is. The precision of GPS is up to a few meters which is 

less than the precision we need to control the vehicle. Therefore, the GPS data is 

combined with data coming from the Lidar, and using the map and mathematical 

localization algorithm the location of the car is determined with a precision of a few 

centimeters. The detection section of the perception subsystem detects objects in the 
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environment around the vehicle, traffic signs, traffic lights, free space in front of the 

vehicle, and road lanes. 

The information coming from the perception subsystem helps the planning 

subsystem, to generate the desired trajectory of the vehicle. In this section, In the vehicle 

predicts the behavior of the other vehicles of the road, considers the traffic signs and 

lights, takes the distance from lanes into account, and uses the planned route obtained 

from the map and localization, to generate the desired trajectory.  

The control subsystem uses the planned trajectory and sensor data to generate the 

required inputs (acceleration, brake, and steering wheel) to make the vehicle follow that 

trajectory. Designing this section was our contribution to the project of designing the 

autonomous vehicle. This task was done using the controllers designed in Chapters 5 to 7.  

In order to show the effectiveness of the control algorithms presented in this 

section, we implemented the controllers on AISL driver simulator, explained in Chapter 

3. The algorithms are written in Delphi, and the communication to the simulator is 

through User Datagram Protocol (UDP). The throttle and brake commands are applied to 

the vehicle electronically, but the steering command (lateral control) turns the steering 

wheel of the vehicle physically.  

The application of the above control algorithms on the driving simulator is shown 

here through a driving scenario, as follows: 

1) The autonomous vehicle (the red vehicle in the third lane from right shown in 

Figure 7.18) is driving in the center lane of a highway. Since no object is 

detected in front of the vehicle, it employs speed control (cruise) algorithms to 

follow the speed limit of the highway which is 80 𝑘𝑚/ℎ. Lateral control 

algorithms are in effect to keep the vehicle at the center of the lane in the 

presence of road curves and disturbances including wind. 
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Figure 7.18. Autonomous driving scenario (part 1) 

2) A slower vehicle (the blue vehicle) is detected ahead. Appropriate transition 

maneuvers are selected by the autonomous vehicle (AV). The speed is 

reduced so that the constant time gap policy between the two vehicle be 

followed (Figure 7.19). 

 

Figure 7.19. Autonomous driving scenario (part 2) 

3) Since the adjacent lane is empty, AV initiates a lane change by signaling left 

and following a lane change maneuver (Figure 7.20 and Figure 7.21). 
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Figure 7.20. Autonomous driving scenario (part 3) 

  

Figure 7.21. Autonomous driving scenario (part 4) 

4) The vehicle does not detect any preceding vehicle in the new lane. Therefore, 

it returns to cruising mode by increases speed and regulating it at 80 𝑘𝑚/ℎ. 

The lane-keeping lateral controller is also back in effect to keep AV at the 

lane center. After reaching a safe distance ahead of the blue vehicle, AV 

returns to the third lane. 
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Figure 7.22. Autonomous driving scenario (part 5) 

 

Figure 7.23. Autonomous driving scenario (part 6) 

The diagram showing autonomous vehicle’s offset from the road center is shown 

in Figure 7.24. Wind gusts are added to the simulations as disturbance. Measurement 

noise are also included to make the results more realistic. The results show that the 

vehicle was able to perform its task successfully in the presence of disturbances, noises, 

and road curvature.  
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Figure 7.24. AV’s offset from the road center in the autonomous driving scenario 

including wind disturbance and measurement noise 

7.4. Conclusion  

In this chapter, we presented the dynamic equations governing the longitudinal 

motion of the vehicle. Based on the longitudinal dynamics, we presented a controller 

system for the cruise (speed) control. In addition, we investigated different strategies to 

be considered for adaptive cruise control of the autonomous vehicle in our project and 

concluded that the constant time gap policy is the most appropriate one to choose. We 

also considered the transition between speed control and vehicle following modes. The 

conditions when the vehicle should apply the brake to avoid collision were also 

described. The designed control algorithms were successfully implemented on a high-

quality driving simulator. The integrated longitudinal and lateral controllers could make 

the vehicle follow the desired trajectories in various scenarios satisfactorily.  
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Chapter 8.  

 

Conclusion and Future Work 

You might think that the first fatal car accident must have happened after 

Karl Benz built his famous car Patent-Motorwagen in 1886. However, Mary Ward, a 

scientist, writer, and artist, had the unfortunate privilege of being the first known 

person to be killed by a car in 1869. Depending on what your definition of a car is, 

the first recorded nonfatal accident could have happened almost 250 years ago when 

Nicolas-Joseph Cugnot built the very first ‘self-propelled mechanical vehicle’ capable 

of carrying passengers in 1771. When he wanted to show several French officials the 

ability of the vehicle to carry passengers and cannons for the military, the automobile 

went out of control and smashed into a garden wall at a speed of only 3 kph. 

We have come a long way since Cugnot steam car. The automotive industry has 

significantly improved. Currently, there are more than one billion vehicles in the world. 

However, there is a dark side to this: the loss of human lives due to car crashes. 

Technology is being used to alleviate this problem: all car manufacturers have already 

implemented passive safety systems and active driver assistance systems. In addition, 

driverless cars are on the verge of becoming a reality. However, there are still many 

problems regarding driver assistance systems and autonomous driving that need to be 

addressed. 

In this thesis, several vehicle lateral control algorithms are reported and 

compared. The driver modeling aspect of driver assistance systems is investigated, and a 

method to detect intoxicated driving is presented. In addition, the idea of adding serial 

and parallel controllers while the driver is performing the lane keeping task is proposed 

and discussed. 

8.1. Major Contributions 

In this thesis, there are six major contributions in the field of intelligent 

transportations, which are summarized as follows: 
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 We used system identification techniques and presented two models to 

describe the lateral control behavior of sober and drunk drivers. In these 

models, the preview error at 1.25 𝑠 ahead of the vehicle was considered as 

the input to the driver and the steering wheel angle of the vehicle was 

treated as the driver’s output. Different linear model structures were 

investigated and the ARIMAX structure was chosen as the best structure 

to describe the behavior of drivers. The 200 sets of data collected in drthe 

iving simulator were split into two halves: the first half was used only for 

identification and the second half for validation of the models. The model 

validations show that the proposed models can successfully predict the 

behavior of both types of drivers. Also, the residual analysis was 

performed, and the validity of the model was confirmed. 

 We introduced a novel method to detect alcohol-induced driving. We 

showed that if an ARIMAX model is considered for drivers, the positions 

of two complex conjugate poles of the models can be indicators of the 

intoxicated driving behavior. We used online identification techniques to 

identify and update the model of the drivers while they are driving. We 

demonstrated that this method could facilitate recognition of sober and 

intoxicated drivers by checking the poles of the model. This method of 

identifying DWI drivers not only is useful in detecting alcohol-induced 

driving but also can be used as a measure to evaluate the performance of 

the driver. It can also detect any other impairment that might have a 

similar effect to alcohol on driving behavior.  

 The idea of improving the steering action of the driver by a serial 

controller was presented. In the proposed algorithm, the steering signal 

coming from the steering wheel is fed to a serial controller. The output of 

the controller becomes the actual steering of the car. The serial controller 

was programmed in the driving simulator, and its performance was tested 

using actual drivers wearing Fatal Vision Goggles. Although the results 

indicated that the added serial controller makes the erratic behavior of 
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intoxicated drivers smoother, the study of road departure percentage and 

lateral position standard deviation evaluation indices showed that the 

improvement caused by the added serial controller in these aspects is 

insignificant. The observations agree with driver’s adaptation ability and 

risk homeostasis theory (RHT). The added controller modifies the steering 

command from the driver before it is fed to the steering wheel. As a result, 

the driver experiences a new equivalent vehicle. Because of the human 

driver’s adaptation ability, the drivers adjust their behavior so that the 

overall system follows the crossover principle. In spite of what mentioned, 

the serial controller might have other benefits such as ease of driving, 

passenger comfort, reducing emissions, and less fuel consumption, which 

need to be further studied. Another advantage of this system is that, unlike 

many other driver assistance systems, it does not distract or disengage the 

driver, which improves safety. 

 The idea of improving the steering action of the driver by a parallel 

controller was presented. In this algorithm, the output of an independent 

lateral controller is added to the control signal generated by the human 

driver. The parallel controller was programmed in Matlab and the driving 

simulator. Both simulation results and human-in-the-loop experiment 

results showed that the suggested parallel controller structure is effective 

in improving the lane keeping task when an impaired driver is controlling 

the vehicle. Therefore, this additional parallel controller can be added to 

the vehicle when an impaired driver is detected using the algorithm 

presented earlier in this thesis. 

 A novel, simple neural-network controller, which was recently introduced 

by our group, was used to design a lateral controller. Unlike the most 

commonly used lateral controller, the new controller was not model-based. 

In other words, the mathematical model of the vehicle was not necessary 

to find the controller parameters in this algorithm. The performance of this 

designed controller was comparable to conventional neural network 
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controllers. However, the complexity of the proposed method is much less 

which results in a simpler design procedure and fewer function evaluations 

for GA optimization of the neural network weights. We also considered a 

25% variation in model parameters and demonstrated the robustness of the 

algorithm using Monte-Carlo analysis. 

 ℒ1 adaptive control algorithm was utilized in this chapter to design a 

controller for the lateral dynamics of the vehicle. Assuming the states of 

the system cannot be measured, an output feedback version of the 

algorithm was designed in this study, which makes the implementation of 

the controller easier. In order to test the robustness of the controller, a 

scenario including strong wind gusts and road banking (in the same 

direction of the wind) was considered. In addition, it was assumed that as 

soon as the wind gusts start, the road condition deteriorates and becomes 

icy, resulting in 80% change in the values of cornering stiffness 

parameters, the parameters which have the most significant effect on the 

vehicle dynamics.  Finally, measurement noise was considered to make 

the simulations more realistic. The simulation results show that the 

designed lateral control algorithm has excellent robustness and disturbance 

rejection capability. In the challenging scenarios considered here, the 

conventional state feedback controller failed to keep the vehicle in the 

center of the lane, and the more robust lead compensator brought the 

lateral preview error back to zero after some deviation. However, the 

proposed algorithm kept error very close to zero at all simulation time, for 

both straight and curved roads. 

8.2. Suggestions for Future Work 

Tackling all the problems of driver assistance systems and driverless cars in one 

thesis is impossible. Our intention in this work was to propose and improve some 

algorithms related to intoxicated driving and vehicle lateral control. The following 
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discussion gives a short summary of some topics that could be studied in future as the 

next step of this work. 

 Detection of driver impairment, especially driver drunkenness, is one of 

the most important problems in transportation systems and it is very 

crucial for the safety of all drivers, passengers, and pedestrians. The 

proposed novel method can be used to develop a warning system for 

driver impairment as well. However, there is room for further 

improvement in the future. In this analysis, we used vehicle information 

(preview error) and vehicle input (steering wheel angle) to detect alcohol 

impairment. Accelerate and brake signals can also be added to the system 

to make the detection more accurate. In addition, this information can be 

used together with the physiological state of the driver to make the DWI 

detection more precise. Finally, in order to reduce the level of uncertainty, 

a personalized model of each driver can be used instead of generic models 

of sober and impaired drivers. 

 We studied the performance of the proposed serial controller in 

maintaining the lateral position of the vehicle in the center of the lane. 

Preliminary results show that the suggested controller might have other 

benefits such as ease of driving, passenger comfort, reducing emissions, 

and less fuel consumption, which need to be further studied. Further 

studies are required to figure out what kind of serial controllers can 

address each of the aforementioned problems more effectively. 

 The focus of the proposed parallel controller in this thesis was to address 

intoxicated driving, based on the model obtained in Chapter 3. However, a 

similar approach could be applied to target driver’s fatigue, distraction, 

inexperience, etc. Modeling the behavior of drivers in each of these cases, 

and compensating it using the proposed augmented controller can be the 

subject of future studies. 
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 The performance of the fused neural network controller can be improved 

by online adaptation of the connection weights. Since the structure of the 

controller is simple and the number of connection weights is small, online 

adaptation is feasible. The algorithm may be enhanced to adjust the 

connection weights according to the vehicle speed and the tracking error. 

 ℒ1 adaptive control algorithm is a new control structure with guaranteed 

robustness and fast adaptation. In this study, we considered the output 

feedback version of this method because the sensors that measure the 

outputs of the lateral control system are easily available. Another version 

of the algorithm uses state feedback in the presence of unmatched 

uncertainties, which is the case for the lateral control problem. In case all 

the states of the system are available for measurement, the feasibility of 

applying this algorithm to the problem could be studied.  

 In this study, we used the previously explained driving simulator and also 

detailed Matlab/Simulink simulations for testing and implementing our 

developed algorithms. The next logical step is the implementation of these 

algorithms on a real car. 
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Appendix A.   

 

Projection Operator 

Projection based adaptation laws in adaptive control theory are used to prevent 

parameter drift. The projection operator is explained in this appendix. First, we need to 

define the convex set and convex function [253]: 

A set Ω ⊆ ℝ𝑛 is a convex set if for ∀𝑥, 𝑦 ∈ Ω, we have  

𝜆𝑥 + (1 − 𝜆)𝑦 ∈ Ω, ∀𝜆 ∈ [0,1]. 

An example of convex and nonconvex sets is shown in Figure A.1. 

 

Figure A.1. An example of a convex set (left) and nonconvex set (right) 

A function 𝑓:ℝ𝑛 → ℝ is a convex function, if for ∀𝑥, 𝑦 ∈ ℝ𝑛, we have 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦), ∀𝜆 ∈ [0,1]. 

An example of a convex function is shown in Figure A.2. 
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Figure A.2. A sketch of a convex function 

 Consider a convex set with the following smooth boundary: 

Ωc ≜ {𝜃 ∈ ℝ
𝑛|𝑓(𝜃) ≤ 𝑐}, 0 ≤ 𝑐 ≤ 1 

where 𝑓: 𝑅𝑛 → 𝑅 is defined as the following convex function 

𝑓(𝜃) =
(𝜖𝜃 + 1)𝜃

𝑇𝜃 − 𝜃𝑚𝑎𝑥
2

𝜖𝜃𝜃𝑚𝑎𝑥2
 

where 𝜖𝜃 > 0 is the projection tolerance bound and 𝜃𝑚𝑎𝑥   is the norm bound we impose 

on 𝜃. The definition of the projection operator follows [254]: 

Proj(𝜃, 𝑦) ≜

{
 

 
𝑦 if 𝑓(𝜃) < 0

𝑦 if 𝑓(𝜃) ≥ 0 and ∇𝑓𝑇𝑦 ≤ 0

𝑦 −
∇𝑓

‖∇𝑓‖
〈
∇𝑓

‖∇𝑓‖
, 𝑦〉 𝑓(𝜃) if 𝑓(𝜃) ≥ 0 and ∇𝑓𝑇𝑦 > 0

 

This definition means that the projection operator does not change 𝑦 if 𝜃 is inside 

the set Ω0 = {𝜃 ∈ ℝ𝑛|𝑓(𝜃) ≤ 0}. However, in {𝜃 ∈ ℝ𝑛|0 ≤ 𝑓(𝜃) ≤ 1}, if ∇𝑓𝑇𝑦 > 0, the 

projection operator subtracts a vector normal to the boundary Ω̅𝑓(𝜃){𝜃̅ ∈ ℝ
𝑛|𝑓(𝜃̅) =

𝑓(𝜃)} so that a smooth transformation from the original vector field 𝑦 to an inward or 
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tangent vector field for Ω1 is obtained. The projection operator is illustrated in Figure 

A.3. 

 

Figure A.3. Projection operator [27]  

In adaptive control theory, using this projection operator guarantees the 

boundedness of adaptive parameters, which is 𝜎̂(𝑡) in this work. 

 

 


