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Abstract

This thesis involves the study of a well-known swarming model with interaction and external po-
tentials in one and two dimensions. We refer to this model as the plain aggregation model and later
study the model with nonlinear diffusion, so-called the diffusive model here. Typically set in free
space, one of the novelties of this thesis is the study of such swarming models in the presence of
a boundary. We consider a no-flux boundary condition enforced in a particle context via a “slip”
condition. Of particular relevance to the context of this thesis, the swarming model used here can
be formulated as an energy gradient flow and thusly, one might expect equilibrium states to be
minima of the energy.

In this work we demonstrate, through both analytical and numerical investigations, a continuum
of equilibria of the plain aggregation model that are not minima of the energy. Furthermore, we
show that these non-minimizing equilibria are achieved dynamically from a non-trivial set of initial
conditions with a variety of interaction potentials and boundary geometries. Thus we show conclu-
sively a deficiency with the plain aggregation model in domains with boundaries, namely that it
appears to evolve into equilibria that are not minima of the energy.

Following this we then propose a rectification to this deficiency in way of nonlinear diffusion. This
choice of nonlinear diffusion is especially attractive because it preserves compact states of the plain
aggregation model. We showcase how the diffusive model approaches, but does not equilibrate at,
the non-minimizing equilibria of the plain aggregation model. Furthermore we demonstrate how
minimizers of the diffusive model do approach minimizers of the plain aggregation model in the
zero diffusion limit.

Keywords: swarm equilibria, energy minimizers, gradient flow, attractors, nonsmooth dynamics,
nonlinear diffusion, numerical methods
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Chapter 1

Introduction

The patterns of flocks of birds as they fly, the potentially disastrous locomotion of locust swarms,
or the sharp gradient of schools of fish as they are being herded by killer whales. The movement
and grouping of bison on the plains or even the daily bustle of humans moving through a train
station. It is simply astounding that essentially the same simple rules that can be used to describe
one of these, in fact can describe them all [22]. In fact the rules found by many other researchers
to describe these examples of agents swarming, can even be used to describe the self-organization
of things that do not live or are entirely immaterial.

With such a broad range of applications, the area of mathematical research involved with self-
organizing behaviour or swarming has been booming lately. Understanding these models have lead
to insights into processes that seemed far too complex to even attempt to solve, in particular
understanding how locusts swarm have enabled researchers to see the cues before they eat all in
their paths. This is just one way in which study of swarming models ultimately benefits humanity
and provides solutions to many of our problems.

A plain aggregation model that has attracted a great amount of interest recently is given by
the following integro-differential equation in Rn:

ρt +∇ · (ρv) = 0, in Rn × [0, T ), (1.1a)

v = −∇K ∗ ρ−∇V, (1.1b)

ρ(0) = ρ0 in Rn. (1.1c)

Here ρ represents the density of the aggregation, ρ0 is the initial condition, K is an interaction
potential, and V is an external potential. The asterisk ∗ denotes convolution, and T can either be
finite (in the case of studying finite-time blow-up for instance) or infinite (in that one studies the
behaviour of the model with T → ∞). Typically, the interaction potential K models symmetric
inter-individual social interactions such as long-range attraction and short-range repulsion, though
this is but one example and the interaction potential certainly can model more than this. Solutions
to (1.1) may be classical in some contexts but also may be composed either entirely or partially
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of singular concentrations in others. One approach in the mathematical analysis of this model is
based on the formulation of the model as a gradient flow on spaces of probability measures with
finite second moment endowed with the Wasserstein metric, following theory in [1].

Study into the free space model (1.1) has been a topic of intense interest in recent years.
The model appeared in various contexts related to swarming and social aggregations, such as
biological swarms and pattern formation [35, 16, 13, 9, 44], granular media [63, 27], self-assembly of
nanoparticles [49, 50], Ginzburg-Landau vortices [34, 33], robotics and space missions [37], molecular
dynamics simulations of matter [48], and opinion dynamics [58]. There is an extensive literature on
the mathematical properties of the model in free space, which includes studies on the well-posedness
of solutions [18, 14, 11], the long-time behaviour of solutions [44, 43, 9], and blow-up (in finite or
infinite time) by mass concentration [41, 11, 12]. An active area of research also includes research
into connecting the continuum models here with discrete models. These continuum models can be
shown as mean field limits of the discrete models in certain cases. We introduce the discrete models
and discuss properties in the preliminaries.

Many different variations of model (1.1) have been considered in the literature. One can consider
interaction potentials with a finite sensing distance, senses that can be directional, or senses that can
be occluded by other agents [36, 59, 60, 55]. One can consider variations on the external potential
V , to enforce a gravity-like or wind-like potential to study agents forced to motion, or one can
study a confining potential that keeps agents from drifting from each other [10]. Finally one can
consider an internal potential H that, among other things, can model diffusion among the agents
[42, 29]. The generic version of (1.1) with an internal potential is given by:

ρt +∇ · (ρv) = 0, in Rn × [0, T ), (1.2a)

v = −∇H ′(ρ)−∇K ∗ ρ−∇V, (1.2b)

ρ(0) = ρ0 in Rn. (1.2c)

Model (1.2) can be used to model linear diffusion, if H(ρ) = ν(ρ log(ρ)− ρ), or nonlinear diffusion
in the form of a power-law, if H(ρ) = ν

m−1ρ
m (m > 1).

Linear diffusion has been extensively studied in the context of swarming as the continuum
limit of random walk processes among discrete individuals [52, 32]. The authors of [65] study the
zero diffusion limit of the linear diffusion model and [39] showcases how, with the addition of
linear diffusion, states with multiple disconnected components lead to unique steady states. On
the other hand, nonlinear diffusion is a natural outcome of mean-field treatments of some systems,
particularly when volume exclusion effects are considered [53], although rigorous continuum limits
are lacking. Despite this, the PDEs that come out of mean-field arguments tend to agree with
simulations [42, 54].
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Throughout the work here in this thesis, we consider only nonlinear diffusion in the form of a
power-law, which is to consider the diffusive model:

ρt +∇ · (ρv) = 0, in Rn × [0, T ), (1.3a)

v = − νm

m− 1∇ρ
m−1 −∇K ∗ ρ−∇V, (1.3b)

ρ(0) = ρ0 in Rn. (1.3c)

Nonlinear diffusion models like (1.3) have also received a great deal of interest lately. In the
context of modelling biological aggregations, model (1.3) (with m = 3) was investigated in [16];
showcasing its ability to exhibit equilibria with compact support and sharp edges that correspond to
localized clumps of organisms. There is also extensive work on mathematical studies of these models
(mostly set in free space), including well-posedness results [1, 17, 6], investigations into properties of
the steady states [20, 43, 21, 56, 26], and studies of long-time behaviour of the solutions [19, 27, 29].

So far we have introduced models in free space, and indeed most of the current literature into
swarming models has been in contexts with free space. Of course in real life there are situations
that could be well modelled by an unbounded domain such as on the open plains. But if there are
natural boundaries such as a river or a cliff, or if the area is confined such as in a building, then
one must consider boundaries in the models to accurately represent the situation.

Despite the extensive literature on the plain aggregation model in free space, there are decidedly
fewer works that consider the presence of boundaries [10, 62, 28]. These papers are motivated by
physical/biological scenarios where the environment involves an obstacle or an impenetrable wall;
in the locust model from [8] for example, such an obstacle is the ground. We assume in this
work that the presence of boundaries limits the movement in the following way [62, 28]: once
particles/individuals meet the boundary, they do not exit the domain, but move freely along it as
a “slip, no-flux” boundary condition.

In particular consider a domain Ω ⊂ Rn with a smooth C1 boundary with outward unit normal
vector nx at x ∈ ∂Ω. The boundary confines the movement of agents in the following way. If x is in
the interior of Ω or if x ∈ ∂Ω and the velocity (1.1b) points inward (v · nx 6 0), then the velocity
remains unchanged. If x ∈ ∂Ω and the velocity points outward (v ·nx > 0) then we instead consider
the projection onto the tangent plane of the boundary at x . Thus when considering domains with
boundaries, the plain aggregation model (1.1) is modified to:

ρt +∇ · (ρv) = 0, in Ω× [0, T ), (1.4a)

v = Px(−∇K ∗ ρ−∇V ), (1.4b)

ρ(0) = ρ0 in Ω, (1.4c)
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where

Pxξ =

ξ if x 6∈ ∂Ω or x ∈ ∂Ω and ξ · nx 6 0

Π∂Ω ξ, otherwise.
(1.5)

Here Π∂Ω denotes the projection onto the tangent plane to the boundary.
The well-posedness of weak measure solutions of (1.4) has been investigated in [62, 28] in the

framework of gradient flows in spaces of probability measures [1, 25]. The setting of measure-
valued solutions in these works is absolutely essential in this thesis, for various reasons. First, mass
accumulates on the boundary of the domain and solutions develop Dirac delta singularities there.
Second, the measure framework is the appropriate setup for connecting the PDE model with its
discrete/particle approximation. In regard to the latter, by approximating the initial density ρ0 with
a finite number of delta masses, (1.4) reduces to an ODE system, which then can be studied on
its own. In [28], the authors establish several important properties of such particle approximations.
One is the well-posedness of the approximating particle system where, due to the discontinuities of
the velocity field at the boundary, the theory of differential inclusions [47, 31] is being employed.
Another is the rigorous limit of the discrete approximation as the number of particles approach
infinity; this limit is shown to be a weak measure solution of the PDE model (1.4).

Similarly, the diffusive model (1.3) when posed in domains with boundaries is given by:

ρt +∇ · (ρv) = 0, in Ω× [0, T ), (1.6a)

v = − νm

m− 1∇ρ
m−1 −∇K ∗ ρ−∇V, (1.6b)

v · nx = 0 on ∂Ω× [0, T ), (1.6c)

ρ(0) = ρ0 in Ω. (1.6d)

Note that we opt to use a more standard boundary condition (1.6c) here as opposed to using Π∂Ω

as in (1.4). In fact because we do not need to consider singular concentrations for the diffusive
model, the standard no-flux boundary condition (1.6c) is the appropriate choice.

The focus of this thesis is on equilibrium configurations of model (1.4) and (1.6). A state ρ̄ is
an equilibrium of the plain aggregation model (1.4) if the velocity (1.4b) vanishes everywhere on
its support:

Px(−∇K ∗ ρ̄−∇V ) = 0 in supp(ρ̄). (1.7)

Similarly, a state ρ̄ of the diffusive model (1.6) is an equilibrium if the velocity (1.6b) vanishes
everywhere on its support:

−∇ νm

m− 1 ρ̄
m−1 −∇K ∗ ρ̄−∇V = 0 in supp(ρ̄). (1.8)
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Concerning (1.7), we note that at points on the boundary, the unprojected velocity (1.1b) may not
be zero; by (1.5) it can have a nonzero normal component pointing outward. This scenario is akin
to a falling object hitting a surface, when there is still a force acting on it but there is nowhere to go.

Outline of this thesis

First we go over necessary knowledge in Chapter 2. Here we introduce the 2-Wasserstein metric
and convergence in this sense. We then introduce the energies of the plain aggregation (1.4) and
diffusive (1.6) models. As these models are formulated as gradient flows of these energies, they
are integral to our understanding to come. Following [10], we then go over the characterization of
equilibria and minimizers for both models. We will also introduce the main interaction potential
that we investigate in this thesis, the quadratic attraction, Newtonian repulsion (QANR) potential,
as well as several important properties that are fundamental to the results presented. To close off
Chapter 2 we then go over the particle method used in the numerics for the plain aggregation
model. Lastly we show a numerical implementation to calculate the 2-Wasserstein metric.

In Chapter 3 we consider the plain aggregation model in one dimension. Here we provide an
extensive study of equilibria of the QANR potential with one boundary, showcasing a whole family
of states that can be analytically found and verified to be equilibria according to (1.7) but which
are not energy minima. This family of two-component equilibria consist of one swarm component
on the boundary and another in the interior of the domain. These two-component equilibria can be
further differentiated as connected and disconnected, depending on whether the two components
are adjacent or not. We find that none of the disconnected equilibria are local minima of the energy.
In contrast, one of the connected configurations can be shown to be a global energy minimizer.

Nevertheless, we show that starting from a large class of initial densities, solutions to (1.4) do
evolve into such disconnected equilibria that are not local energy minimizers. While unusual, this
behaviour has been observed in continuum mechanics systems wherein singularities form which act
as barriers preventing further energy decrease [4, 5, 51]. Following this study of the QANR potential
with one boundary, we then consider the QANR potential with two boundaries to study equilibria
in a truly confined domain. Here we find a 2-parameter family of three-component equilibria and
show, again, that these can be found analytically and shown to be equilibria, though almost all of
these states are not local minima of the energy. Similar to the study with one boundary, we find
that the only state that is an energy minimum is one that is connected in the sense that the free
swarm connects to both boundaries.

Following this two boundary study of the QANR potential, we study a C1-smoothed version of
the QANR potential for which equilibria in free space are composed of multiple singular accumu-
lations. In the presence of a boundary we find, again, states that can be shown to be equilibria but
which are not local minima. In contrast to the QANR potential, we find that there is now a family
of energy minima and explicitly calculate such equilibria. We then study a Morse-like potential and
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again show explicit calculations of equilibria, similarly finding that most of them are not local min-
ima of the energy. Finally, wrapping up Chapter 3 we go over a numerical implementation to find
equilibria, though this is more a lead-up to the implementation to find equilibria in two dimensions
since we could find explicit equilibria in every case studied in one dimension.

In Chapter 4 we consider the QANR potential in two dimensions with a single boundary. While
explicitly computable equilibria are available only for the simplest cases, we do present dynamics
from the particle method and compare them to a numerical implementation which solves for equi-
libria. Again we find that most of the equilibria found are not local minima of the energy yet are
achieved dynamically. We then also present results with a confined domain; in particular, we study
the problem with the domain taken as a circle. Finally we describe the numerical implementation
used in two dimensions to solve for equilibria.

By this point in the thesis we have then demonstrated a number of different contexts in which
non-minimizing equilibria are found. As the plain aggregation model (1.4) is technically formulated
as a gradient flow over the energy, these results in Chapters 3 and 4 could be conceived as flaws of
the model, namely that its solutions tend to evolve into unstable equilibria. In Chapter 5 then we
attempt to rectify this degeneracy by considering the diffusive model (1.6).

In particular we consider first quadratic diffusion, which is the casem = 2 in the diffusive model,
and show how the solutions of the diffusive model compare to those of the plain aggregation model
in the zero diffusion limit. We find that solutions to the diffusive model seem to approach, but not
converge to, unstable equilibria of the plain aggregation model. We also compare how minimizers
of the diffusive model compare to the minimizers of the plain aggregation model, showing that they
approach each other in the zero diffusion limit. Ultimately we provide strong numerical evidence
that the diffusive model rectifies the aforementioned flaw of the plain aggregation model, in the
sense that solutions of (1.6) bypass the unstable equilibria of model (1.4). Lastly in Chapter 5
we study general nonlinear diffusion, in particular with m = 1.5 and m = 3, showcasing similar
findings to that of quadratic diffusion.

Finally in the final Chapter 6 we provide a discussion of our results. Additionally we discuss
some possible future directions for research accompanied with some interesting things that were
found.

Main accomplishments of this thesis

Initially this thesis conclusively demonstrates a deficiency in the plain aggregation model in
domains with boundaries with the slip boundary condition. (1.4). We show through analytical and
numerical arguments that the model achieves equilibria that are not energy minima, despite the
model coming from an energy gradient formulation, with a variety of interaction potentials and
boundary geometries in one and two dimensions. We then provide a method for numerically calcu-
lating equilibria in one and two dimensions, which one can use to study these unstable equilibria
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when they are not explicitly available. We then offer a solution to the deficiency of the plain aggre-
gation model by way of nonlinear diffusion. We find that the diffusive model with boundaries (1.6)
approaches, but does not equilibrate at, unstable equilibria of the plain aggregation model. In this
way, the diffusive model avoids the unstable equilibria found for the plain aggregation model while
preserving compact swarms.
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Chapter 2

Preliminaries

2.1 Analytical preliminaries

2.1.1 The 2-Wasserstein metric

The diffusive model (1.6) and the plain aggregation model (1.4) are energy gradient systems with
respect to energy functionals we will introduce in the next subsection. An important preliminary
to discuss, however, is the metric space in which solutions are measured and how convergence is
characterized. We consider the space

P2(Ω) :=
{
ρ ∈ P(Ω):

∫
Ω
|x|2 dρ(x) < +∞

}
(2.1)

of probability measures on Ω with finite second moments, endowed with the 2-Wasserstein metric.
We recall this metric briefly below, along with some of its basic properties. For further back-
ground, we refer the reader to the books by Ambrosio, Gigli and Savaré [1] and Villani [64]. The
2-Wasserstein distance between µ, σ ∈ P2(Ω) is given by

dW (µ, σ) :=
(

min
{∫

Ω

∫
Ω
|x− y|2 dγ(x, y) : γ ∈ Γ(µ, σ)

})1/2
, (2.2)

where Γ(µ, σ) is the set of transport plans between µ and σ,

Γ(µ, σ) := {γ ∈ P(Ω× Ω): (π1)#γ = µ and (π2)#γ = σ} .

Here π1, π2 denote the projections π1(x, y) = x and π2(x, y) = y. For i = 1, 2, (πi)#γ denotes the
pushforward of γ defined by (πi)#γ(U) := γ(π−1

i (U)) for any measurable set U ⊂ Ω.
The minimization problem (2.2) admits a solution, i.e., there exists an optimal transport plan

γ0 ∈ Γ(µ, σ) so that
d2
W (µ, σ) =

∫
Ω

∫
Ω
|x− y|2 dγ0(x, y).
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If σ is absolutely continuous with respect to the Lebesgue measure, then there is an optimal
transport map tµσ : Ω→ Ω that transports σ onto µ (i.e., tµσ#σ = µ) such that (see [57] for details):

d2
W (µ, σ) =

∫
Ω

∣∣tµσ(x)− x
∣∣2 dσ(x).

Moreover, (P2(Ω), dW ) is a complete and separable metric space, and convergence in (P2(Ω), dW )
can be characterized as follows:

dW (µn, µ)→ 0 ⇐⇒ µn → µ weak-∗ in P2(Ω) and
∫

Ω |x|2 dρn(x)→
∫

Ω |x|2 dρ(x),

⇐⇒
∫
Ω f(x) dρn(x)→

∫
Ω f(x) dρ(x),

∀f ∈ C(Ω) such that |f(x)| 6 C(1 + |x− x0|2).

We will refer to functions satisfying |f(x)| 6 C(1 + |x − x0|2), for some C > 0 and x0 ∈ Ω, as
functions with at most quadratic growth.

2.1.2 Well-posedness of solutions and the energy functionals

The well-posedness of weak measure solutions to model (1.4) has been established recently in [62]
and [28]. The functional setup in these works is in the space P2(Ω) endowed with the 2-Wasserstein
metric. Under appropriate assumptions on the domain Ω and on the potentials K and V , it is
shown that the initial value problem for (1.4) admits a weak measure solution ρ(t) in P2(Ω). We
refer to [62, 28] for specific details on the well-posedness theorems and proofs, and only highlight
here the facts that are relevant for our work.

It is a well-established result that the plain aggregation model in free space (model (1.1)) can
be formulated as a gradient flow on the space of probability measures P2(Ω) equipped with the 2-
Wasserstein metric [1]. A key result in [62, 28] is that such an interpretation exists for model (1.4)
as well. Specifically, consider the energy functional associated with the plain aggregation model
(1.4),

E[ρ] = 1
2

∫
Ω

∫
Ω
K(x− y)ρ(x)ρ(y) dx dy +

∫
Ω
V (x)ρ(x) dx dt, (2.3)

where the first term represents the interaction energy and the second is the potential energy1.
The weak measure solution ρ(x, t) to model (1.4) is shown to satisfy the following energy

dissipation equality [28]:

E[ρ(t)]− E[ρ(s)] = −
∫ t

s

∫
Ω
|Px(−∇K ∗ ρ(x, τ)−∇V (x))|2ρ(x, τ) dx dτ, (2.4)

1Note that throughout this work
∫
ϕ(x)ρ(x) dx denotes the integral of ϕ with respect to the measure ρ, regardless

of whether ρ is absolutely continuous with respect to the Lebesgue measure.
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for all 0 6 s 6 t < ∞. Equation (2.4) is a generalization of the energy dissipation for the model
in free space [25]. Characterization of equilibria of (1.1) as ground states of the interaction energy
has been a very active area of research [2, 30, 23, 61].

The authors in [28] use particle approximations of the continuum model (1.4) as an essential tool
to show the existence of gradient flow solutions. The method consists in approximating an initial
density ρ0 by a sequence ρN0 of delta masses supported at a discrete set of points. For N fixed, the
evolution of model (1.4) with discrete initial data ρN0 reduces to a system of ordinary differential
equations, for which ODE theory can be applied. The ODE system governs the evolution of the
characteristic paths (or particle trajectories) which originate from the points in the discrete support
of ρN0 . Hence, the solution ρN (t) consists of delta masses supported at a discrete set of characteristic
paths. The key ingredient in the analysis is to find a stability property of solutions ρN with respect
to initial data ρN0 and show that in the limit N → ∞, ρN converges (in the Wasserstein distance
(2.2)) to a weak measure solution of (1.4) with initial data ρ0. This is one of the major results
established in [28].

One can also consider an energy functional associated with the diffusive model (1.6),

Eν [ρ] =
∫

Ω

ν

m− 1ρ
m dx+ 1

2

∫
Ω

∫
Ω
K(x− y)ρ(x)ρ(y) dx dy +

∫
Ω
V (x)ρ(x) dx, (2.5)

where the first term represents the internal energy, the second term represents the interaction en-
ergy, and the third is the potential energy. Similar to the dissipation result for the plain aggregation
model (2.4), one can show that weak measure solutions admit a dissipation result for the diffusive
energy (2.5), specifically

Eν [ρ(t)]−Eν [ρ(s)] = −
∫ t

s

∫
Ω

∣∣∣∣−∇ νm

m− 1ρ
m−1(x, τ)−∇K ∗ ρ(x, τ)−∇V (x)

∣∣∣∣2 ρ(x, τ) dx dτ, (2.6)

for all 0 6 s 6 t < ∞. The proof of (2.6) follows by beginning with (1.6a) and multiplying both
sides by νm

m−1ρ
m−1 +K ∗ ρ+ V getting

(
νm

m− 1ρ
m−1 +K ∗ ρ+ V

)
ρt = −

(
νm

m− 1ρ
m−1 +K ∗ ρ+ V

)
∇ · (ρv).

Now simply integrating over Ω and after some elementary work and by-parts integration we get

d

dt
Eν [ρ] = −

∫
∂Ω

(
νm

m− 1ρ
m−1 +K ∗ ρ+ V

)
ρ v · nx dx−

∫
Ω
ρ

∣∣∣∣∇( νm

m− 1ρ
m−1 +K ∗ ρ+ V

)∣∣∣∣2 dx,

where nx is the unit outward normal to ∂Ω at x. By (1.6c), the boundary term is zero. Then
integrating the above equation in time, one gets the energy dissipation relation (2.6).
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2.1.3 Characterization of equilibria and minimizers

Here we wish to lay out much of the theoretical framework as established by Bernoff and Topaz
in [10]. This is used to study the energy functional (2.3) and find conditions for critical points
to be energy minimizers. We find that with this framework we can characterize equilibria, and
local and global minimizers. Additionally we also define minimizers with respect to spatially local
perturbations. We present the ideas in the more general context of the energy functional (2.5) with
m = 2 (quadratic nonlinear diffusion); one can simply take ν = 0 to recover the results for the
plain aggregation model.

First note that the dynamics of model (1.4) and model (1.6) conserve mass:∫
Ω
ρ(x, t) dx = M for all t > 0. (2.7)

Hence, in what follows it is sufficient to consider zero-mass perturbations of a fixed equilibrium.

Single-component equilibria
Consider an equilibrium solution ρ̄ with mass M and connected support Ωρ̄ ⊂ Ω, and take a

small perturbation ερ̃ of zero mass:

ρ(x) = ρ̄(x) + ερ̃(x),

where ∫
Ω
ρ̄(x) dx = M, (2.8a)∫

Ω
ρ̃(x) dx = 0. (2.8b)

Consider quadratic diffusion (m = 2) in the diffusive model (1.6) or the plain aggregation model
(1.4). For convenience of notations (we are about to compute the first and second variations of the
energy) we will drop momentarily the subindex ν in energy (2.5). Then, both energy functionals
(2.3) and (2.5) (for m = 2) are quadratic in ρ and one can write:

E[ρ] = E[ρ̄] + εE1[ρ̄, ρ̃] + ε2E2[ρ̃, ρ̃], (2.9)

where E1 denotes the first variation:

E1[ρ̄, ρ̃] =
∫

Ω

[
2νρ̄(x) +

∫
Ω
K(x− y)ρ̄(y) dy + V (x)

]
ρ̃(x) dx, (2.10)
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and E2 the second variation:

E2[ρ̃, ρ̃] =
∫

Ω
νρ̃2(x) dx+ 1

2

∫
Ω

∫
Ω
K(x− y)ρ̃(x)ρ̃(y) dx dy. (2.11)

Using the notation

Λ(x) = 2νρ̄(x) +
∫

Ωρ̄
K(x− y)ρ̄(y) dy + V (x), for x ∈ Ω, (2.12)

one can also write the first variation as

E1[ρ̄, ρ̃] =
∫

Ω
Λ(x)ρ̃(x) dx. (2.13)

Before going further, let us discuss what perturbations we consider. For this purpose, following
[10] we are going to define two classes of perturbations. The first class are perturbations that are
supported in Ωρ̄. The second class of perturbations are those with arbitrary support. The first class
is a subset of this second class, but the second class also includes perturbations that are physically
impossible via the dynamics, such as mass making finite jumps away from the support of the equi-
librium ρ̄.

Perturbations of the first class. For the following we have that supp(ρ̃) = supp(ρ̄) and as a
consequence of the perturbation being zero-mass, it must either be identically zero or else take
negative and positive values.

Since ρ̃ changes sign in Ωρ̄, for ρ̄ to be a critical point of the energy, the first variation must
vanish. From (2.13), given that perturbations ρ̃ are arbitrary and satisfy (2.8b), one finds that E1

vanishes provided Λ is constant in Ωρ̄,

Λ(x) = λ, for x ∈ Ωρ̄. (2.14)

The (Lagrange) multiplier λ is given a physical interpretation in [10]: it represents the energy per
unit mass felt by a test mass at position x due to interaction with the swarm in ρ̄ and the exogenous
potential. Indeed this interpretation is valid for all points x by considering Λ(x) as the energy per
unit mass felt by a test mass at position x. This interpretation is critical for the study in [10], as
well as for this present work.

Equation (2.14) represents a necessary condition for ρ̄ to be an equilibrium. For ρ̄ that satisfies
(2.14) to be a local minimizer with respect to the first class of perturbations, the second variation
(2.11) must be positive. In general, the sign of E2 cannot be determined easily.

Perturbations of the second class. Consider now perturbations of the second class. Since pertur-
bations ρ̃ must be non-negative in the complement Ωc

ρ̄ = Ω\Ωρ̄, it is shown in [10] that a necessary
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and sufficient condition for E1 > 0 is

Λ(x) > λ, for x ∈ Ωc
ρ̄. (2.15)

The interpretation of (2.15) is that transporting mass from Ωρ̄ into its complement Ωc
ρ̄ increases

the total energy [10].

Remark 2.1.1 (Equilibria, Λ(x), and the velocity field). It is not surprising that Λ(x) can be used
to characterize equilibria. One can observe that the velocity, v, of the plain aggregation model can
be written

v = Px(−∇Λ).

So the equilibrium condition (2.14) corresponds with a zero velocity along the support of the equilib-
rium. The minimizer condition (2.15) corresponds with the velocity field within a neighbourhood of
the support of the equilibrium pointing towards the support. Figure 2.1 shows examples of a stable
and an unstable state with accompanying Λ(x).
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Figure 2.1: (a) An equilibrium that is stable and indeed an energy minimum. Notice that inside
the support of ρ(x) we see Λ is flat and so the velocity is zero there. Additionally we see that since
Λ(x) is greater on the complement of the support then the velocity field, calculated from Λ(x), is
directed towards the swarm. (b) An equilibrium that is unstable. While it still has zero velocity
inside the support, since Λ(x) decreases away from the support one can calculate the velocity field
and find they point away from the swarm. Any infinitesimal perturbation that would move mass
out of the support will be energetically favorable.
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In summary, a critical point ρ̄ for the energy satisfies the Fredholm integral equation (2.14) on
its support. Also, ρ̄ is a local minimizer (with respect to the general, second class perturbations)
if it satisfies (2.15). Note however that the word local in this context refers to the small size of the
perturbations, as the perturbations themselves are in fact allowed to be nonlocal in space.

Remark 2.1.2 (Formal variational framework). The minimization considerations above follow
closely the informal setup and approach from [10]; for a mathematically complete and rigorous
framework one needs to be more precise however. First, one has to set the space of densities over
which the minimization of energy is considered (i.e., the space to which the equilibrium ρ̄ and the
perturbed equilibrium ρ belong to). We take the space of such admissible densities to be the set
of Borel measures on Ω that have finite second moment and total mass M , endowed with the 2-
Wasserstein metric. Apart from not having a density normalized to unit mass (which does not add
any technical difficulties), this is the framework commonly used in rigorous variational studies of
model (1.1) [2, 3, 25], including the recent work on domains with boundaries [62, 28].

A rigorous derivation of the Euler-Lagrange equations within such formal setup is presented for
instance in [2, Theorem 4]; note that while the derivation there is for equilibria in free space, it
extends immediately to arbitrary domains Ω, as considered in this paper. As in [2], by considering
various types of admissible perturbations to an equilibrium ρ̄ (similar in fact to the first and second
class perturbations from [10]), one finds that (2.14) holds a.e. (with respect to the measure ρ̄) within
the support, while (2.15) holds at a.e. x. Hence, the necessary conditions (2.14) and (2.15) for a
local minimum, as found through the informal approach in [10], could potentially be relaxed, by
requiring to hold up to zero measure sets. Nevertheless, given the connected equilibria considered in
this paper, working directly with (2.14)-(2.15) is simpler and makes no essential difference in our
considerations.

Multi-component equilibria. As discussed in [10], the support Ωρ̄ of an equilibrium density has in
general multiple disconnected components. Assuming m disjoint, closed and connected components
Ωi, i = 1, . . . ,m, one can write

Ωρ̄ = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm, Ωi ∩ Ωj = ∅, i 6= j. (2.16)

In [10], a swarm equilibrium is defined as a configuration in which Λ is constant in every component
of the swarm, i.e.,

Λ(x) = λi, for x ∈ Ωi, i = 1, . . . ,m. (2.17)

Given the physical interpretation of Λ(x), one can immediately observe that a multi-component
equilibrium ρ̄ that satisfies (2.17) cannot be a local minimizer unless all λi are equal to each other
(i = 1, . . . ,m). Indeed, for a swarm equilibrium with λj > λk, transferring mass from Ωj to Ωk

would decrease the energy. However we will see in this thesis many examples of equilibria composed
of multiple, disconnected components. While such equilibria cannot be minimizers with respect to
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arbitrary perturbations, we investigate instead whether such equilibria are minimizers with respect
to perturbations that are local in space [10].

Following [10], we define a swarm minimizer as a swarm equilibrium which satisfies

Λ(x) > λi, in some neighbourhood of each Ωi. (2.18)

By the interpretation of Λ, (2.18) means that an infinitesimal redistribution of mass in a neigh-
bourhood of Ωi increases the energy. We should remark that a local minimizer would require

λi = λ, i = 1, . . . ,m.

Furthermore, to really check for global minimizers we would need to look to E2 which, in general,
is harder to characterize than E1. The authors of [10] go into more detail.

Remark 2.1.3 (Equilibria of the plain aggregation model). We point out that condition (2.17) is
only a necessary condition for ρ̄ to be an equilibrium of (1.4). Indeed, consider a density ρ̄ that
satisfies (2.17) and check whether it satisfies the equilibrium condition (1.7). By (2.17), equation
(1.7) is indeed satisfied in every component Ωi that lies in the interior of Ω (the projection plays no
role there). However, consider a component Ωi of the swarm that lies on the boundary of the physical
domain Ω. The component Ωi can be for instance a codimension one manifold, such as a line in
R2; part of our investigation in Chapter 4 focuses on this example in fact. Since Λ(x) is constant
on Ωi ⊂ ∂Ω, we infer that the tangential component to ∂Ω of ∇Λ is zero at any point x ∈ Ωi.
Consequently, by (2.12), we conclude that the unprojected velocity at x (c.f., (1.1b)) is normal to
∂Ω. For an equilibrium solution, this normal component must point away from the interior of Ω
(v ·nx > 0) – see (1.4b) and (1.5); however, one cannot infer this condition from (2.17). Chapter 4
provides examples where solutions to (2.17) do not yield equilibria, precisely because the velocity at
some points on the boundary is directed toward the interior of Ω, and thus the steady state condition
(1.7) fails.

Remark 2.1.4 (Locality of perturbations). The word ‘local’ has appeared above in various instances
with very different meanings. In the phrase ‘local minimizer’ the word local refers to the small size
of the perturbations. On the other hand, for a multi-component swarm minimizer, (2.18) has to
hold only in a neighbourhood of each component, which indicates that only perturbations ρ̃ that are
local in space are considered. In other words, a swarm minimizer is a local minimizer of the energy
with respect to admissible perturbations ερ̃ (for precise terminology and formal variational setup see
Remark 2.1.2) that are local in space.

15



2.1.4 The quadratic attraction, Newtonian repulsion (QANR) potential and its
equilibria in free space

Our studies mainly focus on a well known and well studied potential [41, 44, 43], which we introduce
here. This is the quadratic attraction, Newtonian repulsion (QANR) potential,

K(x) = φ(x) + 1
2 |x|

2, (2.19)

where φ(x) is the free-space Green’s function for the negative Laplace operator −∆:

φ(x) =

−
1
2 |x|, n = 1

− 1
2π ln |x|, n = 2.

(2.20)

A very important property of such potentials for us is that they lead to compactly supported
equilibrium states of constant densities [41, 44] — as is rederived below.

We wish to quickly address assumptions for theoretical results for the model in domains with
boundaries. While we use results to guide us (for example, [62, 28]), these require assumptions on K
which the potential (2.19) does not satisfy. In particular, the interaction potential is required there
to be C1 and λ-geodesically convex. Consequently, the results in [62, 28] do not immediately apply
to our study. Nevertheless we consider the framework developed in these papers, in particular the
gradient flow and the energy dissipation (see (2.4)), and the particle approximation method which
can be turned into a valuable computational tool. Indeed, to validate our equilibrium calculations
we use a particle method to simulate solutions to (1.4). Additionally, we also investigate C1- and
C2-smoothed versions of (2.19) later to provide results in line with the theoretical assumptions.

In the absence of an exogenous potential (V = 0), the aggregation model (1.1) with interaction
potential (2.19) evolves into constant, compactly supported steady states. This can be inferred from
a direct calculation using the specific form of the potential (2.19). Indeed, expand

∇ · (ρv) = v · ∇ρ+ ρ∇ · v,

and write the aggregation equation (1.1) as

ρt + v · ∇ρ = −ρ∇ · v. (2.21)

From (1.1b) and (2.19), using −∆φ = δ and the mass constraint (2.7), one gets

∇ · v = −∆K ∗ ρ

= ρ− nM. (2.22)
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This calculation shows that ∇ · v is a local quantity. By using (2.22) in (2.21), one finds that
along characteristic paths X(α, t), defined by

d

dt
X(α, t) = v(X(α, t), t), X(α, 0) = α, (2.23)

ρ(X(α, t), t) satisfies:
D

Dt
ρ = −ρ(ρ− nM). (2.24)

The remarkable property of the interaction potential (2.19), as seen from equation (2.24), is
that the evolution of the density along a certain characteristic path X(α, t) satisfies a decoupled,
stand-alone, ordinary differential equation. Hence, as inferred from (2.24), ρ(X(α, t), t) approaches
the value nM as t → ∞, along all characteristic paths X(α, t) that transport non-zero densities.
More specifically, it has been demonstrated in [15, 44] that solutions to equation (1.1), with K

given by (2.19), approach asymptotically a radially symmetric equilibrium that consists in a ball
of constant density nM .

In domains with boundaries, as the velocity is projected (see (1.4b) and (1.5)) at points on
the boundary, the characteristic equations (and the evolution of the density along characteristic
paths) should be considered in an extended, more general setup. In [28] for instance, the authors
study particle approximations for model (1.4) within the framework of differential inclusions. We
do not pursue here the idea of studying the characteristic equations for domains with boundaries.
As the next calculation shows, for the purpose of studying the QANR potential, such extension is
not needed in fact.

Indeed, consider an equilibrium solution ρ̄ of model (1.4) that consists of a delta accumulation
on the boundary and one or several swarms in the interior of the domain. Note that, unlike the
problem in free space, the interior swarms are not expected to be radially symmetric. At any point
x in the support of ρ̄, the velocity v̄ vanishes:

v̄ = Px(−∇K ∗ ρ̄) = 0.

In particular, at an arbitrary point x in one of the interior swarms one has ∇ · v̄ = 0 and hence, by
a calculation similar to (2.22), one concludes that

ρ̄(x) = nM at any x ∈ supp(ρ̄) ∩ int(Ω). (2.25)

This key observation is used in Chapter 3 and 4 to investigate equilibria for model (1.4).
Finally, in the presence of an external potential, calculation of ∇ · v from (1.1b) and (2.19) (see

also (2.22)) yields:
∇ · v = ρ− nM −∆V.
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Following similar considerations, for an equilibrium ρ̄ of model (1.4), one has

ρ̄(x) = nM + ∆V at any x ∈ supp(ρ̄) ∩ int(Ω). (2.26)

Throughout this work the only non-zero exogeneous potential we consider is a linear gravitational
potential V for which ∆V = 0, so in fact whenever we consider the QANR potential, we have that
all equilibria will have free swarms with constant densities, nM .

2.2 Numerical preliminaries

2.2.1 Particle method

Here we describe the particle method we used to evolve the plain aggregation model (1.4). Consider
N particles with positions xi and velocities vi. In free space, the particle method for model (1.4) is
simply implemented by numerically integrating

dxi
dt

= vi, (2.27a)

vi = −M
N

∑
j 6=i
∇K(xi − xj)−∇V (xi), (2.27b)

with 1 6 i 6 N . Recall that the discrete model here (2.27) is highly connected to the plain
aggregation model (1.4). In some cases the continuum model can be shown to be the mean field
limit of a discrete model such as this.

In domains with boundaries, one needs to consider the possibility of a particle meeting the
boundary within a time step. Let ∆t denote the time step used in simulations and consider an
explicit Euler method for time integration. If within a time step, particle i meets the boundary,
then, in accordance with (1.4b) and (1.5), from the moment of collision it only continues to move
in the tangential direction to the boundary.

For instance, when considering the one dimensional problem on the half-line, this simply means
that, had a particle at xi with velocity vi reached the origin within a time step ∆t, then it should
simply be placed at the origin at the end of the time step. The resulting integrating scheme is then
given by

xi(t+ ∆t) = xi(t) + ∆tP̄xivi(t), (2.28)

where the projection operator P̄xi , a specific case of (1.5), is given by:

P̄xivi =

vi if xi + ∆tvi > 0

−∆t−1xi otherwise.
(2.29)
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Similarly, when considering the two dimensional problem on the half-plane we have that the
vertical velocity of a particle remains unchanged upon colliding with the wall. In this case, a particle
xi = (xi,1, xi,2) with velocity vi = (vi,1, vi,2) updates its position according to (2.28), except that in
two dimensions the discrete projection operator is

P̄xivi =

(vi,1, vi,2) if xi,1 + ∆tvi,1 > 0

(−∆t−1xi,1, vi,2) otherwise.
(2.30)

In order to investigate disconnected equilibria we used the particle method to evolve initial
states that are concentrated (small support) and close, or adjacent to, the wall. This can either
be done by randomly generating the particles on some segment of Ω or by generating equispaced
particles on some segment of Ω. After seeing disconnected equilibria arise dynamically from such
states, we also would manually move particles from the wall and placing them into the free swarm
or vice versa. This allowed us to see representations of all disconnected equilibria.

Lastly we mention particular issues that can arise with regards to the choice of time step ∆t.
There are two phenomena that one can observe:

• If particles are very concentrated and/or ∆t is too large then one can observe erratic dynamics
where particles are sent far away from the free swarm.

• Related to the item above, particle methods applied in the manner described here tend to
over-approximate the number of particles on the wall in their resultant steady states, though
generally these errors are related to the time step size and one can see convergence as the
time step is decreased. The error arises when multiple particles reach the wall within the same
time step.

2.2.2 Calculation of the 2-Wasserstein distance

We describe here how to compute the 2-Wasserstein distance between a sum of deltas and a classical
density which is continuous on its support. This is only when considering states in one dimension.
This is used in Chapter 5.1 to compare solutions of the plain aggregation model (1.4) and the
diffusive model (1.6) to understand how they approach each other in the zero diffusion limit (ν → 0).

For ρ1, ρ2 ∈ Pa2 (Ω), which is to say that ρ1, ρ2 ∈ P2 and additionally are absolutely continuous
measures, the 2-Wasserstein distance between them can be written as

d2
W (ρ1, ρ2) = inf

t

∫
Rd
|t(x)− x|2ρ1(x) dx, (2.31)
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where the infimum is taken over all maps t transporting ρ1 to ρ2. We say that a map t : Ω → Ω
transports ρ1 into ρ2 if∫

x∈A
ρ2(x) dx =

∫
t(x)∈A

ρ1(x) dx for all bounded subsets A of Ω. (2.32)

Then by a theorem due to Brenier (cf. [64, Theorem 2.12]) there exists a unique optimal transport
map tρ2

ρ1 which attains the infimum above, and it can be written as tρ2
ρ1 = ∇ψ for some convex

function ψ. It is noted in [7] that in one-dimension the map tρ2
ρ1 is non-decreasing by the convexity

of ψ, and tρ2
ρ1 can be determined entirely by the condition∫

x<tρ2ρ1 (y)
ρ2(x) dx =

∫
x<y

ρ1(x) dx.

The considerations above also hold when one of the densities is a delta measure. To compute
the 2-Wasserstein distance between a density function and a sum of Dirac deltas in one dimension
we will proceed as in [7], and compute the optimal transport map tµρ from a probability density
ρ, compactly supported on [0, L], into µ =

∑n
i=1 siδyi . Since tµρ is a non-decreasing function, using

(2.32), we can find the optimal transport map by finding a partition 0 = x0 < x1 < · · · < xn = L of
the interval [0, L], where the weight of the Dirac mass at yi is obtained by integrating the density
ρ over the subinterval [xi−1, xi]:

si =
∫

[xi−1,xi]
ρ(x) dx for all i = 1, . . . , N.

Then we define yi = tµρ(x) for x ∈ [xi−1, xi] for all i = 1, . . . , N . Returning to (2.31) we see that

d2
W (ρ, µ) =

∫
[0,L]
|tµρ(x)− x|2ρ(x) dx =

N∑
i=1

∫
[xi−1,xi]

|yi − x|2ρ(x) dx.
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Chapter 3

Plain aggregation in one dimension

In this chapter we begin to explore equilibria of (1.4) in one dimension and, in particular, investi-
gate those equilibria which are not energy minima. We hope to give evidence that these unstable
equilibria occur in a variety of contexts. First we focus on the well known potential involving
quadratic attraction and Newtonian repulsion (QANR) where we provide a systematic and com-
plete investigation of equilibria both on the half-line and on a bounded interval. Of these equilibria
we differentiate between those that are energy minimizing and those that are not, then we showcase
numerical and analytical results suggesting that the unstable equilibria occur from a non-trivial set
of initial conditions. We will observe the unstable equilibria form a one parameter family with the
unique (up to translation) minimizer occurring at the boundary of this continuum.

A similar study is then done on a bounded interval where we identify a 2-parameter family of
unstable equilibria with the unique minimizer occurring on the boundary of this family. This study
suggests that the dimensionality of the family of unstable equilibria may change depending on the
boundary and has parallels to the results on the half-line though they are more complicated.

We then consider a C1-smoothed version of the QANR potential and study equilibria again on
the half-line, highlighting the equilibria which are not energy minima. This is a potential investi-
gated in other works as well [43] whose contrasting feature is that instead of having the constant
density free space equilibria of the QANR potential, it has equilibria composed of a sum of deltas.
We will find in this study that again equilibria can be explicitly found, though an extensive study
of all equilibria is not performed due to the branching complexity involved. Instead we study all
equilibria that take the form of three deltas and use the general results to characterize the stability
of a given state. Here we notice that a family of swarm minimizers can be found as a subset of the
family of equilibria. Dynamical investigations then are used to argue that the unstable equilibria
are dynamically achievable.

Finally we then showcase similar behavior for a different well known, Morse-like potential where
we can find explicit forms of equilibria and differentiate those that are unstable. From the results
of this chapter we argue convincingly that a generic feature of (1.4) in domains with boundaries is
the formation of unstable equilibria through the dynamics of the system.
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3.1 Quadratic attraction and Newtonian repulsion (QANR)

For this section we will consider the QANR interaction potential K given by (2.19)-(2.20). It has
already been noted in Chapter 2.1.4 that the remarkable property of such potentials is that they
lead to equilibria that are constant in the interior of the domain (see (2.25)). In the presence of
an external potential, equilibria in the interior of the domain have the form (2.26). Note that
(2.26) reduces to (2.25) for harmonic external potentials (∆V = 0), which is in fact the only case
considered in this work.

3.1.1 On the half-line [0,∞)

Here we consider the domain as the half-line Ω = [0,∞) so that the boundary is at x = 0. We
consider two cases: first we investigate without an external potential, V (x) = 0, and second we
investigate a gravity-like potential, V (x) = gx with g > 0, that acts to force agents towards the
boundary. Note that V ′′(x) = 0 so regardless of whether we consider gravity or not, we assume a
compact swarm away from the boundary with a constant density M .

To begin, we look for equilibria in the form of a delta accumulation of strength S at the origin
and a constant density M in an interval (d1, d1 + d2), with d1 > 0, d2 > 0:

ρ̄(x) = Sδ(x) +M1(d1,d1+d2). (3.1)

The support Ωρ̄ of ρ̄ consists of two (possibly disconnected) components:

Ω1 = {0} and Ω2 = [d1, d1 + d2].

Note that we will generally refer to mass off the boundary as the free swarm and the mass on the
boundary as the boundary swarm. Now we are going to impose the equilibrium condition (2.18)
and see what results.

No external potential: V (x) ≡ 0
First observe that by the constant mass condition (2.8a), we have

S +Md2 = M. (3.2)

A necessary condition for ρ̄ to be an equilibrium is to satisfy (2.17). Equation (2.17) is satisfied
provided:

Λ(0) = λ1, and Λ(x) = λ2 in [d1, d1 + d2]. (3.3)
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The calculation of Λ(x) from (2.12) yields:

Λ(x) = S

(1
2x

2 − 1
2x
)

+
∫ d1+d2

d1

(1
2(x− y)2 − 1

2 |x− y|
)
M dy (3.4)

for some constants λ1 and λ2. For x ∈ (d1, d1 + d2), an elementary calculation of Λ(x) gives

Λ(x) = 1
2(S +Md2 −M)x2 + 1

2 (−S +M(2d1 + d2)(1− d2))x

+ M

6 (3d2
1d2 + 3d1d

2
2 + d3

2)− M

4 (2d2
1 + 2d1d2 + d2

2).

The second condition in (3.3) is satisfied only if the coefficients of x2 and x of the polynomial above
are zero. Setting the coefficient of x2 to zero yields the mass constraint condition (3.2), while the
coefficient of x vanishes provided

S = M(2d1 + d2)(1− d2). (3.6)

Combining the two conditions (3.2) and (3.6) we arrive at:

S = M(1− d2), d1 = 1− d2
2 . (3.7)

Hence, there is a family of solutions to (3.3) in the form (3.1). Note that d1 + d2
2 = 1

2 , implying
that for all the equilibria in this family, the centre of mass of the free swarm is at 1

2 .

Remark 3.1.1. In the calculations so far we have set up d2 to be the parameter that describes the
family of solutions. We will choose to describe the family of solutions according to a more intuitive
parameter, however. In particular we describe the family of solutions with the mass ratio rM defined
as the ratio of mass off the boundary to mass on the boundary. With (3.1) and (3.7) we would have,
for instance:

rM = Md2
S

. (3.8)

By expressing everything in terms of d2 only, Λ takes the following values on the two components
Ω1 and Ω2 of Ωρ̄, respectively:

λ1 = −M24 (1− d2)3 + M

8 (1− d2)2 − M

12 , (3.9a)

λ2 = −M24 (1− d2)3 − M

12 . (3.9b)

Note that λ1 > λ2, unless d2 = 1 (d1 = 0), in which case λ1 = λ2. Based on this observation, we
distinguish between two qualitatively different equilibria:
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i) Disconnected equilibria (d1 > 0). A generic disconnected solution to (3.3) of form (3.1) is
shown in Figure 3.1(a); the solid line indicates the constant density in the free swarm and the circle
on the vertical axis indicates the strength S of the delta-aggregation at the origin.
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Figure 3.1: Equilibria (3.1) on half-line for V = 0 (no exogenous potential). (a) Disconnected
equilibrium consisting in a free swarm of constant density and a degenerate concentration at the
origin. (b) The unique (up to translation) minimizer composed of constant density 1 in (0, 1). (c)
Energy of equilibria (3.1) as a function of the mass ratio; the lowest energy state corresponds to
the connected equilibrium (rM = ∞). Note that for a better visualization Λ(x) has been shifted
and stretched vertically.

To verify that disconnected states as shown in Figure 3.1 are indeed equilibria, we must check
that the velocity everywhere is zero. However because we have satisfied the equilibrium condition
(2.14) we already have that the velocity is zero on the free swarm component. Then we focus on the
velocity at the boundary and critically observe that the mass at the origin doesn’t ‘feel’ itself. Any
mass infinitesimally close to the origin will feel the mass concentrated at the origin, but as soon as
we consider mass at the boundary there is no longer a contribution from the boundary itself. This
highlights the discontinuous nature of the equilibria. Therefore, the velocity v(0) calculated from
(1.1b) reduces to an integral over Ω2 only:

v(0) = P0

(
−
∫

Ω2
K ′(−y)ρ̄(y) dy

)
. (3.10)

An elementary calculation, using K ′(y) = y − sgn(y) and ρ̄(y) = M in Ω2 = (d1, d1 + d2), yields:

−
∫

Ω2
K ′(−y)ρ̄(y) dy = M

2 d2(2d1 + d2 − 1). (3.11)

Finally, by (3.7),
v(0) = P0(0) = 0,
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so the disconnected state is indeed an equilibrium. We now check whether the disconnected equi-
libria are energy minimizers. By an elementary calculation, we find from (3.4) (also using (3.7)):

Λ′(x) = M(x− d1) for x ∈ (0, d1), and Λ′(x) = M(x− d1 − d2) for x ∈ (d1 + d2,∞).

Notice Λ(x) is strictly decreasing in (0, d1) and strictly increasing in (d1 + d2,∞) so these dis-
connected equilibria do not satisfy the swarm minimizer condition (2.18) – see the dashed line
representing the plot of Λ(x) in Figure 3.1(a). All these disconnected equilibria are therefore not
minima; however, as will be elaborated later, these states are asymptotically stable to certain per-
turbations and are dynamically achievable from a wide range of initial conditions.

ii) Connected equilibria. There are two possible connected equilibria. The first is a degenerate
case of (3.1), where d1 = 1

2 and d2 = 0, and all mass lies at the origin (or by translation, at any
point in (0,∞)):

ρ̄(x) = Mδ(x). (3.12)

While (3.12) is an equilibrium solution, it is not an energy minimizer, as can be inferred from the
expression of Λ:

Λ(x) = −1
2M |x|+

1
2Mx2,

by noting that (2.15) is not satisfied for x ∈ (0, 1). Any perturbation which does not create a
delta accumulation in the interior of Ω, (from this trivial equilibrium) would result either in a
disconnected state or in the second connected equilibrium, given by:

ρ̄(x) = M1(0,1), (3.13)

or a translated version of it away from the boundary. This second connected equilibrium (shown
in Figure 3.1(b)) can be shown to be an energy minimizer. It is, in fact, the global minimizer as
shown by the remark below.

Remark 3.1.2 (States composed of more than two components). To conclude that the connected
equilibrium is the global minimizer one needs to rule out other states as energy minima. We have
already shown that disconnected equilibria of form (3.1) are not minimizers. One can also show that
a multi-component free swarm is not an energy minimizer either. The argument essentially comes
from [10] where we wish to show that Λ(x) is convex between free swarm components, which is a
sufficient condition to show it is not an energy minimizer as (2.18) does not hold.

Assume a disconnected equilibrium of the form

ρ(x) = Sδ(x) +
m∑
i=1

ρi(x), (3.14)
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where ρi are supported on Ωi (Ωi are disjoint from each other and do not include the origin). Note
that as mentioned in Remark 3.1.1, ρi(x) = M for x ∈ Ωi, though this is not directly used below to
show that equilibrium (3.14) is not a minimizer.

Then (2.12) becomes

Λ(x) = S

(1
2x

2 − 1
2x
)

+
m∑
i=1

∫
Ωi
K(x− y)ρi(y) dy,

and for x /∈ ∪Ωi one gets

Λ′′(x) = S +
m∑
i=1

∫
Ωi
ρi(y) dy = M > 0.

Therefore, Λ(x) is indeed convex between free swarm components and (3.14) cannot be a minimizer.
So then the only states we needed to consider were those with an accumulation on the wall and a
single component as the free swarm, which is precisely what we considered at the onset (3.1). Fur-
thermore from (2.26) we know that we need only consider free swarm components with a constant
density M , which is what we did consider.

The energy corresponding to the equilibria (3.1) can be computed as:

E[ρ̄] = 1
2

∫
Ωρ̄

Λ(x)ρ̄(x) dx = λ1
2

∫
Ω1
ρ̄(x) dx+ λ2

2

∫
Ω2
ρ̄(x) dx.

After a simple calculation, using the explicit expressions of λ1 and λ2 from (3.9), one finds:

E[ρ̄] = M2

3

(
d3

1 −
1
8

)
= M2

24 d2(−3 + 3d2 − d2
2). (3.15)

Note that E[ρ̄] has the lowest energy for d1 = 0 (or equivalently, d2 = 1), which corresponds to the
global minimizer (3.13). Figure 3.1(c) shows the energy as a function of the mass ratio.

Linear exogeneous potential: V (x) = gx

We managed to find explicit forms of equilibria without an external potential present and were
able to demonstrate that some of these states were not minima of the energy but yet were equilibria
according to (1.7). Now we will consider a gravity-like potential that pushes towards the boundary,
forcing mass closer to the boundary. We will again find unstable equilibria again with the connected
minimizer having a non-zero mass delta accumulation on the boundary as similarly found in [10].
We take the same form as before (3.1) and seek to satisfy the necessary condition (2.17). By direct
calculation,

Λ(x) = S

(1
2x

2 − 1
2x
)

+
∫ d1+d2

d1

(1
2(x− y)2 − 1

2 |x− y|
)
Mdy + gx. (3.16)
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Then we note that the coefficient of x vanishes provided

S = M(2d1 + d2)(1− d2) + 2g.

Combine this equation with the mass constraint (3.2) to find

S = M(1− d2), d1 = − g

M(1− d2) + 1− d2
2 . (3.17)

Note that since d1 > 0 and 0 < d2 < 1, then necessarily g < M
2 and 0 < d2 6 1 −

√
2g
M . In fact

gc = M
2 is a critical value for the system since if g > gc then all the mass is simply forced onto the

boundary and the only equilibria are those with all mass on the boundary. These are not interesting
and so we only study g < gc below.

By an elementary calculation, one can compute the values of Λ(x) in each component of the
support, Ω1 and Ω2, respectively:

λ1 = −M24 (1− d2)3 + M

8 (1− d2)2 − M

12 + g2

2M
d2

(1− d2)2 , (3.18a)

λ2 = −M24 (1− d2)3 − M

12 −
g2

2M
1

1− d2
+ g

2 . (3.18b)

As in the zero gravity case, we find that λ1 > λ2, unless d2 = 1−
√

2g
M (or equivalently, d1 = 0), in

which case λ1 = λ2.

i) Disconnected equilibria (d1 > 0). Figure 3.2(a) shows an example of a disconnected equilib-
rium we found. Now we wish to check whether i) these states are equilibria, and ii) these states are
energy minima. By a similar argument as in the zero gravity case (attractive and repulsive effects
at the origin are only felt through interactions with the free swarm), the velocity v(0) calculated
from (1.7) reads:

v(0) = P0

(
−
∫

Ω2
K ′(−y)ρ̄(y)dy − g

)
. (3.19)

By (3.11) and (3.17),
−
∫

Ω2
K ′(−y)ρ̄(y)dy = −g d2

1− d2
,

and hence, from (3.19) and (1.5) we find that

v(0) = P0
(
− g

1− d2︸ ︷︷ ︸
<0

)
= 0.

The disconnected state is indeed an equilibrium.
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Figure 3.2: Equilibria (3.1) on half-line for V (x) = gx (linear exogenous potential) with g = 0.125.
(a) Disconnected state consisting in a free swarm of constant density and a delta aggregation at
the origin. (b) Connected minimizer with a constant density in a segment adjacent to the origin
and a delta aggregation at origin. (c) Energy of equilibria (3.1) as a function of the mass ratio; the
lowest energy state corresponds to the connected equilibrium

(
rM =

√
M
2g − 1

)
.

Again we check whether the disconnected equilibria are minimizers. By direct calculation, one
can find from (3.16) and (3.17):

Λ′(x) = M(x− d1) for x ∈ (0, d1), and Λ′(x) = M(x− d1 − d2) for x ∈ (d1 + d2,∞),

and hence, Λ(x) is strictly decreasing in (0, d1) and strictly increasing in (d1 + d2,∞) – see Figure
3.2(a). Therefore these disconnected equilibria do not satisfy the condition (2.18) for a swarm min-
imizer.

ii) Connected equilibria. As with the results without an external potential, there are two con-
nected states that are equilibria. One is with all the mass on the boundary and the second connected
state is with mass off and on the boundary. First we consider the degenerate case with all mass on
the boundary (see (3.12)). The calculation of Λ from (2.12) yields:

Λ(x) = −1
2M |x|+

1
2Mx2 + gx.

Since Ωρ̄ = {0}, (2.14) trivially holds with λ = 0, while (2.15) is equivalent to(
−1

2M + 1
2Mx+ g

)
x > 0, for all x > 0. (3.20)

The inequality above does not hold when g < M
2 , hence the equilibrium (3.12) is not an energy

minimizer when g < gc.
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Figure 3.3: Existence and stability of connected and disconnected equilibria. Highlighted in grey are
regions where equilibria exist but they are not minimizers. (a) One dimension, V (x) = gx, gc = 0.5.
For 0 < g < gc, disconnected equilibria in the form (3.1) exist for all mass ratios rM ∈

(
0,
√

gc
g −1

)
;

these equilibria are not energy minimizers. The only stable equilibrium is the connected state with
rM =

√
gc
g − 1 (solid line). For g > gc, there exists no equilibrium in the form (3.1). The trivial

equilibrium where all mass lies at the origin (rM = 0) is unstable for g < gc (dashed line), but it
is a global minimizer when g > gc (solid line). (b) Two dimensions, V (x1, x2) = gx1, g̃c ≈ 0.044,
gc ≈ 0.564. For 0 < g < g̃c disconnected equilibria in the form (4.1) exist only for mass ratios
rM ∈ (0, α(g)) ∪ (β(g), γ(g)), while for g̃c < g < gc disconnected equilibria exist for all mass
ratios rM ∈ (0, γ(g)); none of these disconnected equilibria are energy minimizers. The only stable
equilibrium for 0 < g < gc is the connected state with rM = γ(g) (solid line). For g > gc, there
exists no equilibrium in the form (4.1). The equilibrium that has all mass on the boundary (rM = 0)
is unstable for g < gc (dashed line), but it is a global minimizer when g > gc (solid line).

By computing the energy as a function of rM , we find the second connected state, consisting of
a delta at the boundary and a constant density free swarm, to be a minimizer. This equilibrium is
shown in Figure 3.2(b), while Figure 3.2(c) shows the energy:

E[ρ̄] = M2

24 d2(−3 + 3d2 − d2
2) + g

2Md2 −
g2

2
d2

1− d2
. (3.21)

The zero gravity calculation (3.15) can be obtained from (3.21) by setting g to zero. Also as
expected, from (3.21) we find that the energy is decreasing with respect to d2:

∂E

∂d2
= −1

2

(
M

2 (d2 − 1)− g 1
d2 − 1

)2
6 0.
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Hence, among all equilibria in the form (3.1), the one that has the lowest energy is the con-
nected state corresponding to d2 = 1 −

√
2g
M . The family of equilibria above can be alternatively

parametrized by the mass ratio rM . The parameter d2 ranges in
(
0, 1−

√
2g
M

)
for the disconnected

equilibria, while d2 = 0 and d2 = 1 −
√

2g
M correspond to the two connected equilibria discussed

above. Hence, rM ∈
[
0,
√

M
2g − 1

]
, or equivalently rM ∈

[
0,
√

gc
g − 1

]
. The results of this study have

been summarized in Figure 3.3(a), where we have characterized the stability of each state.

Dynamic evolution

Reduced model
At this point we know that we can find explicit forms of equilibria and show analytically that

some are indeed equilibria and not energy minima. However if these non-minimizing states are
rarely, or never, seen from the dynamics of the system then these observations are not very useful.
In this section we hope to understand the dynamics of the model in a way that will allow us to
argue to the probability of ending up in a non-minimizing state. Though not rigorous, we give
strong arguments for what the basin of attraction is for the connected minimizer when we have
g ≡ 0 and ultimately argue that unstable equilibria occur from a non-trivial set of initial conditions.

We first examine a simplified model of (1.4) which we will see highlights what initial conditions
leads to disconnected states. Then we go over a large-scale numerical test of many different random
states that explicitly shows just how likely disconnected equilibria are. Finally we show that the
model is decreasing the energy.

Consider a solution to (1.4) with a time-dependent density that has two distinct components:

ρ(x, t) = ρ1(x) + ρ2(x, t), (3.22)

where ρ1(x) = Sδ(x) is a delta accumulation at the origin (with S fixed) and ρ2(x, t) is the density
profile of the free swarm, with support Ω2(t) = [a(t), b(t)]. Here, b(t) > a(t) > 0 is assumed.

Let
M2 =

∫
Ω2(t)

ρ2(x, t) dx and C2(t) =
∫

Ω2(t) xρ2(x, t) dx
M2

, (3.23)

be the mass and the centre of mass of the free swarm, respectively. Note that since the mass on
the boundary is fixed, M2 does not depend on t and we have M2 = M − S. Solutions of form
(3.22) satisfy the equation (1.4) in the weak sense. Note that (1.4) is an equation in conservation
law form and its weak formulation is standard [38]. Assume that in the free swarm the solution
ρ2(x, t) is smooth enough so that (1.4) holds in the classical sense. By a standard argument [38,
Chapter 3.4] one can then derive the Rankine-Hugoniot conditions which give the evolution of the
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two discontinuities a(t) and b(t). For instance, the evolution of the left end is given by

da
dt = v(a, t), (3.24)

and by (1.7) we calculate

v(a, t) = −aS + S

2 −
∫

Ω2

(
a− y + 1

2

)
ρ2(y, t) dy − g

= −Ma+M2

(
C2 −

1
2

)
+ S

2 − g.

By a similar calculation,

db
dt = v(b, t)

= −Mb+M2

(
C2 + 1

2

)
+ S

2 − g.

Finally, we derive the evolution of the centre of mass of ρ2 and get a closed system. To simplify
calculations to follow, we drop x and t dependencies when appropriate. Multiply (1.4) by x, integrate
over Ω2 and use integration by parts on the right-hand-side to get:∫

Ω2(t)
x(ρ2)t dx = (xρ2(K ∗ ρ1 +K ∗ ρ2 + V )x)

∣∣∣b
a
−
∫

Ω2
ρ2(K ∗ ρ1 +K ∗ ρ2 + V )x dx. (3.25)

By an elementary calculation,

d
dt

∫
Ω2(t)

xρ2(x, t) dx =
∫ b

a
x(ρ2)t dx+ ρ2(b, t)bdb

dt − ρ2(a, t)ada
dt . (3.26)

Combine (3.25) and (3.26) and use the evolution of a(t) and b(t) derived above. The boundary
terms cancel and we find

M2
dC2
dt = −

∫
Ω2
ρ2(K ∗ ρ1 +K ∗ ρ2 + V )x dx. (3.27)

By symmetry of K, ∫
Ω2
ρ2(K ∗ ρ2)x dx = 0,

and with (2.19) and V (x) = gx we get

(K ∗ ρ1)x = S

(
x− 1

2

)
, Vx = g,∫

Ω2
ρ2(K ∗ ρ1 + V )x dx = SM2C2 +M2

(
g − S

2

)
.
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Hence, from (3.27) one can derive the evolution of C2, which together with the evolution of a and
b, yields the following system of differential equations:

dC2
dt = −SC2 +

(
S

2 − g
)
, (3.28a)

da
dt = −Ma+M2

(
C2 −

1
2

)
+ S

2 − g, (3.28b)

db
dt = −Mb+M2

(
C2 + 1

2

)
+ S

2 − g. (3.28c)

It is now an elementary exercise to solve (3.28) for C2(t), a(t), and b(t) given initial data C2(0),
a(0), and b(0). One then gets

C2(t) =
(
C2(0)− 1

2 + g

S

)
e−St +

(1
2 −

g

S

)
, (3.29a)

a(t) =
(
C2(0)− 1

2 + g

S

)
e−St +

(
a(0)− C2(0) + M2

2M

)
e−Mt +

(
S

2M −
g

S

)
, (3.29b)

b(t) =
(
C2(0)− 1

2 + g

S

)
e−St +

(
b(0)− C2(0)− M2

2M

)
e−Mt + 1

2MS

(
M2 − 2Mg −M2

2

)
.

(3.29c)

A first observation is that the equilibrium for (3.29) corresponds to the disconnected state found
earlier. Indeed one can check that considering (3.29) as t → ∞ yields, a = d1, b = d1 + d2, and
C2 = d1 + d2

2 , with d1 and d2 given in terms of S using (3.17). We finally mention we are only
considering realistic cases (C2(0) > 0, a(0) > 0).

Next we wish to use the reduced dynamics to determine under which perturbations the dis-
connected equilibria are asymptotically stable. By inspecting the profile of Λ(x), we have already
observed that these equilibria are unstable under infinitesimal perturbations which move mass off
the boundary (see Figure 3.1(a)). Therefore we only seek to consider perturbations of the free swarm
in this study. We consider a perturbation away from the boundary and then study the evolution of

ρ(x, t) = ρ̄(x) + ρ̃2(x, t), (3.30)

where ρ̄ is the disconnected equilibrium (3.1) and ρ̃2 has support away from the origin and zero
mass. Note that density (3.30) can also be written in the separated form (3.22), where

ρ1(x) = Sδ(x) and ρ2(x, t) = M1(d1,d1+d2)(x) + ρ̃2(x, t) (3.31)

such that ρ(x, t) = ρ1(x) + ρ2(x, t).
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The reduced dynamics (3.28) can be used to track the dynamics of the centre of mass C2(t) and
the support [a(t), b(t)] of ρ2(x, t), provided:

(i) No mass leaves the origin; and

(ii) No mass transfers from ρ2 to the origin.

We will quantify now when (i) and (ii) can happen. To address (i), one needs to inspect the
velocity at the origin, which computed by (1.7) and (2.19) (see also (3.23)) gives:

v(0, t) = P0

(∫
Ω2(t)

(
y − 1

2

)
ρ2(y, t) dy − g

)

= P0

(
M2

(
C2(t)− 1

2

)
− g

)
.

We find that no mass leaves the origin (v(0, t) = 0) provided

C2(t) 6 1
2 + g

M2
. (3.32)

In particular, the initial perturbed state ρ(·, 0) in (3.30) must satisfy this restriction. We note that
once (3.32) holds at t = 0, it holds for all times; this can be inferred from the monotonic evolution
of C2(t) (see (3.29a)), and

lim
t→∞

C2(t) = 1
2 −

g

S
<

1
2 + g

M2
.

For (ii) we note that mass transfer occurs when the left end of the support of the free swarm meets
the boundary and pushes into it. This occurs when a = 0 and da

dt < 0 or, alternatively, if a < 0 at
any time. One can find a curve γrM in (a(0), C2(0))-space, dependent on rM , where the solution
(3.29) has a(t) > 0 for all t > 0 and a(t) = 0 for some t. Furthermore one finds that the enclosed
area under the curve represents the set of initial conditions where a(t∗) < 0 for some t∗ > 0 and
so the free swarm has collided with the boundary, which we believe would then lead to more mass
concentrating on the boundary and rM decreasing. It is observed from dynamical simulations that
mass concentrating near the boundary ultimately leads to mass accumulating on the boundary and
leading to disconnected states. Figure 3.4 shows some example solutions and relates them to these
ideas of mass transfer and γrM .

Then, one has that the region above γrM represents states where the free swarm never contacts
the boundary and so the mass ratio is constant. Since there is only one equilibrium for any given
rM then this region in fact represents the set of initial conditions with a mass ratio rM that
would dynamically approach the disconnected equilibrium with mass ratio rM . This then allows
visualizations of the following: (i) the set of perturbations one could make to a given disconnected

33



0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Figure 3.4: Solutions (C2(t), a(t), b(t)) to the model (3.29) with g = 0 and rM = 5.66. (a) Here
(C2(0), a(0), b(0)) = (0.3, 0.2, 0.5) and we see a(t) becomes negative for early times. The assumptions
of the model break when this happens but suggests that mass is further accumulated on the wall,
resulting in a state with a decreased mass ratio. (b) Here (C2(0), a(0), b(0)) ≈ (0.36, 0.2, 0.5) and we
see a(t) becomes zero but does not become negative. This choice of initial condition lies on the curve
γrM (see the red solid line in Figure 3.5(a) associated with rM = 5.66) . (c) Here (C2(0), a(0), b(0)) =
(0.4, 0.2, 0.5) and we see a(t) is always strictly positive and so mass transfer does not occur and the
equilibrium will be disconnected with mass ratio rM = 5.66.

equilibrium, and (ii) the basin of attraction among states with mass ratio rM which are shown in
Figure 3.5 without and with gravity.

Remark 3.1.3 (Interpreting Figure 3.5 and Observations). In order to identify the set of pertur-
bations one could make to a given disconnected equilibrium, one considers where the disconnected
equilibrium exists in the (a(0), C2(0))-space. The location of the disconnected equilibrium within
the set formed of states above γrM and below C2(0) = 1/2 + g/M2 is how one determines sta-
ble perturbations. Taking, for example, Figure 3.5(b) with rM = 0.875, then if the perturbed state
had (a(0), C2(0)) = (0.1, 0.2) then it would be a stable perturbation. If the perturbed state had
(a(0), C2(0)) = (0.05, 0.1) then it would be an unstable perturbation.

A more striking example is in Figure 3.5(a) for rM = ∞. Recall that rM = ∞ corresponds to
the connected minimizer. Here, since 1

2 + g
M2

= 1
2 and γ∞ is also the line C2(0) = 1

2 then a(0) = 0,
any perturbation that decreases the center of mass results in mass accumulating on the boundary
and is thus an unstable perturbation of the connected minimizer. A perturbation that increases a(0)
or C2(0) then does not change the mass ratio and so the eventual final state will be the connected
minimizer. This observation has been haphazardly summarized by the author in that almost all
states that interact with the boundary will result in disconnected equilibria.

Finally, it should be remarked that this result manages to encapsulate the basin of attraction
of the connected minimizer of, at least, all initial conditions without any delta accumulations. One
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Figure 3.5: Disconnected equilibria (3.1) are asymptotically attracting certain initial densities of
type (3.22). Considered are three mass ratios, one of which being the mass ratio of the minimizer
(magenta), for (a) g = 0 and (b) g = 0.125. A perturbed state ρ(x, t) (see (3.30) and (3.31)) that
has a(0) and C2(0) in the region strictly above the solid curves, representing γrM , and below the
dashed lines, C2(0) = 1/2 + g/M2, will evolve dynamically to the disconnected equilibrium of the
corresponding mass ratio. An initial condition with (a(0), C2(0)) below the solid curves will evolve
dynamically to an equilibrium of a smaller mass ratio. The dashed lines indicate the thresholds
1/2 + g/M2 above which mass on the boundary would lift off. Stars indicate the equilibrium for
the mass ratio corresponding to its colour, which gives a sense of how much the center of mass or
the left edge of the support can be perturbed.

could summarize this to a general result that any classical initial condition with C2(0) > 1
2 and

0 6 a(0) 6 C2(0) will dynamically result in the connected minimizer.

Remark 3.1.4. There is an admission here of a lack of rigour. While the results above are attrac-
tive, it is necessary to point out that some key points of understanding require a(0) = 0 which means
the free swarm is contacting with the boundary, violating an assumption that we initially built the
reduced model from. In particular, considering rM =∞ goes against our assumptions. We believe by
a continuity argument that one could consider the results discussed by taking rM →∞. Additionally
we support these results with large-scale numerical runs as explained in the next section.

Non-trivial initial conditions leading to disconnected equilibria
In the previous arguments we presented evidence that disconnected states are perhaps commonly

achieved through dynamic evolution of the model (1.4). However the arguments laid out do not
necessarily hold once the free swarm contacts the boundary and so one would like more evidence.
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To this end we consider initial states of particles with positions randomly generated from a
uniform distribution on (d(i)

1 , d
(i)
1 + d

(j)
2 ), where 1 6 i, j 6 10, and

d
(i)
1 = 1

20(i− 1), d
(j)
2 = 1

10j, for g = 0, (3.33)

d
(i)
1 = 1

40(i− 1), d
(j)
2 = 1

20j, for g = 0.125. (3.34)
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Figure 3.6: Percentage of initial states which resulted in disconnected states for (a) g = 0 and (b)
g = 0.125. Note that we find disconnected final states for a significant set of initial data.

We ran 50 particle simulations of N = 1024 particles for each interval (d(i)
1 , d

(i)
1 + d

(j)
2 ), with

1 6 i 6 10 and 1 6 j 6 10. We evolved the particle simulations until the state is steady and
calculated the mass ratio of the resultant state. For convenience of discussion later, denote the
midpoint of the initial interval, by

md = 1
2
(
d

(i)
1 +

(
d

(i)
1 + d

(j)
2

))
. (3.35)

We mention here as well that the centre of mass of the initial swarm will likely be close to
the midpoint as we have drawn particle positions from a uniform distribution. This is particularly
important in comparing with the results of the reduced model, as the intervals (d(i)

1 , d
(i)
1 +d

(j)
2 ) have

been constructed in such a way that for i = 11 − j we have md = 1
2 for g = 0 and md = 1

4 for
g = 0.125, in consideration of Figure 3.5 and Remark 3.1.3.

We find that for the g = 0 case, all initial states with md <
1
2 resulted in a disconnected

state and all initial states with md >
1
2 resulted in a connected state — see squares and circles in
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Figure 3.7: Average mass ratios of resultant states for particular md for (a) g = 0 and (b) g = 0.125.
md = 1

2 has been neglected from (a) for clarity as the average is much larger (about 516).

Figure 3.6(a) indicating percentages of disconnected states. This is consistent with the observation
made previously that any state with a centre of mass greater than one half results in the connected
minimizer and any state with centre of mass less than one half results in a disconnected equilibrium.

For the case of g = 0.125 we find somewhat similar results. Figure 3.6(b) shows that for
md < 0.15 we always get disconnected resultant states and for md > 0.175 we always get the
connected equilibrium. For md = 0.15 and md = 0.175 the results can be mixed. We suspect in fact
that there may be discrete numerical effects and that the true value of md where we observe vari-
ability in disconnected/connected resultant states is closer to 1

4 , but this cannot be substantiated
confidently enough.

Discrete energy dissipation
Now, we have shown disconnected equilibria that are not energy minima. We have given argu-

ments that they are achieved dynamically from a highly non-trivial set of initial conditions. Finally
we supported those arguments with large-scale numerical tests showing these non-minimizing states
are achieved, depending on the initial state. This seems to contradict the idea that model (1.4) is
an energy gradient system as it appears to be possible to flow into an energy saddle point. One last
sanity check of these results then is to look at whether the system is actually decreasing the energy
throughout and whether it follows the expected dissipation formula (2.4). From our simulations we
always check whether the energy is decreasing anyways, and in all simulations reported here the
energies decrease monotonically.
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Figure 3.8: The discrete energy dissipation formula appears to be validated during simulations
even when interacting with the boundary. We take an initial configuration randomly uniformly
distributed in [0, 1/4] and evolve it with (a) g = 0 and (b) g = 0.125. Here we see the left-hand-side
(3.38), dL, and the right-hand-side (3.39), dR of the discrete energy dissipation formula stay are
close. We observe that this error decreases as either the number of particles N is taken larger or
the time step ∆t is taken smaller (see Table 3.1).

Let s = n∆t and t = (n+ 1)∆t for n > 0 be two successive times in (2.4). We then have, after
dividing by ∆t,

E[(n+ 1)∆t]− E[n∆t]
∆t = − 1

∆t

∫ (n+1)∆t

n∆t

∫
Ω
|Px(−∇K ∗ ρ(x, τ)−∇V (x))|2ρ(x, τ) dx dτ. (3.36)

The discrete density is a superposition of delta accumulations at the particle locations:

ρN (x, t) = M

N

N∑
i=1

δ(x− xi(t)),

and the corresponding discrete energy (see (2.3)) is given by

E[ρN (t)] = M2

2N2

N∑
i=1

N∑
j=1

K(xi(t)− xj(t)) + M

N

N∑
i=1

V (xi(t)). (3.37)

Note that K(0) = 0 in this context so we do not need to exclude the case of i = j in the double
sum representing social interaction. So then we calculate the discrete version of the left-hand-side
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of (3.36) as

dL = E[ρN ((n+ 1)∆t)]− E[ρN (n∆t)]
∆t . (3.38)

We approximate the right-hand side of (3.36) first by a right endpoint approximation. Then call
vi(t) the velocity of particle xi(t) at time t. Note that Px(−∇K ∗ ρ(x, τ)−∇V (x)) is the velocity.
The discrete approximation to the right-hand-side of (3.36) is then given by

dR = −M
N

N∑
i=1

(
vi((n+ 1)∆t)

)2
. (3.39)

Figure 3.8 shows the differences between dL and dR for a non-gravity and gravity case. We see they
are quite close and get nearer as either the number of particles is increased or the time step is taken
smaller. Table 3.1 gives some evidence for how this error depends on these.

∆t = 0.1 ∆t = 0.01 ∆t = 0.001
N = 28 3.4264e−3 7.884e−4 4.3157e−4
N = 29 3.3459e−3 7.5446e−4 2.3621e−4
N = 210 3.3861e−3 6.9359e−4 1.5000e−4

Table 3.1: The maximum errors |dL − dR| in the discrete energy dissipation formula for varied N
and ∆t. We see that decreasing the time step decreases the error more rapidly, likely due to a
decreased time step more accurately capturing the joining of particles onto the wall. Larger time
steps result in larger jumps in the mass on the wall.

We have then found there are indeed equilibria of models like (1.4) that are not minimizers
of the energy but may be encountered dynamically at a non-insignificant probability, at least
with the QANR potential. For the remainder of this chapter we wish to study variations of the
study conducted here with different physical context or interaction potentials, the purpose being
to showcase that unstable equilibria may be a generic feature of these models.

3.1.2 On the line segment [−x∗, x∗]

Previously we investigated equilibria in the presence of a single boundary point with an unbounded
space away from it. The primary result was that disconnected equilibria existed that were not energy
minimizers and these were dynamically being achieved from a non-trivial set of initial conditions.
The bounded segment [−x∗, x∗] has two boundary points and hence, based on the understanding
gained from the one boundary study, more interaction with boundaries suggests more accumulation.

The boundary points are at x = −x∗ and at x = x∗. We will consider an exogeneous, grav-
itational force V (x) = gx which we will first neglect (g = 0) and then turn it on later. We will
first explicitly calculate equilibria and then see that the minimizer is again the state which has
connected support. We will find that the length of the line segment is an important quantity and
will find a critical segment length where equilibria change qualitatively.
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There are a number of observations we can make here though:

• If x∗ > 1
2 then all the results from the one-boundary investigation carry over. In this way, the

first critical segment length is 1.

– In this case there is enough space in between the boundaries for the mass to simply form
in the interior a constant density swarm. With g > 0, mass would accumulate on the
left boundary but the free swarm never extends further than a distance of 1 away from
the boundary (in fact one can find that d1 + d2 6 1−

√
2g).

• For x∗ < 1
2 we should consider the one boundary results at times, but there will be the possi-

bility for accumulation on both boundaries. We should be able to recover the one boundary
results, in fact, except possibly when the one boundary free swarm would extend beyond the
current boundaries.

– One can get that if 1
2 −

√
g
2 6 x∗ then all one boundary equilibria should exist. This is

a second critical segment length in this sense.

• For 1
4 < x∗ < 1

2 the boundaries exhibit attractive forces on each other and for 0 < x∗ < 1
4 all

forces become repulsive. This highlights the third and final critical segment length, 1
4 .

We are considering equilibria of the form,

ρ̄(x) = S1δ(x+ x∗) +M1(d1,d1+d2) + S2δ(x− x∗). (3.40)

The support Ωρ̄ of ρ̄(x) consists of three (possibly disconnected) components:

Ω1 = {−x∗}, Ω2 = [d1, d1 + d2], Ω3 = {x∗}. (3.41)

No external potential: V (x) ≡ 0
The calculations here are essentially the same as when studying the one boundary case, so we

shorten when possible. As usual we have the mass constraint,∫
ρ(x) dx = M, (3.42)

which when using (3.40) we get
S1 +Md2 + S2 = M. (3.43)

We will also introduce the mass ratio
rM = Md2

S1 + S2
(3.44)

and the balance ratio
rS = S1

S2
. (3.45)
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For illustration and understanding here are some examples:

• rM =∞: This corresponds to a connected state where all the mass is off the boundaries (note
that this state is never an equilibrium if x∗ < 1

2);

• rM = 0, rS = 0 (rS =∞): This corresponds with a connected state where all the mass is on
the right (left) boundary;

• rM = 2x∗
1−2x∗ , rS = 1: This corresponds with a connected state where the interior swarm

touches both boundaries. Note that this only makes sense for x∗ < 1
2 and is in fact the

minimizer in this case.

As we did in the one boundary case, the next step is to consider

Λ(x) =
∫
K(x− y)ρ̄(y)dy (3.46)

which with the equilibrium (3.40) gives

Λ(x) = S1K(x+ x∗) +M

∫ d1+d2

d1
K(x− y)dy + S2K(x− x∗). (3.47)

One can then consider this for x ∈ [d1, d1 + d2] and directly extract the coefficients of the x2 and x
terms. Recall that we are seeking a state with Λ(x) = λ1 for x = −x∗, Λ(x) = λ2 for x ∈ [d1, d1+d2],
and Λ(x) = λ3 for x = x∗. Therefore setting the x2 and x coefficients to zero would ensure we get
this. The x2 coefficients end up being the mass constraint and setting the x coefficients to zero
gives us a further condition

S1

(
x∗ − 1

2

)
+M

(
−1

2d
2
2 + 1

2d2 + d1 − d1d2

)
+ S2

(1
2 − x

∗
)

= 0. (3.48)

Note that we began with S1, S2, d1, and d2 as variables to describe the state and we have
the mass condition (3.43) and the additional condition (3.48). We will find a family of solutions
described by 2 parameters which we choose to represent in terms of rM and rS .

We will neglect the calculations, but writing everything in terms of rM and rS we get

S1 = rSM

(rS + 1)(rM + 1) , (3.49a)

S2 = M

(rS + 1)(rM + 1) , (3.49b)

d1 = rS − 2rM − 1− 2(rS − 1)(rM + 1)x∗

2(rS + 1)(rM + 1) , (3.49c)

d2 = rM
rM + 1 . (3.49d)
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Figure 3.9: x∗ = 1
3 : Three states with a characterization of their stability. (a) A symmetric, discon-

nected equilibrium with rM = 0.5 and rS = 1. (b) A state that satisfies the necessary equilibrium
condition (2.17) but where the velocities at the boundaries point inwards at both boundaries. Here
rM = 0.25 and rS = 1. (c) The global minimizer of the energy with rM = 2 and rS = 1.

In most of the calculations and results to follow the equations get very messy, so we have simplified
the results and neglected to show the algebra.

The first thing we can address is when we get realistic solutions, that is we want d1 > −x∗ and
d1 + d2 6 x∗. Respectively, we get borderline cases d1 = −x∗ and d1 + d2 = x∗ as

rS = 2(1− 2x∗)rM + (1− 4x∗), rS = (2(1− 2x∗)rM + (1− 4x∗))−1 . (3.50)

The next thing to address is identifying when (3.40) with (3.49) is not an equilibrium. In
particular we look for when the velocity at either boundary points into the interior. Recall that we
have the unprojected velocity as:

v(x) = −
∫
K ′(x− y)ρ̄(y)dy, (3.51)

and then recalling that mass on the boundary does not ‘feel’ itself then we can get

v(−x∗) = (4rMx∗ − 2rM + 4x∗ − 1)M
2(rS + 1)(rM + 1) = −v(x∗)

rS
. (3.52)

Notice that since their signs are opposite, if the velocity at −x∗ would take mass off the boundary,
then mass would necessarily leave the boundary at x∗. So to have an equilibrium we only require
v(x∗) > 0 which then gives us the condition

rM >
1− 4x∗

2(2x∗ − 1) , (3.53)
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where we assumed x∗ < 1
2 . Figure 3.9 shows three states of the form (3.40) with x∗ = 1

3 and
Figure 3.10 shows three states with x∗ = 1

6 . Figure 3.11 summarizes the results by visualizing
where in (rM , rS)-space states are equilibria, minima, or neither. Additionally we draw contours of
the energy and see that the contours decrease towards the energy minimum at the black star.
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Figure 3.10: x∗ = 1
6 : Three states with a characterization of their stability. (a) A non-symmetric,

disconnected equilibrium with rM = 0.25 and rS = 1.25. (b) A non-symmetric equilibrium with
rM = 0.25 and rS = 2

3 where the free swarm connects with the left boundary but stays disconnected
from the right boundary. (c) The only minimizer of equilibria of form (3.40). Notice the minimizer
is connected to both boundaries now and is symmetric. Here rM = 0.5 and rS = 1.

Next we want to determine which states are minimizers by examining the energy. Solving for
critical points of the energy as a function of rM and rS , we find

rS
∗ = 1, rM

∗ = 2x∗

1− 2x∗ . (3.54)

Unfortunately, the second derivative test doesn’t give us anything conclusive and in fact this is for
good reason. This critical point is actually a saddle point but the direction in which it decreases is
unrealistic (in the sense that if we did decrease the energy then the state wouldn’t fit in the seg-
ment). In fact this was also the case with QANR on the half-line. Notice as well that rM = 2x∗

1−2x∗

is the largest value one can have for rM , with as much mass in the interior as possible; rS = 1 then
prescribes equally balanced boundary masses.

Linear exogeneous potential: V (x) = gx

Most of the same process applies here. We assume the same form as in (3.40) and we go through
the same process of taking the mass condition along with the condition from the coefficients of the
x terms in Λ(x) canceling to zero for x ∈ [d1, d1 + d2]. And we will neglect the calculations, but
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Figure 3.11: Summarizing results of the two boundary case without an external potential. In each
figure the shaded region depicts states that are equilibria. Also shown is a contour plot of the energy
as a function of rM and rS as well as a black star corresponding to the global minimizer. (a) Here
we consider x∗ = 1

3 . Additionally, equilibria also exist along two lines; one given by (rM , 0) and
another given by (rM ,∞) where rM ∈ [0, 1−4x∗

2(2x∗−1) ] for both. These actually correspond to the one
boundary equilibria. (b) Here we consider x∗ = 1

6 . Additionally the points (0, 0) and (0,∞) are also
equilibria.

satisfying these and writing everything in terms of rM and rS we get

S1 = rSM

(rS + 1)(rM + 1) , (3.55a)

S2 = M

(rS + 1)(rM + 1) , (3.55b)

d1 = 1
2M(rS + 1)(rM + 1)

(
− 2g(rS + 1)r2

M + ((−2rSx∗ + 2x∗ − 2)M . . . (3.55c)

− 4g(rS + 1))rM + ((−2x∗ + 1)rS + 2x∗ − 1)M − 2g(rS + 1)
)
,

d2 = rM
rM + 1 , (3.55d)

In many of the calculations and results to follow the equations get very messy and non-intuitive so
we may neglect to show them completely.
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The first thing we can address is when we get reasonable solutions, that is we want d1 > −x∗

and d1 + d2 6 x∗. Looking at borderline cases, we get d1 = −x∗ as

rS = 2gr2
M + (4g + (2− 4x∗)M)rM + 2g + (1− 4x∗)M

M − 2gr2
M − 4grM − 2g

, (3.56)

and d1 + d2 = x∗ as

rS = −2(rM + 1)2g −M
2gr2

M + (4g + (4x∗ − 2)M)rM + 2g + (4x∗ − 1)M
. (3.57)

The next thing to address is identifying when (3.40) with (3.55) is not an equilibrium. In
particular we look for when the velocity at either boundary points into the interior. If we consider
the borderline case of v(−x∗) = 0 one gets

rS = −2gr2
M + ((4x∗ − 2)M − 4g)rM + (4x∗ − 1)M − 2g

2(rM + 1)2g
, (3.58)

and then considering the borderline case of v(x∗) = 0 we get

rS = −2(rM + 1)2g

2gr2
M + (4g + (4x∗ − 2)M)rM + 2g + (4x∗ − 1)M

. (3.59)

We note that the gravity breaks the sign symmetry we used to have for the velocity at the bound-
aries.

Figure 3.12 shows three states of the form (3.40) with x∗ = 1
3 and Figure 3.13 shows three states

with x∗ = 1
6 . Highlighted among the figures are unstable equilibria, states that fail to be equilibria

at all, and the one minimizer of the energy. Also notice that for the larger of these two choices of
x∗, we see the minimizer as the one boundary minimizer.

One can again compute when the energy is minimized and one finds that for x∗ = 1
3 the

minimizer is a one boundary minimizer from the previous study. If x∗ = 1
6 then the critical point is

(rM , rS) ≈ (0.5, 3.6). Figure 3.14 summarizes the findings with the external potential. In particular
notice the contours of the energy corresponding to the state (3.40) satisfying the swarm minimizer
condition for the respective mass and balance ratio.

In general, it appears that when we are in a truly confined domain the family of disconnected
equilibria becomes more varied. Additionally there appears to be a critical domain size, distin-
guished mainly in that if the domain is short enough then all interactions are repulsive in effect.
As the domain increases in size we see attractive effects arise. Most notably we see this in how the
boundary masses, S1 and S2 in this case, will attract each other.
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Figure 3.12: x∗ = 1
3 : Three states with a characterization of their stability. (a) A disconnected

equilibrium with rM = 0.5 and rS = 2. (b) A state that satisfies the necessary equilibrium condition
(2.17) but where the velocity at the right boundary points inwards. Here rM = 0.02 and rS = 0.1.
(c) The minimizer of the energy with rM = 1 and rS =∞.
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Figure 3.13: x∗ = 1
6 : Three states with a characterization of their stability. (a) A disconnected

equilibrium with rM = 0.1 and rS = 2. (b) A state that satisfies the necessary equilibrium condition
(2.17) but where the velocity at the right boundary points inwards. Here rM = 0.1 and rS = 1.5.
(c) The minimizer of the energy with rM = 1/2 and rS ≈ 3.6. Notice the minimizer is connected
to both boundaries now.

3.2 C1-Smoothed QANR potential

Now that we have extensively studied the QANR potential, we would like to study a smoothed
version. This base of knowledge may be useful in a later chapter when we revisit this system, but
additionally there is a fundamental difference between the QANR potential and a C1-smoothed
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Figure 3.14: Summarizing results of the two boundary case with an external potential. In each figure
the shaded region depicts states that are equilibria. Also shown is a contour plot of the energy as a
function of rM and rS as well as a black star where the one minimizer exists. (a) Here we consider
x∗ = 1

3 . The minimizer in this case is actually at the point (rM , rS) = (1,∞) and there is a wide
range of possible equilibria. (b) Here we consider x∗ = 1

6 . Now the space of equilibria has shrunk
considerably and the minimizer can now be seen at (rM , rS) ≈ (0.5, 3.6). Additionally in both cases
the points (0, 0) and (0,∞) are also equilibria.

version. That is, since the QANR potential is C0 (in 1D) we find that there is finite slope for
infinitesimal distances. This means that as particles come closer to each other, in the limit of
the particles completely overlapping, they experience finite and non-zero repulsion. A smoothed
version of the QANR potential necessarily has infinitesimal slope at infinitesimal distances and
so as particles move to overlap they experience zero repulsion in the limit. As studied in [41] for
instance, equilibria in free space with the C1-smoothed QANR potential are composed of a sum of
deltas. First we do our own study in free space to get an idea of our procedure applied here.

In particular we consider a quadratically smoothed version of the QANR interaction potential
investigated so far,

Kε
1(r) = 1

2r
2 − 1

2 |r|ε,1 (3.60)

with

|r|ε,1 =


1
2εr

2 + 1
2ε r 6 ε,

|r| r > ε.
(3.61)
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So then we begin by assuming the form of equilibria as a state of a number of delta accumula-
tions,

ρ̄(x) =
N∑
i=1

Siδ(x− xi). (3.62)

We can make the assumption x1 < x2 < . . . < xN . Again to establish whether the state is an
equilibrium, we have to consider,

Λ(x) =
∫
Kε

1(|x− y|)ρ̄(y) dy,

which for states in the form (3.62), becomes:

Λ(x) =
N∑
i=1

Kε
1(|x− xi|)Si.

Additionally the energy in this case is:

E = 1
2

N∑
j=1

N∑
i=1

Kε
1(|xj − xi|)SiSj ,

or

E = 1
2

N∑
j=1

Λ(xj)Sj .

As before we want to characterize the stability of a given state. In this light we have the following
requirements: For (3.62) to be

(i) a steady state we require Λ′(xi) = 0 for all delta positions xi.

(ii) a swarm minimizer we require (i) and furthermore; Λ(x) > Λ(xi) for x ∈ (xi − εi, xi + εi) for
some εi > 0 for each delta position.

(iii) a local minimizer we require (i), (ii), and Λ(xi) = λ for all i and some λ ∈ R. Or equivalently
we might want to consider Λ(xi) = Λ(xi+1) for i = 1, . . . , N − 1.

In conjunction with the conditions above there is also the mass condition

M =
N∑
i=1

Si.

We fix one of the particle positions, since for V (x) ≡ 0 any equilibrium in one position will also be
an equilibrium if translated. For this point we choose,

x1 = 0.
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Therefore there are 2N − 1 variables defining a given state.
Note for our case we have

Λ(x) = 1
2

N∑
i=1

Si(x− xi)2 − 1
4ε

∑
|x−xi|6ε

Si
(
(x− xi)2 + ε2

)
− 1

2
∑

|x−xi|>ε
Si|x− xi|,

Λ′(x) =
N∑
i=1

Si(x− xi)−
1
2ε

∑
|x−xi|6ε

Si(x− xi)−
1
2

∑
|x−xi|>ε

Sisign(x− xi),

Λ′′(x) =
N∑
i=1

Si −
1
2ε

∑
|x−xi|6ε

Si.

Thus we first consider the set of equations for (3.62) to be a steady state. This is the system

Λ′(xj) = 0, j = 1, . . . , N

or
N∑
i=1

Si(xj − xi) = 1
2ε

∑
|xj−xi|6ε

Si(xj − xi) + 1
2

∑
|xj−xi|>ε

Sisign(xj − xi), j = 1, . . . , N.

So notice that this constitutes N conditions so one might expect a N−1 parameter family of steady
states.

For the condition for swarm minimizers we can consider Λ′′(xi) > 0. Therefore the conditions
for a swarm minimizer are simply

Λ′′(xi) > 0, i = 1, . . . , N

or
2εM >

∑
|xj−xi|6ε

Si, j = 1, . . . , N.

Now these are a set of inequalities so do not necessarily restrict the number of parameters defining
the family of swarm minimizers. These essentially define a subset of the space of equilibria wherein
the equilibria are also swarm minimizers. So the space of swarm minimizers with this potential has
the same dimensionality as the space of equilibria.

The conditions for a local minimizer are simply

Λ(xi) = Λ(xi+1), i = 1, . . . , N − 1,

which constitute N − 1 conditions. Therefore there is a 0-parameter family of local minimizers.
Equivalently, there is only one local minimizer for each choice of N . One can find these local
minimizers all have the same spacing between deltas and the same delta strengths when the deltas
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are at least ε apart from each other. (Consider xi = ∆(i− 1) and Si = S for i = 1, . . . , N , ∆ > 0,
and S > 0)

Remark 3.2.1 (Maximum mass of a delta). The condition for a swarm minimizer gives the most
immediate result. For instance if we consider a state with |xj − xi| > ε for i, j ∈ 1, . . . , N except
i = j then the swarm minimizer condition becomes

Si 6 2εM, i = 1, . . . , N,

which gives an explicit limit on how much mass can be in any given delta before the state could
not be a minimizer. Also it speaks to the possibility of steady states that are not swarm minimizers
since if Si = 2εM for some i then within a range of that delta Λ(x) will be flat.

Remark 3.2.2 (Maximum mass of deltas within an ε). Considering no assumptions on the spacing
of deltas, the swarm minimizer condition is sufficiently satisfied if

∑
|xj−xi|6ε

Si 6 2εM.

Immediately one notices that if all the particles were inside an ε ball then this would become

M 6 2εM,

which certainly cannot hold for any ε < 1
2 . Additionally though this limits how much mass can be

within an ε ball for the state to be a swarm minimizer.

We are going to do a quick example of how the explicit solutions can be found. First we assume
N = 3. Notice that various values of ε imply different things for what we can find. For instance:

• If ε = 0.1 then there can be no swarm minimizers with 3 deltas since we would require, at
the very least, Si 6 1

5M for i = 1, 2, 3 but also require S1 +S2 +S3 = M ; the borderline case
is ε = 1

6 (in general ε = 1
2N ).

• If ε = 0.2 then if we can find a steady state then we can find swarm minimizers since we
would require, at the very least, Si 6 2

5M for i = 1, 2, 3 so for instance Si = 1
3 then they sum

to M and satisfy the swarm minimizer condition. However none of the deltas could be within
0.2 of each other since then the two that are within 0.2 could not have more than a combined
mass of 2

5 but the third delta also cannot have more than 2
5 mass.

• If ε = 0.25 then we can still find swarm minimizers and in fact we could perhaps find a swarm
minimizer with 2 deltas within 0.25 of each other since we could take S1 = 1

2M and then we
would require S2 + S3 6 1

2M so S2 = S3 = 1
4 . In fact any ε less than 0.25 would give that we
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couldn’t find any deltas that are within ε and also swarm minimizers. So in general it appears
that the space of minimizers and equilibria can change depending on ε.

In order to find explicit solutions we have to assume the spacing of the three deltas.

Deltas are not within ε of each other
The steady state conditions then are

3∑
i=1

Si(xj − xi) = 1
2

∑
|xj−xi|>ε

Sisign(xj − xi), j = 1, . . . , 3.

If we solve these three conditions and the mass condition at this point with M = 1 we find

S1(x2, x3) = 2x2 − 2x3 + 1, S2(x2, x3) = 2x3 − 1, S3(x2, x3) = −2x2 + 1.

So we have a 2-parameter family of steady states. Now for any ε < x2 and x2 + ε < x3 these states
are steady states for any ε > 0. To be realistic (Si > 0) we further require x2 <

1
2 , x3 >

1
2 , and

x3 − x2 <
1
2 .

To be a swarm minimizer we would have to consider only solutions to the inequalities

S1(x2, x3) 6 2ε, S2(x2, x3) 6 2ε, S3(x2, x3) 6 2ε

or written out
2x2 − 2x3 + 1 6 2ε, 2x3 − 1 6 2ε, −2x2 + 1 6 2ε.

This can be simplified to give

1
2 − ε 6 x2, x3 6

1
2 + ε,

1
6 6 ε

which is the same borderline case found earlier. So then we have swarmminimizers for min
(
ε, 1

2 − ε
)
6

x2 6 1
2 , x2 + 1

2 − ε 6 x3 6 1
2 + ε, and 1

6 6 ε 6 1
4 .

To be a local minimizer we consider

Λ(x1) = λ, Λ(x2) = λ, Λ(x3) = λ.

We get the solution
x2 = 1

3 , x3 = 1
3 , λ ≈ −0.074,

and then find
S1 = 1

3 , S2 = 1
3 , S3 = 1

3 .
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Figure 3.15: Showcasing a few of the states found with a characterization of their stability. (a) An
example of a local minimizer as found above. Notice that all the values of Λ(x) at each delta position
are the same. (b) An example of a swarm minimizer as found above. Notice that the state is stable
to spatially infinitesimal perturbations but is not an energy minimum with regard to perturbations
that can ‘teleport’ mass. (c) An example of an unstable equilibrium. Notice that while Λ′(x) = 0
at each delta position, the second delta has a λ value larger than all neighbours and so this state
cannot be a swarm minimizer. Here ε = 0.2.

This is just one case of one choice of N particles with one ε. To complete the study with
three particles we would need to consider only two of the particles within ε of each other and
then consider if all three of the particles are within ε of each other. To complete the study for the
chosen ε we would have to consider all possible choices of numbers of particles that give equilibria.
Figure 3.15 gives an example of an equilibrium, a swarm minimizer, and a local minimizer as just
found. Figure 3.16 completes the picture for 3 deltas not within ε of each other. Here we can see a
continuum of equilibria and swarm minimizers, yet we still have only one local minimizer.

Ultimately, one could characterize every possible equilibrium, swarm minimizer, and local min-
imizer by fixing the number of deltas then running through all the possibilities of their relative
distances to each other. So again we find equilibria that are explicitly calculated and can charac-
terize their stability. Though we have calculated these without explicitly enforcing a boundary, our
dynamic simulations have shown no classical initial conditions that flow into non-minimizing states
in free space. With a wall, our dynamics do find non-minimizing equilibria as we will elaborate on
now.

Domains with boundaries
So far we have not necessarily enforced a boundary, although all of the results found so far

should hold even if there was a boundary at x = 0. Indeed the only difference to this scheme to find
equilibria in the presence of a boundary is that the equilibrium condition which required Λ′(xi) = 0
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Figure 3.16: A representation of equilibria composed of 3 particles not within ε of each other, using
the C1-smoothed QANR potential. The black star at (x2, x3) = (1

3 ,
2
3) represents the local minimizer

while the dark grey triangular region represents a continuum of swarm minimizers. The lighter grey
region represents the continuum of equilibria and finally we have included contours of the energy
corresponding to the state. Notice that the contours decrease towards the local minimizer. Here
ε = 0.2.

for each delta position xi could potentially be relaxed for x1, the delta at the boundary. At this
position we could potentially have Λ′(x1) > 0 and still be in equilibrium as this would mean the
velocity at x1 points into the wall.

To investigate non-minimizing equilibria and also address whether they can be achieved dy-
namically, we perform some simulations with the particle method. Figure 3.17 showcases three
such simulations, with different initial densities and their approximate steady states at t = 200.
Similar to what we found with the QANR potential in Section 3.1, we find that the more con-
centrated the initial swarm is towards the boundary, the greater the final energy of the system is.
There is, however, a difference that we would like to comment on: it appears that Λ′(0) = 0 from
the figures. This is in contrast to the QANR potential where Λ(x) appeared to be strictly increasing
towards the boundary (see Figure 3.1(a)). Thinking more carefully here, this is actually expected
since the smoothed QANR no longer has a discontinuity at zero distance. This means there is no
discontinuous behaviour observed in the velocity when considering exactly at a particle’s position
and infinitesimally close by.
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Figure 3.17: Dynamic simulations using the particle method showing approximate steady states
with the C1-smoothed QANR potential and ε = 0.2. Λ(x) is shown, though it has been vertically
shifted and magnified for clarity. (a) Evolution from a uniformly randomly generated state in the
region [0, 0.25]. We see the observed steady state is composed entirely of deltas and by inspection
of Λ(x), this state is not a swarm minimizer. (b) Evolution from a uniformly randomly generated
state in the region [0, 0.125]. Note that the boundary seems to have more mass accumulated on
it than in (a), though the state is still not a swarm minimizer. (c) Evolution from a uniformly
randomly generated state in the region [0, 0.0625]. Here we see that the observed steady state has
only two deltas now with even more mass accumulated on the boundary.

From the tests in Figure 3.17 we see evidence of non-minimizing equilibria achieved through
dynamics with the C1-smoothed QANR potential. We have shown that equilibria that are a sum
of deltas can be analytically understood at least in free space, and hinted at how it might change
in the presence of a boundary. In fact, our understanding of equilibria composed of 3 deltas in
free space can be compared here with the dynamics. Figure 3.18 shows where the equilibria in
Figures 3.17(a)&(b) can be found in the summary of 3 delta states in Figure 3.16 where their
characterization was already predicted.

3.3 Morse potential

Up to now we have shown unstable equilibria in a variety of contexts, but only with the QANR
potential and a smoothed version of it. Now we bring up the question of what happens if we choose
a different potential altogether: do we still observe unstable equilibria? To this end we consider the
Morse-type potential investigated in [9, 10]:

K(x) = −GLe−|x|/L + e−|x|. (3.63)
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Figure 3.18: A close-up of the summary depicted in Figure 3.16 with the two 3 delta equilibria found
dynamically pictured. The red cross corresponds to the observed steady state in Figure 3.17(b)
and the blue X corresponds to the observed steady state in Figure 3.17(a). Observe that the
characterization found analytically and depicted here matches what is observed from dynamics as
both are found in the light grey region depicting the region of 3 delta, non-minimizing equilibria.

We consider the case of G = 0.5 and L = 2 throughout this section as these values were one of the
cases highlighted in [10].

One can find explicit forms for the equilibria for the Morse potential in just the same way as
we found explicit forms for the potential (2.19)-(2.20). We assume the solution form

ρ̄(x) = Sδ(x) + ρ∗(x)1(d1,d1+d2), (3.64)

with

ρ∗(x) =C cos(µx) +D sin(µx)− λ2
ε
,

µ =
√
ε

ν
, ε = 2(GL2 − 1), ν = 2L2(1−G). (3.65)

The density ρ∗ of the free swarm comes from the free space solution found in [10] and is an
assumption we make without concrete argument in this context with boundaries.
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Now in order for this state to be an equilibrium it needs to satisfy the equilibrium condition
(3.3) and the mass condition (2.8a), i.e.,

Λ(0) = λ1, Λ(x) = λ2 for x ∈ [d1, d1 + d2], S +
∫ d1+d2

d1
ρ∗(x) dx = M. (3.66)

The Appendix shows the system of equations that arise from these conditions. We end up with four
equations from requiring Λ(x) = λ2 for x ∈ [d1, d1 + d2] as the non-constant terms comprise four
linearly independent terms in x:

−GL exp
(
−x
L

)
, exp(−x), −GL exp

(
x

L

)
, exp(x). (3.67)

In fact one finds that the constant component of Λ(x) for x ∈ [d1, d1 + d2] is λ2 by choice of the
form (3.65). Together with Λ(0) = λ1 and the mass constraint then, this yields a system of six
equations for seven unknowns (C, D, S, d1, d2, λ1, and λ2), hinting to a one-parameter family of
equilibria, which is the same as the results with the QANR potential on the half-line. The resulting
system of equations do not have an explicit solution so we instead solved the system numerically.
In order to capture all states in a given run we chose to use S as the free parameter instead of the
mass ratio, though we still report results in the familiar mass ratio notation. This process involved
the numerical continuation of C, D, d1, d2, λ1, and λ2 as functions of S starting from the known
solution when S = 0 as we have the free space solution as in [10].

x
0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
E: -0.0790

Particles: Free
Particles: Wall
Equilibrium: Exact
Equilibrium: Wall
$(x)

x
0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6 E: -0.0958
Particles: Free
Equilibrium: Exact
$(x)

rM

0 5 10

E

-0.09

-0.06

-0.03

0

(a) (b) (c)

Figure 3.19: Equilibria (3.64) on half-line for V (x) = 0 (no exogenous potential). The interaction
potential is given by (3.63), where G = 0.5 and L = 2. (a) Disconnected state. (b) Connected state
with no aggregation at the origin; this is the same as the free space solution from [10]. (c) Energy
of equilibria as a function of the mass ratio; the lowest energy state corresponds to the connected
equilibrium rM =∞.
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Remark 3.3.1. The author would like to quickly comment on the assumed form (3.64) of the
equilibrium solutions. For the QANR potential and its smoothed version we had arguments that
supported the free swarm form. Here we simply assumed without reason the free space form found
in [10] and it seems to have been a successful assumption. It would be an interesting study to see if
other potentials showcase this behaviour.

Remark 3.3.2. Though we have only reported henceforth on three different potentials, the author
has explored other polynomial, Morse, and Gaussian potentials, finding unstable equilibria just as
reported here.

3.4 Equilibria solver in 1D

We briefly describe here a numerical implementation to solve the equilibrium condition (2.17).
Though this is unnecessary in one dimension because we have explicit solutions, in two dimensions
we will find that we cannot find explicit solutions anymore and so rely on a numerical solver to find
equilibria.

Here we assume a solution of the form (3.1) where we now treat S, d1, and d2 as variables to
be determined by satisfying (3.3). Furthermore we also focus on the disconnected state, so λ1, λ2

are also variables. We use the term observers in this context to describe points along the boundary
of Ωρ̄ at which we evaluate Λ(x). In one dimension we only require 3 observers - see Figure 3.20.
Finally, we consider the mass constraint (3.2) and the mass ratio (3.8); in general we keep rM and
M fixed.

Then our system of equations encompasses (3.2), (3.8), and

Λ(0) = λ1, Λ(d1) = λ2, Λ(d1 + d2) = λ2, (3.68)

for a total of 5 equations for 5 unknowns. We also mention that if one fixes the mass ratio to be that
of the minimizer for a given gravity g, then the result from solving the system of equations is one
with |λ2 − λ1| and d1 below the tolerance of the solver and so effectively recovering the connected
solution.

Though we only highlighted finding states here for the QANR potential, a similar scheme works
for a general interaction potential. A more general implementation requires more variables however,
since we cannot in general assume constant density in the free swarm. A general implementation
would require discretizing the profile of the free swarm and including observers on the interior of
the free swarm.
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Figure 3.20: Abstracted solution presumed in the numerical solver in one dimension showing loca-
tions of observers where we solve Λ(x) to be a constant. Variables for the system are d1, d2, S, λ1,
and λ2 as shown in the figure.
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Chapter 4

Plain aggregation in two dimensions

We have so far seen that model (1.4) can exhibit equilibria that are energetically unstable in one
dimension. Now we wish to extend this study to two spatial dimensions. For this purpose we only
investigate the QANR potential as it has the simplest free space forms, that is a constant density
of 2M in two dimensions. Though it should be noted that we only report on the QANR potential
in two dimensions here, we have explored other potentials and found similar results.

4.1 On the half-plane [0,∞)× (−∞,∞)

In this section we consider model (1.4) with n = 2 and Ω taken as the half-plane [0,∞)× (−∞,∞)
such that the boundary ∂Ω is given by x1 = 0. To begin, we search for an equilibrium that consists
of a constant density 2M in a bounded domain D that lies off the wall (x1 > 0) and a Dirac delta
accumulation on ∂Ω. For consistency of notations with the study in one dimension, we take the
horizontal extent of the free swarm D to be d1 < x1 < d1 + d2, with d1 > 0, d2 > 0. Also, we
assume symmetry in the vertical direction, and take the vertical extent of D to be given by the
lower and upper free boundaries x2 = −g(x1) and x2 = g(x1), respectively.

No external potential: V (x) ≡ 0
Specifically, let

D = {(x1, x2) | d1 < x1 < d1 + d2,−g(x1) < x2 < g(x1)},

then the equilibrium we look for has the form:

ρ̄(x1, x2) = f(x2)δ∂Ω(x1, x2) + 2M 1D(x1, x2), (4.1)

where the density profile f(x2) on the wall is assumed to have support [−L,L].
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The support Ωρ̄ of ρ̄ consists of two components:

Ω1 = {0} × [−L,L] and Ω2 = D̄, (4.2)

where the bar indicates the closure of the set.
Again we seek to satisfy the mass condition (2.8a) and the equilibrium condition (2.17). In two

dimensions it should be noted that solving these is now entirely non-trivial and we can only solve
them numerically. To be specific, denote the area of D by |D|. By the mass constraint (2.8a) we
find ∫ L

−L
f(x2) dx2 + 2M |D| = M. (4.3)

Calculate Λ(x) for x = (x1, x2) ∈ Ωρ̄ using (2.12), where K is given by (2.19)-(2.20) and V = 0.
A generic point y = (y1, y2) ∈ Ωρ̄ can lie either on the wall or in D, along with its free boundary.
Consequently, Λ(x) consists of two terms:

Λ(x) =
∫ L

−L

(
− 1

2π ln
√
x2

1 + (x2 − y2)2 + 1
2
(
x2

1 + (x2 − y2)2
))

f(y2) dy2

+ 2M
∫∫

D

(
− 1

2π ln |x− y|+ 1
2 |x− y|2

)
dy. (4.4)

For an equilibrium, Λ(x) has to be constant in each component of Ωρ̄:

Λ(x) = λ1 in {0} × [−L,L], and Λ(x) = λ2 in D̄. (4.5)

Solving (4.5) numerically would be very expensive. However, our interaction potential has a par-
ticular property we can use. Indeed, calculate the Laplacian of Λ from (4.4):

∆Λ(x) = 2
∫ L

−L
f(y2) dy2 + 2M

(
−1 + 2

∫∫
D

dy
)

= 2
(∫ L

−L
f(y2) dy2 −M + 2M |D|

)
, (4.6)

where for the first equality we used ∆
(
− 1

2π ln |x|
)

= −δ; in particular, the logarithmic term in the
single integral

∫ L
−L is harmonic for x ∈ D.

Using the mass constraint (4.3), one can infer from (4.6) that Λ is harmonic in D:

∆Λ(x) = 0, for all x ∈ D. (4.7)

As L is a harmonic function then, its function values in the interior are completely determined by
the values on ∂Ω. This observation greatly simplifies the problem of solving (4.5) since then (4.5)
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reduces to solving

Λ(x) = λ1 in {0} × [−L,L], and Λ(x) = λ2 on ∂D. (4.8)

We solve numerically equation (4.8) to find d1, d2, λ1, and λ2 as well as the profiles f and g of the
wall aggregation and the free boundary, respectively. Details on the numerical implementation are
given at the end of the chapter.

As in one dimension, we find disconnected and connected equilibria and choose to parametrize
them by the mass ratio, rM , which is the ratio of the mass M2 of the free swarm to the mass M1

of the aggregation on the wall:
rM := M2

M1
= 2M |D|∫ L

−L f(x2)dx2
. (4.9)

Disconnected equilibria (d1 > 0). We were successfully able to find disconnected solutions to
(4.8) in the form (4.1) for any rM ∈ (0,∞). We believe that there is a unique equilibrium for a
given mass ratio with the limiting cases where either all mass is off the wall or all mass is on the
wall being the connected states (see discussion below).

Again to check whether the states we found are equilibria we compute numerically the velocity
field at points on Ω1 which is the support of the mass on the wall. In fact we find from our numerical
investigations that for any choice of mass ratio that isn’t either of the connected states (rM = 0,∞),
there will be (x1, x2) ∈ Ω1 where the velocity points inwards. Therefore in contrast to the results
in one dimension, without an external potential we find that the only equilibrium that is not a
minimizer is the connected state with all mass on the wall.

The author seeks to remark briefly on why we see this in two dimensions and predict what may
be observed in higher dimensions. Attractive forces occur for larger distances than repulsive forces,
so if one imagines the region of space swept out by an arc of a given radius of sufficient size then
the relative size of the attractive area to the repulsive area increases as the dimension increases.
This means there will be generally more attractive interactions in higher dimensions.

Connected equilibria. The first type of connected equilibria correspond to aggregations that lie
entirely on the wall (no free swarm, rM = 0). This is a degenerate case of densities of the form
(4.1), where D is the empty set. The equilibrium in this case has the form of a delta-aggregation
on the wall:

ρ̄(x1, x2) = f(x2)δ∂Ω(x1, x2). (4.10)

We find the density profile f(x2) on the wall and its support [−L,L] by solving numerically
(2.14) in Ωρ̄ = {0} × [−L,L]. Note that the mass constraint (2.8a) implies:

∫ L

−L
f(x2)dx2 = M, (4.11)
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while in our case (2.14) reduces to:

∫ L

−L

(
− 1

2π ln |x2 − y2|+
1
2(x2 − y2)2

)
f(y2)dy2 = λ, for all x2 ∈ [−L,L]. (4.12)

We solve numerically (4.11) and (4.12) to find f , L and λ. This equilibrium is shown in 4.1(a),
where both the solution to (4.12) is shown and a particle result, showing agreement. This is quite
a degenerate equilibrium as it can only be achieved if all mass is initially on the boundary.

With this numerically computed solution we then checked (2.15), which here reads:

∫ L

−L

(
− 1

2π ln
√
x2

1 + (x2 − y2)2 + 1
2
(
x2

1 + (x2 − y2)2
))

f(y2) dy2 > λ, for all (x1, x2) ∈ Ωc
ρ̄.

Note that Ωc
ρ̄ is the disjoint union of the two semi-infinite vertical lines {0} × (−∞,−L) and

{0} × (L,∞), with the open half-plane (0,∞) × R. A coloured contour plot of Λ(x) is shown in
Figure 4.1(a) showing that Λ(x) decreases away from the wall, indicating that it is not a minimizer.

The second type of connected equilibria correspond to swarm equilibria in free space, and consist
of a constant aggregation of density 2M in a disk of radius 1√

2π corresponding to the limiting case
rM →∞. This is numerically verified to be a minimizer by checking the contour plots of Λ(x), as
shown in Figure 4.1(b). Translations of this minimizer away from the wall would also yield another
minimizer.
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Figure 4.1: Equilibria on half-plane in two dimensions for V = 0 (no exogenous potential). (a)
Equilibrium aggregation that lies entirely on the wall (rM = 0). The solid line represents the
density profile f on the wall as solved from (4.11) and (4.12). Note the excellent agreement with
the particle simulations (blue stars). The equilibrium is not an energy minimizer, as indicated by
the contour plot of Λ (shown on right). (b) Free swarm equilibrium (rM =∞) of constant density
2M in a disk of radius 1√

2π . The contour plot of Λ, shown in the figure, demonstrates that this
equilibrium is an energy minimizer. Note that there are no disconnected equilibria of form (4.1) in
this case.

Linear exogeneous potential: V (x1, x2) = gx1

We now consider an exogenous gravitational potential V (x1, x2) = gx1, with g > 0. The domain
is the same as above, the half-plane Ω = [0,∞)×R, so the exogenous forces are acting (horizontally)
towards the wall. Note that ∆V = 0 and by using this observation in (2.26) we infer that away
from the wall the equilibrium densities are constant (equal to 2M) on their support.

We search for equilibria in the form (4.1), which consist in a delta aggregation on the wall and
a constant density free swarm. The same variables and setup from the non-exogeneous case are
being used here as well. In particular, the support Ωρ̄ of the equilibrium is given by (4.2) and mass
conservation leads to (4.3). We solve numerically the necessary condition for equilibrium (4.5), with
Λ(x) given by

Λ(x) =
∫ L

−L

(
− 1

2π ln
√
x2

1 + (x2 − y2)2 + 1
2
(
x2

1 + (x2 − y2)2
))

f(y2) dy2

+ 2M
∫∫

D

(
− 1

2π ln |x− y|+ 1
2 |x− y|2

)
dy + gx1.

(4.13)

Note that since the gravitational potential has zero Laplacian, then Λ is still harmonic in D and so
we can solve (4.8) with Λ given by (4.13). Again we solve this numerically to find approximations
for L, d1, d2, and the profiles f and g of the wall aggregation and the free boundary.
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We will begin to go over solutions found, though we note there are now two critical gravities
that can be observed. There is still a critical gravity gc such that the external potential is simply
too strong and forces all mass against the wall. Additionally we will find a second critical gravity
g̃c where below this value, we will find solutions to the equilibrium condition (2.14) that are no
minimizers.

i) gc 6 g

As remarked before, in this case the gravity is too strong and so all mass is on the wall. In fact
the calculated equilibrium here is the same as was calculated in Figure 4.1(b), though the contour
plot of Λ(x) is of course different and increases away from Ω1.

(ii) g̃c 6 g < gc

Disconnected equilibria. In this case we are able to numerically calculate a family of solutions
to (4.8) for mass ratios in the interval (0, γ(g)) where γ(g) =

√
gc
g − 1 denotes the maximal value

that the mass ratio of the two components can take for that particular g. This curve γ can be seen
in Figure 3.3(b). A typical disconnected solution is shown in Figure 4.2(a) with g = 0.064. Now
when we check the velocity along Ω1 we find these states have horizontal velocity’s that are into the
boundary and so are equilibria, though these disconnected equilibria are not minimizers as can be
checked by the contour plot of Λ (also shown in Figure 4.2(a)). We have also visualized the energy
as a function of mass ratio in Figure 4.2(c) where we see that the connected state is the minimizer.

Connected equilibria. For this case of gravity (and in fact, as we will find also with g < g̃c), there
are two connected equilibria: one that corresponds to all mass on the wall (rM = 0) and another
that corresponds to the maximal mass ratio rM = γ(g). The first is again the same as in the case
without an external potential.

The second kind of connected equilibrium is supported on both the wall and the interior of
Ω. These are achieved as the free component of the disconnected state touches the wall in the
limit rM → γ(g). Figure 4.2(b) shows an example of a connected equilibrium of the second kind as
computed numerically and compared with particle simulations. As can be confirmed by the contour
plot of Λ, this equilibrium is in fact a minimizer.

Figure 4.3 suggests how the disconnected equilibria approaches the connected minimizer as we
limit the mass ratio towards that of the connected minimizer. An interesting result is that the free
swarm seems to establish contact with the boundary over an entire vertical segment and not just
a single point.

(iii) g < g̃c

In this case the connected equilibria are the same two as described above. The differentiating
character of the disconnected equilibria in this case is that they do no longer exist for all rM ∈
(0, γ(g)). Now, if 0 < rM 6 α(g) or β(g) 6 rM < γ(g) then the solution found from (4.8) is
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Figure 4.2: Equilibria (4.1) on half-plane for V (x1, x2) = gx1 (linear exogenous potential) with
g = 0.064. (a) Disconnected state consisting in a free swarm of constant density and a delta
aggregation on the wall. (b) Connected state with a constant density in a domain adjacent to the
wall and a delta aggregation on the wall. It should be mentioned that any apparent defects in (a)
or (b) are the result of some numerical error and intrinsic error involving particles preferring to
arrange in hexagons and the geometry of the free swarm not allowing hexagonal packing to cover
the area. (c) Energy of equilibria (4.1) as a function of the mass ratio; the lowest energy state
corresponds to the connected equilibrium with rM = γ(g).

an equilibrium as checked by the velocity. If α(g) < rM < β(g) then the solution fails to be an
equilibrium as there will be points along Ω1 with a horizontal velocity directed inwards. The curves
α and β have been numerically approximated and shown in Figure 3.3(b).

One finds that if rM ∈ (α(g), β(g)) that the velocities on Ω1 nearest the points (0,±L) are the
first to begin to point inwards. Figure 4.4 visualizes this idea for g = 0.04 < g̃c and various mass
ratios. Notice that as g → 0 then α → 0 and β → ∞, which replicates the results found earlier
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Figure 4.3: Equilibria on the half-plane in two dimensions for V (x1, x2) = gx1, with g = 0.064:
the disconnected equilibria (4.1) approach a connected equilibrium state as the separation d1 from
the wall approaches 0 (or equivalently, rM approaches the maximal mass ratio γ(g)). (a) The solid
line represents the connected solution of (4.1). The dashed line shows a disconnected equilibrium
with a mass ratio rM = 1.873 < γ(g); this is the disconnected state with the largest mass ratio
that we were able to obtain in our numerical investigations. (b) Profile f of the density on the wall
corresponding to the connected (solid line) and disconnected (dashed line) equilibria shown in plot
(a).

without an external potential, namely that the only equilibria are the connected states.

Calculation of critical gravity gc

We consider a particle at position (ε, 0) with ε > 0. We get from (1.4b) that the velocity in the
horizontal direction felt by this particle is

v1 = −
∫ L

−L

(
1−

(
2π(ε2 + x2

2)
)−1

)
εf(x2)dx2 − g.

To study the competition between social and gravitational forces one can focus just on the social
velocity, defined by

vs1 = −
∫ L

−L

(
1−

(
2π(ε2 + x2

2)
)−1

)
εf(x2)dx2, (4.14)

representing the velocity acting on the particle by interaction with the aggregation on the wall.
With this notation, the horizontal velocity v1 can be written as

v1 = vs1 − g. (4.15)
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Figure 4.4: Horizontal velocity (before taking the projection (1.5)) along wall profile of solutions to
(4.8) for g = 0.04 < g̃c and (1) rM = 1.531, (2) rM = β(g) ≈ 1.379, (3) rM = 1.078, (4) rM = 0.744,
(5) rM = α(g) ≈ 0.439, (6) rM = 0.362. Note the positive velocities for rM ∈ (α(g), β(g)), that is,
in (3) and (4), indicating that mass would leave the wall and thus these solutions are not steady
states. See also Figure 3.3(b).

Gravity is strong enough to yield negative horizontal velocity v1 provided g is larger than the
maximal social velocity. Consequently, we set

gc = lim
ε→0

vs1. (4.16)

A more instructive and explicit formula can be derived by taking the limit directly in (4.14):

lim
ε→0

vs1 = lim
ε→0

∫ L

−L

(
2π(ε2 + x2

2)
)−1

εf(x2) dx2. (4.17)

Assume that f(x2) has a convergent Taylor series centred on x2 = 0:

f(x2) = f(0) +
∞∑
n=1

c2nx
2n
2 . (4.18)

Note that we have used here the symmetry of the wall profile about x2 = 0. Equations (4.17) and
(4.18) then give

lim
ε→0

vs1 = f(0) lim
ε→0

∫ L

−L

ε

2π(ε2 + x2
2)

dx2 + lim
ε→0

∫ L

−L

∞∑
n=1

εc2nx
2n
2

2π(ε2 + x2
2)

dx2. (4.19)
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Figure 4.5: Social velocity (4.14) acting from the aggregation on the wall (see (4.10) and Figure
4.1(a)) on a particle at position (ε, 0).

Observe that∣∣∣∣∣limε→0
ε

∫ L

−L

∞∑
n=1

c2nx
2n
2

2π(ε2 + x2
2)

dx2

∣∣∣∣∣ 6
∣∣∣∣∣limε→0

ε

∫ L

−L

∞∑
n=1

1
2πc2nx

2n−2
2 dx2

∣∣∣∣∣ ,
6

1
2π

∣∣∣∣∣limε→0
ε

∫ L

−L

∞∑
n=1

2n(2n− 1)c2nx
2n−2
2 dx2

∣∣∣∣∣ ,
= 0, (4.20)

where we have assumed that f ′′(x2) has a convergent Taylor series as well.
Also, by an explicit calculation,

lim
ε→0

∫ L

−L

ε

2π(ε2 + x2
2)

dx2 = 1
2 . (4.21)

With (4.19)-(4.21), (4.16) gives
gc = 1

2f(0). (4.22)

Our numerical simulations yield f(0) ≈ 1.128 (cf., Figure 4.1(a)), and hence we find gc ≈ 0.564.
This value also agrees with Figure 4.5 (as it should).
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4.2 On the disc of radius R

Here we consider the plain aggregation model (1.4) with the QANR potential in a bounded do-
main. That is, we consider the domain Ω defined by (r, θ) ∈ [0, R]× [0, 2π) and search for equilibria
that are radially symmetric. Figure 4.6 shows two different evolutions from initial states, showing
a connected minimizer and a disconnected equilibrium that is not a minimizer. Through all our
dynamical investigations we have found only radially symmetric steady states. Thus, though there
could conceivably be solutions lacking radial symmetry, we search analytically for radially symmet-
ric equilibria. This vastly simplifies the analytics and enables explicitly computable equilibria.

As we did with the QANR potential in the half-plane (Section 4.1), we assume that the free
swarm component of any equilibrium we search for has a constant density of 2M , so we are looking
for equilibria ρ̄ in the form of:

ρ̄(r, θ) = Sδ(r −R) + 2M1D(r, θ), (4.23)

where D is the region defined by (r, θ) ∈ [0, r∗] × [0, 2π) and 1D is the characteristic function on
D. We do not assume the annular form given by (r, θ) ∈ [r1, r2] × [0, 2π), because we have not
observed any such formations from dynamics, though this by no means rules them out. We are not
presenting an exhaustive study of all possible equilibria.

We begin our construction with the mass condition (2.8a) which here takes the form,

M = 2πSR+ 2Mπr∗2. (4.24)

This determines S as a function of r∗. Notice from this that for S > 0 then we get the condition
r∗ 6 1√

2π which is expected since if r∗ > 1√
2π and R > r∗ then we are considering a domain where

the free space minimizer can fit. As observed with the one boundary in Section 4.1 and no external
potential, particles on the boundary can and will move off it. When R < 1√

2π then the domain
constrains the possible equilibrium states and we see accumulations on the walls (see Figure 4.6).
Then we consider Λ(x) for equilibria (4.23),

Λ(x) = S

∫
∂Ω
K(x− y) dy + 2M

∫
D
K(x− y) dy. (4.25)

We require Λ(x) = λ1 on D and Λ(x) = λ2 on ∂Ω. In fact, because of the radial symmetry we
can quickly infer that Λ(x) = λ2 is necessarily satisfied on ∂Ω. Evaluating ∆Λ(x), using ∆K(x) =
2− δ(x), we find

∆Λ(x) = 2
(∫

∂Ω
ρ(y) dy +

∫
D
ρ(y) dy −M

)
.
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Figure 4.6: Dynamically achieved equilibria of the plain aggregation model with the QANR potential
in a radially bounded domain. Here the boundary is at R = 0.3. (a) The initial condition for (b)
where particles are initialized in an annular region of small width that is adjacent to the boundary.
(b) The connected equilibrium (and indeed minimizer) obtained dynamically from evolving the
initial condition in (a). We can see from the contour lines of Λ(x) that it takes a constant value in the
domain. Here we have rM ≈ 1.4527. (c) The initial condition for (d) where particles are initialized in
a half-annular region of small width that is adjacent to the boundary. (d) A disconnected equilibrium
obtained dynamically from evolving the initial condition in (c). We can see that Λ(x) decreases away
from the boundary accumulation and so this state is not a minimizer. Here we have rM ≈ 1.0898.

This is a rephrasing of the mass condition (4.24) and so already satisfied. So ∆Λ(x) = 0 for x ∈ D
therefore Λ(x) is harmonic on D. Then, because the radial symmetry gives us Λ(x) = λ1 for x ∈ ∂D
and Λ(x) is harmonic then we automatically get Λ(x) = λ1 for all x ∈ D.

Lastly we need to check the unprojected velocity (1.1b) in the radial direction vr on the boundary
to ensure it is truly an equilibrium. Figure 4.7 shows the radial velocity as a function of the free
swarm radius r∗ for three choices of R. Here we see a critical radius rc = 1

2
√
π
where if R < rc then

the radial velocity at the boundary is always positive and so outwards from the domain. Thus all
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Figure 4.7: Radial velocity at (R, 0) corresponding to forms (4.23). Here we have visualized the
velocity for all possible r∗ for the given R. If the radial velocity is positive (or zero) then the form
(4.23) is an equilibrium.

states of the form (4.23) that have R < rc are indeed equilibria. However, we have not seen any
such states dynamically and in fact we have only found equilibria from dynamics with a mass ratio
greater than one.

Here we have then come to two main findings studying the plain aggregation model in a radial
domain:

• Explicitly computable equilibria are possible even in two dimensions depending on the bound-
ary geometry

• A continuum of equilibria have been found for this case with disconnected equilibria that are
not minima of the energy

4.3 Equilibria solver in 2D

Here we describe the numerical method we used to find equilibria and subsequently what we
compared against the particle method (see Figure 4.1 or Figure 4.2). This is a particularly important
method in this chapter since we no longer had explicit solutions for equilibria, as we did in one
dimension. Recall symmetry about x2 = 0 so we need only focus on half the space but can extend
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to the full space using symmetry. We now assume a solution of the form (4.1) where d1, d2, L, λ1,
λ2, as well as the profiles f(x2) and g(x1) need to be determined. We define equispaced vertical
and horizontal grids

yi = L

Nf
i, 0 6 i 6 Nf , xj = d1 + d2

Ng
j, 0 6 j 6 Ng, (4.26)

along with midpoints y∗i = 1
2(yi−1 + yi) for 1 6 i 6 Nf and x∗j = 1

2(xj−1 + xj) for 1 6 j 6 Ng. We
seek to find the Nf + Ng variables

f(y∗i ) = fi, 1 6 i 6 Nf , g(x∗j ) = gj , 1 6 j 6 Ng. (4.27)

The profile density f and the free boundary g are then extended with a linear interpolant.
To solve for (4.8) we use observers at (0, yi) for 0 6 i 6 Nf , (x∗j , gj) for 1 6 j 6 Ng, (d1, 0), and

(d1 + d2, 0) – see Figure 4.8(a). We also have the mass condition (4.3) and the mass ratio condition
(4.9). Together we have Nf +Ng + 5 conditions in total and Nf +Ng + 5 variables.

(a) (b)

Figure 4.8: Abstracted (a) disconnected and (b) connected solutions presumed in the numerical
solver in two dimensions showing locations of observers where we solve Λ(x) to be a constant.
Variables for the system are d1, d2, L, λ1, λ2, and f(x2) and g(x1) evaluated on the numerical grid
(see (4.27)).

Connected case. The connected state implementation has the same prescription in dealing with
f(x2) but differs for the free boundary g. First, we lose the point (d1, 0) as d1 = 0 and we do not pin
this edge now. Secondly, we drop the mass ratio condition and now we only have λ as λ1 = λ2 =: λ.
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These are the only differences though and we wind up with Nf +Ng+4 conditions and Nf +Ng+4
variables – see Figure 4.8(b).

The system of equations is solved with MATLAB’s fsolve using default settings and integrals
are evaluated with MATLAB’s integral or integral2 for 1D and 2D integration respectively.
When using integral2 we use the iterated method setting.

Remark 4.3.1 (Mass and mass ratio constraints). In 1D the mass constraint (3.2) and the mass
ratio constraint (3.8) are explicit, and we implement them directly in the numerics as additional
conditions.

In 2D recall that we work with the linear interpolants of f and g in which case, by using a
numerical integrator, we can compute the necessary integrals for the mass condition (4.3) and mass
ratio condition (4.9), namely

∫ L

−L
f(x2) dx2, and |D| =

∫ d1+d2

d1

∫ g(x1)

−g(x1)
dx2 dx1.

Specifically, we used MATLAB’s integral and integral2 to do the numerical integration. In the
use of integral2 we used the iterated method as described in the function’s documentation.
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Chapter 5

Rectifying the model: Nonlinear
diffusion

Up til now we have been highlighting the seemingly generic feature of model (1.4) to evolve into
equilibria that are not energy minimizers, despite the model being an energy gradient system. This
appears to be a defect in the model, as we would like the model to flow to a minimizer naturally. In
the hope of rectifying this, we explore adding nonlinear diffusion such that we consider model (1.6).
We will elaborate on this choice shortly, after we quickly remark about other possible solutions we
considered

The first other possible solution to this problem is to consider an external potential that forces
mass away from the walls. With enough repulsion away from the walls, mass would necessarily
not be able to accumulate on the wall. Another possible solution is to introduce linear diffusion to
the model. This has the same fundamental effect as the first other solution and indeed the same
effect as nonlinear diffusion, in particular delta accumulations are precluded. Additionally, with
linear diffusion we would expect the solution to no longer have compact support and from our
explorations if a state only has a single component and it stays connected, then it almost certainly
will evolve into a minimizer.

Both of the solutions above are undesirable when compared with using nonlinear diffusion. An
external potential that forces mass away from the walls seems to avoid the issue by just constructing
the problem in such a way that there is no hard boundary. Linear diffusion may still allow us to
consider a hard boundary, but it causes us to lose the compactness of solutions. Using nonlinear
diffusion preserves both the hard boundary interpretation and the compactness of solutions. We
will be focusing mainly on the case with minimal diffusion since we want to preserve as much of
the original model (1.4) as possible. Additionally, to simplify things, we do not consider an external
potential.

To be specific, consider model (1.6) with ν replaced by να (we note upfront that the exponent α
is included for theoretical purposes; in numerical simulations we will always be considering α = 1).
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Also, for clarity, we add a subindex ν to solutions of the diffusive model. Hence, we consider:

∂tρν +∇ · (ρνvν) = 0 in Ω× [0, T ),

with vν = − ναm

m− 1∇ρ
m−1
ν −∇K ∗ ρν −∇V,

vν · nx = 0 on ∂Ω× [0, T ),

ρν(0) = ρ0 on Ω.

(5.1)

Here, ρν is an absolutely continuous probability measure, K is the interaction potential and V is
the exogenous potential. The equation is set in a closed domain Ω ⊂ Rd with smooth boundary,
and nx denotes the outward unit normal to ∂Ω at x. Also, ν > 0 is the diffusion coefficient (with
exponent α > 0) and m > 1.

For convenience, we list below the energies corresponding to the two models we consider in this
chapter. The energy of the plain aggregation model (see (2.3)) is:

E(ρ) = 1
2

∫
Ω

∫
Ω
K(x− y)ρ(x)ρ(y) dx dy +

∫
Ω
V (x)ρ(x) dx, (5.2)

while the diffusive model (5.1) is the gradient flow of the energy (see (2.5)):

Eν(ρ) = να

m− 1

∫
Ω
ρν
m(x) dx+ 1

2

∫
Ω

∫
Ω
K(x− y)ρν(x)ρν(y) dxdy +

∫
Ω
V (x)ρν(x) dx. (5.3)

Most of the results presented in this chapter have been reported in [46]. The author of this
thesis would like to mention that my contribution to this paper was numerical evidence to support
the analysis therein. The theoretical results established in [46] address the capability of model
(5.1) to approximate the plain aggregation model (1.4). The first result shows that at each fixed
t > 0, weak solutions of the diffusive model (5.1) converge to solutions of (1.4) in the zero diffusion
limit. The second result studies the convergence of minimizers of the energy (5.3) associated to
model (5.1) to minimizers of the energy (5.2) of the plain aggregation model. These results require
different assumptions on the interaction potential, but they give us evidence that the diffusive
model approximates well the plain aggregation model.

In particular, we have the following assumptions

(H1) K is symmetric, i.e., K(x) = K(−x) for all x ∈ Rd.

(H2) Either

(H2A) K ∈ C2(Ω), K is bounded from below, and K is λ-convex for some λ ∈ R,
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or

(H2B)

K ∈ L1
loc(Ω) ∩ C1(Ω \BR(0)), R > 0, K → +∞ as |x| → ∞,

there exists a function Ka ∈ C(Ω) so that Kr := K −Ka is superharmonic,

and for |x| large, Kr and Ka have at most quadratic growth.

(H3) Either

(H3A) V ∈ C1(Ω), |∇V (x)| 6 C(1 + |x|) for all x ∈ Rd, and V is λ-convex,

or

(H3B)
V ∈ C(Ω), V has at most quadratic growth, it is bounded from below, and

V is either strictly increasing or translation invariant in every component.

(H4) Ω ⊂ Rd is bounded, convex, and ∂Ω ∈ C1.

With these we state the theorems that were shown in [46]. These are:

Theorem 5.0.1. Assume K, V , and Ω satisfy the hypotheses (H1), (H2A), (H3A), and (H4).
Suppose ρν(t) is a weak solution of (5.1), and ρ(t) is a weak solution of (1.4) for all t ∈ [0, T ].
Then there exist constants C, C̃ > 0 such that

d2
W (ρν(t), ρ(t)) 6 C̃νβ t eCt

for all t ∈ [0, T ], where β = min
{
α− dm/(d+ 2), 1/(d+ 2)

}
, α > dm/(d+ 2), and dW denotes the

2-Wasserstein metric.

Theorem 5.0.2. Assume K and V satisfy the hypotheses (H1), (H2B), and (H3B). Also assume
α > dm. Let {ρν}ν>0 ⊂ P2(Rd) be a sequence such that each ρν is a minimizer of the energy Eν .
Then there exists ρ ∈ P2(Rd) such that, up to a subsequence, ρν → ρ in P2(Rd) as ν → 0, and ρ is
a minimizer of E.

We have stated these theorems for both context and reference. In this chapter we provide
numerical validation of the theorems as well as show evidence that the theorems may hold true
under relaxed assumptions. First we investigate the case of quadratic diffusion (m = 2) as this
choice simplifies some of the work and explicit forms of equilibria can be found in the case with
the QANR potential. Since the QANR potential only satisfies the conditions of Theorem 5.0.2 we
also investigate a C2-smoothed QANR potential (3.60). Regardless, we find that in both cases both
results from the theorems are supported by what we found. Following this we visit the case of
general nonlinear diffusion (m > 1) and see similar results. Almost all of our results here are in one
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dimension though we briefly show some two-dimensional results with the QANR potential that are
similar to those in one dimension.

Throughout these results we use the finite volume method developed in [24]. The method
preserves the non-negativity of solutions as well as the energy gradient flow structure, and it has
been demonstrated to capture accurately the long-time behaviour and equilibria of model (5.1). In
particular, it works well for small diffusion values as in the present study, as it can deal robustly
with metastable behaviour and large concentrations.

5.1 Quadratic diffusion

First we would like to go over known results in free space to understand what states we expect.
Recall that the steady states of the QANR potential in free space are constant density, compact
swarms while steady states of the smoothed version in free space are composed of a sum of delta
masses. The QANR potential, and its C1-smoothed version, were investigated in [40], with the
addition of diffusive terms. The scope of the investigations there were much broader in fact, as the
authors consider linear and nonlinear diffusion with power-law interaction potentials up to fourth
order. Referencing the results in [41], it has been noted in [40] that when sufficiently small diffusion is
added, steady states of multiple concentrations become multiple smoothed aggregates. Furthermore
these states could possibly be continuous, piecewise smooth, and with compact support.

5.1.1 On the half-line [0,∞)

Before we begin we note that the half-line is not bounded and so does not satisfy (H4), but the
solutions we consider have compact support and so a large enough domain will be effectively
equivalent to the half-line. The study here mostly involves the initial condition

ρ0 = 4 1[0,0.25],

where 1[a,b] denotes the characteristic function on [a, b]. We will also briefly study how the diffusive
system (5.1) behaves when initialized near the previous unstable equilibria of the plain aggregation
model, but we will make clear when we are considering this.

Dynamics with the C2-smoothed QANR potential

In order to satisfy (H2A) consider the C2-smoothed version of the QANR potential:

Kε
2(r) = 1

2r
2 − 1

2 |r|ε,2 (5.4)
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with

|r|ε,2 =

−
1

8ε3 r
4 + 3

4εr
2 + 3

8ε r 6 ε,

|r| r > ε.
(5.5)

We first present numerical support for Theorem 5.0.1, compare the 2-Wasserstein distance
between the solutions to (5.1) and (1.4) (with the interaction potential given by (3.60)) and show
that for fixed times, the distance decreases as ν decreases. Note that the estimate proved in Theorem
5.0.1 is based on Grönwall’s lemma, meaning that for a fixed ν, the distance between the two
solutions can potentially grow exponentially fast in time. For this reason the numerical check of
Theorem 5.0.1 is restricted to relatively early times, as large times would require simulations with
diffusion values that are too small for numerical purposes.

For early times, the diffusive and plain aggregation models are qualitatively similar (see Fig-
ure 5.1) and quantitatively, they remain close in the 2-Wasserstein metric (see Table 5.1). In both
models we find that the initial mass begins separating, with some mass accumulating on, or near,
the boundary and the rest moving away while remaining a single component. The notable difference
is that the plain aggregation model forms delta accumulations of mass at the origin (Figure 5.1(b)),
whereas the diffusive model forms instead a thin, sharp layer of mass next to it (Figure 5.1(a)).
The latter is anticipated, as the measure-valued solutions of the diffusive model are absolutely
continuous with respect to the Lebesgue measure.

Regarding the quantitative findings in Table 5.1, we see two general trends. First, the 2-
Wasserstein distance at a fixed time decreases as ν decreases towards zero, in support of Theo-
rem 5.0.1. Second, the 2-Wasserstein distance between the two solutions grows as solutions are
evolved through time; at early times they do so at a slow rate, for growth at later times see Fig-
ure 5.3(a).

ν t = 0.5 t = 1 t = 5
10−3 2.1400e−2 3.1896e−2 8.6286e−2
10−4 7.1776e−3 1.1110e−2 4.7896e−2
10−5 3.8652e−3 7.5722e−3 3.3105e−2
10−6 3.4619e−3 7.5057e−3 3.3048e−2
10−7 3.4555e−3 7.5043e−3 3.2934e−2

Table 5.1: C2-smoothed QANR potential: 2-Wasserstein distance dW (ρν(t), ρ(t)) between solutions
of the diffusive model and solutions of the plain aggregation model for various choices of ν and
several early times.

The second major goal of these numerical simulations is to show that solutions of the diffusive
model do not get trapped in equilibria that are not minimizers of the energy, as the plain aggregation
model does. For this study we keep ν > 0 fixed and observe the long time evolution of solutions
ρν(t) of the diffusive model. As expected, we find that the distance between solutions ρν(t) and ρ(t)
grows in time, with the caveat that the two solutions begin to differ substantially, both qualitatively
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Figure 5.1: Simulations with the C2-smoothed QANR potential showing early time dynamics. (a)
Snapshots of the diffusive model (5.1) with ν = 10−7. An insert has been included to show the
layer of mass near the origin. (b) Snapshots of the plain aggregation model (1.4). Concentrations
at the origin are represented as circle, square, and diamond markers for t = 0.5, t = 1, and t = 5
respectively. The masses of concentrations have been magnified 10 times for clarity.

and quantitatively, when mass near the origin in the diffusive model begins to move away from the
boundary, into the interior of the domain. This mass transfer, a fundamental distinction between
the two models, will be highlighted throughout the discussion below.

Figure 5.2(a) shows the onset of the mass transfer at t = 10.9 for simulations with ν = 10−7.
Also, by t = 12.5 we see that mass has elongated away from the origin and has begun forming a
new bump. The transfer of mass occurs repeatedly in the diffusive model as the solution evolves
further through time, though less mass is transferred each time. Generally, this mass will either
form a new bump or join with the next nearest bump. In contrast, Figure 5.2(b) shows that in the
plain aggregation model the concentration at the origin does not change and the five bumps in the
free swarm just become sharper, as overall they tend toward five delta concentrations.

Mass transfers are tightly linked to the 2-Wasserstein distance between solutions ρν(t) and ρ(t),
as well as to the energy evolution of the diffusive model. Figure 5.3(a) shows the evolution in time
of the distance between the two solutions, for various ν. In each plot we see a significant increase
in the growth of the distance at exactly the times when mass first transfers away from the origin.
Additionally we observe that decreasing ν keeps the distance between solutions smaller for longer
times.
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Figure 5.2: Simulations with the C2-smoothed QANR potential showing the first mass transfer from
the boundary to the free swarm in the diffusive model. (a) Snapshots of the diffusive model (5.1)
with ν = 10−7. (b) Snapshots of the plain aggregation model (1.4). Concentrations are represented
as circle and square markers for t = 10.9 and t = 12.5 respectively. The masses of concentrations
have been magnified 10 times for clarity.

Complementary to looking at the 2-Wasserstein distance, Figure 5.3(b) compares the energies
of the diffusive model and of the plain aggregation model (see (5.3) and (5.2)). We observe that the
energies are close, again, up until the first mass transfer occurs. The energy plots also show that
the diffusive model enables solutions to reach lower energies where the plain aggregation model gets
stuck at a higher energy that corresponds to an energetically unstable steady state.

With no mechanism to break apart the delta concentration at the boundary (see Figure 5.2(b)),
the plain aggregation model evolves into a steady state ρ̄ that consists of six delta concentrations
(one at the origin and five in the interior) – see Figure 5.4(b). This steady state is not a minimizer
of energy (5.2). This flaw of the plain aggregation model was demonstrated in Chapter 3. On the
other hand, the mechanism of mass transfer in the diffusive model enables solutions ρν(t) to bypass
the unstable equilibrium ρ̄ of the plain aggregation equation.

Figure 5.4(a) shows the 2-Wasserstein distance dW (ρν(t), ρ̄) between the solutions of the diffusive
model and the unstable equilibrium of the plain aggregation model. The plots show that dW (ρν(t), ρ̄)
achieves its minimum (i.e., the diffusive model comes nearest to the plain aggregation steady state)
exactly at the times of the first mass transfer. The solutions ρν(t) at these times, consisting of
multiple smoothed aggregates, are shown in Figure 5.4(b). One can see indeed that the smaller the
ν the closer the diffusive solutions pass by the plain aggregation equilibrium.
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Figure 5.3: Results with the C2-smoothed QANR potential. (a) 2-Wasserstein distance between the
diffusive and plain aggregation solutions for various choices of ν. (b) Energy (5.3) of solutions to
the diffusive model through time for various choices of ν. Also included is the energy (5.2) of the
solution to the particle model through time (solid line). Star markers have been placed at t = 6.5,
t = 10.9, and t = 16 for ν = 10−5, ν = 10−7, and ν = 10−9 respectively, corresponding to the times
of the first mass transfer.

It is expected that throughout their time evolution, solutions ρν(t) of the diffusive model bypass
other unstable equilibria of the plain aggregation model. This can be observed for instance in the
staircase-like evolution of the energy for ν = 10−7 in Figure 5.3(b) (dotted line). The various
plateaus of the energy correspond exactly to solutions being temporarily trapped near an unstable
equilibria of the plain aggregation model (one could think of these configurations as metastable
states for the diffusive model), while the drops in energy correspond to mass transfers. Finally,
Figure 5.5 gives another viewpoint from which to see the diffusive model visits the plain aggregation
equilibria.

Dynamics with the QANR potential

For early times we again find that the solutions of the diffusive and plain aggregation models remain
qualitatively similar (see Figure 5.6): the initial density moves apart, with some mass staying near,
or on, the origin and the rest spreading away from the wall. As with the C2-smoothed QANR
potential we find again that the diffusive model has a thin, sharp layer of mass near the origin
where the plain aggregation model concentrates mass exactly at the origin. One notable difference
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Figure 5.4: Results with the C2-smoothed QANR potential. (a) 2-Wasserstein distance between
solutions to the diffusive model and the (unstable) equilibrium of the plain aggregation model, for
various choices of ν. Markers have been placed at t = 6.5, t = 10.9, and t = 16 for ν = 10−5,
ν = 10−7, and ν = 10−9 respectively, corresponding to the times of the first mass transfer (see also
Figure 5.3); these times also correspond to when ρν(t) is closest to ρ̄. (b) Solutions to the diffusive
model at the times marked in (a). The circles represent concentrations of the equilibrium ρ̄, where
they have been magnified 25 times for clarity.

from the C2-smoothed QANR potential is that now the diffusive solution ρν consists of only a single
component for all tests we performed.

We also consider the 2-Wasserstein distance dW (ρν(t), ρ(t)) between the two solutions and find
similar results to the study with the C2-smoothed QANR potential – see Table 5.2 and Figure
5.7(a). Specifically, we find that for fixed times the distance decreases as ν is decreased toward
zero, suggesting that Theorem 5.0.1 may be refined to include less regular interaction potentials.
We also find that the distance between the two solutions increases as time goes forward, with a
faster growth rate at later times.

ν t = 0.1 t = 0.5 t = 3
10−3 6.8548e−3 2.4142e−2 6.6831e−2
10−4 2.9493e−3 1.1424e−2 4.3318e−2
10−5 2.3620e−3 8.9352e−3 3.7865e−2
10−6 2.3166e−3 8.6382e−3 3.6588e−2
10−7 2.3161e−3 8.6054e−3 3.6235e−2

Table 5.2: QANR potential: 2-Wasserstein distance dW (ρν(t), ρ(t)) between solutions of the diffusive
model and solutions of the plain aggregation model for various choices of ν at some early times.
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Figure 5.5: Showcasing the mass near the wall in the diffusive model (near in this context is
just within some small distance relative to the swarm size). The particle steady state (SS) is
achieved dynamically from the plain aggregation model. To note here is how the diffusive model
first accumulates mass near the wall and peaks out exactly at the wall mass of the plain aggregation
system before slowly losing mass as it flows away.

Figure 5.7(b) shows the energies of the diffusive and plain aggregation solutions. We find again
that with diffusion, solutions achieve states of lower energy than the plain aggregation model. We
do not see the same energy staircase pattern as in Figure 5.3(b) however. This is not unexpected
actually, as the reason we observed the staircase pattern when considering the C2-smoothed QANR
potential was because the diffusive solution consisted of multiple disjoint components. The stair-
casing was highly linked to instances of mass from the origin gradually pulling away, leaving the
origin, and moving to join the free swarm. Since with the QANR potential the diffusive solution
does not form multiple disjoint components, there is no mass transfer and hence the mechanism
for energy staircasing is missing.

We also find again that the diffusive model bypasses the unstable equilibrium of the plain
aggregation model. Figure 5.8(a) shows that the solutions ρν(t) of the diffusive model come near
to the unstable equilibrium ρ̄ of the plain aggregation model and decreasing ν causes this distance
to decrease, though not as noticeably as for the smooth potential (Figure 5.4(a)). We have also
included markers at times where dW (ρν(t), ρ̄) achieves its minimum though we do not see these
times being significant to dW (ρν(t), ρ(t)) in Figure 5.7(a) or to the energies of the diffusive model
in Figure 5.7(b). We believe that, as for the energy staircasing, it is the lack of mass transfer of
solutions that is the cause here. We also think that for the same reason the curves in Figures 5.7(a)
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Figure 5.6: Simulations with the QANR potential showing early time dynamics. (a) Snapshots of
the diffusive model (5.1) with ν = 10−6. An insert has been included to show the layer of mass
near the origin more clearly. (b) Snapshots of the plain aggregation model (1.4). Concentrations
are represented as circle, square, and diamond markers for t = 0.1, t = 0.5, and t = 3 respectively.
The masses of concentrations have been magnified 10 times for clarity.

and 5.8(a) are not as differentiated as they were with the C2-smoothed potential (Figures 5.3 and
5.4).

Figure 5.8(b) shows the solutions ρν(t) compared to the (unstable) equilibrium ρ̄ of the plain
aggregation model at times corresponding to the minima of dW (ρν(t), ρ̄), specifically t = 6.9, t = 7.6,
and t = 7.9 for ν = 10−4, ν = 10−6, and ν = 10−8 respectively. Note that the solutions ρν(t) match
up with most of the free swarm component of ρ̄. The major qualitative difference is again, that
solutions of the diffusive model consist of a single component where the plain aggregation equilibria
is formed of two disjoint parts.

Remark 5.1.1 (Initializing near an unstable equilibrium of the plain aggregation model). So far we
have shown that, beginning from the same initial data, the diffusive model appears to visit unstable
equilibria of the plain aggregation model but do not seem to be trapped in them. We further confirm
now that the diffusive model indeed flows away from the unstable equilibria. To this end we initialize
the diffusive model at an approximation of the unstable equilibrium shown in Figure 3.1(a). The
delta accumulation at the origin is approximated by a thin, constant density component adjacent to
the wall. Figure 5.9 shows the evolution of the diffusive model from this initial state, showing that
the diffusive model flows away from the disconnected equilibrium of the plain aggregation model.

84



0 10 20 30
0

0.05

0.1

0 10 20 30
-0.042

-0.041

-0.04

-0.039

(a) (b)

Figure 5.7: Results with the QANR potential. (a) 2-Wasserstein distance between the diffusive and
plain aggregation solutions for various choices of ν. (b) Energy (5.3) of solutions to the diffusive
model through time for various choices of ν. Also included is the energy (5.2) of the solution to the
particle model through time (solid line).

Convergence of energy minimizers for the QANR potential

We remark quickly that we only highlight the QANR potential here as it together with quadratic
diffusion allows for explicitly computed equilibria. Recall that in the plain aggregation model, the
minimizing equilibrium ρ̄∗ of energy E (given by (5.2) with V=0) is the same as that for the
problem in free space [44], i.e.,

ρ̄∗ = 1[0,1]. (5.6)

Note that this minimizer is unique up to translation. In addition, recal that there exists a one-
parameter family of equilibria ρ̄ that are not energy minimizers, composed of a concentration at
the origin and a constant-valued, compact component away from the boundary. For this reason we
added an asterisk superscript to the minimizer in (5.6), to distinguish it from the other (unstable)
equilibria.

Though we do not assume the form of equilibria as we did with the plain aggregation model,
there are some known results that guide our search. By the results in [21] and [41], as well as
observations of our numerics, we assume that the equilibrium ρ̄ν is continuous, smooth on its
support, and composed of a single component with compact support such that supp(ρ̄ν) = [0, L].
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Figure 5.8: Results with the QANR potential. (a) 2-Wasserstein distance between solutions to the
diffusive model and the (unstable) equilibrium of the plain aggregation model, for various choices of
ν. Markers have been placed at t = 6.9, t = 7.6, and t = 7.9 for ν = 10−4, ν = 10−6, and ν = 10−8

respectively, corresponding to the times when dW (ρν(t), ρ̄) achieves its minimum. (b) Solutions to
the diffusive model at the times marked in (a), respectively for each ν. The solid line and the circle
marker at origin (indicating a delta concentration) represents the unstable equilibrium ρ̄ of the
plain aggregation model. The concentration has been magnified 10 times for clarity.

We find equilibria ρ̄ν by looking for critical points of the energy Eν by solving this problem’s
equilibrium condition (2.14). By an immediate calculation (see [10], also [45]), this becomes

Λν(x) = λν for x ∈ supp(ρ̄ν), (5.7)

for some λν ∈ R, where
Λν(x) = 2νρ̄ν(x) +K ∗ ρ̄ν . (5.8)

Furthermore, if
Λν(x) > λν for x 6∈ supp(ρ̄ν), (5.9)

then ρ̄ν is a local minimizer. The interpretation of (5.9) is that transporting mass from the support
of ρ̄ν into its complement increases the total energy [10].

The approach we take is to solve Λ′ν(x) = 0 and Λ′′ν(x) = 0 for x ∈ supp(ρ̄ν) and then show
that these equilibria must necessarily be local minimizers (i.e., satisfy (5.9)). We also note that we
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Figure 5.9: Evolution of the diffusive model (5.1) with no external potential when initialized near a
(disconnected) non-minimizer equilibrium of the plain aggregation model (1.4) (see Figure 3.1(a)).
Solutions to the diffusive model approach asymptotically a smoothed out version of the (connected)
minimizer equilibrium of the plain aggregation model shown in Figure 3.1(b). Here we have ν =
10−4, with a zoom out near boundary shown in insert.

look for minimizers of unit mass (
∫ L

0 ρ̄ν(x) dx = 1) that are continuous at the end of their support:

lim
x↗L

ρ̄ν(x) = 0. (5.10)

From (5.8), one gets
Λ′′ν(x) = 2νρ̄′′ν(x) + 1− ρ̄ν(x). (5.11)

Solving Λ′′ν(x) = 0 is trivial and we get the general form of equilibria ρ̄ν to be

ρ̄ν(x) = c1e
x√
2ν + c2e

− x√
2ν + 1, x ∈ [0, L]. (5.12)

We cannot, however, explicitly solve for the unknowns c1, c2, and L and we resort to obtaining them
by numerically solving the remaining three conditions: Λ′ν = 0 in [0, L], the unit mass condition,
and continuity at L given by (5.10). We point out that Λν(x) is continuous and that Λ′′ν(x) = 1 > 0
for x 6∈ supp(ρ̄ν). The strict convexity of Λν outside supp(ρ̄ν), combined with (5.7), implies that
(5.9) necessarily holds, so the equilibria (5.12) are in fact minimizers of the energy.
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Remark 5.1.2 (Solving for the constants c1, c2, and L). We find the constants c1, c2, and L as
functions of ν through a continuation method. The problem is to find c1, c2, and L for a given ν

such that Λ′ν(x) = 0, the mass of the profile is 1, and the profile is continuous, which we can write
as a nonlinear system of equations F (c1, c2, L) = 0. We do not write the equations here as it is an
elementary exercise to find them.

To begin the continuation we find an initial point by solving F (c1, c2, L) = 0 using MATLAB’s
fsolve with ν = 1 and initial guess (c1, c2, L) = (1, 1, 1). For ν = 1 we see the system is relatively
well conditioned (see Figure 5.10(a)) and we can compare the result of this procedure to the steady
state obtained dynamically via the finite volume code (see Figure 5.11), which we can argue further
is a minimizer because of the profile of Λ(x). The checks on first-order optimality and residuals are
both reasonable for ν = 1 (see Figures 5.10(b) and 5.13(b)). After obtaining this initial solution
we then change ν and re-solve the nonlinear system using the previous solution as the initial guess.
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Figure 5.10: (a) Calculated condition numbers of the nonlinear system using the found solutions.
(b) Check of the first-order optimality of the solution for the given ν.

Due to the focus on the magnitude of ν, we chose a non-uniform grid that ranges from ν = 1
to ν = 10−6 with 100 equidistant jumps within each magnitude. Then with the solution for ν = 1,
we move down the grid re-converging whenever we change ν. Figure 5.12 shows the solution curves
c1(ν), c2(ν), and L(ν) along with the changes observed in the constants during the solution of the
nonlinear system for the given ν. Note that the changes are relatively small for c2 and L whereas
c1 experiences very small changes in magnitude, while the values themselves are very small as well
(see Figure 5.13(a)). See also Figure 5.13(b) for the residuals in the numerical solution.
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Figure 5.11: Comparing the result of the solution of the numeric method versus results from the
finite volume code (FVM).
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Figure 5.12: (a) Numerically calculated c1, c2, and L as functions of ν. (b) Changes in c1, c2, and
L that occurred during solution of nonlinear system with the given ν.
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Figure 5.13: (a) Logarithmic perspective of the values of c1 as a function of ν. (b) Residuals for the
solution c1(ν), c2(ν), and L(ν) of the nonlinear system with the given ν.

Looking at Figures 5.10, 5.12 and 5.13, one might expect indeed some ill-behaviour as ν de-
creases. Even ν = 10−5 is ambitious in fact, but the solution appears to be solved according to the
residuals (Figure 5.13(b)). Additionally the result for ν = 10−5 both matches with observed steady
states of the finite volume method and appears to converge towards the minimizer of the system
without diffusion, as expected by Theorem 1.2. Trying to get to ν = 10−6 seems to not be possible
as the system becomes too ill-conditioned, and very apparent defects in the profile arise in these
solutions (see Figure 5.14(b)).

.

Next we compare the minimizers (5.12) of Eν with the minimizer (5.6) of E for the plain
aggregation model. Figure 5.15(a) shows that ρ̄ν qualitatively approach ρ̄∗, while Figure 5.15(b)
provides direct quantitative numerical evidence for Theorem 5.0.2, namely that minimizers of Eν
approach (in the 2-Wasserstein metric) minimizers of E in the zero diffusion limit.

Figure 5.12(a) shows the numerically calculated values of c1, c2, and L as functions of ν (the
lowest ν for which such results have been obtained is ν = 10−5). Observe that L tends to 1 as
ν tends to zero which is in agreement with the minimizer (5.6) of the plain aggregation model.
Furthermore notice that c1 and c2 approach 0 and −1, respectively, in the zero diffusion limit. As
explained below, this yields the following pointwise limit of ρ̄ν(x) as ν → 0:

lim
ν→0

ρ̄ν(x) = 0 for x = 0, x = L, and lim
ν→0

ρ̄ν(x) = 1 for x ∈ (0, L), (5.13)
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Figure 5.14: (a) Profiles of the solution with ν taking on 10 equidistant values between 10−4

and 10−5. Though difficult to see, the profile with the largest support has the largest ν and the
profile with the smallest support has the smallest ν. Observe the general coarsening towards the
minimizer of the non-diffusive system. (b) Profiles of the solution with ν taking on 10 equidistant
values between 10−5 and 10−6. The profile with the largest support has the largest ν and the profile
with the smallest support has the smallest ν. It is at this point that the results of the numerical
method diverge from observations from the finite volume method.

consistent with the limiting behaviour of minimizers shown in Figure 5.15(a).
The pointwise limit at x = 0 can be inferred immediately from (5.12) and c1 → 0, c2 → −1

as ν → 0 (Figure 5.12(a)). Furthermore, since c2 approaches a finite value as ν → 0, at strictly
positive x in the support of ρ̄ν we have:

lim
ν→0

ρ̄ν(x) = lim
ν→0

c1e
x√
2ν + 1, for x ∈ (0, L]. (5.14)

In Figure 5.12(b) we explore the behaviour of c1e
x√
2ν as ν tends to zero, at x = L and x =

L− 10−2, that is, at the end of the support, as well as very close to it. We find the two pointwise
limits to be −1 and 0 respectively. From this observation and (5.14) we conclude (5.13), also noting
that if limν→0 c1e

x√
2ν = 0 for x arbitrarily close to L then the limit is also zero for all 0 < x < L.

Finally, it should be remarked that the values of ν for which we have calculated numerically c1,
c2, and L are not coincidental. These are all the values (less than 1) for which we can reasonably
solve the system of nonlinear equations to find the constants. As ν decreases one finds that the
condition number of the system becomes unmanageable beyond ν = 10−5, when the numerical
method fails and defects in the solution profile are visibly apparent. It should be also noted that
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Figure 5.15: (a) Comparison between the energy minimizer ρ̄∗ of the plain aggregation model (see
(5.6)) and minimizers ρ̄ν of the diffusive model (see (5.12)) for various ν. (b) The 2-Wasserstein
distance between the minimizers ρ̄ν and ρ̄∗ as a function of ν.

while the system becomes ill-conditioned, any results shown in the paper have been compared
satisfactorily versus the results from other methods, namely the finite volume method, so that we
are confident in what has been reported here.
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Remark 5.1.3 (Linear exogeneous potential: V (x) = gx). So far we have only investigated the
case with no external potential. The case with an external potential has been studied as well, though
the case with the smoothed QANR potential is more complicated so we neglect that entirely. The
case with the QANR potential is fairly simple and explicit forms of equilibria can be calculated
similarly to the case with no external potential. Additionally we perform a similar test as in Re-
mark 5.1.1. Figure 5.16(a) shows the diffusive model initialized near a disconnected equilibrium of
the plain aggregation model. Just as in Figure 5.9, we see that the diffusive model flows away from
the disconnected equilibrium towards a regularized version of the connected minimizer of the plain
aggregation model (see Figure 3.2(b)). Figure 5.16(b) shows explicitly calculated equilibria of the
diffusive model and Figure 5.16(c) shows a calculation of the mass in the boundary layer near the
wall, highlighting how the mass in the boundary layer approaches the mass of the delta accumulation
in the connected minimizer of the plain aggregation model.
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Figure 5.16: (a) Evolution of the diffusive model (5.1) on the half-line with V (x) = gx when
initialized near a (disconnected) non-minimizer equilibrium of the plain aggregation model (1.4)
(see Figure 3.2(a)). Solutions to the diffusive model approach asymptotically a smoothed out version
of the (connected) minimizer equilibrium of the plain aggregation model shown in Figure 3.2(b).
Here we have ν = 10−4, with a zoom out near boundary shown in insert. (b) Showcasing some
explicitly calculated equilibria of the diffusive model with V (x) = gx. (c) Calculation of mass in
the boundary layer adjacent to the wall for the explicitly calculated equilibria shown in (b). Note
that as ν → 0 we see the mass in the boundary layer approach the mass of the accumulation of the
connected minimizer of the plain aggregation model (Figure 3.2(b)).
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5.1.2 On the half-plane [0,∞)× (−∞,∞)

A natural extension of the previous results is to consider higher dimensions, and while this case
is definitely more complicated we can still come to some conclusions about the diffusive model in
two dimensions. We repeat the tests performed in Remark 5.1.1 and Remark 5.1.3, specifically we
initialize the diffusive model near a disconnected equilibrium of the plain aggregation model and
see how the diffusive model evolves.
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Figure 5.17: Evolution of the diffusive model (5.1) on the half-plane with V (x1, x2) = gx1 when
initialized near a (disconnected) non-minimizer equilibrium of the plain aggregation model (1.4) (see
Figure 4.2(a)). Solutions to the diffusive model approach asymptotically a smoothed out version of
the (connected) minimizer equilibrium of the plain aggregation model shown in Figure 4.2(b). Here
we have ν = 10−4. (a) The initial state of the diffusive model. (b) The observed steady state of the
diffusive model resulted from the initial state in (a). (c) A visualization of the mass in the boundary
layer of observed steady states of the diffusive model. Here we sum masses in the x1 direction and
compare them to the wall profile f(x2) of the (connected) stable equilibrium from Figure 4.2(b).
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Figures 5.17(a) and (b) show the results of this test while Figure 5.17(c) gives evidence that
the mass near the boundary in the diffusive model concentrates in a manner that approximates the
accumulation on the boundary of the connected minimizer of the plain aggregation equation.

5.2 General nonlinear diffusion

Having now shown that quadratic diffusion has at least some capacity to regularize the plain
aggregation model, a natural extension is to consider more general nonlinear diffusion. In this
section we consider m = 1.5 and m = 3 and present results that very much mirror those of the
quadratic diffusion (see Section 5.1), highlighting what differences there are. We repeat the same
dynamical tests as with quadratic diffusion and discuss briefly the calculations of equilibria.

In the following we consider starting from the same initial density as with the quadratic diffusion
tests, namely ρ0 = 4 1[0,0.25]. Note that in Theorem 5.0.1 we have an explicit upper bound for the
convergence rate of d2

W (ρν(t), ρ(t)) at fixed times, as ν → 0. The rate (not necessarily sharp) is νβ,
where β depends on m and the dimension d such that

m1 < m2 =⇒ β1 > β2.

Therefore, we expect better convergence at fixed times for lower values of m.
Figure 5.18 below shows the early time dynamics for m = 1.5 and m = 3; also see Figure 5.1

(for m = 2). A key distinction is that the approximation is better for decreasing m – note the
boundary layer at the origin which gets steeper and narrower with decreasing m and hence better
approximates the Dirac accumulation on the boundary in the plain aggregation model. Aside from
the general observation we made above (rate of convergence νβ which improves with lowering m),
a formal argument for this fact is that at high concentrations ρ, the diffusion ρm decreases with
m. Also, as shown below, at later times diffusive solutions with lower values of m capture more
sharply the interior delta aggregations of the plain aggregation model.

The observation in the paragraph above is also confirmed at later times. Indeed, Figure 5.19
below (see also Figure 5.2 for m = 2) shows how lower values of m capture more sharply the delta
aggregations in the plain aggregation model.

The evolution of dW (ρν(t), ρ(t)) for m = 1.5 and m = 3 is shown in Figure 5.20 – see also
Figure 5.3 form = 2. The stars correspond to the times of the first mass transfer from the boundary.
As anticipated, the transfer occurs faster for larger values of m (where there is more diffusion). This
fact is also illustrated in the energy plot in Figure 5.21: the energy staircasing gets accelerated by
increasing m (more diffusion, faster mass transfers). Finally, as shown by Figure 5.22 below, the
minimum distance between the diffusive solution and the equilibrium of the plain aggregation model
occurs faster for larger m. On the other hand, these minimum distances decrease with lowering m
as we can see in Figure 5.23.
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Figure 5.18: Simulations with the C2-smoothed QANR potential showing early time dynamics for
ν = 10−7. The approximation by nonlinear diffusion improves with decreasing m: the boundary
layer near the origin gets steeper with decreasingm and better approximates the Dirac accumulation
at the origin in the plain aggregation model.
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Figure 5.19: Results with the C2-smoothed QANR potential. Solutions of the diffusive model at
the times when ρν(t) is closest to ρ̄. The approximation by nonlinear diffusion gets sharper with
decreasing m.
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Figure 5.20: Results with the C2-smoothed QANR potential. The stars correspond to the times of
the first mass transfer from the boundary at origin. Larger m correspond to faster mass transfers
(as there is more diffusion).
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Figure 5.21: Time evolution of the energy with the C2-smoothed QANR potential. The stars cor-
respond to the times of the first mass transfer from the boundary. The energy staircasing gets
accelerated by increasing m (more diffusion, faster mass transfers).
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Figure 5.22: Distance between the solutions of the diffusive model and the unstable equilibrium of
the plain aggregation model. The minimum distances (achieved at times indicated by stars) occur
faster for larger m. On the other hand, these minimum distances decrease with lowering m.

0 5 10 15 20
0

0.05

0.1

10-10 10-5
0.02

0.025

0.03

0.035

0.04

0.045

(a) (b)

Figure 5.23: Results for various values of the exponent m. (a) Decreasing m improves the approx-
imation by nonlinear diffusion for fixed ν (here ν = 10−5). (b) By decreasing m, the solutions of
the diffusive model pass more closely by the unstable equilibrium of the plain aggregation model.
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These numerical results further support Theorem 5.0.1 and suggest that any nonlinear diffusion
with m > 1 will regularize the model in essentially the same ways that we have thus far discovered
with quadratic diffusion.
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Chapter 6

Conclusion and future directions

Summary of findings
What have we shown in this thesis? Simply, we have conclusively demonstrated that the widely

used plain aggregation model in domains with boundaries (1.4) can dynamically achieve equilibria
that are not minimizers of the energy. One could view this is as a deficiency of the model because
the model can be formulated as an energy gradient flow! Intuition then leads one to expect steady
states of the model should be minimizers of the energy. We showed this a generic phenomenon
as in both one and two dimensions such equilibria are observed dynamically from non-trivial ini-
tial conditions for a variety of interaction potentials and boundary geometries. Furthermore we
showed that equilibria can be numerically calculated using the variational framework in [10]. These
equilibria can be explicitly calculated in some cases.

In Chapter 3 we established a significant result in one dimension when considering the primarily
investigated interaction potential of this thesis, namely the QANR potential (see Section 3.1). We
found numerical and analytical evidence suggesting that equilibria which are not energy minima
are the overwhelming majority of achieved states from any evolution of an initial condition where
agents interact with a boundary.

Though not as thoroughly researched, we also investigated a C1-smoothed version of the QANR
potential (see Section 3.2) which exhibits delta accumulations as equilibria in free space. We ex-
plicitly computed equilibria and could characterize their stability, showing that there were indeed
equilibria that were not minimizers of the energy. These states were observed dynamically from
initial conditions concentrated near the boundary. Finally we showcased a Morse-type interaction
potential (see Section 3.3) where similar findings were made and even though it is not reported in
this thesis, the author would point out here that many other interaction potentials were simulated
and in every case one could find energetically unstable equilibria.

In Chapter 4 we studied just the QANR potential in two dimensions with both a single boundary,
acting as a "floor" which the external potential acted to move agents towards, and a radial boundary
to simulate a confined domain as was studied in one dimension on the line segment [−x∗, x∗]. Though
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the analysis is more complicated and we had to resort to numerically calculating equilibria in most
cases, again energetically unstable equilibria were found from non-trivial initial conditions.

Having highlighted a deficiency with the plain aggregation model, we then proposed a rectifica-
tion of this. Namely we studied the diffusive model (1.6) in Chapter 5 which is the plain aggregation
model with nonlinear diffusion introduced. We numerically showed that the diffusive model does
rectify the plain aggregation model. In particular, evolution of the diffusive model will approach,
but not equilibrate towards, the unstable equilibria found with the plain aggregation model. We
also found that the minimizers of the diffusive model approach the minimizers of the plain aggre-
gation model in the zero diffusion limit (ν → 0). All the numerical investigations in Chapter 5 are
further reinforced by analytic findings in [46].

Future directions of research
Throughout the author’s work on this thesis, a number of interesting tangents arose that were

only briefly investigated and not reported here. Indeed the space for research of swarming models
in the presence of boundaries is still quite fertile. We will only touch on two here, as they refer to
material introduced here and the second is of particular importance with regards to the goal of the
rectification proposed by way of nonlinear diffusion.

Solution forms with the C1-smoothed QANR potential. Throughout the investigations of the
plain aggregation model we found that the free swarm typically has the same form as the minimizer
in free space. That is, except for the study of the C1-smoothed QANR potential. It is unique amongst
the interaction potentials studied as only it gave rise to solutions with free swarm components
structurally different from free space equilibria.

In Section 3.2 we presented some dynamically observed equilibria that were entirely composed
of delta accumulations. Recall as well that the free space minimizer of the C1-smoothed QANR
potential is a sum of delta accumulations. However, through our dynamical investigations we came
across approximate steady states that were not entirely composed of delta accumulations (see Fig-
ure 6.1). The point of interest here is that there appears to be some particles that have not formed
as a delta accumulation near the boundary at x = 0. This seems to suggest that in this case, part
of the swarm away from the boundary is not a delta accumulation. It may also be the case that
some very slow dynamics are present.

On the rectification of the plain aggregation model with nonlinear diffusion. Though we have
shown how the diffusive model flows away from unstable equilibria of the plain aggregation model,
we have not been able to argue whether the steady states of the diffusive model are energy minima
or not for all cases of ν. Through the author’s investigations, the diffusive model does flow into
energy minima as long as the observed steady states are composed of a single component. However,
if the diffusive model forms multiple disconnected components then the author has not been able to
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Figure 6.1: Dynamic simulations using the particle method for the C1-smoothed QANR potential
with ε = 0.2. Λ(x) is shown, though it has been vertically shifted and magnified for clarity. Ad-
ditionally, the masses of the deltas have been magnified 25 times for clarity as well. Approximate
steady state at t = 100 from an equidistant distribution of particles in the region [0, 0.5]. Note that
this state seems to have a small portion near the boundary that is a classical density and seems
like it could be in equilibrium, given the profile of Λ(x).

show conclusively that the observed steady states are energy minima. Indeed some cases show that
Λ(x) seems to decrease away from the mass near the wall, while in some other cases Λ(x) seems to
increase away from the mass near the wall (see Figure 6.2).

Now, these considerations so far are just for the smoothed QANR potentials. The QANR po-
tential with the diffusive model appears to form single component steady states which are energy
minima (see Figure 5.8). With this acknowledgement, the author would like to point out next steps
they would take in order to investigate whether the C1-smoothed QANR potential with the diffusive
model evolves into energy minima or not.

The first thing to point out is that the concavity of Λ(x) for x /∈ supp ρ can still be characterized
by how much mass is within ε of the given point x as could be done in the plain aggregation model.
Indeed, for x /∈ supp(ρ) we get

Λ′′(x) = M − 1
2ε

∫ ε

−ε
ρ(y) dy.

As Λ(x) is C1 when considering the C1-smoothed QANR potential, understanding the concavity
of Λ(x) could reveal whether equilibria are minimizers or not. One additional thing that may be
worthwhile to consider in tandem with this might be the evolution of Λ(x) itself. That is it may be
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Figure 6.2: Long time dynamics of the diffusive model (1.6) with the C1-smoothed QANR potential
and ε = 0.1. Both states were initialized at a constant density state in [0, 0.5] with total mass 1. (a)
A multi-component approximate steady state with ν = 10−5. Note Λ(x) appears to decrease away
from the first bump suggesting that this is not a minimizer. (b) A single-component approximate
steady state with ν = 10−4. Note Λ(x) increases away from the component, suggesting that this is
a minimizer.

worthwhile to consider

dΛ
dt =

∫
K(x− y)(ρ(y)Λyy(y) + ρy(y)Λy(y)) dy.

One might be able to argue whether if Λ(x) is concave between compact swarms then can Λ(x)
ever become convex? And if so, how can it?

104



Bibliography

[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005.

[2] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul. Dimensionality of local minimizers of
the interaction energy. Arch. Ration. Mech. Anal., 209(3):1055–1088, 2013.

[3] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul. Nonlocal interactions by repulsive-
attractive potentials: Radial ins/stability. Phys. D, 260:5–25, 2013.

[4] J. M. Ball. Dynamic energy minimization and phase transformations in solids. In ICIAM 91
(Washington, DC, 1991), pages 3–14. SIAM, Philadelphia, PA, 1992.

[5] J. M. Ball, P. J. Holmes, R. D. James, R. L. Pego, and P. J. Swart. On the dynamics of fine
structure. J. Nonlinear Sci., 1(1):17–70, 1991.

[6] J. Bedrossian, A. L. Bertozzi, and N. Rodriguez. Local and global well-posedness for ag-
gregation equations and patlak-keller-segel models with degenerate diffusion. Nonlinearity,
24(6):1683–1714, 2011.

[7] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numer. Math., 84(3):375–393, 2000.

[8] A. J. Bernoff, M. R. D’Orsogna, L. Edelstein-Keshet, and C. M. Topaz. Locust dynamics:
Behavioral phase change and swarming. PLoS Comput. Biol., 8(8):e1002642, 11, 2012.

[9] A. J. Bernoff, A. J. Leverentz, and C. M. Topaz. Asymptotic dynamics of attractive-repulsive
swarms. SIAM J. Appl. Dyn. Syst., 8(3):880–908, 2009.

[10] A. J. Bernoff and C. M. Topaz. A primer of swarm equilibria. SIAM J. Appl. Dyn. Syst.,
10(1):212–250, 2011.

[11] A. L. Bertozzi, J. A. Carrillo, and T. Laurent. Blow-up in multidimensional aggregation
equations with mildly singular interaction kernels. Nonlinearity, 22(3):683–710, 2009.

[12] A. L. Bertozzi and Y. Huang. Self-similar blowup solutions to an aggregation equation in Rn.
SIAM J. Appl. Math., 70(7):2582–2603, 2010.

[13] A. L. Bertozzi, T. Kolokolnikov, H. Sun, and D. Uminsky. A theory of complex patterns arising
from 2D particle interactions. Phys. Rev. E, Rapid Communications, 84:015203(R), 2011.

105



[14] A. L. Bertozzi and T. Laurent. Finite-time blow-up of solutions of an aggregation equation in
Rn. Comm. Math. Phys., 274(3):717–735, 2007.

[15] A. L. Bertozzi, T. Laurent, and F. Léger. Aggregation and spreading via the newtonian poten-
tial: The dynamics of patch solutions. Math. Models Methods Appl. Sci., 22(Supp. 1):1140005,
2012.

[16] A. L. Bertozzi, M. A. Lewis, and C. M. Topaz. A nonlocal continuum model for biological
aggregation. Bull. Math. Bio., 68:1601–1623, 2006.

[17] A. L. Bertozzi and D. Slepčev. Existence and uniqueness of solutions to an aggregation equation
with degenerate diffusion. Commun. Pure Appl. Anal., 9(6):1617–1637, 2010.

[18] M. Bodnar and J. J. L. Velazquez. An integro-differential equation arising as a limit of indi-
vidual cell-based models. J. Differential Equations, 222(2):341–380, 2006.

[19] M. Burger and M. Di Francesco. Large time behavior of nonlocal aggregation models with
nonlinear diffusion. Netw. Heterog. Media, 3(4):749–785, 2008.

[20] M. Burger, M. Di Francesco, and M. Franek. Stationary states of quadratic diffusion equations
with long-range attraction. Comm. Math. Sci., 11(3):709–738, 2013.

[21] M. Burger, R. C. Fetecau, and Y. Huang. Stationary states and asymptotic behavior of
aggregation models with nonlinear local repulsion. SIAM J. Appl. Dyn. Syst., 13(1):397–424,
2014.

[22] S. Camazine, J-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-
organization in Biological Systems. Princeton Studies in Complexity. Princeton University
Press, Princeton, NJ, 2003. Reprint of the 2001 original.

[23] J. A. Cañizo, J. A. Carrillo, and F. S. Patacchini. Existence of compactly supported global
minimisers for the interaction energy. Arch. Ration. Mech. Anal., 217(3):1197–1217, 2015.

[24] J. A. Carrillo, A. Chertock, and Y. Huang. A finite-volume method for nonlinear nonlocal
equations with a gradient flow structure. Commun. Comput. Phys., 17(1):233–258, 2015.

[25] J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak
measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math.
J., 156(2):229–271, 2011.

[26] J. A. Carrillo, S. Hittmeir, B. Volzone, and Y. Yao. Nonlinear aggregation-diffusion equations:
Radial symmetry and long time asymptotics. preprint arXiv:1603.07767, 2017.

[27] J. A. Carrillo, R. J. McCann, and C. Villani. Contractions in the 2-Wasserstein length space
and thermalization of granular media. Arch. Ration. Mech. Anal., 179(2):217–263, 2006.

[28] J. A. Carrillo, D. Slepčev, and L. Wu. Nonlocal-interaction equations on uniformly prox-regular
sets. Discrete Contin. Dyn. Syst. Ser. A, 36(3):1209–1247, 2016.

[29] L. Chayes, I. Kim, and Y. Yao. An aggregation equation with degenerate diffusion: Qualitative
property of solutions. SIAM J. Math. Anal., 45(5):2995–3018, 2013.

106



[30] R. Choksi, R. C. Fetecau, and I. Topaloglu. On minimizers of interaction functionals with
competing attractive and repulsive potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire,
32(6):1283–1305, 2015.

[31] J. Cortés. Discontinuous dynamical systems: A tutorial on solutions, nonsmooth analysis, and
stability. IEEE Control Syst. Mag., 28(3):36–73, 2008.

[32] J. Crank. The Mathematics of Diffusion. Oxford University Press, 2 edition, 1979.

[33] Q. Du and P. Zhang. Existence of weak solutions to some vortex density models. SIAM J.
Math. Anal., 34(6):1279–1299, 2003.

[34] W. E. Dynamics of vortex liquids in Ginzburg-Landau theories with applications to supercon-
ductivity. Physical Review B, 50(2), 1994.

[35] L. Edelstein-Keshet and A. Mogilner. A non-local model for a swarm. J. Math. Biol., 38:534–
570, 1999.

[36] R. Eftimie, G. de Vries, and M. A. Lewis. Complex spatial group patterns result from dif-
ferent animal communication mechanisms. Proceedings of the National Academy of Sciences,
104(17):6974–6979, 2007.

[37] M. Egerstedt and M. Ji. Distributed coordination control of multi-agent systems while pre-
serving connectedness. IEEE Trans. Robot., 23(4):693–703, 2007.

[38] L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010.

[39] J. H. M. Evers and T. Kolokolnikov. Metastable states for an aggregation model with noise.
SIAM J. Appl. Dyn. Syst., 15(4):2213–2226, 2016.

[40] K. Fellner and B. D. Hughes. Continuum models of cohesive stochastic swarms: The effect of
motility on aggregation patterns. Phys. D, 260:26–48, 2013.

[41] K. Fellner and G. Raoul. Stable stationary states of non-local interaction equations. Math.
Models Methods Appl. Sci., 20(12):2267–2291, 2010.

[42] A. E. Fernando, K. A. Landman, and M. J. Simpson. Nonlinear diffusion and exclusion
processes with contact interactions. Phys. Rev. E, 81(1), 2010.

[43] R. C. Fetecau and Y. Huang. Equilibria of biological aggregations with nonlocal repulsive-
attractive interactions. Phys. D, 260:49–64, 2013.

[44] R. C. Fetecau, Y. Huang, and T. Kolokolnikov. Swarm dynamics and equilibria for a nonlocal
aggregation model. Nonlinearity, 24(10):2681–2716, 2011.

[45] R. C. Fetecau and M. Kovacic. Swarm equilibria in domains with boundaries. SIAM J. Appl.
Dyn. Syst., 16(3):1260–1308, 2017.

[46] R. C. Fetecau, M. Kovacic, and I. Topaloglu. Swarming in domains with boundaries: Approx-
imation and regularization by nonlinear diffusion. Discrete Contin. Dyn. Syst. Ser. B, 2018.
(accepted); arXiv preprint http://arxiv.org/abs/1711.03622.

107



[47] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides, volume 18 of Math-
ematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht,
1988. Translated from the Russian.

[48] J. M. Haile. Molecular Dynamics Simulation: Elementary Methods. John Wiley and Sons,
Inc., New York, 1992.

[49] D. Holm and V. Putkaradze. Aggregation of finite-size particles with variable mobility. Phys
Rev Lett., 95:226106, 2005.

[50] D. Holm and V. Putkaradze. Formation of clumps and patches in self-aggregation of finite-size
particles. Physica D., 220(2):183–196, 2006.

[51] P. J. Holmes and P. J. Swart. Energy minimization and the formation of microstructure in
dynamic anti-plane shear. Arch. Rational Mech. Anal., 121(1):37–85, 1992.

[52] B. D. Hughes. Random Walks and Random Environments, volume 1. Oxford University Press,
1995.

[53] B. D. Hughes, K. A. Landman, and C. J. Penington. Building macroscale models from mi-
croscale probabilistic models: A general probabilistic approach for nonlinear diffusion and
multi-species phenomena. Phys. Rev. E, 84:1–12, 2011.

[54] B. D. Hughes, K. A. Landman, and M. J. Simpson. Multi-species simple exclusion processes.
Physica A: Statistical Mechanics and its Applications, 388(4):399–406, 2009.

[55] A. Huth and C. Wissel. The simulation of fish schools in comparison with experimental
data. Ecological Modelling, 75-76:135d–146, 1994. State-of-the-Art in Ecological Modelling:
Proceedings of ISEM’s 8th International Conference.

[56] G. Kaib. Stationary states of an aggregation equation with degenerate diffusion and bounded
attractive potential. SIAM J. Math. Anal., 49(1):272–296, 2017.

[57] R. J. McCann. Existence and uniqueness of monotone measure-preserving maps. Duke Math.
J., 80(2):309–323, 1995.

[58] S. Motsch and E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Review,
56:577–621, 2014.

[59] D. Pita, B. A. Moore, L. P. Tyrrell, and E. Fernández-Juricic. Vision in two cyprinid fish:
implications for collective behavior. PeerJ, 3:e1113, August 2015.

[60] Z. Qian, X. E. Cheng, and Y. Q. Chen. Automatically detect and track multiple fish swimming
in shallow water with frequent occlusion. PLOS ONE, 9(9):1–12, 2014.

[61] R. Simione, D. Slepčev, and I. Topaloglu. Existence of ground states of nonlocal-interaction
energies. J. Stat. Phys., 159(4):972–986, 2015.

[62] D. Slepčev and L. Wu. Nonlocal interaction equations in environments with heterogeneities
and boundaries. Comm. Partial Differential Equations, 40(7):1241–1281, 2015.

108



[63] G. Toscani. One-dimensional kinetic models of granular flows. M2AN Math. Model. Numer.
Anal., 34(6):1277–1291, 2000.

[64] C. Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2003.

[65] Y. Zhang. On continuity equations in space-time domains. arXiv preprint
https://arxiv.org/abs/1701.06237, 2017.

109



Appendix A

Morse Potential - Explicit System

We provide below the six equations derived from (3.66). The four equations that ensure Λ(x) = λ2
for x ∈ [d1, d1 + d2] are:

C

L−2 + µ2 exp
(
d1
L

)(
− 1
L

cos(µd1)− µ sin(µd1)
)

+ D

L−2 + µ2 exp
(
d1
L

)(
− 1
L

sin(µd1) + µ cos(µd1)
)

+ Lλ2
ε

exp
(
d1
L

)
+ S = 0,

C

1 + µ2 exp (d1)
(
− cos(µd1)− µ sin(µd1)

)
+ D

1 + µ2 exp (d1)
(
− sin(µd1) + µ cos(µd1)

)
+ λ2

ε
exp (d1) + S = 0,

C

L−2 + µ2 exp
(
−d1 + d2

L

)(
− 1
L

cos(µ(d1 + d2)) + µ sin(µ(d1 + d2))
)

+ D

L−2 + µ2 exp
(
−d1 + d2

L

)(
− 1
L

sin(µ(d1 + d2))− µ cos(µ(d1 + d2))
)

+ Lλ2
ε

exp
(−(d1 + d2)

L

)
= 0,

C

1 + µ2 exp (−(d1 + d2))
(
− cos(µ(d1 + d2)) + µ sin(µ(d1 + d2))

)
+ D

1 + µ2 exp (−(d1 + d2))
(
− sin(µ(d1 + d2))− µ cos(µ(d1 + d2))

)
+ λ2

ε
exp (−(d1 + d2)) = 0.
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The equation that ensures Λ(0) = λ1 is

−GL
( C

L−2 + µ2 exp
(
− y
L

)(
− 1
L

cos(µy) + µ sin(µy)
)

+ D

L−2 + µ2 exp
(
− y
L

)(
− 1
L

sin(µy)− µ cos(µy)
)

+ Lλ2
ε

exp
(
− y
L

))∣∣∣y=d1+d2

y=d1
+
( C

1 + µ2 exp(−y)
(
− cos(µy) + µ sin(µy)

)
+ D

1 + µ2 exp(−y)
(
− sin(µy)− µ cos(µy)

)
+ λ2

ε
exp(−y)

)∣∣∣y=d1+d2

y=d1
+ S(1−GL) = λ1.

Finally, the mass constraint equation gives

S + C

µ
(sin(µ(d1 + d2))− sin(µd1))− D

µ
(cos(µ(d1 + d2))− cos(µd1))− λ2d2

ε
= M.
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